National Library of Energy BETA

Sample records for united technologies research

  1. Beryllium Technology Research in the United States

    SciTech Connect (OSTI)

    Glen R. Longhurst; Robert A. Anderl; M. Kay Adleer-Flitton; Gretchen E. Matthern; Troy J. Tranter; Kendall J. Hollis

    2005-02-01

    While most active research involving beryllium in the United States remains tied strongly to biological effects, there are several areas of technology development in the last two years that should be mentioned. (1) Beryllium disposed of in soil vaults at the Idaho National Laboratory (INL) Radioactive Waste Management Complex (RWMC) has been encapsulated in-situ by high-temperature and pressure injection of a proprietary wax based material to inhibit corrosion. (2) A research program to develop a process for removing heavy metals and cobalt from irradiated beryllium using solvent extraction techniques has been initiated to remove components that prevent the beryllium from being disposed of as ordinary radioactive waste. (3) The JUPITER-II program at the INL Safety and Tritium Applied Research (STAR) facility has addressed the REDOX reaction of beryllium in molten Flibe (a mixture of LiF and BeF2) to control tritium, particularly in the form of HF, bred in the Flibe by reactions involving both beryllium and lithium. (4) Work has been performed at Los Alamos National Laboratory to produce beryllium high heat flux components by plasma spray deposition on macro-roughened substrates. Finally, (5) corrosion studies on buried beryllium samples at the RWMC have shown that the physical form of some of the corroded beryllium is very filamentary and asbestos-like. This form of beryllium may exacerbate the contraction of chronic beryllium disease.

  2. WA_03_040_UNITED_TECHNOLOGIES_RESEARCH_CENTER_Waiver_of_Dome.pdf |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 40_UNITED_TECHNOLOGIES_RESEARCH_CENTER_Waiver_of_Dome.pdf WA_03_040_UNITED_TECHNOLOGIES_RESEARCH_CENTER_Waiver_of_Dome.pdf (705.58 KB) More Documents & Publications WA_02_054_ADVANCED_TECHNLOGY_MATERIALS_Waiver_of_Domestic_an.pdf WA_02_038_UNITED_TECHNOLOGIES_CORP_Waiver_of_Domestic_and_Fo.pdf Advance Patent Waiver W(A)2006-021

  3. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  4. Critical Materials Institute signs new member United Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    signs new member United Technologies Research Center Contacts: For release: Aug. 18, 2015 Alex King, Director, Critical Materials Institute, (515) 296-4505 Laura Millsaps, Ames...

  5. Crosscutting Technology Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Crosscutting Technology Research The Crosscutting Technology Research program serves as a bridge between basic and applied research by fostering R&D in sensors and controls, modeling and simulation, and high performance materials. These activities target enhanced availability and cost reduction for advanced power systems. The Crosscutting program facilitates its R&D efforts through collaboration with other government agencies, large and small businesses, and universities. The

  6. United Technologies Corp | Open Energy Information

    Open Energy Info (EERE)

    United Technologies Corp Place: Hartford, Connecticut Zip: CT 06101 Sector: Hydro, Hydrogen Product: UTC is a global technology corporation with activities in aerospace,...

  7. United States National Energy Technology Laboratory's (NETL)...

    Open Energy Info (EERE)

    National Energy Technology Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States...

  8. Oil Shale Research in the United States | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research in the United States Oil Shale Research in the United States Profiles of Oil Shale Research and Development Activities In Universities, National Laboratories, and Public Agencies Oil Shale Research in the United States (7.2 MB) More Documents & Publications Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Applicability of a Hybrid Retorting Technology in the Green River Formation National Strategic Unconventional Resource Model

  9. NREL: Geothermal Technologies - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff Engineers, analysts, researchers, and others who support NREL's geothermal technologies projects come from disciplines and organizations across the laboratory depending on each project's requirements. Here you'll find contact information for NREL's geothermal technologies team. Management Henry (Bud) Johnston Laboratory Program Manager, Geothermal Technologies Stacee Foster Project Administrator Colorado Collaboration for Subsurface Research in Geothermal Energy (SURGE) Bud

  10. Crosscutting Technology Research FAQs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Crosscutting Research Crosscutting Research The Crosscutting Research program serves as a bridge between basic and applied research by fostering the development of innovative systems for improving availability, efficiency, and environmental performance of fossil energy systems with carbon capture and storage. This crosscutting effort is implemented through the research and development of sensors, controls, and advanced materials. This program area also develops computation, simulation,

  11. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    SciTech Connect (OSTI)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  12. Industrial Technology Research Institute | Open Energy Information

    Open Energy Info (EERE)

    Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name: Industrial Technology Research Institute Address: Rm. 112, Bldg. 24,...

  13. Guanquan Shandong Photoelectric Technology aka United LED Corporation...

    Open Energy Info (EERE)

    Guanquan Shandong Photoelectric Technology aka United LED Corporation Jump to: navigation, search Name: Guanquan (Shandong) Photoelectric Technology (aka United LED Corporation)...

  14. MHK Technologies/OCGen turbine generator unit TGU | Open Energy...

    Open Energy Info (EERE)

    OCGen turbine generator unit TGU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCGen turbine generator unit TGU.jpg Technology Profile...

  15. Research & Development Roadmap: Emerging Water Heating Technologies...

    Office of Environmental Management (EM)

    Water Heating Technologies Research & Development Roadmap: Emerging Water Heating Technologies The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies ...

  16. Technological Research and Development Authority (TRDA) | Open...

    Open Energy Info (EERE)

    Research and Development Authority (TRDA) Jump to: navigation, search Logo: Technological Research and Development Authority (TRDA) Name: Technological Research and Development...

  17. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  18. China United Cleaning Technology Co Ltd Beijing | Open Energy...

    Open Energy Info (EERE)

    Technology Co Ltd, Beijing Place: Beijing Municipality, China Zip: 100012 Product: A Chinese PV cell equipment provider References: China United Cleaning Technology Co Ltd,...

  19. Report, Long-Term Nuclear Technology Research and Development Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Report, Long-Term Nuclear Technology Research and Development Plan Report, Long-Term Nuclear Technology Research and Development Plan This document constitutes the first edition of a long-term research and development (R&D) plan for nuclear technology in the United States. The federally-sponsored nuclear technology programs of the United States are almost exclusively the province of the U.S. Department of Energy (DOE). The nuclear energy areas in DOE include, but are

  20. Soviet precision timekeeping research and technology

    SciTech Connect (OSTI)

    Vessot, R.F.C.; Allan, D.W.; Crampton, S.J.B.; Cutler, L.S.; Kern, R.H.; McCoubrey, A.O.; White, J.D.

    1991-08-01

    This report is the result of a study of Soviet progress in precision timekeeping research and timekeeping capability during the last two decades. The study was conducted by a panel of seven US scientists who have expertise in timekeeping, frequency control, time dissemination, and the direct applications of these disciplines to scientific investigation. The following topics are addressed in this report: generation of time by atomic clocks at the present level of their technology, new and emerging technologies related to atomic clocks, time and frequency transfer technology, statistical processes involving metrological applications of time and frequency, applications of precise time and frequency to scientific investigations, supporting timekeeping technology, and a comparison of Soviet research efforts with those of the United States and the West. The number of Soviet professionals working in this field is roughly 10 times that in the United States. The Soviet Union has facilities for large-scale production of frequency standards and has concentrated its efforts on developing and producing rubidium gas cell devices (relatively compact, low-cost frequency standards of modest accuracy and stability) and atomic hydrogen masers (relatively large, high-cost standards of modest accuracy and high stability). 203 refs., 45 figs., 9 tabs.

  1. Oil & Gas Technology Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Research Oil & Gas Technology Center Click to email this to a friend (Opens in new ... GE Global Research Oil & Gas Technology Center Mark Little, SVP and chief technology ...

  2. Hydrogen Technology Research at SRNL

    SciTech Connect (OSTI)

    Danko, E.

    2011-02-13

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including membrane filters for H2 separation, doped carbon nanotubes

  3. Sandia Energy - Cybersecurity Technologies Research Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cybersecurity Technologies Research Laboratory Home Cyber Permalink Gallery Sandia Builds Android-Based Network to Study Cyber Disruptions Cyber, Cybersecurity Technologies...

  4. Overview and Progress of United States Advanced Battery Research...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Office Merit Review 2016: Overview and Progress of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium ...

  5. Energy Technologies Research and Education Initiative

    SciTech Connect (OSTI)

    Ghassemi, Abbas; Ranade, Satish

    2014-12-31

    For this project, the intended goal of the microgrid component was to investigate issues in policy and technology that would drive higher penetration of renewable energy, and to demonstrate implementation in a utility system. The work accomplished on modeling the dynamics of photovoltaic (PV) penetration can be expanded for practical application. Using such a tool those involved in public policy can examine what the effect of a particular policy initiative, e.g., renewable portfolio standards (RPS) requirements, might be in terms of the desired targets. The work in the area of microgrid design, protection, and operation is fundamental to the development of microgrids. In particular the “Energy Delivery” paradigm provides new opportunities and business models for utilities. Ultimately, Energy Delivery could accrue significant benefits in terms of costs and resiliency. The experimental microgrid will support continued research and allow the demonstration of technology for better integration of renewables. The algal biofuels component of the project was developed to enhance the test facility and to investigate the technical and economic feasibility of a commercial-scale geothermal algal biofuels operation for replication elsewhere in the arid Southwest. The project was housed at New Mexico State University’s (NMSU’s) Geothermal Aquaculture Facility (GAF) and a design for the inoculation train and algae grow-out process was developed. The facility was upgraded with modifications to existing electrical, plumbing and structural components on the GAF and surrounding grounds. The research work was conducted on biomass-processing, harvesting, dewatering, and extraction. Additionally, research was conducted to determine viability of using low-cost, wastewater from municipal treatment plants in the cultivation units as make-up water and as a source of nutrients, including nitrogen and soluble phosphorus. Data was collected on inputs and outputs, growth evaluation and

  6. Future of Wind Energy Technology in the United States

    SciTech Connect (OSTI)

    Thresher, R.; Robinson, M.; Veers, P.

    2008-10-01

    This paper describes the status of wind energy in the United States as of 2007, its cost, the potential for growth, offshore development, and potential technology improvements.

  7. Water Research and Technology | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne OutLoud: The End of Water As We Know It Argonne OutLoud: The End of Water As We Know It (Jan. 28, 2016) Water Research and Technology Water Research and Technology Our ...

  8. Hydrogen Fueling Infrastructure Research and Station Technology...

    Broader source: Energy.gov (indexed) [DOE]

    An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014. Hydrogen Fueling Infrastructure Research and ...

  9. Vehicle Technologies Office Battery Research Partner Requests...

    Office of Environmental Management (EM)

    Battery Research Partner Requests Proposals for Thermal Management Systems Vehicle Technologies Office Battery Research Partner Requests Proposals for Thermal Management Systems ...

  10. Vehicle Technologies Office: Intermediate Ethanol Blends Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intermediate Ethanol Blends Research and Testing Vehicle Technologies Office: Intermediate Ethanol Blends Research and Testing Ethanol can be combined with gasoline in blends ...

  11. Poster on Subsurface Technology & Engineering Research, Development...

    Energy Savers [EERE]

    Research, Development, and Demonstration Crosscut (SubTER) Poster on Subsurface Technology & Engineering Research, Development, and Demonstration Crosscut (SubTER) The US DOE ...

  12. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  13. Next-Generation Photovoltaic Technologies in the United States: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2004-06-01

    This paper describes highlights of exploratory research into next-generation photovoltaic (PV) technologies funded by the United States Department of Energy (DOE) through its National Renewable Energy Laboratory (NREL) for the purpose of finding disruptive or ''leap frog'' technologies that may leap ahead of conventional PV in energy markets. The most recent set of 14 next-generation PV projects, termed Beyond the Horizon PV, will complete their third year of research this year. The projects tend to take two notably different approaches: high-efficiency solar cells that are presently too expensive, or organic solar cells having potential for low cost although efficiencies are currently too low. We will describe accomplishments for several of these projects. As prime examples of what these last projects have accomplished, researchers at Princeton University recently reported an organic solar cell with 5% efficiency (not yet NREL-verified). And Ohio State University scientists recently demonstrated an 18% (NREL-verified) single-junction GaAs solar cell grown on a low-cost silicon substrate. We also completed an evaluation of proposals for the newest set of exploratory research projects, but we are unable to describe them in detail until funding becomes available to complete the award process.

  14. Research & Development Roadmap: Emerging Water Heating Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Research and Development (R&D) Roadmap for Emerging Water Heating Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTO’s energy savings goals.

  15. FY2012 Engineering Research & Technology Report

    SciTech Connect (OSTI)

    Lane, Monya

    2014-07-22

    This report documents engineering research, development, and technology advancements performed by LLNL during fiscal year 2012 in the following areas: computational engineering, engineering information systems, micro/nano-devices and structures, and measurement technologies.

  16. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  17. Critical technologies research: Opportunities for DOE

    SciTech Connect (OSTI)

    Not Available

    1992-12-01

    Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

  18. Promising Technology: High-Efficiency Rooftop Units

    Broader source: Energy.gov [DOE]

    High-efficiency rooftop air conditioning units (RTUs) can significantly reduce heating, cooling, and ventilation energy consumption. High efficiency RTUs incorporate variable speed controls to minimize fan and compressor energy while capturing and reusing heat, cold, and humidity from a building’s exhaust air.

  19. Aviation Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read More Ceramic Matrix Composites Improve Engine Efficiency Ceramic matrix composites (CMCs) are a breakthrough materials technology for jet engines that started at our Global ...

  20. Vehicle Technologies Office: Lubricants Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lubricants Research and Development Vehicle Technologies Office: Lubricants Research and Development Investigating technologies such as lubricants that will improve the efficiency of today's vehicles is essential, as most vehicles are on the road for more than 15 years before they are retired. The Vehicle Technologies Office (VTO) supports research and development (R&D) on lubricants that can improve the efficiency of vehicles with internal combustion engines.

  1. Naval Research Laboratory Technology Marketing Summaries - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Research Laboratory 8 Technology Marketing Summaries Category Title and Abstract Laboratories Date Solar Photovoltaic Find More Like This Sputtered Thin Film Photovoltaics ...

  2. Water Technology Research | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Technology Research Wastewater treatment plant Wastewater treatment plant Water is an increasingly valuable natural resource. By identifying typical sources and distribution ...

  3. New Medical Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Read More GE, MIT Build Crowdsourcing Software Platform GE (NYSE: GE), with the Massachusetts Institute of Technology (MIT) and the Defense Advanced Research Agency (DARPA), ...

  4. New Transportation Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read More GE, MIT Build Crowdsourcing Software Platform GE (NYSE: GE), with the Massachusetts Institute of Technology (MIT) and the Defense Advanced Research Agency (DARPA), ...

  5. New Energy Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read More GE, MIT Build Crowdsourcing Software Platform GE (NYSE: GE), with the Massachusetts Institute of Technology (MIT) and the Defense Advanced Research Agency (DARPA), ...

  6. Fusion materials science and technology research opportunities...

    Office of Scientific and Technical Information (OSTI)

    the ITER era Citation Details In-Document Search Title: Fusion materials science and technology research opportunities now and during the ITER era Several high-priority...

  7. Healthcare Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrating Technology to Improve Patient Care Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Integrating Technology to Improve Patient Care We often look at a technology, thinking about how we can make it smaller, cheaper, faster and more efficient. But when you're talking about improving patient care, the needs of

  8. Research and Development Roadmap for Emerging HVAC Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Roadmap for Emerging HVAC Technologies W. Goetzler, M. Guernsey, and J. Young October 2014 Prepared by Navigant Consulting, Inc. (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied,

  9. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Design, Evaluation and Test Technology Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation

  10. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers Technology Deployment Centers CRF Many of Sandia's unique research centers are available for use by U.S. industry, universities, academia, other laboratories, state and local governments, and the scientific community in general. Technology deployment centers are a unique set of scientific research capabilities and resources. The primary function of technology deployment centers is to satisfy Department of Energy programmatic needs, while remaining accessible to outside users. Contact

  11. Hydrogen Fueling Infrastructure Research and Station Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Research and Station Technology Erika Sutherland U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your question into the question box hydrogenandfuelcells.energy.gov Hydrogen Fueling Infrastructure Research and Station Technology Chris Ainscough, Joe Pratt, Jennifer Kurtz, Brian Somerday, Danny Terlip, Terry Johnson November 18, 2014 Objective: Ensure that FCEV customers have a positive fueling experience relative to conventional

  12. ITP Chemicals: Hybripd Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybripd SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybripd SeparationsDistillation Technology. Research ...

  13. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Research, Development and Demonstration Plan: Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan Geothermal Technologies ...

  14. ITP Chemicals: Hybrid Separations/Distillation Technology. Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid SeparationsDistillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid SeparationsDistillation Technology. Research ...

  15. Aviation Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read More Innovation 247: We're Always Open At GE Global Research, we work around the clock and across the globe to build, power, move and cure the world. Click the image... ...

  16. Exploratory Research for New Solar Electric Technologies

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2005-01-01

    We will review highlights of exploratory research for new PV technologies funded by the DOE Solar Energy Technologies Program through NREL and its Photovoltaic Exploratory Research Project. The goal for this effort is highlighted in the beginning of the Solar Program Multi-Year Technical Plan by Secretary of Energy Spencer Abraham's challenge to leapfrog the status quo by pursuing research having the potential to create breakthroughs. The ultimate goal is to create solar electric technologies for achieving electricity costs below 5 cents/kWh. Exploratory research includes work on advanced photovoltaic technologies (organic and ultra-high efficiency solar cells for solar concentrators) as well as innovative approaches to emerging and mature technologies (e.g., crystalline silicon).

  17. Overview and Progress of United States Advanced Battery Research (USABC)

    Broader source: Energy.gov (indexed) [DOE]

    Activity | Department of Energy 2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es097_snyder_2012_o.pdf (722.2 KB) More Documents & Publications Vehicle Technologies Office Merit Review 2016: Overview and Progress of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium Overview and Progress of United States Advanced Battery Consortium (USABC) Activity

  18. Brazil Technology Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Research at GE's Brazil Technology Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Biofuels Research at GE's Brazil Technology Center Clayton Zabeu, leader of Brazil Technology Center's Biofuels Center of Excellence, talks about the main objectives of the research programs that will drive the development

  19. FY08 Engineering Research and Technology Report

    SciTech Connect (OSTI)

    Minichino, C; McNichols, D

    2009-02-24

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2008. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: 'Enable program success today and ensure the Laboratory's vitality tomorrow.' Engineering's mission is carried out through basic research and technology development. Research is the vehicle for creating competencies that are cutting-edge, or require discovery-class groundwork to be fully understood. Our technology efforts are discipline-oriented, preparing research breakthroughs for broader application to a variety of Laboratory needs. The term commonly used for technology-based projects is 'reduction to practice.' As we pursue this two-pronged approach, an enormous range of technological capabilities result. This report combines our work in research and technology into one volume, organized into thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Engineering Systems for Knowledge and Inference; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.

  20. Load research manual. Volume 3. Load research for advanced technologies

    SciTech Connect (OSTI)

    Brandenburg, L.; Clarkson, G.; Grund, Jr., C.; Leo, J.; Asbury, J.; Brandon-Brown, F.; Derderian, H.; Mueller, R.; Swaroop, R.

    1980-11-01

    This three-volume manual presents technical guidelines for electric utility load research. Special attention is given to issues raised by the load data reporting requirements of the Public Utility Regulatory Policies Act of 1978 and to problems faced by smaller utilities that are initiating load research programs. The manual includes guides to load research literature and glossaries of load research and statistical terms. In Volume 3, special load research procedures are presented for solar, wind, and cogeneration technologies.

  1. NREL: Transportation Research - Compare Vehicle Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compare Vehicle Technologies NREL researchers are simultaneously exploring ways to optimize the legacy internal combustion technology that makes up the vast majority of vehicles on today's roads, while developing the electric, fuel cell, and biofuel technologies needed to transition to a virtually net-zero emissions, non-polluting fleet. See how electric, hybrid, and fuel cell vehicles compare to traditional internal combustion vehicles in the slideshow below. 3-D illustration of electric car

  2. Biological and chemical technologies research. FY 1995 annual summary report

    SciTech Connect (OSTI)

    1996-03-01

    The annual summary report presents the fiscal year (FY) 1995 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program. This BCTR program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1995 (ASR 95) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1995; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents; and awards arising from work supported by the BCTR.

  3. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Explosive Components Facility Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  4. Research & Development Roadmap: Emerging HVAC Technologies

    Broader source: Energy.gov [DOE]

    The Research and Development (R&D) Roadmap for Emerging Heating, Ventilation, and Air-Conditioning (HVAC) Technologies provides recommendations to the Building Technologies Office (BTO) on R&D activities to pursue that will aid in achieving BTO’s energy savings goals.

  5. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Advanced Power Sources Laboratory Technology Deployment Centers Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research Facility (STAR) Weapon and Force Protection Center Design, Evaluation and Test

  6. Nanoscale Science, Engineering and Technology Research Directions

    SciTech Connect (OSTI)

    Lowndes, D. H.; Alivisatos, A. P.; Alper, M.; Averback, R. S.; Jacob Barhen, J.; Eastman, J. A.; Imre, D.; Lowndes, D. H.; McNulty, I.; Michalske, T. A.; Ho, K-M; Nozik, A. J.; Russell, T. P.; Valentin, R. A.; Welch, D. O.; Barhen, J.; Agnew, S. R.; Bellon, P.; Blair, J.; Boatner, L. A.; Braiman, Y.; Budai, J. D.; Crabtree, G. W.; Feldman, L. C.; Flynn, C. P.; Geohegan, D. B.; George, E. P.; Greenbaum, E.; Grigoropoulos, C.; Haynes, T. E.; Heberlein, J.; Hichman, J.; Holland, O. W.; Honda, S.; Horton, J. A.; Hu, M. Z.-C.; Jesson, D. E.; Joy, D. C.; Krauss, A.; Kwok, W.-K.; Larson, B. C.; Larson, D. J.; Likharev, K.; Liu, C. T.; Majumdar, A.; Maziasz, P. J.; Meldrum, A.; Miller, J. C.; Modine, F. A.; Pennycook, S. J.; Pharr, G. M.; Phillpot, S.; Price, D. L.; Protopopescu, V.; Poker, D. B.; Pui, D.; Ramsey, J. M.; Rao, N.; Reichl, L.; Roberto, J.; Saboungi, M-L; Simpson, M.; Strieffer, S.; Thundat, T.; Wambsganss, M.; Wendleken, J.; White, C. W.; Wilemski, G.; Withrow, S. P.; Wolf, D.; Zhu, J. H.; Zuhr, R. A.; Zunger, A.; Lowe, S.

    1999-01-01

    This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty-first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry.

  7. FY06 Engineering Research and Technology Report

    SciTech Connect (OSTI)

    Minichino, C; Alves, S W; Anderson, A T; Bennett, C V; Brown, C G; Brown, W D; Chinn, D; Clague, D; Clark, G; Cook, E G; Davidson, J C; Deri, R J; Dougherty, G; Fasenfest, B J; Florando, J N; Fulkerson, E S; Haugen, P; Heebner, J E; Hickling, T; Huber, R; Hunter, S L; Javedani, J; Kallman, J S; Kegelmeyer, L M; Koning, J; Kosovic, B; Kroll, J J; LeBlanc, M; Lin, J; Mariella, R P; Miles, R; Nederbragt, W W; Ness, K D; Nikolic, R J; Paglieroni, D; Pannu, S; Pierce, E; Pocha, M D; Poland, D N; Puso, M A; Quarry, M J; Rhee, M; Romero, C E; Rose, K A; Sain, J D; Sharpe, R M; Spadaccini, C M; Stolken, J S; Van Buuren, A; Wemhoff, A; White, D; Yao, Y

    2007-01-22

    This report summarizes the core research, development, and technology accomplishments in Lawrence Livermore National Laboratory's Engineering Directorate for FY2006. These efforts exemplify Engineering's more than 50-year history of developing and applying the technologies needed to support the Laboratory's national security missions. A partner in every major program and project at the Laboratory throughout its existence, Engineering has prepared for this role with a skilled workforce and technical resources developed through both internal and external venues. These accomplishments embody Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out primarily through two internal programs: the Laboratory Directed Research and Development (LDRD) program and the technology base, or ''Tech Base'', program. LDRD is the vehicle for creating technologies and competencies that are cutting-edge, or require discovery-class research to be fully understood. Tech Base is used to prepare those technologies to be more broadly applicable to a variety of Laboratory needs. The term commonly used for Tech Base projects is ''reduction to practice''. Thus, LDRD reports have a strong research emphasis, while Tech Base reports document discipline-oriented, core competency activities. This report combines the LDRD and Tech Base summaries into one volume, organized into six thematic technical areas: Engineering Modeling and Simulation; Measurement Technologies; Micro/Nano-Devices and Structures; Precision Engineering; Engineering Systems for Knowledge and Inference; and Energy Manipulation.

  8. Engineering research, development and technology report

    SciTech Connect (OSTI)

    Langland, R T

    1999-02-01

    Nineteen ninety-eight has been a transition year for Engineering, as we have moved from our traditional focus on thrust areas to a more focused approach with research centers. These five new centers of excellence collectively comprise Engineering's Science and Technology program. This publication summarizes our formative year under this new structure. Let me start by talking about the differences between a thrust area and a research center. The thrust area is more informal, combining an important technology with programmatic priorities. In contrast, a research center is directly linked to an Engineering core technology. It is the purer model, for it is more enduring yet has the scope to be able to adapt quickly to evolving programmatic priorities. To put it another way, the mission of a thrust area was often to grow the programs in conjunction with a technology, whereas the task of a research center is to vigorously grow our core technologies. By cultivating each core technology, we in turn enable long-term growth of new programs.

  9. UNITED STATES ENERGY RESEARCH AND DEVELOPMENT ADMINISTRATION

    Office of Legacy Management (LM)

    August 19, 1976, representatives of the Energy Research and Development Administration ... Enclosed for your files is a copy of our report documenting the findings ,during the ...

  10. Technology Roadmap Research Program for the Steel Industry

    SciTech Connect (OSTI)

    Joseph R. Vehec

    2010-12-30

    The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

  11. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management The Geothermal Technologies Program Multi-Year Research, Development and ...

  12. El Paso County Geothermal Project: Innovative Research Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal ...

  13. Vehicle Technologies Office: Natural Gas Vehicle Research and...

    Office of Environmental Management (EM)

    Alternative Fuels Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) ...

  14. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations December 11, 2015 - ...

  15. Small Business Innovation Research and Small Business Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research and Small Business Technology Transfer Programs: Hydropower Small Business Innovation Research and Small Business Technology Transfer Programs: ...

  16. Small Business Innovation Research and Small Business Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs Small Business ...

  17. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research, ...

  18. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan The Geothermal Technologies Program Multi-Year Research, ...

  19. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and ...

  20. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research, ...

  1. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits The Geothermal Technologies Program Multi-Year Research, ...

  2. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coordination Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination The Geothermal Technologies Program Multi-Year Research, ...

  3. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges The Geothermal Technologies Program Multi-Year Research, ...

  4. Using logic models in managing performance of research and technology...

    Office of Scientific and Technical Information (OSTI)

    Using logic models in managing performance of research and technology programs: An example ... Title: Using logic models in managing performance of research and technology programs: An ...

  5. FY09 Engineering Research & Technology Report (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: FY09 Engineering Research & Technology Report Citation Details In-Document Search Title: FY09 Engineering Research & Technology Report Authors: Sharpe, R ; Pannu, ...

  6. Fuel Cell Technologies Office Multi-Year Research, Development...

    Energy Savers [EERE]

    Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The ...

  7. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: ...

  8. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: ...

  9. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration ... Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: ...

  10. 48th Research Institute of China Electronics Technology Group...

    Open Energy Info (EERE)

    8th Research Institute of China Electronics Technology Group Corporation Jump to: navigation, search Name: 48th Research Institute of China Electronics Technology Group Corporation...

  11. PEM Fuel Cell Technology, Key Research Needs and Approaches ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology, Key Research Needs and Approaches (Presentation) PEM Fuel Cell Technology, Key Research Needs and Approaches (Presentation) Presented at the DOE Fuel Cell ...

  12. Waste-to-Energy Research and Technology Council (WTERT) | Open...

    Open Energy Info (EERE)

    Waste-to-Energy Research and Technology Council (WTERT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wast-to-Energy Research and Technology Council (WTERT) Agency...

  13. Waste-to-Energy Research and Technology Council (WTERT) | Open...

    Open Energy Info (EERE)

    Waste-to-Energy Research and Technology Council (WTERT) (Redirected from Wast-to-Energy Research and Technology Council (WTERT)) Jump to: navigation, search Tool Summary LAUNCH...

  14. Health effects of coal technologies: research needs

    SciTech Connect (OSTI)

    Not Available

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  15. Hearing Before the Science, Space, and Technology Subcommittee on Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Technology | Department of Energy Science, Space, and Technology Subcommittee on Research and Technology Hearing Before the Science, Space, and Technology Subcommittee on Research and Technology 6-16-16_Patricia_Dehmer FT HSST (52.98 KB) More Documents & Publications An Overview of the DOE's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) CX-012664:

  16. Artificial Lift Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology: Driving the Artificial Lift Market Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Technology: Driving the Artificial Lift Market Gary Ford, president and CEO of GE Artificial Lift, discusses what the equipment does, the current state of the market and the importance of working with GE's Global Research

  17. Clean Coal Technology - From Research to Reality | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coal Technology - From Research to Reality Clean Coal Technology - From Research to Reality Clean Coal Technology: From Research to Reality (940.28 KB) More Documents & Publications Fact Sheet: Clean Coal Technology Ushers In New Era in Energy Fact Sheet: Clean Coal Technology Ushers In New Era in Energy

  18. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Executive Summary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary Multi-Year Research, Development and Demonstration Plan Page ES - 1 Executive Summary The United States pioneered the development of hydrogen and fuel cell technologies, and we continue to lead the way as these technologies emerge from the laboratory and into commercial markets. A tremendous opportunity exists for the United States to capitalize on this leadership role and apply these technologies to reducing greenhouse gas emissions, reducing our dependence on oil, and

  19. EM Marks Milestone at Separations Process Research Unit

    Broader source: Energy.gov [DOE]

    NISKAYUNA, N.Y. – EM met a major regulatory milestone at the Separations Process Research Unit (SPRU) by completing construction of enclosures and ventilation systems required for cleanup.

  20. DOE - Office of Legacy Management -- Separations Process Research Unit -

    Office of Legacy Management (LM)

    024 Separations Process Research Unit - 024 FUSRAP Considered Sites Site: Separations Process Research Unit (024) More information at http://energy.gov/em and http://spru.energy.gov Designated Name: Not Designated under FUSRAP Alternate Name: SPRU Location: Niskayuna, New York; located at the Knolls Atomic Power Laboratory Evaluation Year: Not considered for FUSRAP - in another program Site Operations: General-purpose laboratory for US Atomic Energy Commission Site Disposition: Site is

  1. Energy Technology Division research summary - 1999.

    SciTech Connect (OSTI)

    1999-03-31

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  2. NREL: Technology Transfer - Cooperative Research and Development...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    303-275-4410. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  3. NREL: Technology Deployment - Climate Neutral Research Campuses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate Neutral Research Campuses Technology Deployment Four photos in a row across the top of the page. The first photo shows the profile of a wind turbine at dusk; the second of two women in white laboratory coats and glasses observing a piece of equipment; the third of a blue car moving downhill with a red rock in the background; the fourth of a walkway to a sandstone building that has a silver tower in the front and a silver walkway into the second story. Climate Neutral Research Campuses

  4. Pipeline Safety Research, Development and Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pipeline and Hazardous Materials Safety Administration Pipeline Safety Research, Development and Technology Natural Gas Infrastructure R&D and Methane Emissions Mitigation Workshop Nov 2014 U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Thank You! * We appreciate the opportunity to share! * Much to share about DOT natural gas infrastructure R&D * Many facets to the fugitive methane issue * DOT/DOE - We would like to restart the practice of

  5. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Pulsed Power and Systems Validation Facility Pulsed Power and Systems Validation Facility The Pulsed Power and System Validation Technology Deployment Center offers access to unique equipment to support specialized research, along with the expertise to address complex problems dealing with radiation effects. User Support
 The knowledgeable staff brings a broad spectrum of experience in the design and setup of experiments. Emphasis is placed on optimizing the operation and results

  6. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Weapon and Force Protection Center Weapon and Force Protection Center Video Cameras Weapon and Force Protection Center The Center for Security Systems is a fully integrated research-to- development-to-application center that provides systems and technologies that understand, identify, and solve the nation's security problems. The Center includes extensive development and testing facilities for all aspects of physical security including the following: sensors video image processing

  7. BCTR: Biological and Chemical Technologies Research 1994 annual summary report

    SciTech Connect (OSTI)

    Petersen, G.

    1995-02-01

    The annual summary report presents the fiscal year (FY) 1994 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). Although the OIT was reorganized in 1991 and AICD no longer exists, this document reports on efforts conducted under the former structure. The annual summary report for 1994 (ASR 94) contains the following: program description (including BCTR program mission statement, historical background, relevance, goals and objectives); program structure and organization, selected technical and programmatic highlights for 1994; detailed descriptions of individual projects; a listing of program output, including a bibliography of published work; patents, and awards arising from work supported by BCTR.

  8. Energy Technology Division research summary 1997.

    SciTech Connect (OSTI)

    1997-10-21

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear

  9. Building Efficiency Technologies by Tomorrow's Engineers and Researchers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (BETTER) Capstone | Department of Energy Efficiency Technologies by Tomorrow's Engineers and Researchers (BETTER) Capstone Building Efficiency Technologies by Tomorrow's Engineers and Researchers (BETTER) Capstone Photo courtesy of Georgia Institute of Technology. Photo courtesy of Georgia Institute of Technology. Lead Performer: Georgia Institute of Technology - Atlanta, GA Partners: - Alphabet Energy - Hayward, CA - Alabama Heat Exchangers, AL - Advanced Renewable Energy - Emrgy Hydro -

  10. Korea Research Institute of Chemical Technology KRICT | Open...

    Open Energy Info (EERE)

    of Chemical Technology KRICT Jump to: navigation, search Name: Korea Research Institute of Chemical Technology (KRICT) Place: Yooseong-gu, Daejeon, Korea (Republic) Zip: 305-600...

  11. DOE Announces Selections for SSL Core Technology Research (Round...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Selections for SSL Core Technology Research (Round 7), Product Development ... Eight projects were chosen in response to the Core Technology (Round 7), Product ...

  12. Geothermal Technologies Program Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration The Geothermal Technologies Program Multi-Year ...

  13. Hydrogen and Fuel Cell Technologies Research, Development, and...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell Technologies Office webinar "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations" ...

  14. Research Opportunities for Fischer-Tropsch Technology

    SciTech Connect (OSTI)

    Jackson, Nancy B.

    1999-06-30

    Fischer-Tropsch synthesis was discovered in Germany in the 1920's and has been studied by every generation since that time. As technology and chemistry, in general, improved through the decades, new insights, catalysts, and technologies were added to the Fischer-Tropsch process, improving it and making it more economical with each advancement. Opportunities for improving the Fischer-Tropsch process and making it more economical still exist. This paper gives an overview of the present Fischer-Tropsch processes and offers suggestions for areas where a research investment could improve those processes. Gas-to-liquid technology, which utilizes the Fischer Tropsch process, consists of three principal steps: Production of synthesis gas (hydrogen and carbon monoxide) from natural gas, the production of liquid fuels from syngas using a Fischer-Tropsch process, and upgrading of Fischer-Tropsch fuels. Each step will be studied for opportunities for improvement and areas that are not likely to reap significant benefits without significant investment.

  15. H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy FIRST: Hydrogen Fueling Infrastructure Research and Station Technology H2FIRST: Hydrogen Fueling Infrastructure Research and Station Technology Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) is a project launched by the U.S. Department of Energy's (DOE's) Fuel Cell Technologies Office (FCTO) within the Office of Energy Efficiency and Renewable Energy. The project leverages capabilities at the national laboratories to address the technology

  16. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Preface Multi-Year Research, Development, and Demonstration Plan Page i Preface The Fuel Cell Technologies Program Multi-Year Research, Development, and Demonstration Plan (MYRD&D ...

  17. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Research, Development and Demonstration Plan: Table of Contents Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan ...

  18. Small Business Innovation Research (SBIR) and Small Business Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer (STTR) | Department of Energy Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) An overview of the Department's Small Business Innovation Research and Small Business Technology Transfer programs, presented at an Historically Black College and University meeting. Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) (188.18 KB) More

  19. Fuel Cell Technologies Manufacturing Research and Development | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Fuel Cell Technologies Manufacturing Research and Development Within the Office of Energy Efficiency and Renewable Energy (EERE), the Fuel Cell Technologies Office (FCTO) supports manufacturing research and development (R&D) activities to improve processes and reduce the cost of components and systems for hydrogen production, delivery, and storage over the

  20. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs Small Business Innovation Research and Small Business Technology Transfer Programs The Office of Energy Efficiency and Renewable Energy's (EERE's) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE)

  1. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

  2. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect (OSTI)

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  3. Vehicle Technologies Office Recognizes Outstanding Researchers and Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Outstanding Researchers and Projects Vehicle Technologies Office Recognizes Outstanding Researchers and Projects June 24, 2015 - 11:51am Addthis At its Annual Merit Review in Arlington, VA, the Department of Energy's (DOE) Vehicle Technologies Office recently recognized some of its most outstanding performers involved in research, development, and deployment of efficient and sustainable highway transportation technologies. The Vehicle Technologies Office bestowed

  4. Great Lakes Bioenergy Research Center Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Great Lakes Bioenergy Research Center Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Great Lakes Bioenergy Research Center (GLBRC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Great Lakes Bioenergy Research Center 43 Technology Marketing Summaries Category Title and Abstract Laboratories Date Biomass and

  5. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan | Department of Energy Plan Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-complete.pdf (7.48 MB) More Documents & Publications Geothermal Technologies Program Multi-Year Research,

  6. Vehicle Technologies Office: Electric Drive Systems Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Plug-in Electric Vehicles & Batteries » Vehicle Technologies Office: Electric Drive Systems Research and Development Vehicle Technologies Office: Electric Drive Systems Research and Development Vehicle Technologies Office: Electric Drive Systems Research and Development Electric drive technologies, including the electric motor, inverter, boost converter, and on-board charger, are essential components of hybrid and plug-in electric vehicles (PEV)

  7. DOE Selects Twelve Projects for Crosscutting Technology Research Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Twelve Projects for Crosscutting Technology Research Funding DOE Selects Twelve Projects for Crosscutting Technology Research Funding August 11, 2015 - 12:16pm Addthis The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has selected 12 projects to receive funding through its Crosscutting Research Program's Transitional Technology Development to Enable Highly Efficient Power Systems with Carbon Management initiative. The NETL Crosscutting

  8. Fuel Cell Technologies Office Multi-Year Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan | Department of Energy Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan The Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration (MYRD&D) Plan describes the goals, objectives, technical targets, tasks, and schedules for all activities within the Fuel Cell Technologies (FCT) Office, which is part of the U.S. Department

  9. Impact of Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IMPACT The needs of the world inspire us to create technologies to build, connect, cure, move and power the world around us. I Want to See Game-Changing Technology Work & Life Cool Science STEM Education Most Popular Shuffle Information for Me Game-Changing Technology Work & Life Cool Science STEM Education Most Popular Shuffle How Goal Line Technology Can Improve Industry Productivity » Nano Communication Networks Update » A family of GE engineers » Legendary Vision See where our

  10. Technologies and Research Capabilities | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies and Research ... Technologies and Research Capabilities We're furthering research and development of additive manufacturing in national security applications. Benefits of additive manufacturing include part consolidation, reduced waste, fabrication of challenging features and increased functionality through design; applications at this point are focused on tooling. Y-12 and Pantex are hotbeds for the advancement of science and technology. The scope of our research and development

  11. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Programs: Wind | Department of Energy Small Business Innovation Research and Small Business Technology Transfer Programs: Wind Small Business Innovation Research and Small Business Technology Transfer Programs: Wind Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) are U.S. Government programs in which federal agencies with large research and development (R&D) budgets set aside a small fraction of their funding for competitions among small businesses

  12. Electrical Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1998-02-18

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the EPRI/ADA Technologies dry sorbent sampling unit and the testing of Hg catalysts/sorbents in this low-flow, temperature controlled system. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  13. Active Diesel Emission Control Technology for Transport Refrigeration Units

    Broader source: Energy.gov [DOE]

    This project discusses a CARB Level 2+ verified active regeneration technology for smal diesel engines

  14. NREL: Wind Research - NREL's Wind Technology Patents Boost Efficiency...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Wind Technology Patents Boost Efficiency and Lower Costs March 22, 2013 Wind energy research conducted at the National Wind technology Center (NWTC) at the U.S. Department ...

  15. Hydrogen Fueling Infrastructure Research and Station Technology Webinar Slides

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" held on November 18, 2014.

  16. Zero Liquid Discharge Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reverse Osmosis (RO) Membrane Technology Purifies Water Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Reverse Osmosis (RO) Membrane Technology Purifies Water GE's Reverse Osmosis (RO) Membrane technology addresses industrial waste water treatment and recycling needs, purifying water for cooling, boilers, and general

  17. Innovative Ideas and Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INNOVATION Our technology evolves from day to day, constantly drawing us forward. Find out what we're working on and what's on the horizon. I Want to See Game-Changing Technology Work & Life Cool Science STEM Education Most Popular Shuffle Information for Me Game-Changing Technology Work & Life Cool Science STEM Education Most Popular Shuffle What Works: Mark Little on Green Energy Innovations » Oil & Gas Ensuring access to energy for generations to come. National Inventors Day

  18. Research & Development Opportunities for Joining Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    on three cross-cutting topic areas: 1) brazing and joining technologies and processes, 2) advanced component design and materials, and 3) installation, operation, and maintenance. ...

  19. Great Lakes Bioenergy Research Center Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy ... and cultivates the seeds of new technologies that will revolutionize advanced biofuels. ...

  20. Geo energy research and development: technology transfer

    SciTech Connect (OSTI)

    Traeger, R.K.

    1982-03-01

    Sandia Geo Energy Programs related to geothermal, coal, oil and gas, and synfuel resources have provided a useful mechanism for transferring laboratory technologies to private industry. Significant transfer of hardware, computer programs, diagnostics and instrumentation, advanced materials, and in situ process understanding has occurred through US/DOE supported programs in the past five years. The text briefly reviews the technology transfer procedures and summarizes 32 items that have been transferred and another 20 technologies that are now being considered for possible transfer to industry. A major factor in successful transfer has been personal interactions between Sandia engineers and the technical staff from private industry during all aspects of the technology development.

  1. Vehicle Technologies Office: Parasitic Loss Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Vehicles Home About the Vehicle Technologies Office Plug-in Electric Vehicles & Batteries Fuel Efficiency & Emissions Combustion Engines Fuel Effects on Combustion Idle Reduction ...

  2. Research & Development Needs for Building-Integrated Solar Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Needs for Building-Integrated Solar Technologies Research & Development Needs for Building-Integrated Solar Technologies The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development

  3. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Cover | Department of Energy Cover Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-cover.pdf (965.32 KB) More Documents & Publications Geothermal Technologies Program

  4. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Foreword | Department of Energy Foreword Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Foreword The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-forward.pdf (81.95 KB) More Documents & Publications Geothermal Technologies Program

  5. Small Business Innovation Research and Small Business Technology Transfer |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Technology to Market » Small Business Innovation Research and Small Business Technology Transfer Small Business Innovation Research and Small Business Technology Transfer Tau Science Corporation Tau Science Corporation Tau Science Corporation have developed technology that revolutionizes PV characterization by bringing the most fundamental measure of a solar cell performance--spectral response--to application areas which are impractical or unobtainable using existing

  6. ITP Chemicals: Hybrid Separations/Distillation Technology. Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Energy and Emissions Reduction | Department of Energy Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction ITP Chemicals: Hybrid Separations/Distillation Technology. Research Opportunities for Energy and Emissions Reduction hybrid_separation.pdf (315.31 KB) More Documents & Publications Review of Historical Membrane Workshop Results Membrane Technology Workshop Summary Report, November 2012 Membrane Technology W

  7. New Energy Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Read More GE Scientists Demonstrate Promising Anti-icing Nano Surfaces GE Global Research today presented new research findings on its nanotextured anti-icing surfaces. In ...

  8. Vehicle Technologies Office: Applied Battery Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Applied Battery Research Vehicle Technologies Office: Applied Battery Research Applied battery research addresses the barriers facing the lithium-ion systems that are closest to meeting the technical energy and power requirements for hybrid electric vehicle (HEV) and electric vehicle (EV) applications. In addition, applied battery research concentrates on technology transfer to ensure that the research results and lessons learned are effectively provided to U.S. automotive and battery

  9. DOE Announces $37 Million for Small Business Research and Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Million for Small Business Research and Technology DOE Announces $37 Million for Small Business Research and Technology August 20, 2009 - 12:00am Addthis Washington, DC- U.S. Energy Secretary Steven Chu announced today that $37 million in funding from the Recovery Act will be made available to qualified small businesses through the Department's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Today's funding announcement

  10. DOE Selects Gasification Technology Research Projects for Funding |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Gasification Technology Research Projects for Funding DOE Selects Gasification Technology Research Projects for Funding July 14, 2015 - 11:15am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected seven projects to receive funding through NETL's Gasification System Program. This program supports a wide range of research and development activities aimed at improving fuel and product versatility, efficiency, and economics of

  11. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Appendices | Department of Energy Multi-Year Research, Development and Demonstration Plan: Appendices Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Appendices The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-appendices.pdf (59.4 KB)

  12. Vehicle Technologies Office: Biofuels End-Use Research | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Alternative Fuels » Vehicle Technologies Office: Biofuels End-Use Research Vehicle Technologies Office: Biofuels End-Use Research Biofuels offer Americans viable domestic, environmentally sustainable alternatives to gasoline and diesel. Learn about the basics, benefits, and issues to consider related to biodiesel and ethanol on the Alternative Fuels Data Center. The Vehicle Technologies Office supports research to increase our knowledge of the effects of biofuels on engines and

  13. Vehicle Technologies Office: Electric Motors Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vehicle Technologies Office: Electric Motors Research and Development Vehicle Technologies Office: Electric Motors Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to improve motors in hybrid and plug-in electric vehicles, with a particular focus on reducing the use of rare earth materials currently used for permanent magnet-based motors. In an electric drive

  14. Vehicle Technologies Office: Parasitic Loss Reduction Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development (R&D) | Department of Energy Fuel Efficiency & Emissions » Vehicle Technologies Office: Parasitic Loss Reduction Research and Development (R&D) Vehicle Technologies Office: Parasitic Loss Reduction Research and Development (R&D) Non-engine losses such as wind resistance and drag, braking, and rolling resistance can account for up to a 45% decrease in efficiency for heavy-duty vehicles. The Vehicle Technologies Office (VTO) supports research and development

  15. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit ...

  16. Beijing Anhua United Energy Technology Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Product: The company is mainly engaged in the development, manufacture and sale of lithium-iron, lithium ion rechargeable batteries. References: Beijing Anhua United Energy...

  17. Sandia Researchers Develop Promising Chemical Technology for Energy Storage

    Broader source: Energy.gov [DOE]

    DOE-funded researchers have developed new chemical technology that could lead to batteries able to cost-effectively store three times more energy than today's batteries.

  18. Livermore researchers create new technology for first responders...

    National Nuclear Security Administration (NNSA)

    for first responders Livermore researchers create new technology for first responders Training of first responders on the hazards of radiological and nuclear threats has been...

  19. Small Business Innovation Research and Small Business Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Small Business Innovation Research and Small Business Technology Transfer Programs The Office of Energy ... solutions for energy-saving homes, buildings, and ...

  20. DOE Selects Twelve Projects for Crosscutting Technology Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. Department of Energy's National Energy Technology Laboratory (NETL) has selected 12 projects to receive funding through its Crosscutting Research Program's Transitional...

  1. NREL: Research Facilities - Laboratories and Facilities by Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researching a multitude of building technologies, including heating, ventilation, and air-conditioning (HVAC) systems; desiccant cooling and dehumidification systems; active solar...

  2. Fuel Cell Technologies Office Multi-Year Research, Development...

    Energy Savers [EERE]

    Year Research, Development, and Demonstration Plan Planned program activities for 2011-2020 Fuel Cell Technologies Office NOTICE This report was prepared as an account of work ...

  3. PEM Fuel Cell Technology, Key Research Needs and Approaches ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PEM FUEL CELL TECHNOLOGY Key Research Needs and Approaches Tom Jarvi UTC Power South ... Stationary CHP 40-80,000 hr components - seals, membranes Water management Robust systems ...

  4. Proceedings of the 21st Seismic Research Symposium: Technologies...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Test-Ban Treaty Citation Details In-Document Search Title: Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear ...

  5. UC Center for Information Technology Research in the Interest...

    Open Energy Info (EERE)

    Center for Information Technology Research in the Interest of Society (CITRIS) Place: Berkeley, California Zip: 94720 Region: Bay Area Website: www.citris-uc.org Coordinates:...

  6. Using logic models in managing performance of research and technology...

    Office of Scientific and Technical Information (OSTI)

    Using logic models in managing performance of research and technology programs: An example for a Federal Energy Efficiency and Renewable Energy program Citation Details In-Document ...

  7. NWTC Researchers Recognized for Technology Transfer Excellence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    received NREL Technology Transfer Awards: one for the development of the Simulator fOr Wind Farm Applications (SOWFA) and a second for their work with Siemens on blade...

  8. Deepwater Offshore Wind Technology Research Requirements (Poster)

    SciTech Connect (OSTI)

    Musial, W.

    2005-05-01

    A poster presentation for AWEA's WindPower 2005 conference in Denver, Colorado, May 15-18, 2005 that provides an outline of the requirements for deepwater offshore wind technology development

  9. Advanced Lighting Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Appliances & Lighting We're developing cutting-edge appliances and innovative lighting to make life easier, reduce costs and increase energy efficiency. Home > Innovation > Appliances & Lighting Rio 2016 Olympic Games' technologies You cannot imagine how far GE reaches into the Rio 2016 Olympic Games. The technologies (visible and invisible) that will light,... Read More » A Quirky Idea: Turning Patents Into Consumer Products In April 2013, GE and Quirky announced a partnership

  10. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Cover

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Program 2009-2015 with program activities to 2025 Multi-Year Research, Development and Demonstration Plan Draft Clean, domestic, ubiquitous, renewable, baseload energy Cover Photo is Calpine's Sonoma Geothermal Plant at The Geysers feld in Northern California NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

  11. Summary, Long-Term Nuclear Technology Research and Development Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary, Long-Term Nuclear Technology Research and Development Plan Summary, Long-Term Nuclear Technology Research and Development Plan In 1998, DOE established the Nuclear Energy Research Advisory Committee (NERAC) to provide advice to the Secretary and to the Director, Office of Nuclear Energy, Science, and Technology (NE), on the broad range of non-defense DOE nuclear technology programs. The NERAC recommended development of a long-range R&D program. This R&D

  12. Poster on Subsurface Technology & Engineering Research, Development, and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Crosscut (SubTER) | Department of Energy Poster on Subsurface Technology & Engineering Research, Development, and Demonstration Crosscut (SubTER) Poster on Subsurface Technology & Engineering Research, Development, and Demonstration Crosscut (SubTER) The US DOE and National Laboratories are advancing an innovative crosscutting Subsurface Initiative, focused on revolutionizing sustainable subsurface energy production and storage through transformational improvements in

  13. Licensing Our Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teaming Up With Idea Works Puts Our Tech Into the World Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Teaming Up With Idea Works Puts Our Tech Into the World GE Idea Works is extending the reach of our technology by connecting GE's internal intellectual property, technology and resources with the external world. With

  14. Vehicle Technologies Office Research Partner Requests Proposals...

    Energy Savers [EERE]

    Research Partner Requests Proposals for Thermal Management Systems These are how the nano-wires appear after the battery has gone through 10 charge-discharge cycles. EERE ...

  15. Vehicle Technologies Office: Parasitic Loss Reduction Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current areas of focus for the parasitic loss reduction activity include: Aerodynamic drag reduction research, to characterize and respond to energy losses caused by wind and ...

  16. Vehicle Technologies Office: Exploratory Battery Materials Research...

    Broader source: Energy.gov (indexed) [DOE]

    for future battery chemistries. They research a number of areas that contribute to this body of knowledge: Advanced cell chemistries that promise higher energy density than...

  17. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Introduction | Department of Energy Introduction Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Introduction The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-introduction.pdf (3.84 MB) More Documents & Publications Geothermal

  18. Geothermal Technologies Program Multi-Year Research, Development and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Plan: Program Analysis | Department of Energy Analysis Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Analysis The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025. gtp_myrdd_2009-program_analysis.pdf (464.77 KB) More Documents & Publications

  19. Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

    Broader source: Energy.gov [DOE]

    Funding Opportunity Announcement DE-FOA-0001412: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations includes up to $35 million in funding across four areas of interest: research and development (R&D) for hydrogen fuel technologies; demonstration and deployment for manufacturing technologies and Climate Action Champions; R&D within consortia for fuel cell performance and durability and hydrogen storage materials; and cost and performance analyses for hydrogen production and delivery, hydrogen storage, and fuel cells.

  20. An assessment of research and development leadership in ocean energy technologies

    SciTech Connect (OSTI)

    Bruch, V.L.

    1994-04-01

    Japan is clearly the leader in ocean energy technologies. The United Kingdom also has had many ocean energy research projects, but unlike Japan, most of the British projects have not progressed from the feasibility study stage to the demonstration stage. Federally funded ocean energy research in the US was stopped because it was perceived the technologies could not compete with conventional sources of fuel. Despite the probable small market for ocean energy technologies, the short sighted viewpoint of the US government regarding funding of these technologies may be harmful to US economic competitiveness. The technologies may have important uses in other applications, such as offshore construction and oil and gas drilling. Discontinuing the research and development of these technologies may cause the US to lose knowledge and miss market opportunities. If the US wishes to maintain its knowledge base and a market presence for ocean energy technologies, it may wish to consider entering into a cooperative agreement with Japan and/or the United Kingdom. Cooperative agreements are beneficial not only for technology transfer but also for cost-sharing.

  1. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Engineering Sciences Experimental Facilities Engineering Sciences Experimental Facilities (ESEF) Technology Deployment Centers Ion Beam Lab Advanced Power Sources Laboratory Engineering Sciences Experimental Facilities (ESEF) Trisonic Wind Tunnel Hypersonic Wind Tunnel High Altitude Chamber Explosive Components Facility Materials Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic

  2. United States geothermal technology: Equipment and services for worldwide applications

    SciTech Connect (OSTI)

    1995-05-01

    This document has two intended audiences. The first part, ``Geothermal Energy at a Glance,`` is intended for energy system decision makers and others who are interested in wide ranging aspects of geothermal energy resources and technology. The second part, ``Technology Specifics,`` is intended for engineers and scientists who work with such technology in more detailed ways. The glossary at the end of the document defines many of the specialized terms. A directory of US geothermal industry firms who provide goods and services for clients around the world is available on request.

  3. Reverse licensing: international technology transfer to the United States

    SciTech Connect (OSTI)

    Sharokhi, M.

    1985-01-01

    This dissertation, theoretically and empirically, focuses on US licensees as the recipient of foreign technology, and investigates characteristics of licensees, licenses, and licensed technology. The viability of reverse licensing, as an international growth strategy, is evaluated from the standpoint of two groups of firms. The first consists of thousands of small and medium sized US manufacturing firms, with few products and virtually no R and D expenditures. Without R and D, new technology and stiff international competition, they are forced into bankruptcies despite their extreme importance in the economy (48% of private workforce, 42% of sales, and 38% of GNP). The second group consists of thousands of small and medium sized firms overseas, with a relatively good supply of technology (i.e., patents) and anxious to exploit the US market but lack required resources for FDI. Technology licensing is, perhaps, the only viable option available to them. Reverse licensing provides both groups with a mechanism for their growth, survival, and prosperity. Many US firms have utilized this strategy for many years (i.e, 118 in Ohio) for tapping foreign sources including Soviet bloc technology.

  4. NREL Researchers Test Solar Thermal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A prototype heliostat which could take solar technology a step into the future is being tested at the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). It was developed by Science Applications International Corporations (SAIC) Golden office. The heliostat is a large tracking mirror for use in solar thermal power plants. SAIC's prototype heliostat incorporates a number of design and manufacturing modifications that could lead to significant cost reductions. The major

  5. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Materials Science and Engineering Designated Technology Deployment Center Materials Science and Engineering Center The Materials Science and Engineering (MSE) Center at Sandia provides knowledge of materials structure, properties, and performance and the processes to produce, transform, and analyze materials to ensure mission success for our customers and partners, both internal and external to the laboratories. The MSE is comprised of several laboratories, each providing unique

  6. Pixelligent Technologies granted innovation research award by...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Innovation Research (SBIR) Phase II grant by the U.S. Department of Energy (DOE). ... Pixelligent's award of this Phase II SBIR grant follows its win of a Phase I SBIR grant in ...

  7. Vehicle Technologies Office Recognizes Outstanding Researchers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Raj Sekar of Argonne National Laboratory, for 45 years of engine research during which he recognized the importance of using X-rays to visualize fuel sprays; was instrumental in ...

  8. Advanced Water Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water We're developing ways to purify and conserve this vital resource. Take a look at our work. Home > Innovation > Water Innovation 247: We're Always Open At GE Global Research, ...

  9. Small Hydropower Research and Development Technology Project

    SciTech Connect (OSTI)

    Blackmore, Mo

    2013-12-06

    The objective of this work was to investigate, develop, and validate the next generation of small hydroturbine generator designs that maximize the energy transfer from flowing water to electrical power generation. What resulted from this effort was the design of a new technology hydroturbine that Near Space Systems (NSS) has named the Star*Stream© Hydroturbine. Using a design that eliminates nearly all of the shortfalls of conventional hydroturbines, the Star*Stream© Hydroturbine employs a new mechanical-to-electrical energy transfer hydro design that operates without lubrication of any kind, and does not introduce foreign chemicals or particulate matter from oil or drive shaft seal degradation into the hydro ecology. In its unique configuration, the Star*Stream© Hydroturbine is nearly environmentally inert, without the negative aspects caused by interrupting the ecological continuity, i.e., disruptions to sedimentation, water quality, habitat changes, human displacement, fish migration, etc., - while it ensures dramatically reduced timeframes to project completion. While a remarkable reduction in LCOE resulting from application of the Star*Stream© Hydroturbine technology has been the core achievement of the this effort, there have been numerous technological breakthroughs from the development effort.

  10. NREL Researchers Test Solar Thermal Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Motorists who look north while driving on Interstate 70 may notice a large, alien-looking device on the mesa-top above the main research facilities of the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL). The 40-foot high, mirror-laden machine actually is a heliostat, a down-to-earth way of converting the sun's heat into electricity. Researchers at the lab are testing the prototype heliostat developed by Science Applications International Corporation's (SAIC) Golden

  11. Sandia National Laboratories: Research: Facilities: Technology Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers: Shock Thermodynamic Applied Research Facility (STAR) Shock Thermodynamic Applied Research Facility (STAR) The STAR facility, within Sandia's Solid Dynamic Physics Department, is one of a few institutions in the world with a major shock-physics program. This is the only experimental test facility in the world that can cover the full range of pressure (bars to multi-Mbar) for material property study utilizing gas/propellant launchers, ramp-loading pulsers, and ballistic applications.

  12. Vehicle Technologies Office Battery Research Partner Requests Proposals for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermal Management Systems | Department of Energy Battery Research Partner Requests Proposals for Thermal Management Systems Vehicle Technologies Office Battery Research Partner Requests Proposals for Thermal Management Systems January 12, 2016 - 3:06pm Addthis The U.S. Advanced Battery Consortium (USABC), which partners with the Vehicle Technologies Office to support battery research and development projects, recently issued a request for proposal information. The request focuses on

  13. DOE Outlines Research Needed to Improve Solar Energy Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Outlines Research Needed to Improve Solar Energy Technologies DOE Outlines Research Needed to Improve Solar Energy Technologies August 12, 2005 - 2:39pm Addthis WASHINGTON, D.C. - To help achieve the Bush Administration's goal of increased use of solar and other renewable forms of energy, the Department of Energy's (DOE) Office of Science has released a report describing the basic research needed to produce "revolutionary progress in bringing solar energy to its

  14. Vehicle Technologies Office: Power Electronics Research and Development |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Power Electronics Research and Development Vehicle Technologies Office: Power Electronics Research and Development To reach the EV Everywhere Grand Challenge goal, the Vehicle Technologies Office (VTO) is supporting research and development (R&D) to lower the cost and improve the performance of power electronics in electric drive vehicles. Vehicle power electronics primarily process and control the flow of electrical energy in hybrid and plug-in electric vehicles,

  15. Research and Development Needs for Building-Integrated Solar Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Development Needs for Building-Integrated Solar Technologies January 2014 NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information,

  16. Technology assessment of vertical and horizontal air drilling potential in the United States. Final report

    SciTech Connect (OSTI)

    Carden, R.S.

    1993-08-18

    The objective of the research was to assess the potential for vertical, directional and horizontal air drilling in the United States and to evaluate the current technology used in air drilling. To accomplish the task, the continental United States was divided into drilling regions and provinces. The map in Appendix A shows the divisions. Air drilling data were accumulated for as many provinces as possible. The data were used to define the potential problems associated with air drilling, to determine the limitations of air drilling and to analyze the relative economics of drilling with air versus drilling mud. While gathering the drilling data, operators, drilling contractors, air drilling contractors, and service companies were contacted. Their opinion as to the advantages and limitations of air drilling were discussed. Each was specifically asked if they thought air drilling could be expanded within the continental United States and where that expansion could take place. The well data were collected and placed in a data base. Over 165 records were collected. Once in the data base, the information was analyzed to determine the economics of air drilling and to determine the limiting factors associated with air drilling.

  17. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    SciTech Connect (OSTI)

    Reed, M.J.

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  18. Networking and Information Technology Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the High-Performance Computing Act of 1991 (P.L. 102-194), the Next Generation Internet Research Act of 1998 (P.L. 105-305), and the America COMPETES Act of 2007 (P.L. 110-69). ...

  19. Engineering research, development and technology FY99

    SciTech Connect (OSTI)

    Langland, R T

    2000-02-01

    The growth of computer power and connectivity, together with advances in wireless sensing and communication technologies, is transforming the field of complex distributed systems. The ability to deploy large numbers of sensors with a rapid, broadband communication system will enable high-fidelity, near real-time monitoring of complex systems. These technological developments will provide unprecedented insight into the actual performance of engineered and natural environment systems, enable the evolution of many new types of engineered systems for monitoring and detection, and enhance our ability to perform improved and validated large-scale simulations of complex systems. One of the challenges facing engineering is to develop methodologies to exploit the emerging information technologies. Particularly important will be the ability to assimilate measured data into the simulation process in a way which is much more sophisticated than current, primarily ad hoc procedures. The reports contained in this section on the Center for Complex Distributed Systems describe activities related to the integrated engineering of large complex systems. The first three papers describe recent developments for each link of the integrated engineering process for large structural systems. These include (1) the development of model-based signal processing algorithms which will formalize the process of coupling measurements and simulation and provide a rigorous methodology for validation and update of computational models; (2) collaborative efforts with faculty at the University of California at Berkeley on the development of massive simulation models for the earth and large bridge structures; and (3) the development of wireless data acquisition systems which provide a practical means of monitoring large systems like the National Ignition Facility (NIF) optical support structures. These successful developments are coming to a confluence in the next year with applications to NIF structural

  20. New Transportation Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation We're working with railroads and heavy industries to create hybrid systems, batteries and first-in-class transportation solutions. Home > Innovation > Transportation Silicon Carbide Applications: Small Device, Broad Impact in Power Electronics It's not every day that the engineers at GE Global Research get their hands on a material that's literally revolutionizing an... Read More » Data Science Makes Trains More Efficient In this Special Report, GE's Creator-in-Residence,

  1. Thermal Imaging Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Thermal Imaging Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Butterfly-Inspired Design Enables Advanced Thermal Imaging Bryan Whalen in the Electronics Cooling Lab at GE Global Research recorded this thermo graphic video of a Morpho butterfly structure in response to heat pulses produced by breathing onto

  2. Research and Technology Development for Genetic Improvement of Switchgrass

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Technologies Office (BETO) Project Peer Review Research and Technology Development for Genetic Improvement of Switchgrass Albert Kausch and Richard Rhodes, University of Rhode Island Award # DE-FG-36-08GO88070 Date: March 24, 2015 Technology Area Review: Feedstock Supply & Logistics Principal Investigator: Albert Kausch Organization: University of Rhode Island This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement Long

  3. Fuel Cell Technologies Researcher Lightens Green Fuel Production

    Broader source: Energy.gov [DOE]

    Research funded by EEREs Fuel Cell Technologies Office has dramatically increased the efficiency of biofuel production by changing certain genes in algae to make them pale green.

  4. Technology Relay Race in Cancer Prevention Research | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Relay Race in Cancer Prevention Research Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  5. Vehicle Technologies Office: Natural Gas Vehicle Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (R&D) | Department of Energy Alternative Fuels » Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Vehicle Technologies Office: Natural Gas Vehicle Research and Development (R&D) Natural gas offers opportunities for reducing the use of petroleum in transportation, especially in medium- and heavy-duty vehicles. These fleets, which include a variety of vehicles such as transit buses, refuse haulers, delivery trucks, and long-haul trucks, currently

  6. Vehicle Technologies Office: Short-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Advanced High-Strength Steel and Aluminum) | Department of Energy Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum) Vehicle Technologies Office: Short-Term Lightweight Materials Research (Advanced High-Strength Steel and Aluminum) In the short term, replacing heavy steel components with materials such as high-strength steel, aluminum, or glass fiber-reinforced polymer composites can decrease component weight by 10-60 percent.

  7. DOE Announces Selections for SSL Core Technology Research (Round 10),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Product Development (Round 10), and U.S. Manufacturing (Round 6) Funding Opportunities | Department of Energy Announces Selections for SSL Core Technology Research (Round 10), Product Development (Round 10), and U.S. Manufacturing (Round 6) Funding Opportunities DOE Announces Selections for SSL Core Technology Research (Round 10), Product Development (Round 10), and U.S. Manufacturing (Round 6) Funding Opportunities The U.S. Department of Energy has announced the competitive selection of 10

  8. University of Maine Researching Floating Technologies for Deepwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind | Department of Energy Maine Researching Floating Technologies for Deepwater Offshore Wind University of Maine Researching Floating Technologies for Deepwater Offshore Wind October 1, 2012 - 12:57pm Addthis This is an excerpt from the Third Quarter 2012 edition of the Wind Program R&D Newsletter. In 2010, the University of Maine's (UMaine) Advanced Structures and Composites Center received funding from the U.S. Department of Energy (DOE) and the National Science Foundation

  9. Vehicle Technologies Office Merit Review 2016: VTO Systems Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Supporting Standards and Interoperability | Department of Energy VTO Systems Research Supporting Standards and Interoperability Vehicle Technologies Office Merit Review 2016: VTO Systems Research Supporting Standards and Interoperability Presentation given by Idaho National Laboratory (INL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems vs182_smart_2016_p_web.pdf (1.62 MB) More Documents

  10. Small Business Innovation Research and Small Business Technology Transfer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2013 (Phase I Release 2) Grant | Department of Energy Small Business Innovation Research and Small Business Technology Transfer 2013 (Phase I Release 2) Grant Small Business Innovation Research and Small Business Technology Transfer 2013 (Phase I Release 2) Grant November 26, 2012 - 2:11pm Addthis Funding: $150,000 (Phase I) and $1M (Phase II) for each awardee Open Date: 11/26/2012 Close Date: 02/05/2013 Funding Organization: Geothermal Technologies Office Funding Number: SBIR and STTR 2013

  11. Energy Technology Division research summary -- 1994

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  12. Engineering Research, Development and Technology, FY95: Thrust area report

    SciTech Connect (OSTI)

    1996-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through their collaboration with US industry in pursuit of the most cost-effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where they can establish unique competencies, and (2) conduct high-quality research and development to enhance their capabilities and establish themselves as the world leaders in these technologies. To focus Engineering`s efforts, technology thrust areas are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1995. The report provides timely summaries of objectives methods, and key results from eight thrust areas: computational electronics and electromagnetics; computational mechanics; microtechnology; manufacturing technology; materials science and engineering; power conversion technologies; nondestructive evaluation; and information engineering.

  13. Research and Development Roadmap for Emerging Water Heating Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Roadmap for Building Energy Modeling-Draft-for Review Only C.E. Barbour, R. Zogg, E. Cross, D. Clark February 2016 Prepared by Navigant Consulting, Inc. (This page intentionally left blank) NOTICE This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any

  14. Low-level radioactive waste disposal technologies used outside the United States

    SciTech Connect (OSTI)

    Templeton, K.J.; Mitchell, S.J.; Molton, P.M.; Leigh, I.W.

    1994-01-01

    Low-level radioactive waste (LLW) disposal technologies are an integral part of the waste management process. In the United States, commercial LLW disposal is the responsibility of the State or groups of States (compact regions). The United States defines LLW as all radioactive waste that is not classified as spent nuclear fuel, high- level radioactive waste, transuranic waste, or by-product material as defined in Section II(e)(2) of the Atomic Energy Act. LLW may contain some long-lived components in very low concentrations. Countries outside the United States, however, may define LLW differently and may use different disposal technologies. This paper outlines the LLW disposal technologies that are planned or being used in Canada, China, Finland, France, Germany, Japan, Sweden, Taiwan, and the United Kingdom (UK).

  15. FY10 Engineering Innovations, Research and Technology Report

    SciTech Connect (OSTI)

    Lane, M A; Aceves, S M; Paulson, C N; Candy, J V; Bennett, C V; Carlisle, K; Chen, D C; White, D A; Bernier, J V; Puso, M A; Weisgraber, T H; Corey, B; Lin, J I; Wheeler, E K; Conway, A M; Kuntz, J D; Spadaccini, C M; Dehlinger, D A; Kotovsky, J; Nikolic, R; Mariella, R P; Foudray, A K; Tang, V; Guidry, B L; Ng, B M; Lemmond, T D; Chen, B Y; Meyers, C A; Houck, T L

    2011-01-11

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&D 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations

  16. Research needs for strandplain/barrier island reservoirs in the United States

    SciTech Connect (OSTI)

    Cole, E.L.; Fowler, M.L.; Salamy, S.P.; Sarathi, P.S.; Young, M.A.

    1994-12-01

    This report identifies reservoir characterization and reservoir management research needs and IOR process and related research needs for the fourth geologic class, strandplain/barrier island reservoirs. The 330 Class 4 reservoirs in the DOE Tertiary OH Recovery Information System (TORIS) database contain about 30.8 billion barrels of oil or about 9% of the total original oil-in-place (OOIP) in all United States reservoirs. The current projection of Class 4 ultimate recovery with current operations is only 38% of the OOIP, leaving 19 billion barrels as the target for future IOR projects. Using the TORIS database and its predictive and economic models, the recovery potential which could result from future application of IOR technologies to Class 4 reservoirs was estimated to be between 1.0 and 4.3 billion barrels, depending on oil price and the level of technology advancement. The analysis indicated that this potential could be realized through (1) infill drilling alone and in combination with polymer flooding and profile modification, (2) chemical flooding (surfactant), and (3) thermal processes. Most of this future potential is in Texas, Oklahoma, California, and the Rocky Mountain region. Approximately two-thirds of the potentially recoverable resource is at risk of abandonment by the year 2000, which emphasizes the urgent need for the development and demonstration of cost-effective recovery technologies.

  17. Laboratory technology research - abstracts of FY 1997 projects

    SciTech Connect (OSTI)

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  18. Engineering research, development and technology. Thrust area report, FY93

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff, tools, and facilities needed to support current and future LLNL programs. The efforts are guided by a dual-benefit research and development strategy that supports Department of Energy missions, such as national security through nuclear deterrence and economic competitiveness through partnerships with U.S. industry. This annual report, organized by thrust area, describes the activities for the fiscal year 1993. The report provides timely summaries of objectives, methods, and results from nine thrust areas for this fiscal year: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Fabrication Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; Remote Sensing, Imaging, and Signal Engineering; and Emerging Technologies. Separate abstracts were prepared for 47 papers in this report.

  19. Applied wind energy research at the National Wind Technology Center

    SciTech Connect (OSTI)

    Robinson, M C; Tu, P

    1996-06-01

    Applied research activities at the National Wind Technology Center are divided into several technical disciplines. Not surprisingly, these engineering and science disciplines highlight the technology similarities between aircraft and wind turbine design requirements. More often than not, wind turbines are assumed to be a subset of the much larger and more comprehensive list of well understood aerospace engineering accomplishments and it is difficult for the general public to understand the poor performance history of wind turbines in sustained operation. Often overlooked are the severe environmental conditions and operational demands placed on turbine designs which define unique requirements beyond typical aerospace applications. It is the role of the National Wind Technology Center to investigate and quantify the underlying physical phenomena which make the wind turbine design problem unique and to provide the technology advancements necessary to overcome current operational limitations. This paper provides a brief overview of research areas involved with the design of wind turbines.

  20. Electric power research institute environmental control technology center report to the steering committee

    SciTech Connect (OSTI)

    1998-08-08

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DST) test block with the Carbon Injection System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini- Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  1. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1998-01-12

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini-Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future project work is identified.

  2. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1997-10-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  3. NREL Researchers Receive Award for Excellence in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Receive Award for Excellence in Technology Transfer Media may contact: George Douglas, DOE, 303-275-4096 email: George Douglas Golden, Colo., May 10, 2000 - Researchers at the U.S. Department of Energy's National Renewable Energy Laboratory were honored May 10 with a Year 2000 Federal Laboratory Consortium Award for Excellence in Technology Transfer for the advanced direct contact condenser as applied in geothermal power plants. Award recipients are Desikan Bharathan, who developed the condenser

  4. Fossil Energy Advanced Research and Technology Development Materials Program

    SciTech Connect (OSTI)

    Cole, N.C.; Judkins, R.R.

    1992-12-01

    Objective of this materials program is to conduct R and D on materials for fossil energy applications with focus on longer-term and generic needs of the various fossil fuel technologies. The projects are organized according to materials research areas: (1) ceramics, (2) new alloys: iron aluminides, advanced austenitics and chromium niobium alloys, and (3) technology development and transfer. Separate abstracts have been prepared.

  5. Clean Energy Manufacturing Initiative: Technology Research and Development

    Broader source: Energy.gov [DOE]

    Through the Clean Energy Manufacturing Initiative (CEMI), U.S. Department of Energy (DOE) offices and programs have increased funding for manufacturing research and development (R&D) across the board with the goal of growing the clean energy manufacturing industry in the United States.

  6. Research and Development Needs for Building-Integrated Solar Technologies

    SciTech Connect (OSTI)

    none,

    2014-01-01

    The Building Technologies Office (BTO) has identified Building Integrated Solar Technologies (BIST) as a potentially valuable piece of the comprehensive pathway to help achieve its goal of reducing energy consumption in residential and commercial buildings by 50% by the year 2030. This report helps to identify the key research and development (R&D) needs that will be required for BIST to make a substantial contribution toward that goal. BIST include technologies for space heating and cooling, water heating, hybrid photovoltaic-thermal systems (PV/T), active solar lighting, and building-integrated photovoltaics (BIPV).

  7. Ars Technica Visits GE's China Technology Center | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technica visits GE's China Technology Center Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Ars Technica visits GE's China Technology Center Ars Technica visited GE's China Technology Center in Shanghai to discover what type of research is being conducted at the facility. The visit was a part of Ars Technica's Chasing

  8. FY17 Small Business Innovation Research and Small Business Technology

    Office of Environmental Management (EM)

    Transfer (SBIR/STTR) Phase I Release 1 | Department of Energy Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 FY17 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase I Release 1 August 15, 2016 - 1:56pm Addthis Funding: Up to $29 million ($150,000-$225,000 per phase I project) Open Date: August 15, 2016 Close Date: October 17, 2016 Funding Organization: U.S. Department of Energy Funding Number:

  9. Advancing Research & Technology in the Sciences (ARTS) Forum | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Advancing Research & Technology in the Sciences (ARTS) Forum Advancing Research & Technology in the Sciences (ARTS) Forum January 28, 2016 - 4:11pm Addthis VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided virtual reality room which helps engineers build greener, next-generation power plants faster and less expensively than ever before. VE-Suite, a virtual engineering tool developed at Ames Laboratory, displayed on a six-sided

  10. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect (OSTI)

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  11. Laboratory Technology Research: Abstracts of FY 1996 projects

    SciTech Connect (OSTI)

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  12. Thrust Area Report, Engineering Research, Development and Technology

    SciTech Connect (OSTI)

    Langland, R. T.

    1997-02-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the knowledge base, process technologies, specialized equipment, tools and facilities to support current and future LLNL programs. Engineering`s efforts are guided by a strategy that results in dual benefit: first, in support of Department of Energy missions, such as national security through nuclear deterrence; and second, in enhancing the nation`s economic competitiveness through our collaboration with U.S. industry in pursuit of the most cost- effective engineering solutions to LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) identify key technologies relevant to LLNL programs where we can establish unique competencies, and (2) conduct high-quality research and development to enhance our capabilities and establish ourselves as the world leaders in these technologies. To focus Engineering`s efforts technology {ital thrust areas} are identified and technical leaders are selected for each area. The thrust areas are comprised of integrated engineering activities, staffed by personnel from the nine electronics and mechanical engineering divisions, and from other LLNL organizations. This annual report, organized by thrust area, describes Engineering`s activities for fiscal year 1996. The report provides timely summaries of objectives, methods, and key results from eight thrust areas: Computational Electronics and Electromagnetics; Computational Mechanics; Microtechnology; Manufacturing Technology; Materials Science and Engineering; Power Conversion Technologies; Nondestructive Evaluation; and Information Engineering. Readers desiring more information are encouraged to contact the individual thrust area leaders or authors. 198 refs., 206 figs., 16 tabs.

  13. Vehicle Technologies Office: Long-Term Lightweight Materials Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Magnesium and Carbon Fiber) | Department of Energy Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) Vehicle Technologies Office: Long-Term Lightweight Materials Research (Magnesium and Carbon Fiber) In the long term, advanced materials such as magnesium and carbon fiber reinforced composites could reduce the weight of some components by 50-75 percent. Magnesium Even though magnesium (Mg) can reduce component weight by more than 60 percent, its use is currently limited

  14. Small Business Innovation Research/Small Business Technology Transfer

    Office of Science (SC) Website

    Meeting August, 9-10, 2016 | U.S. DOE Office of Science (SC) Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Small Business Innovation Research / Small Business Technology Transfer Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F:

  15. NNSA Researchers Advance Technology for Remote Reactor Monitoring |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Researchers Advance Technology for Remote Reactor Monitoring Thursday, May 5, 2016 - 12:06pm New detector neutralizes neutron interference for nuclear detection. NNSA's Defense Nuclear Nonproliferation Research and Development Program drives the innovation of technical capabilities to detect, identify, and characterize foreign nuclear weapons development activities. To achieve this, NNSA leverages the unique capabilities of the national

  16. Vehicle Technologies Office: Intermediate Ethanol Blends Research and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing | Department of Energy Intermediate Ethanol Blends Research and Testing Vehicle Technologies Office: Intermediate Ethanol Blends Research and Testing Ethanol can be combined with gasoline in blends ranging from E10 (10% or less ethanol, 90% gasoline) up to E85 (up to 85% ethanol, 15% gasoline), with those in-between being called "intermediate blends." The U.S. Environmental Protection Agency's Renewable Fuels Standard (under the Energy Policy Act of 2005 and the Energy

  17. Summary and abstracts: Applied Research Units and Projects 1996 UCETF Program

    SciTech Connect (OSTI)

    1999-05-21

    The Urban Consortium (UC), created by PTI, is a network of jurisdictions with populations of over 250,000. The UC provides a platform for research and enterprise through its Energy, Environmental, Transportation, and Telecommunications and Information Task Forces. The UC provides a unique creative forum where elected and appointed officials and technical managers identify, test, and validate practical ways to improve the provision of public services and, where possible, generate new revenue opportunities. Public Technology, Inc., is the non-profit technology organization of the National League of Cities, the National Association of Counties, and the International City/County Management Association. PTI creates and advances technology-based products, services, and enterprises in cities and counties nationwide. Staffed by PTI, the UC addresses the critical needs of local governments through its Task Forces. The Urban Consortium Energy Task Force (UCETF) program has, since its inception, acted as a laboratory to develop, test solutions and share the resulting products or management approaches with the wider audience of local governments. It has addressed the overlap between energy and environment and economic development policy issues, and, is the nation's most extensive cooperative local government program to improve energy management and decision-making through applied research and technology cooperation. Proposals to meet the specific objectives of the UCETF annual R and D program are solicited from major urban jurisdictions. Projects based on these proposals are then selected by the UCETF for direct conduct and management by staff of city and county governments. Projects selected for each year's program are organized in thematic units to assure effective management and ongoing peer-to-peer experience exchange, with results documented at the end of each program year.

  18. United Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Expanding middle class (share of population) 2010 27% 6.9B 2030E 58% 8.4B Growing urban population 3.6 4.3 5.1 (billions) 2010 2020E 2030E Increasing air travel (revenue passenger miles in trillions) 3.0 5.5 8.9 2010 2020E 2030E Operating at the intersection of powerful megatrends A global leader in building systems and aerospace industries 2 UTC 2020 - Fourth 5 Year Sustainability Goals Versus 2015 baseline

  19. Small Business Innovation Research and Small Business Technology Transfer Programs

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy’s (EERE’s) combined Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) program is among many U.S. Department of Energy (DOE) SBIR/STTR programs that provide grants to small businesses or individuals who can form a small business within the required application timeline.

  20. University of Maine Integrated Forest Product Refinery (IFPR) Technology Research

    SciTech Connect (OSTI)

    Pendse, Hemant P.

    2010-11-23

    This project supported research on science and technology that forms a basis for integrated forest product refinery for co-production of chemicals, fuels and materials using existing forest products industry infrastructure. Clear systems view of an Integrated Forest Product Refinery (IFPR) allowed development of a compelling business case for a small scale technology demonstration in Old Town ME for co-production of biofuels using cellulosic sugars along with pulp for the new owners of the facility resulting in an active project on Integrated Bio-Refinery (IBR) at the Old Town Fuel & Fiber. Work on production of advanced materials from woody biomass has led to active projects in bioplastics and carbon nanofibers. A lease for 40,000 sq. ft. high-bay space has been obtained to establish a Technology Research Center for IFPR technology validation on industrially relevant scale. UMaine forest bioproducts research initiative that began in April 2006 has led to establishment of a formal research institute beginning in March 2010.

  1. Vehicle Technologies Office: Intermediate Ethanol Blends Research and Testing

    Broader source: Energy.gov [DOE]

    DOE's Vehicle Technologies Office supported work to examine the impact of intermediate ethanol blends on passenger vehicles, outdoor equipment and generator sets. Based on this research, the EPA issued waivers allowing vehicles from model year 2001 and beyond to use E15.

  2. Future steelmaking technologies and the role of basic research

    SciTech Connect (OSTI)

    Fruehan, R.J.

    1996-12-31

    The steel industry is going through a technological revolution which will not only change how steel is produced but, also, the entire structure of the industry. The drivers for the new or improved technologies, including reduction in capital requirements, possible shortages in raw materials such as coke and low residual scrap, environmental concerns and customer demands are briefly examined. The current status of research and development in the US and selected international producers was examined. As expected, it was found that the industry`s research capabilities have been greatly reduced. Furthermore, less than half of the companies which identified a given technology as critical have significant R and D programs addressing the technology. Examples of how basic research aided in process improvements in the past are given. The examples include demonstrating how fundamentals of reaction kinetics, improved nitrogen control, thermodynamics of systems helped reduce nozzle clogging and fluid flow studies reduced defects in casting. However, in general, basic research did not play a major role in processes previously developed, but helped understanding and aided optimization. To have a major impact, basic research must be focused and be an integral part of any new process development. An example where this has been done successfully is the AISI Direct Ironmaking and Waste Oxide Recycle Projects in which fundamental studies on reduction, slag foaming, and post combustion reactions have led to process understanding, control and optimization. Industry leaders recognize the value and need for basic research but insist it be truly relevant and done with industry input. From these examples the lessons learned on how to make basic research more effective are discussed.

  3. Cyclone Boiler Field Testing of Advanced Layered NOx Control Technology in Sioux Unit 1

    SciTech Connect (OSTI)

    Marc A. Cremer; Bradley R. Adams

    2006-06-30

    A four week testing program was completed during this project to assess the ability of the combination of deep staging, Rich Reagent Injection (RRI), and Selective Non-Catalytic Reduction (SNCR) to reduce NOx emissions below 0.15 lb/MBtu in a cyclone fired boiler. The host site for the tests was AmerenUE's Sioux Unit 1, a 500 MW cyclone fired boiler located near St. Louis, MO. Reaction Engineering International (REI) led the project team including AmerenUE, FuelTech Inc., and the Electric Power Research Institute (EPRI). This layered approach to NOx reduction is termed the Advanced Layered Technology Approach (ALTA). Installed RRI and SNCR port locations were guided by computational fluid dynamics (CFD) based modeling conducted by REI. During the parametric testing, NOx emissions of 0.12 lb/MBtu were achieved consistently from overfire air (OFA)-only baseline NOx emissions of 0.25 lb/MBtu or less, when firing the typical 80/20 fuel blend of Powder River Basin (PRB) and Illinois No.6 coals. From OFA-only baseline levels of 0.20 lb/MBtu, NOx emissions of 0.12 lb/MBtu were also achieved, but at significantly reduced urea flow rates. Under the deeply staged conditions that were tested, RRI performance was observed to degrade as higher blends of Illinois No.6 were used. NOx emissions achieved with ALTA while firing a 60/40 blend were approximately 0.15 lb/MBtu. NOx emissions while firing 100% Illinois No.6 were approximately 0.165 lb/MBtu. Based on the performance results of these tests, economics analyses of the application of ALTA to a nominal 500 MW cyclone unit show that the levelized cost to achieve 0.15 lb/MBtu is well below 75% of the cost of a state of the art SCR.

  4. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee

    SciTech Connect (OSTI)

    None, None

    1997-11-01

    Operations and maintenance continued this month at the Electric Power Research Institute's (EPRI's) Environmental Control Technology Center (ECTC). Testing for the month involved the Dry Sorbent Injection (DSI) test block with the Carbon Injection System. Also, several installation activities were initiated this month for the testing of a new EPRI/ADA Technologies sorbent sampling system in December. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit, the 0.4 MW Mini Pilot Wet Scrubber, and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode and were inspected regularly. These units remain available for testing as future work is identified.

  5. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  6. Industrial Materials and Inspection Technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Materials and Inspection Technologies Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Industrial Materials and Inspection Technologies Waseem Faidi 2013.06.12 Hi, I am Waseem Faidi and I lead the Inspection and Metrology Lab at GE Global Research in developing novel inspection and process monitoring solutions

  7. ENERGY SMART SCHOOLS - APPLIED RESEARCH, FIELD TESTING, AND TECHNOLOGY INTEGRATION

    SciTech Connect (OSTI)

    Kate Burke

    2004-01-01

    This multi-state collaborative project will coordinate federal, state, and private sector resources and high-priority school-related energy research under a comprehensive initiative that includes tasks that increase adoption of advanced energy efficiency high-performance technologies in both renovation of existing schools and building new ones; educate and inform school administrators, architects, engineers, and manufacturers nationwide as to the energy, economic, and environmental benefits of energy efficiency technologies; and improve the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in schools.

  8. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, Robert John; Laney, Patrick Thomas

    2002-06-01

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  9. Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries

    SciTech Connect (OSTI)

    Creed, R.J.; Laney, P.T.

    2002-05-14

    The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

  10. Chickamauga Hydro Unit 3: History of problems, application of new technology and corrective actions

    SciTech Connect (OSTI)

    Miller, L.J. III; Thompson, D.W.

    1995-12-31

    Chickamauga Unit 3 was placed in commercial operation in 1940 and has been in operation for over fifty years. During the history of the dam, concrete growth has been the source of alignment problems with all of the turbines and generators. This problem has resulted in difficulty in the maintenance of the minimum clearance between the rotating and stationary components of the unit. Disassembly of the units has been necessary to restore these minimum clearances. Over the years several potentially damaging problems have plagued this unit. In November of 1992 a Rotor Mounted Scanner (RMS) manufactured by MCM Enterprise Limited of Bellevue, Washington was installed on this unit. The use of state of the art technology has provided information which allowed operators to prevent an in-service failure when the air gap became dangerously small. Adjustments were made in the operation of the unit to minimize the temperature cycles. This change allowed the continued operation of the unit for an additional seven months to a planned outage. The turbine was scheduled to be replaced due to worn bushings in the trunion of the Kaplan type turbine. The information from the RMS was also used to formulate corrective actions that were taken during the planned outage. The findings made during the outage and corrective actions for continued dependable service will be discussed.

  11. United States-Republic of Korea (ROK) International Nuclear Energy Research

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative (INERI) Annual Steering Committee Meeting | Department of Energy States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting January 14, 2015 - 9:33am Addthis United States-Republic of Korea (ROK) International Nuclear Energy Research Initiative (INERI) Annual Steering Committee Meeting On

  12. DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research

    Broader source: Energy.gov [DOE]

    Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy’s University Turbine Systems Research Program have been selected by the U.S. Department of Energy for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative cooling techniques to maintain integrity of turbine components.

  13. Clean coal technologies: Research, development, and demonstration program plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The US Department of Energy, Office of Fossil Energy, has structured an integrated program for research, development, and demonstration of clean coal technologies that will enable the nation to use its plentiful domestic coal resources while meeting environmental quality requirements. The program provides the basis for making coal a low-cost, environmentally sound energy choice for electric power generation and fuels production. These programs are briefly described.

  14. Collaboration in Research and Engineering for Advanced Technology.

    SciTech Connect (OSTI)

    Vrieling, P. Douglas

    2016-01-01

    SNL/CA proposes the Collaboration in Research and Engineering for Advanced Technology and Education (CREATE) facility to support customer-driven national security mission requirements while demonstrating a fiscally responsible approach to cost-control. SNL/CA realizes that due to the current backlog of capital projects in NNSA that following the normal Line Item process to procure capital funding is unlikely and therefore SNL/CA will be looking at all options including Alternative Financing.

  15. JBEI Research Receives Strong Industry Interest in DOE Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Call Research Receives Strong Industry Interest in DOE Technology Transfer Call - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  16. Research needs in claus technology. Topical report, February 1993-May 1995

    SciTech Connect (OSTI)

    Abernathy, R.G.; Quinlan, M.P.

    1995-05-01

    A review is presented of the state-of-the-art of Claus technology and of research needs in this area. Since considerable quantities of natural gas are treated with this technology, it is very important to improve it. The study is based on literature searches and a survey of vendors, licensors, and research groups. Conclusions indicate that the design of reaction furnace and burner, and by development of selective direct oxidation catalysts for the final stage of the process. Replacing air with oxygen, minimizing the formation of carbonyl sulfide (COS) and carbon disulfide (CS2) while maximizing hydrogen (H2) production leaving the waste heat boiler will improve the efficiency of the Claus unit.

  17. EM Begins Demolition of Building G2 at Separations Process Research Unit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Begins Demolition of Building G2 at Separations Process Research Unit EM Begins Demolition of Building G2 at Separations Process Research Unit July 18, 2016 - 12:00pm Addthis NISKAYUNA, N.Y. - EM's cleanup contractor at the Separations Process Research Unit (SPRU) nuclear facility completed preparations allowing for the open-air demolition of Building G2, which has begun. G2 is one of two SPRU buildings that supported improvements in the chemical separation of plutonium

  18. Electric Power Research Institute Environmental Control Technology Center: Report to the Steering Committee, June 1996

    SciTech Connect (OSTI)

    1996-06-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s (EPRI`s) Environmental Control Technology Center (ECTC). Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the 4.0 MW Spray Dryer Absorber System (SDA) and Pulse Jet Fabric Filter (PJFF) - Carbon Injection System. Investigations also continued across the B&W/CHX Heat Exchanger unit, while the 1.0 MW Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode as monthly inspections were conducted. Pilot Testing Highlights Testing efforts in June were focused on the HAP test block and the Trace Elements Removal (TER) test block. Both programs were conducted on the 4.0 MW wet FGD pilot unit and PJFF unit. The HAP test block was temporarily concluded in June to further review the test data. This program began in March as part of the DOE Advanced Power Systems Program; the mission of this program is to accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. The 1996 HAP test block focuses on three research areas, including: Catalytic oxidation of vapor-phase elemental mercury; Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and Enhanced mercury removal by addition of additives to FGD process liquor. The TER test block is part of EPRI`s overall program to develop control technology options for reduction of trace element emissions. This experimental program investigates mercury removal and mercury speciation under different operating conditions.

  19. United States Research and Development effort on ITER magnet tasks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Martovetsky, Nicolai N.; Reierson, Wayne T.

    2011-01-22

    This study presents the status of research and development (R&D) magnet tasks that are being performed in support of the U.S. ITER Project Office (USIPO) commitment to provide a central solenoid assembly and toroidal field conductor for the ITER machine to be constructed in Cadarache, France. The following development tasks are presented: winding development, inlets and outlets development, internal and bus joints development and testing, insulation development and qualification, vacuum-pressure impregnation, bus supports, and intermodule structure and materials characterization.

  20. HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Danko, E

    2009-03-02

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including

  1. Fuels from microalgae: Technology status, potential, and research requirements

    SciTech Connect (OSTI)

    Neenan, B.; Feinberg, D.; Hill, A.; McIntosh, R.; Terry, K.

    1986-08-01

    Although numerous options for the production of fuels from microalgae have been proposed, our analysis indicates that only two qualify for extensive development - gasoline and ester fuel. In developing the comparisons that support this conclusion, we have identified the major areas of microalgae production and processing that require extensive development. Technology success requires developing and testing processes that fully utilize the polar and nonpolar lipids produced by microalgae. Process designs used in these analyses were derived from fragmented, preliminary laboratory data. These results must be substantiated and integrated processes proposed, tested, and refined to be able to evaluate the commercial feasibility from microalgae. The production of algal feedstocks for processing to gasoline or ester fuel requires algae of high productivity and high lipid content that efficiently utilize saline waters. Species screening and development suggest that algae can achieve required standards taken individually, but algae that can meet the integrated requirements still elude researchers. Effective development of fuels from microalgae technology requires that R and D be directed toward meeting the integrated standards set out in the analysis. As technology analysts, it is inappropriate for us to dictate how the R and D effort should proceed to meet these standards. We end our role by noting that alternative approaches to meeting the feasibility targets have been identified, and it is now the task of program managers and scientists to choose the appropriate approach to assure the greatest likelihood of realizing a commercially viable technology. 70 refs., 39 figs., 35 tabs.

  2. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  3. Electric Power Research Institute Environmental Control Technology Center Report to the Steering Committee, July 1996

    SciTech Connect (OSTI)

    1996-11-15

    Operations and maintenance continued this month at the Electric Power Research Institute's Environmental Control Technology Center. Testing for the Hazardous Air Pollutant (HAP) test block was conducted using the Carbon Injection System (the 4.0 MW Spray Dryer Absorber System and the Pulse Jet Fabric Filter). Testing also continued across the B and W/CHX Heat Exchanger project. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit and the 4.0 MW Pilot Wet Scrubber remained idle this month in a cold-standby mode. Inspections of these idled systems were conducted this month.

  4. Electric Power Research Institute, Environmental Control Technology Center report to the steering committee. Final technical report

    SciTech Connect (OSTI)

    1995-12-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued with the Pilot High Velocity FGD (PHV) and the Trace Element Removal (TER) test blocks. In the High Velocity test block, SO{sub 2} removal and mist eliminator carryover rates were investigated while operating the absorber unit with various spray nozzle types and vertical mist eliminator sections. During the Trace Element Removal test block, the mercury measurements and control studies involving the EPA Method 29 continued with testing of several impinger capture solutions, and the use of activated carbon injection across the Pulse-Jet Fabric Filter (PJFF) unit. The 4.0 MW Spray Dryer Absorber System was utilized this month in the TER test configuration to inject and transfer activated carbon to the PJFF bags for downstream mercury capture. Work also began in December to prepare the 0.4 MW Mini-Pilot Absorber system for receipt of the B and W Condensing Heat Exchanger (CHX) unit to be used in the 1996 DOE/PRDA testing. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained in cold-standby this month.

  5. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint

    SciTech Connect (OSTI)

    Ullal, H. S.; Zweibel, K.; von Roedern, B.

    2002-05-01

    II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% for a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.

  6. Technology Base Research Project for electrochemical energy storage

    SciTech Connect (OSTI)

    Kinoshita, Kim

    1991-06-01

    The US DOE's Office of Propulsion Systems provides support for an electrochemical energy storage program, which includes R D on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The general R D areas addressed by the project include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The TBR Project is divided into three major project elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each project element are summarized according to the appropriate battery system or electrochemical research area. 16 figs., 4 tabs.

  7. Assessment of basic research needs for greenhouse gas control technologies

    SciTech Connect (OSTI)

    Benson, S.M.; Chandler, W.; Edmonds, J.; Houghton, J.; Levine, M.; Bates, L.; Chum, H.; Dooley, J.; Grether, D.; Logan, J.; Wiltsee, G.; Wright, L.

    1998-09-01

    This paper is an outgrowth of an effort undertaken by the Department of Energy's Office of Energy Research to assess the fundamental research needs to support a national program in carbon management. Five topics were identified as areas where carbon management strategies and technologies might be developed: (1) capture of carbon dioxide, decarbonization strategies, and carbon dioxide disposal and utilization; (2) hydrogen development and fuel cells; (3) enhancement of the natural carbon cycle; (4) biomass production and utilization; and (5) improvement of the efficiency of energy production, conversion, and utilization. Within each of these general areas, experts came together to identify targets of opportunity for fundamental research likely to lead to the development of mid- to long-term solutions for stabilizing or decreasing carbon dioxide and other greenhouse gases in the atmosphere. Basic research to support the options outlined above are far reaching-from understanding natural global processes such as the ocean and terrestrial carbon cycles to development of new materials and concepts for chemical separation. Examples of fundamental research needs are described in this paper.

  8. PROCEEDINGS OF THE 2002 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM.

    SciTech Connect (OSTI)

    MCDONALD,R.J.

    2002-08-20

    This is the PROCEEDINGS OF THE 2002 NATIONAL OILHEAT RESEARCH ALLIANCE TECHNOLOGY SYMPOSIUM, which was Held at Oilheat Visions Conference, Rhode Island Convention Center, Providence, Rhode Island, August 20-21, 2002. The specific objectives of this conference are to: (1) identify and evaluate the current state-of-the-art and recommend new initiatives for higher efficiency, a cleaner environment, and to satisfy consumer needs cost-effectively, reliably, and safely; and (2) foster cooperative interactions among federal and industrial representatives for the common goal of sustained economic growth and energy security via energy conservation.

  9. Oklahoma State University proposed Advanced Technology Research Center. Environmental Assessment

    SciTech Connect (OSTI)

    1995-06-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA) evaluating the construction and equipping of the proposed Advanced Technology Research Center (ATRC) at Oklahoma State University (OSU) in Stillwater, Oklahoma. Based on the analysis in the EA, the DOE has determined that the proposed action does not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement is not required.

  10. Materials and Components Technology Division research summary, 1991

    SciTech Connect (OSTI)

    Not Available

    1991-04-01

    This division has the purpose of providing a R and D capability for design, fabrication, and testing of high-reliability materials, components, and instrumentation. Current divisional programs are in support of the Integral Fast Reactor, life extension for light water reactors, fuels development for the new production reactor and research and test reactors, fusion reactor first-wall and blanket technology, safe shipment of hazardous materials, fluid mechanics/materials/instrumentation for fossile energy systems, and energy conservation and renewables (including tribology, high- temperature superconductivity). Separate abstracts have been prepared for the data base.

  11. NREL: Hydrogen and Fuel Cells Research - Stationary Fuel Cell Units Greater

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Than 100 kW Achieve 2015 Target for Electrical Efficiency Stationary Fuel Cell Units Greater Than 100 kW Achieve 2015 Target for Electrical Efficiency Project Technology Validation: Stationary Fuel Cell Evaluation Contact Genevieve Saur Related Publications Stationary Fuel Cell System Composite Data Products Stationary Fuel Cell Systems Analysis Project: Partnership Opportunities In a newly released composite data product (CDP), NREL's National Fuel Cell Technology Evaluation Center (NFCTEC)

  12. Oil shale, tar sand, coal research advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Speight, J.G.

    1992-01-01

    Accomplishments for the past quarter are presented for the following five tasks: oil shale; tar sand; coal; advanced exploratory process technology; and jointly sponsored research. Oil shale research covers oil shale process studies. Tar sand research is on process development of Recycle Oil Pyrolysis and Extraction (ROPE) Process. Coal research covers: coal combustion; integrated coal processing concepts; and solid waste management. Advanced exploratory process technology includes: advanced process concepts;advanced mitigation concepts; and oil and gas technology. Jointly sponsored research includes: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF Process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde Group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; characterization of petroleum residue; shallow oil production using horizontal wells with enhanced oil recovery techniques; surface process study for oil recovery using a thermal extraction process; NMR analysis of samples from the ocean drilling program; in situ treatment of manufactured gas plant contaminated soils demonstration program; and solid state NMR analysis of naturally and artificially matured kerogens.

  13. Exploratory technology research program for electrochemical energy storage. Annual report for 1996

    SciTech Connect (OSTI)

    Kinoshita, K. [ed.

    1997-06-01

    The U.S. Department of Energy`s Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the United States Advanced Battery Consortium (USABC) and Advanced Battery R&D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The USABC, a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for EVs. In addition, DOE is actively involved in the Partnership for a New Generation of Vehicles (PNGV) Program which seeks to develop passenger vehicles with a range equivalent to 80 mpg of gasoline. The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and the PNGV Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1996. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary.

  14. CERTS: Consortium for Electric Reliability Technology Solutions - Research Highlights

    SciTech Connect (OSTI)

    Eto, Joseph

    2003-07-30

    Historically, the U.S. electric power industry was vertically integrated, and utilities were responsible for system planning, operations, and reliability management. As the nation moves to a competitive market structure, these functions have been disaggregated, and no single entity is responsible for reliability management. As a result, new tools, technologies, systems, and management processes are needed to manage the reliability of the electricity grid. However, a number of simultaneous trends prevent electricity market participants from pursuing development of these reliability tools: utilities are preoccupied with restructuring their businesses, research funding has declined, and the formation of Independent System Operators (ISOs) and Regional Transmission Organizations (RTOs) to operate the grid means that control of transmission assets is separate from ownership of these assets; at the same time, business uncertainty, and changing regulatory policies have created a climate in which needed investment for transmission infrastructure and tools for reliability management has dried up. To address the resulting emerging gaps in reliability R&D, CERTS has undertaken much-needed public interest research on reliability technologies for the electricity grid. CERTS' vision is to: (1) Transform the electricity grid into an intelligent network that can sense and respond automatically to changing flows of power and emerging problems; (2) Enhance reliability management through market mechanisms, including transparency of real-time information on the status of the grid; (3) Empower customers to manage their energy use and reliability needs in response to real-time market price signals; and (4) Seamlessly integrate distributed technologies--including those for generation, storage, controls, and communications--to support the reliability needs of both the grid and individual customers.

  15. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  16. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The HiWAIS technology is a significant step forward in the warfighter support arena. Honeybees for Explosive Detection Honeybees for Explosive Detection Los Alamos researchers have ...

  17. DOE Selects Research Projects to Advance Solid Oxide Fuel Cell Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Research Projects to Advance Solid Oxide Fuel Cell Technology DOE Selects Research Projects to Advance Solid Oxide Fuel Cell Technology July 13, 2015 - 10:00am Addthis The Department of Energy's (DOE) National Energy Technology Laboratory (NETL) has selected for funding 16 solid oxide fuel cell (SOFC) technology research projects. Fuel cells are a modular, efficient, and virtually pollution-free power generation technology. In Fiscal Year (FY) 2015, NETL issued two

  18. SunShot Initiative Researcher Wins National Medal of Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Innovation | Department of Energy SunShot Initiative Researcher Wins National Medal of Technology and Innovation SunShot Initiative Researcher Wins National Medal of Technology and Innovation October 7, 2011 - 11:10am Addthis SunShot Initiative Researcher Wins National Medal of Technology and Innovation Minh Le Minh Le Deputy Director, Solar Energy Technologies Office Last week, President Obama recognized Dr. Rakesh Agrawal with the National Medal of Technology and Innovation -- the nation's

  19. Groundwater Monitoring Plan for the Reactor Technology Complex Operable Unit 2-13

    SciTech Connect (OSTI)

    Richard P. Wells

    2007-03-23

    This Groundwater Monitoring Plan describes the objectives, activities, and assessments that will be performed to support the on-going groundwater monitoring requirements at the Reactor Technology Complex, formerly the Test Reactor Area (TRA). The requirements for groundwater monitoring were stipulated in the Final Record of Decision for Test Reactor Area, Operable Unit 2-13, signed in December 1997. The monitoring requirements were modified by the First Five-Year Review Report for the Test Reactor Area, Operable Unit 2-13, at the Idaho National Engineering and Environmental Laboratory to focus on those contaminants of concern that warrant continued surveillance, including chromium, tritium, strontium-90, and cobalt-60. Based upon recommendations provided in the Annual Groundwater Monitoring Status Report for 2006, the groundwater monitoring frequency was reduced to annually from twice a year.

  20. Needs assessment for remote systems technology at the Chornobyl Unit 4 shelter

    SciTech Connect (OSTI)

    Carteret, B.A.; Holliday, M.A.; Jones, E.D.

    1997-12-01

    The accident at Chornobyl Unit 4 on April 26, 1986, resulted in a series of unprecedented scientific and technical challenges. The reactor building was damaged extensively. Following the accident, immediate action was needed to seal off the gaping crater created by the accident, which was a continuing source of airborne contamination. Under extreme conditions, a structure called the {open_quotes}Shelter{close_quotes} was built over the remains of the reactor building. The Shelter, which was quickly completed in November 1986, was meant to provide immediate but temporary containment. Now, 11 years later, there are significant concerns about its structural integrity and projected life expectancy. The United States and other participating G-7 countries are supporting nuclear safety upgrade efforts in Eastern Europe with a primary focus on placing the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 Shelter in a stable and environmentally acceptable condition. Application of remote systems technologies will play an important part in achieving the goals of this program. The G-7 nations have agreed to support these efforts, including the identification and development of remote system technologies for fuel removal. However at this time they have taken a firm stance against funding actual fuel removal activities. The U.S. Department of Energy Office of Nuclear Energy, Science and Technology requested that a needs assessment be performed to evaluate the requirements for applying remote systems, including robotics, at the Shelter. This document is intended to be used to identify remote systems needs and requirements at the Shelter and to provide general information on the conditions in the Shelter that could impact the use of remote systems. This document is intended as a source of information to assist those who will be implementing the Shelter Implementation Plan tasks. The document provides background information and general guidance on the application of remote systems.

  1. Electric Power Research Institute Environmental Control Technology Center final monthly technical report, August 1995

    SciTech Connect (OSTI)

    1995-08-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit this month involved the Trace Element Removal (TER) test block, and the simultaneous testing of the Lime Forced Oxidation process with DBA addition (LDG). Additionally, the second phase of the 1995 Carbon Injection test block began this month with the SDA/PJFF test configuration. At the end of the LDG testing this month, a one-week baseline test was conducted to generate approximately 200 lbs. of magnesium-lime FGD solids for analysis. On the 1.0 MW Post-FGD Selective Catalytic Reduction (SCR) unit, performance testing was continued this month as measurements were taken for NO{sub x} removal efficiency, residual ammonia slip, and S0{sub 3} generation across the catalysts installed in the reactor. As a result of new directions received from EPRI, this will be the last scheduled month of testing for the SCR unit in 1995. At the completion of this month, the unit will be isolated from the flue gas path and placed in a cold-standby mode for future test activities. This report describes the status of facilities and test facilities at the pilot and mini-pilot plants.

  2. Nuclear physics detector technology applied to plant biology research

    SciTech Connect (OSTI)

    Weisenberger, Andrew G.; Kross, Brian J.; Lee, Seung Joo; McKisson, John E.; Xi, Wenze; Zorn, Carl J.; Howell, Calvin; Crowell, A.S.; Reid, C.D.; Smith, Mark

    2013-08-01

    The ability to detect the emissions of radioactive isotopes through radioactive decay (e.g. beta particles, x-rays and gamma-rays) has been used for over 80 years as a tracer method for studying natural phenomena. More recently a positron emitting radioisotope of carbon: {sup 11}C has been utilized as a {sup 11}CO{sub 2} tracer for plant ecophysiology research. Because of its ease of incorporation into the plant via photosynthesis, the {sup 11}CO{sub 2} radiotracer is a powerful tool for use in plant biology research. Positron emission tomography (PET) imaging has been used to study carbon transport in live plants using {sup 11}CO{sub 2}. Presently there are several groups developing and using new PET instrumentation for plant based studies. Thomas Jefferson National Accelerator Facility (Jefferson Lab) in collaboration with the Duke University Phytotron and the Triangle Universities Nuclear Laboratory (TUNL) is involved in PET detector development for plant imaging utilizing technologies developed for nuclear physics research. The latest developments of the use of a LYSO scintillator based PET detector system for {sup 11}CO{sub 2} tracer studies in plants will be briefly outlined.

  3. Survey of biomass gasification. Volume III. Current technology and research

    SciTech Connect (OSTI)

    1980-04-01

    This survey of biomass gasification was written to aid the Department of Energy and the Solar Energy Research Institute Biological and Chemical Conversion Branch in determining the areas of gasification that are ready for commercialization now and those areas in which further research and development will be most productive. Chapter 8 is a survey of gasifier types. Chapter 9 consists of a directory of current manufacturers of gasifiers and gasifier development programs. Chapter 10 is a sampling of current gasification R and D programs and their unique features. Chapter 11 compares air gasification for the conversion of existing gas/oil boiler systems to biomass feedstocks with the price of installing new biomass combustion equipment. Chapter 12 treats gas conditioning as a necessary adjunct to all but close-coupled gasifiers, in which the product is promptly burned. Chapter 13 evaluates, technically and economically, synthesis-gas processes for conversion to methanol, ammonia, gasoline, or methane. Chapter 14 compiles a number of comments that have been assembled from various members of the gasifier community as to possible roles of the government in accelerating the development of gasifier technology and commercialization. Chapter 15 includes recommendations for future gasification research and development.

  4. Government commercialization of large scale technology: the United States Breeder Reactor Program 1964-1976

    SciTech Connect (OSTI)

    Stiefel, M.D.

    1981-06-01

    The US Liquid Metal Fast Breeder Reactor program was an attempt by the Atomic Energy Commission to develop, in partnership with industry, a particular nuclear technology. Not only did the AEC provide subsidies and test facilities for the private sector, but the agency attempted to direct which technological options would be developed. The national laboratories, nuclear vendors, and electric utilities were not amenable to government direction. The resulting time delays and cost overruns stalled the program until the anti-nuclear movement arose and undermined the political consensus behind the program. As a result, a breeder demonstration plant has not yet been built in the United States. The analysis of this thesis suggests two conclusions. First, future government directed commercialization programs are unlikely to succeed. Second, breeder development should be slowed down until the political problems in the nuclear industry are solved.

  5. 1995 Federal Research and Development Program in Materials Science and Technology

    SciTech Connect (OSTI)

    1995-12-01

    The Nation's economic prosperity and military security depend heavily on development and commercialization of advanced materials. Materials are a key facet of many technologies, providing the key ingredient for entire industries and tens of millions of jobs. With foreign competition in many areas of technology growing, improvements in materials and associated processes are needed now more than ever, both to create the new products and jobs of the future and to ensure that U.S. industry and military forces can compete and win in the international arena. The Federal Government has invested in materials research and development (R&D) for nearly a century, helping to lay the foundation for many of the best commercial products and military components used today. But while the United States has led the world in the science and development of advanced materials, it often has lagged in commercializing them. This long-standing hurdle must be overcome now if the nation is to maintain its leadership in materials R&D and the many technologies that depend on it. The Administration therefore seeks to foster commercialization of state-of-the-art materials for both commercial and military use, as a means of promoting US industrial competitiveness as well as the procurement of advanced military and space systems and other products at affordable costs. The Federal R&D effort in Fiscal Year 1994 for materials science and technology is an estimated $2123.7 million. It includes the ongoing R&D base that support the missions of nine Federal departments and agencies, increased strategic investment to overcome obstacles to commercialization of advanced materials technologies, interagency cooperation in R&D areas of mutual benefit to leverage assets and eliminate duplicative work, cost-shared research with industrial and academic partners in critical precompetitive technology areas, and international cooperation on selected R&D topics with assured benefits for the United States. The

  6. NREL: Hydrogen and Fuel Cells Research - Fuel Cell Technology Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis Fuel Cell Technology Status Analysis Get Involved Fuel cell developers interested in collaborating with NREL on fuel cell technology status analysis should send an email to NREL's Technology Validation Team at techval@nrel.gov. NREL's analysis of fuel cell technology provides objective and credible information about new fuel cell technologies with a focus on performance, durability, and price. As demand for fuel cells grows, U.S. manufacturers are developing these technologies for a

  7. Available Technologies - Joint Center for Energy Storage Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Technology Grafting Ionic Moiety to Sulfur for Lithium-Sulfur Battery Massachusetts Institute of Technology MIT Case No. 17699 Gravity Induced Flow Cell Using ...

  8. Research & Development Opportunities for Joining Technologies in HVAC&R

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report identifies and characterizes R&D opportunities with HVAC&R joining technologies for the Building Technologies Office (BTO) to pursue.

  9. Overview and Progress of the Exploratory Technology Research...

    Broader source: Energy.gov (indexed) [DOE]

    of the Batteries for Advanced Transportation Technologies (BATT) Activity Vehicle Technologies Office Merit Review 2014: Overview and Progress of the Batteries for Advanced ...

  10. Research and Development Roadmap for Emerging Water Heating Technologi...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Water Heating Technologies W. Goetzler, M. Guernsey, and M. Droesch September ... AND DEVELOPMENT ROADMAP FOR EMERGING WATER HEATING TECHNOLOGIES ii Preface Preface ...

  11. BPA seeks research partners to advance technology solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transmission technologies, data intelligence, next-generation energy efficiency and demand response technologies, generation asset management. A copy of each roadmap is...

  12. Research & Technology Showcase in Albuquerque on September 12

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sponsors for the event include Sandia National Laboratories, Bernalillo County, the City of Albuquerque, Sandia Science & Technology Park, and Technology Ventures Corporation...

  13. The impact of energy prices on technology choice in the United States steel industry

    SciTech Connect (OSTI)

    Karlson, S.H. . Dept. of Economics); Boyd, G. )

    1991-01-01

    In the last thirty years US steel producers have replaced their aging open hearth steel furnaces with basic oxygen or large electric arc furnaces. This choice of technology leads to the opportunity to substitute electricity for fossil fuels as a heat source. We extend earlier research to investigate whether or not energy prices affect this type of technology adoption as predicted by economic theory. The econometric model uses the seemingly unrelated Tobit'' method to capture the effects of the industry's experience with both technologies, technical change, and potential cost reductions, as well as energy prices, on adoption. When we include the prices of electricity and coking coal as explanatory variables, the four energy price coefficients have the signs predicted by the law of demand. The two price coefficients have a statistically significant effect on adoption of basic oxygen furnaces. The inclusion of energy prices leads to significantly more efficient estimates of other coefficients in the model. 19 refs., 3 tabs.

  14. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.6 Technology Validation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNOLOGY VALIDATION SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.6 - 1 3.6 Technology Validation The Technology Validation sub-program tests, demonstrates, and validates hydrogen (production, delivery, storage) and fuel cell systems and their integrated components in real- world environments. Feedback provided to the DOE hydrogen and fuel cell research and development (RD&D) projects, industry partners, and end users helps determine the additional RD&D

  15. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marv A; Aguilar - Chang, Julio; Anderson, Dale; Arrowsmith, Marie; Arrowsmith, Stephen; Baker, Diane; Begnaud, Michael; Harste, Hans; Maceira, Monica; Patton, Howard; Phillips, Scott; Randall, George; Rowe, Charlotte; Stead, Richard; Steck, Lee; Whitaker, Rod; Yang, Xiaoning

    2009-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Patterson, Eileen F.; Sandoval, Marisa N.

    2011-09-13

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  17. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2006-09-19

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2005-09-20

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A.; Benson, Jody; Patterson, Eileen F.

    2007-09-25

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A; Patterson, Eileen F

    2010-09-21

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  1. United States and Czech Republic Join Together to Announce Bilateral Nuclear Energy Research and Development Efforts

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy recently joined with the Rež Nuclear Research Institute, the U.S. Embassy in Prague, Texas A&M and the Czech Nuclear Education Network (CENEN) to announce a series of bilateral nuclear research and development programs that will help to advance safe and secure nuclear energy technologies in both countries.

  2. Benefits to the United States of Increasing Global Uptake of Clean Energy Technologies

    SciTech Connect (OSTI)

    Kline, D.

    2010-07-01

    A previous report describes an opportunity for the United States to take leadership in efforts to transform the global energy system toward clean energy technologies (CET). An accompanying analysis to that report provides estimates of the economic benefits to the United States of such a global transformation on the order of several hundred billion dollars per year by 2050. This report describes the methods and assumptions used in developing those benefit estimates. It begins with a summary of the results of the analysis based on an updated and refined model completed since the publication of the previous report. The framework described can be used to estimate the economic benefits to the U.S. of coordinated global action to increase the uptake of CETs worldwide. Together with a Monte Carlo simulation engine, the framework can be used to develop plausible ranges for benefits, taking into account the large uncertainty in the driving variables and economic parameters. The resulting estimates illustrate that larger global clean energy markets offer significant opportunities to the United States economy.

  3. New Small Hydropower Technology to be Deployed in the United States

    SciTech Connect (OSTI)

    Hadjerioua, Boualem; Opsahl, Egil; Gordon, Jim; Bishop, Norm

    2012-01-01

    Earth By Design Inc, (EBD), in collaboration with Oak Ridge National Laboratory (ORNL), Knight Pi sold and Co., and CleanPower AS, has responded to a Funding Opportunity Announcement (FOA) published by the Department of Energy (DOE) in April 2011. EBD submitted a proposal to install an innovative, small hydropower technology, the Turbinator, a Norwegian technology from CleanPower. The Turbinator combines an axial flow, fixed-blade Kaplan turbine and generator in a compact and sealed machine. This makes it a very simple and easy technology to be deployed and installed. DOE has awarded funding for this two-year project that will be implemented in Culver, Oregon. ORNL with the collaboration of CleanPower, will assess and evaluate the technology before and during the manufacturing phase and produce a full report to DOE. The goal of this phase-one report is to provide DOE Head Quarters (HQ), water power program management, a report with findings about the performance, readiness, capability, strengths and weakness, limitation of the technology, and potential full-scale deployment and application in the United States. Because of the importance of this information to the conventional hydropower industry and regulators, preliminary results will rapidly be distributed in the form of conference presentations, ORNL/DOE technical reports (publically available online, and publications in the peer-reviewed, scientific literature. These reports will emphasize the relevance of the activities carried out over the two-year study (i.e., performance, robustness, capabilities, reliability, and cost of the Turbinator). A final report will be submitted to a peer-reviewed publication that conveys the experimental findings and discusses their implications for the Turbinator application and implementation. Phase-two of the project consists of deployment, construction, and project operations. A detailed report on assessment and the performance of the project will be presented and communicated

  4. Final Report - Independent Verification Survey Activities at the Seperations Process Research Unit Sites, Niskayuna, New York

    SciTech Connect (OSTI)

    Evan Harpenau

    2011-03-15

    The Separations Process Research Unit (SPRU) complex located on the Knolls Atomic Power Laboratory (KAPL) site in Niskayuna, New York, was constructed in the late 1940s to research the chemical separation of plutonium and uranium (Figure A-1). SPRU operated as a laboratory scale research facility between February 1950 and October 1953. The research activities ceased following the successful development of the reduction oxidation and plutonium/uranium extraction processes. The oxidation and extraction processes were subsequently developed for large scale use by the Hanford and Savannah River sites (aRc 2008a). Decommissioning of the SPRU facilities began in October 1953 and continued through the 1990s.

  5. Electric Power Research Institute: Environmental Control Technology Center: Report to the Steering Committee, March 1996. Final technical report

    SciTech Connect (OSTI)

    1996-03-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System for the Hazardous Air Pollutant (HAP) test block. With this testing, the mercury measurement (Method 29) studies also continued with various impinger capture solutions. Also, the installation of the B&W/CHX Heat Exchanger unit was completed in March. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) and the 4.0 MW Pilot Wet FGD Unit and were utilized in the HAP test configuration this month. The 1.0 MW Cold-Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold- standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

  6. Research Extension and Education Programs on Bio-based Energy Technologies and Products

    SciTech Connect (OSTI)

    Jackson, Sam; Harper, David; Womac, Al

    2010-03-02

    The overall objectives of this project were to provide enhanced educational resources for the general public, educational and development opportunities for University faculty in the Southeast region, and enhance research knowledge concerning biomass preprocessing and deconstruction. All of these efforts combine to create a research and education program that enhances the biomass-based industries of the United States. This work was broken into five primary objective areas: • Task A - Technical research in the area of biomass preprocessing, analysis, and evaluation. • Tasks B&C - Technical research in the areas of Fluidized Beds for the Chemical Modification of Lignocellulosic Biomass and Biomass Deconstruction and Evaluation. • Task D - Analyses for the non-scientific community to provides a comprehensive analysis of the current state of biomass supply, demand, technologies, markets and policies; identify a set of feasible alternative paths for biomass industry development and quantify the impacts associated with alternative path. • Task E - Efforts to build research capacity and develop partnerships through faculty fellowships with DOE national labs The research and education programs conducted through this grant have led to three primary results. They include: • A better knowledge base related to and understanding of biomass deconstruction, through both mechanical size reduction and chemical processing • A better source of information related to biomass, bioenergy, and bioproducts for researchers and general public users through the BioWeb system. • Stronger research ties between land-grant universities and DOE National Labs through the faculty fellowship program. In addition to the scientific knowledge and resources developed, funding through this program produced a minimum of eleven (11) scientific publications and contributed to the research behind at least one patent.

  7. Postdoctoral Research Awards: Investing in Innovative Clean Energy Technologies

    Broader source: Energy.gov [DOE]

    The Energy Efficiency and Renewable Energy (EERE) Postdoctoral Research Awards offer unique research opportunities to highly talented Ph.D. recipients to engage in innovative research at...

  8. Fuel Cell Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Multi-Year Research, Development and Demonstration Plan Page B - 1 Multi-Year Research, Development and Demonstration Plan Page B - 2 Multi-Year Research, Development and ...

  9. Oil shale, tar sand, coal research, advanced exploratory process technology, jointly sponsored research

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Progress made in five research programs is described. The subtasks in oil shale study include oil shale process studies and unconventional applications and markets for western oil shale.The tar sand study is on recycle oil pyrolysis and extraction (ROPE) process. Four tasks are described in coal research: underground coal gasification; coal combustion; integrated coal processing concepts; and sold waste management. Advanced exploratory process technology includes: advanced process concepts; advanced mitigation concepts; and oil and gas technology. Jointly sponsored research covers: organic and inorganic hazardous waste stabilization; CROW field demonstration with Bell Lumber and Pole; development and validation of a standard test method for sequential batch extraction fluid; PGI demonstration project; operation and evaluation of the CO[sub 2] HUFF-N-PUFF process; fly ash binder for unsurfaced road aggregates; solid state NMR analysis of Mesaverde group, Greater Green River Basin, tight gas sands; flow-loop testing of double-wall pipe for thermal applications; shallow oil production using horizontal wells with enhanced oil recovery techniques; NMR analysis of sample from the ocean drilling program; and menu driven access to the WDEQ hydrologic data management system.

  10. A History of Geothermal Energy Research and Development in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States: Exploration 1976-2006 | Department of Energy Exploration 1976-2006 A History of Geothermal Energy Research and Development in the United States: Exploration 1976-2006 This report summarizes significant research projects performed by the U.S.Department of Energy (DOE)1 over 30 years to overcome challenges inexploration and to make generation of electricity from geothermal resourcesmore cost-competitive. geothermal_history_1_exploration.pdf (10.8 MB) More Documents & Publications

  11. A History of Geothermal Energy Research and Development in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States: Reservoir Engineering 1976-2006 | Department of Energy Reservoir Engineering 1976-2006 A History of Geothermal Energy Research and Development in the United States: Reservoir Engineering 1976-2006 This report summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in reservoir engineering and to make generation of electricity from geothermal resources more cost-competitive. geothermal_history_3_engineering.pdf

  12. News From the 2012 Turbine Technology Symposium | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News From the 2012 Turbine Technology Symposium Click to email this to a friend (Opens in ... News From the 2012 Turbine Technology Symposium Jon Slepski 2012.11.29 Hi, my name is Jon ...

  13. NREL: Climate Neutral Research Campuses - Analyze Technology Options

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analyze Technology Options An effective climate action plan follows a portfolio approach and addresses each energy sector on campus. This section outlines how various technology options would fit into a campus climate action plan and provides examples of how others have used these technologies. Links to definitions, technology basics, and references are also provided. Use the Climate Action Planning Tool to identify which options will lead to the most significant reductions in consumption of

  14. NREL: Hydrogen and Fuel Cells Research - National Fuel Cell Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation Center National Fuel Cell Technology Evaluation Center The National Fuel Cell Technology Evaluation Center (NFCTEC) at NREL's Energy Systems Integration Facility (ESIF) plays a crucial role in NREL's independent, third-party analysis of hydrogen fuel cell technologies in real-world operation. The NFCTEC is designed for secure management, storage, and processing of proprietary data from industry. Access to the off-network NFCTEC is limited to NREL's Technology Validation Team,

  15. EM Celebrates Milestone with Removal of Last Waste Tank at Separations Process Research Unit

    Broader source: Energy.gov [DOE]

    NISKAYUNA, N.Y. – EM recently marked a notable milestone at the Separations Process Research Unit (SPRU) when workers removed the last of seven large waste storage tanks from a vault and shipped it to an offsite low-level radioactive waste disposal facility.

  16. United States, Russia Sign Agreement to Further Research and Development Collaboration in Nuclear Energy and Security

    Broader source: Energy.gov [DOE]

    U.S. Secretary of Energy Ernest Moniz and Director General of the Russian Federation State Corporation “Rosatom” Sergey Kirienko today signed the Agreement between the Government of the United States of America and the Government of the Russian Federation on Cooperation in Nuclear- and Energy-Related Scientific Research and Development

  17. Small Business Innovation Research and Small Business Technology Transfer Programs: Hydropower

    Broader source: Energy.gov [DOE]

    Small Business Innovation Research and Small Business Technology Transfer are U.S. Government programs in which federal agencies with large research and development budgets set aside a small fraction of their funding for competitions among small businesses only. Small businesses that win awards in these programs keep the rights to any technology developed and are encouraged to commercialize the technology.

  18. Exploratory Technology Research Program for electrochemical energy storage: Annual report for 1993

    SciTech Connect (OSTI)

    Kinoshita, K.

    1994-09-01

    The U.S. Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The EVABS Program management responsibility has been assigned to Sandia National Laboratories (SNL); Lawrence Berkeley Laboratory (LBL) is responsible for management of the ETR Program. The EVABS and ETR Programs include an integrated matrix of R&D efforts designed to advance progress on selected candidate electrochemical systems. The United States Advanced Battery Consortium (USABC), a tripartite undertaking between DOE, the U.S. automobile manufacturers and the Electric Power Research Institute (EPRI), was formed in 1991 to accelerate the development of advanced batteries for consumer EVs. The role of the FIR Program is to perform supporting research on the advanced battery systems under development by the USABC and EVABS Program, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or the EVABS Program for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1993.

  19. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Table of Contents

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  20. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Coordination

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  1. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Technical Plan

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  2. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Benefits

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  3. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Challenges

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  4. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Program Management

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  5. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Systems Integration

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  6. Tassilo Heeg > Researcher - SURFACE systems+technology GmbH > Center Alumni

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    > The Energy Materials Center at Cornell Tassilo Heeg Researcher - SURFACE systems+technology GmbH info@surface-tec.com Formerly a Postdoctoral Associate with the Schlom Group, Tassilo now works with SURFACE Systems & Technology.

  7. Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement Webinar Slides

    Broader source: Energy.gov [DOE]

    Presentation slides from the Fuel Cell Technologies Office webinar "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations" held on March 10, 2015.

  8. Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan: Executive Summary

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program activities through 2025.

  9. Characterization of a clinical unit for digital radiography based on irradiation side sampling technology

    SciTech Connect (OSTI)

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Nitrosi, Andrea; Burani, Aldo

    2013-10-15

    Purpose: A characterization of a clinical unit for digital radiography (FUJIFILM FDR D-EVO) is presented. This system is based on the irradiation side sampling (ISS) technology and can be equipped with two different scintillators: one traditional gadolinium-oxysulphide phosphor (GOS) and a needle structured cesium iodide (CsI) phosphor panel.Methods: The characterization was achieved in terms of response curve, modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and psychophysical parameters (contrast-detail analysis with an automatic reading of CDRAD images). For both scintillation screens the authors accomplished the measurements with four standard beam conditions: RAQ3, RQA5, RQA7, and RQA9.Results: At the Nyquist frequency (3.33 lp/mm) the MTF is about 35% and 25% for CsI and GOS detectors, respectively. The CsI scintillator has better noise properties than the GOS screen in almost all the conditions. This is particularly true for low-energy beams, where the noise for the GOS system can go up to a factor 2 greater than that found for CsI. The DQE of the CsI detector reaches a peak of 60%, 60%, 58%, and 50% for the RQA3, RQA5, RQA7, and RQA9 beams, respectively, whereas for the GOS screen the maximum DQE is 40%, 44%, 44%, and 35%. The contrast-detail analysis confirms that in the majority of cases the CsI scintillator is able to provide improved outcomes to those obtained with the GOS screen.Conclusions: The limited diffusion of light produced by the ISS reading makes possible the achievement of very good spatial resolution. In fact, the MTF of the unit with the CsI panel is only slightly lower to that achieved with direct conversion detectors. The combination of very good spatial resolution, together with the good noise properties reached with the CsI screen, allows achieving DQE on average about 1.5 times greater than that obtained with GOS. In fact, the DQE of unit equipped with CsI is comparable to the best

  10. Report to the United States Congress clean coal technology export markets and financing mechanisms

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This report responds to a Congressional Conference Report that requests that $625,000 in funding provided will be used by the Department to identify potential markets for clean coal technologies in developing countries and countries with economies in transition from nonmarket economies and to identify existing, or new, financial mechanisms or financial support to be provided by the Federal government that will enhance the ability of US industry to participate in these markets. The Energy Information Administration (EIA) expects world coal consumption to increase by 30 percent between 1990 and 2010, from 5.1 to 6.5 billion short tons. Five regions stand out as major foreign markets for the export of US clean coal technologies: China; The Pacific Rim (other than China); South Asia (primarily India); Transitional Economies (Central Europe and the Newly Independent States); and Other Markets (the Americas and Southern Africa). Nearly two-thirds of the expected worldwide growth in coal utilization will occur in China, one quarter in the United States. EIA forecasts nearly a billion tons per year of additional coal consumption in China between 1990 and 2010, a virtual doubling of that country`s coal consumption. A 30-percent increase in coal consumption is projected in other developing countries over that same period. This increase in coal consumption will be accompanied by an increase in demand for technologies for burning coal cost-effectively, efficiently and cleanly. In the Pacific Rim and South Asia, rapid economic growth coupled with substantial indigenous coal supplies combine to create a large potential market for CCTS. In Central Europe and the Newly Independent States, the challenge will be to correct the damage of decades of environmental neglect without adding to already-considerable economic disruption. Though the situation varies, all these countries share the basic need to use indigenous low-quality coal cleanly and efficiently.

  11. NREL: Solar Research - Materials and Chemical Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials and Chemical Science and Technology The Materials and Chemical Science & Technology (MCST) directorate's capabilities span fundamental and applied R&D for renewable energy and energy efficiency. Key program areas include solar energy conversion for electricity and fuels, materials discovery and development for renewable energy technologies, hydrogen production and storage, and fuel cells. The MCST directorate-led by Associate Laboratory Director William Tumas-includes the

  12. NREL: Water Power Research - Marine and Hydrokinetic Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Instrumentation, Measurement, and Computer Modeling Workshop Marine and Hydrokinetic Technology Instrumentation, Measurement, and Computer Modeling Workshop The Marine and Hydrokinetic Technology (MHK) Instrumentation, Measurement, and Computer Modeling Workshop was hosted by the NREL in Broomfield, Colorado from July 9 - 10, 2012. The workshop brought together over 60 experts in marine energy technologies to disseminate technical information to the marine energy community and to collect

  13. NREL: Wind Research - National Wind Technology Center Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Wind Technology Center Map Explore the interactive graphic below to learn about the National Wind Technology Center's facilities and associated capabilities. Click on the numbered areas to discover photos and videos as well as brief descriptions and links to detailed specifications. Map of the National Wind Technology Center in Golden, Colorado Structural Testing Laboratory (STL) As wind turbines grow in size and their blades become longer and more flexible, it becomes more difficult to

  14. Advanced Technology & Discovery at Niskayuna | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing & Materials Technology develops high-performance components and manufacturing processes Aero-Thermal Mechanical Systems focuses on solving the world's...

  15. Advanced Technology & Discovery at Bangalore | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... for gas turbines and Jenbacher engines, steam retrofit solutions, small oil and gas ... compressor, TAPS II combustor and turbine as part of eCore technologies for the ...

  16. GE Launches Chinese Blog About Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Materials Scientist Electrochemical Technology Zijun works on water treatment-related projects, from water desalination to recirculation and recalcitrant chemical oxygen demand ...

  17. Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

  18. Spanish Research Centre for Energy Environment and Technology...

    Open Energy Info (EERE)

    CIEMAT, a Research Public Institution attached to the Ministry of Education and Science, is actively working on the research projects for PEM fuel cell, biofuel, solar and...

  19. Fuel Cell Technologies Program Multi-Year Research, Development...

    Energy Savers [EERE]

    Appendix D - Project Evaluation Form Multi-Year Research, Development and Demonstration ... Page D - 2 Multi-Year Research, Development and Demonstration Plan 2012 Appendix D - ...

  20. Geothermal Technologies Program Multi-Year Research, Development...

    Broader source: Energy.gov (indexed) [DOE]

    Research, Development and Demonstration Plan Page 137 2008 Appendices This page was intentionally left blank. Page 138 Multi-Year Research, Development and Demonstration ...

  1. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT TECHNOLOGY DEVELOPMENT REPORT FISCAL YEAR 2010

    SciTech Connect (OSTI)

    Bush, S.

    2010-10-22

    The mission of the Department of Energy's (DOE's) Office of Environmental Management (EM) is to clean up the environmental legacy of nuclear weapons research and production during the Cold War. That mission includes cleaning up nuclear waste, contaminated groundwater and soil, nuclear materials, and contaminated facilities covering two million acres of land in thirty-five states. EM's principal program goals include timely completion of tank waste treatment facilities, reduction of the life-cycle costs and acceleration of the cleanup of the Cold War legacy, and reduction of the EM footprint. The mission of the EM Technology Innovation and Development program is to transform science and innovation into practical solutions to achieve the EM mission. During fiscal year 2010 (October 2009-September 2010), EM focused upon accelerating environmental cleanup by expeditiously filling identified gaps in available knowledge and technology in the EM program areas. This report describes some of the approaches and transformational technologies in tank waste processing, groundwater and soil remediation, nuclear materials disposition, and facility deactivation and decommissioning developed during fiscal year 2010 that will enable EM to meet its most pressing program goals.

  2. EERE Success Story-Fuel Cell Technologies Researcher Lightens Green Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production | Department of Energy Fuel Cell Technologies Researcher Lightens Green Fuel Production EERE Success Story-Fuel Cell Technologies Researcher Lightens Green Fuel Production August 25, 2014 - 9:36am Addthis Research funded by EERE's Fuel Cell Technologies Office has dramatically increased the efficiency of biofuel production by changing certain genes in algae to make them pale green. Dr. Tasios Melis of the University of California, Berkeley is making stable changes to the algae's

  3. Building Technologies Program Multi-Year Program Plan Research and Development 2008

    SciTech Connect (OSTI)

    None, None

    2008-01-01

    Building Technologies Program Multi-Year Program Plan 2008 for research and development, including residential and commercial integration, lighting, HVAC and water heating, envelope, windows, and analysis tools.

  4. Low Wind Speed Technology Phase II: Integrated Wind Energy/Desalination System; General Electric Global Research

    SciTech Connect (OSTI)

    Not Available

    2006-03-01

    This fact sheet describes a subcontract with General Electric Global Research to explore wind power as a desirable option for integration with desalination technologies.

  5. Overview and Progress of the Exploratory Technology Research Activity: Batteries for Advanced Transportation Technologies (BATT)

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  6. Rio 2016 Olympic Games' technologies | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rio 2016 Olympic Games' technologies Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Rio 2016 Olympic Games' technologies You cannot imagine how far GE reaches into the Rio 2016 Olympic Games. The technologies (visible and invisible) that will light, move, care for and transform the wonderful city on the world's biggest

  7. China Technology Center Celebrates 15 Years | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Technology Center Celebrates 15 Years of Innovation "In China for China" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) GE's China Technology Center Celebrates 15 Years of Innovation "In China for China" Unveils Visionary Technology Blueprint called "The Next List" Shanghai, China, 5

  8. Electric Power Research Institute: Environmental Control Technology Center. Report to the Steering Committee, February 1996. Final technical report

    SciTech Connect (OSTI)

    1996-02-01

    Operations and maintenance continued this month at the Electric Power Research Institute`s Environmental Control Technology Center. Testing on the 4.0 MW Pilot Wet FGD unit continued this month with the Carbon Injection System and the Trace Element Removal test blocks. With this testing, the mercury measurement (Method 29) studies also continued with impinger capture solutions. The 4.0 MW Spray Dryer Absorber System (Carbon Injection System) was utilized in the TER test configuration this month. The B&W/CHX Heat Exchanger unit is being installed utilizing the Mini Pilot Flue Gas System. The 1.0 MW Cold- Side Selective Catalytic Reduction (SCR) unit remained idle this month in a cold-standby mode. Monthly inspections were conducted for all equipment in cold-standby, as well as for the fire safety systems, and will continue to be conducted by the ECTC Operations and Maintenance staff.

  9. Mr. Jeff Selvey Project Manager Separations Process Research Unit Disposition Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Mr. Jeff Selvey Project Manager Separations Process Research Unit Disposition Project URS Energy and Construction, Inc. 2345 Nott Street East Suite 200 St. James Square Niskayuna, New York 12309 WEL-2016-02 Dear Mr. Selvey: The Office of Enterprise Assessments' Office of Enforcement conducted an investigation of the heat stress management program being implemented by URS Energy and Construction, Inc. (URS) during Deactivation and Decommissioning (D&D) work at the Department of Energy's

  10. China Technology Center Celebrates 15 Years | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    China Technology Center Celebrates 15 Years of Innovation "In China for China" Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click ...

  11. Advanced Technology & Discovery at Shanghai | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using current technology, bottling companies typically use 75% to 85% of the water supplied to their treatment room for bottled water and soft drinks. The rest is discharged as a ...

  12. LNG Technology Is in the News | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LNG Technology Is in the News Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on...

  13. Fuel Cell Technologies Office Multi-Year Research, Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to use pressure swing adsorption to remove impurities from gaseous hydrogen for use in fuel cells. This is done at the point of production. Other technologies include membrane and...

  14. Vehicle Technologies Office Merit Review 2016: Advanced Electric Motor Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory (ORNL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about...

  15. Vehicle Technologies Office's Research Recognized by R&D 100...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 17, 2014 - 12:12pm Addthis R&D Magazine recently recognized four technologies ... depends on the chemical structure of the additive and the nature of the battery material. ...

  16. DOE's Research Efforts in Developing CCS Technologies | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The NCCC is a one of a kind, world class facility which offers an opportunity to validate capture technologies on actual gas from a coal fired power plant or gasification facility. ...

  17. JBEI Research Receives Strong Industry Interest in DOE Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Energy Consortiums Engine Combustion ... News Search Publications Popular Publications Factsheets Press Releases Energy Research Highlights Multimedia & Software ...

  18. Small Business Innovation Research and Small Business Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Administration | (NNSA) Independent Market Research Program Researching, identifying, and evaluating, high-quality, top-performing, and competitively-priced small business suppliers for NNSA programs is the function of this tool. Once a program requirement is identified, an independent research task is activated to locate top-of-the-line small businesses with capabilities in the specific performance areas. Generally, four steps are taken before the final research results are

  19. Assessment of Long-Term Research Needs for Coal-Liquefaction Technologies

    SciTech Connect (OSTI)

    Penner, S.S.

    1980-03-01

    The Fossil Energy Research Working Group (FERWG), at the request of J.M. Deutch (Under Secretary of DOE), E. Frieman (Director, Office of Energy Research) and G. Fumich, Jr. (Assistant Secretary for Fossil Fuels), has studied and reviewed currently funded coal-liquefaction technologies. These studies were performed in order to provide an independent assessment of critical research areas that affect the long-term development of coal-liquefaction technologies. This report summarizes the findings and research recommendations of FERWG.

  20. Survey of technology for hybrid vehicle auxiliary power units. Interim report, April 1994-June 1995

    SciTech Connect (OSTI)

    Widener, S.K.

    1995-10-01

    The state-of-the-art of heat engines for use as auxiliary power units in hybrid vehicles is surveyed. The study considers reciprocating or rotary heat engines, excluding gas turbines and fuel cells. The relative merits of various engine-generator concepts are compared. The concepts are ranked according to criteria tailored for a series-type hybrid drive. The two top APU concepts were the free-piston engine/linear generator (FPELG) and the Wankel rotary` engine. The FPELG is highly ranked primarily because of thermal efficiency cost, producibility. reliability, and transient response advantages; it is a high risk concept because of unproven technology. The Wankel engine is proven. with high power density, low cost and low noise. Four additional competitive concepts include two-stroke spark-ignition engine. two-stroke gas generator with turboalternator, free-piston engine gas generator with turboalternator, and homogeneous charge compression ignition engine. This study recommends additional work, including cycle simulation development and preliminary design to better quantify thermal efficiency and power density. Auxiliary concepts were also considered, including two which warrant further study: electrically actuated valves, and lean turndown of a normally stoichiometric engine. These concepts should be evaluated by retrofitting to existing engines.

  1. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  2. Driving Sensing Technology in Oil & Gas | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newest APS Fellow Driving Groundbreaking Sensing Technology in Oil & Gas Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Newest APS Fellow Driving Groundbreaking Sensing Technology in Oil & Gas Loucas Tsakalakos 2014.04.30 I'm writing to tell you all about a prestigious honor and a significant award that was

  3. Computer Vision Technology Transforms Outcomes |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Goal Line Technology Can Improve Industry Productivity Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) How Goal Line Technology Can Improve Industry Productivity Paulo Gallotti Rodrigues 2014.08.06 Ask any soccer fan and he or she will tell you that 2014 World Cup was one of the best in many years. We can list many

  4. Vehicle Technologies Office: Alternative Fuels Research and Deployment...

    Energy Savers [EERE]

    VTO supports activities to: Research biofuels and their effects on combustion: Determine ... Office (which focuses on production of biofuels) and Hydrogen and Fuel Cells Program ...

  5. Fuel Cell Technologies Program Multi-Year Research, Development...

    Energy Savers [EERE]

    A - Budgetary Information Multi-Year Research, Development and Demonstration Plan Page A - 1 Appendix A -Budgetary Information The schedule for completing the milestones and ...

  6. A Resurgence of United Kingdom Nuclear Power Research (2011 EFRC Forum)

    ScienceCinema (OSTI)

    Grimes, Robin W. (Imperial College, London, UK)

    2012-03-14

    Robin W. Grimes, Professor at Imperial College, London,was the third speaker in the the May 26, 2011 EFRC Forum session, "Global Perspectives on Frontiers in Energy Research." In his presentation, Professor Grimes discussed recent research endeavors in advanced nuclear energy systems being pursued in the UK. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  7. IEA Wind Task 26. Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007–2012

    SciTech Connect (OSTI)

    Vitina, Aisma; Lüers, Silke; Wallasch, Anna-Kathrin; Berkhout, Volker; Duffy, Aidan; Cleary, Brendan; Husabø, Lief I.; Weir, David E.; Lacal-Arántegui, Roberto; Hand, Maureen; Lantz, Eric; Belyeu, Kathy; Wiser, Ryan H; Bolinger, Mark; Hoen, Ben

    2015-06-01

    The International Energy Agency Implementing Agreement for cooperation in Research, Development, and Deployment of Wind Energy Systems (IEA Wind) Task 26—The Cost of Wind Energy represents an international collaboration dedicated to exploring past, present and future cost of wind energy. This report provides an overview of recent trends in wind plant technology, cost, and performance in those countries that are currently represented by participating organizations in IEA Wind Task 26: Denmark, Germany, Ireland, Norway, and the United States as well as the European Union.

  8. Oil atlas: National Petroleum Technology Office activities across the United States

    SciTech Connect (OSTI)

    Tiedemann, H.A.

    1998-03-01

    Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

  9. Cold Spray and GE Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration | (NNSA) Cognitive Informatics, Pacific Northwest National Laboratory Frank Greitzer Frank Greitzer Frank Greitzer was invited to be one of six "provocateurs," selected internationally by the National Science Foundation (NSF) and the National Institute of Standards and Technology (NIST), to participate in planning of, and present to a National Academies workshop on Usability, Security, and Privacy of Computer Systems Workshop held July 20-22, 2009 in

  10. Energy from Biomass Research and Technology Transfer Program

    SciTech Connect (OSTI)

    None

    2006-09-01

    This project seeks to foster and facilitate promising basic research investigations that will lead to commercial applications of higher-value plants, new and improved plant products, and a safer environment.

  11. Fuel Cell Technologies Program Multi-Year Research, Development...

    Energy Savers [EERE]

    Program Management and Operations are covered in Chapter 6. Page 3 - 2 Multi-Year Research, Development and Demonstration Plan 2012 Technical Plan Figure 3.0.1. Fuel Cell ...

  12. Driving Sensing Technology in Oil & Gas | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and fellow Photonics Lab team members at GE Global Research. It is a great pleasure to share the news that Dr. William A. Challener, a physicist in the Photonics Laboratory, ...

  13. The Importance of Photonics Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Global Research. I would like to further highlight the importance of Photonics and Optics by pointing to a recent report written by the US National Academies with the help of...

  14. Vehicle Technologies Office: Data and Analysis for Transportation Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy (DOE) — in conjunction with the national laboratories — conducts a wide range of statistical research on energy use, economics, and trends in transportation.

  15. Vehicle Technologies Office Merit Review 2015: EV - Smart Grid Research &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interoperability Activities | Department of Energy EV - Smart Grid Research & Interoperability Activities Vehicle Technologies Office Merit Review 2015: EV - Smart Grid Research & Interoperability Activities Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about EV - smart grid research & interoperability activities. vss095_hardy_2015_p.pdf (1.22 MB) More

  16. A History or Geothermal Energy Research and Development in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States: Energy Conversion 1976-2006 | Department of Energy Energy Conversion 1976-2006 A History or Geothermal Energy Research and Development in the United States: Energy Conversion 1976-2006 A history of geothermal energy R&D in the U.S., 1976-2006 geothermal_history_4_conversion.pdf (3.87 MB) More Documents & Publications Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants Air-Cooled

  17. DOE Offers $170 Million for Solar Technology Research

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE released a solicitation on June 28th for cost-shared, public-private partnerships to advance solar energy technology. The solicitation focuses on development, testing, demonstration, validation, and deployment of new solar photovoltaic (PV) components, systems, and manufacturing equipment. DOE plans to award $170 million over three years to industry-led groups that may include one or more companies, universities, national laboratories, or non-governmental organizations. The teams must match their awards dollar for dollar, bringing the total investment to $340 million. Applications are due on October 2nd.

  18. Nuclear Materials Research and Technology/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers in California Discover Plutonium-231, The Long-Sought Isotope 4 Program Addresses Plutonium Pit Conversion in Russia 6 We Need Science for Our Future Well-being 8 NMT Group Installs New Analytical Instrument for Plutonium Analysis 10 Recent Publications 12 Newsmakers 4th quarter 1998 N u c l e a r M a t e r i a l s R e s e a r c h a n d T e c h n o l o g y Researchers in California Discover Plutonium-231, The Long-Sought Isotope XBD9811-03028.tif photo courtesy of University of

  19. A Joint Workshop on Promoting the Development and Deployment of IGCC/Co-Production/CCS Technologies in China and the United States. Workshop report

    SciTech Connect (OSTI)

    Zhao, Lifeng; Ziao, Yunhan; Gallagher, Kelly Sims

    2009-06-03

    With both China and the United States relying heavily on coal for electricity, senior government officials from both countries have urged immediate action to push forward technology that would reduce carbon dioxide emissions from coal-fired plants. They discussed possible actions at a high-level workshop in April 2009 at the Harvard Kennedy School jointly sponsored by the Belfer Center's Energy Technology Innovation Policy (ETIP) research group, China's Ministry of Science and Technology, and the Chinese Academy of Sciences. The workshop examined issues surrounding Integrated Gasification Combined Cycle (IGCC) coal plants, which turn coal into gas and remove impurities before the coal is combusted, and the related carbon capture and sequestration, in which the carbon dioxide emissions are captured and stored underground to avoid releasing carbon dioxide into the atmosphere. Though promising, advanced coal technologies face steep financial and legal hurdles, and almost certainly will need sustained support from governments to develop the technology and move it to a point where its costs are low enough for widespread use.

  20. Research and Development Roadmap for Water Heating Technologies

    SciTech Connect (OSTI)

    Goetzler, William; Gagne, Claire; Baxter, Van D; Lutz, James; Merrigan, Tim; Katipamula, Srinivas

    2011-10-01

    Although water heating is an important energy end-use in residential and commercial buildings, efficiency improvements in recent years have been relatively modest. However, significant advancements related to higher efficiency equipment, as well as improved distribution systems, are now viable. DOE support for water heating research, development and demonstration (RD&D) could provide the impetus for commercialization of these advancements.

  1. Vehicle Technologies Office: Alternative Fuels Research and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. VTO supports efforts to help consumers to learn more about alternative fuels (including biofuels like ethanol and natural gas), as well as research and development to increase their availability and usage.

  2. The Status of Beryllium Research for Fusion in the United States

    SciTech Connect (OSTI)

    Glen R. Longhurst

    2003-12-01

    Use of beryllium in fusion reactors has been considered for neutron multiplication in breeding blankets and as an oxygen getter for plasma-facing surfaces. Previous beryllium research for fusion in the United States included issues of interest to fission (swelling and changes in mechanical and thermal properties) as well as interactions with plasmas and hydrogen isotopes and methods of fabrication. When the United States formally withdrew its participation in the International Thermonuclear Experimental Reactor (ITER) program, much of this effort was terminated. The focus in the U.S. has been mainly on toxic effects of beryllium and on industrial hygiene and health-related issues. Work continued at the INEEL and elsewhere on beryllium-containing molten salts. This activity is part of the JUPITER II Agreement. Plasma spray of ITER first wall samples at Los Alamos National Laboratory has been performed under the European Fusion Development Agreement. Effects of irradiation on beryllium structure are being studied at Oak Ridge National Laboratory. Numerical and phenomenological models are being developed and applied to better understand important processes and to assist with design. Presently, studies are underway at the University of California Los Angeles to investigate thermo-mechanical characteristics of beryllium pebble beds, similar to research being carried out at Forschungszentrum Karlsruhe and elsewhere. Additional work, not funded by the fusion program, has dealt with issues of disposal, and recycling.

  3. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASSESSMENT JANUARY 2015 -A CHECKPOINT ALONG A CHALLENGING JOURNEY DOE/NETL-2015/1710 U.S. Department of Energy 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM 2 2014 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM Office of Fossil Energy | National Energy Technology Laboratory DISCLAIMER 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor

  4. Assessment of research needs for wind turbine rotor materials technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  5. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8GO28308 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, CO 80401 303-275-3000 * www.nrel.gov RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration Hawaii and Guam Energy Improvement Technology Demonstration Project I. Doebber, J. Dean, J. Dominick, and G. Holland Produced under direction of Naval Facilities Engineering Command (NAVFAC) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement 11-01829 Technical Report

  6. Summary of the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the FY 2005 Batteries for Advanced Transportation Technologies (BATT) Research Program Annual Review May 31-June 2, 2005 Berkeley, CA August 2005 U.S. Department of Energy Office of FreedomCAR and Vehicle Technologies August 8, 2005 Dear Colleague: This document presents a summary of the evaluation and comments provided by the review panel for the FY 2005 Department of Energy (DOE) Batteries for Advanced Transportation Technologies (BATT) program annual review. The review was held at the

  7. An assessment of leadership in geothermal energy technology research and development

    SciTech Connect (OSTI)

    Bruch, V.L.

    1994-03-01

    Geothermal energy is one of the more promising renewable energy technologies because it is environmentally benign and, unlike most renewable energy sources, can provide base power. This report provides an assessment of the research and development (R&D) work underway in geothermal energy in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. While the R&D work underway in the US exceeds the R&D efforts of the other countries, the lead is eroding. This erosion is due to reductions in federal government funding for geothermal energy R&D and the decline of the US petroleum industry. This erosion of R&D leadership is hindering commercialization of US geothermal energy products and services. In comparison, the study countries are promoting the commercialization of their geothermal energy products and services. As a result, some of these countries, in particular Japan, will probably have the largest share of the global market for geothermal energy products and services; these products and services being targeted toward the developing countries (the largest market for geothermal energy).

  8. Fusion Materials Science and Technology Research Needs: Now and During the ITER era

    SciTech Connect (OSTI)

    Wirth, Brian D.; Kurtz, Richard J.; Snead, Lance L.

    2013-09-30

    The plasma facing components, first wall and blanket systems of future tokamak-based fusion power plants arguably represent the single greatest materials engineering challenge of all time. Indeed, the United States National Academy of Engineering has recently ranked the quest for fusion as one of the top grand challenges for engineering in the 21st Century. These challenges are even more pronounced by the lack of experimental testing facilities that replicate the extreme operating environment involving simultaneous high heat and particle fluxes, large time varying stresses, corrosive chemical environments, and large fluxes of 14-MeV peaked fusion neutrons. This paper will review, and attempt to prioritize, the materials research and development challenges facing fusion nuclear science and technology into the ITER era and beyond to DEMO. In particular, the presentation will highlight the materials degradation mechanisms we anticipate to occur in the fusion environment, the temperature- displacement goals for fusion materials and plasma facing components and the near and long-term materials challenges required for both ITER, a fusion nuclear science facility and longer term ultimately DEMO.

  9. Networking and Information Technology Research and Development Supplement to the President's Budget (February 2010)

    Broader source: Energy.gov [DOE]

    This Supplement to the President’s Fiscal Year (FY) 2011 Budget provides a technical summary of the budget request for the Networking and Information Technology Research and Development (NITRD)...

  10. DOE Awards Five Small Business Innovation Research Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded five Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

  11. DOE Awards Seven Small Business Innovation Research Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded seven Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to...

  12. Webinar: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00...

  13. New EM Plan Calls for Research, Technology to Help Fight Mercury...

    Office of Environmental Management (EM)

    EM Plan Calls for Research, Technology to Help Fight Mercury Contamination New EM Plan ... WASHINGTON, D.C. - EM has released a new plan to address mercury contamination that ...

  14. Webinar: Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Text version and video recording of the webinar titled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project," originally presented on November 18, 2014.

  15. Other Federal Agency Small Business Innovation Research and Small Business Technology Transfer Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    In addition to the U.S. Department of Energy and the Office of Energy Efficiency and Renewable Energy Small Business and Innovation Research/Small Business Technology Transfer programs, other federal agencies also provide funding through their own programs.

  16. GE Store for Technology is Open for Business | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    this way. The GE Store is a place where every business can come for technologies, product development and services that no one else can provide. The work of our researchers ties...

  17. DOE Awards Two Small Business Innovation Research Phase II Grants for Solid-State Lighting Technology

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has awarded two Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. The SBIR program seeks to increase...

  18. Advanced technology options for industrial heating equipment research

    SciTech Connect (OSTI)

    Jain, R.C.

    1992-10-01

    This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

  19. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  20. Marketing research for EE G Mound Applied Technologies' heat treatment process of high strength materials

    SciTech Connect (OSTI)

    Shackson, R.H.

    1991-10-09

    This report summarizes research conducted by ITI to evaluate the commercialization potential of EG G Mound Applied Technologies' heat treatment process of high strength materials. The remainder of the report describes the nature of demand for maraging steel, extent of demand, competitors, environmental trends, technology life cycle, industry structure, and conclusion. (JL)

  1. Schedule and Information for Small Business Innovation Research and Small Business Technology Transfer Program Applicants

    Broader source: Energy.gov [DOE]

    The funding and award schedule for upcoming Office of Energy Efficiency and Renewable Energy (EERE) Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) grants is provided below. The grants follow a funding ladder similar to that of clean energy technology investors.

  2. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    SciTech Connect (OSTI)

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  3. SunShot Awardee 1366 Technologies Turns Cutting-Edge Research into

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Success | Department of Energy Awardee 1366 Technologies Turns Cutting-Edge Research into Manufacturing Success SunShot Awardee 1366 Technologies Turns Cutting-Edge Research into Manufacturing Success October 14, 2015 - 2:42pm Addthis 1366 Technician Becky Allen works in a lab at the company’s Bedford, MA demonstration facility. | Photo courtesy of Bob Frechette 1366 Technician Becky Allen works in a lab at the company's Bedford, MA demonstration facility. | Photo courtesy

  4. The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs, IG-0876

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small Business Innovation Research and Small Business Technology Transfer Programs DOE/IG-0876 November 2012 U.S. Department of Energy Office of Inspector General Office of Audits and Inspections Department of Energy Washington, DC 20585 November 6, 2012 MEMORANDUM FOR SECRETARY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "The Department of Energy's Small Business Innovation Research and Small Business Technology Transfer Programs" INTRODUCTION AND

  5. Vehicle Technologies Office Merit Review 2016: EV-Smart Grid Research &

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interoperability Activities | Department of Energy EV-Smart Grid Research & Interoperability Activities Vehicle Technologies Office Merit Review 2016: EV-Smart Grid Research & Interoperability Activities Presentation given by Argonne National Laboratory (ANL) at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Vehicle Systems vs095_hardy_2016_o_web.pdf (2.97 MB) More Documents & Publications Vehicle

  6. UNITED STATES DEPARTMENT OF ENERGY OFFICE OF ENVIRONMENTAL MANAGEMENT WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2008

    SciTech Connect (OSTI)

    Bush, S.

    2009-11-05

    The Office of Waste Processing identifies and reduces engineering and technical risks and uncertainties of the waste processing programs and projects of the Department of Energy's Environmental Management (EM) mission through the timely development of solutions to technical issues. The risks, and actions taken to mitigate those risks, are determined through technology readiness assessments, program reviews, technology information exchanges, external technical reviews, technical assistance, and targeted technology development and deployment. The Office of Waste Processing works with other DOE Headquarters offices and project and field organizations to proactively evaluate technical needs, identify multi-site solutions, and improve the technology and engineering associated with project and contract management. Participants in this program are empowered with the authority, resources, and training to implement their defined priorities, roles, and responsibilities. The Office of Waste Processing Multi-Year Program Plan (MYPP) supports the goals and objectives of the U.S. Department of Energy (DOE) - Office of Environmental Management Engineering and Technology Roadmap by providing direction for technology enhancement, development, and demonstration that will lead to a reduction of technical risks and uncertainties in EM waste processing activities. The MYPP summarizes the program areas and the scope of activities within each program area proposed for the next five years to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. Waste Processing Program activities within the Roadmap and the MYPP are described in these seven program areas: (1) Improved Waste Storage Technology; (2) Reliable and Efficient Waste Retrieval Technologies; (3) Enhanced Tank Closure Processes; (4) Next-Generation Pretreatment Solutions; (5

  7. Analysis of Petroleum Technology Advances Through Applied Research by Independent Oil Producers

    SciTech Connect (OSTI)

    Brashear, Jerry P.; North, Walter B.; Thomas Charles P.; Becker, Alan B.; Faulder, David D.

    2000-01-12

    Petroleum Technology Advances Through Applied Research by Independent Oil Producers is a program of the National Oil Research Program, U.S. Department of Energy. Between 1995 and 1998, the program competitively selected and cost-shared twenty-two projects with small producers. The purpose was to involve small independent producers in testing technologies of interest to them that would advance (directly or indirectly) one or more of four national program objectives: (1) Extend the productive life of reservoirs; (2) Increase production and/or reserves; (3) Improve environmental performance; and (4) Broaden the exchange of technology information.

  8. Status of Wave and Tidal Power Technologies for the United States

    SciTech Connect (OSTI)

    Musial, W.

    2008-08-01

    This paper presents the status of marine applications for renewable energy as of 2008 from a U.S. perspective. Technologies examined include wave, tidal, and ocean current energy extraction devices.

  9. Clean ferrous casting technology research. Annual report, September 29, 1994--September 28, 1995

    SciTech Connect (OSTI)

    Griffin, J.; Bates, C.E.; Piwonka, T.S.

    1995-10-31

    This annual report covers work performed in the second year of research on Clean Ferrous Casting Technology Research. Significant progress was made in establishing pouring practices which avoid re-oxidation of steel during pouring; application of revised pouring practices have led to reduced inclusion levels in commercially poured steel castings.

  10. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect (OSTI)

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  11. Review of the Strategic Plan for International Collaboration on Fusion Science and Technology Research. Fusion Energy Sciences Advisory Committee (FESAC)

    SciTech Connect (OSTI)

    none,

    1998-01-23

    The United States Government has employed international collaborations in magnetic fusion energy research since the program was declassified in 1958. These collaborations have been successful not only in producing high quality scientific results that have contributed to the advancement of fusion science and technology, they have also allowed us to highly leverage our funding. Thus, in the 1980s, when the funding situation made it necessary to reduce the technical breadth of the U.S. domestic program, these highly leveraged collaborations became key strategic elements of the U.S. program, allowing us to maintain some degree of technical breadth. With the recent, nearly complete declassification of inertial confinement fusion, the use of some international collaboration is expected to be introduced in the related inertial fusion energy research activities as well. The United States has been a leader in establishing and fostering collaborations that have involved scientific and technological exchanges, joint planning, and joint work at fusion facilities in the U.S. and worldwide. These collaborative efforts have proven mutually beneficial to the United States and our partners. International collaborations are a tool that allows us to meet fusion program goals in the most effective way possible. Working with highly qualified people from other countries and other cultures provides the collaborators with an opportunity to see problems from new and different perspectives, allows solutions to arise from the diversity of the participants, and promotes both collaboration and friendly competition. In short, it provides an exciting and stimulating environment resulting in a synergistic effect that is good for science and good for the people of the world.

  12. Critical issues for the application of integrated MEMS/CMOS technologies to inertial measurement units

    SciTech Connect (OSTI)

    Smith, J.H.; Ellis, J.R.; Montague, S.; Allen, J.J.

    1997-03-01

    One of the principal applications of monolithically integrated micromechanical/microelectronic systems has been accelerometers for automotive applications. As integrated MEMS/CMOS technologies such as those developed by U.C. Berkeley, Analog Devices, and Sandia National Laboratories mature, additional systems for more sensitive inertial measurements will enter the commercial marketplace. In this paper, the authors will examine key technology design rules which impact the performance and cost of inertial measurement devices manufactured in integrated MEMS/CMOS technologies. These design parameters include: (1) minimum MEMS feature size, (2) minimum CMOS feature size, (3) maximum MEMS linear dimension, (4) number of mechanical MEMS layers, (5) MEMS/CMOS spacing. In particular, the embedded approach to integration developed at Sandia will be examined in the context of these technology features. Presently, this technology offers MEMS feature sizes as small as 1 {micro}m, CMOS critical dimensions of 1.25 {micro}m, MEMS linear dimensions of 1,000 {micro}m, a single mechanical level of polysilicon, and a 100 {micro}m space between MEMS and CMOS. This is applicable to modern precision guided munitions.

  13. Engineering Research and Development and Technology thrust area report FY92

    SciTech Connect (OSTI)

    Langland, R.T.; Minichino, C.

    1993-03-01

    The mission of the Engineering Research, Development, and Technology Program at Lawrence Livermore National Laboratory (LLNL) is to develop the technical staff and the technology needed to support current and future LLNL programs. To accomplish this mission, the Engineering Research, Development, and Technology Program has two important goals: (1) to identify key technologies and (2) to conduct high-quality work to enhance our capabilities in these key technologies. To help focus our efforts, we identify technology thrust areas and select technical leaders for each area. The thrust areas are integrated engineering activities and, rather than being based on individual disciplines, they are staffed by personnel from Electronics Engineering, Mechanical Engineering, and other LLNL organizations, as appropriate. The thrust area leaders are expected to establish strong links to LLNL program leaders and to industry; to use outside and inside experts to review the quality and direction of the work; to use university contacts to supplement and complement their efforts; and to be certain that we are not duplicating the work of others. This annual report, organized by thrust area, describes activities conducted within the Program for the fiscal year 1992. Its intent is to provide timely summaries of objectives, theories, methods, and results. The nine thrust areas for this fiscal year are: Computational Electronics and Electromagnetics; Computational Mechanics; Diagnostics and Microelectronics; Emerging Technologies; Fabrication Technology; Materials Science and Engineering; Microwave and Pulsed Power; Nondestructive Evaluation; and Remote Sensing and Imaging, and Signal Engineering.

  14. Science for Energy Technology: Strengthening the Link Between Basic Research and Industry

    SciTech Connect (OSTI)

    2010-04-01

    The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid

  15. Design and construction of coal/biomass to liquids (CBTL) process development unit (PDU) at the University of Kentucky Center for Applied Energy Research (CAER)

    SciTech Connect (OSTI)

    Placido, Andrew; Liu, Kunlei; Challman, Don; Andrews, Rodney; Jacques, David

    2015-10-30

    This report describes a first phase of a project to design, construct and commission an integrated coal/biomass-to-liquids facility at a capacity of 1 bbl. /day at the University of Kentucky Center for Applied Energy Research (UK-CAER) – specifically for construction of the building and upstream process units for feed handling, gasification, and gas cleaning, conditioning and compression. The deliverables from the operation of this pilot plant [when fully equipped with the downstream process units] will be firstly the liquid FT products and finished fuels which are of interest to UK-CAER’s academic, government and industrial research partners. The facility will produce research quantities of FT liquids and finished fuels for subsequent Fuel Quality Testing, Performance and Acceptability. Moreover, the facility is expected to be employed for a range of research and investigations related to: Feed Preparation, Characteristics and Quality; Coal and Biomass Gasification; Gas Clean-up/ Conditioning; Gas Conversion by FT Synthesis; Product Work-up and Refining; Systems Analysis and Integration; and Scale-up and Demonstration. Environmental Considerations - particularly how to manage and reduce carbon dioxide emissions from CBTL facilities and from use of the fuels - will be a primary research objectives. Such a facility has required significant lead time for environmental review, architectural/building construction, and EPC services. UK, with DOE support, has advanced the facility in several important ways. These include: a formal EA/FONSI, and permits and approvals; construction of a building; selection of a range of technologies and vendors; and completion of the upstream process units. The results of this project are the FEED and detailed engineering studies, the alternate configurations and the as-built plant - its equipment and capabilities for future research and demonstration and its adaptability for re-purposing to meet other needs. These are described in

  16. RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project

    SciTech Connect (OSTI)

    Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

    2014-03-01

    As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

  17. Evaluation and Screening of Remedial Technologies for Uranium at the 300-FF-5 Operable Unit, Hanford Site, Washington

    SciTech Connect (OSTI)

    Nimmons, Michael J.

    2007-08-01

    Pacific Northwest National Laboratory (PNNL) is presently conducting a re-evaluation of remedies addressing persistent dissolved uranium concentrations in the upper aquifer under the 300 Area of the Hanford Site in southeastern Washington State. This work is being conducted as a Phase III feasibility study for the 300-FF-5 Operable Unit on behalf of the U.S. Department of Energy. As part of the feasibility study process, a comprehensive inventory of candidate remedial technologies was conducted by PNNL. This report documents the identification and screening of candidate technologies. The screening evaluation was conducted in accordance with guidance and processes specified by U.S. Environmental Protection Agency regulations associated with implementation of the Comprehensive Environmental Response, Compensation, and Liability Act process.

  18. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Section 3.7 Hydrogen Safety, Codes and Standards

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SAFETY, CODES AND STANDARDS SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.7 - 1 3.7 Hydrogen Safety, Codes and Standards The United States and many other countries have established laws and regulations that require commercial products and infrastructure to meet all applicable codes and standards to demonstrate that they are safe, perform as designed and are compatible with the systems in which they are used. Hydrogen and fuel cell technologies have a history of safe use

  19. Proceedings of the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear Test-Ban Treaty

    SciTech Connect (OSTI)

    Warren, N. Jill

    1999-09-21

    These proceedings contain papers prepared for the 21st Seismic Research Symposium: Technologies for Monitoring The Comprehensive Nuclear-Test-Ban Treaty, held 21-24 September 1999 in Las Vegas, Nevada. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  20. Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007 - 2012; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hand, Maureen

    2015-06-15

    This presentation provides a summary of IEA Wind Task 26 report on Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007-2012

  1. UNITED STATES DEPARTMENT OF ENERGY WASTE PROCESSING ANNUAL TECHNOLOGY DEVELOPMENT REPORT 2007

    SciTech Connect (OSTI)

    Bush, S

    2008-08-12

    The Office of Environmental Management's (EM) Roadmap, U.S. Department of Energy--Office of Environmental Management Engineering & Technology Roadmap (Roadmap), defines the Department's intent to reduce the technical risk and uncertainty in its cleanup programs. The unique nature of many of the remaining facilities will require a strong and responsive engineering and technology program to improve worker and public safety, and reduce costs and environmental impacts while completing the cleanup program. The technical risks and uncertainties associated with cleanup program were identified through: (1) project risk assessments, (2) programmatic external technical reviews and technology readiness assessments, and (3) direct site input. In order to address these needs, the technical risks and uncertainties were compiled and divided into the program areas of: Waste Processing, Groundwater and Soil Remediation, and Deactivation and Decommissioning (D&D). Strategic initiatives were then developed within each program area to address the technical risks and uncertainties in that program area. These strategic initiatives were subsequently incorporated into the Roadmap, where they form the strategic framework of the EM Engineering & Technology Program. The EM-21 Multi-Year Program Plan (MYPP) supports the goals and objectives of the Roadmap by providing direction for technology enhancement, development, and demonstrations that will lead to a reduction of technical uncertainties in EM waste processing activities. The current MYPP summarizes the strategic initiatives and the scope of the activities within each initiative that are proposed for the next five years (FY2008-2012) to improve safety and reduce costs and environmental impacts associated with waste processing; authorized budget levels will impact how much of the scope of activities can be executed, on a year-to-year basis. As a result of the importance of reducing technical risk and uncertainty in the EM Waste Processing

  2. CHARACTERIZING COSTS, SAVINGS AND BENEFITS OF A SELECTION OF ENERGY EFFICIENT EMERGING TECHNOLOGIES IN THE UNITED STATES

    SciTech Connect (OSTI)

    Xu, T.; Slaa, J.W.; Sathaye, J.

    2010-12-15

    Implementation and adoption of efficient end-use technologies have proven to be one of the key measures for reducing greenhouse gas (GHG) emissions throughout the industries. In many cases, implementing energy efficiency measures is among one of the most cost effective investments that the industry could make in improving efficiency and productivity while reducing CO2 emissions. Over the years, there have been incentives to use resources and energy in a cleaner and more efficient way to create industries that are sustainable and more productive. With the working of energy programs and policies on GHG inventory and regulation, understanding and managing the costs associated with mitigation measures for GHG reductions is very important for the industry and policy makers around the world. Successful implementation of emerging technologies not only can help advance productivities and competitiveness but also can play a significant role in mitigation efforts by saving energy. Providing evaluation and estimation of the costs and energy savings potential of emerging technologies is the focus of our work in this project. The overall goal of the project is to identify and select emerging and under-utilized energy-efficient technologies and practices as they are important to reduce energy consumption in industry while maintaining economic growth. This report contains the results from performing Task 2"Technology evaluation" for the project titled"Research Opportunities in Emerging and Under-Utilized Energy-Efficient Industrial Technologies," which was sponsored by California Energy Commission and managed by CIEE. The project purpose is to analyze market status, market potential, and economic viability of selected technologies applicable to the U.S. In this report, LBNL first performed re-assessments of all of the 33 emerging energy-efficient industrial technologies, including re-evaluation of the 26 technologies that were previously identified by Martin et al. (2000) and

  3. Technology and Research Requirements for Combating Human Trafficking: Enhancing Communication, Analysis, Reporting, and Information Sharing

    SciTech Connect (OSTI)

    Kreyling, Sean J.; West, Curtis L.; Olson, Jarrod

    2011-03-17

    DHS’ Science & Technology Directorate directed PNNL to conduct an exploratory study on the domain of human trafficking in the Pacific Northwest in order to examine and identify technology and research requirements for enhancing communication, analysis, reporting, and information sharing – activities that directly support efforts to track, identify, deter, and prosecute human trafficking – including identification of potential national threats from smuggling and trafficking networks. This effort was conducted under the Knowledge Management Technologies Portfolio as part of the Integrated Federal, State, and Local/Regional Information Sharing (RISC) and Collaboration Program.

  4. IEA Wind Task 26. Wind Technology, Cost and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States. 2007 - 2012

    SciTech Connect (OSTI)

    Vitina, Aisma; Luers, Silke; Wallasch, Anna-Kathrin; Berkhout, Volker; Duffy, Aidan; Cleary, Brendan; Husabo, Leif I.; Weir, David E.; Lacal-Arantegui, Roberto; Hand, M. Maureen; Lantz, Eric; Belyeu, Kathy; Wiser, Ryan; Bolinger, Mark; Hoen, Ben

    2015-06-12

    This report builds from a similar previous analysis (Schwabe et al., 2011) exploring the differences in cost of wind energy in 2008 among countries participating in IEA Wind Task 26 at that time. The levelized cost of energy (LCOE) is a widely recognized metric for understanding how technology, capital investment, operations, and financing impact the life-cycle cost of building and operating a wind plant. Schwabe et al. (2011) apply a spreadsheet-based cash flow model developed by the Energy Research Centre of the Netherlands (ECN) to estimate LCOE. This model is a detailed, discounted cash flow model used to represent the various cost structures in each of the participating countries from the perspective of a financial investor in a domestic wind energy project. This model is used for the present analysis as well, and comparisons are made for those countries who contributed to both reports, Denmark, Germany, and the United States.

  5. Staff exchange with Spokane Intercollegiate Research and Technology Institute (SIRTI), final project report

    SciTech Connect (OSTI)

    Alexander, G.M.

    1994-12-01

    Staff exchanges, such as the one described in this report, are intended to facilitate communication and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in U.S. industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. Funding levels for each exchange typically range from $20,000 to $40,000. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective on industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAS) or other mechanisms.

  6. Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations Funding Opportunity Announcement (FOA) Webinar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations FY15FCTOofficewideFOA@ee.doe.gov FOA Webinar DE-FOA-0001224 3/10/2015 2 Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations FOA Issue Date: 3/2/2015 FOA Informational Webinar: 3/10/2015 Submission Deadline for Concept Papers: 4/2/2015 Submission Deadline for Full Applications: 6/4/2015 Submission Deadline for Replies to Reviewer Comments: 7/17/2015 Expected Date for EERE Selection

  7. Comparison of Advanced Residential Water Heating Technologies in the United States

    SciTech Connect (OSTI)

    Maguire, Jeff; Fang, Xia; Wilson, Eric

    2013-05-01

    In this study, gas storage, gas tankless, condensing, electric storage, heat pump, and solar water heaters were simulated in several different climates across the United States, installed in both conditioned and unconditioned space and subjected to several different draw profiles. While many pre-existing models were used, new models of condensing and heat pump water heaters were created specifically for this work. In each case modeled, the whole house was simulated along with the water heater to capture any interactions between the water heater and the space conditioning equipment.

  8. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 1 -- Base program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-05-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  9. Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress

    SciTech Connect (OSTI)

    Lippmann, M.J.

    1988-09-01

    This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

  10. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer

    SciTech Connect (OSTI)

    Burn, G.

    1990-07-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Programs is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months..

  11. Systems analysis research for energy conversion and utilization technologies (ECUT). FY 1985 annual report

    SciTech Connect (OSTI)

    Eberhardt, J.J.; Gunn, M.E.; Levinson, T.M.

    1985-11-01

    This Annual Report highlights ECUT accomplishments in the Systems Analysis Project for FY 1985. The Systems Analysis Project was established in 1980 along with the ECUT Division. The Systems Analysis mission is to identify, analyze, and assess R and D needs and research program strategies for advanced conservation technologies. The PNL Systems Analysis staff conducts topical research, provides technical studies, and plans program activities in three areas related to energy conversion and utilization technologies: (1) technology assessment, (2) engineering analysis, and (3) project evaluation and review. This report summarizes the technical results and accomplishments of the FY 1985 projects. They relate mostly to tribology, improved ctalysts, regenerative heat exchangers, robotics and electronics industries, and bioprocessing.

  12. Proceedings of the advanced research and technology development direct utilization, instrumentation and diagnostics contractors' review meeting

    SciTech Connect (OSTI)

    Geiling, D.W. ); Goldberg, P.M. )

    1990-01-01

    The 1990 Advanced Research and Technology Development (AR TD) Direct Utilization, and Instrumentation and Diagnostics Contractors Review Meeting was held September 16--18, 1990, at the Hyatt at Chatham Center in Pittsburgh, PA. The meeting was sponsored by the US Department of Energy (DOE), Office of Fossil Energy, and the Pittsburgh and Morgantown Energy Technology Centers. Each year the meeting provides a forum for the exchange of information among the DOE AR TD contractors and interested parties. This year's meeting was hosted by the Pittsburgh Energy Technology Center and was attended by 120 individuals from industry, academia, national laboratories, and other governmental agencies. Papers were presented on research addressing coal surface, science, devolatilization and combustion, ash behavior, emission controls for gases particulates, fluid bed combustion and utilization in diesels and turbines. Individual reports are processed separately for the data bases.

  13. Research on the pyrolysis of hardwood in an entrained bed process development unit

    SciTech Connect (OSTI)

    Kovac, R.J.; Gorton, C.W.; Knight, J.A.; Newman, C.J.; O'Neil, D.J. . Research Inst.)

    1991-08-01

    An atmospheric flash pyrolysis process, the Georgia Tech Entrained Flow Pyrolysis Process, for the production of liquid biofuels from oak hardwood is described. The development of the process began with bench-scale studies and a conceptual design in the 1978--1981 timeframe. Its development and successful demonstration through research on the pyrolysis of hardwood in an entrained bed process development unit (PDU), in the period of 1982--1989, is presented. Oil yields (dry basis) up to 60% were achieved in the 1.5 ton-per-day PDU, far exceeding the initial target/forecast of 40% oil yields. Experimental data, based on over forty runs under steady-state conditions, supported by material and energy balances of near-100% closures, have been used to establish a process model which indicates that oil yields well in excess of 60% (dry basis) can be achieved in a commercial reactor. Experimental results demonstrate a gross product thermal efficiency of 94% and a net product thermal efficiency of 72% or more; the highest values yet achieved with a large-scale biomass liquefaction process. A conceptual manufacturing process and an economic analysis for liquid biofuel production at 60% oil yield from a 200-TPD commercial plant is reported. The plant appears to be profitable at contemporary fuel costs of $21/barrel oil-equivalent. Total capital investment is estimated at under $2.5 million. A rate-of-return on investment of 39.4% and a pay-out period of 2.1 years has been estimated. The manufacturing cost of the combustible pyrolysis oil is $2.70 per gigajoule. 20 figs., 87 tabs.

  14. A Research Framework for Demonstrating Benefits of Advanced Control Room Technologies

    SciTech Connect (OSTI)

    Le Blanc, Katya; Boring, Ronald; Joe, Jeffrey; Hallbert, Bruce; Thomas, Kenneth

    2014-12-01

    Control Room modernization is an important part of life extension for the existing light water reactor fleet. None of the 99 currently operating commercial nuclear power plants in the U.S. has completed a full-scale control room modernization to date. A full-scale modernization might, for example, entail replacement of all analog panels with digital workstations. Such modernizations have been undertaken successfully in upgrades in Europe and Asia, but the U.S. has yet to undertake a control room upgrade of this magnitude. Instead, nuclear power plant main control rooms for the existing commercial reactor fleet remain significantly analog, with only limited digital modernizations. Previous research under the U.S. Department of Energy’s Light Water Reactor Sustainability Program has helped establish a systematic process for control room upgrades that support the transition to a hybrid control. While the guidance developed to date helps streamline the process of modernization and reduce costs and uncertainty associated with introducing digital control technologies into an existing control room, these upgrades do not achieve the full potential of newer technologies that might otherwise enhance plant and operator performance. The aim of the control room benefits research presented here is to identify previously overlooked benefits of modernization, identify candidate technologies that may facilitate such benefits, and demonstrate these technologies through human factors research. This report serves as an outline for planned research on the benefits of greater modernization in the main control rooms of nuclear power plants.

  15. Vehicle Technologies Office Merit Review 2014: Overview and Progress of Applied Battery Research (ABR) Activities

    Broader source: Energy.gov [DOE]

    Presentation given by the Department of Energy's Energy Storage area at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the research area that addresses near term (less than 5 years) opportunities and barriers as battery materials move from R&D to cell construction and validation.

  16. Vehicle Technologies Office Research Partner Requests Proposals for Battery Cell Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    The US Advanced Battery Consortium is accepting proposals for projects that will develop advanced battery cells using active materials from recycled, end-of-vehicle life lithium-ion batteries. USABC collaborates with the Vehicle Technologies Office to conduct research and development on batteries for vehicles.

  17. Agenda 2020: A Technology Vision and Research Agenda for America's Forest, Wood and Paper Industry

    SciTech Connect (OSTI)

    none,

    1994-11-01

    In November 1994, the forest products industry published Agenda 2020: A Technology Vision and Research Agenda for America's Forest, Wood and Paper Industry, which articulated the industry's vision. This document set the foundation for collaborative efforts between the industry and the federal government.

  18. Research on Captive Broodstock Technology for Pacific Salmon, 1995 Annual Report.

    SciTech Connect (OSTI)

    Swanson, Penny; Pascho, Ronald; Hershberger, William K.

    1996-01-01

    This report summarizes research on captive broodstock technologies conducted during 1995 under Bonneville Power Administration Project 93-56. Investigations were conducted by the National Marine Fisheries Service (NMFS) in cooperation with the US Fish and Wildlife Service, University of Washington, and Northwest Biological Science Center (US Geological Survey). Studies encompassed several categories of research, including fish husbandry, reproductive physiology, immunology, pathology, nutrition, and genetics. Captive broodstock programs are being developed and implemented to aid recovery of endangered Pacific salmon stocks. Like salmon hatchery programs, however, captive broodstock programs are not without problems and risks to natural salmon populations. The research projects described in this report were developed in part based on a literature review, Assessment of the Status of Captive Broodstock Technology for Pacific Salmon. The work was divided into three major research areas: (1) research on sockeye salmon; (2) research on spring chinook salmon; and (3) research on quantitative genetic problems associated with captive broodstock programs. Investigations of nutrition, reproductive physiology, fish husbandry, and fish health were integrated into the research on sockeye and spring chinook salmon. A description of each investigation and its major findings and conclusions is presented.

  19. Windows and Building Envelope Research and Development: A Roadmap for Emerging Technologies

    SciTech Connect (OSTI)

    none,

    2014-02-01

    This Building Technologies Office (BTO) Research and Development (R&D) Roadmap identifies priority windows and building envelope R&D areas of interest. Cost and performance targets are identified for each key R&D area. The roadmap describes the technical and market challenges to be overcome, R&D activities and milestones, key stakeholders, and potential energy savings that could result if cost and performance targets are met. Methods for improving technology performance and specific strategies for reducing installed costs and mitigating any other market barriers, which would increase the likelihood of mass-market technology adoption, are identified. This roadmap is a useful resource for public and private decision makers evaluating and pursuing high-impact R&D focused on advancing next-generation energy efficient windows and building envelope technologies.

  20. Impact of the FY 2009 Building Technologies Program on United States Employment and Earned Income

    SciTech Connect (OSTI)

    Livingston, Olga V.; Scott, Michael J.; Hostick, Donna J.; Dirks, James A.; Cort, Katherine A.

    2008-06-17

    The Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is interested in assessing the potential economic impacts of its portfolio of subprograms on national employment and income. A special purpose input-output model called ImSET is used in this study of 14 Building Technologies Program subprograms in the EERE final FY 2009 budget request to the Office of Management and Budget in February 2008. Energy savings, investments, and impacts on U.S. national employment and earned income are reported by subprogram for selected years to the year 2025. Energy savings and investments from these subprograms have the potential of creating a total of 258,000 jobs and about $3.7 billion in earned income (2007$) by the year 2025.

  1. Impact of 2001 Building Technology, state and community programs on United States employment and wage income

    SciTech Connect (OSTI)

    MJ Scott; DJ Hostick; DB Elliott

    2000-03-20

    The Department of Energy Office of Building Technology, State and Community Programs (BTS) is interested in assessing the potential economic impacts of its portfolio of programs on national employment and income. A special purpose version of the IMPLAN input-output model allied In Build is used in this study of all 38 BTS programs included in the FY2001 federal budget. Energy savings, investments, and impacts on U.S. national employment and wage income are reported by program for selected years to the year 2030. Energy savings from these programs have the potential of creating a total of nearly 332,000 jobs and about $5.3 billion in wage income (1995$) by the year 2030. Because the required investments to achieve these savings are capital intensive, the net effect after investment is 304,000 jobs and $5.0 billion.

  2. Exploratory Technology Research Program for electrochemical energy storage. Annual report fr 1994

    SciTech Connect (OSTI)

    Kinoshita, K.

    1995-09-01

    The US Department of Energy`s Office of Propulsion Systems provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs). The program centers on advanced systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electrochemical Energy Storage Program is divided into two projects: the Electric Vehicle Advanced Battery Systems (EVABS) Development Program and the Exploratory Technology Research (ETR) Program. The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of air-system (fuel cell, metal/air) technology for transportation applications. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs. The ETR Program is divided into three major program elements: Exploratory Research, Applied Science Research, and Air Systems Research. Highlights of each program element are summarized according to the appropriate battery system or electrochemical research area.

  3. Student research activities in the Technology Assessments Section of the Health and Safety Research Division, Summer 1980

    SciTech Connect (OSTI)

    Chester, R.O.; Roberts, D.A.

    1981-08-01

    Reports summarizing activities of students assigned to the Technology Assessments Section of the Health and Safety Research Division for the summer 1980 are presented. Unless indicated otherwise, each report was written by the student whose work is being described. For each student, the student's supervisor, the name of the program under which the student was brought to ORNL, the academic level of the student, and the name of the ORNL project to which the student was assigned are tabulated. The reports are presented in alphabetical order of the students' last names.

  4. Fuel Cell Technologies Program Multi-Year Research, Development and Demonstration Plan - Appendix E: Acronyms

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    E - Acronyms Multi-Year Research, Development and Demonstration Plan Page E - 1 Appendix E - Acronyms AEI Advanced Energy Initiative AEO Annual Energy Outlook AFC Alkaline Fuel Cell AHJ Authorities Having Jurisdiction AMFC Alkaline Membrane Fuel Cells AMR Annual Merit Review ANL (DOE) Argonne National Laboratory APU Auxiliary Power Unit ARRA American Recovery and Reinvestment Act of 2009 ASES American Solar Energy Society ASME American Society of Mechanical Engineers AST Accelerated Stress Test

  5. Heat Pump Water Heater Technology Assessment Based on Laboratory Research and Energy Simulation Models: Preprint

    SciTech Connect (OSTI)

    Hudon, K.; Sparn, B.; Christensen, D.; Maguire, J.

    2012-02-01

    This paper explores the laboratory performance of five integrated Heat Pump Water Heaters (HPWHs) across a wide range of operating conditions representative of US climate regions. Laboratory results demonstrate the efficiency of this technology under most of the conditions tested and show that differences in control schemes and design features impact the performance of the individual units. These results were used to understand current model limitations, and then to bracket the energy savings potential for HPWH technology in various US climate regions. Simulation results show that HPWHs are expected to provide significant energy savings in many climate zones when compared to other types of water heaters (up to 64%, including impact on HVAC systems).

  6. Exploratory technology research program for electrochemical energy storage. Annual report for 1995

    SciTech Connect (OSTI)

    Kinoshita, Kim

    1996-06-01

    The US DOE Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development (R&D) on advanced rechargeable batteries and fuel cells. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EV`s)and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life- cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced battery R&D which includes the Exploratory Technology Research (ETR) program managed by the Lawrence Berkeley National Laboratory. The role of the ETR program is to perform supporting research on the advanced battery systems under development by the USABC and the Sandia Laboratories (SNL) Electric Vehicle Advanced Battery Systems (EVABS) program, and to evaluate new systems with potentially superior performance, durability and/of cost characteristics. The specific goal of the ETR program is to identify the most promising electrochemical technologies and development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR program in CY 1995. This is a continuing program, and reports for prior years have been published; they are listed in this report.The general R&D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, establishment of engineering principles applicable to electrochemical energy storage and conversion, and the development of fuel cell technology for transportation applications.

  7. Q&A About Electric Vehicle Flow Battery Technology | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Q&A About Electric Vehicle Flow Battery Technology Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Q&A About Electric Vehicle Flow Battery Technology GE Global Research 2013.08.30 This week, we announced a partnership with Berkeley Lab to develop a water-based, flow battery capable of more than just traditional,

  8. NREL Identifies Investments for Wind Turbine Drivetrain Technologies (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    examines current U.S. manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. Innovative technologies are helping boost the capacity and operating reliability of conventional wind turbine drivetrains. With the proper manufacturing and supply chain capabilities in place, the United States can better develop and deploy these advanced technologies- increasing the competitiveness of the U.S. wind industry and reducing the levelized cost of energy (LCOE).

  9. Exploratory Technology Research Program for Electrochemical Energy Storage - Annual Report for 1998

    SciTech Connect (OSTI)

    Kinoshita, K.

    1999-06-01

    The US Department of Energy's (DOE) Office of Advanced Automotive Technologies conducts research and development on advanced rechargeable batteries for application in electric vehicles (EVs) and hybrid systems. Efforts are focused on advanced batteries that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. DOE battery R and D supports two major programs: the US Advanced Battery Consortium (USABC), which develops advanced batteries for EVS, and the Partnership for a New Generation of Vehicles (PNGV), which seeks to develop passenger vehicles with a fuel economy equivalent to 80 mpg of gasoline. This report describes the activities of the Exploratory Technology Research (ETR) Program, managed by the Lawrence Berkeley National Laboratory (LBNL). The role of the ETR Program is to perform supporting research on the advanced battery systems under development by the USABC and PNGV Programs, and to evaluate new systems with potentially superior performance, durability and/or cost characteristics. The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1998. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Program Summary.

  10. Technology Roadmap for the 21st Century Truck Program, a government-industry research partnership

    SciTech Connect (OSTI)

    2000-12-01

    The 21st Century Truck Program has been established as a government-industry research partnership to support the development and implementation of commercially viable technologies that will dramatically cut fuel use and emissions of commercial trucks and buses while enhancing their safety and affordability as well as maintaining or enhancing performance. The innovations resulting from this program will reduce dependence on foreign oil, improve our nation's air quality, provide advanced technology for military vehicles, and enhance the competitiveness of the U.S. truck and bus industry while ensuring safe and affordable freight and bus transportation for the nation's economy. This Technology Roadmap for the 21st Century Truck Program has been prepared to guide the development of the technical advancements that will enable the needed improvements in commercial truck fuel economy, emissions, and safety.

  11. Fusion Materials Science and Technology Research Opportunities now and during the ITER Era

    SciTech Connect (OSTI)

    Zinkle, Steven J.; Blanchard, James; Callis, Richard W.; Kessel, Charles E.; Kurtz, Richard J.; Lee, Peter J.; Mccarthy, Kathryn; Morley, Neil; Najmabadi, Farrokh; Nygren, Richard; Tynan, George R.; Whyte, Dennis G.; Willms, Scott; Wirth, Brian D.

    2014-03-13

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: 1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the single-effects concept exploration stage, Technology Readiness Levels >3), 2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and 3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  12. Fusion materials science and technology research opportunities now and during the ITER era

    SciTech Connect (OSTI)

    S.J. Zinkle; J.P. Planchard; R.W. Callis; C.E. Kessel; P.J. Lee; K.A. McCarty; Various Others

    2014-10-01

    Several high-priority near-term potential research activities to address fusion nuclear science challenges are summarized. General recommendations include: (1) Research should be preferentially focused on the most technologically advanced options (i.e., options that have been developed at least through the singleeffects concept exploration stage, technology readiness levels >3), (2) Significant near-term progress can be achieved by modifying existing facilities and/or moderate investment in new medium-scale facilities, and (3) Computational modeling for fusion nuclear sciences is generally not yet sufficiently robust to enable truly predictive results to be obtained, but large reductions in risk, cost and schedule can be achieved by careful integration of experiment and modeling.

  13. US Department of Energy Environmental Cleanup Technology Development program: Business and research opportunities guide

    SciTech Connect (OSTI)

    Not Available

    1993-12-31

    The US Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) is charged with overseeing a multi-billion dollar environmental cleanup effort. EM leads an aggressive national research, development, demonstration, testing, and evaluation program to provide environmental restoration and waste management technologies to DOE sites, and to manage DOE-generated waste. DOE is firmly committed to working with industry to effectuate this cleanup effort. We recognize that private industry, university, and other research and development programs are valuable sources of technology innovation. The primary purpose of this document is to provide you with information on potential business opportunities in the following technical program areas: Remediation of High-Level Waste Tanks; Characterization, Treatment, and Disposal of Mixed Waste; Migration of Contaminants; Containment of Existing Landfills; Decommissioning and Final Disposition, and Robotics.

  14. Proceedings of the 12th Space Photovoltaic Research and Technology Conference (SPRAT 12)

    SciTech Connect (OSTI)

    1993-05-01

    The Twelfth Space Photovoltaic Research and Technology conference was held at the NASA Lewis Research Center from 20 to 22 Oct. 1992. The papers and workshops presented in this volume report substantial progress in a variety of areas in space photovoltaics. Topics covered include: high efficiency GaAs and InP solar cells, GaAs/Ge cells as commercial items, flexible amorphous and thin film solar cells (in the early stages of pilot production), high efficiency multiple bandgap cells, laser power converters, solar cell and array technology, heteroepitaxial cells, betavoltaic energy conversion, and space radiation effects in InP cells. Space flight data on a variety of cells were also presented. Separate abstracts have been prepared for articles from this report.

  15. (Pittsburgh Energy Technology Center): Quarterly technical progress report for the period ending June 30, 1987. [Advanced Coal Research and Technology Development Programs

    SciTech Connect (OSTI)

    1988-02-01

    Research programs on coal and coal liquefaction are presented. Topics discussed are: coal science, combustion, kinetics, surface science; advanced technology projects in liquefaction; two stage liquefaction and direct liquefaction; catalysts of liquefaction; Fischer-Tropsch synthesis and thermodynamics; alternative fuels utilization; coal preparation; biodegradation; advanced combustion technology; flue gas cleanup; environmental coordination, and technology transfer. Individual projects are processed separately for the data base. (CBS)

  16. Clean Ferrous Casting Technology Research. Annual report, September 29, 1993--September 28, 1994

    SciTech Connect (OSTI)

    Stefanescu, D.M.; Lane, A.M.; Giese, S.R.; Pattabhi, R.; El-Kaddah, N.H.; Griffin, J.; Bates, C.E.; Piwonka, T.S.

    1994-10-01

    This annual report covers work performed in the first year of research on Clean Ferrous Casting Technology Research. During this year the causes of penetration of cast iron in sand molds were defined and a program which predicts the occurrence of penetration was written and verified in commercial foundries. Calculations were made to size a reaction chamber to remove inclusions from liquid steel using electromagnetic force and the chamber was built. Finally, significant progress was made in establishing pouring practices which avoid re-oxidation of steel during pouring application of revised pouring practices have led to reduced inclusion levels in commercially poured steel castings.

  17. Exploratory technology research program for electrochemical energy storage, annual report for 1997

    SciTech Connect (OSTI)

    Kinoshita, K.

    1998-06-01

    The US Department of Energy`s (DOE) Office of Transportation Technologies provides support for an Electrochemical Energy Storage Program, that includes research and development on advanced rechargeable batteries. A major goal of this program is to develop electrochemical power sources suitable for application in electric vehicles (EVs) and hybrid systems. The program centers on advanced electrochemical systems that offer the potential for high performance and low life-cycle costs, both of which are necessary to permit significant penetration into commercial markets. The DOE Electric Vehicle Technology Program is divided into two project areas: the US Advanced Battery Consortium (USABC) and Advanced Battery R and D which includes the Exploratory Technology Research (ETR) Program managed by the Lawrence Berkeley National Laboratory (LBNL). The specific goal of the ETR Program is to identify the most promising electrochemical technologies and transfer them to the USABC, the battery industry and/or other Government agencies for further development and scale-up. This report summarizes the research, financial and management activities relevant to the ETR Program in CY 1997. This is a continuing program, and reports for prior years have been published; they are listed at the end of this Executive Summary. The general R and D areas addressed by the program include identification of new electrochemical couples for advanced batteries, determination of technical feasibility of the new couples, improvements in battery components and materials, and establishment of engineering principles applicable to electrochemical energy storage. Major emphasis is given to applied research which will lead to superior performance and lower life-cycle costs.

  18. Energy Smart Schools--Applied Research, Field Testing, and Technology Integration

    SciTech Connect (OSTI)

    Nebiat Solomon; Robin Vieira; William L. Manz; Abby Vogen; Claudia Orlando; Kimberlie A. Schryer

    2004-12-01

    The National Association of State Energy Officials (NASEO) in conjunction with the California Energy Commission, the Energy Center of Wisconsin, the Florida Solar Energy Center, the New York State Energy Research and Development Authority, and the Ohio Department of Development's Office of Energy Efficiency conducted a four-year, cost-share project with the U.S. Department of Energy (USDOE), Office of Energy Efficiency and Renewable Energy to focus on energy efficiency and high-performance technologies in our nation's schools. NASEO was the program lead for the MOU-State Schools Working group, established in conjunction with the USDOE Memorandum of Understanding process for collaboration among state and federal energy research and demonstration offices and organizations. The MOU-State Schools Working Group included State Energy Offices and other state energy research organizations from all regions of the country. Through surveys and analyses, the Working Group determined the school-related energy priorities of the states and established a set of tasks to be accomplished, including the installation and evaluation of microturbines, advanced daylighting research, testing of schools and classrooms, and integrated school building technologies. The Energy Smart Schools project resulted in the adoption of advanced energy efficiency technologies in both the renovation of existing schools and building of new ones; the education of school administrators, architects, engineers, and manufacturers nationwide about the energy-saving, economic, and environmental benefits of energy efficiency technologies; and improved the learning environment for the nation's students through use of better temperature controls, improvements in air quality, and increased daylighting in classrooms. It also provided an opportunity for states to share and replicate successful projects to increase their energy efficiency while at the same time driving down their energy costs.

  19. United States Transuranium and Uranium Registries: Researching radiation protection. USTUR annual report for February 1, 1999 through January 31, 2000

    SciTech Connect (OSTI)

    Ehrhart, Susan M.; Filipy, Ronald E.

    2000-07-01

    The United States Transuranium and Uranium Registries (USTUR) comprise a human tissue research program studying the deposition, biokinetics and dosimetry of the actinide elements in humans with the primary goals of providing data fundamental to the verification, refinement, or future development of radiation protection standards for these and other radionuclides, and of determining possible bioeffects on both a macro and subcellular level attributable to exposure to the actinides. This report covers USTUR activities during the year from February 1999 through January 2000.

  20. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Production Multi-Year Research, Development and Demonstration Plan Page 3.1 - 1 3.1 Hydrogen Production Hydrogen can be produced from diverse energy resources, using a variety of process technologies. Energy resource options include fossil, nuclear, and renewables. Examples of process technologies include thermochemical, biological, electrolytic, and photolytic. 3.1.1 Technical Goal and Objectives Goal Research and develop technologies for low-cost, highly efficient hydrogen production from

  1. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.1 Hydrogen Production

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PRODUCTION SECTION Multi-Year Research, Development, and Demonstration Plan Page 3.1 - 1 3.1 Hydrogen Production Hydrogen can be produced from diverse energy resources, using a variety of process technologies. Energy resource options include fossil, nuclear, and renewables. Examples of process technologies include thermochemical, biological, electrolytic, and photolytic. 3.1.1 Technical Goal and Objectives Goal Research and develop technologies for low-cost, highly efficient hydrogen production

  2. The Lakeland McIntosh Unit 4 demonstration project utilizing Foster Wheeler`s pressurized circulating fluidized-bed combustion technology

    SciTech Connect (OSTI)

    McClung, J.D.; Provol, S.J.; Morehead, H.T.; Dodd, A.M.

    1997-12-31

    The City of Lakeland, Florida, Foster Wheeler and the Westinghouse Electric Corporation have embarked on the demonstration of a Clean Coal Technology at the City of Lakeland`s McIntosh Power Station in lakeland, Polk County, Florida. The project will demonstrate the Pressurized Circulating Fluidized Bed Combustion (PCFB) technology developed by Foster Wheeler and Westinghouse. The Lakeland McIntosh Unit 4 Project is a nominal 170 MW power plant designed to burn a range of low- to high-sulfur coals. The combined cycle plant employs a Westinghouse 251B12 gas turbine engine in conjunction with a steam turbine operating in a 2400/1000/1000 steam cycle. The plant will demonstrate both the PCFB and topped PCFB combustion technologies. This paper provides a process description of the Foster Wheeler PCFB and Topped PCFB technologies and their application to the Lakeland McIntosh Unit 4 Project.

  3. Reservoir technology - geothermal reservoir engineering research at Stanford. Fifth annual report, October 1, 1984-September 30, 1985

    SciTech Connect (OSTI)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.

    1985-09-01

    The objective is to carry out research on geothermal reservoir engineering techniques useful to the geothermal industry. A parallel objective is the training of geothermal engineers and scientists. The research is focused toward accelerated development of hydrothermal resources through the evaluation of fluid reserves, and the forecasting of field behavior with time. Injection technology is a research area receiving special attention. The program is divided into reservoir definition research, modeling of heat extraction from fractured reservoirs, application and testing of new and proven reservoir engineering technology, and technology transfer. (ACR)

  4. United States-Philippines bases agreements: prospect for its renewal. Research report

    SciTech Connect (OSTI)

    Mahimer, S.M.

    1988-05-01

    Remarks on the problems and issues related to the United States-Philippines Bases Agreement and prospect for its renewal are included namely: analysis of the provisions of the new Philippine Constitution; ASEAN perspective on the bases; US policy on nuclear weapons and its interest and options; Philippine interests and priorities, including alternate plans to compensate for the possible withdrawal of the US from the Philippines; and then an assessment of the effects of these factors on the renewal of the Bases Agreement. There are difficulties and barriers to the renewal of the said Agreement posed by conflicting policies of both parties and also due to divergent views on priorities, constitutional processes of both countries, and time constraints for concluding an agreement. However there are options for the United States regarding the problem, depending upon the desired level of its presence in Asia/Pacific region and how central the Philippine bases are to US national security interests.

  5. International science and technology policies: Testimony before the Subcommittee on International Scientific Cooperation, Committee on Science, Space, and Technology, United States House of Representatives, April 4, 1990

    SciTech Connect (OSTI)

    Trivelpiece, A.W.

    1990-04-04

    This paper reflects testimony before a congressional committee on International Science and Technology Policies. (FSD)

  6. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect (OSTI)

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  7. MEMORANDUM OF MUTUAL UNDERSTANDING FOR RESEARCH COOPERATION BETWEEN SCHOOL OF OCEAN & EARTH SCIENCES & TECHNOLOGY (SOEST), UNI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AGREEMENT FOR INTERNATIONAL RESEARCH COOPERATION USING THE EARTH SIMULATOR BETWEEN THE EARTH SIMULATOR CENTER OF JAPAN MARINE SCIENCE & TECHNOLOGY CENTER (ESC/JAMSTEC) AND NATIONAL ENERGY RESEARCH SCEINTIFIC COMPUTING (NERSC) CENTER AT LAWRENCE BERKELEY NATIONAL LABORATORY WHEREAS, the Earth Simulator Center of Japan Marine Science and Technology Center (hereinafter referred to as "ESC/JAMSTEC") and the National Energy Research Scientific Computing Center (hereinafter referred to

  8. A History or Geothermal Energy Research and Development in the United States: Drilling 1976-2006

    Broader source: Energy.gov [DOE]

    This report summarizes significant research projects performed by the U.S.Department of Energy (DOE)1 over 30 years to overcome challenges inexploration and to make generation of electricity from geothermal resourcesmore cost-competitive.

  9. United States and Czech Republic Join Together to Announce Bilateral Nuclear Energy Research and Development Efforts

    Broader source: Energy.gov [DOE]

    PRAGUE, Czech Republic — The U.S. Department of Energy recently joined with the Řež Nuclear Research Institute, the U.S. Embassy in Prague, Texas A&M and the Czech Nuclear Education Network ...

  10. DOE Office of Science Funded Basic Research at NREL that Impacts Photovoltaic Technologies

    SciTech Connect (OSTI)

    Deb, S. K.

    2005-01-01

    The DOE Office of Science, Basic Energy Sciences, supports a number of basic research projects in materials, chemicals, and biosciences at the National Renewable Energy Laboratory (NREL) that impact several renewable energy technologies, including photovoltaics (PV). The goal of the Material Sciences projects is to study the structural, optical, electrical, and defect properties of semiconductors and related materials using state-of-the-art experimental and theoretical techniques. Specific projects involving PV include: ordering in III-V semiconductors, isoelectronic co-doping, doping bottlenecks in semiconductors, solid-state theory, and computational science. The goal of the Chemical Sciences projects is to advance the fundamental understanding of the relevant science involving materials, photochemistry, photoelectrochemistry, nanoscale chemistry, and catalysis that support solar photochemical conversion technologies. Specific projects relating to PV include: dye-sensitized TiO2 solar cells, semiconductor nanostructures, and molecular semiconductors. This presentation will give an overview of some of the major accomplishments of these projects.

  11. Antitrust for high-technology industries: assessing research joint ventures and mergers

    SciTech Connect (OSTI)

    Ordover, J.A.; Willig, R.D.

    1985-05-01

    The purpose of this paper is to analyze if and how the standard methodology of antitrust analysis should be modified to reflect the importance of R and D and innovation as competitive forces and engines of economic progress. Focus is on such R and D - intensive business combinations as research joint ventures (RJVs) and horizontal mergers in high-technology industries. The authors do not propose a complete set of guidelines for the assessment of such combinations. They present an economic model of RJVs and high-technology mergers that might serve as an analytical underpinning for such guidelines. One conclusion of the analysis is that RJVs ought to be accorded special treatment under the antitrust laws. This special treatment should entail an explicit recognition that RJVs will be scrutinized under the rule of reason, according to guidelines specific to this purpose.

  12. Vehicle Technologies Office Merit Review 2015: Integrated Network Testbed for Energy Grid Research and Technology Experimentation (INTEGRATE)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  13. A History of Geothermal Energy Research and Development in the United States. Drilling 1976-2006

    SciTech Connect (OSTI)

    none,

    2010-09-01

    This report, the second in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in drilling and to make generation of electricity from geothermal resources more cost-competitive.

  14. A History of Geothermal Energy Research and Development in the United States. Exploration 1976-2006

    SciTech Connect (OSTI)

    none,

    2010-09-01

    This report, the first in a four-part series, summarizes significant research projects performed by the U.S. Department of Energy (DOE) over 30 years to overcome challenges in exploration and to make generation of electricity from geothermal resources more cost-competitive.

  15. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. News Releases Science Briefs Photos Picture of the Week Publications Social Media Videos Fact Sheets Gary Grider (second from right) with the 2015 Richard P. Feynman Innovation Prize. Also pictured (left to right): Duncan McBranch, Chief Technology Officer of Los Alamos National Laboratory; Terry Wallace, Program Associate Director for Global Security at Los Alamos; and Lee

  16. Vehicle Technologies Office Merit Review 2015: ANL IC3P Research Focus on Diagnostic Studies at BNL

    Broader source: Energy.gov [DOE]

    Presentation given by 3M at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ANL IC3P research focus on diagnostic...

  17. Webinar November 18: An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar entitled "An Overview of the Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) Project" on Tuesday, November 18, from 12:00 to 1:00 Eastern Standard Time (EST).

  18. Webinar: Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations

    Broader source: Energy.gov [DOE]

    Text version and video recording of the webinar titled "Overview of Funding Opportunity Announcement DE-FOA-0001224: Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations," originally presented on March 10, 2015.

  19. El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss

    Broader source: Energy.gov [DOE]

    El Paso County Geothermal Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss presentation at the April 2013 peer review meeting held in Denver, Colorado.

  20. Notice of Intent to Issue Funding Opportunity Announcement "Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations"

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) intends to issue, on behalf of the Fuel Cell Technologies Office (FCTO), a Funding Opportunity Announcement (FOA) entitled "Hydrogen and Fuel Cell Technologies Research, Development, and Demonstrations" on or about December 10, 2015.

  1. Progress Report for the Chemical and Energy Research Section of the Chemical Technology Division: July-December 1998

    SciTech Connect (OSTI)

    Jubin, R.T.

    1999-06-01

    This report summarizes the major activities conducted in the Chemical and Energy Research Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-December 1998. The section conducts basic and applied research and development in chemical engineering, applied chemistry, and bioprocessing, with an emphasis on energy-driven technologies and advanced chemical separations for nuclear and waste applications.

  2. Directory of Solar Energy Research Activities in the United States: First Edition, May 1980. [1220 projects

    SciTech Connect (OSTI)

    1980-05-01

    Information covering 1220, FY 1978 and FY 1979 solar energy research projects is included. In addition to the title and text of project summaries, the directory contains the following indexes: subject index, investigator index, performing organization index, and supporting organization index. This information was registered with the Smithsonian Science Information Exchange by Federal, State, and other supporting organizations. The project summaries are categorized in the following areas: biomass, ocean energy, wind energy,photovoltaics, photochemical energy conversion, photobiological energy conversion, solar heating and cooling, solar process heat, solar collectors and concentrators, solar thermal electric generation, and other solar energy conversion. (WHK)

  3. CLEAN C O A L RESEARCH PROGRAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) CLEAN C O A L RESEARCH PROGRAM 2012 TECHNOLOGY READINESS ASSESSMENT DECEMBER 2012 United States Department of Energy | Office of Fossil Energy -ANALYSIS OF ACTIVE RESEARCH PORTFOLIO ii 2012 TECHNOLOGY READINESS ASSESSMENT-CLEAN COAL RESEARCH PROGRAM iii DISCLAIMER DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States

  4. Research projects needed for expediting development of domestic oil and gas resources through arctic, offshore, and drilling technology

    SciTech Connect (OSTI)

    Canja, S.; Williams, C.R.

    1982-04-01

    This document contains the research projects which were identified at an industry-government workshop on Arctic, Offshore, and Drilling Technology (AODT) held at Bartlesville Energy Technology Center, January 5-7, 1981. The purpose of the workshop was to identify those problem areas where government research could provide technology advancement that would assist industry in accelerating the discovery and development of US oil and gas resouces. The workshop results are to be used to guide an effective research program. The workshop identified and prioritized the tasks that need to be implemented. All of the projects listed in the Arctic and Offshore sections were selected as appropriate for a Department of Energy (DOE) research role. The drilling projects identified as appropriate only for industry research have been separated in the Drilling section of this report.

  5. Research investigations in oil shale, tar sand, coal research, advanced exploratory process technology, and advanced fuels research: Volume 2 -- Jointly sponsored research program. Final report, October 1986--September 1993

    SciTech Connect (OSTI)

    Smith, V.E.

    1994-09-01

    Numerous studies have been conducted in five principal areas: oil shale, tar sand, underground coal gasification, advanced process technology, and advanced fuels research. In subsequent years, underground coal gasification was broadened to be coal research, under which several research activities were conducted that related to coal processing. The most significant change occurred in 1989 when the agreement was redefined as a Base Program and a Jointly Sponsored Research Program (JSRP). Investigations were conducted under the Base Program to determine the physical and chemical properties of materials suitable for conversion to liquid and gaseous fuels, to test and evaluate processes and innovative concepts for such conversions, to monitor and determine environmental impacts related to development of commercial-sized operations, and to evaluate methods for mitigation of potential environmental impacts. This report is divided into two volumes: Volume 1 consists of 28 summaries that describe the principal research efforts conducted under the Base Program in five topic areas. Volume 2 describes tasks performed within the JSRP. Research conducted under this agreement has resulted in technology transfer of a variety of energy-related research information. A listing of related publications and presentations is given at the end of each research topic summary. More specific and detailed information is provided in the topical reports referenced in the related publications listings.

  6. Science and Technology Research and Development in Support to ITER and the Broader Approach at CEA

    SciTech Connect (OSTI)

    Becoulet, A.; Hoang, G T; Abiteboul, J.; Achard, J.; Alarcon, T.; Klepper, C Christopher

    2013-01-01

    In parallel to the direct contribution to the procurement phase of ITER and Broader Approach, CEA has initiated research & development programmes, accompanied by experiments together with a significant modelling effort, aimed at ensuring robust operation, plasma performance, as well as mitigating the risks of the procurement phase. This overview reports the latest progress in both fusion science and technology including many areas, namely the mitigation of superconducting magnet quenches, disruption-generated runaway electrons, edge-localized modes (ELMs), the development of imaging surveillance, and heating and current drive systems for steady-state operation. The WEST (W Environment for Steady-state Tokamaks) project, turning Tore Supra into an actively cooled W-divertor platform open to the ITER partners and industries, is presented.

  7. Current Development of Nuclear Thermal Propulsion technologies at the Center for Space Nuclear Research

    SciTech Connect (OSTI)

    Robert C. O'Brien; Steven K. Cook; Nathan D. Jerred; Steven D. Howe; Ronald Samborsky; Daniel Brasuell

    2012-09-01

    Nuclear power and propulsion has been considered for space applications since the 1950s. Between 1955 and 1972 the US built and tested over twenty nuclear reactors / rocket engines in the Rover/NERVA programs1. The Aerojet Corporation was the prime contractor for the NERVA program. Modern changes in environmental laws present challenges for the redevelopment of the nuclear rocket. Recent advances in fuel fabrication and testing options indicate that a nuclear rocket with a fuel composition that is significantly different from those of the NERVA project can be engineered; this may be needed to ensure public support and compliance with safety requirements. The Center for Space Nuclear Research (CSNR) is pursuing a number of technologies, modeling and testing processes to further the development of safe, practical and affordable nuclear thermal propulsion systems.

  8. Research Gaps and Technology Needs in Development of PHM for Passive AdvSMR Components

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Coble, Jamie B.; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Bond, Leonard J.; Henager, Charles H.

    2014-01-01

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically due to losses in economy of scale, thus, there is increased motivation to reduce the controllable operations and maintenance (O&M) costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components. state-of-the-art in PHM.

  9. Research gaps and technology needs in development of PHM for passive AdvSMR components

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Ramuhalli, Pradeep; Hirt, Evelyn H.; Mitchell, Mark R.; Wootan, David W.; Berglin, Eric J.; Henagar, Chuck H. Jr.; Coble, Jamie B.; Bond, Leonard J.

    2014-02-18

    Advanced small modular reactors (AdvSMRs), which are based on modularization of advanced reactor concepts, may provide a longer-term alternative to traditional light-water reactors and near-term small modular reactors (SMRs), which are based on integral pressurized water reactor (iPWR) concepts. SMRs are challenged economically because of losses in economy of scale; thus, there is increased motivation to reduce the controllable operations and maintenance costs through automation technologies including prognostics health management (PHM) systems. In this regard, PHM systems have the potential to play a vital role in supporting the deployment of AdvSMRs and face several unique challenges with respect to implementation for passive AdvSMR components. This paper presents a summary of a research gaps and technical needs assessment performed for implementation of PHM for passive AdvSMR components.

  10. Basic research needs in seven energy-related technologies, conservation, conversion, transmission and storage, environmental fission, fossil, geothermal, and solar

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    This volume comprises seven studies performed by seven groups at seven national laboratories. The laboratories were selected because of their assigned lead roles in research pertaining to the respective technologies. Researches were requested to solicit views of other workers in the fields.

  11. Vehicle Technologies Office Merit Review 2016: Overview and Progress of United States Advanced Battery Consortium (USABC) Activity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by USABC at the 2016 DOE Vehicle Technologies Office and Hydrogen and Fuel Cells Program Annual Merit Review and Peer Evaluation Meeting about Batteries

  12. Applications of Fusion Energy Sciences Research - Scientific Discoveries and New Technologies Beyond Fusion

    SciTech Connect (OSTI)

    Wendt, Amy; Callis, Richard; Efthimion, Philip; Foster, John; Keane, Christopher; Onsager, Terry; O'Shea, Patrick

    2015-09-01

    Since the 1950s, scientists and engineers in the U.S. and around the world have worked hard to make an elusive goal to be achieved on Earth: harnessing the reaction that fuels the stars, namely fusion. Practical fusion would be a source of energy that is unlimited, safe, environmentally benign, available to all nations and not dependent on climate or the whims of the weather. Significant resources, most notably from the U.S. Department of Energy (DOE) Office of Fusion Energy Sciences (FES), have been devoted to pursuing that dream, and significant progress is being made in turning it into a reality. However, that is only part of the story. The process of creating a fusion-based energy supply on Earth has led to technological and scientific achievements of far-reaching impact that touch every aspect of our lives. Those largely unanticipated advances, spanning a wide variety of fields in science and technology, are the focus of this report. There are many synergies between research in plasma physics, (the study of charged particles and fluids interacting with self-consistent electric and magnetic fields), high-energy physics, and condensed matter physics dating back many decades. For instance, the formulation of a mathematical theory of solitons, solitary waves which are seen in everything from plasmas to water waves to Bose-Einstein Condensates, has led to an equal span of applications, including the fields of optics, fluid mechanics and biophysics. Another example, the development of a precise criterion for transition to chaos in Hamiltonian systems, has offered insights into a range of phenomena including planetary orbits, two-person games and changes in the weather. Seven distinct areas of fusion energy sciences were identified and reviewed which have had a recent impact on fields of science, technology and engineering not directly associated with fusion energy: Basic plasma science; Low temperature plasmas; Space and astrophysical plasmas; High energy density

  13. Health and environmental effects of oil and gas technologies: research needs

    SciTech Connect (OSTI)

    Brown, R. D.

    1981-07-01

    This report discusses health and environmental issues associated with oil and gas technologies as they are currently perceived - both those that exist and those that are expected to emerge over the next two decades. The various sections of this report contain discussions of specific problem areas and relevant new research activities which should be pursued. This is not an exhaustive investigation of all problem areas, but the report explores a wide range of issues to provide a comprehensive picture of existing uncertainties, trends, and other factors that should serve as the focus of future research. The problem areas of major concern include: effects of drilling fluids, offshore accidents, refineries and worker health, and biota and petroleum spills, indoor air pollution, information transfer, and unconventional resources. These are highlighted in the Executive Summary because they pose serious threats to human health and the environment, and because of the sparcity of accumulated knowledge related to their definition. Separate abstracts have been prepared for selected sections of this report for inclusion in the Energy Data Base. (DMC)

  14. EIS-0282: McIntosh Unit 4 TCFB Demonstration Project, Clean Coal Technology Program, Lakeland, Florida (also see EIS-0304)

    Broader source: Energy.gov [DOE]

    The proposed project, selected under DOE’s Clean Coal Technology Program, would demonstrate both Pressurized Circulating Fluidized Bed (PCFB) and Topped PCFB technologies. The proposed project would involve the construction and operation of a nominal 238 MWe (megawatts of electric power) combined-cycle power plant designed to burn a range of low- to high-sulfur coals.

  15. Project Overview: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet), Vehicle Technologies Program (VTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eere.energy.gov * November 2011 UPS operates 381 hybrid-electric delivery vans nationwide. This image is reproduced with permission of United Parcel Service of America, Inc. © 2011 United Parcel Service of America, Inc. All rights reserved. Photo from UPS, NREL/PIX 19821 Advanced Vehicle Testing This project is part of a series of evaluations performed by NREL's Fleet Test and Evaluation Team for the U.S. Department of Energy's Advanced Vehicle Testing Activity (AVTA). AVTA bridges the gap

  16. Building Thermal Envelope Systems and Materials (BTESM) and research utilization/technology transfer progress report for DOE (Department of Energy) Office of Buildings Energy Research

    SciTech Connect (OSTI)

    Burn, G.

    1990-08-01

    The Monthly Report of the Building Thermal Envelope Systems and Materials (BTESM) Program is a monthly update of both in-house ORNL projects and subcontract activities in the research areas of building materials, wall systems, foundations, roofs, building diagnostics, and research utilization and technology transfer. Presentations are not stand-alone paragraphs every month. Their principal values are the short-time lapse between accomplishment and reporting and their evolution over a period of several months.

  17. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect (OSTI)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  18. Computation Directorate and Science& Technology Review Computational Science and Research Featured in 2002

    SciTech Connect (OSTI)

    Alchorn, A L

    2003-04-04

    Thank you for your interest in the activities of the Lawrence Livermore National Laboratory Computation Directorate. This collection of articles from the Laboratory's Science & Technology Review highlights the most significant computational projects, achievements, and contributions during 2002. In 2002, LLNL marked the 50th anniversary of its founding. Scientific advancement in support of our national security mission has always been the core of the Laboratory. So that researchers could better under and predict complex physical phenomena, the Laboratory has pushed the limits of the largest, fastest, most powerful computers in the world. In the late 1950's, Edward Teller--one of the LLNL founders--proposed that the Laboratory commission a Livermore Advanced Research Computer (LARC) built to Livermore's specifications. He tells the story of being in Washington, DC, when John Von Neumann asked to talk about the LARC. He thought Teller wanted too much memory in the machine. (The specifications called for 20-30,000 words.) Teller was too smart to argue with him. Later Teller invited Von Neumann to the Laboratory and showed him one of the design codes being prepared for the LARC. He asked Von Neumann for suggestions on fitting the code into 10,000 words of memory, and flattered him about ''Labbies'' not being smart enough to figure it out. Von Neumann dropped his objections, and the LARC arrived with 30,000 words of memory. Memory, and how close memory is to the processor, is still of interest to us today. Livermore's first supercomputer was the Remington-Rand Univac-1. It had 5600 vacuum tubes and was 2 meters wide by 4 meters long. This machine was commonly referred to as a 1 KFlop machine [E+3]. Skip ahead 50 years. The ASCI White machine at the Laboratory today, produced by IBM, is rated at a peak performance of 12.3 TFlops or E+13. We've improved computer processing power by 10 orders of magnitude in 50 years, and I do not believe there's any reason to think we won

  19. Secretary Chu Looks at Russian Energy Technology Today and Tomorrow’s Energy Researchers

    Broader source: Energy.gov [DOE]

    Earlier this week, we talked about Secretary Chu’s visit to the St. Petersburg Seaport. But that’s not all he did while visiting the historic Russian city this week. The Optogan LED Factory opened their doors so the Secretary could see their production facilities firsthand. Reminiscent of many stories here in the United States, the company started when three friends had an idea and started their company “in the kitchen” -- just like the “garage” businesses of American entrepreneurs. Optogan is now a multi-national, vertically integrated venture poised to produce 30 million LEDs a month. Local demand in St. Petersburg is already ahead of production capabilities, which means there’s a lot of room for the company to grow. Optogan’s success, due in part being well positioned to respond when Russia passed legislation mandating better energy-efficiency in 2009, demonstrates how innovation, determination and government can work together and lead to huge benefits. It also mirrors research efforts and production in the U.S. Left: Workers at Russia's Optagon LED Factory during Secretary Chu's visit. Right: Scenic picture of St. Petersburg, Russia. | Courtesy of Dan Leistikow

  20. Fuel Cell Technologies Office Multi-Year Research, Development, and Demonstration Plan - Section 3.3 Hydrogen Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Multi-Year Research, Development and Demonstration Plan Page 3.3 - 1 3.3 Hydrogen Storage Hydrogen storage is a key enabling technology for the advancement of hydrogen and fuel cell technologies that can provide energy for an array of applications, including stationary power, portable power, and transportation. Also, hydrogen can be used as a medium to store energy created by intermittent renewable power sources (e.g., wind and solar) during periods of high availability and low demand,