Sample records for united nations sector

  1. National Electric Sector Cybersecurity Organization Resource (NESCOR)

    SciTech Connect (OSTI)

    None, None

    2014-06-30T23:59:59.000Z

    The goal of the National Electric Sector Cybersecurity Organization Resource (NESCOR) project was to address cyber security issues for the electric sector, particularly in the near and mid-term. The following table identifies the strategies from the DOE Roadmap to Achieve Energy Delivery Systems Cybersecurity published in September 2011 that are applicable to the NESCOR project.

  2. Second United Nations International Conference

    Office of Scientific and Technical Information (OSTI)

    Second United Nations International Conference on the Peaceful Uses of Atomic Energy ON THE ANALYSIS O F BUBBLE CHAMBER TRACKS Q Hugh Bradner and F r a n k Solmitz INTRODUCTION A j...

  3. Second United Nations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysicsDepartment of Energy MonizBiofuelsNations .

  4. UNITED NATIONS BEST PRACTICES IN

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    UNITED NATIONS BEST PRACTICES IN INVESTMENT FOR DEVELOPMENT CASE STUDIES IN FDI How to Utilize FDI Practices in Investment for Development is a programme of case studies in making foreign direct investment and development. UNCTAD's approach is to undertake case studies of a pair of developed and developing

  5. United Nations Food and Agriculture Organization Economic Commission for Europe of the United Nations

    E-Print Network [OSTI]

    UNECE United Nations Food and Agriculture Organization Economic Commission for Europe of the United Forestry Commission of the Food and Agriculture Organization of the United Nations, to promote sustainable? UNITED NATIONS #12;#12;ECE/TIM/DP/44 United Nations Economic Commission for Europe/ Food and Agriculture

  6. NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet

    E-Print Network [OSTI]

    impact water resources. A lack of adequate water supplies, an overabundance of water, or degraded waterNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet WATER RESOURCES OVERVIEW Water is a fundamental component of life and water resources are directly dependent on climate. Climate change

  7. NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet

    E-Print Network [OSTI]

    impact water resources. A lack of adequate water supplies, an overabundance of water, or degraded waterNOAA's National Climatic Data Center Sectoral Engagement Fact Sheet WATER RESOURCES Overview Water is a fundamental component of life and water resources are directly dependent on climate. Climate change

  8. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    SciTech Connect (OSTI)

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01T23:59:59.000Z

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy

  9. United States National Energy Technology Laboratory's (NETL)...

    Open Energy Info (EERE)

    National Energy Technology Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States...

  10. United States Government National Nuclear Security Administration...

    Broader source: Energy.gov (indexed) [DOE]

    United States Government National Nuclear Security Administration (NNSA) Savannah River Field Office (SRFO) Memorandum DATE: January 10, 2014 REPLY TO ATTN OF: sv (McAlhany,...

  11. Surety of the nation`s critical infrastructures: The challenge restructuring poses to the telecommunications sector

    SciTech Connect (OSTI)

    Cox, R.; Drennen, T.E.; Gilliom, L.; Harris, D.L.; Kunsman, D.M.; Skroch, M.J.

    1998-04-01T23:59:59.000Z

    The telecommunications sector plays a pivotal role in the system of increasingly connected and interdependent networks that make up national infrastructure. An assessment of the probable structure and function of the bit-moving industry in the twenty-first century must include issues associated with the surety of telecommunications. The term surety, as used here, means confidence in the acceptable behavior of a system in both intended and unintended circumstances. This paper outlines various engineering approaches to surety in systems, generally, and in the telecommunications infrastructure, specifically. It uses the experience and expectations of the telecommunications system of the US as an example of the global challenges. The paper examines the principal factors underlying the change to more distributed systems in this sector, assesses surety issues associated with these changes, and suggests several possible strategies for mitigation. It also studies the ramifications of what could happen if this sector became a target for those seeking to compromise a nation`s security and economic well being. Experts in this area generally agree that the U. S. telecommunications sector will eventually respond in a way that meets market demands for surety. Questions remain open, however, about confidence in the telecommunications sector and the nation`s infrastructure during unintended circumstances--such as those posed by information warfare or by cascading software failures. Resolution of these questions is complicated by the lack of clear accountability of the private and the public sectors for the surety of telecommunications.

  12. Second United Nations International Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysicsDepartment of Energy MonizBiofuelsNations

  13. United Nations Food and Agriculture Organization Economic Commission for Europe of the United Nations

    E-Print Network [OSTI]

    UNECE United Nations Food and Agriculture Organization Economic Commission for Europe of the United (trade by species). Although in theory these two should correspond, in a number of cases the figure

  14. Second United Nations International Conference

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTISciTech Connect

  15. Energy Sector-Specific Plan: An Annex to the National Infrastructure...

    Energy Savers [EERE]

    Plan: An Annex to the National Infrastructure Protection Plan In its role as the lead Sector-Specific Agency for the Energy Sector, the Department of Energy has worked...

  16. United Nations Environment Programme (UNEP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shreniksource History ViewFarmingUnited Nations

  17. United Nations Foundation (UNF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDITCalifornia Sector:Shreniksource History ViewFarmingUnited

  18. United Nations Human Space Technology Initiative (HSTI)

    E-Print Network [OSTI]

    Ochiai, M; Steffens, H; Balogh, W; Haubold, H J; Othman, M; Doi, T

    2015-01-01T23:59:59.000Z

    The Human Space Technology Initiative was launched in 2010 within the framework of the United Nations Programme on Space Applications implemented by the Office for Outer Space Affairs of the United Nations. It aims to involve more countries in activities related to human spaceflight and space exploration and to increase the benefits from the outcome of such activities through international cooperation, to make space exploration a truly international effort. The role of the Initiative in these efforts is to provide a platform to exchange information, foster collaboration between partners from spacefaring and non-spacefaring countries, and encourage emerging and developing countries to take part in space research and benefit from space applications. The Initiative organizes expert meetings and workshops annually to raise awareness of the current status of space exploration activities as well as of the benefits of utilizing human space technology and its applications. The Initiative is also carrying out primary ...

  19. United Nations geothermal activities in developing countries

    SciTech Connect (OSTI)

    Beredjick, N.

    1987-07-01T23:59:59.000Z

    The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

  20. Implications of changing natural gas prices in the United States electricity sector for SO and life cycle GHG emissions

    E-Print Network [OSTI]

    Jaramillo, Paulina

    Implications of changing natural gas prices in the United States electricity sector for SO 2 , NO X of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG to projections of low natural gas prices and increased supply. The trend of increasing natural gas use

  1. Oak Ridge Reservation Emergency Sectors Changing | Y-12 National Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access to scienceScientific andBusinessoso/about/jobs/ Below

  2. Sandia National Laboratories: advanced auxiliary power units...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    auxiliary power units (including biofuels) Sandia Participated in the 3rd Annual Technology Forum of the U.S.-China Clean Energy Research Center - Clean Vehicles Consortium...

  3. Energy, Water and Fish: Biodiversity Impacts of Energy-Sector Water Demand in the United States Depend on

    E-Print Network [OSTI]

    Olden, Julian D.

    for electricity generation from coal. Historical water use by the energy sector is related to patterns of fishEnergy, Water and Fish: Biodiversity Impacts of Energy- Sector Water Demand in the United States Rising energy consumption in coming decades, combined with a changing energy mix, have the potential

  4. United Nations Atomic Energy Commission stalls out

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commission would be short-lived and would not result in the desired control of atomic energy. In the wake of the disappointing results of the Moscow meeting, the United States...

  5. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This volume contains input data and parameters used in the model of the transportation sector of the National Energy Modeling System. The list of Transportation Sector Model variables includes parameters for the following: Light duty vehicle modules (fuel economy, regional sales, alternative fuel vehicles); Light duty vehicle stock modules; Light duty vehicle fleet module; Air travel module (demand model and fleet efficiency model); Freight transport module; Miscellaneous energy demand module; and Transportation emissions module. Also included in these appendices are: Light duty vehicle market classes; Maximum light duty vehicle market penetration parameters; Aircraft fleet efficiency model adjustment factors; and List of expected aircraft technology improvements.

  6. UNITED STATES AIR FORCE OUTSIDE THE NATIONAL CAPITAL REGION

    E-Print Network [OSTI]

    program in order to reduce Federal employee's contribution to traffic congestion and air pollutionUNITED STATES AIR FORCE OUTSIDE THE NATIONAL CAPITAL REGION PUBLIC TRANSPORTATION BENEFIT PROGRAM): ____________ City (Residence): __________________________State: _______________ Zip Code: ________________ Air Force

  7. Energy Data Sourcebook for the U.S. Residential Sector

    E-Print Network [OSTI]

    Wenzel, T.P.

    2010-01-01T23:59:59.000Z

    1987b). 2.1. Unit Energy Consumptions Data on end-use unitresidential sector energy consumption data, and typicallyNational Interim Energy Consumption Survey Data, prepared

  8. Sandia National Laboratories for the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandian Wins AwardNational

  9. United Nations Foundation (UNF) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEurope Jump to:sourceUnited

  10. United Nations Foundation Feed | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG JumpEurope Jump to:sourceUnitedNO

  11. UNITED NATIONS ENVIRONMENT PROGRAMME PROJECT DOCUMENT SUMMARY

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships JumpTypefor Africa | Open EnergyUNITED

  12. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  13. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  14. Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one-third of the

    E-Print Network [OSTI]

    Pennycook, Steve

    Published by Oak Ridge National Laboratory No. 1 2010 The industrial sector accounts for nearly one research and development agreements (CRADAs) and two large work-for-others projects. Ev- ery single one

  15. INFORMATION NOTE United Nations/Nigeria Workshop on Space Law

    E-Print Network [OSTI]

    Glass, Ian S.

    1 INFORMATION NOTE United Nations/Nigeria Workshop on Space Law "Meeting international responsibilities and addressing domestic needs" Hosted by the Government of Nigeria 21-24 November 2005 Abuja, Nigeria Background Given the growing number of benefits derived from the use of space applications

  16. United Nations Climate Change Conference Durban, South Africa 2011

    E-Print Network [OSTI]

    Viola, Ronald

    United Nations Climate Change Conference Durban, South Africa 2011 COP17/CMP7 #12; The Conferences presents a unique opportunity for South Africa to promote and publicly initiate the transition to a green, President of South Africa Maite Nkoana-Mashabane, Minister of Foreign Affairs of South Africa President

  17. Financial Innovation Among the Community Wind Sector in the United States

    SciTech Connect (OSTI)

    Bolinger, Mark

    2011-01-19T23:59:59.000Z

    In the relatively brief history of utility-scale wind generation, the 'community wind' sector - defined here as consisting of relatively small utility-scale wind power projects that are at least partly owned by one or more members of the local community - has played a vitally important role as a 'test bed' or 'proving ground' for wind turbine manufacturers. In the 1980s and 1990s, for example, Vestas and other now-established European wind turbine manufacturers relied heavily on community wind projects in Scandinavia and Germany to install - and essentially field-test - new turbine designs. The fact that orders from community wind projects seldom exceeded more than a few turbines at a time enabled the manufacturers to correct any design flaws or manufacturing defects fairly rapidly, and without the risk of extensive (and expensive) serial defects that can accompany larger orders. Community wind has been slower to take root in the United States - the first such projects were installed in the state of Minnesota around the year 2000. Just as in Europe, however, the community wind sector in the U.S. has similarly served as a proving ground - but in this case for up-and-coming wind turbine manufacturers that are trying to break into the broader U.S. wind power market. For example, community wind projects have deployed the first U.S. installations of wind turbines from Suzlon (in 2003), DeWind (2008), Americas Wind Energy (2008) and later Emergya Wind Technologies (2010),1 Goldwind (2009), AAER/Pioneer (2009), Nordic Windpower (2010), Unison (2010), and Alstom (2011). Just as it has provided a proving ground for new turbines, so too has the community wind sector in the United States served as a laboratory for experimentation with innovative new financing structures. For example, a variation of one of the most common financing arrangements in the U.S. wind market today - the 'partnership flip structure' - was first developed by community wind projects in Minnesota more than a decade ago (and is therefore sometimes referred to as the 'Minnesota flip' model) before being adapted by the broader wind market. More recently, a handful of community wind projects built in the United States over the past year have been financed via new and creative structures that push the envelope of wind project finance in the U.S. - in many cases, moving beyond the now-standard partnership flip structures. These projects include: (1) a 4.5 MW project in Maine that combines low-cost government debt with local tax equity, (2) a 25.3 MW project in Minnesota using a sale/leaseback structure, (3) a 10.5 MW project in South Dakota financed by an intrastate offering of both debt and equity, (4) a 6 MW project in Washington state that taps into 'New Markets Tax Credits' using an 'inverted' or 'pass-through' lease structure, and (5) a 9 MW project in Oregon that combines a variety of state and federal incentives and loans with unconventional equity from high-net-worth individuals. In most cases, these are first-of-their-kind financing structures that could serve as useful examples for other projects - both community and commercial wind alike. This new wave of financial innovation occurring in the community wind sector has been facilitated by policy changes, most of them recent. Most notably, the American Recovery and Reinvestment Act of 2009 ('the Recovery Act') enables, for a limited time, wind power (and other types of) projects to elect either a 30% investment tax credit ('ITC') or a 30% cash grant (the 'Section 1603 grant') in lieu of the federal incentive that has historically been available to wind projects in the U.S. - a 10-year production tax credit ('PTC'). This flexibility, in turn, enables wind power projects to pursue lease financing for the first time - leasing is not possible under the PTC. Because they are based on a project's cost rather than energy generation, the 30% ITC and Section 1603 grant also reduce performance risk relative to the PTC - this, too, is an important enabler of lease financing. Finally, by providing a cash rather than ta

  18. United States National Waste Terminal Storage argillaceous rock studies

    SciTech Connect (OSTI)

    Brunton, G.D.

    1981-01-01T23:59:59.000Z

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

  19. 202-328-5000 www.rff.orgSector Effects of the Shale Gas Revolution in the United States

    E-Print Network [OSTI]

    This paper reviews the impact of the shale gas revolution on the sectors of electricity generation, transportation, and manufacturing in the United States. Natural gas is being substituted for other fuels, particularly coal, in electricity generation, resulting in lower greenhouse gas emissions from this sector. The use of natural gas in the transportation sector is currently negligible but is projected to increase with investments in refueling infrastructure and natural gas vehicle technologies. Petrochemical and other manufacturing industries have responded to lower natural gas prices by investing in domestically located manufacturing projects. This paper also speculates on the impact of a possible shale gas boom in China. Key Words: shale gas, electricity, transportation, and manufacturing JEL Classification Numbers: L71, L9, Q4 © 2013 Resources for the Future. All rights reserved. No portion of this paper may be reproduced without permission of the authors. Discussion papers are research materials circulated by their authors for purposes of information and discussion.

  20. Model documentation report: Residential sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code. This document serves three purposes. First, it is a reference document providing a detailed description for energy analysts, other users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports according to Public Law 93-275, section 57(b)(1). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  1. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  2. Technical progress report. Private sector initiatives between the United States and Japan. January 1990 - December 1990

    SciTech Connect (OSTI)

    NONE

    1993-07-01T23:59:59.000Z

    OAK A271 This annual report for calendar year 1990 describes the efforts performed under the Private Sector Initiatives contract. The report also describes those efforts that have continued with private funding after being initiated under this contract.

  3. FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Community-based tree and forest

    E-Print Network [OSTI]

    #12;FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS ROME, 2011 Community-based tree of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development

  4. United Nations Framework Convention on Climate Change | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place:UnalakleetInformation United Nations

  5. Implications of changing natural gas prices in the United States electricity sector for SO2, NOX and life cycle GHG emissions: Supplementary Information

    E-Print Network [OSTI]

    Jaramillo, Paulina

    % Figure S2. Relationship between regional and U.S. average electricity sector delivered natural gas prices1 Implications of changing natural gas prices in the United States electricity sector for SO2, NOX Griffin, H Scott Matthews Table S1. Base case fuel prices and marginal prices of electricity production

  6. Sandia National Laboratories: Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Sectors in the United States View all EC Publications Related Topics Concentrating Solar Power CRF CSP EFRC Energy Energy Efficiency Energy Security National Solar Thermal...

  7. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  8. Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy Sector

    E-Print Network [OSTI]

    Zhou, Chongwu

    Organized Research Unit (ORU) on Carbon Capture and Sequestration: Meeting the Needs of the Energy of an Organized Research Unit (ORU) on Carbon Capture and Sequestration (CCS). The purpose of this effort Frontier Research Center proposal: "Integrated Science of Geological Carbon Sequestration" to BES office

  9. Transportation Sector Model of the National Energy Modeling System. Volume 1

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. The NEMS Transportation Model comprises a series of semi-independent models which address different aspects of the transportation sector. The primary purpose of this model is to provide mid-term forecasts of transportation energy demand by fuel type including, but not limited to, motor gasoline, distillate, jet fuel, and alternative fuels (such as CNG) not commonly associated with transportation. The current NEMS forecast horizon extends to the year 2010 and uses 1990 as the base year. Forecasts are generated through the separate consideration of energy consumption within the various modes of transport, including: private and fleet light-duty vehicles; aircraft; marine, rail, and truck freight; and various modes with minor overall impacts, such as mass transit and recreational boating. This approach is useful in assessing the impacts of policy initiatives, legislative mandates which affect individual modes of travel, and technological developments. The model also provides forecasts of selected intermediate values which are generated in order to determine energy consumption. These elements include estimates of passenger travel demand by automobile, air, or mass transit; estimates of the efficiency with which that demand is met; projections of vehicle stocks and the penetration of new technologies; and estimates of the demand for freight transport which are linked to forecasts of industrial output. Following the estimation of energy demand, TRAN produces forecasts of vehicular emissions of the following pollutants by source: oxides of sulfur, oxides of nitrogen, total carbon, carbon dioxide, carbon monoxide, and volatile organic compounds.

  10. IRD Sige, 44, boulevard de dunkerque 13572 Marseille cedex 02 United Nations Conference on Sustainable Development

    E-Print Network [OSTI]

    on Sustainable Development Rio+20: IRD and AIRD join forces Launch of the first scientific cooperation programme United Nations Conference on Sustainable Development (Rio+20), will take place in Brazil on 20 and 22 United Nations Conference on Sustainable Development, Rio+20 will offer the opportunity to report

  11. United Nations Conference on Trade and Development Making Certification Work for Sustainable

    E-Print Network [OSTI]

    United Nations Conference on Trade and Development Making Certification Work for Sustainable ..................................................................... 31 Chapter 5. Making certification work for sustainable development: the way ahead Development: The Case of Biofuels United Nations New York and Geneva, 2008 #12;ii Note The designations

  12. United Nations Economic Commission for Europe Note for the Press ECE/TIM/08/N01

    E-Print Network [OSTI]

    United Nations Economic Commission for Europe Note for the Press ECE/TIM/08/N01 Geneva, 29 October combats climate change The Timber Committee of the United Nations Economic Commission for Europe (UNECE and forest biomass; Panel and pulp manufacturers continue to be concerned about the competition for their raw

  13. Sandia National Laboratories: Portable Hydrogen Fuel-Cell Unit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green, Sustainable Power to Honolulu Port Portable Hydrogen Fuel-Cell Unit to Provide Green, Sustainable Power to Honolulu Port Solar Glare Hazard Analysis Tool Available for...

  14. United Nations Basic Space Science Initiative (UNBSSI) 1991-2012 and Beyond

    E-Print Network [OSTI]

    Mathai, A M; Balogh, W R

    2015-01-01T23:59:59.000Z

    This paper contains an overview and summary on the achievements of the United Nations basic space science initiative in terms of donated and provided planetariums, astronomical telescopes, and space weather instruments, particularly operating in developing nations. This scientific equipment has been made available to respective host countries, particularly developing nations, through the series of twenty basic space science workshops, organized through the United Nations Programme on Space Applications since 1991. Organized by the United Nations, the European Space Agency (ESA), the National Aeronautics and Space Administration (NASA) of the United States of America, and the Japan Aerospace Exploration Agency (JAXA), the basic space science workshops were organized as a series of workshops that focused on basic space science (1991-2004), the International Heliophysical Year 2007 (2005-2009), and the International Space Weather Initiative (2010-2012) proposed by the Committee on the Peaceful Uses of Outer Spac...

  15. The United States Releases its Open Government National Action Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector, JanuarySunShotDepartment of

  16. United Nations Development Programme (UNDP) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlin BaxinUmwelt Management AG UMaAG Jump to:UnipersonalUnitedUnitedUnited

  17. Energy Sector-Specific Plan: An Annex to the National Infrastructure

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:RevisedAdvisoryStandard |inHVAC | DepartmentSource | DepartmenttoofSectorProtection

  18. The United Nations' Approach To Geothermal Resource Assessment | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLC Jump to:UncertaintySocial36 Sector:TheUS

  19. Blue Helmeted Dragons : explaining China's participation in United Nations peace operations

    E-Print Network [OSTI]

    Lin-Greenberg, Erik

    2009-01-01T23:59:59.000Z

    China's personnel contributions to United Nations peace operations has significantly increased in the first decade of the twenty-first century, however little academic or policy attention has been given to examining patterns ...

  20. Printed in the United States of America. Available from National Technical information Service

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Printed in the United States of America. Available from National Technical information Service.5.3 Integration of Evacuated or Sealed Insulation Systems and Appliances 2-27 2.5.4 Edge Losses 2-29 2

  1. Assessing National Employment Impacts of Investment in Residential and Commercial Sector Energy Efficiency: Review and Example Analysis

    SciTech Connect (OSTI)

    Anderson, David M.; Belzer, David B.; Livingston, Olga V.; Scott, Michael J.

    2014-06-18T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) modeled the employment impacts of a major national initiative to accelerate energy efficiency trends at one of two levels: • 15 percent savings by 2030. In this scenario, efficiency activities save about 15 percent of the Annual Energy Outlook (AEO) Reference Case electricity consumption by 2030. It is assumed that additional energy savings in both the residential and commercial sectors begin in 2015 at zero, and then increase in an S-shaped market penetration curve, with the level of savings equal to about 7.0 percent of the AEO 2014 U.S. national residential and commercial electricity consumption saved by 2020, 14.8 percent by 2025, and 15 percent by 2030. • 10 percent savings by 2030. In this scenario, additional savings begin at zero in 2015, increase to 3.8 percent in 2020, 9.8 percent by 2025, and 10 percent of the AEO reference case value by 2030. The analysis of the 15 percent case indicates that by 2030 more than 300,000 new jobs would likely result from such policies, including an annual average of more than 60,000 jobs directly supporting the installation and maintenance of energy efficiency measures and practices. These are new jobs resulting initially from the investment associated with the construction of more energy-efficient new buildings or the retrofit of existing buildings and would be sustained for as long as the investment continues. Based on what is known about the current level of building-sector energy efficiency jobs, this would represent an increase of more than 10 percent from the current estimated level of over 450,000 such jobs. The more significant and longer-lasting effect comes from the redirection of energy bill savings toward the purchase of other goods and services in the general economy, with its attendant influence on increasing the total number of jobs. This example analysis utilized PNNL’s ImSET model, a modeling framework that PNNL has used over the past two decades to assess the economic impacts of the U.S. Department of Energy’s (DOE’s) energy efficiency programs in the buildings sector.

  2. Rwanda-Project to Develop a National Strategy on Climate Change...

    Open Energy Info (EERE)

    for International Development, United Nations Development Programme (UNDP) Partner Smith School for Enterprise and Environment, University of Oxford Sector Climate, Energy,...

  3. United Nations Industrial Development Organization (UNIDO) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place:UnalakleetInformation United

  4. United Nations Institute for Training and Research (UNITAR) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place:UnalakleetInformation UnitedInformation

  5. National Energy Modeling System (United States) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question)8/14/2007NCPV Jump to: navigation,United

  6. Transportation Sector Model of the National Energy Modeling System. Volume 2 -- Appendices: Part 3

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This Appendix consists of two unpublished reports produced by Energy and Environmental Analysis, Inc., under contract to Oak Ridge National Laboratory. These two reports formed the basis for the subsequent development of the Fuel Economy Model described in Volume 1. They are included in order to document more completely the efforts undertaken to construct a comprehensive model of automobile fuel economy. The supplemental reports are as follows: Supplement 1--Documentation Attributes of Technologies to Improve Automotive Fuel Economy; Supplement 2--Analysis of the Fuel Economy Boundary for 2010 and Comparison to Prototypes.

  7. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  8. Energy Sector-Specific Plan: An Annex to the National Infrastructure

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan Departmentof EnergyPublic Law of| Department ofMakeBillionofProtection

  9. David Sandia National Laboratories, Albuquerque, NM (United States) USDOE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract Management Fermi SitePARTOfficeOctoberDanielDTNTopL.David PaulScale

  10. United States-Japan Nuclear Security Working Group | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives |and

  11. National Nuclear Security Administration United States Department of Energy

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica Treaty Organization NCT Nuclear Counterterrorism

  12. National Nuclear Security Administration United States Department of Energy

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica Treaty Organization NCT Nuclear

  13. Pantex makes large donation to United Way | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica TreatyWaste PolicyWind Farmfirefighters

  14. Pantex kicks off United Way campaign | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeeding access toTestPhysics Lab PPPLEIA-815, MonthlyNuclearveterans

  15. Research, Washington, DC (United States) Sandia National Labs.,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic Public ReadingResearch Nuclear Physics (NP) NP4878

  16. Model documentation report: Transportation sector model of the National Energy Modeling System

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Transportation Model (TRAN). The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated by the model. This document serves three purposes. First, it is a reference document providing a detailed description of TRAN for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, 57(b)(1)). Third, it permits continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements.

  17. What to Expect from Sectoral Trading: A U.S.–China Example

    E-Print Network [OSTI]

    Gavard, Claire

    In recent United Nations Framework Convention on Climate Change (UNFCCC) negotiations, sectoral mechanisms were proposed as a way to encourage early action and spur investment in low carbon technologies in developing ...

  18. Broadband Model Performance for an Updated National Solar Radiation Database in the United States of America: Preprint

    SciTech Connect (OSTI)

    Myers, D. R.; Wilcox, S.; Marion, W.; George, R.; Anderberg, M.

    2005-09-01T23:59:59.000Z

    Updated review of broadband model performance in a project being done to update the existing United States National Solar Radiation Database (NSRDB).

  19. Bosnia: War, History, and Nationality A curriculum unit developed by Steven Boyce for the

    E-Print Network [OSTI]

    Eustice, Ryan

    Bosnia: War, History, and Nationality A curriculum unit developed by Steven Boyce of the War in Bosnia 18-23 Day 4: War and Politics 24 Map 4: 1991 Ethnic Composition 25 Handout 3: Key Dates in Yugoslavia's War 26 Day 5: Begin Independent Research Projects 27 Annotated Resource List 28-33 #12

  20. United Nations/Nigeria Workshop on Space Law "Meeting international responsibilities and

    E-Print Network [OSTI]

    Glass, Ian S.

    United Nations/Nigeria Workshop on Space Law "Meeting international responsibilities and addressing domestic needs" 21-24 November 2005 Abuja, Nigeria Rockview Hotel (Royale), Plot 374/789 Cad Zone A8, Adetokunbo Ademola Crescent, Wuse II Abuja, Nigeria PRELIMINARY DRAFT PROGRAMME (as at 03 August 2005

  1. United Nations Association -Nebraska Division Hears Roger Gold's "World's Water Problems"

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    water problem there is the lack of water during the dry season. In the monsoons, water is collectedUnited Nations Association - Nebraska Division Hears Roger Gold's "World's Water Problems Dictionary (1980), and the New York Times Everyday Dictionary (1982). One-toorders are many of the 54 Water

  2. United Nations S/RES/1810 (2008) Security Council Distr.: General

    E-Print Network [OSTI]

    Sussex, University of

    2008-01-01T23:59:59.000Z

    for in the United Nations Charter, Reaffirming its decision that none of the obligations in resolution 1540 (2004 to the Nuclear Non-Proliferation Treaty, the Chemical Weapons Convention and the Biological and Toxin Weapons Convention or alter the responsibilities of the International Atomic Energy Agency or the Organization

  3. United Nations Global Compact The UN Global Compact is a strategic policy initiative for

    E-Print Network [OSTI]

    Chatziantoniou, Damianos

    United Nations Global Compact The UN Global Compact is a strategic policy initiative for businesses in the world. The Global Compact pursues two complementary objectives: 1. Mainstream the ten principles the Millennium Development Goals (MDGs). Participation in the Global Compact is open to degree-granting academic

  4. 36 SCIENTIFIC AMERICAN July 2008 In a dramatic call to action in April, United Nations

    E-Print Network [OSTI]

    OPINION 36 SCIENTIFIC AMERICAN July 2008 In a dramatic call to action in April, United Nations on an accelerated timeta- ble. The international system is a congeries of overlapping public and private effectively take a shared action. Success will enable us to consider similarly urgent challenges in food

  5. Part IV: Other International Arrangements of Interest Food and Agriculture Organization of the United Nations (FAO)

    E-Print Network [OSTI]

    Part IV: Other International Arrangements of Interest 176 Food and Agriculture Organization of the United Nations (FAO) Committee on Fisheries (COFI) FAO The Food and Agriculture Organization (FAO) was founded in October 1945 with a mandate to raise levels of nutrition and standards of living, to improve

  6. Printed in the United States of America. Available from National Technical Information Service

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Printed in the United States of America. Available from National Technical Information Service) of powders with high thermal resistance (R) showed that heat losses from the ends of the cylindrical specimen to reduce uncertainties introduced by end losses. Numerically derived factors were pre- pared for use

  7. Printed in the United States of America. Available from National Technical Information Service

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;Printed in the United States of America. Available from National Technical Information Service ......................... 20 4.3 Map-Based Compressor Model ........................... 23 4.4 Loss and Efficiency Performance ........................... 56 6.6 Fan Motor and Compressor Shell Heat Losses ........... 64 7

  8. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    SciTech Connect (OSTI)

    Barnett, J. M.; Brown, Jason H.; Walker, Brian A.

    2012-04-01T23:59:59.000Z

    Battelle-Pacific Northwest Division operates numerous research and development (R and D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)'s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  9. China's Pathways to Achieving 40% ~ 45% Reduction in CO{sub 2} Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    SciTech Connect (OSTI)

    Zheng, Nina; Fridley, David; Zhou, Nan; Levine, Mark; Price, Lynn; Ke, Jing

    2011-09-30T23:59:59.000Z

    Achieving China’s goal of reducing its carbon intensity (CO{sub 2} per unit of GDP) by 40% to 45% percent below 2005 levels by 2020 will require the strengthening and expansion of energy efficiency policies across the buildings, industries and transport sectors. This study uses a bottom-up, end-use model and two scenarios -- an enhanced energy efficiency (E3) scenario and an alternative maximum technically feasible energy efficiency improvement (Max Tech) scenario – to evaluate what policies and technical improvements are needed to achieve the 2020 carbon intensity reduction target. The findings from this study show that a determined approach by China can lead to the achievement of its 2020 goal. In particular, with full success in deepening its energy efficiency policies and programs but following the same general approach used during the 11th Five Year Plan, it is possible to achieve 49% reduction in CO{sub 2} emissions per unit of GDP (CO{sub 2} emissions intensity) in 2020 from 2005 levels (E3 case). Under the more optimistic but feasible assumptions of development and penetration of advanced energy efficiency technology (Max Tech case), China could achieve a 56% reduction in CO{sub 2} emissions intensity in 2020 relative to 2005 with cumulative reduction of energy use by 2700 Mtce and of CO{sub 2} emissions of 8107 Mt CO{sub 2} between 2010 and 2020. Energy savings and CO{sub 2} mitigation potential varies by sector but most of the energy savings potential is found in energy-intensive industry. At the same time, electricity savings and the associated emissions reduction are magnified by increasing renewable generation and improving coal generation efficiency, underscoring the dual importance of end-use efficiency improvements and power sector decarbonization.

  10. Available at: http://publications.ictp.it IC/2010/075 United Nations Educational, Scientific and Cultural Organization

    E-Print Network [OSTI]

    ­Ain University of Science and Technology, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates and The Abdus SalamAvailable at: http://publications.ictp.it IC/2010/075 United Nations Educational, Scientific], that in order for an operator to be hypercyclic, every component of its spectrum must intersect the unit circle

  11. Available at: http://publications.ictp.it IC/2010/075 United Nations Educational, Scientific and Cultural Organization

    E-Print Network [OSTI]

    -Ain University of Science and Technology, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates and The Abdus SalamAvailable at: http://publications.ictp.it IC/2010/075 United Nations Educational, Scientific to be hypercyclic, every component of its spectrum must intersect the unit circle. The question arises whether

  12. Estimated United States Transportation Energy Use 2005

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-11-09T23:59:59.000Z

    A flow chart depicting energy flow in the transportation sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 31,000 trillion British Thermal Units (trBTUs) of energy were used throughout the United States in transportation activities. Vehicles used in these activities include automobiles, motorcycles, trucks, buses, airplanes, rail, and ships. The transportation sector is powered primarily by petroleum-derived fuels (gasoline, diesel and jet fuel). Biomass-derived fuels, electricity and natural gas-derived fuels are also used. The flow patterns represent a comprehensive systems view of energy used within the transportation sector.

  13. Hepatics of the Turkey Creek Unit of the Big Thicket National Preserve: a floristic and ecological study

    E-Print Network [OSTI]

    Bazan, Evangelina

    1980-01-01T23:59:59.000Z

    Botanically, The Turkey Creek Unit is of particular interest be- cause it includes 10 distinct vascular plant associations, according to a recent vegetation analysis of the Big Thicket National Preserve by Harcombe and Marks (1979). The unit was selected... in the Turkey Creek Unit of the Big Thicket National Preserve with approximate acreage and corres- ponding percent area occuppied. Asterisks indicate associations not sampled. (After Harcombe & Marks, 1979. ) Association Acreage Percent * Upland pine (UP...

  14. Vascular Plant Survey of the Canyonlands Unit of the Big Thicket National Preserve, Tyler County, Texas

    E-Print Network [OSTI]

    Haile, Kelly

    2012-10-19T23:59:59.000Z

    list with scientific name, authority and all compared entities for each plant species can be found in Appendix E. T A B LE 2. Definitio n of co des use d to indic ate o rigi n, longevity, and seaso n of gro w... for all the plants collected can be found in Appendix A. Checklist of the Vascular Plants of the Canyonlands Unit of the Big Thicket National Preserve Pteridophyta ASPLENIACEAE Asplenium platyneuron (L.) B.S.P N P W BLECHNACEAE...

  15. Advanced Rooftop Unit Control

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced-Rooftop-Unit-Control Sign In About | Careers | Contact | Investors | bpa.gov Search Policy & Reporting Expand Policy & Reporting EE Sectors Expand EE Sectors...

  16. The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector

    SciTech Connect (OSTI)

    Greene, D.L.

    1997-07-01T23:59:59.000Z

    The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

  17. A study on the lead-times in the United Nations World Food Programme supply chain : a focus on the country offices

    E-Print Network [OSTI]

    López, Marc

    2006-01-01T23:59:59.000Z

    The United Nations World Food Programme (WFP), the largest humanitarian agency in the world and the logistical arm of the United Nations, reached more than 113 million people in 80 countries in 2004 and delivered more than ...

  18. Post-Closure Inspection Letter Report for Corrective Action Units on the Nevada National Security Site

    SciTech Connect (OSTI)

    Boehleke, R. F.

    2014-05-06T23:59:59.000Z

    This letter serves as the post-closure inspection letter report for Corrective Action Units (CAUs) on the Nevada National Security Site for calendar year 2013. The inspections identified maintenance and repair is required at the following sites: sign and/or fence repair is necessary at CAUs 113, 137, 139, 140, 143, 262, 370, 371, 372, 374, 476, 478, 529, 542, and 560; animal burrows were identified at CAU 547; and erosion was identified at CAUs 366, 367, 383, 551, and 574. In addition, the following use restrictions were removed during 2013 and will no longer be inspected in 2014: 165, 357, and 528.

  19. Host nation security force development : a new roadmap

    E-Print Network [OSTI]

    Fitzgerald, Shawn (Shawn Michael)

    2013-01-01T23:59:59.000Z

    A new model concerning the concepts of host nation security force development, or security sector reform (SSR), is proposed. This model is rooted in scholarly literature and seeks to fill current gaps in United States Army ...

  20. Water Impacts of the Electricity Sector (Presentation)

    SciTech Connect (OSTI)

    Macknick, J.

    2012-06-01T23:59:59.000Z

    This presentation discusses the water impacts of the electricity sector. Nationally, the electricity sector is a major end-user of water. Water issues affect power plants throughout the nation.

  1. China's Pathways to Achieving 40percent 45percent Reduction in CO2 Emissions per Unit of GDP in 2020: Sectoral Outlook and Assessment of Savings Potential

    E-Print Network [OSTI]

    Zheng, Nina

    2013-01-01T23:59:59.000Z

    heater Residential CO2 Emissions (Mt CO2) 2020 ResidentialEnergy Industrial Sector CO2 Emissions (Mt CO2) IndustrialFigure 5. Power Sector CO2 Emissions by Scenario E3 Max Tech

  2. NNSA Achieves 50 Percent Production for W76-1 Units | National...

    National Nuclear Security Administration (NNSA)

    and technicians from NNSA's Pantex Plant, the Y-12 National Security Complex, Savannah River Site, National Security Campus, Los Alamos National Laboratory and Sandia National...

  3. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Energy Sector Vulnerability to

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Recirculating Cooling Oncethrough Cooling Pond Cooling Dry Cooling Hybrid and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Energy Sector Vulnerability. Newmark, Dan Bilello, Jordan Macknick, KC Hallet, Ren Anderson National Renewable Energy Laboratory Vince

  4. Status Report on the United Nations Basic Space Science Initiative (UNBSSI)

    E-Print Network [OSTI]

    Haubold, H J

    2010-01-01T23:59:59.000Z

    Since 1990, the UN Programme on Space Applications leads the United Nations Basic Space Science Initiative by contributing to the international and regional development of astronomy and space science through annual UN/ESA/NASA/JAXA workshops on basic space science, International Heliophysical Year 2007, and the International Space Weather Initiative. Space weather is the conditions on the Sun and in the solar wind, magnetosphere, ionosphere and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health. The programme also coordinates the development of IHY/ISWI low-cost, ground-based, world-wide instrument arrays. To date, 14 world-wide instrument arrays comprising approximately 1000 instruments (GPS receivers, magnetometers, spectrometers, particle detectors) are operating in more than 71 countries. The most recent workshop was hosted by the Republic of Korea in 2009 for Asia and the Pacific. Annual workshops on ...

  5. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01T23:59:59.000Z

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  6. Published in J. Becvar and M. Kokine (eds.), Role of Economic Instruments in Integrating Environmental Policy with Sectoral Policies. New-York and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Environmental Policy with Sectoral Policies. New-York and Geneva, Economic commission for Europe, United Nations for environmental policy in countries in transition to market1 Olivier Godard2 1. Introduction Economic instruments on the Role of Economic Instruments in Integrating Environmental Policy with Sectoral Policies, held

  7. Arms control is everyone`s business: The United States and the United Nations at the mid-point of the 1990`s

    SciTech Connect (OSTI)

    Lehman, R.F. II

    1993-03-01T23:59:59.000Z

    This presentation encourages current efforts in arms control, non- proliferation, and peacekeeping. Verification is heralded as a confidence building method to bring about more openness in international relations. It is purported that openness has already enhanced democratic forces around the world. The insistence on strict compliance with the decisions of the United Nations Security Council is a show of support for international law. It is recommended that international norms on human rights, non-proliferation, and non-aggression be strengthened.

  8. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-07-17T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as Appendix F of this report. The requirements are summarized in Section 5.2 of this report. The proposed post-closure requirements consist of visual inspections to determine the condition of postings and radiological surveys to verify contamination has not migrated. NNSA/NSO requests the following: (1) A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 547; and (2) The transfer of CAU 547 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  9. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-08-15T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  10. 1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States THERMAL ACTIVATION OF DEEP OXYGEN DEFECT FORMATION AND HYDROGEN EFFUSION

    E-Print Network [OSTI]

    was partially supported by a DOE grant through United Solar Ovonics, Inc., under the Solar America Initiative1.Physics Department, Colorado School of Mines, Golden, CO 2. National Renewable Energy Laboratory, Golden, CO 3. United Solar Ovonic, LLC Troy, MI, United States BACKGROUND THERMAL ACTIVATION OF DEEP

  11. Closure Report for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-04-30T23:59:59.000Z

    Corrective Action Unit (CAU) 574 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Neptune' and consists of the following two Corrective Action Sites (CASs), located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); and (2) CAS 12-45-01, U12e.05 Crater (Blanca). This Closure Report presents information supporting closure of CAU 574 according to the FFACO (FFACO, 1996 [as amended March 2010]) and the Streamlined Approach for Environmental Restoration Plan for CAU 574 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The following activities were performed to support closure of CAU 574: (1) In situ external dose rate measurements were collected using thermoluminescent dosimeters at CAS 12-45-01, U12e.05 Crater (Blanca). (2) Total effective dose rates were determined at both sites by summing the internal and external dose rate components. (3) A use restriction (UR) was implemented at CAS 12-23-10, U12c.03 Crater (Neptune). Areas that exceed the final action level (FAL) of 25 millirems per year (mrem/yr) based on the Occasional Use Area exposure scenario are within the existing use restricted area for CAU 551. The 25-mrem/yr FAL is not exceeded outside the existing CAU 551 UR for any of the exposure scenarios (Industrial Area, Remote Work Area, and Occasional Use Area). Therefore, the existing UR for CAU 551 is sufficient to bound contamination that exceeds the FAL. (4) An administrative UR was implemented at CAS 12-45-01, U12e.05 Crater (Blanca) as a best management practice (BMP). The 25-mrem/yr FAL was not exceeded for the Remote Work Area or Occasional Use Area exposure scenarios; therefore, a UR is not required. However, because the 25-mrem/yr FAL was exceeded for the Industrial Area exposure scenario, an administrative UR was established as a BMP. UR documentation is included as Appendix B. The UR at CAS 12-23-10, U12c.03 Crater (Neptune), is within the existing UR for CAU 551. Additional postings were not installed, and annual post-closure inspections will be performed in conjunction with the inspections performed for CAU 551. At CAS 12-45-01, U12e.05 Crater (Blanca), the administrative UR does not require postings or inspections. NNSA/NSO requests the following: (1) A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 574; and (2) The transfer of CAU 574 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  12. Implementing the Corrective Action Management Unit at Sandia National Laboratories, New Mexico

    SciTech Connect (OSTI)

    MOORE,DARLENE R.; SCHRADER,SCOTT A.; KING,GABRIEL G.; CORMIER,JOHN

    2000-01-26T23:59:59.000Z

    In September 1997, following significant public and regulator interaction, Sandia Corporation (Sandia) was granted a Resource Conservation and Recovery Act (RCRA) and Hazardous Solid Waste Amendment (HSWA) permit modification allowing construction and operation of a Correction Action Management Unit (CAMU). The CAMU follows recent regulatory guidance that allows for cost-effective, expedient cleanup of contaminated sites and management of hazardous remediation wastes. The CAMU was designed to store, treat, and provide long-term management for Environmental Restoration (ER) derived wastes. The 154 square meter CAMU site at Sandia National Laboratories, New Mexico (SNL/NM), includes facilities for storing bulk soils and containerized wastes, for treatment of bulk soils, and has a containment cell for long-term disposition of waste. Proposed treatment operations include soil washing and low temperature thermal desorption. The first waste was accepted into the CAMU for temporary storage in January 1999. Construction at the CAMU was completed in March 1999, and baseline monitoring of the containment cell has commenced. At completion of operations the facility will be closed, the waste containment cell will be covered, and long-term post-closure monitoring will begin. Sandia's CAMU is the only such facility within the US Department of Energy (DOE) complex. Implementing this innovative approach to ER waste management has required successful coordination with community representatives, state and federal regulators, the DOE, Sandia corporate management, and contractors. It is expected that cost savings to taxpayers will be significant. The life-cycle CAMU project cost is currently projected to be approximately $12 million.

  13. REGISTRATION AS SUPPLIER WITH THE NATIONAL RESEARCH FOUNDATION INCLUDING ITS BUSINESS UNITS

    E-Print Network [OSTI]

    Jarrett, Thomas H.

    . The National Treasury's General Conditions of Contract is available on application. The National Research Service Mining, Quarrying Catering, Hospitality, Entertainment Technology, Communication Repairs Maintenance Distributor, Agent Exporter ISO Listed Importer Services Manufacturer Repairer Distributor Sales

  14. Testing of the Semikron Validation AIPM Unit at Oak Ridge National Laboratory -- October 2004

    SciTech Connect (OSTI)

    Nelson, S.C.

    2004-11-12T23:59:59.000Z

    This report documents the electrical tests performed on the Semikron high-voltage automotive integrated power module (AIPM) at Oak Ridge National Laboratory (ORNL). Testing was performed in the 100-hp dynamometer test cell at the National Transportation Research Center.

  15. Hydrogeologic Assessment of the East Bear Creek Unit, San Luis National Wildlife Refuge

    E-Print Network [OSTI]

    Quinn, Nigel W.T.

    2007-01-01T23:59:59.000Z

    Addendum to East Bear Creek Design Data Report, Centraltest wells in East Bear Creek Unit ……………. 41 Appendix B :C : East Bear Creek Refuge Water Supply ……………………………………. 64

  16. Post-Closure Inspection Letter Report for Corrective Action Units on the Nevada National Security Site

    SciTech Connect (OSTI)

    Boehlecke, Robert F.

    2013-05-28T23:59:59.000Z

    This letter serves as the post-closure inspection letter report for corrective action units on the Nevada Naational Security Site for calendar year 2012.

  17. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-04-30T23:59:59.000Z

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.

  18. Sandia National Laboratories: SÚRAO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States View all EC Publications Related Topics...

  19. Sandia National Laboratories: IAEA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States Conceptual Framework for Developing...

  20. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States View all EC Publications Related Topics...

  1. The making of a combat unit: a National Guard Regiment goes to war

    E-Print Network [OSTI]

    Powell, James Scott

    2002-01-01T23:59:59.000Z

    organization. Federalized in 1940 and shipped to the Pacific Theater in 1942, the unit performed garrison duties on New Caledonia until it transferred to SWPA. In June 1943, the dismounted cavalrymen landed unopposed on Woodlark Island, where they gained...

  2. Printed in the United States of America. Available from National Technical Information Service

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    .............. 33 5.6.1 Hot water . . . . . . . . . . . . . . . . . . . . 33 5.6.2 Electrical consumption and people Government. Neither the United States Government nor any agency thereof, nor any of their employees

  3. Printed in the United States of America. Available from National Technical Information Service

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    Technology Division A REVIEW OF STIRLING ENGINE MATHEMATICAL MODELS N. C. J. Chen F. P. Griffin Date or reflect those of the United States Government or any agency thereof. #12;ORNL/CON-135 Engineering

  4. Progress on an Updated National Solar Radiation Data Base for the United States: Preprint

    SciTech Connect (OSTI)

    Wilcox, S.; Anderberg, M.; George, R.; Marion, W.; Myers, D.; Renne, D.; Beckman, W.; DeGaetano, A.; Gueymard, C.; Perez, R.; Plantico, M.; Stackhouse, P.; Vignola, F.

    2005-09-01T23:59:59.000Z

    In 1992, The National Renewable Energy Laboratory (NREL) released the 1961-1990 National Solar Radiation Data Base (NSRDB), a 30-year set of hourly solar radiation data. In 2003, NREL undertook an NSRDB update project for the decade of 1991-2000.

  5. Climate Change Mitigation in the Energy and Forestry Sectors...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory Sector: Energy, Land Focus Area: Agriculture, Forestry Topics: Low emission development planning, Pathways analysis Resource...

  6. Estimated United States Residential Energy Use in 2005

    SciTech Connect (OSTI)

    Smith, C A; Johnson, D M; Simon, A J; Belles, R D

    2011-12-12T23:59:59.000Z

    A flow chart depicting energy flow in the residential sector of the United States economy in 2005 has been constructed from publicly available data and estimates of national energy use patterns. Approximately 11,000 trillion British Thermal Units (trBTUs) of electricity and fuels were used throughout the United States residential sector in lighting, electronics, air conditioning, space heating, water heating, washing appliances, cooking appliances, refrigerators, and other appliances. The residential sector is powered mainly by electricity and natural gas. Other fuels used include petroleum products (fuel oil, liquefied petroleum gas and kerosene), biomass (wood), and on-premises solar, wind, and geothermal energy. The flow patterns represent a comprehensive systems view of energy used within the residential sector.

  7. Closure Report for Corrective Action Unit 548: Areas 9, 10, 18, 19, and 20 Housekeeping Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-08-27T23:59:59.000Z

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 548, Areas 9, 10, 18, 19, and 20 Housekeeping Sites, and complies with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 548 consists of the following Corrective Action Sites (CASs), located in Areas 9, 10, 12, 18, 19, and 20 of the Nevada National Security Site: · CAS 09-99-02, Material Piles (2) · CAS 09-99-04, Wax, Paraffin · CAS 09-99-05, Asbestos, Vermiculite · CAS 09-99-07, Tar Spill · CAS 10-22-02, Drums · CAS 10-22-05, Gas Block · CAS 10-22-07, Gas Block · CAS 10-22-34, Drum · CAS 10-22-38, Drum; Cable · CAS 12-99-04, Epoxy Tar Spill · CAS 12-99-08, Cement Spill · CAS 18-14-01, Transformers (3) · CAS 19-22-01, Drums · CAS 19-22-11, Gas Block (2) · CAS 19-44-01, Fuel Spill · CAS 20-22-07, Drums (2) · CAS 20-22-09, Drums (3) · CAS 20-22-14, Drums (2) · CAS 20-22-16, Drums (2) · CAS 20-24-09, Battery Closure activities began in July 2011 and were completed in December 2011 and included removal and disposal of material piles, spills, sanitary debris, a lead acid battery, lead and steel shot, and stained soil. Activities were conducted according to the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). Closure activities generated sanitary waste, hydrocarbon waste, low-level waste, hazardous waste, and mixed waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 548 · The transfer of CAU 548 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  8. Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Jeremy Gwin and Douglas Frenette

    2010-09-30T23:59:59.000Z

    This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 – Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or “clean,” building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, “Final Status Survey Plan for Corrective Action Unit 117 – Pluto Disassembly Facility, Building 2201”) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one of three categories: Class 1, Class 2 or Class 3 (a fourth category is a “Non-Impacted Class” which in the case of Building 2201 only pertained to exterior surfaces of the building.) The majority of the rooms were determined to fall in the less restrictive Class 3 category, however, Rooms 102, 104, 106, and 107 were identified as containing Class 1 and 2 areas. Building 2201 was divided into “survey units” and surveyed following the requirements of the Final Status Survey Plan for each particular class. As each survey unit was completed and documented, the survey results were evaluated. Each sample (static measurement) with units of counts per minute (cpm) was corrected for the appropriate background and converted to a value with units of dpm/100 cm2. With a surface contamination value in the appropriate units, it was compared to the surface contamination limits, or in this case the derived concentration guideline level (DCGLw). The appropriate statistical test (sign test) was then performed. If the survey unit was statistically determined to be below the DCGLw, then the survey unit passed and the null hypothesis (that the survey unit is above limits) was rejected. If the survey unit was equal to or below the critical value in the sign test, the null hypothesis was not rejected. This process was performed for all survey units within Building 2201. A total of thirty-three “Class 1,” four “Class 2,” and one “Class 3” survey units were developed, surveyed, and evaluated. All survey units successfully passed the statistical test. Building 2201 meets the release criteria commensurate with the Waste Acceptance Criteria (for radiological purposes) of the U10C landfill permit residing within NNSS boundaries. Based on the thorough statistical sampling and scanning of the building’s interior, Building 2201 may be considered radiologically “clean,” or free of contamination.

  9. Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick and Sloop, Christy

    2011-04-01T23:59:59.000Z

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 372, Area 20 Cabriolet/Palanquin Unit Craters, located within Areas 18 and 20 at the Nevada National Security Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 372 comprises four corrective action sites (CASs): • 18-45-02, Little Feller I Surface Crater • 18-45-03, Little Feller II Surface Crater • 20-23-01, U-20k Contamination Area • 20-45-01, U-20L Crater (Cabriolet) The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 372 based on the implementation of the corrective action of closure in place with administrative controls at all CASs. Corrective action investigation (CAI) activities were performed from November 9, 2009, through December 10, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 372 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL was established of 25 millirem per year based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were found to be present at all four CASs. It is assumed that radionuclide levels present within the Little Feller I and Cabriolet high contamination areas and within the craters at Palanquin and Cabriolet exceed the FAL. It is also assumed that potential source material in the form of lead bricks at Little Feller I and lead-acid batteries at Palanquin and Cabriolet exceed the FAL. Therefore, corrective actions were undertaken that consist of removing potential source material, where present, and implementing a use restriction and posting warning signs at each CAS. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: • No further corrective actions are necessary for CAU 372. • A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 372. • Corrective Action Unit 372 should be moved from Appendix III to Appendix IV of the FFACO.

  10. Printed in the United States of America. Available from National Technical Information Service

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    .1.4 Split vs Package Unit Shipments/Applications 25 4.1.5 Residential vs Commercial Heat Pump 27.1.9 Total Residential Central Heating/Cooling 37 System Installations by Region 4.1.10 Heat Pump Shipments-95d ADVANCED ELECTRIC HEAT PUMP MARKET AND BUSINESS ANALYSIS FINAL REPORT J. C. Kastovich, Program

  11. Printed in the United States of America. Available from National Technical Information Service

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    -stage chiller with numbered state points and units ....................................... 6 2.4 Flow chart LABORATORY Oak Ridge, Tennessee 37831 operated by MARTIN MARIETTA ENERGY SYSTEMS, INC. for the U.S. DEPARTMENT OF ENERGY under Contract DE-AC05-840R21400 #12;CONTENTS LIST OF FIGURES

  12. Printed in the United States of America. Available from National Technical Information Service

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    ............................................... 2-1 2.1 Heat Pump Water Heater ........................................ 2-1 2.1.1 Sensor Locations those of the United States Government or any agency thereof #12;ORNL/CON-173 Energy Division HEAT PUMP WATER HEATER LABORATORY TEST AND DESIGN MODEL VALIDATION K. H. Zimmerman Date Published: March 1986

  13. Investigation of contemporary problems and practices in post-hurricane reconstruction in the commercial sector of the southeast region of the United States

    E-Print Network [OSTI]

    Bhattacharjee, Suchayita S.

    2009-05-15T23:59:59.000Z

    The thesis addresses the problems faced by contractors during the recovery and rebuilding process after hurricanes that struck the southeast region of the United States in 2004-2005 hurricane seasons. It also deals with the practices they normally...

  14. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration

    E-Print Network [OSTI]

    Langerhans, Brian

    , for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL; determining rate of spread and social network for smallpox epidemic in Abakaliki, Nigeria (1972) · Studying

  15. Energy Sector Market Analysis

    SciTech Connect (OSTI)

    Arent, D.; Benioff, R.; Mosey, G.; Bird, L.; Brown, J.; Brown, E.; Vimmerstedt, L.; Aabakken, J.; Parks, K.; Lapsa, M.; Davis, S.; Olszewski, M.; Cox, D.; McElhaney, K.; Hadley, S.; Hostick, D.; Nicholls, A.; McDonald, S.; Holloman, B.

    2006-10-01T23:59:59.000Z

    This paper presents the results of energy market analysis sponsored by the Department of Energy's (DOE) Weatherization and International Program (WIP) within the Office of Energy Efficiency and Renewable Energy (EERE). The analysis was conducted by a team of DOE laboratory experts from the National Renewable Energy Laboratory (NREL), Oak Ridge National Laboratory (ORNL), and Pacific Northwest National Laboratory (PNNL), with additional input from Lawrence Berkeley National Laboratory (LBNL). The analysis was structured to identify those markets and niches where government can create the biggest impact by informing management decisions in the private and public sectors. The analysis identifies those markets and niches where opportunities exist for increasing energy efficiency and renewable energy use.

  16. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-05-01T23:59:59.000Z

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  17. Sandia tops $6.5 million in United Way donations | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica HighSTART Signedhosts annualNational

  18. Rhetoric, World-view, and Strategy in United States National Security Strategy Documents

    E-Print Network [OSTI]

    Cram, Travis J.

    2014-08-31T23:59:59.000Z

    to solve global problems and manage threats requires that these audiences buy-in to the president’s assessment of threats and possible solutions. Evaluating NSS documents as instances of symbolic action may enable critics to understand how NSS documents... the United States as the unwilling, virtuous victim in order to legitimize defense build-ups, explain policy failures, or warrant American military interventions abroad (Ivie, 1984; Klope, 1986). Reagan’s approach to nuclear weapons and missile defenses...

  19. Printed in the United States of America. Available from National Technical Information Service

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    meaningful step toward the development of better design models. vii #12;1. INTRODUCTION Stirling engine COMPARATIVE ANALYSIS OF A STIRLING HEAT PUMP WITH SECOND- AND THIRD-ORDER COMPUTER MODELS N. Domingo Engineering Technology Division Date Published-June 1985 Prepared by the OAK RIDGE NATIONAL LABORATORY Oak

  20. Rank Residential Sector Commercial Sector Industrial Sector

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a evie _ =_ In7, 20116,650.0 Weekly7a.7. Petroleum and3.

  1. Oil atlas: National Petroleum Technology Office activities across the United States

    SciTech Connect (OSTI)

    Tiedemann, H.A.

    1998-03-01T23:59:59.000Z

    Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

  2. Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and the United Nations Environment Program (UNEP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The SWERA Programme provides easy access to credible renewable energy data to stimulate investment in, and development of, renewable energy technologies. The Solar and Wind Energy Resource Assessment (SWERA) started in 2001 to advance the large-scale use of renewable energy technologies by increasing the availability and accessibility of high-quality solar and wind resource information. SWERA began as a pilot project with funding from the Global Environment Facility (GEF) and managed by the United Nations Environment Programme's (UNEP) Division of Technology, Industry and Economics (DTIE) in collaboration with more than 25 partners around the world. With the success of the project in 13 pilot countries SWERA expanded in 2006 into a full programme. Its expanded mission is to provide high quality information on renewable energy resources for countries and regions around the world, along with the tools needed to apply these data in ways that facilitate renewable energy policies and investments.[from the SWERA Guide at http://swera.unep.net/index.php?id=sweraguide_chp1] DOE and, in particular, the National Renewable Energy Laboratory, has been a functioning partner from the beginning. NREL was part of the original technical team involved in mapping, database, and GIS activities. Solar, wind, and meteorological data for selected countries can be accessed through a variety of different tools and interfaces.

  3. Company, for the United States Department of Energy's National Nuclear Security

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.Space DataEnergy Superior Energy PerformanceSandia is

  4. NNSA Delivers All Scheduled W76-1 Units to Navy for 2012 | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurity Complex Delivers All Scheduled ...

  5. United States-Japan Nuclear Security Working Group Fact Sheet | National

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City,EnrichedSupplemental Directives |and RadioactiveCooperation

  6. NNSA Achieves 50 Percent Production for W76-1 Units | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurityMaintaining theSan Jose-San|NGSI Safeguards|Security

  7. NNSA Small Business Week Day 2: United Drilling, Inc. | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEE OCCUPATIONAL SAFETY AND HEALTHN N E ESecurity

  8. The United States Plutonium Balance, 1944-2009 | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmericaAdministrationLast W-79

  9. A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of Energy ThisThis guide isJanuary 2014 |

  10. Los Alamos National Laboratory again top contributor to United Way of Santa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenterLogging inLookingLANLexcellence byFe

  11. Los Alamos National Laboratory again top contributor to United Way of Santa

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatestCenterLogging inLookingLANLexcellence byFeFe

  12. Issued by Sandia National Laboratories, operated for the United States Departmen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12 Investigation Peer ReviewIronNuclear Physicsii

  13. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY National Electric Transmission Congestion Study )

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian Nuclear Warheads into Fuel for U.S. Electricity3 DEPARTMENT OF ENERGY

  14. Natural Gas Processing Plants in the United States: 2010 Update / National

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual Download1.6.

  15. Natural Gas Processing Plants in the United States: 2010 Update / National

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual Download1.6.Overview

  16. Natural Gas Processing Plants in the United States: 2010 Update / National

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960 Annual

  17. A new interactive map takes you around the United States in 17 national

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2,generationPhysics Lab

  18. Biogas Potential in the United States (Fact Sheet), Energy Analysis, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find Find More Like ThisBioenergyBiofuelFoodEnergy

  19. Michaela G. Farr and Joshua S. Stein Sandia National Laboratory, Albuquerque, NM, 87185, United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess used in mining -MODERN GRIDStewart!Spatial

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 374: Area 20 Schooner Unit Crater, Nevada National Security Site, Nevada with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-07-01T23:59:59.000Z

    Corrective Action Unit 374 comprises five corrective action sites (CASs): • 18-22-05, Drum • 18-22-06, Drums (20) • 18-22-08, Drum • 18-23-01, Danny Boy Contamination Area • 20-45-03, U-20u Crater (Schooner) The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 374 based on the implementation of corrective actions. The corrective action of closure in place with administrative controls was implemented at CASs 18-23-01 and 20-45-03, and a corrective action of removing potential source material (PSM) was conducted at CAS 20-45-03. The other CASs require no further action; however, best management practices of removing PSM and drums at CAS 18-22-06, and removing drums at CAS 18-22-08 were performed. Corrective action investigation (CAI) activities were performed from May 4 through October 6, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 374: Area 20 Schooner Unit Crater, Nevada Test Site, Nevada. The approach for the CAI was divided into two facets: investigating the primary release of radionuclides and investigating other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 374 dataset of investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Radiological doses exceeding the FAL of 25 millirem per year were found to be present in the surface soil that was sampled. It is assumed that radionuclide levels present in subsurface media within the craters and ejecta fields (default contamination boundaries) at the Danny Boy and Schooner sites exceed the FAL. It is also assumed that PSM in the form of lead-acid batteries at Schooner exceeds the FAL. Therefore, corrective actions were undertaken that consist of removing PSM, where present, and implementing a use restriction and posting warning signs at the Danny Boy and Schooner sites. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: • No further corrective actions are necessary for CAU 374. • A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 374. • Corrective Action Unit 374 should be moved from Appendix III to Appendix IV of the FFACO.

  1. Corrective Action Decision Document/Closure Report for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-06-01T23:59:59.000Z

    Corrective Action Unit 367 comprises four corrective action sites (CASs): • 10-09-03, Mud Pit • 10-45-01, U-10h Crater (Sedan) • 10-45-02, Ess Crater Site • 10-45-03, Uncle Crater Site The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation of the corrective actions and site closure activities implemented at CAU 367. A corrective action of closure in place with use restrictions was completed at each of the three crater CASs (10-45-01, 10-45-02, and 10-45-03); corrective actions were not required at CAS 10-09-03. In addition, a limited soil removal corrective action was conducted at the location of a potential source material release. Based on completion of these correction actions, no additional corrective action is required at CAU 367, and site closure is considered complete. Corrective action investigation (CAI) activities were performed from February 2010 through March 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters, Nevada Test Site, Nevada. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of non-test or other releases (e.g., migration in washes and potential source material). Based on the proximity of the Uncle, Ess, and Sedan craters, the impact of the Sedan test on the fallout deposited from the two earlier tests, and aerial radiological surveys, the CAU 367 investigation was designed to study the releases from the three crater CASs as one combined release (primary release). Corrective Action Site 10-09-03, Mud Pit, consists of two mud pits identified at CAU 367. The mud pits are considered non-test releases or other releases and were investigated independent of the three crater CASs. The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 367 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. For the primary release, radiological doses exceeding the FAL of 25 millirem per year were not found to be present in the surface or shallow subsurface soil outside the default contamination boundary. However, it was assumed that radionuclides are present in subsurface media within each of the three craters (Sedan, Ess, and Uncle) due to prompt injection of radionuclides from the tests. Based on the assumption of radiological dose exceeding the FAL, corrective actions were undertaken that consisted of implementing a use restriction and posting warning signs at each crater CAS. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. With regard to other releases, no contaminants of concern were identified at the mud pits or any of the other release locations, with one exception. Potential source material in the form of lead was found at one location. A corrective action of clean closure was implemented at this location, and verification samples indicated that no further action is necessary. Therefore, NNSA/NSO provides the following recommendations: • A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 367. • Corrective Action Unit 367 should be promoted from Appendix III to Appendix IV of the FFACO.

  2. Multi-Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighandSWPA / SPRA /Ml'.SolarUS Dept ofActing Chiefof Inks andmulti-sector

  3. Sandia National Laboratories: Nuclear Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States View all EC Publications Related Topics...

  4. Sandia National Laboratories: Crystalline Rock

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States View all EC Publications Related Topics...

  5. Sandia National Laboratories: solar thermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States Conceptual Framework for Developing...

  6. Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss and Catherine Birney

    2011-05-01T23:59:59.000Z

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.

  7. Closure Report for Corrective Action Unit 566: EMAD Compound, Nevada National Security Site, Nevada with ROTC-1, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2011-06-01T23:59:59.000Z

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 566: EMAD Compound, Nevada National Security Site, Nevada. Corrective Action Unit 566 comprises Corrective Action Site (CAS) 25-99-20, EMAD Compound, located within Area 25 of the Nevada National Security Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 566 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 566 issued by the Nevada Division of Environmental Protection. From October 2010 through May 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 566: EMAD Compound, Nevada National Security Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 566. Assessment of the data from collected soil samples, and from radiological and visual surveys of the site, indicates the FALs were exceeded for polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and radioactivity. Corrective actions were implemented to remove the following: • Radiologically contaminated soil assumed greater than FAL at two locations • Radiologically contaminated soil assumed greater than FAL with lead shot • PCB-contaminated soil • Radiologically contaminated filters and equipment • Fuels, lubricants, engine coolants, and oils • Lead debris • Electrical and lighting components assumed to be potential source materials, including - fluorescent light bulbs - mercury switches (thermostats) - circuit boards - PCB-containing ballasts Closure of CAU 566 was achieved through a combination of removal activities and closure in place. Corrective actions to remove COCs, and known and assumed potential source materials, were implemented as was practical. The PCBs remaining at the site are bounded laterally, but not vertically, within CAS 25-99-20 based upon step-out sampling; the sources (e.g., PCB transformer oils, diesel fuel from locomotive reservoirs) have been removed; the practice of the application of PCB-containing oils for soil stabilization has ceased; and the COCs are not readily mobile in the environment. Closure in place is necessary, and future land use of the site will be restricted from intrusive activities. This will effectively eliminate inadvertent contact by humans with the contaminated media. The DOE, National Nuclear Security Administration Nevada Site Office, provides the following recommendations: • No further corrective action is required at CAS 25-99-20. • Closure in place of CAS 25-99-20. • A use restriction is required at CAU 566. • A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 566. • Corrective Action Unit 566 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

  8. National Human Radiobiological Tissue Repository (NHRTR) at the United States Transuranium and Uranium Registries

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The NHRTR, one component of the USTUR, contains frozen tissues, tissue solutions, microscope slides, and paraffin blocks that were collected by the USTUR at the autopsy of workers with documented intakes of plutonium, americium, uranium, and thorium. The samples are available to qualified scientists for further research. Thousands of frozen, ashed, dried, and plastic embedded bone samples from the radium studies carried out by Argonne National Laboratory, Argonne Cancer Research Hospital, the Massachusetts Institute of Technology, and the New Jersey Radium Research Project are available and linked by case number to de-identified, published case data. These data include the person's source of exposure (dial painter, therapeutic injection, etc.), estimated body burden, radiochemical results, and medical history. Other samples, including organs and whole body donations, have come from volunteer donors who were impacted by elements such as plutonium, throium, etc. See the USTUR website for information on how to apply for research samples or how to become a volunteer donor. [Information taken from http://www.ustur.wsu.edu/NHRTR/index.html#

  9. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-09-29T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-08-01T23:59:59.000Z

    Corrective Action Unit 375 comprises three corrective action sites (CASs): (1) 25-23-22, Contaminated Soils Site; (2) 25-34-06, Test Cell A Bunker; and (3) 30-45-01, U-30a, b, c, d, e Craters. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 375 based on the implementation of corrective action of closure in place with administrative controls at CAS 25-23-22, no further action at CAS 25-34-06, and closure in place with administrative controls and removal of potential source material (PSM) at CAS 30-45-01. Corrective action investigation (CAI) activities were performed from July 28, 2010, through April 4, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 375 dataset of investigation results was evaluated based on the data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were assumed to be present within the default contamination boundaries at CASs 25-23-22 and 30-45-01. No contaminants were identified at CAS 25-34-06, and no corrective action is necessary. Potential source material in the form of lead plate, lead-acid batteries, and oil within an abandoned transformer were identified at CAS 30-45-01, and corrective actions were undertaken that consisted of removing the PSM. Use restrictions and warning signs were implemented for the remaining radiological contamination at CASs 25-23-22 and 30-45-01. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: (1) No further corrective actions are necessary for CAU 375; (2) A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 375; and (3) Move CAU 375 from Appendix III to Appendix IV of the FFACO.

  11. Agriculture Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWP TWP RelatedCellulase C. bescii CelA, adefault Sign In About | Careers

  12. Federal Sector

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FYU.S. DOE Office of Sciencedefault Sign In

  13. Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2010-12-01T23:59:59.000Z

    Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for the CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The site will be investigated based on the data quality objectives (DQOs) developed on July 6, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for the Baneberry site. The primary release associated with Corrective Action Unit 365 was radiological contamination from the Baneberry nuclear test. Baneberry was an underground weapons-related test that vented significant quantities of radioactive gases from a fissure located in close proximity to ground zero. A crater formed shortly after detonation, which stemmed part of the flow from the fissure. The scope of this investigation includes surface and shallow subsurface (less than 15 feet below ground surface) soils. Radionuclides from the Baneberry test with the potential to impact groundwater are included within the Underground Test Area Subproject. Investigations and corrective actions associated with the Underground Test Area Subproject include the radiological inventory resulting from the Baneberry test.

  14. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    none,

    2013-06-27T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Security Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NFO for closure of CAU 104 · The transfer of CAU 104 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  15. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration

    E-Print Network [OSTI]

    Sidiropoulos, Nikolaos D.

    , for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94ALT i For example: #12;Semantic Graphs · Different types of edges · Attribute or relationship labels type of edge. DEDICOM PARAFAC Multilinear algebra Adjacency matrix Adjacency tensor #12;Using Tensors

  16. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  17. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-08-31T23:59:59.000Z

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  18. United Nations Development Programme

    E-Print Network [OSTI]

    Technologies To Convert Biomass Into Modern Energy Chapter 5 5.1. Gasification 5.2. Anaerobic Digestion 5 Chapter 7 7.1. Biogas-Based Electricity and Water Supply in Indian Villages 7.2. Sustainable

  19. Second United Nations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysicsDepartment of Energy MonizBiofuels

  20. Sandia National Laboratories: A Model for the Nation: Promoting...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ClimateECClimateA Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector A Model for the Nation: Promoting Education and Innovation in Vermont's...

  1. DOE has published the revised 2010 Energy Sector Specific Plan

    Broader source: Energy.gov [DOE]

    The Department of Energy announces the publication of the Energy Sector-Specific Plan: An Annex to the National Infrastructure Protection Plan 2010.

  2. Sandia National Laboratories: Energy Surety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nation's first solar storage facility that is ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  3. An Illustration of the Corrective Action Process, The Corrective Action Management Unit at Sandia National Laboratories/New Mexico

    SciTech Connect (OSTI)

    Irwin, M.; Kwiecinski, D.

    2002-02-26T23:59:59.000Z

    Corrective Action Management Units (CAMUs) were established by the Environmental Protection Agency (EPA) to streamline the remediation of hazardous waste sites. Streamlining involved providing cost saving measures for the treatment, storage, and safe containment of the wastes. To expedite cleanup and remove disincentives, EPA designed 40 CFR 264 Subpart S to be flexible. At the heart of this flexibility are the provisions for CAMUs and Temporary Units (TUs). CAMUs and TUs were created to remove cleanup disincentives resulting from other Resource Conservation Recovery Act (RCRA) hazardous waste provisions--specifically, RCRA land disposal restrictions (LDRs) and minimum technology requirements (MTRs). Although LDR and MTR provisions were not intended for remediation activities, LDRs and MTRs apply to corrective actions because hazardous wastes are generated. However, management of RCRA hazardous remediation wastes in a CAMU or TU is not subject to these stringent requirements. The CAMU at Sandia National Laboratories in Albuquerque, New Mexico (SNL/NM) was proposed through an interactive process involving the regulators (EPA and the New Mexico Environment Department), DOE, SNL/NM, and stakeholders. The CAMU at SNL/NM has been accepting waste from the nearby Chemical Waste Landfill remediation since January of 1999. During this time, a number of unique techniques have been implemented to save costs, improve health and safety, and provide the best value and management practices. This presentation will take the audience through the corrective action process implemented at the CAMU facility, from the selection of the CAMU site to permitting and construction, waste management, waste treatment, and final waste placement. The presentation will highlight the key advantages that CAMUs and TUs offer in the corrective action process. These advantages include yielding a practical approach to regulatory compliance, expediting efficient remediation and site closure, and realizing potentially significant cost savings compared to off-site disposal. Specific examples of CA MU advantages realized by SNL/NM will be presented along with the above highlighted process improvements, Integrated Safety Management System (ISMS) performance, and associated lessons learned.

  4. Pacific Northwest National Laboratory Site Dose-per-Unit-Release Factors for Use in Calculating Radionuclide Air Emissions Potential-to-Emit Doses

    SciTech Connect (OSTI)

    Barnett, J. M.; Rhoads, Kathleen

    2009-06-11T23:59:59.000Z

    This report documents assumptions and inputs used to prepare the dose-per-unit-release factors for the Pacific Northwest National Laboratory (PNNL) Site (including the buildings that make up the Physical Sciences Facility [PSF] as well as the Environmental Molecular Sciences Laboratory [EMSL]) calculated using the EPA-approved Clean Air Act Assessment Package 1988–Personal Computer (CAP88-PC) Version 3 software package. The dose-per-unit-release factors are used to prepare dose estimates for a maximum public receptor (MPR) in support of Radioactive Air Pollutants Notice of Construction (NOC) applications for the PNNL Site.

  5. Pacific Northwest National Laboratory Site Dose-per-Unit-Release Factors for Use in Calculating Radionuclide Air Emissions Potential-to-Emit Doses

    SciTech Connect (OSTI)

    Barnett, J. M.; Rhoads, Kathleen

    2008-09-29T23:59:59.000Z

    This report documents assumptions and inputs used to prepare the dose-per-unit-release factors for the Pacific Northwest National Laboratory (PNNL) Site (including the buildings that make up the Physical Sciences Facility [PSF] as well as the Environmental Molecular Sciences Laboratory [EMSL]) calculated using the EPA-approved Clean Air Act Assessment Package 1988–Personal Computer (CAP88-PC) Version 3 software package. The dose-per-unit-release factors are used to prepare dose estimates for a maximum public receptor (MPR) in support of Radioactive Air Pollutants Notice of Construction (NOC) applications for the PNNL Site.

  6. Sandia National Laboratories: Climate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Climate A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  7. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summit and Technology Forum will convene the ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  8. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quallion Eaton Corp. Air Products ExxonTonen ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  9. Sandia National Laboratories: CETI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CETI A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  10. Sandia National Laboratories: Vermont

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vermont A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  11. Sandia National Laboratories: Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This public benchmark represents analysis ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  12. Sector 30 - useful links

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Useful Links Sector 30 Printing from your laptop at the beamline Data retrival onsite from ftp:ftp.xray.aps.anl.govpubsector30 Sector Orientation Form HERIX experiment header...

  13. Sandia National Laboratories: SunShot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States Conceptual Framework for Developing...

  14. Sandia National Laboratories: Crystalline Rock Repository Developments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States View all EC Publications Related Topics...

  15. Sandia National Laboratories: 2012-10461W

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the United States Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States View all EC Publications Related Topics...

  16. Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2012-05-01T23:59:59.000Z

    Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 31, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 550. The potential contamination sources associated with the study groups are from nuclear testing activities conducted at CAU 550. The DQO process resulted in an assumption that the total effective dose (TED) within the default contamination boundary of CAU 550 exceeds the final action level and requires corrective action. The presence and nature of contamination outside the default contamination boundary at CAU 550 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based final action level. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each group of CASs.

  17. End use energy consumption data base: transportation sector

    SciTech Connect (OSTI)

    Hooker, J.N.; Rose, A.B.; Greene, D.L.

    1980-02-01T23:59:59.000Z

    The transportation fuel and energy use estimates developed a Oak Ridge National Laboratory (ORNL) for the End Use Energy Consumption Data Base are documented. The total data base contains estimates of energy use in the United States broken down into many categories within all sectors of the economy: agriculture, mining, construction, manufacturing, commerce, the household, electric utilities, and transportation. The transportation data provided by ORNL generally cover each of the 10 years from 1967 through 1976 (occasionally 1977 and 1978), with omissions in some models. The estimtes are broken down by mode of transport, fuel, region and State, sector of the economy providing transportation, and by the use to which it is put, and, in the case of automobile and bus travel, by the income of the traveler. Fuel types include natural gas, motor and aviation gasoline, residual and diesel oil, liuqefied propane, liquefied butane, and naphtha- and kerosene-type jet engine fuels. Electricity use is also estimated. The mode, fuel, sector, and use categories themselves subsume one, two, or three levels of subcategories, resulting in a very detailed categorization and definitive accounting.

  18. Performable Nations: Music and Literature in Late Nineteenth- and Early Twentieth-Century Cuba, Brazil, and the United States

    E-Print Network [OSTI]

    Beyer, Bethany

    2013-01-01T23:59:59.000Z

    Magaldi, Cristina. “Two Musical Representations of Brazil. ”Brazil in the Making: Facets of National Identity. Eds.McCann, Bryan. Hello, Hello Brazil: Popular Music in the

  19. Soil Sampling to Demonstrate Compliance with Department of Energy Radiological Clearance Requirements for the ALE Unit of the Hanford Reach National Monument

    SciTech Connect (OSTI)

    Fritz, Brad G.; Dirkes, Roger L.; Napier, Bruce A.

    2007-04-01T23:59:59.000Z

    The Hanford Reach National Monument consists of several units, one of which is the Fitzner/Eberhardt Arid Lands Ecology Reserve (ALE) Unit. This unit is approximately 311 km2 of shrub-steppe habitat located to the south and west of Highway 240. To fulfill internal U. S. Department of Energy (DOE) requirements prior to any radiological clearance of land, DOE must evaluate the potential for residual radioactive contamination on this land and determine compliance with the requirements of DOE Order 5400.5. Historical soil monitoring conducted on ALE indicated soil concentrations of radionuclides were well below the Authorized Limits. However, the historical sampling was done at a limited number of sampling locations. Therefore, additional soil sampling was conducted to determine if the concentrations of radionuclides in soil on the ALE Unit were below the Authorized Limits. This report contains the results of 50 additional soil samples. The 50 soil samples collected from the ALE Unit all had concentrations of radionuclides far below the Authorized Limits. The average concentrations for all detectable radionuclides were less than the estimated Hanford Site background. Furthermore, the maximum observed soil concentrations for the radionuclides included in the Authorized Limits would result in a potential annual dose of 0.14 mrem assuming the most probable use scenario, a recreational visitor. This potential dose is well below the DOE 100-mrem per year dose limit for a member of the public. Spatial analysis of the results indicated no observable statistically significant differences between radionuclide concentrations across the ALE Unit. Furthermore, the results of the biota dose assessment screen, which used the ResRad Biota code, indicated that the concentrations of radionuclides in ALE Unit soil pose no significant health risk to biota.

  20. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14T23:59:59.000Z

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  1. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    public sector, and one in the private sector. Total energy consumptionenergy consumption increased by over 60% in the commercial building (including both public and private) sector.public sector ownership. 2.2.3 Energy data At the national or state level, end-use level energy consumption

  2. Corrective Action Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    none,

    2013-04-30T23:59:59.000Z

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996 as amended). CAU 366 consists of the following six Corrective Action Sites (CASs) located in Area 11 of the Nevada National Security Site: · CAS 11-08-01, Contaminated Waste Dump #1 · CAS 11-08-02, Contaminated Waste Dump #2 · CAS 11-23-01, Radioactively Contaminated Area A · CAS 11-23-02, Radioactively Contaminated Area B · CAS 11-23-03, Radioactively Contaminated Area C · CAS 11-23-04, Radioactively Contaminated Area D Site characterization activities were performed in 2011 and 2012, and the results are presented in Appendix A of the Corrective Action Decision Document (CADD) for CAU 366 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2012a). The following closure alternatives were recommended in the CADD: · No further action for CAS 11-23-01 · Closure in place for CASs 11-08-01, 11-08-02, 11-23-02, 11-23-03, and 11-23-04 The scope of work required to implement the recommended closure alternatives includes the following: · Non-engineered soil covers approximately 3 feet thick will be constructed at CAS 11-08-01 over contaminated waste dump (CWD) #1 and at CAS 11-08-02 over CWD #2. · FFACO use restrictions (URs) will be implemented for the areas where the total effective dose (TED) exceeds the final action level (FAL) of 25 millirems per Occasional Use Area year (mrem/OU-yr). The FAL is based on an assumption that the future use of the site includes occasional work activities and that workers will not be assigned to the area on a regular basis. A site worker under this scenario is assumed to be on site for a maximum of 80 hours per year for 5 years. The FFACO UR boundaries will encompass the areas where a worker would be exposed to 25 millirems of radioactivity per year if they are present for 80 hours per year. These boundaries will be defined as follows: – It is assumed that radiological contaminants are present at CAS 11-08-01 and CAS 11-08-02 within CWDs #1 and #2 at levels exceeding the FAL. Therefore, UR boundaries will be established around the perimeters of the soil covers that will be constructed at CWD #1 and CWD #2. A geophysical survey revealed buried metallic debris outside the fence and adjacent to CWD #1. Therefore, the UR boundary for CWD #1 will be expanded to include the mound containing buried material. – It is assumed that radiological contaminants are present at CAS 11-23-02, CAS 11-23-03, and CAS 11-23-04, within the three High Contamination Area (HCA) boundaries associated with the 11b, 11c, and 11d test areas at levels exceeding the FAL. Therefore, the UR boundaries will be established around the perimeters of the HCAs. The TED at an area of soil impacted by radiological debris outside the fence and adjacent to the 11c test area HCA exceeds the FAL of 25 mrem/OU-yr. Because the radiological impact from the debris at this location is visible on the aerial flyover radiological survey, all other areas within this isopleth of the flyover survey are conservatively also assumed to exceed the FAL. Therefore, the UR boundaries for the 11b, 11c, and 11d test areas will be expanded to include the areas within this isopleth. · The FFACO URs will all be located within the large Contamination Area (CA) that encompasses Plutonium Valley. Because access to the CA is limited and entry into the CA for post-closure inspections and maintenance would be impractical, UR warning signs will be posted along the existing CA fence. In accordance with the Soils Risk-Based Corrective Action Evaluation Process (NNSA/NSO, 2012b), an administrative UR will be implemented as a best management practice for the areas where the TED exceeds 25 millirems per Industrial Area year. This limit is based on continuous industrial use of the site and addresses exposure to industrial workers who would regularly be assigned to the work area for an entire career (250 days

  3. Sandia National Laboratories: Research & Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety in Transport Conceptual Framework for Developing Resilience Metrics for the Electricity, Oil, and Gas Sectors in the United States Analysis of 100 SGIP Interconnection...

  4. Immigration, inequality, and the state : three essays on the employment of foreign nationals in the United States

    E-Print Network [OSTI]

    Rissing, Ben A. (Ben Arthur)

    2013-01-01T23:59:59.000Z

    This dissertation examines how U.S. immigration policies, as implemented by government agents, shape migration and key employment outcomes of foreign nationals. Using unique quantitative and qualitative data, never previously ...

  5. Increase in NOx Emissions from Indian Thermal Power Plants during 1996-2010: Unit-Based Inventories and Multisatellite Observations

    E-Print Network [OSTI]

    Jacob, Daniel J.

    and Multisatellite Observations Zifeng Lu* and David G. Streets Decision and Information Sciences Division, Argonne National Laboratory, Argonne, Illinois, United States *S Supporting Information ABSTRACT: Driven by rapid economic development and growing electricity demand, NOx emissions (E) from the power sector in India have

  6. National SCADA Test Bed - Enhancing control systems security...

    Energy Savers [EERE]

    SCADA Test Bed - Enhancing control systems security in the energy sector (September 2009) National SCADA Test Bed - Enhancing control systems security in the energy sector...

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2013-11-01T23:59:59.000Z

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

  8. Cross-sector Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would likeConstitution4 Department of EnergyCross-Sector Sign In About |

  9. Comparison of Software Models for Energy Savings from Cool Roofs Joshua New, Oak Ridge National Laboratory (United States)

    E-Print Network [OSTI]

    Tennessee, University of

    , multiple substrate types, and insulation levels. A base case and energy-efficient alternative canComparison of Software Models for Energy Savings from Cool Roofs Joshua New, Oak Ridge National Department of Energy as an industry-consensus tool to help building owners, manufacturers, distributors

  10. Available at: http://publications.ictp.it IC/2010/094 United Nations Educational, Scientific and Cultural Organization

    E-Print Network [OSTI]

    , India and The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy Navin Shankar, Environmental and Marine Science, University of Trieste, Trieste, Italy and S. Masood Ahmed National Geophysical Research Institute, Uppal Road, Hyderabad. MIRAMARE -- TRIESTE December 2010 1 hachyuthan@yahoo.com #12

  11. Available at: http://publications.ictp.it IC/2010/070 United Nations Educational, Scientific and Cultural Organization

    E-Print Network [OSTI]

    Sciences, University of Trieste, Trieste, Italy dDepartment of Earth Sciences, University of Roma "La National Laboratory, Assergi (AQ), Italy jAbdus Salam International Centre for Theoretical Physics, Trieste, Italy MIRAMARE ­ TRIESTE August 2010 #12;1 Abstract The ability to predict earthquakes is one

  12. Closure Report for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    none,

    2013-12-31T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 366 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended).

  13. Analysis of fuel shares in the residential sector: 1960 to 1995

    SciTech Connect (OSTI)

    Reilly, J.M.; Shankle, S.A.; Pomykala, J.S.

    1986-08-01T23:59:59.000Z

    Historical and future energy use by fuel type in the residential sector of the United States are examined. Of interest is the likely relative demand for fuels as they affect national policy issues such as the potential shortfall of electric generating capacity in the mid to late 1990's and the ability of the residential sector to switch rapdily among fuels in response to fuel shortages, price increases and other factors. Factors affecting the share of a fuel used rather than the aggregate level of energy use are studied. However, the share of a fuel used is not independent of the level of energy consumption. In the analysis, the level of consumption of each fuel is computed as an intermediate result and is reported for completeness.

  14. Sandia National Laboratories: Vermont partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partnership A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  15. Sandia National Laboratories: M-1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M-1 A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  16. Sandia National Laboratories: VT Collaboration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VT Collaboration A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy, Energy Surety,...

  17. Sandia National Laboratories: Customers & Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with Sandia Labs' Molten-Salt Test Loop System ... A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  18. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... SMART Rotor Video On September 17, 2012, in A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate,...

  19. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-12-01T23:59:59.000Z

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  20. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25T23:59:59.000Z

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the President’s Climate Action Plan.

  1. Large-Scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERNLandLargefor High Offshore

  2. Co-operation Agreement between the European Organization for Nuclear Research and the Department of Energy of the United States of America and the National Science Foundation of the United States of America concerning Scientific and Technical Co-operation in Nuclear and Particle Physics

    E-Print Network [OSTI]

    2015-01-01T23:59:59.000Z

    Co-operation Agreement between the European Organization for Nuclear Research and the Department of Energy of the United States of America and the National Science Foundation of the United States of America concerning Scientific and Technical Co-operation in Nuclear and Particle Physics

  3. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  4. Staff at sector 30, inelastic x-ray scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 30 Staff Advanced Photon Source A U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences national synchrotron x-ray research facility Search Button...

  5. Funding for Adaptive Optics in the United States by the National Science Foundation 2006-2009: An Update

    E-Print Network [OSTI]

    Frogel, Jay A

    2009-01-01T23:59:59.000Z

    In 2006 I published an article in GeminiFocus that examined funding for astronomical adaptive optics related technology and instrumentation in the United States from 1995 through mid-2006. That article concluded that based on projections then current, AO implementation on public and private telescopes in the U.S. will soon seriously lag that on the ESO VLT as measured by funds available. It called for a significant infusion of public funds for AO development and implementation so that when combined with private funds, the U.S. astronomical community as a whole would be able to take full advantage of AO systems on both public and private telescopes. In 2006 I estimated that the total amount of public (NSF) funds that would be available in 2009 for AO related non-science activities would be about $6M. This article updates the analysis done in my previous article. I show that for 2009 the funds for AO related non-science activities are about $7M in spite of the termination of the AODP program. Federal stimulus f...

  6. Environmental, safety, and health plan for the remedial investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This document outlines the environmental, safety, and health (ES&H) approach to be followed for the remedial investigation of Waste Area Grouping (WAG) 10 at Oak at Ridge National Laboratory. This ES&H Plan addresses hazards associated with upcoming Operable Unit 3 field work activities and provides the program elements required to maintain minimal personnel exposures and to reduce the potential for environmental impacts during field operations. The hazards evaluation for WAG 10 is presented in Sect. 3. This section includes the potential radiological, chemical, and physical hazards that may be encountered. Previous sampling results suggest that the primary contaminants of concern will be radiological (cobalt-60, europium-154, americium-241, strontium-90, plutonium-238, plutonium-239, cesium-134, cesium-137, and curium-244). External and internal exposures to radioactive materials will be minimized through engineering controls (e.g., ventilation, containment, isolation) and administrative controls (e.g., procedures, training, postings, protective clothing).

  7. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2013-09-01T23:59:59.000Z

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  8. ?Framework for a Risk-Informed Groundwater Compliance Strategy for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Sam Marutzky

    2010-09-01T23:59:59.000Z

    Note: This document was prepared before the NTS was renamed the Nevada National Security Site (August 23, 2010); thus, all references to the site herein remain NTS. Corrective Action Unit (CAU) 98, Frenchman Flat, at the Nevada Test Site (NTS) was the location of ten underground nuclear tests between 1965 and 1971. As a result, radionuclides were released in the subsurface in the vicinity of the test cavities. Corrective Action Unit 98 and other CAUs at the NTS and offsite locations are being investigated. The Frenchman Flat CAU is one of five Underground Test Area (UGTA) CAUs at the NTS that are being evaluated as potential sources of local or regional impact to groundwater resources. For UGTA sites, including Frenchman Flat, contamination in and around the test cavities will not be remediated because it is technologically infeasible due to the depth of the test cavities (150 to 2,000 feet [ft] below ground surface) and the volume of contaminated groundwater at widely dispersed locations on the NTS. Instead, the compliance strategy for these sites is to model contaminant flow and transport, estimate the maximum spatial extent and volume of contaminated groundwater (over a period of 1,000 years), maintain institutional controls, and restrict access to potentially contaminated groundwater at areas where contaminants could migrate beyond the NTS boundaries.

  9. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  10. Analysis of Emissions Calculators for the National Center of Excellence on Displaced Emission Reductions (CEDER)- 2008 Annual Report to the United States Environmental Protection Agency 

    E-Print Network [OSTI]

    Yazdani, B.; Culp, C.; Haberl, J.; Baltazar, J. C.; Do, S. L.

    2009-01-01T23:59:59.000Z

    In August 2004, the USEPA issued guidance on quantifying the air emission benefits from electric sector energy efficiency and renewable energy. Because there was no clear best strategy, the EPA’s guidance provided a framework and the basic...

  11. Closure Report for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks Nevada National Security Site, Nevada with ROTC-1, Revision 0

    SciTech Connect (OSTI)

    Mark Kauss

    2011-06-01T23:59:59.000Z

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 539: Areas 25 and 26 Railroad Tracks, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 539 are located within Areas 25 and 26 of the Nevada National Security Site. Corrective Action Unit 539 comprises the following CASs: • 25-99-21, Area 25 Railroad Tracks • 26-99-05, Area 26 Railroad Tracks The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 539 were met. To achieve this, the following actions were performed: • Reviewed documentation on historical and current site conditions, including the concentration and extent of contamination. • Conducted radiological walkover surveys of railroad tracks in both Areas 25 and 26. • Collected ballast and soil samples and calculated internal dose estimates for radiological releases. • Collected in situ thermoluminescent dosimeter measurements and calculated external dose estimates for radiological releases. • Removed lead bricks as potential source material (PSM) and collected verification samples. • Implemented corrective actions as necessary to protect human health and the environment. • Properly disposed of corrective action and investigation wastes. • Implemented an FFACO use restriction (UR) for radiological contamination at CAS 25-99-21. The approved UR form and map are provided in Appendix F and will be filed in the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Facility Information Management System; the FFACO database; and the NNSA/NSO CAU/CAS files. From November 29, 2010, through May 2, 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 539. Assessment of the data generated from closure activities revealed the following: • At CAS 26-99-05, the total effective dose for radiological releases did not exceed the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at three locations. A corrective action of clean closure was implemented at these locations, and verification samples indicated that no further action is necessary. • At CAS 25-99-21, the total effective dose for radiological releases exceeds the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at eight locations. A corrective action was implemented by removing the lead bricks and soil above FALs at these locations, and verification samples indicated that no further action is necessary. Pieces of debris with high radioactivity were identified as PSM and remain within the CAS boundary. A corrective action of closure in place with a UR was implemented at this CAS because closure activities showed evidence of remaining soil contamination and radioactive PSM. Future land use will be restricted from surface and intrusive activities. Closure activities generated waste streams consisting of industrial solid waste, recyclable materials, low-level radioactive waste, and mixed low-level radioactive waste. Wastes were disposed of in the appropriate onsite landfills. The NNSA/NSO prov

  12. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01T23:59:59.000Z

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

  13. An analysis of the effect of the Multilateral Trade Negotiations (MTN) on United States agriculture with primary emphasis on the southern states

    E-Print Network [OSTI]

    Banos, Yanira

    1981-01-01T23:59:59.000Z

    by the three major trade partners of the United States in the Tokyo/Geneva Round of trade negotiations concluded in 1979. Agreements reached with the European Community, Japan, Canada, and 30 other nations involve tariff reductions, tariff bindings..., derived from tariff reductions and quota increases granted by the European Community, Japan, Canada, and the group of other nations; (b) evaluate the regional impact on the foreign agricultural sector of the South across selected commodity groups...

  14. Closure Report for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-02-21T23:59:59.000Z

    This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  15. United Nations Food and Agriculture Organization of the United Nations

    E-Print Network [OSTI]

    products market developments in 2002 and 2003 Highlights · Availability on world markets of wood products for a policy response from Governments. · Energy markets and international biofuel trade are developing rapidly consequences in the long term for wood supply and for the market position of forest products. · Changes

  16. United Nations TD/B/WP/203 United Nations Conference

    E-Print Network [OSTI]

    and communication technology IFOAM International Federation of Organic Agriculture Movements IFRS International investment policy review ISAR International Standards of Accounting and Reporting ITC International Trade country DFQF duty-free and quota-free DITC Division on International Trade in Goods and Services

  17. Corrective Action Decision Document/Closure Report for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-09-01T23:59:59.000Z

    Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 365 based on the implementation of the corrective action of closure in place with a use restriction (UR). Corrective action investigation (CAI) activities were performed from January 18, 2011, through August 2, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area. The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 365 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in supporting the DQO decisions. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were found to be present to the southwest of the Baneberry crater. It was also assumed that radionuclide levels present within the crater and fissure exceed the FAL. Corrective actions were undertaken that consisted of establishing a UR and posting warning signs for the crater, fissure, and the area located to the southwest of the crater where soil concentrations exceeded the FAL. These URs were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: (1) No further corrective actions beyond what are described in this document are necessary for CAU 365. (2) A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 365. (3) Corrective Action Unit 365 should be moved from Appendix III to Appendix IV of the FFACO.

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 106: Area 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews and Dawn Peterson

    2011-09-01T23:59:59.000Z

    Corrective Action Unit 106 comprises four corrective action sites (CASs): (1) 05-20-02, Evaporation Pond; (2) 05-23-05, Atmospheric Test Site - Able; (3) 05-45-04, 306 GZ Rad Contaminated Area; (4) 05-45-05, 307 GZ Rad Contaminated Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 106 based on the implementation of corrective actions. The corrective action of clean closure was implemented at CASs 05-45-04 and 05-45-05, while no corrective action was necessary at CASs 05-20-02 and 05-23-05. Corrective action investigation (CAI) activities were performed from October 20, 2010, through June 1, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (mechanical displacement and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 106 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Industrial Area exposure scenario (2,250 hours of annual exposure). The only radiological dose exceeding the FAL was at CAS 05-45-05 and was associated with potential source material (PSM). It is also assumed that additional PSM in the form of depleted uranium (DU) and DU-contaminated debris at CASs 05-45-04 and 05-45-05 exceed the FAL. Therefore, corrective actions were undertaken at these CASs that consisted of removing PSM and collecting verification samples. Results of verification samples show that remaining soil does not contain contamination exceeding the FALs. Therefore, the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) provides the following recommendations: (1) No further corrective actions are necessary for CAU 106. (2) A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 106. (3) Corrective Action Unit 106 should be moved from Appendix III to Appendix IV of the FFACO.

  19. Nuclear Operations Application to Environmental Restoration at Corrective Action Unit 547, Miscellaneous Contaminated Waste Sites, at the Nevada National Security Site

    SciTech Connect (OSTI)

    Kevin Cabble (NSO), Mark Krauss and Patrick Matthews (N-I)

    2011-03-03T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office has responsibility for environmental restoration at the Nevada National Security Site (formerly the Nevada Test Site). This includes remediation at locations where past testing activities have resulted in the release of plutonium to the environment. One of the current remediation efforts involves a site where an underground subcritical nuclear safety test was conducted in 1964. The underground test was vented through a steel pipe to the surface in a closed system where gas samples were obtained. The piping downstream of the gas-sampling apparatus was routed belowground to a location where it was allowed to vent into an existing radioactively contaminated borehole. The length of the pipe above the ground surface is approximately 200 meters. This pipe remained in place until remediation efforts began in 2007, at which time internal plutonium contamination was discovered. Following this discovery, an assessment was conducted to determine the quantity of plutonium present in the pipe. This site has been identified as Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites. The quantity of plutonium identified at CAU 547 exceeded the Hazard Category 3 threshold but was below the Hazard Category 2 threshold specified in DOE Standard DOE-STD-1027-92. This CAU, therefore, was initially categorized as a Hazard Category 3 environmental restoration site. A contaminated facility or site that is initially categorized as Hazard Category 3, however, may be downgraded to below Hazard Category 3 if it can be demonstrated through further analysis that the form of the material and the energy available for release support reducing the hazard category. This is an important consideration when performing hazard categorization of environmental restoration sites because energy sources available for release of material are generally fewer at an environmental restoration site than at an operating facility and environmental restoration activities may result in the complete removal of source material.

  20. Addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews and Christy Sloop

    2012-01-01T23:59:59.000Z

    This document constitutes an addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters, Nevada Test Site, Nevada (Revision 0), April 2011.

  1. Hepp and Speer Sectors within Modern Strategies of Sector Decomposition

    E-Print Network [OSTI]

    A. V. Smirnov; V. A. Smirnov

    2008-12-26T23:59:59.000Z

    Hepp and Speer sectors were successfully used in the sixties and seventies for proving mathematical theorems on analytically or/and dimensionally regularized and renormalized Feynman integrals at Euclidean external momenta. We describe them within recently developed strategies of introducing iterative sector decompositions. We show that Speer sectors are reproduced within one of the existing strategies.

  2. Sandia National Laboratories: Jawaharlal Nehru Solar National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jawaharlal Nehru Solar National Solar Energy Mission Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power,...

  3. The Formerly Utilized Sites Remedial Action Program (FUSRAP) was initiated in 1974 to identify, investigate, and clean up or control sites throughout the United States that were part of the Nation's early atomic weapons and energy programs during the 1940

    E-Print Network [OSTI]

    US Army Corps of Engineers

    , investigate, and clean up or control sites throughout the United States that were part of the Nation's early atomic weapons and energy programs during the 1940s, 1950s, and 1960s. Activities at the sites were performed by the Manhattan Engineer District or under the Atomic Energy Commission. Both were predecessors

  4. Waste Management Plan for the Remedial Investigation of Waste Area Grouping 10, Operable Unit 3, at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This Waste Management Plan (WMP) supplements the Remedial Investigation/Feasibility Study (RI/FS) Project WMP and defines the criteria and methods to be used for managing and characterizing waste generated during activities associated with the RI of 23 wells near the Old Hydrofracture Facility (OHF). These wells are within the Waste Area Grouping (WAG) 5 area of contamination (AOC) at Oak Ridge National Laboratory (ORNL). Field activities for the limited RI of Operable Unit (OU) 3 of WAG 10 will involve sampling and measurement of various environmental media (e.g., liquids and gases). Many of these activities will occur in areas known to be contaminated with radioactive materials or hazardous chemical substances, and it is anticipated that contaminated solid and liquid wastes and noncontaminated wastes will be generated as a result of these activities. On a project-wide basis, handling of these waste materials will be accomplished in accordance with the RI/FS Project WMP and the procedures referenced throughout the plan.

  5. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 575: Area 15 Miscellaneous Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-12-01T23:59:59.000Z

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 575, Area 15 Miscellaneous Sites, identified in the Federal Facility Agreement and Consent Order (FFACO). CAU 575 comprises the following four corrective action sites (CASs) located in Area 15 of the Nevada National Security Site: • 15-19-02, Waste Burial Pit • 15-30-01, Surface Features at Borehole Sites • 15-64-01, Decontamination Area • 15-99-03, Aggregate Plant This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 575 using the SAFER process. Additional information will be obtained by conducting a field investigation to document and verify the adequacy of existing information, to affirm the predicted corrective action decisions, and to provide sufficient data to implement the corrective actions. This will be presented in a closure report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  6. Second United Nations International Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysicsDepartment of Energy

  7. Second United Nations International Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysicsDepartment of EnergyConfidential until

  8. Second United Nations International Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitcheResearchPhysicsDepartment of EnergyConfidential

  9. United Nations | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtleCooperative Place: Beaver Dam,Population

  10. The Clean Coal Technology Demonstration Program is a $5-billion national

    E-Print Network [OSTI]

    unknown authors

    commitment, cost-shared by the Government and the private sector, to demonstrate economic and environmentally sound methods for using our Nation's most abundant energy resource. The Program will foster the energy efficient use of the Nation's vast coal resource base. By doing so, the Program will contribute significantly to the long-term energy security of the United States, will further the Nation's objectives for a cleaner environment, and will improve its competitive standing in the international energy market. The first three Clean Coal Technology solicitations were issued in 1986, 1988,

  11. Corrective Action Investigation Plan for Corrective Action Unit 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada, with ROTC 1 Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick K.

    2013-07-01T23:59:59.000Z

    Corrective Action Unit (CAU) 567 is located in Areas 1, 3, 5, 20, and 25 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 567 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 567, which comprises the following corrective action sites (CASs): • 01-23-03, Atmospheric Test Site T-1 • 03-23-25, Seaweed E Contamination Area • 05-23-07, A5b RMA • 20-23-08, Colby Mud Spill • 25-23-23, J-11 Soil RMA These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on May 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 567. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 567 releases are nuclear test operations and other NNSS operations. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary at Atmospheric Test Site T-1 exceeds the final action level (FAL) and requires corrective action. The presence and nature of contamination outside the default contamination boundary at Atmospheric Test Site T-1 and all other CAU 567 CASs will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based FAL. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  12. Corrective Action Investigation Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-09-01T23:59:59.000Z

    Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): • 05-23-04, Atmospheric Tests (6) - BFa Site • 05-45-03, Atmospheric Test Site - Small Boy These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of contamination at CAU 541 will be evaluated based on information collected from field investigations. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  13. Sandia National Laboratories: Vermont-Sandia Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vermont-Sandia Partnership A Model for the Nation: Promoting Education and Innovation in Vermont's Electricity Sector On May 8, 2012, in Climate, Customers & Partners, Energy,...

  14. National Environmental Research Institute Ministry of the Environment . Denmark

    E-Print Network [OSTI]

    Inventories Denmark's National Inventory Report 2005 Submitted under the United Nations Framework Convention Research Institute Ministry of the Environment . Denmark Emission Inventories Denmark's National Inventory's National Inventory Report 2005 - Submitted under the United Nations Framework Convention on Climate Change

  15. Corrective Action Investigation Plan for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews; Christy Sloop

    2012-02-01T23:59:59.000Z

    Corrective Action Unit (CAU) 569 is located in Area 3 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 569 comprises the nine numbered corrective action sites (CASs) and one newly identified site listed below: (1) 03-23-09, T-3 Contamination Area (hereafter referred to as Annie, Franklin, George, and Moth); (2) 03-23-10, T-3A Contamination Area (hereafter referred to as Harry and Hornet); (3) 03-23-11, T-3B Contamination Area (hereafter referred to as Fizeau); (4) 03-23-12, T-3S Contamination Area (hereafter referred to as Rio Arriba); (5) 03-23-13, T-3T Contamination Area (hereafter referred to as Catron); (6) 03-23-14, T-3V Contamination Area (hereafter referred to as Humboldt); (7) 03-23-15, S-3G Contamination Area (hereafter referred to as Coulomb-B); (8) 03-23-16, S-3H Contamination Area (hereafter referred to as Coulomb-A); (9) 03-23-21, Pike Contamination Area (hereafter referred to as Pike); and (10) Waste Consolidation Site 3A. Because CAU 569 is a complicated site containing many types of releases, it was agreed during the data quality objectives (DQO) process that these sites will be grouped. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the DQOs developed on September 26, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 569. The presence and nature of contamination at CAU 569 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. A field investigation will be performed to define any areas where TED exceeds the FAL and to determine whether contaminants of concern are present at the site from other potential releases. The presence and nature of contamination from other types of releases (e.g., excavation, migration, and any potential releases discovered during the investigation) will be evaluated using soil samples collected from biased locations indicating the highest levels of contamination. Appendix A provides a detailed discussion of the DQO methodology and the objectives specific to each study group.

  16. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 465: Hydronuclear Nevada National Security Site, Nevada, with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-11-01T23:59:59.000Z

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 465, Hydronuclear, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 465 comprises the following four corrective action sites (CASs) located in Areas 6 and 27 of the Nevada National Security Site: (1) 00-23-01, Hydronuclear Experiment; (2) 00-23-02, Hydronuclear Experiment; (3) 00-23-03, Hydronuclear Experiment; (4) 06-99-01, Hydronuclear. The sites will be investigated based on the data quality objectives (DQOs) developed on July 6, 2011, by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 465. For CAU 465, two potential release components have been identified. The subsurface release component includes potential releases of radiological and nonradiological contaminants from the subsurface hydronuclear experiments and disposal boreholes. The surface release component consists of other potential releases of radiological and nonradiological contaminants to surface soils that may have occurred during the pre- and post-test activities. This plan provides the methodology for collection of the necessary information for closing each CAS component. There is sufficient information and process knowledge from historical documentation, contaminant characteristics, existing regional and site groundwater models, and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 465 using the SAFER process. For potential subsurface releases, flow and transport models will be developed to integrate existing data into a conservative description of contaminant migration in the unsaturated zone from the hydronuclear experiments and disposal boreholes. For the potential surface releases, additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS component. It is anticipated that results of the flow and transport models, the field investigation, and implementation of the corrective action of closure in place will support a defensible recommendation that no further corrective action is necessary. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The following text summarizes the SAFER activities that will support the closure of CAU 465: (1) Perform site preparation activities (e.g., utilities clearances, and radiological and visual surveys). (2) Move or remove and dispose of debris at various CASs, as required. (3) Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern as necessary to supplement existing information. (4) Evaluate and analyze existing data to develop conservative flow and transport models to simulate the potential for contaminant migration from the hydronuclear experiments and disposal boreholes to the water table within 1,000 years. (5) Confirm the preferred closure option (closure in place with use restrictions) is sufficient to protect human health and the environment.

  17. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  18. Energy Sector Cybersecurity Framework Implementation Guidance

    Broader source: Energy.gov (indexed) [DOE]

    DRAFT FOR PUBLIC COMMENT SEPTEMBER, 2014 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE Energy Sector Cybersecurity Framework Implementation Guidance Table of...

  19. By Sector, 2010 Nonprofit /

    E-Print Network [OSTI]

    Tsien, Roger Y.

    of the Asia-Pacific region including Latin America. IR/PS graduates have successful careers in the public · National Renewable Energy Lab · Korean Communications Commission · Japanese Ministry of Foreign Affairs #12;

  20. Sandia National Laboratories: NSTTF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  1. Public Sector Electric Efficiency Programs

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

  2. Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-07-01T23:59:59.000Z

    Corrective Action Unit 106 comprises the four corrective action sites (CASs) listed below: • 05-20-02, Evaporation Pond • 05-23-05, Atmospheric Test Site - Able • 05-45-04, 306 GZ Rad Contaminated Area • 05-45-05, 307 GZ Rad Contaminated Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 19, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 106. The presence and nature of contamination at CAU 106 will be evaluated based on information collected from a field investigation. The CAU includes land areas impacted by the release of radionuclides from groundwater pumping during the Radionuclide Migration study program (CAS 05-20-02), a weapons-related airdrop test (CAS 05-23-05), and unknown support activities at two sites (CAS 05-45-04 and CAS 05-45-05). The presence and nature of contamination from surface-deposited radiological contamination from CAS 05-23-05, Atmospheric Test Site - Able, and other types of releases (such as migration and excavation as well as any potential releases discovered during the investigation) from the remaining three CASs will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 106 includes the following activities: • Conduct radiological surveys. • Collect and submit environmental samples for laboratory analysis to determine internal dose rates and the presence of contaminants of concern. • If contaminants of concern are present, collect additional samples to define the extent of the contamination and determine the area where the total effective dose at the site exceeds final action levels (i.e., corrective action boundary). • Collect samples of investigation-derived waste, as needed, for waste management purposes.

  3. Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-09-01T23:59:59.000Z

    Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): • 02-23-04, Atmospheric Test Site - Whitney • 02-23-05, Atmospheric Test Site T-2A • 02-23-06, Atmospheric Test Site T-2B • 02-23-08, Atmospheric Test Site T-2 • 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU 105 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted after the plan is approved.

  4. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2011-09-01T23:59:59.000Z

    The purpose of this CADD/CAP is to present the corrective action alternatives (CAAs) evaluated for CAU 547, provide justification for selection of the recommended alternative, and describe the plan for implementing the selected alternative. Corrective Action Unit 547 consists of the following three corrective action sites (CASs): (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; and(3) CAS 09-99-06, Gas Sampling Assembly. The gas sampling assemblies consist of inactive process piping, equipment, and instrumentation that were left in place after completion of underground safety experiments. The purpose of these safety experiments was to confirm that a nuclear explosion would not occur in the case of an accidental detonation of the high-explosive component of the device. The gas sampling assemblies allowed for the direct sampling of the gases and particulates produced by the safety experiments. Corrective Action Site 02-37-02 is located in Area 2 of the Nevada National Security Site (NNSS) and is associated with the Mullet safety experiment conducted in emplacement borehole U2ag on October 17, 1963. Corrective Action Site 03-99-19 is located in Area 3 of the NNSS and is associated with the Tejon safety experiment conducted in emplacement borehole U3cg on May 17, 1963. Corrective Action Site 09-99-06 is located in Area 9 of the NNSS and is associated with the Player safety experiment conducted in emplacement borehole U9cc on August 27, 1964. The CAU 547 CASs were investigated in accordance with the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 547. Existing radiological survey data and historical knowledge of the CASs were sufficient to meet the DQOs and evaluate CAAs without additional investigation. As a result, further investigation of the CAU 547 CASs was not required. The following CAAs were identified for the gas sampling assemblies: (1) clean closure, (2) closure in place, (3) modified closure in place, (4) no further action (with administrative controls), and (5) no further action. Based on the CAAs evaluation, the recommended corrective action for the three CASs in CAU 547 is closure in place. This corrective action will involve construction of a soil cover on top of the gas sampling assembly components and establishment of use restrictions at each site. The closure in place alternative was selected as the best and most appropriate corrective action for the CASs at CAU 547 based on the following factors: (1) Provides long-term protection of human health and the environment; (2) Minimizes short-term risk to site workers in implementing corrective action; (3) Is easily implemented using existing technology; (4) Complies with regulatory requirements; (5) Fulfills FFACO requirements for site closure; (6) Does not generate transuranic waste requiring offsite disposal; (7) Is consistent with anticipated future land use of the areas (i.e., testing and support activities); and (8) Is consistent with other NNSS site closures where contamination was left in place.

  5. Cross-Sector Impact Analysis of Industrial Efficiency Measures

    SciTech Connect (OSTI)

    Morrow, William [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL); CreskoEngineering, Joe [Oak Ridge Institute for Science and Education (ORISE); Carpenter, Alberta [National Renewable Energy Laboratory (NREL)] [National Renewable Energy Laboratory (NREL); Masanet, Eric [Northwestern University, Evanston] [Northwestern University, Evanston; Nimbalkar, Sachin U [ORNL] [ORNL; Shehabi, Arman [Lawrence Berkeley National Laboratory (LBNL)] [Lawrence Berkeley National Laboratory (LBNL)

    2013-01-01T23:59:59.000Z

    The industrial or manufacturing sector is a foundational component to all economic activity. In addition to being a large direct consumer of energy, the manufacturing sector also produces materials, products, and technologies that influence the energy use of other economic sectors. For example, the manufacturing of a lighter-weight vehicle component affects the energy required to ship that component as well as the fuel efficiency of the assembled vehicle. Many energy efficiency opportunities exist to improve manufacturing energy consumption, however comparisons of manufacturing sector energy efficiency investment opportunities tend to exclude any impacts that occur once the product leaves the factory. Expanding the scope of analysis to include energy impacts across different stages of product life-cycle can highlight less obvious opportunities and inform actions that create the greatest economy-wide benefits. We present a methodology and associated analysis tool (LIGHTEnUP Lifecycle Industry GHgas, Technology and Energy through the Use Phase) that aims to capture both the manufacturing sector energy consumption and product life-cycle energy consumption implications of manufacturing innovation measures. The tool architecture incorporates U.S. national energy use data associated with manufacturing, building operations, and transportation. Inputs for technology assessment, both direct energy saving to the manufacturing sector, and indirect energy impacts to additional sectors are estimated through extensive literature review and engineering methods. The result is a transparent and uniform system of comparing manufacturing and use-phase impacts of technologies.

  6. Making the national farmer : progressive educational reforms and transformation of rural society in the United States (1902-1918) and Japan (1920-1945)

    E-Print Network [OSTI]

    Fabian, Rika

    2008-01-01T23:59:59.000Z

    is the Ravenna township in Portage County, where the localthe nation. At the Portage County Improvement Association,appointed County Agents in Portage County, for example,

  7. The North American Forest Sector Outlook Study

    E-Print Network [OSTI]

    concerning the legal status of any country, territory, city or area, or of its authorities, or concerning scenarios were investigated: two IPCC-based scenarios assuming the rapid growth of wood-based energy of America, wood energy. ECE/TIM/SP/29 UNITED NATIONS PUBLICATION ISSN 1020 2269 #12;Contents 3 Table

  8. Sustainable fuel for the transportation sector

    SciTech Connect (OSTI)

    Agrawal, R.; Singh, N.R.; Ribeiro, F.H.; Delgass, W.N. [Purdue Univ., West Lafayette, IN (United States). School of Chemical Engineering and Energy Center at Discovery Park

    2007-03-20T23:59:59.000Z

    A hybrid hydrogen-carbon (H{sub 2}CAR) process for the production of liquid hydrocarbon fuels is proposed wherein biomass is the carbon source and hydrogen is supplied from carbon-free energy. To implement this concept, a process has been designed to co-feed a biomass gasifier with H{sub 2} and CO{sub 2} recycled from the H{sub 2}-CO to liquid conversion reactor. Modeling of this biomass to liquids process has identified several major advantages of the H{sub 2}CAR process. The land area needed to grow the biomass is <40% of that needed by other routes that solely use biomass to support the entire transportation sector. Whereras the literature estimates known processes to be able to produce {approx}30% of the United States transportation fuel from the annual biomass of 1.366 billion tons, the H{sub 2}CAR process shows the potential to supply the entire United States transportation sector from that quantity of biomass. The synthesized liquid provides H{sub 2} storage in an open loop system. Reduction to practice of the H{sub 2}CAR route has the potential to provide the transportation sector for the foreseeable future, using the existing infrastructure. The rationale of using H{sub 2} in the H{sub 2}CAR process is explained by the significantly higher annualized average solar energy conversion efficiency for hydrogen generation versus that for biomass growth. For coal to liquids, the advantage of H{sub 2}CAR is that there is no additional CO{sub 2} release to the atmosphere due to the replacement of petroleum with coal, thus eliminating the need to sequester CO{sub 2}.

  9. Evaluating Renewable Portfolio Standards and Carbon Cap Scenarios in the U.S. Electric Sector

    SciTech Connect (OSTI)

    Bird, L.; Chapman, C.; Logan, J.; Sumner, J.; Short, W.

    2010-05-01T23:59:59.000Z

    This report examines the impact of various renewable portfolio standards (RPS) and cap-and-trade policy options on the U.S. electricity sector, focusing mainly on renewable energy generation. The analysis uses the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS) model that simulates the least-cost expansion of electricity generation capacity and transmission in the United States to examine the impact of an emissions cap--similar to that proposed in the Waxman-Markey bill (H.R. 2454)--as well as lower and higher cap scenarios. It also examines the effects of combining various RPS targets with the emissions caps. The generation mix, carbon emissions, and electricity price are examined for various policy combinations to simulate the effect of implementing policies simultaneously.

  10. Challenges for Creating a Comprehensive National Electricity Policy

    E-Print Network [OSTI]

    Joskow, Paul

    2008-01-01T23:59:59.000Z

    This is a speech given to the National Press Club, September 26, 2008 outlining the need for comprehensive reform of the electric power sector in the U.S. It outlines the centrality of the electricity sector to the economy ...

  11. Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-09-01T23:59:59.000Z

    Corrective Action Unit 366 comprises the six corrective action sites (CASs) listed below: (1) 11-08-01, Contaminated Waste Dump No.1; (2) 11-08-02, Contaminated Waste Dump No.2; (3) 11-23-01, Radioactively Contaminated Area A; (4) 11-23-02, Radioactively Contaminated Area B; (5) 11-23-03, Radioactively Contaminated Area C; and (6) 11-23-04, Radioactively Contaminated Area D. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed July 6, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 366. The presence and nature of contamination at CAU 366 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated by summing the estimates of internal and external dose. Results from the analysis of soil samples collected from sample plots will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at each sample location will be used to measure external radiological dose. Based on historical documentation of the releases associated with the nuclear tests, it was determined that CASs 11-23-02, 11-23-03, and 11-23-04 will be investigated as one release site. The three test areas associated with these CASs are in close proximity; the devices tested were all composed of plutonium and enriched uranium; and the ground zeroes are all posted high contamination areas (HCAs). Because the device tested at CAS 11-23-01 was composed primarily of enriched uranium and the ground zero is not a posted HCA, the CAS will be investigated as a separate release. The DQO process also resulted in an assumption that TED within the HCAs and contaminated waste dumps exceeds the FAL and requires corrective action. A field investigation will be performed to define where TED exceeds the FAL and to determine whether other contaminants of concern are present at the site associated with other activities that took place at the site or from spills or waste discovered during the investigation. The presence and nature of contamination from other types of releases (such as migration and any potential releases discovered during the investigation) will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  12. 14 ACCOUNTANTS TODAY September 2005 Real Estate Sector

    E-Print Network [OSTI]

    Quartly, Graham

    fiscal measures to stimulate the growth of real estate investment trusts (REITs) in Malaysia. A REIT growth of 4.9 and 6.5 per cent in the real estate sector for the years 2003 and 2004 (National Product treatment including tax treatment. Failure to com- ply with the rules and regulations may result

  13. Buildings Sector Working Group

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy IDecade Year-0 Year-1Year Jan4: Oil andDecade Year-0 FullJuly

  14. Measuring energy efficiency in the United States` economy: A beginning

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    Energy efficiency is a vital component of the Nation`s energy strategy. One of the Department of Energy`s missions are to promote energy efficiency to help the Nation manage its energy resources. The ability to define and measure energy efficiency is essential to this objective. In the absence of consistent defensible measures, energy efficiency is a vague, subjective concept that engenders directionless speculation and confusion rather than insightful analysis. The task of defining and measuring energy efficiency and creating statistical measures as descriptors is a daunting one. This publication is not a final product, but is EIA`s first attempt to define and measure energy efficiency in a systematic and robust manner for each of the sectors and the United States economy as a whole. In this process, EIA has relied on discussions, customer reviews, in-house reviews, and seminars that have focused on energy efficiency in each of the sectors. EIA solicits the continued participation of its customers in further refining this work.

  15. Energy Sector Cybersecurity Framework Implementation Guidance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    JANUARY 2015 ENERGY SECTOR CYBERSECURITY FRAMEWORK IMPLEMENTATION GUIDANCE U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY Energy Sector...

  16. Federal Sector Renewable Energy Project Implementation: ""What...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Federal Sector Renewable Energy Project Implementation: ""What's Working and Why Presentation by...

  17. How emissions, climate, and land use change will impact mid-century air quality over the United States: a focus on effects at national parks

    E-Print Network [OSTI]

    Val Martin, M.

    We use a global coupled chemistry–climate–land model (CESM) to assess the integrated effect of climate, emissions and land use changes on annual surface O[subscript 3] and PM[subscript 2.5] in the United States with a focus ...

  18. This study is funded by the National Science Foundation (NSF) through grant EF1049251: "Assessing Decadal Climate Change Impacts on Urban Populations in the Southwestern United States."

    E-Print Network [OSTI]

    Hall, Sharon J.

    Decadal Climate Change Impacts on Urban Populations in the Southwestern United States." Data calibrates a point-scale soil water balance model to available soil moisture data, using historical, despite its notable effects on water, energy and biomass conditions. This omission is noteworthy

  19. NATIONAL GEOPHYSICAL RESEARCH INSTITUTE, HYDERABAD, INDIA. Induction Workshop: (18 -23 October, 2004)

    E-Print Network [OSTI]

    Harinarayana, T.

    . 13. Open session · Venue:: National Geophysical Research Institute (An ISO 9001 Organisation in different sectors of the Himalaya. #12;· Venue:: National Geophysical Research Institute (An ISO 9001

  20. Power systems simulations of the western United States region.

    SciTech Connect (OSTI)

    Conzelmann, G.; Koritarov, V.; Poch, L.; Thimmapuram, P.; Veselka, T.; Decision and Information Sciences

    2010-03-15T23:59:59.000Z

    This report documents a part of a broad assessment of energy-water-related issues in the western United States. The full analysis involved three Department of Energy national laboratories: Argonne National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories. Argonne's objective in the overall project was to develop a regional power sector expansion forecast and a detailed unit-level operational (dispatch) analysis. With these two major analysis components, Argonne estimated current and future freshwater withdrawals and consumption related to the operation of U.S. thermal-electric power plants in the Western Electricity Coordinating Council (WECC) region for the period 2005-2025. Water is withdrawn and used primarily for cooling but also for environmental control, such as sulfur scrubbers. The current scope of the analysis included three scenarios: (1) Baseline scenario as a benchmark for assessing the adequacy and cost-effectiveness of water conservation options and strategies, (2) High nuclear scenario, and (3) High renewables scenario. Baseline projections are consistent with forecasts made by the WECC and the Energy Information Administration (EIA) in its Annual Energy Outlook (AEO) (EIA 2006a). Water conservation scenarios are currently limited to two development alternatives that focus heavily on constructing new generating facilities with zero water consumption. These technologies include wind farms and nuclear power plants with dry cooling. Additional water conservation scenarios and estimates of water use associated with fuel or resource extraction and processing will be developed in follow-on analyses.

  1. PNNL's Work for Others Program Enhancing technology transfer to the public and private sectors

    E-Print Network [OSTI]

    PNNL's Work for Others Program Enhancing technology transfer to the public and private sectors What it's all about Pacific Northwest National Laboratory (PNNL) meets the nation's most pressing, and federal policies, PNNL--a U.S. Department of Energy (DOE) national laboratory operated by Battelle

  2. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada for fiscal year 2013 (October 2012 - September 2013)

    SciTech Connect (OSTI)

    None,

    2014-01-31T23:59:59.000Z

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and, CAU 112, Area 23 Hazardous Waste Trenches.

  3. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01T23:59:59.000Z

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  4. United States

    Office of Legacy Management (LM)

    - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United...

  5. Detection and Analysis of Threats to the Energy Sector: DATES

    SciTech Connect (OSTI)

    Alfonso Valdes

    2010-03-31T23:59:59.000Z

    This report summarizes Detection and Analysis of Threats to the Energy Sector (DATES), a project sponsored by the United States Department of Energy and performed by a team led by SRI International, with collaboration from Sandia National Laboratories, ArcSight, Inc., and Invensys Process Systems. DATES sought to advance the state of the practice in intrusion detection and situational awareness with respect to cyber attacks in energy systems. This was achieved through adaptation of detection algorithms for process systems as well as development of novel anomaly detection techniques suited for such systems into a detection suite. These detection components, together with third-party commercial security systems, were interfaced with the commercial Security Information Event Management (SIEM) solution from ArcSight. The efficacy of the integrated solution was demonstrated on two testbeds, one based on a Distributed Control System (DCS) from Invensys, and the other based on the Virtual Control System Environment (VCSE) from Sandia. These achievements advance the DOE Cybersecurity Roadmap [DOE2006] goals in the area of security monitoring. The project ran from October 2007 until March 2010, with the final six months focused on experimentation. In the validation phase, team members from SRI and Sandia coupled the two test environments and carried out a number of distributed and cross-site attacks against various points in one or both testbeds. Alert messages from the distributed, heterogeneous detection components were correlated using the ArcSight SIEM platform, providing within-site and cross-site views of the attacks. In particular, the team demonstrated detection and visualization of network zone traversal and denial-of-service attacks. These capabilities were presented to the DistribuTech Conference and Exhibition in March 2010. The project was hampered by interruption of funding due to continuing resolution issues and agreement on cost share for four months in 2008. This resulted in delays in finalizing agreements with commercial partners, and in particular the Invensys testbed was not installed until December 2008 (as opposed to the March 2008 plan). The project resulted in a number of conference presentations and publications, and was well received when presented at industry forums. In spite of some interest on the part of the utility sector, we were unfortunately not able to engage a utility for a full-scale pilot deployment.

  6. How to Integrate Climate Change Adaptation into National-Level...

    Open Energy Info (EERE)

    Integrate Climate Change Adaptation into National-Level Policy and Planning in the Water Sector Jump to: navigation, search Tool Summary LAUNCH TOOL Name: How to Integrate Climate...

  7. Limited Sectoral Trading between the EU ETS and China

    E-Print Network [OSTI]

    Gavard, Claire

    2013-08-21T23:59:59.000Z

    In the negotiations of the United Nations Framework Convention on Climate Change (UNFCCC), new market mechanisms are proposed to involve Non-Annex I countries in the carbon markets developed by Annex I countries, beyond ...

  8. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    nuclear Historical Primary Energy Consumption by sector Energy Use by Sector (EJ Services Transportation Agriculture

  9. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, For Fiscal Year 2010

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2011-01-26T23:59:59.000Z

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): (1) CAU 90, Area 2 Bitcutter Containment; (2) CAU 91, Area 3 U-3fi Injection Well; (3) CAU 92, Area 6 Decon Pond Facility; (4) CAU 110, Area 3 WMD U-3ax/bl Crater; and (5) CAU 112, Area 23 Hazardous Waste Trenches. The locations of the sites are shown in Figure 1. This report covers fiscal year 2010 (October 2009-September 2010). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0021 and summarized in each CAU-specific section in Section 1.0 of this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. Inspections include an evaluation of the condition of the units and identification of any deficiencies that may compromise the integrity of the units. The condition of covers, fencing, signs, gates, and locks is documented. In addition, soil moisture monitoring and subsidence surveys are conducted at CAU 110. The results of the inspections, summary of maintenance activities, results of vegetations surveys, and analysis of monitoring data are presented in this report. Copies of the inspection checklists are included as Appendix A. Field notes completed during each inspection are included in Appendix B. Photographs taken during the site inspections are included in Appendix C.

  10. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-01-01T23:59:59.000Z

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  11. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the United States Forest Service: Caribou-Targhee National Forest

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort; Ian Nienhueser

    2014-06-01T23:59:59.000Z

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Caribou-Targhee National Forest (CTNF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements. ITSNA acknowledges the support of Idaho National Laboratory and CTNF for participation in the study. ITSNA is pleased to provide this report and is encouraged by enthusiasm and support from the Forest Service and CTNF personnel.

  12. announced united states: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Royal Academy of Engineering, the United Kingdom's National Academy 6 FISHERY STATISTICS UNITED STATES Environmental Sciences and Ecology Websites Summary: FISHERY...

  13. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada for Fiscal Year 2011 (October 2010-September 2011)

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-01-18T23:59:59.000Z

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): (1) CAU 90, Area 2 Bitcutter Containment; (2) CAU 91, Area 3 U-3fi Injection Well; (3) CAU 92, Area 6 Decon Pond Facility; (4) CAU 110, Area 3 WMD U-3ax/bl Crater; and (5) CAU 112, Area 23 Hazardous Waste Trenches. This report covers fiscal year 2011 (October 2010-September 2011). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. Inspections include an evaluation of the condition of the units and identification of any deficiencies that may compromise the integrity of the units. The condition of covers, fencing, signs, gates, and locks is documented. In addition, soil moisture monitoring and subsidence surveys are conducted at CAU 110. The results of the inspections, summary of maintenance activities, results of vegetations surveys, and analysis of monitoring data are presented in this report. Copies of the inspection checklists are included as Appendix A. Field notes completed during each inspection are included in Appendix B. Photographs taken during the inspections are included in Appendix C. It is recommended to continue semiannual inspections at CAUs 90 and 91; quarterly inspections at CAUs 92, 110, and 112; and additional inspections at CAU 92 if precipitation occurs in excess of 0.50 inches in a 24-hour period. At CAU 92, it is recommended to remove the wave barriers, as they have not proven to be necessary to protect the cover. At CAU 110, it is recommended to continue annual vegetation monitoring and soil moisture monitoring, and to reduce the frequency of subsidence surveys from twice per year to once every other year (biennially).

  14. Sector 1 Frequently Asked Questions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Sector 1 Safety Plan (pdf) Useful X-Ray Related Numbers Si a0 5.4308 Angstrom CeO2 a05.411 Angstrom Cd-109 gamma 88.036 keV X-ray energywavelength conversion...

  15. Corrective Action Decision Document for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-09-01T23:59:59.000Z

    CAU 366 comprises six corrective action sites (CASs): • 11-08-01, Contaminated Waste Dump #1 • 11-08-02, Contaminated Waste Dump #2 • 11-23-01, Radioactively Contaminated Area A • 11-23-02, Radioactively Contaminated Area B • 11-23-03, Radioactively Contaminated Area C • 11-23-04, Radioactively Contaminated Area D The purpose of this CADD is to identify and provide the rationale for the recommendation of corrective action alternatives (CAA) for the six CASs within CAU 366. Corrective action investigation (CAI) activities were performed from October 12, 2011, to May 14, 2012, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites.

  16. Sandia National Laboratories: heliostat innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  17. Sandia National Laboratories: sustainable photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaics Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal Test...

  18. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  19. Earthquake risk reduction in the United States: An assessment of selected user needs and recommendations for the National Earthquake Hazards Reduction Program

    SciTech Connect (OSTI)

    NONE

    1994-12-31T23:59:59.000Z

    This Assessment was conducted to improve the National Earthquake Hazards Reduction Program (NEHRP) by providing NEHRP agencies with information that supports their user-oriented setting of crosscutting priorities in the NEHRP strategic planning process. The primary objective of this Assessment was to take a ``snapshot`` evaluation of the needs of selected users throughout the major program elements of NEHRP. Secondary objectives were to conduct an assessment of the knowledge that exists (or is being developed by NEHRP) to support earthquake risk reduction, and to begin a process of evaluating how NEHRP is meeting user needs. An identification of NEHRP`s strengths also resulted from the effort, since those strengths demonstrate successful methods that may be useful to NEHRP in the future. These strengths are identified in the text, and many of them represent important achievements since the Earthquake Hazards Reduction Act was passed in 1977.

  20. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01T23:59:59.000Z

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  1. Cooperation between the United States Department of Energy National Laboratories and Mayak Production Association for enhancements to material protection control and accounting systems

    SciTech Connect (OSTI)

    Starodubtsev, G.S.; Prishchepov, A.I.; Zatorsky, Y.M. [Mayak Production Association (Russia); James, L.T. [Sandia National Labs., Albuquerque, NM (United States); Ehinger, M.H. [Oak Ridge National Lab., TN (United States); Manatt, D.R. [Lawrence Livermore National Lab., CA (United States); Olinger, C.T. [Los Alamos National Lab., NM (United States); Runyon, L. [Pacific Northwest Lab., Richland, WA (United States); Suda, S.C. [Brookhaven National Lab., Upton, NY (United States)

    1996-08-01T23:59:59.000Z

    The Agreement Between the Department of Defense of the United States and The Ministry of the Russian Federation for Atomic Energy (MINATOM) Concerning Control, Accounting, and Physical Protection of Nuclear Material, as well as a subsequent amendment to that agreement and a joint statement signed by the Department of Energy (DOE) and MINATOM, resulted in the selection of the Mayak Production Association (MPA) as one of the Russian enterprises that would participate with DOE Laboratories in expanded cooperation aimed at enhancing Material protection, Control and Accounting (MPC&A) systems in both countries. This paper describes the nature and scope of the expanded cooperation involving MPA and six DOE laboratories at an operating civilian, spent-nuclear-fuel reprocessing plant designated RT-1. RT-1 produces, among other materials, reactor-grade plutonium dioxide, a direct-use material that is stored within the boundaries of this plant. Initial efforts at expanded cooperation will focus on enhancements to the existing MPC&A systems at MPA`s RT-1 plant.

  2. S. 2166: A bill to reduce the Nation's dependence on imported oil, to provide for the energy security of the Nation, and for other purposes, introduced in the United States Senate, One Hundred Second Congress, Second Session, January 29, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    This bill, also referred to as the National Energy Security Act of 1992, contains the following: Title I - Findings and purposes: Goals, least-cost energy strategy, and Director of climate protection: Title II - Definitions; Title III (none); Title IV - Fleets and alternative fuels: Alternative fuel fleets, Electric and electric-hybrid vehicle demonstration, infrastructure development, and conforming amendments, Alternative fuels, Mass transit and training; Title V - Renewable energy: CORECT and COEECT, Renewable energy initiatives, Hydropower; Title VI - Energy efficiency: Industrial, commercial, and residential, Federal energy management, Utilities, State, local, insular, and tribal energy assistance, LIHEAP options pilot program; Title VII (none); Title VIII - Advanced nuclear reactor commercialization; Title IX - Nuclear reactor licensing; Title X - Uranium: Uranium enrichment, Uranium; Title XI - Natural gas; Title XII - Outer continental shelf; Title XIII - Research, development, demonstration and commercialization activities; Title XIV - Coal, coal technology, and electricity; Title XV - Public Utility Holding Company Act reform; Title XVI - Strategic Petroleum Reserve.

  3. Corrective Action Decision Document/Closure Report for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Sloop, Christy

    2013-04-01T23:59:59.000Z

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 569: Area 3 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 569 comprises the following nine corrective action sites (CASs): • 03-23-09, T-3 Contamination Area • 03-23-10, T-3A Contamination Area • 03-23-11, T-3B Contamination Area • 03-23-12, T-3S Contamination Area • 03-23-13, T-3T Contamination Area • 03-23-14, T-3V Contamination Area • 03-23-15, S-3G Contamination Area • 03-23-16, S-3H Contamination Area • 03-23-21, Pike Contamination Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 569 based on the implementation of the corrective actions listed in Table ES-2.

  4. United States of Agriculture

    E-Print Network [OSTI]

    United States Department of Agriculture Forest Service Intermountain Research Station General. in the aircraft nuclear propulsion department at the National Reactor Testing Station in Idaho. In 1961 Rothermel.S. Department of Agriculture, Fire Laboratory at Missoula was conceived in the aftermath of the Mann Gulch fire

  5. NOAA's National Climatic Data Center Sectoral Engagement Fact Sheet

    E-Print Network [OSTI]

    areas, heightens the need for additional weather and climate data for improved decision making. Having climate and weather- related information. Some major groups include: · Insurance and reinsurance companies to translate climate data into accessible, useful, and accurate products; and to leverage NCDC's climate

  6. National and Sectoral GHG Mitigation Potential: A Comparison Across Models

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall, Pennsylvania: EnergyEnergy Information ConferenceProject| Open Energy

  7. UNIT NUMBER:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    193 UNIT NUMBER: 197 UNIT NAME: CONCRETE RUBBLE PILE (30) REGULATORY STATUS: AOC LOCATION: Outside plant security fence, north of the plant on Big Bayou Creek on private property....

  8. Biomass Resources for the Federal Sector

    SciTech Connect (OSTI)

    Not Available

    2005-08-01T23:59:59.000Z

    Biomass Resources for the Federal Sector is a fact sheet that explains how biomass resources can be incorporated into the federal sector, and also how they can provide opportunities to meet federal renewable energy goals.

  9. Forest and Agricultural Sector Optimization Model (FASOM): Model structure and policy applications. Forest Service research paper

    SciTech Connect (OSTI)

    Adams, D.M.; Alig, R.J.; Callaway, J.M.; McCarl, B.A.; Winnett, S.M.

    1996-09-01T23:59:59.000Z

    The Forest and Agricultural Sector Opimization Model (FASOM) is a dynamic, nonlinear programming model of the forest and agricultural sectors in the United States. The FASOM model initially was developed to evaluate welfare and market impacts of alternative policies for sequestering carbon in trees but also has been applied to a wider range of forest and agricultural sector policy scenarios. The authors describe the model structure and give selected examples of policy applications. A summary of the data sources, input data file format, and the methods used to develop the input data files also are provided.

  10. OFFICE OF ELECTRICITY DELIVERY AND ENERGY RELIABILITY (OE) NATIONAL ENERGY TECHNOLOGY LABORATORY (NETL) AMERICAN RECOVERY AND REINVESTMENT ACT 2009 UNITED STATES DEPARTMENT OF ENERGY

    SciTech Connect (OSTI)

    Singh, Mohit; Grape, Ulrik

    2014-07-29T23:59:59.000Z

    The purpose of this project was for Seeo to deliver the first ever large-scale or grid-scale prototype of a new class of advanced lithium-ion rechargeable batteries. The technology combines unprecedented energy density, lifetime, safety, and cost. The goal was to demonstrate Seeo’s entirely new class of lithium-based batteries based on Seeo’s proprietary nanostructured polymer electrolyte. This technology can enable the widespread deployment in Smart Grid applications and was demonstrated through the development and testing of a 10 kilowatt-hour (kWh) prototype battery system. This development effort, supported by the United States Department of Energy (DOE) enabled Seeo to pursue and validate the transformational performance advantages of its technology for use in grid-tied energy storage applications. The focus of this project and Seeo’s goal as demonstrated through the efforts made under this project is to address the utility market needs for energy storage systems applications, especially for residential and commercial customers tied to solar photovoltaic installations. In addition to grid energy storage opportunities Seeo’s technology has been tested with automotive drive cycles and is seen as equally applicable for battery packs for electric vehicles. The goals of the project were outlined and achieved through a series of specific tasks, which encompassed materials development, scaling up of cells, demonstrating the performance of the cells, designing, building and demonstrating a pack prototype, and providing an economic and environmental assessment. Nearly all of the tasks were achieved over the duration of the program, with only the full demonstration of the battery system and a complete economic and environmental analysis not able to be fully completed. A timeline over the duration of the program is shown in figure 1.

  11. Uranium in granites from the southwestern United States: actinide parent-daughter systems, sites and mobilization. Second year report. National Uranium Resource Evaluation

    SciTech Connect (OSTI)

    Silver, L.T.; Woodhead, J.A.; Williams, I.S.; Chappell, B.W.

    1984-09-01T23:59:59.000Z

    Results of detailed field and laboratory studies are reported on the primary distribution of uranium (and thorium and lead) in the radioactive minerals of five radioactive granite bodies in Arizona and California. This distribution was examined in a granite pluton. Granites with uranium concentrations ranging from 4 to 47 ppM, thorium concentrations from 11 to 181 ppM, and Th/U ratios of 0.6 to 16.0 were compared. Evidence for secondary mobilization, migration, fixation and/or loss of uranium, thorium and radiogenic leads was explored. Uranium distribution in radioactive granites is hosted in a far greater diversity of sites than has previously been known. Uranium and thorium distribution in primary minerals of granites is almost entirely a disequilibrium product involving local fractionation processes during magmatic crystallization. Every radioactive granite studied contains minerals that contain uranium and/or thorium as major stoichiometric components. When the granites are subject to secondary geochemical events and processes, the behavior of uranium is determined by the stability fields of the different radioactive minerals in the rocks. The two most powerful tools for evaluating uranium migration in a granite are (a) isotope dilution mass spectrometry and (b) the electron microprobe. Uranium mobilization and loss is a common feature in radioactive granites of the southwestern United States. A model for the evaluation of uranium loss from granites has been developed. The mineral zircon can be used as an independent indicator of uranium and thorium endowment. The weathering products show surprising differences in the response of different granites in arid region settings. Significant losses of primary uranium (up to 70%) has been a common occurrence. Uranium, thorium and radiogenic lead exist in labile (movable) form on surfaces of cleavages, fractures and grain boundaries in granites.

  12. Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 1 with ROTC 1

    SciTech Connect (OSTI)

    Andrews, Robert

    2013-09-01T23:59:59.000Z

    The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).

  13. Advanced Vehicle Electrification and Transportation Sector Electrifica...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Vehicle Electrification and Transportation Sector Electrification Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity Advanced Vehicle...

  14. Scenario development in China's electricity sector

    SciTech Connect (OSTI)

    Steenhof, P.A.; Fulton, W. [Carleton University, Ottawa, ON (Canada). Dept. of Geography & Environmental Studies

    2007-07-15T23:59:59.000Z

    The continuing growth of China's electricity sector will affect global environmental and economic sustainability due to its impacts on greenhouse gas emissions and global resource depletion. In 2005, the generation of electricity in China resulted in the emissions of 2290 million metric tonnes of carbon dioxide (approximately 53% of the nation's total) and required 779 million metric tonnes of coal (approximately 50% of China's total coal consumption). These figures are expected to increase with China's economic growth. In order to gauge the range in which fuel consumption and CO{sub 2} emissions could grow a scenario-based conceptual model has been developed by the authors (published in this journal). The application and analysis of this shows that under a business as usual (BAU) scenario, electricity generation could contribute upwards of 56% of China's energy related greenhouse gas emissions by 2020. Meanwhile, consumption of coal will also increase, growing to nearly 60% of total national demand by 2020. However, variations in a number of key drivers could produce significant deviation from the BAU scenario. With accelerated economic output, even with greater technological advances and greater potential to bring natural gas on stream, carbon dioxide emissions would rise 10% above the BAU. Alternatively, in a scenario where China's economy grows at a tempered pace, less investment would be available for advanced technologies, developing natural gas infrastructure, or nuclear energy. In this scenario, reduced economic growth and electricity demand would thereby be countered by reduced efficiency and a higher contribution of coal.

  15. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    in Building Sector Electricity Consumption parameterin Building Sector Electricity Consumption Appendix 1. WorldElectricity in Building Sector Electricity Consumption iii

  16. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,41 with journalist covering electricity sector, Vladivostok,

  17. External Peer Review Team Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Marutzky, Sam J.; Andrews, Robert

    2015-01-01T23:59:59.000Z

    The peer review team commends the Navarro-Intera, LLC (N-I), team for its efforts in using limited data to model the fate of radionuclides in groundwater at Yucca Flat. Recognizing the key uncertainties and related recommendations discussed in Section 6.0 of this report, the peer review team has concluded that U.S. Department of Energy (DOE) is ready for a transition to model evaluation studies in the corrective action decision document (CADD)/corrective action plan (CAP) stage. The DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) clarified the charge to the peer review team in a letter dated October 9, 2014, from Bill R. Wilborn, NNSA/NFO Underground Test Area (UGTA) Activity Lead, to Sam J. Marutzky, N-I UGTA Project Manager: “The model and supporting information should be sufficiently complete that the key uncertainties can be adequately identified such that they can be addressed by appropriate model evaluation studies. The model evaluation studies may include data collection and model refinements conducted during the CADD/CAP stage. One major input to identifying ‘key uncertainties’ is the detailed peer review provided by independent qualified peers.” The key uncertainties that the peer review team recognized and potential concerns associated with each are outlined in Section 6.0, along with recommendations corresponding to each uncertainty. The uncertainties, concerns, and recommendations are summarized in Table ES-1. The number associated with each concern refers to the section in this report where the concern is discussed in detail.

  18. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  19. INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization

    E-Print Network [OSTI]

    INTEGRATED OCEAN DRILLING PROGRAM United States Implementing Organization Consortium for Ocean: National Science Foundation _______________________________ David L. Divins Director, Ocean Drilling

  20. Corrective Action Investigation Plan for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-08-01T23:59:59.000Z

    CAU 570 comprises the following six corrective action sites (CASs): • 02-23-07, Atmospheric Test Site - Tesla • 09-23-10, Atmospheric Test Site T-9 • 09-23-11, Atmospheric Test Site S-9G • 09-23-14, Atmospheric Test Site - Rushmore • 09-23-15, Eagle Contamination Area • 09-99-01, Atmospheric Test Site B-9A These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 570. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The presence and nature of contamination at CAU 570 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed near the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  1. Corrective Action Investigation Plan for Corrective Action Unit 571: Area 9 Yucca Flat Plutonium Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Bailey, Bernadine; Matthews, Patrick

    2013-07-01T23:59:59.000Z

    CAU 571 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 571, which comprises the following corrective action sites (CASs): • 09-23-03, Atmospheric Test Site S-9F • 09-23-04, Atmospheric Test Site T9-C • 09-23-12, Atmospheric Test Site S-9E • 09-23-13, Atmospheric Test Site T-9D • 09-45-01, Windrows Crater These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on March 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (now the Nevada Field Office). The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 571. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 571 CASs are from nuclear testing activities. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary exceeds the final action level (FAL) and requires corrective action. The presence and nature of contamination outside the default contamination boundaries at CAU 571 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based FAL. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Chemical contamination will be evaluated by comparing soil sample results to the FAL. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  2. Financial Sector Ups and Downs and the Real Sector: Up by the Stairs and Down by the Parachute

    E-Print Network [OSTI]

    Aizenman, Joshua; Pinto, Brian; Sushko, Vladyslav

    2012-01-01T23:59:59.000Z

    May 2012 Financial Sector Ups and Downs and the Real Sector:to reclassifying financial sector ups and downs as turning

  3. The Changing US Electric Sector Business Model

    E-Print Network [OSTI]

    Aliff, G.

    2013-01-01T23:59:59.000Z

    The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16...-18 Copyright © 2013 Deloitte Development LLC. All rights reserved. • Fundamentals of the US Electric Sector Business Model • Today’s Challenges Faced by U.S. Electric Sector • The Math Does Not Lie: A Look into the Sector’s Future • Disruption to Today...

  4. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-08-01T23:59:59.000Z

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) to the dose-based final action level (FAL). The presence of TED exceeding the FAL is considered a radiological contaminant of concern (COC). Anything identified as a COC will require corrective action. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters will be used to measure external radiological dose. Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plume, it was determined that the releases from the nuclear tests are co-located and will be investigated concurrently. A field investigation will be performed to define areas where TED exceeds the FAL and to determine whether other COCs are present at the site. The investigation will also collect information to determine the presence and nature of contamination associated with migration and excavation, as well as any potential releases discovered during the investigation. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  5. UNIT NUMBER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 UNIT NAME C-611 Underaround Diesel Tank REGULATORY STATUS: AOC LOCATION: Immediately southeast of C-611 APPROXIMATE DIMENSIONS: 1000 gallon FUNCTION: Diesel storage OPERATIONAL...

  6. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Electricity Sector in Russia: Regional Aspects " In Economics EducationElectricity Sector in Russia: Regional Aspects " in Economics Education

  7. Macroscopic theory of dark sector

    E-Print Network [OSTI]

    Boris E. Meierovich

    2014-10-06T23:59:59.000Z

    A simple Lagrangian with squared covariant divergence of a vector field as a kinetic term turned out an adequate tool for macroscopic description of the dark sector. The zero-mass field acts as the dark energy. Its energy-momentum tensor is a simple additive to the cosmological constant. Massive fields {\\phi}_{I} with {\\phi}^{K}{\\phi}_{K}0 describe two different forms of dark matter. The space-like ({\\phi}^{K}{\\phi}_{K}0) massive field displays repulsive elasticity. In balance with dark energy and ordinary matter it provides a four parametric diversity of regular solutions of the Einstein equations describing different possible cosmological and oscillating non-singular scenarios of evolution of the universe. In particular, the singular big bang turns into a regular inflation-like transition from contraction to expansion with the accelerate expansion at late times. The fine-tuned Friedman-Robertson-Walker singular solution is a particular limiting case at the boundary of existence of regular oscillating solutions in the absence of vector fields. The simplicity of the general covariant expression for the energy-momentum tensor allows to display the main properties of the dark sector analytically and avoid unnecessary model assumptions.

  8. Scale Matters: An Action Plan for Realizing Sector-Wide"Zero-Energy" Performance Goals in Commercial Buildings

    SciTech Connect (OSTI)

    Selkowitz, Stephen; Selkowitz, Stephen; Granderson, Jessica; Haves, Philip; Mathew, Paul; Harris, Jeff

    2008-06-16T23:59:59.000Z

    It is widely accepted that if the United States is to reduce greenhouse gas emissions it must aggressively address energy end use in the building sector. While there have been some notable but modest successes with mandatory and voluntary programs, there have also been puzzling failures to achieve expected savings. Collectively, these programs have not yet reached the majority of the building stock, nor have they yet routinely produced very large savings in individual buildings. Several trends that have the potential to change this are noteworthy: (1) the growing market interest in 'green buildings' and 'sustainable design', (2) the major professional societies (e.g. AIA, ASHRAE) have more aggressively adopted significant improvements in energy efficiency as strategic goals, e.g. targeting 'zero energy', carbon-neutral buildings by 2030. While this vision is widely accepted as desirable, unless there are significant changes to the way buildings are routinely designed, delivered and operated, zero energy buildings will remain a niche phenomenon rather than a sector-wide reality. Toward that end, a public/private coalition including the Alliance to Save Energy, LBNL, AIA, ASHRAE, USGBC and the World Business Council for Sustainable Development (WBCSD) are developing an 'action plan' for moving the U.S. commercial building sector towards zero energy performance. It addresses regional action in a national framework; integrated deployment, demonstration and R&D threads; and would focus on measurable, visible performance indicators. This paper outlines this action plan, focusing on the challenge, the key themes, and the strategies and actions leading to substantial reductions in GHG emissions by 2030.

  9. National Environmental Research Institute Ministry of the Environment . Denmark

    E-Print Network [OSTI]

    Inventories Denmark's National Inventory Report 2006 Submitted under the United Nations Framework Convention Research Institute Ministry of the Environment Emission Inventories Denmark's National Inventory Report, Landscape and Planning #12;Data sheet Title: Denmark's National Inventory Report 2006 - Submitted under

  10. Clinical Research Unit Translating research from

    E-Print Network [OSTI]

    Bandettini, Peter A.

    Clinical Research Unit Translating research from bench to bedside www.niehs.nih.gov/clinicalunit #12;National Institute of Environmental Health Sciences Clinical Research Program The National Institute of Environmental Health Sciences (NIEHS) Clinical Research Program and the Clinical Research Unit

  11. United States and world energy sources

    SciTech Connect (OSTI)

    Berg, L.L.; Baird, L.M.; Varanini, E.E. III (eds.)

    1982-01-01T23:59:59.000Z

    This volume examines the economic, political, and social implications of the oil-dependence dilemma facing the United States. Most of the contributors are energy consultants in the public or private sector. Their analyses of the changing oil situation and its impact on other energy policies reflect either an international, national, or regional perspective with a unique combination of pragmatic insights and academic analyses of these complex issues. While examining the various aspects of the energy dependence dilemma presented here, one critical theme will probably recur to the reader. That is, given the inadequate nature of the US response to the 1973 and 1979 shortfalls in foreign oil supplies, how will we manage the projected future shortages in foreign oil supplies. The 18 papers of this volume were presented at a conference at Los Angeles in July 1980 and cosponsored by the University of Southern California and the California Energy Commission; a separate abstract was prepared for each paper. See also EAPA 7:3231 and Energy Research Abstracts (ERA) 6:18036.

  12. A comparison of dose and dose-rate conversion factors from the Soviet Union, United Kingdom, US Department of Energy, and the Idaho National Engineering Laboratory Fusion Safety Program

    SciTech Connect (OSTI)

    Rood, A.S.; Abbott, M.L.

    1991-12-01T23:59:59.000Z

    Several independent data sets of radiological dose and dose-rate conversion factors (DCF/DRCF) have been tabulated or developed by the international community both for fission and fusion safety purposes. This report compares sets from the US Department of Energy, the Soviet Union, and the United Kingdom with those calculated by the Idaho National Engineering Laboratory Fusion Safety Program. The objectives were to identify trends and potential outlying values for specific radionuclides and contribute to a future benchmark evaluation of the CARR computer code. Fifty-year committed effective dose equivalent factors were compared for the inhalation and ingestion pathways. External effective dose equivalent rates were compared for the air immersion and ground surface exposure pathways. Comparisons were made by dividing dose factors in the different data bases by the values in the FSP data base. Differences in DCF/DRCF values less than a factor of 2 were considered to be in good agreement and are likely due to the use of slightly different decay data, variations in the number of organs considered for calculating CEDE, and rounding errors. DCF/DRCF values that differed by greater than a factor of 10 were considered to be significant. These differences are attributed primarily to the use of different radionuclide decay data, selection and nomenclature for different isomeric states, treatment of progeny radionuclides, differences in calculational methodology, and assumptions on a radionuclide's chemical form.

  13. A comparison of dose and dose-rate conversion factors from the Soviet Union, United Kingdom, US Department of Energy, and the Idaho National Engineering Laboratory Fusion Safety Program

    SciTech Connect (OSTI)

    Rood, A.S.; Abbott, M.L.

    1991-12-01T23:59:59.000Z

    Several independent data sets of radiological dose and dose-rate conversion factors (DCF/DRCF) have been tabulated or developed by the international community both for fission and fusion safety purposes. This report compares sets from the US Department of Energy, the Soviet Union, and the United Kingdom with those calculated by the Idaho National Engineering Laboratory Fusion Safety Program. The objectives were to identify trends and potential outlying values for specific radionuclides and contribute to a future benchmark evaluation of the CARR computer code. Fifty-year committed effective dose equivalent factors were compared for the inhalation and ingestion pathways. External effective dose equivalent rates were compared for the air immersion and ground surface exposure pathways. Comparisons were made by dividing dose factors in the different data bases by the values in the FSP data base. Differences in DCF/DRCF values less than a factor of 2 were considered to be in good agreement and are likely due to the use of slightly different decay data, variations in the number of organs considered for calculating CEDE, and rounding errors. DCF/DRCF values that differed by greater than a factor of 10 were considered to be significant. These differences are attributed primarily to the use of different radionuclide decay data, selection and nomenclature for different isomeric states, treatment of progeny radionuclides, differences in calculational methodology, and assumptions on a radionuclide`s chemical form.

  14. Public Sector New Construction and Retrofit Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) Bureau of Energy and Recycling administers the public sector energy efficiency programs required by the Illinois Energy...

  15. Public Sector Energy Efficiency Aggregation Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) administers the Illinois Energy Now programs, including the Public Sector Energy Efficiency Aggregation Program. The program will...

  16. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating Investments in the Geothermal...

  17. Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

  18. Draft Energy Sector Cybersecurity Framework Implementation Guidance...

    Broader source: Energy.gov (indexed) [DOE]

    Technology (NIST) released a Cybersecurity Framework. DOE has collaborated with private sector stakeholders through the Electricity Subsector Coordinating Council (ESCC) and the...

  19. Climate VISION: Private Sector Initiatives: Electric Power

    Office of Scientific and Technical Information (OSTI)

    Letters of IntentAgreements The electric power sector participates in the Climate VISION program through the Electric Power Industry Climate Initiative (EPICI) and its Power...

  20. Climate VISION: Private Sector Initiatives: Business Roundtable...

    Office of Scientific and Technical Information (OSTI)

    Results Every Sector, One RESOLVE: A Progress Report on Business Roundtable's Climate RESOLVE Program, September 2004 (PDF 1.8 MB) Download Acrobat Reader...

  1. Climate VISION: Private Sector Initiatives: Cement

    Office of Scientific and Technical Information (OSTI)

    various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the emissions expressed in million...

  2. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    various sources describing the energy consumption of the industrial sector and the carbon emissions in particular. Below is an estimate of the million metric tons of carbon...

  3. Review of private sector and Department of Energy treatment, storage, and disposal capabilities for low-level and mixed low-level waste

    SciTech Connect (OSTI)

    Willson, R.A.; Ball, L.W.; Mousseau, J.D.; Piper, R.B.

    1996-03-01T23:59:59.000Z

    Private sector capacity for treatment, storage, and disposal (TSD) of various categories of radioactive waste has been researched and reviewed for the Idaho National Engineering Laboratory (INEL) by Lockheed Idaho Technologies Company, the primary contractor for the INEL. The purpose of this document is to provide assistance to the INEL and other US Department of Energy (DOE) sites in determining if private sector capabilities exist for those waste streams that currently cannot be handled either on site or within the DOE complex. The survey of private sector vendors was limited to vendors currently capable of, or expected within the next five years to be able to perform one or more of the following services: low-level waste (LLW) volume reduction, storage, or disposal; mixed LLW treatment, storage, or disposal; alpha-contaminated mixed LLW treatment; LLW decontamination for recycling, reclamation, or reuse; laundering of radioactively-contaminated laundry and/or respirators; mixed LLW treatability studies; mixed LLW treatment technology development. Section 2.0 of this report will identify the approach used to modify vendor information from previous revisions of this report. It will also illustrate the methodology used to identify any additional companies. Section 3.0 will identify, by service, specific vendor capabilities and capacities. Because this document will be used to identify private sector vendors that may be able to handle DOE LLW and mixed LLW streams, it was decided that current DOE capabilities should also be identified. This would encourage cooperation between DOE sites and the various states and, in some instances, may result in a more cost-effective alternative to privatization. The DOE complex has approximately 35 sites that generate the majority of both LLW and mixed LLW. Section 4.0 will identify these sites by Operations Office, and their associated LLW and mixed LLW TSD units.

  4. United Nations General Assembly First Committee

    E-Print Network [OSTI]

    Sussex, University of

    and potential candidates, Albania, Bosnia and Herzegovina, the former Yugoslav Republic of Macedonia, Serbia, the European Union is on the ground, as military, police or civilian presence, in Bosnia, Aceh, Iraq

  5. September 2006 United Nations Environment Programme

    E-Print Network [OSTI]

    Boudouresque, Charles F.

    , side scan sonar, towed underwater camera, dredging, grabs, observations from small boats, diving. Cartography is highly time consuming and often involves costly means and large teams. Therefore). Examples of the first type of method are sounding leads (a method no longer used), dredges, grabs

  6. UNITED NATIONS ENVIRONMENT PROGRAMME GLOBAL ENVIRONMENT FACILITY

    E-Print Network [OSTI]

    Seitzinger, Sybil

    -based Approaches to Fisheries Conservation and LME's Component Three ­ Eutrophication: Filling Gaps in Nitrogen Eutrophication Network in the methods and application of a nitrogen-based model used to forecast eutrophication through electronic communication of an IOC-UNESCO IT Eutrophication Network of participating scientists

  7. September 2006 United Nations Environment Programme

    E-Print Network [OSTI]

    Boudouresque, Charles F.

    of the relative importance of human impact on biodiversity must take into account the time necessary introduction, species extinction and global warming are of major concern. (i) Coastal development especially" species are known to have become extinct due to human impact, but many species and communities are vulne

  8. NATIONAL ENVIRONMENTAL RESEARCH INSTITUTE AARHUS UNIVERSITY

    E-Print Network [OSTI]

    DENMARK'S NATIONAL INVENTORY REPORT 2009 Emission Inventories 1990-2007 ­ Submitted under the United INSTITUTE AARHUS UNIVERSITYAU NERI Technical Report no. 724 2009 DENMARK'S NATIONAL INVENTORY REPORT 2009 Emission Inventories 1990-2007 ­ Submitted under the United Nations Framework Convention on Climate Change

  9. Building sector: state of the market and two models on how to reach it

    SciTech Connect (OSTI)

    Holtz, M.J.

    1980-08-30T23:59:59.000Z

    Two subjects related to marketing solar energy in the buildings sector are discussed: first, the market size defined in terms of number of housing units and square feet of commercial floor space and their energy use characteristics and, second, several models SERI has developed and is using to move solar energy/energy efficiency into the mainstream of residential and commercial building construction. (MHR)

  10. A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050

    E-Print Network [OSTI]

    Boyer, Edmond

    1 A Sectoral Prospective Analysis of CO2 Emissions in China, USA and France, 2010-2050 Pascal da mitigation targets for CO2 emissions, which reflect their own specific situations. In this article, scenarios for CO2 emissions up to 2050 are set up for three representative countries: the United States of America

  11. The mammals of Big Thicket National Preserve

    E-Print Network [OSTI]

    Barnette, Ralph Brian

    1979-01-01T23:59:59.000Z

    Unit. . 102 Table 21. Track count results, Hickory Creek Savannah Unit 103 LIST OF FIGURES Page Figure 1. Map showing three different con- cepts of the Big Thicket Figure 2. Map of the units of Big Thicket National Preserve. Figure 3. The Beech... of the units of Big Thicket National Pre- serve. Cross-hatched areas indicate the individual units. CHESTER S 8) COLMESNEIL BA Ir LO Ste nhagen J Lake JASPER US e? W DVILLE BEEC CREEK UNIT TOWN BLUFF UPPER NECHE RIVER CORRIDOR UNIT BIG SANDY...

  12. Analysis of International Policies In The Solar Electricity Sector: Lessons for India

    SciTech Connect (OSTI)

    Deshmukh, Ranjit; Bharvirkar, Ranjit; Gambhir, Ashwin; Phadke, Amol

    2011-08-10T23:59:59.000Z

    Although solar costs are dropping rapidly, solar power is still more expensive than conventional and other renewable energy options. The solar sector still needs continuing government policy support. These policies are driven by objectives that go beyond the goal of achieving grid parity. The need to achieve multiple objectives and ensure sufficient political support for solar power makes it diffi cult for policy makers to design the optimal solar power policy. The dynamic and uncertain nature of the solar industry, combined with the constraints offered by broader economic, political and social conditions further complicates the task of policy making. This report presents an analysis of solar promotion policies in seven countries - Germany, Spain, the United States, Japan, China, Taiwan, and India - in terms of their outlook, objectives, policy mechanisms and outcomes. The report presents key insights, primarily in qualitative terms, and recommendations for two distinct audiences. The first audience consists of global policy makers who are exploring various mechanisms to increase the penetration of solar power in markets to mitigate climate change. The second audience consists of key Indian policy makers who are developing a long-term implementation plan under the Jawaharlal Nehru National Solar Mission and various state initiatives.

  13. UNIT NUMBER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 C-750B Diesel UST UNIT NAME REGULATORY STATUS: AOC LOCATION: Southeast corner of C-750 APPROXIMATE DIMENSIONS: 10,000 gallon FUNCTION: Diesel storage OPERATIONAL STATUS: Removed...

  14. WOODS FOR LEARNING ACTION PLAN 2010-2013 Objective National Indicators Specific actions

    E-Print Network [OSTI]

    WOODS FOR LEARNING ACTION PLAN 2010-2013 Objective National Indicators Specific actions Lead positive inspection reports Develop Forest Kindergarten with nurseries in both private and state sectors

  15. Table E14. Electric Power Sector Energy Expenditure Estimates, 2012

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Energy I I' a(STEO)U.S. CoalInputsTotal Stocks4. Electric Power Sector

  16. Institute of Public Sector Accounting Research

    E-Print Network [OSTI]

    Edinburgh, University of

    THE STATE" New Public Sector Seminar, Edinburgh, 6-7th November 2014 Co-Chairs: Liisa Kurunmaki, Irvine and consultants depend on in the management of public service organisations, and what is the statusInstitute of Public Sector Accounting Research I·P·S·A·R In Government, Public Services

  17. Managing Technical Risk: Understanding Private Sector

    E-Print Network [OSTI]

    action. Our study seeks to inform the decisions of both government managers and private entrepreneursApril 2000 Managing Technical Risk: Understanding Private Sector Decision Making on Early Stage 00-787 Managing Technical Risk Understanding Private Sector Decision Making on Early Stage Technology

  18. Safety Share from National Safety Council

    Broader source: Energy.gov [DOE]

    Slide Presentation by Joe Yanek, Fluor Government Group. National Safety Council Safety Share. The Campbell Institute is the “Environmental, Health and Safety (EHS) Center of Excellence” at the National Safety Council and provides a Forum for Leaders in EHS to exchange ideas and collaborate across industry sectors and organizational types.

  19. Introduction to the Buildings Sector Module of SEDS

    SciTech Connect (OSTI)

    DeForest, Nicholas; Bonnet, Florence; Stadler, Michael; Marnay, Chris

    2010-12-31T23:59:59.000Z

    SEDS is a stochastic engineering-economics model that forecasts economy-wide energy consumption in the U.S. to 2050. It is the product of multi-laboratory collaboration among the National Renewable Energy Laboratory (NREL), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), Lawrence Berkeley National Laboratory (LBNL), and Lumina Decision Systems. Among national energy models, SEDS is unique, as it is the only model written to explicitly incorporate uncertainty in its inputs and outputs. The primary purpose of SEDS is to estimate the impact of various US Department of Energy (DOE)R&D and policy programs on the performance and subsequent adoption rates of technologies relating to every energy consuming sector of the economy (shown below). It has previously been used to assist DOE in complying with the Government Performance and Results Act of 1993 (GPRA). The focus of LBNL research has been exclusively on develop the buildings model (SBEAM), which is capable of running as a stand-alone forecasting model, or as a part of SEDS as a whole. The full version of SEDS, containing all sectors and interaction is also called the 'integrated' version and is managed by NREL. Forecasts from SEDS are often compared to those coming from National Energy Modeling System (NEMS). The intention of this document is to present new users and developers with a general description of the purpose, functionality and structure of the buildings module within the Stochastic Energy Deployment System (SEDS). The Buildings module, which is capable of running as a standalone model, is also called the Stochastic Buildings Energy and Adoption Model (SBEAM). This document will focus exclusively on SBEAM and its interaction with other major sector modules present within SEDS. The methodologies and major assumptions employed in SBEAM will also be discussed. The organization of this report will parallel the organization of the model itself, being divided into major submodules. As the description progresses, the nature of modules will change from broad, easily understood concepts to lower-level data manipulation. Because SBEAM contains dozens of submodules and hundreds of variables, it would not be relevant or useful to describe each and every one. Rather, the investigation will focus more generally on the operations performed throughout the model. This manual is by no means a complete description of SBEAM; however it should provide the foundation for an introductory understanding of the model. The manual assumes a basic level of understating of Analytica{reg_sign}, the platform on which SEDS and SBEAM have been developed.

  20. January 2013 Most Viewed Documents for National Defense | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Wright, B. Los Alamos National Lab., NM (United States) Investigations into seismic discrimination between earthquakes, chemical explosions and nuclear explosions...

  1. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Ancillary Services in the United

    E-Print Network [OSTI]

    Services & Alternative Energy Options in the Indian Power Sector Jaquelin Cochran, Ph.D. , NREL (USA) 10 Union for the Coordination of Transmission of Electricity (UCTE) North American Electric in Ancillary Services Markets · Wind and solar · Demand response · Storage · Distributed generation #12;Thank

  2. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  3. Sandia National Laboratories: increase annual electricity production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  4. Sandia National Laboratories: SolarReserve Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  5. Sandia National Laboratories: multiscale concentrated solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concentrated solar power Solar Energy Research Institute for India and the United States Kick-Off On November 27, 2012, in Concentrating Solar Power, Energy, National Solar Thermal...

  6. KEEPING THE FUTURE BRIGHT 2004 Canadian Electricity Human Resource Sector Study

    E-Print Network [OSTI]

    supply 8 Electricity consumption 9 Supply and demand projections 9 Electricity exports and importsKEEPING THE FUTURE BRIGHT 2004 Canadian Electricity Human Resource Sector Study #12;This project Electricity Association The Canadian Electricity Association (CEA), founded in 1891, is the national forum

  7. Illegal Logging and Illegal Activities in the Forestry Sector: Overview and Possible Issues

    E-Print Network [OSTI]

    Illegal Logging and Illegal Activities in the Forestry Sector: Overview and Possible Issues Product Markets and Marketing identified the issue of illegal logging and illegal activities these countries' boundaries and provides examples in developed nations. The pernicious effects of illegal logging

  8. Student Experiential Opportunities in National Security Careers

    SciTech Connect (OSTI)

    None

    2007-12-31T23:59:59.000Z

    This report documents student experiential opportunities in national security careers as part of the National Security Preparedness Project (NSPP), being performed under a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This report includes a brief description of how experiential opportunities assist students in the selection of a career and a list of opportunities in the private sector and government. The purpose of the NSPP is to promote national security technologies through business incubation, technology demonstration and validation, and workforce development. Workforce development activities will facilitate the hiring of students to work with professionals in both the private and public sectors, as well as assist in preparing a workforce for careers in national security. The goal of workforce development under the NSPP grant is to assess workforce needs in national security and implement strategies to develop the appropriate workforce.

  9. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    SciTech Connect (OSTI)

    Goldman, Charles; Fuller, Merrian C.; Stuart, Elizabeth; Peters, Jane S.; McRae, Marjorie; Albers, Nathaniel; Lutzenhiser, Susan; Spahic, Mersiha

    2010-03-22T23:59:59.000Z

    The energy efficiency services sector (EESS) is poised to become an increasingly important part of the U.S. economy. Climate change and energy supply concerns, volatile and increasing energy prices, and a desire for greater energy independence have led many state and national leaders to support an increasingly prominent role for energy efficiency in U.S. energy policy. The national economic recession has also helped to boost the visibility of energy efficiency, as part of a strategy to support economic recovery. We expect investment in energy efficiency to increase dramatically both in the near-term and through 2020 and beyond. This increase will come both from public support, such as the American Recovery and Reinvestment Act (ARRA) and significant increases in utility ratepayer funds directed toward efficiency, and also from increased private spending due to codes and standards, increasing energy prices, and voluntary standards for industry. Given the growing attention on energy efficiency, there is a concern among policy makers, program administrators, and others that there is an insufficiently trained workforce in place to meet the energy efficiency goals being put in place by local, state, and federal policy. To understand the likelihood of a potential workforce gap and appropriate response strategies, one needs to understand the size, composition, and potential for growth of the EESS. We use a bottom-up approach based upon almost 300 interviews with program administrators, education and training providers, and a variety of EESS employers and trade associations; communications with over 50 sector experts; as well as an extensive literature review. We attempt to provide insight into key aspects of the EESS by describing the current job composition, the current workforce size, our projections for sector growth through 2020, and key issues that may limit this growth.

  10. ImSET: Impact of Sector Energy Technologies

    SciTech Connect (OSTI)

    Roop, Joseph M.; Scott, Michael J.; Schultz, Robert W.

    2005-07-19T23:59:59.000Z

    This version of the Impact of Sector Energy Technologies (ImSET) model represents the ''next generation'' of the previously developed Visual Basic model (ImBUILD 2.0) that was developed in 2003 to estimate the macroeconomic impacts of energy-efficient technology in buildings. More specifically, a special-purpose version of the 1997 benchmark national Input-Output (I-O) model was designed specifically to estimate the national employment and income effects of the deployment of Office of Energy Efficiency and Renewable Energy (EERE) -developed energy-saving technologies. In comparison with the previous versions of the model, this version allows for more complete and automated analysis of the essential features of energy efficiency investments in buildings, industry, transportation, and the electric power sectors. This version also incorporates improvements in the treatment of operations and maintenance costs, and improves the treatment of financing of investment options. ImSET is also easier to use than extant macroeconomic simulation models and incorporates information developed by each of the EERE offices as part of the requirements of the Government Performance and Results Act.

  11. Process Intensification - Chemical Sector Focus

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartmentEnergyLoanEffectsBest

  12. Electricity sector restructuring and competition : lessons learned

    E-Print Network [OSTI]

    Joskow, Paul L.

    2003-01-01T23:59:59.000Z

    We now have over a decade of experience with the privatization, restructuring, regulatory reform, and wholesale and retail competition in electricity sectors around the world. The objectives and design attributes of these ...

  13. Top partner probes of extended Higgs sectors

    E-Print Network [OSTI]

    Kearney, John

    Natural theories of the weak scale often include fermionic partners of the top quark. If the electroweak symmetry breaking sector contains scalars beyond a single Higgs doublet, then top partners can have sizable branching ...

  14. Private Sector Rates (FY 2015) Instrument Technique

    E-Print Network [OSTI]

    Bashir, Rashid

    Source Laser $150 $175 Nanophoton Raman 11 Raman Spectroscopy $150 $175 Newport Solar Simulator Solar Rates for the Material Research Laboratory Facilities Rates for Private Sector companies and researchers

  15. Activities to Secure Control Systems in the Energy Sector | Department...

    Office of Environmental Management (EM)

    Activities to Secure Control Systems in the Energy Sector Activities to Secure Control Systems in the Energy Sector Presentation-given at the Federal Utility Partnership Working...

  16. Power Politics: The Political Economy of Russia's Electricity Sector Liberalization

    E-Print Network [OSTI]

    Wengle, Susanne Alice

    2010-01-01T23:59:59.000Z

    Private Participation in the Electricity Sector World BankTelecommunications and Electricity Sectors." Governance 19,Power Struggle: Reforming the Electricity Industry." In The

  17. Energy Efficiency Services Sector: Workforce Size and Expectations for Growth

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and market assessment Energy Efficiency Services Sector: Workforce Size2008. “The Size of the U.S. Energy Efficiency Market. Reportmarket spending Energy Efficiency Services Sector: Workforce Size

  18. EIA Energy Efficiency-Commercial Buildings Sector Energy Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Buildings Sector Energy Intensities Commercial Buildings Sector Energy Intensities: 1992- 2003 Released Date: December 2004 Page Last Revised: August 2009 These tables...

  19. Energy Use in China: Sectoral Trends and Future Outlook

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    11 Calibration of the Energy Consumption Data forSectoral energy consumption data are available in publishedof the sectoral energy consumption data in the statistics

  20. Sectoral trends in global energy use and greenhouse gas emissions

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Building Sector Electricity Consumption parameter logisticin Building Sector Electricity Consumption iii iv Sectoralsome water with electricity consumption, it is not possible

  1. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Transportation energy use grows slowly in comparison with historical trend figure data Transportation sector energy consumption grows at an...

  2. U.S. Energy Information Administration (EIA) - Sector

    Gasoline and Diesel Fuel Update (EIA)

    Transportation sector energy demand Growth in transportation energy consumption flat across projection figure data The transportation sector consumes 27.1 quadrillion Btu of energy...

  3. Energy Department Announces New Private Sector Partnership to...

    Energy Savers [EERE]

    Energy Department Announces New Private Sector Partnership to Accelerate Renewable Energy Projects Energy Department Announces New Private Sector Partnership to Accelerate...

  4. Designing Effective State Programs for the Industrial Sector...

    Energy Savers [EERE]

    Sector - New SEE Action Publication March 24, 2014 - 12:56pm Addthis Industrial Energy Efficiency: Designing Effective State Programs for the Industrial Sector provides...

  5. Climate Change and the Transporation Sector - Challenges and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Climate Change and the Transporation Sector - Challenges and Mitigation Options Climate Change and the Transporation Sector - Challenges and Mitigation Options 2003 DEER Conference...

  6. The Economics of Public Sector Information

    E-Print Network [OSTI]

    Pollock, Rufus

    result in incentives for over-investment in quality and capacity improvements because, by over-investing, the PSIH stimulates demand and obtains a larger subsidy. In terms of responsiveness an organization operating a more ‘commercial’ pricing policy (e... area (building especially), or keeping up to date with the decisions of their elected representatives. While much data is supplied from outside the public sector, compared to many other areas of the economy, the public sector plays an unusually...

  7. Corrective Action Decision Document/Corrective Action Plan for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-11-22T23:59:59.000Z

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada National Security Site (NNSS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NNSS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the potential CAAs, Closure in Place with Administrative Controls is the preferred CAA for the 92-Acre Area. Closure activities will include the following: (1) Constructing an engineered evapotranspiration cover over the 92-Acre Area; (2) Installing use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; (3) Establishing vegetation on the cover; (4) Implementing a UR; and (5) Implementing post-closure inspections and monitoring. The Closure in Place with Administrative Controls alternative meets all requirements for the technical components evaluated, fulfills all applicable federal and state regulations for closure of the site, and will minimize potential future exposure pathways to the buried waste at the site.

  8. l UNITED STATES GOVERNMENT

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj:'I,\ W CTheuse of_-_ ._UNITED

  9. Corrective Action Investigation Plan for Corrective Action Unit...

    Office of Scientific and Technical Information (OSTI)

    Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada Re-direct Destination: Corrective Action Unit (CAU) 541 is...

  10. United States Atomic Energy Commission formed, part 2

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    formed, part 2 As we continue looking at the transition of thinking that led to the United States Atomic Energy Commission and away from a United Nations Atomic Energy Commission,...

  11. National Level Co-Control Study of the Targets for Energy Intensity and Sulfur Dioxide in China

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01T23:59:59.000Z

    David Kline of the National Renewable Energy Laboratory foralong with hydropower, renewable and nuclear capacityCapacity Accelerated Renewable Generation Power Sector CO2

  12. Multi-project baselines for potential clean development mechanism projects in the electricity sector in South Africa

    SciTech Connect (OSTI)

    Winkler, H.; Spalding-Fecher, R.; Sathaye, J.; Price, L.

    2002-06-26T23:59:59.000Z

    The United Nations Framework Convention on Climate Change (UNFCCC) aims to reduce emissions of greenhouse gases (GHGs) in order to ''prevent dangerous anthropogenic interference with the climate system'' and promote sustainable development. The Kyoto Protocol, which was adopted in 1997 and appears likely to be ratified by 2002 despite the US withdrawing, aims to provide means to achieve this objective. The Clean Development Mechanism (CDM) is one of three ''flexibility mechanisms'' in the Protocol, the other two being Joint Implementation (JI) and Emissions Trading (ET). These mechanisms allow flexibility for Annex I Parties (industrialized countries) to achieve reductions by extra-territorial as well as domestic activities. The underlying concept is that trade and transfer of credits will allow emissions reductions at least cost. Since the atmosphere is a global, well-mixed system, it does not matter where greenhouse gas emissions are reduced. The CDM allows Annex I Parties to meet part of their emissions reductions targets by investing in developing countries. CDM projects must also meet the sustainable development objectives of the developing country. Further criteria are that Parties must participate voluntarily, that emissions reductions are ''real, measurable and long-term'', and that they are additional to those that would have occurred anyway. The last requirement makes it essential to define an accurate baseline. The remaining parts of section 1 outline the theory of baselines, emphasizing the balance needed between environmental integrity and reducing transaction costs. Section 2 develops an approach to multi-project baseline for the South African electricity sector, comparing primarily to near future capacity, but also considering recent plants. Five potential CDM projects are briefly characterized in section 3, and compared to the baseline in section 4. Section 5 concludes with a discussion of options and choices for South Africa regarding electricity sector baselines.

  13. Energy data sourcebook for the US residential sector

    SciTech Connect (OSTI)

    Wenzel, T.P.; Koomey, J.G.; Sanchez, M. [and others

    1997-09-01T23:59:59.000Z

    Analysts assessing policies and programs to improve energy efficiency in the residential sector require disparate input data from a variety of sources. This sourcebook, which updates a previous report, compiles these input data into a single location. The data provided include information on end-use unit energy consumption (UEC) values of appliances and equipment efficiency; historical and current appliance and equipment market shares; appliances and equipment efficiency and sales trends; appliance and equipment efficiency standards; cost vs. efficiency data for appliances and equipment; product lifetime estimates; thermal shell characteristics of buildings; heating and cooling loads; shell measure cost data for new and retrofit buildings; baseline housing stocks; forecasts of housing starts; and forecasts of energy prices and other economic drivers. This report is the essential sourcebook for policy analysts interested in residential sector energy use. The report can be downloaded from the Web at http://enduse.lbl. gov/Projects/RED.html. Future updates to the report, errata, and related links, will also be posted at this address.

  14. Structural and organizational changes of the housebuilding industry in the United States and Japan

    E-Print Network [OSTI]

    Minami, Kazunobu

    1986-01-01T23:59:59.000Z

    This study has three parts. The first chapter investigates the construction sectors in the United States and Japan using the analytical framework of interindustry analysis. Six U.S. and five Japanese input-output tables ...

  15. admissions unit evaluation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluation of United Nations Specialized Agencies Serial Publications University of Kansas - KU ScholarWorks Summary: During the spring and summer of 2008 the University of...

  16. Green Power Marketing in the United States: A Status Report ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Codes, Standards & Utility Policies Subprogram Soft Costs Author National Renewable Energy Laboratory Green Power Marketing in the United States: A Status Report (11th...

  17. Live Webinar on Better Buildings Challenge: Public-Sector Update

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Better Buildings Challenge: Public-Sector Update."

  18. Distributed Generation Potential of the U.S. Commercial Sector

    E-Print Network [OSTI]

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

    2005-01-01T23:59:59.000Z

    residential and commercial sector installations, for a total of 9 GW. Clearly, commercial DG with CHP

  19. Climate VISION: PrivateSector Initiatives: Mining

    Office of Scientific and Technical Information (OSTI)

    Letters of IntentAgreements National Mining Association Logo Read the National Mining Association Commitment Letter (PDF 68 KB) Download Acrobat Reader...

  20. andalusian endoscopy units: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONS UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS 12;12;The space age began on 4 October 1957 with the launch of the first artificial satellite, Sputnik 1. Soon after that...

  1. United Nations Food and Agriculture Organization Economic Commission for Europe of the United Nations

    E-Print Network [OSTI]

    country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers, paperboard and woodpulp. Additional chapters discuss markets for wood energy, certified forest products products and chain-of-custody verification. · The quest for renewable energy sources, in the light

  2. United Nations Food and Agriculture Organization Economic Commission for Europe of the United Nations

    E-Print Network [OSTI]

    country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers and paperboard. Additional chapters discuss markets for wood energy, certified forest products, value-added wood producers. · Wood energy received a boost from record high oil prices and the policies that Governments

  3. Modeling Clean and Secure Energy Scenarios for the Indian Power Sector in 2030

    E-Print Network [OSTI]

    Abhyankara, Nikit

    2014-01-01T23:59:59.000Z

    United States. National Renewable Energy Laboratory Golden,for windfarms in India. Renewable energy, 36(12), 3257–3267.Delhi, Ministry of New and Renewable Energy. Ministry of New

  4. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue | Department ofThank

  5. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue | Department ofThank7

  6. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue | Department ofThank78

  7. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue | Department

  8. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue | DepartmentDuke-4-E

  9. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue |

  10. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue |1-A Availability: This

  11. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue |1-A Availability:

  12. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue |1-A Availability:Rate

  13. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue |1-A

  14. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue |1-ASCE&G-1-E

  15. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue |1-ASCE&G-1-E2-E

  16. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue |1-ASCE&G-1-E2-E4-E

  17. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue

  18. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-E Availability: This

  19. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-E Availability: This1-E

  20. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-E Availability:

  1. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-E Availability:3-E

  2. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-E Availability:3-E4-E

  3. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-E

  4. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-ESOCO-4-E Availability:

  5. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-ESOCO-4-E

  6. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-ESOCO-4-ETenaslta Power

  7. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-ESOCO-4-ETenaslta

  8. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-ESOCO-4-ETenasltaBP

  9. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-ESOCO-4-ETenasltaBPCSW

  10. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan WorkingDialogue2-ESOCO-4-ETenasltaBPCSW

  11. United States

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3E AmbassadorsUS-EU-Japan

  12. United States

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7 AugustAFRICAN3uj: ;;IDEC.+39J t% (3740~

  13. UNITED STATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening aTurbulence may bedieselsummer gasoline price0 -PhysicsResearch

  14. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-India Energy Dialogue: CoalBiofuelsUncleDialogue

  15. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-India Energy Dialogue: CoalBiofuelsUncleDialogueDuke-1-E

  16. United States

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2Uranium TransferonUS-India Energy Dialogue:

  17. UNITED STATES

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V4100 DOE/EA-1452 EnvironmentalF.

  18. United States

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V4100 DOE/EA-1452D E P A R T Monp5fGonal

  19. United States

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V4100 DOE/EA-1452D E P A R T Monp5fGonal

  20. United States

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V4100 DOE/EA-1452D E P A R T Monp5fGonal

  1. United States

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V4100 DOE/EA-1452D E P A R T

  2. Energy R&D in the United States

    SciTech Connect (OSTI)

    J.J. Dooley

    1999-08-09T23:59:59.000Z

    In 1997, the US public and private sectors invested $205.7 billion in R&D. Private sector investments in R&D increased 34% between 1990 and 1997; over the same period the federal government decreased its expenditures by 15% in real terms. Projections of outyear federal budgets indicate the federal government will continue to reduce its investments in R&D for the foreseeable future. Defense R&D continues to be the largest area of concentration for federal government's R&D investments, with defense R&D accounting for 54% of all federal R&D outlays in 1998. Defense R&D is funded at a level which is there times higher than health R&D. Health R&D has experienced the largest inflation-adjusted increases of any federal R&D program, up 21% in real terms since 1990. US national (i.e., public and private) investments in energy R&D currently stand at a 23-year low of $4.4 billion in 1996. Federal support for energy R&D has declined 22% in real terms between 1990 and 1996. Federal energy R&D investments are also undergoing changes in priority. Fossil energy R&D programs are at the beginning of a potentially significant change away from ''clean coal'' technology development programs and towards more fundamental research on ways to decarbonize fossil fuels and sequester carbon dioxide. The federal nuclear energy R&D program has restarted (at a modest level) research to develop new reactor concepts after many years of no federal research in this area. The United States has withdrawn from the ITER project, calling into question the viability of this international fusion energy program. Renewable energy and energy efficiency R&D programs continue to be the only consistent areas of growth in the federal energy R&D budget.

  3. Review of Literature for Inputs to the National Water Savings Model and Spreadsheet Tool-Commercial/Institutional

    SciTech Connect (OSTI)

    Whitehead, Camilla Dunham; Melody, Moya; Lutz, James

    2009-05-29T23:59:59.000Z

    Lawrence Berkeley National Laboratory (LBNL) is developing a computer model and spreadsheet tool for the United States Environmental Protection Agency (EPA) to help estimate the water savings attributable to their WaterSense program. WaterSense has developed a labeling program for three types of plumbing fixtures commonly used in commercial and institutional settings: flushometer valve toilets, urinals, and pre-rinse spray valves. This National Water Savings-Commercial/Institutional (NWS-CI) model is patterned after the National Water Savings-Residential model, which was completed in 2008. Calculating the quantity of water and money saved through the WaterSense labeling program requires three primary inputs: (1) the quantity of a given product in use; (2) the frequency with which units of the product are replaced or are installed in new construction; and (3) the number of times or the duration the product is used in various settings. To obtain the information required for developing the NWS-CI model, LBNL reviewed various resources pertaining to the three WaterSense-labeled commercial/institutional products. The data gathered ranged from the number of commercial buildings in the United States to numbers of employees in various sectors of the economy and plumbing codes for commercial buildings. This document summarizes information obtained about the three products' attributes, quantities, and use in commercial and institutional settings that is needed to estimate how much water EPA's WaterSense program saves.

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Televisions in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total U.S.1...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Space Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Computers and Other Electronics in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings...

  7. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Water Heating in U.S. Homes, by Housing Unit Type, 2009" " Million Housing Units, Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ,"Total...

  8. Comparative analysis of energy data bases for the industrial and commercial sectors

    SciTech Connect (OSTI)

    Roop, J.M.; Belzer, D.B.; Bohn, A.A.

    1986-12-01T23:59:59.000Z

    Energy data bases for the industrial and commercial sectors were analyzed to determine how valuable this data might be for policy analysis. The approach is the same for both end-use sectors: first a descrption or overview of relevant data bases identifies the available data; the coverage and methods used to generate the data are then explained; the data are then characterized and examples are provided for the major data sets under consideration. A final step assesses the data bases under consideration and draws conclusions. There are a variety of data bases considered for each of the end-use sectors included in this report. Data bases for the industrial sector include the National Energy Accounts, process-derived data bases such as the Drexel data base and data obtained from industry trade associations. For the commercial sector, three types of data bases are analyzed: the Nonresidential Building Energy Consumption Surveys, Dodge Construction Data and the Building Owners and Manager's Association Experience Exchange Report.

  9. Conceptualising Inventory Prepositioning in the Humanitarian Sector

    E-Print Network [OSTI]

    Boyer, Edmond

    Conceptualising Inventory Prepositioning in the Humanitarian Sector Delia Richardson, Sander de chain to reduce delivery time of relief inventory improves responsiveness. This is the essence of inventory pre-positioning (IPP). IPP is yet to be clearly defined; and the main factors affecting IPP

  10. WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE

    E-Print Network [OSTI]

    WATER AND ENERGY SECTOR VULNERABILITY TO CLIMATE WARMING IN THE SIERRA NEVADA: Water Year explores the sensitivity of water indexing methods to climate change scenarios to better understand how water management decisions and allocations will be affected by climate change. Many water management

  11. NATURAL GAS ADVISORY COMMITTEE Name Affiliation Sector

    E-Print Network [OSTI]

    NATURAL GAS ADVISORY COMMITTEE 2011-2013 Name Affiliation Sector Dernovsek, David Bonneville Power Defenbach, Byron Intermountain Gas Distribution Dragoon, Ken NWPCC Council Friedman, Randy NW Natural Gas Distribution Gopal, Jairam Southern CA Edison Electric Utility Hamilton, Linda Shell Trading Gas & Power

  12. Termination unit

    DOE Patents [OSTI]

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07T23:59:59.000Z

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  13. PV opportunities in the Federal sector

    SciTech Connect (OSTI)

    Thornton, J.P. [PV Engineering and Applications Branch National Renewable Energy Laboratory Golden, Colorado 81401 (United States)

    1996-01-01T23:59:59.000Z

    The Federal government is the largest user of energy in the United States today. The Department of Defense (DOD) uses more than 80{percent} of that energy; the Department of Energy is the second largest user. In the 15 years from 1975 to 1989, {dollar_sign}128 billion was spent for Federal energy activities. In 1989 alone, the Federal government spent a total of {dollar_sign}8.7 billion on energy, of which {dollar_sign}3.5 billion was for buildings and {dollar_sign}2.4 billion was for electricity. The Federal government, which owns or leases 500,000 buildings, provided an additional {dollar_sign}3.9 billion on energy assistance for low-income housing in 1989 (1). Executive Order 12902 (Energy Efficiency and Water Conservation at Federal Facilities) of March 8, 1994 implements and expands the Federal energy management provisions stated in the Energy Policy Act (EPAct) of 1992. The goal is to reduce energy use in Federal buildings to 30{percent} of the 1985 levels by the year 2005. The Federal Energy Management Program (FEMP) has been assigned the responsibility of implementing Executive Order 12902. Subsequently, DOE, FEMP, other Federal agencies and private industry have formed a unique partnership to develop a process and set of actions that will stimulate new opportunities for renewable energy technologies. If these Federal initiatives are successful, substantial investment in renewable and energy efficiency technologies will be stimulated, an important portion of the nation{close_quote}s energy needs will be supplied, and a significant reduction in greenhouse gas emissions will be achieved. {copyright} {ital 1996 American Institute of Physics.}

  14. Tema: Emissions Inventories Titel: Denmark's National Inventory

    E-Print Network [OSTI]

    Tema: Emissions Inventories Titel: Denmark's National Inventory Report - Submitted under the United;Arbejdsrapport fra DMU nr.: 127 Samfund og miljø ­ Emissions Inventories Denmark's National Inventory Report Miljøundersøgelser & Energistyrelsen Maj 2000 #12;2 Data sheet Title: Denmark's National Inventory Report ­ Submitted

  15. Canada's National Forest Inventory An Interagency Collaboration

    E-Print Network [OSTI]

    Canada's National Forest Inventory An Interagency Collaboration Mark Gillis and Michael Brady: · Timber supply analysis · Management unit planning Management Inventory #12;· Canada's NFI-2001 ­ NFI 2006... National Inventory #12;Canada's National Forest Inventory (1976-2001) ­ compilation

  16. Argonne National Laboratory 9700 South Cass Avenue

    E-Print Network [OSTI]

    McCune, William

    Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS-TM-265 Short;Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United thereof, Argonne National Laboratory, or The University of Chicago. ii #12;Contents Abstract 1 1

  17. Argonne National Laboratory 9700 South Cass Avenue

    E-Print Network [OSTI]

    Liblit, Ben

    Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS-TM-252 OOQP User Guide. Dayton Street, Madison, WI 53706; swright@cs.wisc.edu #12;Argonne National Laboratory, with facilities state or reflect those of the United States Government or any agency thereof, Argonne National

  18. Testimony to the United States Senate Finance Committee

    E-Print Network [OSTI]

    , which is the transportation sector, addressing primarily incentives for energy efficient and low. Performance can be measured in different ways: e.g., energy use, petroleum consumption, or GHG emissions.11 Testimony to the United States Senate Finance Committee TECHNOLOGY-NEUTRAL INCENTIVES FOR ENERGY

  19. Mixed Markets in Bilateral Monopoly Stat-Math Unit

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    such as electricity, steel and natural gas and downstream sectors like rail and air transportation are dominatedMixed Markets in Bilateral Monopoly Arup Bose Stat-Math Unit Indian Statistical Institute Kolkata 700108 INDIA bosearu@gmail.com Barnali Gupta Department of Economics Miami University Oxford, OH 45056

  20. Is Adjudication a Public Good?: “Overcrowded Courts” and the Private-Sector Alternative of Arbitration

    E-Print Network [OSTI]

    Ware, Stephen J.

    2013-07-11T23:59:59.000Z

    \\\\jciprod01\\productn\\C\\CAC\\14-3\\CAC313.txt unknown Seq: 1 30-APR-13 15:32 IS ADJUDICATION A PUBLIC GOOD? “OVERCROWDED COURTS” AND THE PRIVATE SECTOR ALTERNATIVE OF ARBITRATION Stephen J. Ware* I. INTRODUCTION Courts are underfunded, dockets... in the nation because of the extraordinary number of vacant federal judicial positions and the problems associated with delayed judicial appointment, dangerously crowded dockets, suspended civil case dockets, burgeoning criminal caseloads, overburdened judges...

  1. BROOKHAVEN NATIONAL LABORATORY COPYRIGHT WORK DISCLOSURE FORM

    E-Print Network [OSTI]

    _________________________ Address________________ Email _________ Telephone___________ CRADA: Private Sector Participant

  2. Climate VISION: Private Sector Initiatives: Aluminum

    Office of Scientific and Technical Information (OSTI)

    Voluntary Aluminum Industry Partnership (VAIP), representing 98% of primary aluminum production in the United States, have committed under the Climate VISION program to a direct...

  3. Laser experiments explore the hidden sector

    E-Print Network [OSTI]

    M. Ahlers; H. Gies; J. Jaeckel; J. Redondo; A. Ringwald

    2007-11-30T23:59:59.000Z

    Recently, the laser experiments BMV and GammeV, searching for light shining through walls, have published data and calculated new limits on the allowed masses and couplings for axion-like particles. In this note we point out that these experiments can serve to constrain a much wider variety of hidden-sector particles such as, e.g., minicharged particles and hidden-sector photons. The new experiments improve the existing bounds from the older BFRT experiment by a factor of two. Moreover, we use the new PVLAS constraints on a possible rotation and ellipticity of light after it has passed through a strong magnetic field to constrain pure minicharged particle models. For masses <~0.05 eV, the charge is now restricted to be less than (3-4)x10^(-7) times the electron electric charge. This is the best laboratory bound and comparable to bounds inferred from the energy spectrum of the cosmic microwave background.

  4. The Lepton Sector of a Fourth Generation

    E-Print Network [OSTI]

    Gustavo Burdman; Leandro Da Rold; Ricardo D. Matheus

    2010-05-10T23:59:59.000Z

    In extensions of the standard model with a heavy fourth generation one important question is what makes the fourth-generation lepton sector, particularly the neutrinos, so different from the lighter three generations. We study this question in the context of models of electroweak symmetry breaking in warped extra dimensions, where the flavor hierarchy is generated by the localization of the zero-mode fermions in the extra dimension. In this setup the Higgs sector is localized near the infrared brane, whereas the Majorana mass term is localized at the ultraviolet brane. As a result, light neutrinos are almost entirely Majorana particles, whereas the fourth generation neutrino is mostly a Dirac fermion. We show that it is possible to obtain heavy fourth-generation leptons in regions of parameter space where the light neutrino masses and mixings are compatible with observation. We study the impact of these bounds, as well as the ones from lepton flavor violation, on the phenomenology of these models.

  5. Constraining Dark Sectors with Monojets and Dijets

    E-Print Network [OSTI]

    Chala, Mikael; McCullough, Matthew; Nardini, Germano; Schmidt-Hoberg, Kai

    2015-01-01T23:59:59.000Z

    We consider dark sector particles (DSPs) that obtain sizeable interactions with Standard Model fermions from a new mediator. While these particles can avoid observation in direct detection experiments, they are strongly constrained by LHC measurements. We demonstrate that there is an important complementarity between searches for DSP production and searches for the mediator itself, in particular bounds on (broad) dijet resonances. This observation is crucial not only in the case where the DSP is all of the dark matter but whenever - precisely due to its sizeable interactions with the visible sector - the DSP annihilates away so efficiently that it only forms a dark matter subcomponent. To highlight the different roles of DSP direct detection and LHC monojet and dijet searches, as well as perturbativity constraints, we first analyse the exemplary case of an axial-vector mediator and then generalise our results. We find important implications for the interpretation of LHC dark matter searches in terms of simpli...

  6. Advanced metering techniques in the federal sector

    SciTech Connect (OSTI)

    Szydlowski, R.F.; Chvala, W.D. Jr.; Halverson, M.A.

    1994-12-01T23:59:59.000Z

    The lack of utility metering in the federal sector has hampered introduction of direct billing of individual activities at most military installations. Direct billing will produce accountability for the amount of energy used and is a positive step toward self-directed energy conservation. For many installations, automatic meter reading (AMR) is a cost-effective way to increase the number of meters while reducing labor requirements and providing energy conservation analysis capabilities. The communications technology used by some of the AMR systems provides other demand-side management (DSM) capabilities. This paper summarizes the characteristics and relative merits of several AMR/DSM technologies that may be appropriate for the federal sector. A case study of an AMR system being installed at Fort Irwin, California, describes a cost-effective two-way radio communication system used for meter reading and load control.

  7. The Changing US Electric Sector Business Model 

    E-Print Network [OSTI]

    Aliff, G.

    2013-01-01T23:59:59.000Z

    The Changing US Electric Sector Business Model CATEE 2013 Clean Air Through Energy Efficiency Conference San Antonio, Texas December 17, 2013 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16... Electricity Business Model • Observations on the Future and Conclusions Presentation overview 2 ESL-KT-13-12-57 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Copyright © 2013 Deloitte Development LLC. All rights...

  8. Viable textures for the fermion sector

    E-Print Network [OSTI]

    A. E. Cárcamo Hernández; I. de Medeiros Varzielas

    2015-03-23T23:59:59.000Z

    We consider a modification of the Fukuyama-Nishiura texture and compare it to the precision quark flavour data, finding that it fits the data very well but at the cost of accidental cancelations between parameters. We then propose different viable textures for quarks, where only the Cabibbo mixing arises from the down sector, and extend to the charged leptons while constructing a complementary neutrino structure that leads to viable lepton masses and mixing.

  9. DOE Encourages Utility Sector Nominations to the Federal Communication...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Federal Communications Commission's Communications, Security, Reliability, and Interoperability Council DOE Encourages Utility Sector Nominations to the Federal Communications...

  10. Developing an operational capabilities index of the emergency services sector.

    SciTech Connect (OSTI)

    Collins, M.J.; Eaton, L.K.; Shoemaker, Z.M.; Fisher, R.E.; Veselka, S.N.; Wallace, K.E.; Petit, F.D. (Decision and Information Sciences)

    2012-02-20T23:59:59.000Z

    In order to enhance the resilience of the Nation and its ability to protect itself in the face of natural and human-caused hazards, the ability of the critical infrastructure (CI) system to withstand specific threats and return to normal operations after degradation must be determined. To fully analyze the resilience of a region and the CI that resides within it, both the actual resilience of the individual CI and the capability of the Emergency Services Sector (ESS) to protect against and respond to potential hazards need to be considered. Thus, a regional resilience approach requires the comprehensive consideration of all parts of the CI system as well as the characterization of emergency services. This characterization must generate reproducible results that can support decision making with regard to risk management, disaster response, business continuity, and community planning and management. To address these issues, Argonne National Laboratory, in collaboration with the U.S. Department of Homeland Security (DHS) Sector Specific Agency - Executive Management Office, developed a comprehensive methodology to create an Emergency Services Sector Capabilities Index (ESSCI). The ESSCI is a performance metric that ranges from 0 (low level of capabilities) to 100 (high). Because an emergency services program has a high ESSCI, however, does not mean that a specific event would not be able to affect a region or cause severe consequences. And because a program has a low ESSCI does not mean that a disruptive event would automatically lead to serious consequences in a region. Moreover, a score of 100 on the ESSCI is not the level of capability expected of emergency services programs; rather, it represents an optimal program that would rarely be observed. The ESSCI characterizes the state of preparedness of a jurisdiction in terms of emergency and risk management. Perhaps the index's primary benefit is that it can systematically capture, at a given point in time, the capabilities of a jurisdiction to protect itself from, mitigate, respond to, and recover from a potential incident. On the basis of this metric, an interactive tool - the ESSCI Dashboard - can identify scenarios for enhancement that can be implemented, and it can identify the repercussions of these scenarios on the jurisdiction. It can assess the capabilities of law enforcement, fire fighting, search and rescue, emergency medical services, hazardous materials response, dispatch/911, and emergency management services in a given jurisdiction and it can help guide those who need to prioritize what limited resources should be used to improve these capabilities. Furthermore, this tool can be used to compare the level of capabilities of various jurisdictions that have similar socioeconomic characteristics. It can thus help DHS define how it can support risk reduction and community preparedness at a national level. This tool aligns directly with Presidential Policy Directive 8 by giving a jurisdiction a metric of its ESS's capabilities and by promoting an interactive approach for defining options to improve preparedness and to effectively respond to a disruptive event. It can be used in combination with other CI performance metrics developed at Argonne National Laboratory, such as the vulnerability index and the resilience index for assessing regional resilience.

  11. National CHP Roadmap: Doubling Combined Heat and Power Capacity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States...

  12. Encyclopedia of Energy, Volume 1, pp 605616. Elsevier. 2004. Author nonexclusive, royalty-free copyright 1 Commercial Sector and

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    (equals about 1055 Joule). commercial sector The portion of buildings in a nation or the world including of a building. energy performance An empirical value indicating the energy efficiency of one commercial building compared to other, usually similar, commercial buildings. Energy Star rating system Energy performance

  13. Energy efficiency in building sector in India through Heat

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    electricity consumption in India (2012) #12;Growth in electricity consumption by building sector At a conservative 9 % growth rate electricity consumption of building sector by 2020 will be more than 2 times ( Source: DB Research) #12;Electricity Consumption Pattern in Residential Sector (Source: BEE, Figure taken

  14. WHEN DOES FINANCIAL SECTOR (IN)STABILITY INDUCE FINANCIAL REFORMS?

    E-Print Network [OSTI]

    Boyer, Edmond

    WHEN DOES FINANCIAL SECTOR (IN)STABILITY INDUCE FINANCIAL REFORMS? Susie LEE Ingmar SCHUMACHER (in)stability induce financial reforms? Susie Lee1 Ingmar Schumacher2 October 26, 2011 Abstract The article studies whether financial sector (in)stability had an effect on reforms in the fi- nancial sector

  15. Memory Economy for Electronic Control Units: Compression of Conventional Look-up Tables

    E-Print Network [OSTI]

    Zell, Andreas

    of modern technical systems is often controlled by electronic units. In the automotive sector lattice Algorithm, Evolution Strategy. 1 Introduction Modern technical systems are often controlled by individual electronic control units (ECU). In modern automotive vehicles there are more than 50 ECUs to control systems

  16. DSM Electricity Savings Potential in the Buildings Sector in APP Countries

    E-Print Network [OSTI]

    McNeil, MIchael

    2011-01-01T23:59:59.000Z

    Management (DSM) in the Electricity Sector: Urgent Need for¼rcan, 2007, Electricity and natural gas sectors in Korea: aand commercial sub-sectors, electricity use is distributed

  17. Prioritizing Climate Change Mitigation Alternatives: Comparing Transportation Technologies to Options in Other Sectors

    E-Print Network [OSTI]

    Lutsey, Nicholas P.

    2008-01-01T23:59:59.000Z

    Policies in the Electricity Sector. Discussion Paper 99-51,emissions from the electricity sector. Several states have2020 emissions from the electricity sector by 18%. Extending

  18. Interactions between Electric-drive Vehicles and the Power Sector in California

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    rates from the electricity sector to assumed values inrates from the electricity sector to assumed values intend to underestimate electricity sector emissions, and it

  19. Strategies for Low Carbon Growth In India: Industry and Non Residential Sectors

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    Efficiency Scenario (non-residential sector only) – AssumesIndia: Industry and Non Residential Sectors Jayant Sathaye,and support. The Non Residential sector analysis benefited

  20. Country Review of Energy-Efficiency Financial Incentives in the Residential Sector

    E-Print Network [OSTI]

    Can, Stephane de la Rue du

    2011-01-01T23:59:59.000Z

    Financial Incentives in the Residential Sector Stephane deFinancial Incentives in the Residential Sector Stephane desavings achieved in the residential sector. In contrast,

  1. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  2. Prospects for the power sector in nine developing countries

    SciTech Connect (OSTI)

    Meyers, S.; Goldman, N.; Martin, N.; Friedmann, R.

    1993-04-01T23:59:59.000Z

    Based on information drawn primarily from official planning documents issued by national governments and/or utilities, the authors examined the outlook for the power sector in the year 2000 in nine countries: China, India, Indonesia, Thailand, the Philippines, South Korea, Taiwan, Argentina and Mexico. They found that the implicit rates of average annual growth of installed electric power capacity between 1991 and 2001 range from a low of 3.3% per year in Argentina to a high of 13.2% per year in Indonesia. In absolute terms, China and India account for the vast majority of the growth. The plans call for a shift in the generating mix towards coal in six of the countries, and continued strong reliance on coal in China and India. The use of natural gas is expected to increase substantially in a number of the countries. The historic movement away from oil continues, although some countries are maintaining dual-fuel capabilities. Plans call for considerable growth of nuclear power in South Korea and China and modest increases in India and Taiwan. The feasibility of the official plans varies among the countries. Lack of public capital is leading towards greater reliance on private sector participation in power projects in many of the countries. Environmental issues are becoming a more significant constraint than in the past, particularly in the case of large-scale hydropower projects. The financial and environmental constraints are leading to a rising interest in methods of improving the efficiency of electricity supply and end use. The scale of such activities is growing in most of the study countries.

  3. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Fuels Used and End Uses in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings...

  4. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Space Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  5. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Computers and Other Electronics in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in...

  6. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Water Heating in U.S. Homes, by OwnerRenter Status, 2009" " Million Housing Units, Final" ,,,,"Housing Unit Type" ,,,,"Single-Family Units",,,,"Apartments in Buildings With"...

  7. Implementing the National Broadband Plan by Empowering Consumers...

    Energy Savers [EERE]

    Privacy Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy The United States Telecom Association...

  8. atr national scientific: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Technological INRIA Computing science 991 CEMAGREF Rural engineering 675 LCPC Technology 564 INRETS Transportation 394 Canet, Lonie 8 Published by the United Nations...

  9. Photovoltaics at DOE's National Renewable Energy Laboratory License...

    Office of Environmental Management (EM)

    INSTALLATION AND OPERATION OF A SOLAR ROOF-TOP ELECTRIC GENERATING SYSTEM AT THE NATIONAL RENEWABLE ENERGY LABORATORY, RESEARCH SUPPORT FACILITY United States of America Department...

  10. Sandia National Laboratories: SAND2015-1467M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Renewable Energy, Solar, Solar Newsletter SolarReserve is testing engineering units at the National Solar Thermal Test Facility (NSTTF) operated by Sandia....

  11. U.S. Global Change Research Program publishes "National Climate...

    Open Energy Info (EERE)

    U.S. Global Change Research Program publishes "National Climate Assessment" report for United States Home > Groups > OpenEI Community Central Graham7781's picture Submitted by...

  12. Myanmar-Sub National Planning for Climate Change (cities, states...

    Open Energy Info (EERE)

    districts) Jump to: navigation, search Name Myanmar-Sub National Planning for Climate Change (cities, states, districts) AgencyCompany Organization United Kingdom Department for...

  13. Annual Postdoctoral Research and Career Symposium | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nokia, Pacific Northwest National Laboratory, United States Airforce, UOP, Honeywell, Viresco Energy LLC, and Ware Connections Inc. Fee A nominal fee of 200 is...

  14. Climate VISION: Private Sector Initiatives: Mining: Resources...

    Office of Scientific and Technical Information (OSTI)

    process on the most significant and timely issues that impact our ability to locate, permit, mine, process, transport, and utilize the nation's vast coal and mineral resources...

  15. Climate VISION: Private Sector Initiatives: Automobile Manufacturers...

    Office of Scientific and Technical Information (OSTI)

    for Plant and Energy Managers, Ernest Orlando Lawrence Berkeley National Laboratory, LBNL-50939 (PDF 792 KB). Download Acrobat Reader This report provides guidance to energy and...

  16. Effects of a Transition to a Hydrogen Economy on Employment in the United States

    SciTech Connect (OSTI)

    Tolley, George S.; Jones, Donald W. Mintz, Marianne M.; Smith, Barton A.; Carlson, Eric; Unnasch, Stefan; Lawrence, Michael; Chmelynski, Harry

    2008-07-01T23:59:59.000Z

    The U.S. Department of Energy report, Effects of a Transition to a Hydrogen Economy on Employment in the United States Report to Congress, estimates the effects on employment of a U.S. economy transformation to hydrogen between 2020 and 2050. The report includes study results on employment impacts from hydrogen market expansion in the transportation, stationary, and portable power sectors and highlights possible skill and education needs. This study is in response to Section 1820 of the Energy Policy Act of 2005 (Public Law 109-58) (EPACT). Section 1820, “Overall Employment in a Hydrogen Economy,” requires the Secretary of Energy to carry out a study of the effects of a transition to a hydrogen economy on several employment [types] in the United States. As required by Section 1820, the present report considers: • Replacement effects of new goods and services • International competition • Workforce training requirements • Multiple possible fuel cycles, including usage of raw materials • Rates of market penetration of technologies • Regional variations based on geography • Specific recommendations of the study Both the Administration’s National Energy Policy and the Department’s Strategic Plan call for reducing U.S. reliance on imported oil and reducing greenhouse gas emissions. The National Energy Policy also acknowledges the need to increase energy supplies and use more energy-efficient technologies and practices. President Bush proposed in his January 2003 State of the Union Address to advance research on hydrogen so that it has the potential to play a major role in America’s future energy system. Consistent with these aims, EPACT 2005 authorizes a research, development, and demonstration program for hydrogen and fuel cell technology. Projected results for the national employment impacts, projections of the job creation and job replacement underlying the total employment changes, training implications, regional employment impacts and the employment impacts of a hydrogen transformation on international competitiveness are investigated and reported.

  17. Geothermal: Sponsored by OSTI -- Industrial Sector Technology...

    Office of Scientific and Technical Information (OSTI)

    in the United States, 1974-2000. Volume 1. Primary model documentation. Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

  18. Fundamentals of public-private partnerships in the transportation sector : international methodologies of highway public-private partnerships and a framework to increase the probability of success and allocate risk

    E-Print Network [OSTI]

    Butler, Ryan, S.M. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    In 2009 the American Society of Civil Engineers (ASCE) gave the US infrastructure sector a grade D, based on the current and future needs of the nation's infrastructure and estimates that by year 2020, the US surface ...

  19. Decoupled Sectors and Wolf-Rayet Galaxies

    E-Print Network [OSTI]

    Willy Fischler; Jimmy Lorshbough; Dustin Lorshbough

    2015-02-27T23:59:59.000Z

    The universe may contain several decoupled matter sectors which primarily couple through gravity to the Standard Model degrees of freedom. We focus here on the description of astrophysical environments that allow for comparable densities and spatial distributions of visible matter and decoupled dark matter. We discuss four Wolf-Rayet galaxies (NGC 1614, NGC 3367, NGC 4216 and NGC 5430) which should contain comparable amounts of decoupled dark and visible matter in the star forming regions. This could lead to the observation of Gamma Ray Burst events with physics modified by jets of dark matter radiation.

  20. Restructuring our Transportation Sector | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingof EnhancedRestructuring our Transportation Sector