National Library of Energy BETA

Sample records for united nations industrial

  1. United Nations Industrial Development Organization Feed | Open...

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  2. United Nations Industrial Development Organization (UNIDO) |...

    Open Energy Info (EERE)

    development of industry in developing nations. UNIDO focuses on three key areas: Poverty reduction through productive activities Trade capacity-building Energy and...

  3. United Nations Industrial Development Organization (UNIDO) |...

    Open Energy Info (EERE)

    UNIDO Programs 2 References Resources UNIDO Tools A Global Technology Roadmap on Carbon Capture and Storage in Industry COMFAR III: Computer Model for Feasibility Analysis and...

  4. United Nations Industrial Development Organization (UNIDO) |...

    Open Energy Info (EERE)

    Policy Options for Increasing the Use of Renewable Energy for Sustainable Development Egypt National Cleaner Production Center (ENCPC) Ghana-Assessing Policy Options for...

  5. A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States

    Energy Savers [EERE]

    Industry in the United States | Department of Energy A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. PDF icon A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. More Documents & Publications

  6. A National Offshore Wind Strategy. Creating an Offshore Wind Energy Industry in the United States

    SciTech Connect (OSTI)

    Beaudry-Losique, Jacques; Boling, Ted; Brown-Saracino, Jocelyn; Gilman, Patrick; Hahn, Michael; Hart, Chris; Johnson, Jesse; McCluer, Megan; Morton, Laura; Naughton, Brian; Norton, Gary; Ram, Bonnie; Redding, Tim; Wallace, Wendy

    2011-02-01

    This document outlines the Department of Energy's strategy for accelerating the responsible development of offshore wind energy in the United States.

  7. United Nations | Open Energy Information

    Open Energy Info (EERE)

    United Nations Interregional Crime and Justice Research Institute (UNICRI) United Nations International Research and Training Institute for the Advancement of Women (UN-INSTRAW)...

  8. United States Electricity Industry Primer

    Broader source: Energy.gov [DOE]

    The United States Electricity Industry Primer provides a high-level overview of the U.S. electricity supply chain, including generation, transmission, and distribution; markets and ownership structures, including utilities and regulatory agencies; and system reliability and vulnerabilities.

  9. Memorandum of Understanding between the Department of Energy of the United States of America and the National Development and Reform Commission of the People's Republic of China Concerning Industrial Energy Efficiency Cooperation

    Broader source: Energy.gov [DOE]

    The text of the Memorandum of Understanding between the United States and the People's Republic of China, signed September 12, 2007. It describes their plans to work together to address industrial energy efficiency challenges in both nations.

  10. General Assembly of the National Industrial Association (ANDI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    General Assembly of the National Industrial Association (ANDI) General Assembly of the ... between the United States and Colombia in all areas - but especially on energy. ...

  11. China National Machinery Industry Complete Engineering Corporation...

    Open Energy Info (EERE)

    Industry Complete Engineering Corporation CMCEC Jump to: navigation, search Name: China National Machinery Industry Complete Engineering Corporation (CMCEC) Place: Beijing,...

  12. United Nations Foundation Feed | Open Energy Information

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  13. United States National Seismographic Network

    SciTech Connect (OSTI)

    Buland, R.

    1993-09-01

    The concept of a United States National Seismograph Network (USNSN) dates back nearly 30 years. The idea was revived several times over the decades. but never funded. For, example, a national network was proposed and discussed at great length in the so called Bolt Report (U. S. Earthquake Observatories: Recommendations for a New National Network, National Academy Press, Washington, D.C., 1980, 122 pp). From the beginning, a national network was viewed as augmenting and complementing the relatively dense, predominantly short-period vertical coverage of selected areas provided by the Regional Seismograph Networks (RSN`s) with a sparse, well-distributed network of three-component, observatory quality, permanent stations. The opportunity finally to begin developing a national network arose in 1986 with discussions between the US Geological Survey (USGS) and the Nuclear Regulatory Commission (NRC). Under the agreement signed in 1987, the NRC has provided $5 M in new funding for capital equipment (over the period 1987-1992) and the USGS has provided personnel and facilities to develop. deploy, and operate the network. Because the NRC funding was earmarked for the eastern United States, new USNSN station deployments are mostly east of 105{degree}W longitude while the network in the western United States is mostly made up of cooperating stations (stations meeting USNSN design goals, but deployed and operated by other institutions which provide a logical extension to the USNSN).

  14. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Peterson, Steve; Bush, Brian; Vimmerstedt, Laura

    2015-07-19

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  15. Xiamien King Long United Automotive Industry Suzhou | Open Energy...

    Open Energy Info (EERE)

    Xiamien King Long United Automotive Industry Suzhou Jump to: navigation, search Name: Xiamien King Long United Automotive Industry (Suzhou) Place: Suzhou, Fujian Province, China...

  16. Supporting Our Nation's Nuclear Industry

    ScienceCinema (OSTI)

    Lyons, Peter

    2013-05-29

    On the 60th anniversary of the world's first nuclear power plant to produce electricity, Assistant Secretary for Nuclear Energy Peter Lyons discusses the Energy Department's and the Administration's commitment to promoting a nuclear renaissance in the United States.

  17. National Institute of Economic and Industry Research

    Energy Savers [EERE]

    scale export of East Coast Australia natural gas: Unintended consequences National Institute of Economic and Industry Research 1 This note summarizes the major conclusions of the NIEIR study referenced here. Many major projects to export Liquefied Natural Gas from Eastern Australia have been approved and will start to operate over the next several years. This will significantly impact the domestic supply of natural gas. The National Institute of Economic and Industry Research (NIEIR) has done an

  18. United States Industrial Motor-Driven Systems Market Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to ...

  19. United Nations Atomic Energy Commission stalls out

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The United Nations Security Council should be the organization to which the envisioned ... The Acheson-Lilienthal Report proposed strict control of the raw materials needed for ...

  20. National Nuclear Security Administration United States Department...

    National Nuclear Security Administration (NNSA)

    United States Department of Energy Washington, DC 20585 Prevent, Counter, and Respond-A ... Department of EnergyNational Nuclear Security Administration | March 2016 Prevent, ...

  1. United States National Energy Technology Laboratory's (NETL)...

    Open Energy Info (EERE)

    National Energy Technology Laboratory's (NETL) Smart Grid Implementation Strategy Reference Library Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: United States...

  2. Tribal Nations & the United States: An Introduction

    Broader source: Energy.gov [DOE]

    NCAI's Tribal Nations & the United States: An Introduction report provides a basic overview of the history and underlying principles of tribal governance.

  3. Energy Department Applauds Nation's First Large-Scale Industrial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility ...

  4. Maryland-National Capital Building Industry Association Regulatory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012) Maryland-National Capital Building Industry Association Regulatory ...

  5. Vietnam National Coal Mineral Industries Group Vinacomin | Open...

    Open Energy Info (EERE)

    National Coal Mineral Industries Group Vinacomin Jump to: navigation, search Name: Vietnam National Coal-Mineral Industries Group (Vinacomin) Place: Vietnam Product: Vietnam-based...

  6. ,"United States Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:58:41 AM" "Back to Contents","Data 1: United States Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" ...

  7. ,"United States Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"4292016 6:58:42 AM" "Back to Contents","Data 1: United States Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" ...

  8. United States Industrial Electric Motor Systems Market Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Motor Systems Market Opportunities Assessment United States Industrial Electric Motor Systems Market Opportunities Assessment The objectives of the Market Assessment were ...

  9. National Association of the Remodeling Industry (NARI) | Open...

    Open Energy Info (EERE)

    Association of the Remodeling Industry (NARI) Jump to: navigation, search Name: National Association of the Remodeling Industry (NARI) Place: Des Plaines, IL Website: www.nari.org...

  10. United Nations Population Information Network | Open Energy Informatio...

    Open Energy Info (EERE)

    Focus Area: People and Policy Resource Type: Dataset Website: www.un.orgpopin Cost: Free United Nations Population Information Network Screenshot References: United Nations...

  11. United Nations Energy Knowledge Network (UN-Energy) | Open Energy...

    Open Energy Info (EERE)

    Energy Knowledge Network (UN-Energy) Jump to: navigation, search Logo: United Nations Energy Knowledge Network (UN-Energy) Name: United Nations Energy Knowledge Network (UN-Energy)...

  12. National Grid (Electric) Commercial and Industrial Rebate Program

    Broader source: Energy.gov [DOE]

    National Grid offers various rebate programs for industrial and commercial customers to install energy efficiency measures. 

  13. United States Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    United States Primary Renewable Energy Capacity Source Hydro Conventional Primary Renewable Energy Generation Source Hydro Conventional Capacity (megawatts) Value Percent of U.S. ...

  14. United States Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    United States" "Primary Renewable Energy Capacity Source","Hydro Conventional" "Primary Renewable Energy Generation Source","Hydro Conventional" "Capacity (megawatts)","Value","Per...

  15. United Nations geothermal activities in developing countries

    SciTech Connect (OSTI)

    Beredjick, N.

    1987-07-01

    The United Nations implements technical cooperation projects in developing countries through its Department of Technical Cooperation for Development (DTCD). The DTCD is mandated to explore for and develop natural resources (water, minerals, and relevant infrastructure) and energy - both conventional and new and renewable energy sources. To date, the United Nations has been involved in over 30 geothermal exploration projects (completed or underway) in 20 developing countries: 8 in Africa (Djibouti, Ethiopia, Kenya, Madagascar); 8 in Asia (China, India, Jordan, Philippines, Thailand); 9 in Latin America (Bolivia, Chile, El Salvador, Honduras, Mexico, Nicaragua, Panama) and 6 in Europe (Greece, Romania, Turkey, Yugoslavia). Today, the DTCD has seven UNDP geothermal projects in 6 developing countries. Four of these (Bolivia, China, Honduras, and Kenya) are major exploration projects whose formulation and execution has been possible thanks to the generous contributions under cost-sharing arrangements from the government of Italy. These four projects are summarized.

  16. Food and Agriculture Organization of the United Nations | Open...

    Open Energy Info (EERE)

    and Health Atlas (GLiPHA) Impact of the Global Forest Industry on Atmospheric Greenhouse Gas National Mitigation Planning in Agriculture: Review and Guidelines National Planning...

  17. United States Industrial Motor Systems Market Opportunities Assessment:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Executive Summary | Department of Energy Motor Systems Market Opportunities Assessment: Executive Summary United States Industrial Motor Systems Market Opportunities Assessment: Executive Summary In addition to serving DOE's program planning and evaluation needs, the Motor Systems Market Assessment is designed to be of value to manufacturers, distributors, engineers, and others int he supply channels for motor systems. PDF icon United States Industrial Motor Systems Market Opportunities

  18. University-Industry-National Laboratory Partnership to Improve Building

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing | Department of Energy University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing University-Industry-National Laboratory Partnership to Improve Building Efficiency by Equipment Health Monitoring with Virtual Intelligent Sensing Lead Performer: Oak Ridge National Laboratory - Oak Ridge, TN Partners: -- University of Tennessee -

  19. Energy Department Applauds Nation's First Large-Scale Industrial Carbon

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Capture and Storage Facility | Department of Energy Nation's First Large-Scale Industrial Carbon Capture and Storage Facility Energy Department Applauds Nation's First Large-Scale Industrial Carbon Capture and Storage Facility August 24, 2011 - 6:23pm Addthis Washington, D.C. - The U.S. Department of Energy issued the following statement in support of today's groundbreaking for construction of the nation's first large-scale industrial carbon capture and storage (ICCS) facility in Decatur,

  20. EERE's Technologist in Residence Program: National Lab-Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot to Bolster U.S. Clean Energy Manufacturing Competitiveness EERE's Technologist in Residence Program: National Lab-Industry Partnership Pilot to Bolster U.S. Clean Energy ...

  1. Los Alamos National Laboratory again top contributor to United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top contributor to United Way ff Santa Fe County Los Alamos National Laboratory again top contributor to United Way of Santa Fe County Laboratory employees and Los Alamos National...

  2. National Geothermal Data System Deployed to Serve Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy National Geothermal Data System Deployed to Serve Industry National Geothermal Data System Deployed to Serve Industry May 28, 2014 - 9:08am Addthis The National Geothermal Data System deploys free, open-source online scientific information, a mammoth resource of geoscience data. In the data visualization shown here, Schlumberger utilized bottom hole temperatures from the National Geothermal Data Systems (NDGS) on-line platform to supplement subscription data temperatures used to

  3. New Wind Power Partnerships to Benefit Industry and Nation - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL New Wind Power Partnerships to Benefit Industry and Nation June 3, 2008 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) today announced projects that will enhance the nation's ability to realize the full potential of wind power across the United States. The projects include: a new wind turbine blade test facility to be constructed in Texas; a partnership between NREL, DOE, and a state consortium led by University of Houston; a just-signed agreement

  4. EERE's Technologist in Residence Program: National Lab-Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership Pilot to Bolster U.S. Clean Energy Manufacturing Competitiveness | Department of Energy EERE's Technologist in Residence Program: National Lab-Industry Partnership Pilot to Bolster U.S. Clean Energy Manufacturing Competitiveness EERE's Technologist in Residence Program: National Lab-Industry Partnership Pilot to Bolster U.S. Clean Energy Manufacturing Competitiveness April 24, 2015 - 2:45pm Addthis Scientists like these pictured at the Energy Department's Sandia National Labs

  5. A National Perspective on Energy and Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Using EIA's Energy Consumption Surveys to Analyze Energy Programs and Policies Steven Nadel American Council for an Energy-Efficient Economy EIA 2008 Energy Conference, April 7-8, 2008 The American Council for an Energy Efficient Economy (ACEEE) * Non-profit (501c (3)) dedicated to advancing energy efficiency through research and dissemination. * ~25 staffers in Washington DC, Delaware, Michigan and Wisconsin * Focus on End-Use Efficiency in Industry, Buildings, Utilities, Transportation, &

  6. The United Nations' Approach To Geothermal Resource Assessment...

    Open Energy Info (EERE)

    of United Nations' assisted geothermal projects has been on demonstrating the feasibility of producing geothermal fluids, the potential capacity of individual fields has...

  7. United Nations Environment Programme (UNEP) | Open Energy Information

    Open Energy Info (EERE)

    UNFCCC-Global Map-Annex 1 United Nations Environment Programme: Global Environment Outlook Add Tool UNEP Programs Agriculture Rural Energy Enterprise Development (AREED)...

  8. National Lab., TN (United States)] 54 ENVIRONMENTAL SCIENCES...

    Office of Scientific and Technical Information (OSTI)

    G.M. Oak Ridge National Lab., TN (United States) 54 ENVIRONMENTAL SCIENCES; GROUND WATER; REMEDIAL ACTION; TECHNETIUM 99; SORPTION; PERTECHNETATES Groundwater used for...

  9. United Nations Environment Programme: Global Environment Outlook...

    Open Energy Info (EERE)

    more than 500 different variables, as national, subregional, regional and global statistics or as geospatial data sets (maps), covering themes like Freshwater, Population,...

  10. The United States Releases its Open Government National Action Plan |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The United States Releases its Open Government National Action Plan The United States Releases its Open Government National Action Plan September 20, 2011 - 1:58pm Addthis Cammie Croft Cammie Croft Former Senior Advisor and Director of New Media & Citizen Engagement Today, President Obama signs the Open Government Partnership declaration, unveiling the U.S. Open Government National Action Plan. At the Energy Department, we are committed to creating a more efficient

  11. Tribal Nations and the United States

    Office of Environmental Management (EM)

    Lands Student Internship Program Sandia National Laboratories National Renewable Energy Laboratories Department of Energy The Navajo Tribal Utility Authority 2003 Tribal Lands Program Interns * Shaun Tsabetsaye - Zuni - University of New Mexico - Electrical Engineering * Velissa Sandoval - Navajo/Zuni - University of Denver - Electrical Engineering * Keith Candelaria - Jemez/San Felipe - Dartmouth College - Environmental/Earth Science Several research methods used to understanding NTUA's O&M

  12. Industrial-Strength UPF | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial-Strength UPF Industrial-Strength UPF Posted: July 22, 2013 - 3:17pm | Y-12 Report | Volume 10, Issue 1 | 2013 UPF is an excellent opportunity to rebuild the supply chain for new nuclear facility construction in the Tennessee Valley Corridor and beyond. The Uranium Processing Facility is the Department of Energy's single largest capital investment in Tennessee since World War II and the National Nuclear Security Administration's largest-ever construction project. UPF will consolidate

  13. Company, for the United States Department of Energy's National Nuclear Security

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Small Business Advocate Sandia National Laboratories 24 th Annual Briefing for Industry 2010 August 18, 2010 Small Business Utilization Department Small Business Program Don Devoti, Manager Small Business Utilization Sandia is a multiprogram laboratory operated by Sandia Corporation,

  14. Steady state model of an industrial FCC unit

    SciTech Connect (OSTI)

    Lopez-Isunza, F.; Ancheyta-Juarez, J.

    1996-12-31

    A reactor model has been developed to simulate the steady-state of an industrial fluid catalytic cracking unit using a three-lump kinetic expression with parameters estimated from experiments in a microactivity test reactor. The model considers a transported bed reactor (riser) where gas-oil and catalyst are in contact to perform the endothermic cracking reactions, interacting with a two-phase moving bed regenerator with recirculation where the combustion of the coke deposited on the catalyst takes place. The model is used to find best operating conditions for maximizing gasoline yield in terms of gas-oil feed temperature (To) and recycled catalyst to gas-oil ratio (C/O). 12 refs., 4 figs.

  15. United States Industrial Sector Energy End Use Analysis

    SciTech Connect (OSTI)

    Shehabi, Arman; Morrow, William R.; Masanet, Eric

    2012-05-11

    The United States Department of Energys (DOE) Energy Information Administration (EIA) conducts the Manufacturing Energy Consumption Survey (MECS) to provide detailed data on energy consumption in the manufacturing sector. The survey is a sample of approximately 15,000 manufacturing establishments selected from the Economic Census - Manufacturing Sector. MECS provides statistics on the consumption of energy by end uses (e.g., boilers, process, electric drives, etc.) disaggregated by North American Industry Classification System (NAICS) categories. The manufacturing sector (NAICS Sector 31-33) consists of all manufacturing establishments in the 50 States and the District of Columbia. According to the NAICS, the manufacturing sector comprises establishments engaged in the mechanical, physical, or chemical transformation of materials, substances, or components into new products. The establishments are physical facilities such as plants, factories, or mills. For many of the sectors in the MECS datasets, information is missing because the reported energy use is less than 0.5 units or BTUs, or is withheld to avoid disclosing data for individual establishments, or is withheld because the standard error is greater than 50%. We infer what the missing information likely are using several approximations techniques. First, much of the missing data can be easily calculated by adding or subtracting other values reported by MECS. If this is not possible (e.g. two data are missing), we look at historic MECS reports to help identify the breakdown of energy use in the past and assume it remained the same for the current MECS. Lastly, if historic data is also missing, we assume that 3 digit NAICS classifications predict energy use in their 4, 5, or 6 digit NAICS sub-classifications, or vice versa. Along with addressing data gaps, end use energy is disaggregated beyond the specified MECS allocations using additional industry specific energy consumption data. The result is a completed table of energy end use by sector with mechanical drives broken down by pumps, fans, compressed air, and drives.

  16. Commercial national accounts program is a gas industry revenue builder

    SciTech Connect (OSTI)

    Moskitis, T.L.

    1984-04-01

    The need for gas distributors to implement revenue-generating strategies is clearly evident in the commercial sector - their fastest growing market. One strategy is A.G.A.'s commercial national accounts marketing program, designed to establish working relationships with national and regional food, hotel, and retail chains and with the firms that design energy systems for them. The program supplies these chains with information on gas industry services and research aimed at increasing energy utilization efficiency. Regular communications and coordinated sales calls by gas utility executives on chain headquarters often produce increased gas sales, even of traditionally all-electric chains, as illustrated by several case histories.

  17. Contribution of the Ethanol Industry to the Economy of the United...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ...omyoftheUnitedStates.pdf More Documents & Publications Current State of the U.S. Ethanol Industry Biodiesel and the Advanced Biofuel Market U.S. Biofuels Industry: Mind the Gap

  18. Michaela G. Farr and Joshua S. Stein Sandia National Laboratory, Albuquerque, NM, 87185, United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spatial Variations in Temperature across a Photovoltaic Array Michaela G. Farr and Joshua S. Stein Sandia National Laboratory, Albuquerque, NM, 87185, United States ABSTRACT - The efficiency of any photovoltaic device is significantly affected by its operating temperature. It is therefore of great interest to the PV industry to have accurate models of module and array temperatures. Existing PV performance models generally assume that module temperature is a function of plane-of-array irradiance,

  19. National Nuclear Security Administration United States Department of Energy

    National Nuclear Security Administration (NNSA)

    United States Department of Energy Washington, DC 20585 Prevent, Counter, and Respond-A Strategic Plan to Reduce Global Nuclear Threats FY 2017-FY 2021 Report to Congress March 2016 This page left blank intentionally. Department of Energy/National Nuclear Security Administration | March 2016 Prevent, Counter, and Respond--A Strategic Plan to Reduce Global Nuclear Threats (FY 2017-FY 2021)| Page i Message from the Administrator The Department of Energy's National Nuclear Security Administration

  20. United States National Waste Terminal Storage argillaceous rock studies

    SciTech Connect (OSTI)

    Brunton, G.D.

    1981-01-01

    The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

  1. United States Industrial Motor-Driven Systems Market Assessment: Charting a

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap to Energy Savings for Industry | Department of Energy Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry United States Industrial Motor-Driven Systems Market Assessment: Charting a Roadmap to Energy Savings for Industry This paper is an overview of the results of a market assessment commissioned by the DOE Motor Challenge program in 1995 to better understand the characteristics of the installed population of motor systems in the manufacturing

  2. United States Industrial Electric Motor Systems Market Opportunities Assessment

    Broader source: Energy.gov [DOE]

    The objectives of the Market Assessment were to: Develop a detailed profile of the stock of motor-driven equipment in U.S. industrial facilities; Characterize and estimate the magnitude of opportunities to improve the energy efficiency of industrial motor systems; Develop a profile of motor system purchase and maintenance practices; Develop and implement a procedure to update the detailed motor profile on a regular basis using readily available market information; and, Develop methods to estimate the energy savings and market effects attributable to the Motor Challenge Program.

  3. Category:United States Department of Energy National Laboratories...

    Open Energy Info (EERE)

    Argonne National Laboratory B Brookhaven National Laboratory I Idaho National Laboratory L Lawrence Berkeley National Laboratory (LBNL) L cont. Lawrence Livermore National...

  4. Collaborations Between Argonne and Private Industry | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Collaborations Between Argonne and Private Industry Why and how private companies work with Argonne. PDF icon Private_Industry_Collaborations_Jan 15_2016

  5. Energy Saving Separations Technologies for the Petroleum Industry: An Industry-University-National Laboratory Research Partnership

    SciTech Connect (OSTI)

    Dorgan, John R.; Stewart, Frederick F.; Way, J. Douglas

    2003-03-28

    This project works to develop technologies capable of replacing traditional energy-intensive distillations so that a 20% improvement in energy efficiency can be realized. Consistent with the DOE sponsored report, Technology Roadmap for the Petroleum Industry, the approach undertaken is to develop and implement entirely new technology to replace existing energy intensive practices. The project directly addresses the top priority issue of developing membranes for hydrocarbon separations. The project is organized to rapidly and effectively advance the state-of-the-art in membranes for hydrocarbon separations. The project team includes ChevronTexaco and BP, major industrial petroleum refiners, who will lead the effort by providing matching resources and real world management perspective. Academic expertise in separation sciences and polymer materials found in the Chemical Engineering and Petroleum Refining Department of the Colorado School of Mines is used to invent, develop, and test new membrane materials. Additional expertise and special facilities available at the Idaho National Engineering and Environmental Laboratory (INEEL) are also exploited in order to effectively meet the goals of the project. The proposed project is truly unique in terms of the strength of the team it brings to bear on the development and commercialization of the proposed technologies.

  6. Industry Day and One-on-One Meetings | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    Industry Day and One-on-One Meetings | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation...

  7. The United States Plutonium Balance, 1944-2009 | National Nuclear...

    National Nuclear Security Administration (NNSA)

    Pits The United States Plutonium Balance, 1944-2009 The United States Plutonium Balance, 1944-2009 The United States has released an inventory of its plutonium balances...

  8. Model Documentation Report: Industrial Demand Module of the National...

    Gasoline and Diesel Fuel Update (EIA)

    are multiplicative for all fuels that have consumption values greater than zero and are additive otherwise. The equation for total industrial electricity consumption is below....

  9. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  10. University-Industry-National Laboratory Partnership to Improve...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... CONTACTS DOE Technology Manager: Marina Sofos Lead Performer: Teja Kuruganti, Oak Ridge National Laboratory Related Publications PDF icon 2016 BTO Peer Review Presentation-Partners...

  11. Industrial Scale Energy Systems Integration; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, Mark

    2015-07-28

    The industrial sector consumes 25% of the total energy in the U.S. and produces 18% of the greenhouse gas (GHG) emissions. Energy Systems Integration (ESI) opportunities can reduce those values and increase the profitability of that sector. This presentation outlines several options. Combined heat and power (CHP) is an option that is available today for many applications. In some cases, it can be extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed. extended to trigeneration by adding absorbtion cooling. Demand response is another option in use by the industrial sector - in 2012, industry provided 47% of demand response capacity. A longer term option that combines the benefits of CHP with those of demand response is hybrid energy systems (HESs). Two possible HESs are described and development implications discussed.

  12. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-06-04

    At Livermore our hope and our intention is to make important contributions to global sustainability by basing both our scientific and technological research and our business practices on the principles of industrial ecology. Current efforts in the following fields are documented: global security, global ecology, energy for transportation, fusion energy, materials sciences, environmental technology, and bioscience.

  13. Industrial ecology at Lawrence Livermore National Laboratory summary statement

    SciTech Connect (OSTI)

    Gilmartin, T.J.

    1996-05-21

    This statement summarizes Lawrence Livermore National Laboratory`s committment to making important scientific, technological, and business contributions to global sustainability. The quest has many aspects, some socio-political or economic and some technological, and some in which the soft and hard sciences become indistinguishable, as in visionary national strategies, like Holland`s, and futuristic regional and city development plans, like those of Kagoshima and Chattanooga.

  14. Sandia tops $6.5 million in United Way donations | National Nuclear...

    National Nuclear Security Administration (NNSA)

    tops 6.5 million in United Way donations | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

  15. 16 USC 797c - Dams in National Park System Units | Open Energy...

    Open Energy Info (EERE)

    16 USC 797c - Dams in National Park System Units Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: 16 USC 797c - Dams in National...

  16. Maryland-National Capital Building Industry Association Regulatory Burden RFI (Federal Register August 8, 2012)

    Broader source: Energy.gov [DOE]

    On behalf of the Maryland-National Capital Building Industry Association, I am providing the following comments and information in response to DOE’s request. The Association represents residential...

  17. United Nations Environment Programme (UNEP)-Finance Initiative...

    Open Energy Info (EERE)

    Generale (France) Standard Chartered (United Kingdom) Sustainable Asset Management (SAM) (Switzerland) SwissRe (Switzerland) UBS (Switzerland) Chairs Nick Robins, HSBC...

  18. Pantex makes large donation to United Way | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration makes large donation to United Way Tuesday, January 14, 2014 - 4:00pm B&W Pantex General Manager John Woolery, center, presents a B&W corporate donation Friday to the United Way of Amarillo and Canyon. United Way Interim Executive Director Jeff Gulde, left, and Campaign Director Stephanie Goins were on hand to receive the gift. The $57,250 corporate donation supplements more than $650,000 pledged by Pantex employees to United Way for 2013, making Pantex one of the

  19. United Nations Economic and Social Commission for Western Asia...

    Open Energy Info (EERE)

    Background Membership "ESCWA comprises 14 Arab countries in Western Asia: Bahrain, Egypt, Iraq, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Sudan, Syria, United Arab...

  20. National Energy Modeling System (United States) | Open Energy...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentnational-energy-modeling-system-unite Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible...

  1. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY National Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ancillary Services market through the Demand-Side Ancillary Services Program ("DSASP")." Middle of Page 22: Textual ... and Constraints in the Eastern Interconnection 4 United ...

  2. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David Frederick

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA-000160-01), for the wastewater reuse site at the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: (1) Facility and system description; (2) Permit required effluent monitoring data and loading rates; (3) Groundwater monitoring data; (4) Status of special compliance conditions; and (5) Discussion of the facility's environmental impacts. During the 2011 reporting year, an estimated 6.99 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. Using the dissolved iron data, the concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  3. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Lewis, Mike

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  4. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2012 reporting year, an estimated 11.84 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  5. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    David B. Frederick

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from May 1, 2010 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2010 partial reporting year, an estimated 3.646 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 13 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the Ground Water Quality Rule Primary and Secondary Constituent Standards.

  6. for the United States Department of Energy's National Nuclear...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration under contract DE-AC04-94AL85000. How to Program on 50,000 Processors Karen Devine Discrete Algorithms and Mathematics Department Sandia National Laboratories, ...

  7. Los Alamos National Laboratory again top contributor to United...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    County's giving campaign. July 1, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research...

  8. Future Bottlenecks for Industrial Water Recycling. Brady, Patrick...

    Office of Scientific and Technical Information (OSTI)

    Future Bottlenecks for Industrial Water Recycling. Brady, Patrick V. Abstract Not Provided Sandia National Laboratories USDOE National Nuclear Security Administration (NNSA) United...

  9. National Skills Assessment of the U.S. Wind Industry in 2012

    Wind Powering America (EERE)

    NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 A National Skills Assessment of the U.S. Wind Industry in 2012 M. Leventhal and S. Tegen Technical Report NREL/TP-7A30-57512 June 2013 NREL is a national laboratory of the U.S.

  10. Development of a Fan-Filter Unit Test Standard, LaboratoryValidations, and its Applications across Industries

    SciTech Connect (OSTI)

    Xu, Tengfang

    2006-10-20

    Lawrence Berkeley National Laboratory (LBNL) is now finalizing the Phase 2 Research and Demonstration Project on characterizing 2-foot x 4-foot (61-cm x 122-cm) fan-filter units in the market using the first-ever standard laboratory test method developed at LBNL.[1][2][3] Fan-filter units deliver re-circulated air and provide particle filtration control for clean environments. Much of the energy in cleanrooms (and minienvironments) is consumed by 2-foot x 4-foot (61-cm x 122-cm) or 4-foot x 4-foot (122-cm x 122-cm) fan-filter units that are typically located in the ceiling (25-100% coverage) of cleanroom controlled environments. Thanks to funding support by the California Energy Commission's Industrial Program of the Public Interest Energy Research (PIER) Program, and significant participation from manufacturers and users of fan-filter units from around the world, LBNL has developed and performed a series of standard laboratory tests and reporting on a variety of 2-foot x 4-foot (61-cm x 122-cm) fan-filter units (FFUs). Standard laboratory testing reports have been completed and reported back to anonymous individual participants in this project. To date, such reports on standard testing of FFU performance have provided rigorous and useful data for suppliers and end users to better understand, and more importantly, to quantitatively characterize performance of FFU products under a variety of operating conditions.[1] In the course of the project, the standard laboratory method previously developed at LBNL has been under continuous evaluation and update.[2][3] Based upon the updated standard, it becomes feasible for users and suppliers to characterize and evaluate energy performance of FFUs in a consistent way.

  11. A new interactive map takes you around the United States in 17 national

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laboratories | Princeton Plasma Physics Lab A new interactive map takes you around the United States in 17 national laboratories June 28, 2013 Tweet Widget Google Plus One Share on Facebook DOE National Laboratories (Photo by Symmetry magazine) DOE National Laboratories PPPL is one of the 17 national laboratories sponsored by the U.S. Department of Energy, and one of 10 overseen by the Department's Office of Science, the single largest supporter of basic research in the physical sciences in

  12. United States Renewable Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",14568,14637,14840,15009,15219 "Hydro Conventional",289246,247510,254831,273445,260203 "Solar",508,612,864,891,1212 "Wind",26589,34450,55363,73886,94652 "Wood/Wood Waste",38762,39014,37300,36050,37172 "MSW Biogenic/Landfill

  13. United States Renewable Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Renewable Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Geothermal",2274,2214,2229,2382,2405 "Hydro Conventional",77821,77885,77930,78518,78825 "Solar",411,502,536,619,941 "Wind",11329,16515,24651,34296,39135 "Wood/Wood Waste",6372,6704,6864,6939,7037 "MSW/Landfill Gas",3166,3536,3644,3645,3690

  14. United States Total Electric Power Industry Net Generation, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Generation, by Energy Source, 2006 - 2010" "(Thousand Megawatthours)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Fossil",2885295,2992238,2926731,2726452,2883361 " Coal",1990511,2016456,1985801,1755904,1847290 " Petroleum",64166,65739,46243,38937,37061 " Natural Gas",816441,896590,882981,920979,987697 " Other Gases",14177,13453,11707,10632,11313

  15. United States Total Electric Power Industry Net Summer Capacity, by Energy Source

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Electric Power Industry Net Summer Capacity, by Energy Source, 2006 - 2010" "(Megawatts)" "United States" "Energy Source",2006,2007,2008,2009,2010 "Fossil",761603,763994,770221,774279,782176 " Coal",312956,312738,313322,314294,316800 " Petroleum",58097,56068,57445,56781,55647 " Natural Gas",388294,392876,397460,401272,407028 " Other Gases",2256,2313,1995,1932,2700

  16. United States Removes Plutonium from Sweden | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Speed at 90 m 10-JAN-2011 1.1.1 Wind Speed at 90 m m/s 11.5 - 12.0 11.0 - 11.5 10.5 - 11.0 10.0 - 10.5 9.5 - 10.0 9.0 - 9.5 8.5 - 9.0 8.0 - 8.5 7.5 - 8.0 7.0 - 7.5 6.5 - 7.0 6.0 - 6.5 0.0 - 6.0 mph 25.7 - 26.8 24.6 - 25.7 23.5 - 24.6 22.4 - 23.5 21.3 - 22.4 20.1 - 21.3 19.0 - 20.1 17.9 - 19.0 16.8 - 17.9 15.7 - 16.8 14.5 - 15.7 13.4 - 14.5 0.0 - 13.4 Administration

    United States Removes Plutonium from Sweden March 27, 2012 Pu canisters embed SEOUL, South Korea - The United

  17. A National Offshore Wind Strategy: Creating an Offshore Wind Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry in the United States | Department of Energy A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States Strategic plan for accelerating the responsible deployment of offshore wind energy in the United States. PDF icon A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States. More Documents & Publications

  18. Impacts from Deployment Barriers on the United States Wind Power Industry: Overview & Preliminary Findings (Presentation)

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.; Hand, M.; Heimiller, D.

    2012-09-01

    Regardless of cost and performance some wind projects are unable to proceed to commissioning as a result of deployment barriers. Principal deployment barriers in the industry today include: wildlife, public acceptance, access to transmission, and radar. To date, methods for understanding these non-technical barriers have failed to accurately characterize the costs imposed by deployment barriers and the degree of impact to the industry. Analytical challenges include limited data and modeling capabilities. Changes in policy and regulation, among other factors, also add complexity to analysis of impacts from deployment barriers. This presentation details preliminary results from new NREL analysis focused on quantifying the impact of deployment barriers on the wind resource of the United States, the installed cost of wind projects, and the total electric power system cost of a 20% wind energy future. In terms of impacts to wind project costs and developable land, preliminary findings suggest that deployment barriers are secondary to market drivers such as demand. Nevertheless, impacts to wind project costs are on the order of $100/kW and a substantial share of the potentially developable windy land in the United States is indeed affected by deployment barriers.

  19. United States National Hydrogen Fuel Cell Vehicle and Infrastructure Learning Demonstration - Status and Results (Presentation)

    SciTech Connect (OSTI)

    Wipke,K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

    2009-03-06

    This presentation provides status and results for the United States National Hydrogen Fuel Cell Vehicle Learning Demonstration, including project objectives, partners, the National Renewable Energy Laboratory's role in the project and methodology, how to access complete results, and results of vehicle and infrastructure analysis.

  20. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater were discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.

  1. Biomass Feedstock National User Facility

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biomass Feedstock National User Facility Kevin L. Kenney July 29, 2014 Mission: Engage ... risk and guide industrial technologies Biomass Feedstock Process Demonstration Unit (aka ...

  2. Safeguards by design - industry engagement for new uranium enrichment facilities in the United States

    SciTech Connect (OSTI)

    Demuth, Scott F; Grice, Thomas; Lockwood, Dunbar

    2010-01-01

    The United States Department of Energy's (DOE's) Office of Nonproliferation and International Security (NA-24) has initiated a Safeguards by Design (SBD) effort to encourage the incorporation of international (IAEA) safeguards features early in the design phase of a new nuclear facility in order to avoid the need to redesign or retrofit the facility at a later date. The main goals of Safeguards by Design are to (1) make the implementation of international safeguards at new civil nuclear facilities more effective and efficient, (2) avoid costly and time-consuming re-design work or retrofits at such facilities and (3) design such facilities in a way that makes proliferation as technically difficult, as time-consuming, and as detectable as possible. The U.S. Nuclear Regulatory Commission (NRC) has recently hosted efforts to facilitate the use of Safeguards by Design for new uranium enrichment facilities currently being planned for construction in the U.S. While SBD is not a NRC requirement, the NRC is aiding the implementation of SBD by coordinating discussions between DOE's NA-24 and industry's facility design teams. More specifically, during their normal course of licensing discussions the NRC has offered industry the opportunity to engage with NA-24 regarding SBD.

  3. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01

    This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

  4. Ames Lab Interns Make Their Research Mark in Industry, Academia and at DOE National Labs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inquiry Issue 2 | 2013 Inquiry Issue 2 | 2013 19 Ames Lab Interns Make Their Research Mark in Industry, Academia and at DOE National Labs Kevin Yang, Science Undergraduate Laboratory Internship - 2008 B.S., Electrical and Computer Engineering, Cornell University - 2011 Amazon.com, software development engineer "From my experience at Ames Laboratory, I learned many invaluable skills that have helped me a great deal with my research and academic endeavors. I feel no hesitation in asserting

  5. Closure Report for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-04-30

    Corrective Action Unit (CAU) 574 is identified in the Federal Facility Agreement and Consent Order (FFACO) as 'Neptune' and consists of the following two Corrective Action Sites (CASs), located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); and (2) CAS 12-45-01, U12e.05 Crater (Blanca). This Closure Report presents information supporting closure of CAU 574 according to the FFACO (FFACO, 1996 [as amended March 2010]) and the Streamlined Approach for Environmental Restoration Plan for CAU 574 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The following activities were performed to support closure of CAU 574: (1) In situ external dose rate measurements were collected using thermoluminescent dosimeters at CAS 12-45-01, U12e.05 Crater (Blanca). (2) Total effective dose rates were determined at both sites by summing the internal and external dose rate components. (3) A use restriction (UR) was implemented at CAS 12-23-10, U12c.03 Crater (Neptune). Areas that exceed the final action level (FAL) of 25 millirems per year (mrem/yr) based on the Occasional Use Area exposure scenario are within the existing use restricted area for CAU 551. The 25-mrem/yr FAL is not exceeded outside the existing CAU 551 UR for any of the exposure scenarios (Industrial Area, Remote Work Area, and Occasional Use Area). Therefore, the existing UR for CAU 551 is sufficient to bound contamination that exceeds the FAL. (4) An administrative UR was implemented at CAS 12-45-01, U12e.05 Crater (Blanca) as a best management practice (BMP). The 25-mrem/yr FAL was not exceeded for the Remote Work Area or Occasional Use Area exposure scenarios; therefore, a UR is not required. However, because the 25-mrem/yr FAL was exceeded for the Industrial Area exposure scenario, an administrative UR was established as a BMP. UR documentation is included as Appendix B. The UR at CAS 12-23-10, U12c.03 Crater (Neptune), is within the existing UR for CAU 551. Additional postings were not installed, and annual post-closure inspections will be performed in conjunction with the inspections performed for CAU 551. At CAS 12-45-01, U12e.05 Crater (Blanca), the administrative UR does not require postings or inspections. NNSA/NSO requests the following: (1) A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 574; and (2) The transfer of CAU 574 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  6. NNSA Delivers All Scheduled W76-1 Units to Navy for 2012 | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Complex Delivers All Scheduled ... NNSA Delivers All Scheduled W76-1 Units to Navy for 2012 Posted: November 19, 2012 - 2:28pm The National Nuclear Security Administration (NNSA) today announced that it delivered all of its scheduled W76-1 Submarine Launched Ballistic Missile warhead units to United States Navy in FY 2012. "As our stockpile ages, we have to put ourselves in a position where the president can be certain that it is safe, secure and effective," said NNSA

  7. The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System

    SciTech Connect (OSTI)

    Hughes, K.R.; Moore, N.L.

    1994-09-01

    The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

  8. Biogas Potential in the United States (Fact Sheet), Energy Analysis, NREL (National Renewable Energy Laboratory)

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Energy Analysis Biogas Potential in the United States Biogas is the gaseous product of anaerobic digestion, a biological process in which microorganisms break down biodegradable material in the absence of oxygen. Biogas is comprised primarily of methane (50%-70%) and carbon dioxide (30%-50%), with trace amounts of other particulates and contaminants. It can be produced from various waste sources, including landfll material; animal manure; wastewater; and industrial, institutional, and commercial

  9. DOE Issues RFI and Industry Day Announcement on Optimal Design of Saltstone Disposal Units at the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. (January 11, 2016) – DOE has announced release of a Request for Information (RFI) on the optimal design of Saltstone Disposal Units (SDU) in support of the Savannah River Site (SRS) liquid waste program mission, along with plans to hold an Industry Day to provide additional information on the SDU project.

  10. Pacific Northwest National Laboratory Facility Radionuclide Emissions Units and Sampling Systems

    SciTech Connect (OSTI)

    Barnett, J. M.; Brown, Jason H.; Walker, Brian A.

    2012-04-01

    Battelle-Pacific Northwest Division operates numerous research and development (R and D) laboratories in Richland, WA, including those associated with Pacific Northwest National Laboratory (PNNL) on the U.S. Department of Energy (DOE)'s Hanford Site and PNNL Site that have the potential for radionuclide air emissions. The National Emission Standard for Hazardous Air Pollutants (NESHAP 40 CFR 61, Subparts H and I) requires an assessment of all emission units that have the potential for radionuclide air emissions. Potential emissions are assessed annually by PNNL staff members. Sampling, monitoring, and other regulatory compliance requirements are designated based upon the potential-to-emit dose criteria found in the regulations. The purpose of this document is to describe the facility radionuclide air emission sampling program and provide current and historical facility emission unit system performance, operation, and design information. For sampled systems, a description of the buildings, exhaust units, control technologies, and sample extraction details is provided for each registered emission unit. Additionally, applicable stack sampler configuration drawings, figures, and photographs are provided. Deregistered emission unit details are provided as necessary for up to 5 years post closure.

  11. Y-12/Pantex donate $1.1M to local United Way campaigns | Y-12 National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Complex /Pantex donate $1.1M to ... Y-12/Pantex donate $1.1M to local United Way campaigns Posted: March 29, 2016 - 12:51pm United Way contributions at the Y-12 National Security Complex and Pantex Plant totaled some $1.1 million, Consolidated Nuclear Security, the managing and operating contractor, announced today. Contributions from employees, retirees and the corporation were gathered during the sites' recent campaigns. The campaigns also added more than 500 Leadership Givers,

  12. Solar and Wind Energy Resource Assessment (SWERA) Data from the National Renewable Energy Library and the United Nations Environment Program (UNEP)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The SWERA Programme provides easy access to credible renewable energy data to stimulate investment in, and development of, renewable energy technologies. The Solar and Wind Energy Resource Assessment (SWERA) started in 2001 to advance the large-scale use of renewable energy technologies by increasing the availability and accessibility of high-quality solar and wind resource information. SWERA began as a pilot project with funding from the Global Environment Facility (GEF) and managed by the United Nations Environment Programme's (UNEP) Division of Technology, Industry and Economics (DTIE) in collaboration with more than 25 partners around the world. With the success of the project in 13 pilot countries SWERA expanded in 2006 into a full programme. Its expanded mission is to provide high quality information on renewable energy resources for countries and regions around the world, along with the tools needed to apply these data in ways that facilitate renewable energy policies and investments.[from the SWERA Guide at http://swera.unep.net/index.php?id=sweraguide_chp1] DOE and, in particular, the National Renewable Energy Laboratory, has been a functioning partner from the beginning. NREL was part of the original technical team involved in mapping, database, and GIS activities. Solar, wind, and meteorological data for selected countries can be accessed through a variety of different tools and interfaces.

  13. National Wind Technology Center: A Proven and Valued Wind Industry Partner (Fact Sheet), National Wind Technology Center (NWTC)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    The fact sheet gives an overview of the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory.

  14. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  15. NNSA Small Business Week Day 2: United Drilling, Inc. | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration 2: United Drilling, Inc. December 14, 2010 WASHINGTON, D.C. - The National Nuclear Security Administration (NNSA) yesterday announced that it distributed more than $395 million in small business obligations for federal prime contracts in fiscal year 2010. NNSA surpassed its departmental small business goal by 39 percent in fiscal year 2010. To highlight the success of its small business program, NNSA yesterday launched the second annual "NNSA Small Business

  16. Shallow ground-water flow, water levels, and quality of water, 1980-84, Cowles Unit, Indiana Dunes National Lakeshore

    SciTech Connect (OSTI)

    Cohen, D.A.; Shedlock, R.J.

    1986-01-01

    The Cowles Unit of Indiana Dunes National Lakeshore in Porter County, northwest Indiana, contains a broad dune-beach complex along the southern shoreline of Lake Michigan and a large wetland, called the Great Marsh, that occupies the lowland between the shoreline dunes and an older dune-beach complex farther inland. Water levels and water quality in the surficial aquifer were monitored from 1977 to 1984 near settling ponds on adjacent industrial property at the western end of the Cowles Unit. Since 1980, when the settling pond bottoms were sealed, these intradunal lowlands contained standing water only during periods of high snowmelt or rainfall. Water level declines following the cessation of seepage ranged from 6 feet at the eastern-most settling pond to nearly 14 feet at the western-most pond. No general pattern of water table decline was observed in the Great Marsh or in the shoreline dune complex at distances > 3,000 ft east or north of the settling ponds. Since the settling ponds were sealed, the concentration of boron has decreased while concentrations of cadmium, arsenic, zinc, and molybdenum in shallow ground-water downgradient of the ponds show no definite trends in time. Arsenic, boron and molybdenum have remained at concentrations above those of shallow groundwater in areas unaffected by settling pond seepage. 11 refs., 10 figs., 1 tab.

  17. Contribution of the Ethanol Industry to the Economy of the United States

    SciTech Connect (OSTI)

    Urbanchuk, John M.

    2008-02-20

    Despite the challenges to profitability the ethanol industry continues to expand. Total ethanol production for 2007 is estimated at nearly 6.5 billion gallons, 33 percent more than 2006. This study estimates the contribution of the ethanol industry to the American economy in 2007.

  18. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  19. Superfund record of decision (EPA Region 3): Publicker Industries, Inc., operable unit 3, Philadelphia, PA, December 28, 1995

    SciTech Connect (OSTI)

    1997-04-01

    This decision document presents the selected remedial action for Operable Unit No. 3 of the Publicker Industries Site (the Site) in Philadelphia, Pennsyvlania. The major components of the selected remedy include: Abandonment of on-Site ground water wells; Removal, treatment, and off-Site disposal of liquids and sediments in contaminated electric utilities; Removal, treatment and off-Site disposal of liquids and sediments in contaminated stormwater trenches and utilities; and Removal treatment and off-Site disposal of miscellaneous wastes.

  20. Oil atlas: National Petroleum Technology Office activities across the United States

    SciTech Connect (OSTI)

    Tiedemann, H.A.

    1998-03-01

    Petroleum imports account for the largest share of the US trade deficit. Over one-third of the 1996 merchandise trade deficit is attributed to imported oil. The good news is that substantial domestic oil resources, both existing and yet-to-be-discovered, can be recovered using advanced petroleum technologies. The Energy Information Agency estimates that advanced technologies can yield 10 billion additional barrels, equal to $240 billion in import offsets. The US Department of Energy`s National Petroleum Technology Office works with industry to develop advanced petroleum technologies and to transfer successful technologies to domestic oil producers. This publication shows the locations of these important technology development efforts and lists DOE`s partners in this critical venture. The National Petroleum Technology Office has 369 active technology development projects grouped into six product lines: Advanced Diagnostics and Imaging Systems; Advanced Drilling, Completion, and Stimulation; Reservoir Life Extension and Management; Emerging Processing Technology Applications; Effective Environmental Protection; and Crosscutting Program Areas.

  1. The state of the United States cogeneration industry from a developer perspective

    SciTech Connect (OSTI)

    Nielsen, W.E.

    1996-12-31

    The paper presents opinions regarding the future of the cogeneration industry in the U.S. Background information on the non-utility U.S. power industry is summarized. The future of the wholesale electric markets and deregulation of the generation sector is discussed. The future of the retail market is related to issues of open access, stranded investment, and power marketing. A new growth period, spurred by deregulation, is predicted for U.S. cogeneration developers.

  2. Post-Closure Inspection Letter Report for Corrective Action Units on the Nevada National Security Site

    SciTech Connect (OSTI)

    Boehleke, R. F.

    2014-05-06

    This letter serves as the post-closure inspection letter report for Corrective Action Units (CAUs) on the Nevada National Security Site for calendar year 2013. The inspections identified maintenance and repair is required at the following sites: sign and/or fence repair is necessary at CAUs 113, 137, 139, 140, 143, 262, 370, 371, 372, 374, 476, 478, 529, 542, and 560; animal burrows were identified at CAU 547; and erosion was identified at CAUs 366, 367, 383, 551, and 574. In addition, the following use restrictions were removed during 2013 and will no longer be inspected in 2014: 165, 357, and 528.

  3. Dynamic Modeling of Learning in Emerging Energy Industries: The Example of Advanced Biofuels in the United States: Preprint

    SciTech Connect (OSTI)

    Vimmerstedt, Laura J.; Bush, Brian W.; Peterson, Steven O.

    2015-09-03

    This paper (and its supplemental model) presents novel approaches to modeling interactions and related policies among investment, production, and learning in an emerging competitive industry. New biomass-to-biofuels pathways are being developed and commercialized to support goals for U.S. advanced biofuel use, such as those in the Energy Independence and Security Act of 2007. We explore the impact of learning rates and techno-economics in a learning model excerpted from the Biomass Scenario Model (BSM), developed by the U.S. Department of Energy and the National Renewable Energy Laboratory to explore the impact of biofuel policy on the evolution of the biofuels industry. The BSM integrates investment, production, and learning among competing biofuel conversion options that are at different stages of industrial development. We explain the novel methods used to simulate the impact of differing assumptions about mature industry techno-economics and about learning rates while accounting for the different maturity levels of various conversion pathways. A sensitivity study shows that the parameters studied (fixed capital investment, process yield, progress ratios, and pre-commercial investment) exhibit highly interactive effects, and the system, as modeled, tends toward market dominance of a single pathway due to competition and learning dynamics.

  4. Initial Investigation into the Potential of CSP Industrial Process Heat for the Southwest United States

    SciTech Connect (OSTI)

    Kurup, Parthiv; Turchi, Craig

    2015-11-01

    After significant interest in the 1970s, but relatively few deployments, the use of solar technologies for thermal applications, including enhanced oil recovery (EOR), desalination, and industrial process heat (IPH), is again receiving global interest. In particular, the European Union (EU) has been a leader in the use, development, deployment, and tracking of Solar Industrial Process Heat (SIPH) plants. The objective of this study is to ascertain U.S. market potential of IPH for concentrating collector technologies that have been developed and promoted through the U.S. Department of Energy's Concentrating Solar Power (CSP) Program. For this study, the solar-thermal collector technologies of interest are parabolic trough collectors (PTCs) and linear Fresnel (LF) systems.

  5. The NEPA mandate and federal regulation of the natural gas industry. [NEPA (National Environmental Policy Act)

    SciTech Connect (OSTI)

    Hoecker, J.J.

    1992-01-01

    Utility regulators increasingly take responsibility for the [open quotes]extemalities[close quotes] associated with their decisions, meaning the economic and social costs related to rate decisions or other kinds of authorizations. Yet, when Congress adopted the National Environmental Policy Act of 1969 (NEPA), it intervened to ensure protection of the natural environment, not from abuses by the citizenry but from the activities of the federal government itself. Comprised of action forcing procedures, NEPA was designed to infuse the decisional processes of federal agencies with a broad awareness of the environmental consequences of their actions. NEPA encourages decisionmakers to counterbalance the organic statutory and political missions of their departments or agencies with a sensitivity to the ecological consequences of their directives and authorizations. This paper examines how the requirements of NEPA have fared in the environment of classical public utility regulation at the Federal Energy Regulatory Commission. Commission proceedings did not evidence any widely held opinion that economic regulation of the gas industry is hostile to the NEPA process.

  6. A National Skills Assessment of the U.S. Wind Industry in 2012

    SciTech Connect (OSTI)

    Leventhal, M.; Tegen, S.

    2013-06-01

    This report examines today’s domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs.

  7. National Nanotechnology Initiative's Signature Initiative Sustainable Nanomanufacturing: Creating the Industries of the Future

    Broader source: Energy.gov [DOE]

    Presentation for the Sustainable Nanomaterials Workshop by National Nanotechnology Coordination Office held on June 26, 2012

  8. The impact of energy prices on technology choice in the United States steel industry

    SciTech Connect (OSTI)

    Karlson, S.H. . Dept. of Economics); Boyd, G. )

    1991-01-01

    In the last thirty years US steel producers have replaced their aging open hearth steel furnaces with basic oxygen or large electric arc furnaces. This choice of technology leads to the opportunity to substitute electricity for fossil fuels as a heat source. We extend earlier research to investigate whether or not energy prices affect this type of technology adoption as predicted by economic theory. The econometric model uses the seemingly unrelated Tobit'' method to capture the effects of the industry's experience with both technologies, technical change, and potential cost reductions, as well as energy prices, on adoption. When we include the prices of electricity and coking coal as explanatory variables, the four energy price coefficients have the signs predicted by the law of demand. The two price coefficients have a statistically significant effect on adoption of basic oxygen furnaces. The inclusion of energy prices leads to significantly more efficient estimates of other coefficients in the model. 19 refs., 3 tabs.

  9. Economic and environmental impacts of the corn grain ethanol industry on the United States agricultural sector

    SciTech Connect (OSTI)

    Larson, J.A.; English, B.C.; De La Torre Ugarte, D. G.; Menard, R.J.; Hellwinckel, C.M.; West, Tristram O.

    2010-09-10

    This study evaluated the impacts of increased ethanol production from corn starch on agricultural land use and the environment in the United States. The Policy Analysis System simulation model was used to simulate alternative ethanol production scenarios for 2007 through 2016. Results indicate that increased corn ethanol production had a positive effect on net farm income and economic wellbeing of the US agricultural sector. In addition, government payments to farmers were reduced because of higher commodity prices and enhanced net farm income. Results also indicate that if Conservation Reserve Program land was converted to crop production in response to higher demand for ethanol in the simulation, individual farmers planted more land in crops, including corn. With a larger total US land area in crops due to individual farmer cropping choices, total US crop output rose, which decreased crop prices and aggregate net farm income relative to the scenario where increased ethanol production happened without Conservation Reserve Program land. Substantial shifts in land use occurred with corn area expanding throughout the United States, especially in the traditional corn-growing area of the midcontinent region.

  10. Site descriptions of environmental restoration units at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Kuhaida, A.J. Jr.; Parker, A.F.

    1997-02-01

    This report provides summary information on Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) sites as listed in the Oak Ridge Reservation Federal Facility Agreement (FFA), dated January 1, 1992, Appendix C. The Oak Ridge National Laboratory was built in 1943 as part of the World War II Manhattan Project. The original mission of ORNL was to produce and chemically separate the first gram-quantities of plutonium as part of the national effort to produce the atomic bomb. The current mission of ORNL is to provide applied research and development in support of the U.S. Department of Energy (DOE) programs in nuclear fusion and fission, energy conservation, fossil fuels, and other energy technologies and to perform basic scientific research in selected areas of the physical, life, and environmental sciences. ER is also tasked with clean up or mitigation of environmental impacts resulting from past waste management practices on portions of the approximately 37,000 acres within the Oak Ridge Reservation (ORR). Other installations located within the ORR are the Gaseous Diffusion Plant (K-25) and the Y-12 plant. The remedial action strategy currently integrates state and federal regulations for efficient compliance and approaches for both investigations and remediation efforts on a Waste Area Grouping (WAG) basis. As defined in the ORR FFA Quarterly Report July - September 1995, a WAG is a grouping of potentially contaminated sites based on drainage area and similar waste characteristics. These contaminated sites are further divided into four categories based on existing information concerning whether the data are generated for scoping or remedial investigation (RI) purposes. These areas are as follows: (1) Operable Units (OU); (2) Characterization Areas (CA); (3) Remedial Site Evaluation (RSE) Areas; and (4) Removal Site Evaluation (RmSE) Areas.

  11. Industrial Scale Energy Systems Integration (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Scale Energy Systems Integration IEEE Power & Energy Society General Meeting Mark Ruth Denver, Colorado July 28, 2015 NREL/PR-6A20-64651 2 Outline * Industrial scale energy use * Energy Systems Integration (ESI) opportunities in industry o Combined heat and power o Trigeneration o Demand response o Integrated, hybrid energy systems 3 Energy Use in the Industrial Sector * 25% of the total U.S. energy demand * 18% of carbon emissions 4 Combined Heat and Power * U.S. CHP capacity in

  12. GTO Director Doug Hollett Delivers Keynote at the Nation's Largest Industry Gathering, September 29, 2014

    Broader source: Energy.gov [DOE]

    The Energy Department's Geothermal Technologies Office participated in the industry's largest geothermal gathering in Portland, Oregon, with a keynote address by Director Doug Hollett.

  13. United States Department of Energy National Nuclear Security Administration Sandia Field Office NESHAP Annual Report CY2014 for Sandia National Laboratories New Mexico

    SciTech Connect (OSTI)

    evelo, stacie; Miller, Mark L.

    2015-05-01

    This report provides a summary of the radionuclide releases from the United States (U.S.) Department of Energy (DOE) National Nuclear Security Administration facilities at Sandia National Laboratories, New Mexico (SNL/NM) during Calendar Year (CY) 2014, including the data, calculations, and supporting documentation for demonstrating compliance with 40 Code of Federal Regulation (CFR) 61, Subpart H--NATIONAL EMISSION STANDARDS FOR EMISSIONS OF RADIONUCLIDES OTHER THAN RADON FROM DEPARTMENT OF ENERGY FACILITIES. A description is given of the sources and their contributions to the overall dose assessment. In addition, the maximally exposed individual (MEI) radiological dose calculation and the population dose to local and regional residents are discussed.

  14. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect (OSTI)

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  15. Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-07-17

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 547, Miscellaneous Contaminated Waste Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 547 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 547 consists of the following three Corrective Action Sites (CASs), located in Areas 2, 3, and 9 of the Nevada National Security Site: (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; AND (3) CAS 09-99-06, Gas Sampling Assembly Closure activities began in August 2011 and were completed in June 2012. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for CAU 547 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The recommended corrective action for the three CASs in CAU 547 was closure in place with administrative controls. The following closure activities were performed: (1) Open holes were filled with concrete; (2) Steel casings were placed over vertical expansion joints and filled with cement; (3) Engineered soil covers were constructed over piping and exposed sections of the gas sampling system components; (4) Fencing, monuments, Jersey barriers, radiological postings, and use restriction (UR) warning signs were installed around the perimeters of the sites; (5) Housekeeping debris was picked up from around the sites and disposed; and (6) Radiological surveys were performed to confirm final radiological postings. UR documentation is included in Appendix D. The post-closure plan was presented in detail in the CADD/CAP for CAU 547 and is included as Appendix F of this report. The requirements are summarized in Section 5.2 of this report. The proposed post-closure requirements consist of visual inspections to determine the condition of postings and radiological surveys to verify contamination has not migrated. NNSA/NSO requests the following: (1) A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 547; and (2) The transfer of CAU 547 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  16. Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-08-15

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevada National Security Site: CAS 02-26-11, Lead Shot CAS 02-44-02, Paint Spills and French Drain CAS 02-59-01, Septic System CAS 02-60-01, Concrete Drain CAS 02-60-02, French Drain CAS 02-60-03, Steam Cleaning Drain CAS 02-60-04, French Drain CAS 02-60-05, French Drain CAS 02-60-06, French Drain CAS 02-60-07, French Drain CAS 23-60-01, Mud Trap Drain and Outfall CAS 23-99-06, Grease Trap CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  17. Arms control is everyone`s business: The United States and the United Nations at the mid-point of the 1990`s

    SciTech Connect (OSTI)

    Lehman, R.F. II

    1993-03-01

    This presentation encourages current efforts in arms control, non- proliferation, and peacekeeping. Verification is heralded as a confidence building method to bring about more openness in international relations. It is purported that openness has already enhanced democratic forces around the world. The insistence on strict compliance with the decisions of the United Nations Security Council is a show of support for international law. It is recommended that international norms on human rights, non-proliferation, and non-aggression be strengthened.

  18. NNSA Achieves 50 Percent Production for W76-1 Units | National...

    National Nuclear Security Administration (NNSA)

    The W76-1 Life Extension Program involves engineers, scientists and technicians from NNSA's Pantex Plant, the Y-12 National Security Complex, Savannah River Site, National Security ...

  19. Energy Department to Work with National Association of Manufacturers to Increase Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE)

    WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today expanded DOE's work to maximize energy efficiency by increasing cooperation among U.S. industry and energy...

  20. National Skills Assessment of the U.S. Wind Industry in 2012

    Broader source: Energy.gov [DOE]

    A robust workforce is essential to developing domestic wind power projects, including manufacturing, siting, operations, maintenance, and research capabilities. The purpose of our research is to better understand today’s domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs. Results presented in this report provide the first published investigation into the detailed makeup of the wind energy workforce, educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce will allow the private sector, educational institutions, and federal and state governmental organizations to make workforce-related decisions based on the current employment and training data and future projections in this report.

  1. National Skills Assessment of the U.S. Wind Industry in 2012

    SciTech Connect (OSTI)

    Levanthal, M.; Tegen, S.

    2013-06-01

    A robust workforce is essential to developing domestic wind power projects, including manufacturing, siting, operations, maintenance, and research capabilities. The purpose of our research is to better understand today's domestic wind workforce, projected workforce needs as the industry grows, and how existing and new programs can meet the wind industry's future education and training needs. Results presented in this report provide the first published investigation into the detailed makeup of the wind energy workforce, educational infrastructure and training needs of the wind industry. Insights from this research into the domestic wind workforce will allow the private sector, educational institutions, and federal and state governmental organizations to make workforce-related decisions based on the current employment and training data and future projections in this report.

  2. Post-Closure Inspection Letter Report for Corrective Action Units on the Nevada National Security Site

    SciTech Connect (OSTI)

    Boehlecke, Robert F.

    2013-05-28

    This letter serves as the post-closure inspection letter report for corrective action units on the Nevada Naational Security Site for calendar year 2012.

  3. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.

  4. Corrective Action Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996 as amended). CAU 366 consists of the following six Corrective Action Sites (CASs) located in Area 11 of the Nevada National Security Site: CAS 11-08-01, Contaminated Waste Dump #1 CAS 11-08-02, Contaminated Waste Dump #2 CAS 11-23-01, Radioactively Contaminated Area A CAS 11-23-02, Radioactively Contaminated Area B CAS 11-23-03, Radioactively Contaminated Area C CAS 11-23-04, Radioactively Contaminated Area D Site characterization activities were performed in 2011 and 2012, and the results are presented in Appendix A of the Corrective Action Decision Document (CADD) for CAU 366 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2012a). The following closure alternatives were recommended in the CADD: No further action for CAS 11-23-01 Closure in place for CASs 11-08-01, 11-08-02, 11-23-02, 11-23-03, and 11-23-04 The scope of work required to implement the recommended closure alternatives includes the following: Non-engineered soil covers approximately 3 feet thick will be constructed at CAS 11-08-01 over contaminated waste dump (CWD) #1 and at CAS 11-08-02 over CWD #2. FFACO use restrictions (URs) will be implemented for the areas where the total effective dose (TED) exceeds the final action level (FAL) of 25 millirems per Occasional Use Area year (mrem/OU-yr). The FAL is based on an assumption that the future use of the site includes occasional work activities and that workers will not be assigned to the area on a regular basis. A site worker under this scenario is assumed to be on site for a maximum of 80 hours per year for 5 years. The FFACO UR boundaries will encompass the areas where a worker would be exposed to 25 millirems of radioactivity per year if they are present for 80 hours per year. These boundaries will be defined as follows: It is assumed that radiological contaminants are present at CAS 11-08-01 and CAS 11-08-02 within CWDs #1 and #2 at levels exceeding the FAL. Therefore, UR boundaries will be established around the perimeters of the soil covers that will be constructed at CWD #1 and CWD #2. A geophysical survey revealed buried metallic debris outside the fence and adjacent to CWD #1. Therefore, the UR boundary for CWD #1 will be expanded to include the mound containing buried material. It is assumed that radiological contaminants are present at CAS 11-23-02, CAS 11-23-03, and CAS 11-23-04, within the three High Contamination Area (HCA) boundaries associated with the 11b, 11c, and 11d test areas at levels exceeding the FAL. Therefore, the UR boundaries will be established around the perimeters of the HCAs. The TED at an area of soil impacted by radiological debris outside the fence and adjacent to the 11c test area HCA exceeds the FAL of 25 mrem/OU-yr. Because the radiological impact from the debris at this location is visible on the aerial flyover radiological survey, all other areas within this isopleth of the flyover survey are conservatively also assumed to exceed the FAL. Therefore, the UR boundaries for the 11b, 11c, and 11d test areas will be expanded to include the areas within this isopleth. The FFACO URs will all be located within the large Contamination Area (CA) that encompasses Plutonium Valley. Because access to the CA is limited and entry into the CA for post-closure inspections and maintenance would be impractical, UR warning signs will be posted along the existing CA fence. In accordance with the Soils Risk-Based Corrective Action Evaluation Process (NNSA/NSO, 2012b), an administrative UR will be implemented as a best management practice for the areas where the TED exceeds 25 millirems per Industrial Area year. This limit is based on continuous industrial use of the site and addresses exposure to industrial workers who would regularly be assigned to the work area for an entire career (250 days

  5. Analysis of an industrial cogeneration unit driven by a gas engine. Part 1: Experimental testing under full and part-load operating conditions

    SciTech Connect (OSTI)

    De Lucia, M.; Lanfranchi, C.

    1994-12-31

    This paper describes and analyzes an industrial cogeneration plant driven by a gas fueled reciprocating engine installed in a textile factory. It presents the results of experimental testing conducted under full and part-load operating conditions, as well as first-law energy considerations. The experimental tests conducted on the cogeneration unit proved the validity of the plant design and also enabled evaluation of part-load performance, which is the most common operating mode in cogeneration plants in the small-size industries which typical of central Italy.

  6. Industry Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Partnerships

  7. An Approach to Industrial Stormwater Benchmarks: Establishing and Using Site-Specific Threshold Criteria at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Campbell, C G; Mathews, S

    2006-09-07

    Current regulatory schemes use generic or industrial sector specific benchmarks to evaluate the quality of industrial stormwater discharges. While benchmarks can be a useful tool for facility stormwater managers in evaluating the quality stormwater runoff, benchmarks typically do not take into account site-specific conditions, such as: soil chemistry, atmospheric deposition, seasonal changes in water source, and upstream land use. Failing to account for these factors may lead to unnecessary costs to trace a source of natural variation, or potentially missing a significant local water quality problem. Site-specific water quality thresholds, established upon the statistical evaluation of historic data take into account these factors, are a better tool for the direct evaluation of runoff quality, and a more cost-effective trigger to investigate anomalous results. Lawrence Livermore National Laboratory (LLNL), a federal facility, established stormwater monitoring programs to comply with the requirements of the industrial stormwater permit and Department of Energy orders, which require the evaluation of the impact of effluent discharges on the environment. LLNL recognized the need to create a tool to evaluate and manage stormwater quality that would allow analysts to identify trends in stormwater quality and recognize anomalous results so that trace-back and corrective actions could be initiated. LLNL created the site-specific water quality threshold tool to better understand the nature of the stormwater influent and effluent, to establish a technical basis for determining when facility operations might be impacting the quality of stormwater discharges, and to provide ''action levels'' to initiate follow-up to analytical results. The threshold criteria were based on a statistical analysis of the historic stormwater monitoring data and a review of relevant water quality objectives.

  8. Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick and Sloop, Christy

    2011-04-01

    This Corrective Action Decision Document (CADD)/Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 372, Area 20 Cabriolet/Palanquin Unit Craters, located within Areas 18 and 20 at the Nevada National Security Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 372 comprises four corrective action sites (CASs): • 18-45-02, Little Feller I Surface Crater • 18-45-03, Little Feller II Surface Crater • 20-23-01, U-20k Contamination Area • 20-45-01, U-20L Crater (Cabriolet) The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 372 based on the implementation of the corrective action of closure in place with administrative controls at all CASs. Corrective action investigation (CAI) activities were performed from November 9, 2009, through December 10, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 372 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL was established of 25 millirem per year based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were found to be present at all four CASs. It is assumed that radionuclide levels present within the Little Feller I and Cabriolet high contamination areas and within the craters at Palanquin and Cabriolet exceed the FAL. It is also assumed that potential source material in the form of lead bricks at Little Feller I and lead-acid batteries at Palanquin and Cabriolet exceed the FAL. Therefore, corrective actions were undertaken that consist of removing potential source material, where present, and implementing a use restriction and posting warning signs at each CAS. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: • No further corrective actions are necessary for CAU 372. • A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 372. • Corrective Action Unit 372 should be moved from Appendix III to Appendix IV of the FFACO.

  9. TECHNICAL EVALUATION OF SOIL REMEDIATION ALTERNATIVES AT THE BUILDING 812 OPERABLE UNIT, LAWRENCE LIVERMORE NATIONAL LABORATORY SITE 300

    SciTech Connect (OSTI)

    Eddy-Dilek, C.; Miles, D.; Abitz, R.

    2009-08-14

    The Department of Energy Livermore Site Office requested a technical review of remedial alternatives proposed for the Building 812 Operable Unit, Site 300 at the Lawrence Livermore National Laboratory. The team visited the site and reviewed the alternatives proposed for soil remediation in the draft RI/FS and made the following observations and recommendations. Based on the current information available for the site, the team did not identify a single technology that would be cost effective and/or ecologically sound to remediate DU contamination at Building 812 to current remedial goals. Soil washing is not a viable alternative and should not be considered at the site unless final remediation levels can be negotiated to significantly higher levels. This recommendation is based on the results of soil washing treatability studies at Fernald and Ashtabula that suggest that the technology would only be effective to address final remediation levels higher than 50 pCi/g. The technical review team identified four areas of technical uncertainty that should be resolved before the final selection of a preferred remedial strategy is made. Areas of significant technical uncertainty that should be addressed include: (1) Better delineation of the spatial distribution of surface contamination and the vertical distribution of subsurface contamination in the area of the firing table and associated alluvial deposits; (2) Chemical and physical characterization of residual depleted uranium (DU) at the site; (3) Determination of actual contaminant concentrations in air particulates to support risk modeling; and (4) More realistic estimation of cost for remedial alternatives, including soil washing, that were derived primarily from vendor estimates. Instead of conducting the planned soil washing treatability study, the team recommends that the site consider a new phased approach that combines additional characterization approaches and technologies to address the technical uncertainty in the remedial decision making. The site should redo the risk calculations as the future use scenario has changed for the site. As a result, the existing model is based on very conservative assumptions that result in calculation of unreasonably low cleanup goals. Specifically, the review team proposes that LLNL consider: (1) Revising the industrial worker scenario to a reasonable maximum exposure (RME) for a site worker that performs a weekly walk down of the area for two hours for 25 years (or an alternative RME if the exposure scenario changes); (2) Revising the ESSI of 2 mg U per kg soil for the deer mouse to account for less than 0.05 of the total ingested uranium being adsorbed by the gut; (3) Revising bioaccumulation factors (BAFs) for vegetation and invertebrates that are based on 100 mg of soluble uranium per kg of soil, as the uranium concentration in the slope soil does not average 100 mg/kg and it is not all in a soluble form; and (4) Measuring actual contaminant concentrations in air particulates at the site and using the actual values to support risk calculations. The team recommends that the site continue a phased approach during remediation. The activities should focus on elimination of the principal threats to groundwater by excavating (1) source material from the firing table and alluvial deposits, and (2) soil hotspots from the surrounding slopes with concentrations of U-235 and U-238 that pose unacceptable risk. This phased approach allows the remediation path to be driven by the results of each phase. This reduces the possibility of costly 'surprises', such as failure of soil treatment, and reduces the impact of remediation on endangered habitat. Treatment of the excavated material with physical separation equipment may result in a decreased volume of soil for disposal if the DU is concentrated in the fine-grained fraction, which can then be disposed of in an offsite facility at a considerable cost savings. Based on existing data and a decision to implement the recommended phased approach, the cost of characterization, excavation and physical

  10. Addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-07-31

    This addendum to the Closure Report for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, DOE/NV--1480, dated July 2012, documents repairs of erosion and construction of engineered erosion protection features at Corrective Action Site (CAS) 02-37-02 (MULLET) and CAS 09-99-06 (PLAYER). The final as-built drawings are included in Appendix A, and photographs of field work are included in Appendix B. Field work was completed on March 11, 2013.

  11. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-05-01

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  12. National resource accounting for a sustainable energy system in the United States of America

    SciTech Connect (OSTI)

    Dorsey, J.W.

    1995-12-01

    The conflict resulting in Operation Desert Storm re-enforces the fact that nations of the Persian Gulf are in no position to provide a steady, long-term supply of oil. It is imperative that the US take account of itself and seek ways and means to lessen its dependence on oil and other non-renewable sources of energy, whether foreign or domestic. A national energy policy that focuses on energy efficiency through taxes, conservation, investment in new technologies and alternate fuels can provide a broad base to established an autonomous and sustainableenergyy system, freer of outside influence. This paper contains the following major sections in discussing the topic: History; Present Situation; Probable Solutions; Projections for the Future; Conclusions.

  13. Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Jeremy Gwin and Douglas Frenette

    2010-09-30

    This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 – Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or “clean,” building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, “Final Status Survey Plan for Corrective Action Unit 117 – Pluto Disassembly Facility, Building 2201”) was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one of three categories: Class 1, Class 2 or Class 3 (a fourth category is a “Non-Impacted Class” which in the case of Building 2201 only pertained to exterior surfaces of the building.) The majority of the rooms were determined to fall in the less restrictive Class 3 category, however, Rooms 102, 104, 106, and 107 were identified as containing Class 1 and 2 areas. Building 2201 was divided into “survey units” and surveyed following the requirements of the Final Status Survey Plan for each particular class. As each survey unit was completed and documented, the survey results were evaluated. Each sample (static measurement) with units of counts per minute (cpm) was corrected for the appropriate background and converted to a value with units of dpm/100 cm2. With a surface contamination value in the appropriate units, it was compared to the surface contamination limits, or in this case the derived concentration guideline level (DCGLw). The appropriate statistical test (sign test) was then performed. If the survey unit was statistically determined to be below the DCGLw, then the survey unit passed and the null hypothesis (that the survey unit is above limits) was rejected. If the survey unit was equal to or below the critical value in the sign test, the null hypothesis was not rejected. This process was performed for all survey units within Building 2201. A total of thirty-three “Class 1,” four “Class 2,” and one “Class 3” survey units were developed, surveyed, and evaluated. All survey units successfully passed the statistical test. Building 2201 meets the release criteria commensurate with the Waste Acceptance Criteria (for radiological purposes) of the U10C landfill permit residing within NNSS boundaries. Based on the thorough statistical sampling and scanning of the building’s interior, Building 2201 may be considered radiologically “clean,” or free of contamination.

  14. Farm to Flight Virtual Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Farm to Flight Virtual Resources "Advanced biofuels are important to the aviation industry's sustainability, both as a way to diversify our fuel supply and lower our carbon footprint." - Jimmy Samartzis, United Airlines The national push to reduce dependence of fossil fuels has raised awareness across all industries. The airline industry has recently convened scientific and industry experts to explore the issue. Argonne National Laboratory and IBio Institute Educate Center has

  15. National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet), Building America: Technical Highlight, Building Technologies Program (BTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost- effective retrofit measures to improve the energy

  16. Closure Report for Corrective Action Unit 465: Hydronuclear Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Burmeister and Patrick Matthews

    2012-11-01

    The corrective action sites (CASs) within CAU 465 are located within Areas 6 and 27 of the NNSS. CAU 465 comprises the following CASs: 00-23-01, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Charlie site. 00-23-02, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Dog site. 00-23-03, Hydronuclear Experiment, located in Area 27 of the NNSS and known as the Charlie Prime and Anja sites. 06-99-01, Hydronuclear, located in Area 6 of the NNSS and known as the Trailer 13 site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 465 were met. From September 2011 through July 2012, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 465: Hydronuclear, Nevada National Security Site, Nevada.

  17. 2011 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2012-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond from November 1, 2010 through October 31, 2011. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance and other issues Discussion of the facility's environmental impacts During the 2011 permit year, approximately 166 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  18. 2012 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site's Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2013-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2011 through October 31, 2012. The report contains the following information: Facility and system description Permit required effluent monitoring data and loading rates Groundwater monitoring data Status of compliance activities Noncompliance issues Discussion of the facility’s environmental impacts During the 2012 permit year, approximately 183 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  19. National Human Radiobiological Tissue Repository (NHRTR) at the United States Transuranium and Uranium Registries

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The NHRTR, one component of the USTUR, contains frozen tissues, tissue solutions, microscope slides, and paraffin blocks that were collected by the USTUR at the autopsy of workers with documented intakes of plutonium, americium, uranium, and thorium. The samples are available to qualified scientists for further research. Thousands of frozen, ashed, dried, and plastic embedded bone samples from the radium studies carried out by Argonne National Laboratory, Argonne Cancer Research Hospital, the Massachusetts Institute of Technology, and the New Jersey Radium Research Project are available and linked by case number to de-identified, published case data. These data include the person's source of exposure (dial painter, therapeutic injection, etc.), estimated body burden, radiochemical results, and medical history. Other samples, including organs and whole body donations, have come from volunteer donors who were impacted by elements such as plutonium, throium, etc. See the USTUR website for information on how to apply for research samples or how to become a volunteer donor. [Information taken from http://www.ustur.wsu.edu/NHRTR/index.html#

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-06-01

    Corrective Action Unit 367 comprises four corrective action sites (CASs): 10-09-03, Mud Pit 10-45-01, U-10h Crater (Sedan) 10-45-02, Ess Crater Site 10-45-03, Uncle Crater Site The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation of the corrective actions and site closure activities implemented at CAU 367. A corrective action of closure in place with use restrictions was completed at each of the three crater CASs (10-45-01, 10-45-02, and 10-45-03); corrective actions were not required at CAS 10-09-03. In addition, a limited soil removal corrective action was conducted at the location of a potential source material release. Based on completion of these correction actions, no additional corrective action is required at CAU 367, and site closure is considered complete. Corrective action investigation (CAI) activities were performed from February 2010 through March 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 367: Area 10 Sedan, Ess and Uncle Unit Craters, Nevada Test Site, Nevada. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of non-test or other releases (e.g., migration in washes and potential source material). Based on the proximity of the Uncle, Ess, and Sedan craters, the impact of the Sedan test on the fallout deposited from the two earlier tests, and aerial radiological surveys, the CAU 367 investigation was designed to study the releases from the three crater CASs as one combined release (primary release). Corrective Action Site 10-09-03, Mud Pit, consists of two mud pits identified at CAU 367. The mud pits are considered non-test releases or other releases and were investigated independent of the three crater CASs. The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 367 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. For the primary release, radiological doses exceeding the FAL of 25 millirem per year were not found to be present in the surface or shallow subsurface soil outside the default contamination boundary. However, it was assumed that radionuclides are present in subsurface media within each of the three craters (Sedan, Ess, and Uncle) due to prompt injection of radionuclides from the tests. Based on the assumption of radiological dose exceeding the FAL, corrective actions were undertaken that consisted of implementing a use restriction and posting warning signs at each crater CAS. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. With regard to other releases, no contaminants of concern were identified at the mud pits or any of the other release locations, with one exception. Potential source material in the form of lead was found at one location. A corrective action of clean closure was implemented at this location, and verification samples indicated that no further action is necessary. Therefore, NNSA/NSO provides the following recommendations: A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 367. Corrective Action Unit 367 should be promoted from Appendix III to Appendix IV of the FFACO.

  1. Corrective Action Decision Document/Closure Report for Corrective Action Unit 374: Area 20 Schooner Unit Crater, Nevada National Security Site, Nevada with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-07-01

    Corrective Action Unit 374 comprises five corrective action sites (CASs): 18-22-05, Drum 18-22-06, Drums (20) 18-22-08, Drum 18-23-01, Danny Boy Contamination Area 20-45-03, U-20u Crater (Schooner) The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 374 based on the implementation of corrective actions. The corrective action of closure in place with administrative controls was implemented at CASs 18-23-01 and 20-45-03, and a corrective action of removing potential source material (PSM) was conducted at CAS 20-45-03. The other CASs require no further action; however, best management practices of removing PSM and drums at CAS 18-22-06, and removing drums at CAS 18-22-08 were performed. Corrective action investigation (CAI) activities were performed from May 4 through October 6, 2010, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 374: Area 20 Schooner Unit Crater, Nevada Test Site, Nevada. The approach for the CAI was divided into two facets: investigating the primary release of radionuclides and investigating other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 374 dataset of investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. Radiological doses exceeding the FAL of 25 millirem per year were found to be present in the surface soil that was sampled. It is assumed that radionuclide levels present in subsurface media within the craters and ejecta fields (default contamination boundaries) at the Danny Boy and Schooner sites exceed the FAL. It is also assumed that PSM in the form of lead-acid batteries at Schooner exceeds the FAL. Therefore, corrective actions were undertaken that consist of removing PSM, where present, and implementing a use restriction and posting warning signs at the Danny Boy and Schooner sites. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: No further corrective actions are necessary for CAU 374. A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 374. Corrective Action Unit 374 should be moved from Appendix III to Appendix IV of the FFACO.

  2. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the National Pollutant Discharge Elimination System. October 15, 2012 Outfall from the Laboratory's Data Communications Center cooling towers Intermittent flow of discharged water from the Laboratory's Data Communications Center eventually reaches perennial segment of Sandia Canyon during storm events (Outfall 03A199). Contact Environmental Communication & Public

  3. Closure Report for Corrective Action Unit 566: EMAD Compound, Nevada National Security Site, Nevada with ROTC-1, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2011-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 566: EMAD Compound, Nevada National Security Site, Nevada. Corrective Action Unit 566 comprises Corrective Action Site (CAS) 25-99-20, EMAD Compound, located within Area 25 of the Nevada National Security Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CAU 566 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 566 issued by the Nevada Division of Environmental Protection. From October 2010 through May 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for CAU 566: EMAD Compound, Nevada National Security Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 566. Assessment of the data from collected soil samples, and from radiological and visual surveys of the site, indicates the FALs were exceeded for polychlorinated biphenyls (PCBs), semivolatile organic compounds (SVOCs), and radioactivity. Corrective actions were implemented to remove the following: • Radiologically contaminated soil assumed greater than FAL at two locations • Radiologically contaminated soil assumed greater than FAL with lead shot • PCB-contaminated soil • Radiologically contaminated filters and equipment • Fuels, lubricants, engine coolants, and oils • Lead debris • Electrical and lighting components assumed to be potential source materials, including - fluorescent light bulbs - mercury switches (thermostats) - circuit boards - PCB-containing ballasts Closure of CAU 566 was achieved through a combination of removal activities and closure in place. Corrective actions to remove COCs, and known and assumed potential source materials, were implemented as was practical. The PCBs remaining at the site are bounded laterally, but not vertically, within CAS 25-99-20 based upon step-out sampling; the sources (e.g., PCB transformer oils, diesel fuel from locomotive reservoirs) have been removed; the practice of the application of PCB-containing oils for soil stabilization has ceased; and the COCs are not readily mobile in the environment. Closure in place is necessary, and future land use of the site will be restricted from intrusive activities. This will effectively eliminate inadvertent contact by humans with the contaminated media. The DOE, National Nuclear Security Administration Nevada Site Office, provides the following recommendations: • No further corrective action is required at CAS 25-99-20. • Closure in place of CAS 25-99-20. • A use restriction is required at CAU 566. • A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office, is requested from the Nevada Division of Environmental Protection for closure of CAU 566. • Corrective Action Unit 566 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.

  4. Corrective Action Decision Document/Closure Report for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-08-01

    Corrective Action Unit 375 comprises three corrective action sites (CASs): (1) 25-23-22, Contaminated Soils Site; (2) 25-34-06, Test Cell A Bunker; and (3) 30-45-01, U-30a, b, c, d, e Craters. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 375 based on the implementation of corrective action of closure in place with administrative controls at CAS 25-23-22, no further action at CAS 25-34-06, and closure in place with administrative controls and removal of potential source material (PSM) at CAS 30-45-01. Corrective action investigation (CAI) activities were performed from July 28, 2010, through April 4, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (migration in washes and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 375 dataset of investigation results was evaluated based on the data quality assessment. This assessment demonstrated the dataset is acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were assumed to be present within the default contamination boundaries at CASs 25-23-22 and 30-45-01. No contaminants were identified at CAS 25-34-06, and no corrective action is necessary. Potential source material in the form of lead plate, lead-acid batteries, and oil within an abandoned transformer were identified at CAS 30-45-01, and corrective actions were undertaken that consisted of removing the PSM. Use restrictions and warning signs were implemented for the remaining radiological contamination at CASs 25-23-22 and 30-45-01. These use restrictions were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: (1) No further corrective actions are necessary for CAU 375; (2) A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 375; and (3) Move CAU 375 from Appendix III to Appendix IV of the FFACO.

  5. Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-09-29

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 106: Area 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews and Dawn Peterson

    2011-09-01

    Corrective Action Unit 106 comprises four corrective action sites (CASs): (1) 05-20-02, Evaporation Pond; (2) 05-23-05, Atmospheric Test Site - Able; (3) 05-45-04, 306 GZ Rad Contaminated Area; (4) 05-45-05, 307 GZ Rad Contaminated Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 106 based on the implementation of corrective actions. The corrective action of clean closure was implemented at CASs 05-45-04 and 05-45-05, while no corrective action was necessary at CASs 05-20-02 and 05-23-05. Corrective action investigation (CAI) activities were performed from October 20, 2010, through June 1, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites. The approach for the CAI was divided into two facets: investigation of the primary release of radionuclides, and investigation of other releases (mechanical displacement and chemical releases). The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 106 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Industrial Area exposure scenario (2,250 hours of annual exposure). The only radiological dose exceeding the FAL was at CAS 05-45-05 and was associated with potential source material (PSM). It is also assumed that additional PSM in the form of depleted uranium (DU) and DU-contaminated debris at CASs 05-45-04 and 05-45-05 exceed the FAL. Therefore, corrective actions were undertaken at these CASs that consisted of removing PSM and collecting verification samples. Results of verification samples show that remaining soil does not contain contamination exceeding the FALs. Therefore, the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) provides the following recommendations: (1) No further corrective actions are necessary for CAU 106. (2) A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 106. (3) Corrective Action Unit 106 should be moved from Appendix III to Appendix IV of the FFACO.

  7. A National Assistance Extension Program for Metal Casting: a foundation industry. Final report for the period February 16, 1994 through May 15, 1997

    SciTech Connect (OSTI)

    1997-09-01

    The TRP award was proposed as an umbrella project to build infrastructure and extract lessons about providing extension-enabling services to the metal casting industry through the national network of Manufacturing Technology Center`s (MTC`s). It targeted four discrete task areas required for the MCC to service the contemplated needs of industry, and in which the MCC had secured substantial involvement of partner organizations. Task areas identified included Counter-Gravitational Casting, Synchronous Manufacturing, Technology Deployment, and Facility and Laboratory Improvements. Each of the task areas includes specific subtasks which are described.

  8. U.S. Department of Energy's Motor Challenge Program: A National Strategy for Energy Efficient Industrial Motor-Driven Systems

    Broader source: Energy.gov [DOE]

    This brief discusses the opportunities, industry needs, and market drivers associated with improving industrial electric motor-driven systems. The key strategies and tactics being employed by the DOE Motor Challenge program are also described, along with some example products, services, and activities that Motor Challenge partners used to help them accelerate the adoption of efficient motor-driven systems technology and practices within U.S. industry.

  9. Closure Report for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks Nevada National Security Site, Nevada with ROTC-1, Revision 0

    SciTech Connect (OSTI)

    Mark Kauss

    2011-06-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 539: Areas 25 and 26 Railroad Tracks, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 539 are located within Areas 25 and 26 of the Nevada National Security Site. Corrective Action Unit 539 comprises the following CASs: 25-99-21, Area 25 Railroad Tracks 26-99-05, Area 26 Railroad Tracks The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 539 were met. To achieve this, the following actions were performed: Reviewed documentation on historical and current site conditions, including the concentration and extent of contamination. Conducted radiological walkover surveys of railroad tracks in both Areas 25 and 26. Collected ballast and soil samples and calculated internal dose estimates for radiological releases. Collected in situ thermoluminescent dosimeter measurements and calculated external dose estimates for radiological releases. Removed lead bricks as potential source material (PSM) and collected verification samples. Implemented corrective actions as necessary to protect human health and the environment. Properly disposed of corrective action and investigation wastes. Implemented an FFACO use restriction (UR) for radiological contamination at CAS 25-99-21. The approved UR form and map are provided in Appendix F and will be filed in the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Facility Information Management System; the FFACO database; and the NNSA/NSO CAU/CAS files. From November 29, 2010, through May 2, 2011, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 539: Areas 25 and 26 Railroad Tracks, Nevada Test Site, Nevada. The purposes of the activities as defined during the data quality objectives process were as follows: Determine whether contaminants of concern (COCs) are present. If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels (FALs) to determine COCs for CAU 539. Assessment of the data generated from closure activities revealed the following: At CAS 26-99-05, the total effective dose for radiological releases did not exceed the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at three locations. A corrective action of clean closure was implemented at these locations, and verification samples indicated that no further action is necessary. At CAS 25-99-21, the total effective dose for radiological releases exceeds the FAL of 25 millirem per Industrial Area year. Potential source material in the form of lead bricks was found at eight locations. A corrective action was implemented by removing the lead bricks and soil above FALs at these locations, and verification samples indicated that no further action is necessary. Pieces of debris with high radioactivity were identified as PSM and remain within the CAS boundary. A corrective action of closure in place with a UR was implemented at this CAS because closure activities showed evidence of remaining soil contamination and radioactive PSM. Future land use will be restricted from surface and intrusive activities. Closure activities generated waste streams consisting of industrial solid waste, recyclable materials, low-level radioactive waste, and mixed low-level radioactive waste. Wastes were disposed of in the appropriate onsite landfills. The NNSA/NSO provides the following recommendations: Clean closure is required at CAS 26-99-05. Closure in place is required at CAS 25-99-21. A UR is required at CAS 25-99-21. A Notice of Completion to the NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 539. Corrective Action Unit 539 should be moved from Appendix III to Appendix IV of the FFACO.

  10. Idaho National Laboratory/Nuclear Power Industry Strategic Plan for Light Water Reactor Research and Development An Industry-Government Partnership to Address Climate Change and Energy Security

    SciTech Connect (OSTI)

    Electric Power Research

    2007-11-01

    The dual issues of energy security and climate change mitigation are driving a renewed debate over how to best provide safe, secure, reliable and environmentally responsible electricity to our nation. The combination of growing energy demand and aging electricity generation infrastructure suggests major new capacity additions will be required in the years ahead.

  11. Office of Industrial Technologies research in progress

    SciTech Connect (OSTI)

    Not Available

    1993-05-01

    The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

  12. Closure Report for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss and Catherine Birney

    2011-05-01

    This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 544: Cellars, Mud Pits, and Oil Spills, Nevada National Security Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 544 are located within Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada National Security Site. Corrective Action Unit 544 comprises the following CASs: • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills The purpose of this CR is to provide documentation supporting the completed corrective actions and data confirming that the closure objectives for CASs within CAU 544 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 544 issued by the Nevada Division of Environmental Protection.

  13. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-06-27

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Security Site: · CAS 07-23-03, Atmospheric Test Site T-7C · CAS 07-23-04, Atmospheric Test Site T7-1 · CAS 07-23-05, Atmospheric Test Site · CAS 07-23-06, Atmospheric Test Site T7-5a · CAS 07-23-07, Atmospheric Test Site - Dog (T-S) · CAS 07-23-08, Atmospheric Test Site - Baker (T-S) · CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) · CAS 07-23-10, Atmospheric Test Site - Dixie · CAS 07-23-11, Atmospheric Test Site - Dixie · CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) · CAS 07-23-13, Atmospheric Test Site - Baker (Buster) · CAS 07-23-14, Atmospheric Test Site - Ruth · CAS 07-23-15, Atmospheric Test Site T7-4 · CAS 07-23-16, Atmospheric Test Site B7-b · CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NFO for closure of CAU 104 · The transfer of CAU 104 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  14. Second United Nations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peaceful Uses 4 i Confidential until official release during Conference ORIGINAL: ENGLISH METHODS O F PARTICLE DETECTION FOR HIGH-ENERGY PHYSICS EXPERIMENTS t * H. B r a d n e...

  15. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 1

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and U S Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  16. Materials and process engineering projects for the Sandia National Laboratories/Newly Independent States Industrial Partnering Program. Volume 2

    SciTech Connect (OSTI)

    Zanner, F.J.; Moffatt, W.C.

    1995-07-01

    In July, 1994, a team of materials specialists from Sandia and US. Industry traveled to Russia and the Ukraine to select and fund projects in materials and process technology in support of the Newly Independent States/Industrial Partnering Program (NIS/IPP). All of the projects are collaborations with scientists and Engineers at NIS Institutes. Each project is scheduled to last one year, and the deliverables are formatted to supply US. Industry with information which will enable rational decisions to be made regarding the commercial value of these technologies. This work is an unedited interim compilation of the deliverables received to date.

  17. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-08-31

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  18. Remedial investigation work plan for the Groundwater Operable Unit at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This Remedial Investigation (RI) Work Plan has been developed as part of the US Department of Energy`s (DOE`s) investigation of the Groundwater Operable Unit (GWOU) at Oak Ridge National Laboratory (ORNL) located near Oak Ridge, Tennessee. The first iteration of the GWOU RI Work Plan is intended to serve as a strategy document to guide the ORNL GWOU RI. The Work Plan provides a rationale and organization for groundwater data acquisition, monitoring, and remedial actions to be performed during implementation of environmental restoration activities associated with the ORNL GWOU. It Is important to note that the RI Work Plan for the ORNL GWOU is not a prototypical work plan. The RI will be conducted using annual work plans to manage the work activities, and task reports will be used to document the results of the investigations. Sampling and analysis results will be compiled and reported annually with a review of data relative to risk (screening level risk assessment review) for groundwater. This Work Plan outlines the overall strategy for the RI and defines tasks which are to be conducted during the initial phase of investigation. This plan is presented with the understanding that more specific addenda to the plan will follow.

  19. Opportunities for Minority Students in the Solar Industry | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Opportunities for Minority Students in the Solar Industry Opportunities for Minority Students in the Solar Industry November 20, 2012 - 9:00am Addthis The Long Island Solar Farm (LISF) -- currently the largest solar photovoltaic power plant in the Eastern United States -- generates enough renewable energy to power approximately 4,500 homes. LISF is located at Brookhaven National Laboratory. | Photo courtesy of Brookhaven National Laboratory. The Long Island Solar Farm (LISF) --

  20. Wind Vision: A New Era for Wind Power in the United States (Highlights); U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-03-01

    This is a four-part Wind Vision project, consisting of Wind Vision Highlights, Executive Summary, a Full Report, and Appendix. The U.S. Department of Energy (DOE) Wind Program, in close cooperation with the wind industry, led a comprehensive analysis to evaluate future pathways for the wind industry. The Wind Vision report updates and expands upon the DOE's 2008 report, 20% Wind Energy by 2030, and defines the societal, environmental, and economic benefits of wind power in a scenario with wind energy supplying 10% of national end-use electricity demand by 2020, 20% by 2030, and 35% by 2050.

  1. Quarterly Report for LANL Activities: FY12-Q2 National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program

    SciTech Connect (OSTI)

    Pawar, Rajesh J.

    2012-04-17

    This report summarizes progress of LANL activities related to the tasks performed under the LANL FWP FE102-002-FY10, National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program. This FWP is funded through the American Recovery and Reinvestment Act (ARRA). Overall, the NRAP activities are focused on understanding and evaluating risks associated with large-scale injection and long-term storage of CO{sub 2} in deep geological formations. One of the primary risks during large-scale injection is due to changes in geomechanical stresses to the storage reservoir, to the caprock/seals and to the wellbores. These changes may have the potential to cause CO{sub 2} and brine leakage and geochemical impacts to the groundwater systems. While the importance of these stresses is well recognized, there have been relatively few quantitative studies (laboratory, field or theoretical) of geomechanical processes in sequestration systems. In addition, there are no integrated studies that allow evaluation of risks to groundwater quality in the context of CO{sub 2} injection-induced stresses. The work performed under this project is focused on better understanding these effects. LANL approach will develop laboratory and computational tools to understand the impact of CO{sub 2}-induced mechanical stress by creating a geomechanical test bed using inputs from laboratory experiments, field data, and conceptual approaches. The Geomechanical Test Bed will be used for conducting sensitivity and scenario analyses of the impacts of CO{sub 2} injection. The specific types of questions will relate to fault stimulation and fracture inducing stress on caprock, changes in wellbore leakage due to evolution of stress in the reservoir and caprock, and the potential for induced seismicity. In addition, the Geomechanical Test Bed will be used to investigate the coupling of stress-induced leakage pathways with impacts on groundwater quality. LANL activities are performed under two tasks: (1) develop laboratory and computational tools to understand CO{sub 2}-induced mechanical impacts and (2) use natural analog sites to determine potential groundwater impacts. We are using the Springerville-St. John Dome as a field site for collecting field data on CO{sub 2} migration through faults and groundwater impacts as well as developing and validating computational models. During the FY12 second quarter we have been working with New England Research Company to construct a tri-axial core-holder. We have built fluid control system for the coreflood system that can be ported to perform in-situ imaging of core. We have performed numerical simulations for groundwater impacts of CO{sub 2} and brine leakage using the reservoir model for Springerville-St John's Dome site. We have analyzed groundwater samples collected from Springerville site for major ion chemistry and isotopic composition. We are currently analyzing subsurface core and chip samples acquired for mineralogical composition.

  2. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R; Alkadi, Nasr E; Letto, Daryl; Johnson, Brandon; Dowling, Kevin; George, Raoule; Khan, Saqib

    2013-01-01

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  3. Appendix C - Industrial technologies

    SciTech Connect (OSTI)

    None, None

    2002-12-20

    This report describes the results, calculations, and assumptions underlying the GPRA 2004 Quality Metrics results for all Planning Units within the Office of Industrial Technologies.

  4. Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2012-05-01

    Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 31, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 550. The potential contamination sources associated with the study groups are from nuclear testing activities conducted at CAU 550. The DQO process resulted in an assumption that the total effective dose (TED) within the default contamination boundary of CAU 550 exceeds the final action level and requires corrective action. The presence and nature of contamination outside the default contamination boundary at CAU 550 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based final action level. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each group of CASs.

  5. EERE INDUSTRY DAY

    Broader source: Energy.gov [DOE]

    On September 23-24, 2015 the inaugural EERE Industry Day was held at Oak Ridge National Laboratory to foster relationships and encourage dialog among researchers, industry representatives, and U.S. Department of Energy representatives.

  6. National Security, Weapons Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security, Weapons Science National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  7. Assessment of the industrial energy-conservation program. Final report of the Committee on Assessment of the Industrial Energy Conservation Program

    SciTech Connect (OSTI)

    1982-01-01

    Industrial operations in the United States account for some 37% of the nation's consumptions of energy. It has been estimated that this figure will increase to 50% by 1990 unless appropriate industrial energy conservation measures are adopted. However, such measures are difficult to implement in spite of the potential of various existing, emerging, and advanced technologies that can be applied to the problem. Specifically, the application of many industrial energy conservation measures entails high economic, technological, and institutional risks and uncertainties that constrain industries from adopting such measures. Accordingly, in 1975 the federal government started a program designed to mitigate these risks and uncertainties via government-industry partnership arrangements in the interests of national energy conservation. An important element of this program is the Industrial Energy Conservation Program in the Federal Department of Energy (DOE). In June 1980, DOE asked the National Materials Advisory Board, a unit of the National Academy of Sciences-National Research Council, to form a study committee to assess the effectiveness of the Industrial Energy Conservation Program. The committee concluded that federal support embodied in the DOE program, present and planned, is important to conserving additional industrial energy. However, the committee also concluded that the program needs various improvements in project selection and management and in transfer of results to industry. The committee's findings and recommendations and the results of the deliberation of the committee's three panels, a special report on heat and power, and a report on the visit by four members of the committee to Japan are presented.

  8. National Geothermal Association Trade Mission to Central America

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The United States (US) geothermal industry, the world`s most technically proficient, has been unable to achieve penetration into the markets of the developing nations. This report details the findings of an industry Trade Mission to Central America, tasked with determining the reasons for this shortfall and with developing a US industry geothermal export strategy designed to achieve immediate and long-term export benefits.

  9. Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2013-11-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

  10. Closure Report for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-12-31

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 366 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended).

  11. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume II: Appendices

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This part sets forth the regulations for the Industrial Energy conservation Program established under Part E of Title III of the Act. It includes criteria and procedures for the identification of reporting corporations, reporting requirements, criteria and procedures for exemption from filing reports directly with DOE, voluntary industrial energy efficiency improvement targets and voluntary recovered materials utilization targets. The purpose of the program is to promote increased energy conservation by American industry and, as it relates to the use of recovered materials, to conserve valuable energy and scarce natural resources.

  12. Electricity Transmission, Pipelines, and National Trails. An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, Alaska, and Hawaii

    SciTech Connect (OSTI)

    Kuiper, James A; Krummel, John R; Hlava, Kevin J; Moore, H Robert; Orr, Andrew B; Schlueter, Scott O; Sullivan, Robert G; Zvolanek, Emily A

    2014-03-25

    As has been noted in many reports and publications, acquiring new or expanded rights-of-way for transmission is a challenging process, because numerous land use and land ownership constraints must be overcome to develop pathways suitable for energy transmission infrastructure. In the eastern U.S., more than twenty federally protected national trails (some of which are thousands of miles long, and cross many states) pose a potential obstacle to the development of new or expanded electricity transmission capacity. However, the scope of this potential problem is not well-documented, and there is no baseline information available that could allow all stakeholders to study routing scenarios that could mitigate impacts on national trails. This report, Electricity Transmission, Pipelines, and National Trails: An Analysis of Current and Potential Intersections on Federal Lands in the Eastern United States, was prepared by the Environmental Science Division of Argonne National Laboratory (Argonne). Argonne was tasked by DOE to analyze the “footprint” of the current network of National Historic and Scenic Trails and the electricity transmission system in the 37 eastern contiguous states, Alaska, and Hawaii; assess the extent to which national trails are affected by electrical transmission; and investigate the extent to which national trails and other sensitive land use types may be affected in the near future by planned transmission lines. Pipelines are secondary to transmission lines for analysis, but are also within the analysis scope in connection with the overall directives of Section 368 of the Energy Policy Act of 2005, and because of the potential for electrical transmission lines being collocated with pipelines. Based on Platts electrical transmission line data, a total of 101 existing intersections with national trails on federal land were found, and 20 proposed intersections. Transmission lines and pipelines are proposed in Alaska; however there are no locations that intersect national trails. Source data did not indicate any planned transmission lines or pipelines in Hawaii. A map atlas provides more detailed mapping of the topics investigated in this study, and the accompanying GIS database provides the baseline information for further investigating locations of interest. In many cases the locations of proposed transmission lines are not accurately mapped (or a specific route may not yet be determined), and accordingly the specific crossing locations are speculative. However since both national trails and electrical transmission lines are long linear systems, the characteristics of the crossings reported in this study are expected to be similar to both observed characteristics of the existing infrastructure provided in this report, and of the new infrastructure if these proposed projects are built. More focused study of these siting challenges is expected to mitigate some of potential impacts by choosing routes that minimize or eliminate them. The current study primarily addresses a set of screening-level characterizations that provide insights into how the National Trail System may influence the siting of energy transport facilities in the states identified under Section 368(b) of the Energy Policy Act of 2005. As such, it initializes gathering and beginning analysis of the primary environmental and energy data, and maps the contextual relationships between an important national environmental asset and how this asset intersects with energy planning activities. Thus the current study sets the stage for more in-depth analyses and data development activities that begin to solve key transmission siting constraints. Our recommendations for future work incorporate two major areas: (1) database development and analytics and (2) modeling and scenario analysis for energy planning. These recommendations provide a path forward to address key issues originally developed under the Energy Policy Act of 2005 that are now being carried forward under the President’s Climate Action Plan.

  13. Goat Industries Fuels | Open Energy Information

    Open Energy Info (EERE)

    Industries Fuels Jump to: navigation, search Name: Goat Industries Fuels Place: Gwynedd, Wales, United Kingdom Zip: LL56 4PZ Product: Welsh manufacturer of biodiesel equipment that...

  14. Chemicals Industry Profile | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemicals Industry Profile Chemicals Industry Profile Chemical products are essential to ... Economic The United States is the top chemical producer in the world, accounting for ...

  15. Green Energy Industries Inc | Open Energy Information

    Open Energy Info (EERE)

    Industries Inc Jump to: navigation, search Name: Green Energy Industries Inc Region: United States Sector: Marine and Hydrokinetic Website: http: This company is listed in the...

  16. Corrective Action Decision Document/Closure Report for Corrective Action Unit 567: Miscellaneous Soil Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-12-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada. The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 567 based on the implementation of the corrective actions. The corrective actions implemented at CAU 567 were developed based on an evaluation of analytical data from the CAI, the assumed presence of COCs at specific locations, and the detailed and comparative analysis of the CAAs. The CAAs were selected on technical merit focusing on performance, reliability, feasibility, safety, and cost. The implemented corrective actions meet all requirements for the technical components evaluated. The CAAs meet all applicable federal and state regulations for closure of the site. Based on the implementation of these corrective actions, the DOE, National Nuclear Security Administration Nevada Field Office provides the following recommendations: • No further corrective actions are necessary for CAU 567. • The Nevada Division of Environmental Protection issue a Notice of Completion to the DOE, National Nuclear Security Administration Nevada Field Office for closure of CAU 567. • CAU 567 be moved from Appendix III to Appendix IV of the FFACO.

  17. S. 2166: A bill to reduce the Nation's dependence on imported oil, to provide for the energy security of the Nation, and for other purposes, introduced in the United States Senate, One Hundred Second Congress, Second Session, January 29, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This bill, also referred to as the National Energy Security Act of 1992, contains the following: Title I - Findings and purposes: Goals, least-cost energy strategy, and Director of climate protection: Title II - Definitions; Title III (none); Title IV - Fleets and alternative fuels: Alternative fuel fleets, Electric and electric-hybrid vehicle demonstration, infrastructure development, and conforming amendments, Alternative fuels, Mass transit and training; Title V - Renewable energy: CORECT and COEECT, Renewable energy initiatives, Hydropower; Title VI - Energy efficiency: Industrial, commercial, and residential, Federal energy management, Utilities, State, local, insular, and tribal energy assistance, LIHEAP options pilot program; Title VII (none); Title VIII - Advanced nuclear reactor commercialization; Title IX - Nuclear reactor licensing; Title X - Uranium: Uranium enrichment, Uranium; Title XI - Natural gas; Title XII - Outer continental shelf; Title XIII - Research, development, demonstration and commercialization activities; Title XIV - Coal, coal technology, and electricity; Title XV - Public Utility Holding Company Act reform; Title XVI - Strategic Petroleum Reserve.

  18. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Lewis, Mike

    2015-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2013–October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Permit required groundwater monitoring data; Status of compliance activities; Noncompliance issues; and Discussion of the facility’s environmental impacts. During the 2014 permit year, approximately 238 million gallons of wastewater were discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the downgradient monitoring wells.

  19. 2010 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2009 through October 31, 2010. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Discussion of the facility’s environmental impacts During the 2010 permit year, approximately 164 million gallons of wastewater were discharged to the Cold Waste Pond. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters were below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  20. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond

    SciTech Connect (OSTI)

    Mike Lewis

    2014-02-01

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (#LA 000161 01, Modification B), for the wastewater land application site at the Idaho National Laboratory Site’s Advanced Test Reactor Complex Cold Waste Pond from November 1, 2012–October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of compliance activities • Noncompliance issues • Discussion of the facility’s environmental impacts. During the 2013 permit year, approximately 238 million gallons of wastewater was discharged to the Cold Waste Pond. This is well below the maximum annual permit limit of 375 million gallons. As shown by the groundwater sampling data, sulfate and total dissolved solids concentrations are highest near the Cold Waste Pond and decrease rapidly as the distance from the Cold Waste Pond increases. Although concentrations of sulfate and total dissolved solids are elevated near the Cold Waste Pond, both parameters are below the Ground Water Quality Rule Secondary Constituent Standards in the down gradient monitoring wells.

  1. NREL: News - Director of National Bioenergy Center Named

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director of National Bioenergy Center Named Thursday December 12, 2002 Golden, CO. - Michael Pacheco has accepted the position of director of the National Bioenergy Center (NBC). The center was formed by the U.S. Department of Energy (DOE) in November 2000 and is based in the department's National Renewable Energy Laboratory (NREL) in Golden, Colo. The virtual center is the focal point for technology development and information about bioenergy in the United States, giving industry a one-stop

  2. Costs and benefits of industrial reporting and voluntary targets for energy efficiency. A report to the Congress of the United States. Volume I: Main report

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    Section 131(c) of the Energy Policy Act of 1992 (EPACT) (Public Law 102-486) requires the Department of Energy (DOE) to evaluate the costs and benefits of federally mandated energy efficiency reporting requirements and voluntary energy efficiency improvement targets for energy-intensive industries. It also requires DOE to evaluate the role of reporting and targets in improving energy efficiency. Specifically, the legislation states: Not later than one year after the data of the enactment of this Act, the Secretary shall, in consultation with affected industries, evaluate and report to the Congress regarding the establishment of Federally mandated energy efficiency reporting requirements and voluntary energy efficiency improvement targets for energy intensive industries. Such report shall include an evaluation of the costs and benefits of such reporting requirements and voluntary energy efficiency improvement targets, and recommendations regarding the role of such activities in improving energy efficiency in energy intensive industries. This report is DOE`s response to that directive. It is the culmination of a year-long study that included (1) analysis of documents pertaining to a previous reporting and targets effort, the industrial Energy Efficiency Improvements Program (or the CE-189 program, following the designation of the reporting form used to collect data in that program), administered by DOE from 1976 to 1985, as well as other important background information; (2) extensive consultations with government and industry officials regarding the CE-189 Program, experience with other programs that have reporting elements, and the attributes of possible alternative strategies for reporting and targets; and (3) analyses of the costs and benefits of the CE-189 Program and several alternatives to the CE-189 approach.

  3. Sampling and analysis plan for the site characterization of the waste area Grouping 1 groundwater operable unit at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    1994-11-01

    Waste Area Grouping (WAG) 1 at Oak Ridge National Laboratory (ORNL) includes all of the former ORNL radioisotope research, production, and maintenance facilities; former waste management areas; and some former administrative buildings. Site operations have contaminated groundwater, principally with radiological contamination. An extensive network of underground pipelines and utilities have contributed to the dispersal of contaminants to a known extent. In addition, karst geology, numerous spills, and pipeline leaks, together with the long and varied history of activities at specific facilities at ORNL, complicate contaminant migration-pathway analysis and source identification. To evaluate the extent of contamination, site characterization activity will include semiannual and annual groundwater sampling, as well as monthly water level measurements (both manual and continuous) at WAG 1. This sampling and analysis plan provides the methods and procedures to conduct site characterization for the Phase 1 Remedial Investigation of the WAG 1 Groundwater Operable Unit.

  4. MEMORANDUM OF UNDERSTANDING BETWEEN THE DEPARTMENT OF ENERGY OF THE UNITED STATES OF AMERICA

    Energy Savers [EERE]

    THE DEPARTMENT OF ENERGY OF THE UNITED STATES OF AMERICA AND THE NATIONAL DEVELOPMENT AND REFORM COMMISSION OF THE PEOPLE'S REPUBLIC OF CHINA CONCERNING INDUSTRIAL ENERGY EFFICIENCY COOPERATION The Department of Energy of the United States of America (DOE) and the National Development and Reform Commission of the People's Republic of China (NDRC), jointly referred to herein as the "Participants"; RECOGNIZING that the development and use of energy are key elements of the economic

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick K.

    2015-02-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 550: Smoky Contamination Area, Nevada National Security Site, Nevada. CAU 550 includes 19 corrective action sites (CASs), which consist of one weapons-related atmospheric test (Smoky), three safety experiments (Ceres, Oberon, Titania), and 15 debris sites (Table ES-1). The CASs were sorted into the following study groups based on release potential and technical similarities: • Study Group 1, Atmospheric Test • Study Group 2, Safety Experiments • Study Group 3, Washes • Study Group 4, Debris The purpose of this document is to provide justification and documentation supporting the conclusion that no further corrective action is needed for CAU 550 based on implementation of the corrective actions listed in Table ES-1. Corrective action investigation (CAI) activities were performed between August 2012 and October 2013 as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area; and in accordance with the Soils Activity Quality Assurance Plan. The approach for the CAI was to investigate and make data quality objective (DQO) decisions based on the types of releases present. The purpose of the CAI was to fulfill data needs as defined during the DQO process. The CAU 550 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in fulfilling the DQO data needs.

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2013-09-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  7. ?Framework for a Risk-Informed Groundwater Compliance Strategy for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nye County, Nevada, Revision 1

    SciTech Connect (OSTI)

    Marutzky, Sam

    2010-09-01

    Note: This document was prepared before the NTS was renamed the Nevada National Security Site (August 23, 2010); thus, all references to the site herein remain NTS. Corrective Action Unit (CAU) 98, Frenchman Flat, at the Nevada Test Site (NTS) was the location of ten underground nuclear tests between 1965 and 1971. As a result, radionuclides were released in the subsurface in the vicinity of the test cavities. Corrective Action Unit 98 and other CAUs at the NTS and offsite locations are being investigated. The Frenchman Flat CAU is one of five Underground Test Area (UGTA) CAUs at the NTS that are being evaluated as potential sources of local or regional impact to groundwater resources. For UGTA sites, including Frenchman Flat, contamination in and around the test cavities will not be remediated because it is technologically infeasible due to the depth of the test cavities (150 to 2,000 feet [ft] below ground surface) and the volume of contaminated groundwater at widely dispersed locations on the NTS. Instead, the compliance strategy for these sites is to model contaminant flow and transport, estimate the maximum spatial extent and volume of contaminated groundwater (over a period of 1,000 years), maintain institutional controls, and restrict access to potentially contaminated groundwater at areas where contaminants could migrate beyond the NTS boundaries.

  8. Assessment of Energy Production Potential from Tidal Streams in the United

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    States | Department of Energy Tidal Streams in the United States Assessment of Energy Production Potential from Tidal Streams in the United States The project documented in this report created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology. PDF icon Assessment of Energy Production Potential from Tidal Streams in the United States More Documents & Publications Project

  9. National Hydropower Association Annual Conference

    Broader source: Energy.gov [DOE]

    Join industry leaders, state and federal regulatory officials, and key legislative staff to discuss technology, policy and future development options for the hydropower industry at the National...

  10. National Hydropower Map

    Broader source: Energy.gov [DOE]

    High-resolution map produced by Oak Ridge National Laboratory showing hydropower resources throughout the United States.

  11. Industrial Buildings

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Industrial Manufacturing Buildings Industrialmanufacturing buildings are not considered commercial, but are covered by the Manufacturing Energy Consumption Survey...

  12. Collaborating with Industry for Innovation

    SciTech Connect (OSTI)

    2004-03-01

    This is a brochure describing Laboratory Coordinating Council's network of labs and facilities to promote partnership between industry and national laboratories.

  13. Closure Report for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-02-21

    This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.

  14. Post-Closure Report for Closed Resource Conservation and Recovery Act Corrective Action Units, Nevada National Security Site, Nevada, for Fiscal Year 2014

    SciTech Connect (OSTI)

    Silvas, Alissa J.

    2015-01-14

    This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): • CAU 90, Area 2 Bitcutter Containment • CAU 91, Area 3 U-3fi Injection Well • CAU 92, Area 6 Decon Pond Facility • CAU 110, Area 3 WMD U-3ax/bl Crater • CAU 111, Area 5 WMD Retired Mixed Waste Pits • CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2014 (October 2013–September 2014). The post-closure requirements for these sites are described in Resource Conservation and Recovery Act Permit Number NEV HW0101 and summarized in each CAU-specific section in Section 1.0 of this report. The results of the inspections, a summary of maintenance activities, and an evaluation of monitoring data are presented in this report. Site inspections are conducted semiannually at CAUs 90 and 91 and quarterly at CAUs 92, 110, 111, and 112. Additional inspections are conducted at CAU 92 if precipitation occurs in excess of 0.50 inches (in.) in a 24-hour period and at CAU 111 if precipitation occurs in excess of 1.0 in. in a 24-hour period. Inspections include an evaluation of the condition of the units, including covers, fences, signs, gates, and locks. In addition to visual inspections, soil moisture monitoring, vegetation evaluations, and subsidence surveys are conducted at CAU 110. At CAU 111, soil moisture monitoring, vegetation evaluations, subsidence surveys, direct radiation monitoring, air monitoring, radon flux monitoring, and groundwater monitoring are conducted. The results of the vegetation surveys and an analysis of the soil moisture monitoring data at CAU 110 are presented in this report. Results of additional monitoring at CAU 111 are documented annually in the Nevada National Security Site Waste Management Monitoring Report Area 3 and Area 5 Radioactive Waste Management Sites and in the Nevada National Security Site Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site, which will be prepared in approximately June 2015. All required inspections, maintenance, and monitoring were conducted in accordance with the post-closure requirements of the permit. It is recommended to continue inspections and monitoring as scheduled.

  15. Closure Report for Corrective Action Unit 548: Areas 9, 10, 18, 19, and 20 Housekeeping Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2012-08-27

    This Closure Report (CR) documents closure activities for Corrective Action Unit (CAU) 548, Areas 9, 10, 18, 19, and 20 Housekeeping Sites, and complies with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 548 consists of the following Corrective Action Sites (CASs), located in Areas 9, 10, 12, 18, 19, and 20 of the Nevada National Security Site: CAS 09-99-02, Material Piles (2) CAS 09-99-04, Wax, Paraffin CAS 09-99-05, Asbestos, Vermiculite CAS 09-99-07, Tar Spill CAS 10-22-02, Drums CAS 10-22-05, Gas Block CAS 10-22-07, Gas Block CAS 10-22-34, Drum CAS 10-22-38, Drum; Cable CAS 12-99-04, Epoxy Tar Spill CAS 12-99-08, Cement Spill CAS 18-14-01, Transformers (3) CAS 19-22-01, Drums CAS 19-22-11, Gas Block (2) CAS 19-44-01, Fuel Spill CAS 20-22-07, Drums (2) CAS 20-22-09, Drums (3) CAS 20-22-14, Drums (2) CAS 20-22-16, Drums (2) CAS 20-24-09, Battery Closure activities began in July 2011 and were completed in December 2011 and included removal and disposal of material piles, spills, sanitary debris, a lead acid battery, lead and steel shot, and stained soil. Activities were conducted according to the Sectored Clean-up Work Plan for Housekeeping Category Waste Sites (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2003). Closure activities generated sanitary waste, hydrocarbon waste, low-level waste, hazardous waste, and mixed waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 548 The transfer of CAU 548 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO

  16. ABPDU - Advanced Biofuels Process Demonstration Unit

    SciTech Connect (OSTI)

    2011-01-01

    Lawrence Berkeley National Lab opened its Advanced Biofuels Process Demonstration Unit on Aug. 18, 2011.

  17. Second United Nations International Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Such an increase in detection efficien- cy would enable a factor of ten reduction in the size of the antineutrino sensitive (or cadmiated) volume without undue sacrifice in signal ...

  18. Next Generation Rooftop Unit - 2013 Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop Unit - 2013 Peer Review Next Generation Rooftop Unit - 2013 Peer Review Emerging ... Credit: Oak Ridge National Lab Next Generation Rooftop Unit Rooftop Unit Suite: RTU ...

  19. Los Alamos National Security, LLC Request for Information from industrial entities that desire to commercialize Laboratory-developed Extremely Low Resource Optical Identifier (ELROI) tech

    SciTech Connect (OSTI)

    Erickson, Michael Charles

    2015-11-10

    Los Alamos National Security, LLC (LANS) is the manager and operator of the Los Alamos National Laboratory for the U.S. Department of Energy National Nuclear Security Administration under contract DE-AC52-06NA25396. LANS is a mission-centric Federally Funded Research and Development Center focused on solving the most critical national security challenges through science and engineering for both government and private customers.

  20. Corrective Action Decision Document/Closure Report for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-09-01

    Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 365 based on the implementation of the corrective action of closure in place with a use restriction (UR). Corrective action investigation (CAI) activities were performed from January 18, 2011, through August 2, 2011, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area. The purpose of the CAI was to fulfill data needs as defined during the data quality objective (DQO) process. The CAU 365 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated the dataset is complete and acceptable for use in supporting the DQO decisions. Investigation results were evaluated against final action levels (FALs) established in this document. A radiological dose FAL of 25 millirem per year was established based on the Remote Work Area exposure scenario (336 hours of annual exposure). Radiological doses exceeding the FAL were found to be present to the southwest of the Baneberry crater. It was also assumed that radionuclide levels present within the crater and fissure exceed the FAL. Corrective actions were undertaken that consisted of establishing a UR and posting warning signs for the crater, fissure, and the area located to the southwest of the crater where soil concentrations exceeded the FAL. These URs were recorded in the FFACO database; the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Facility Information Management System; and the NNSA/NSO CAU/CAS files. Therefore, NNSA/NSO provides the following recommendations: (1) No further corrective actions beyond what are described in this document are necessary for CAU 365. (2) A Notice of Completion to NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 365. (3) Corrective Action Unit 365 should be moved from Appendix III to Appendix IV of the FFACO.

  1. Addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews and Christy Sloop

    2012-01-01

    This document constitutes an addendum to the Corrective Action Decision Document/Closure Report for Corrective Action Unit 372: Area 20 Cabriolet/Palanquin Unit Craters, Nevada Test Site, Nevada (Revision 0), April 2011.

  2. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 575: Area 15 Miscellaneous Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-12-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 575, Area 15 Miscellaneous Sites, identified in the Federal Facility Agreement and Consent Order (FFACO). CAU 575 comprises the following four corrective action sites (CASs) located in Area 15 of the Nevada National Security Site: • 15-19-02, Waste Burial Pit • 15-30-01, Surface Features at Borehole Sites • 15-64-01, Decontamination Area • 15-99-03, Aggregate Plant This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 575 using the SAFER process. Additional information will be obtained by conducting a field investigation to document and verify the adequacy of existing information, to affirm the predicted corrective action decisions, and to provide sufficient data to implement the corrective actions. This will be presented in a closure report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  3. Effects of Deployment Investment on the Growth of the Biofuels Industry

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Effects of Deployment Investment on the Growth of the Biofuels Industry Citation Details In-Document Search Title: Effects of Deployment Investment on the Growth of the Biofuels Industry In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in

  4. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    0.5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Natural Distillate and Code(a) Selected Subsectors and Industry Consuming Residual Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food

  5. Corrective Action Investigation Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada with ROTC 1

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-09-01

    Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): • 05-23-04, Atmospheric Tests (6) - BFa Site • 05-45-03, Atmospheric Test Site - Small Boy These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of contamination at CAU 541 will be evaluated based on information collected from field investigations. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  6. Corrective Action Investigation Plan for Corrective Action Unit 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada, with ROTC 1 Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick K.

    2013-07-01

    Corrective Action Unit (CAU) 567 is located in Areas 1, 3, 5, 20, and 25 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 567 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 567, which comprises the following corrective action sites (CASs): 01-23-03, Atmospheric Test Site T-1 03-23-25, Seaweed E Contamination Area 05-23-07, A5b RMA 20-23-08, Colby Mud Spill 25-23-23, J-11 Soil RMA These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on May 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 567. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 567 releases are nuclear test operations and other NNSS operations. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary at Atmospheric Test Site T-1 exceeds the final action level (FAL) and requires corrective action. The presence and nature of contamination outside the default contamination boundary at Atmospheric Test Site T-1 and all other CAU 567 CASs will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based FAL. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  7. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 465: Hydronuclear Nevada National Security Site, Nevada, with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-11-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 465, Hydronuclear, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 465 comprises the following four corrective action sites (CASs) located in Areas 6 and 27 of the Nevada National Security Site: (1) 00-23-01, Hydronuclear Experiment; (2) 00-23-02, Hydronuclear Experiment; (3) 00-23-03, Hydronuclear Experiment; (4) 06-99-01, Hydronuclear. The sites will be investigated based on the data quality objectives (DQOs) developed on July 6, 2011, by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 465. For CAU 465, two potential release components have been identified. The subsurface release component includes potential releases of radiological and nonradiological contaminants from the subsurface hydronuclear experiments and disposal boreholes. The surface release component consists of other potential releases of radiological and nonradiological contaminants to surface soils that may have occurred during the pre- and post-test activities. This plan provides the methodology for collection of the necessary information for closing each CAS component. There is sufficient information and process knowledge from historical documentation, contaminant characteristics, existing regional and site groundwater models, and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 465 using the SAFER process. For potential subsurface releases, flow and transport models will be developed to integrate existing data into a conservative description of contaminant migration in the unsaturated zone from the hydronuclear experiments and disposal boreholes. For the potential surface releases, additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS component. It is anticipated that results of the flow and transport models, the field investigation, and implementation of the corrective action of closure in place will support a defensible recommendation that no further corrective action is necessary. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The following text summarizes the SAFER activities that will support the closure of CAU 465: (1) Perform site preparation activities (e.g., utilities clearances, and radiological and visual surveys). (2) Move or remove and dispose of debris at various CASs, as required. (3) Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern as necessary to supplement existing information. (4) Evaluate and analyze existing data to develop conservative flow and transport models to simulate the potential for contaminant migration from the hydronuclear experiments and disposal boreholes to the water table within 1,000 years. (5) Confirm the preferred closure option (closure in place with use restrictions) is sufficient to protect human health and the environment.

  8. Corrective Action Investigation Plan for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews; Christy Sloop

    2012-02-01

    Corrective Action Unit (CAU) 569 is located in Area 3 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 569 comprises the nine numbered corrective action sites (CASs) and one newly identified site listed below: (1) 03-23-09, T-3 Contamination Area (hereafter referred to as Annie, Franklin, George, and Moth); (2) 03-23-10, T-3A Contamination Area (hereafter referred to as Harry and Hornet); (3) 03-23-11, T-3B Contamination Area (hereafter referred to as Fizeau); (4) 03-23-12, T-3S Contamination Area (hereafter referred to as Rio Arriba); (5) 03-23-13, T-3T Contamination Area (hereafter referred to as Catron); (6) 03-23-14, T-3V Contamination Area (hereafter referred to as Humboldt); (7) 03-23-15, S-3G Contamination Area (hereafter referred to as Coulomb-B); (8) 03-23-16, S-3H Contamination Area (hereafter referred to as Coulomb-A); (9) 03-23-21, Pike Contamination Area (hereafter referred to as Pike); and (10) Waste Consolidation Site 3A. Because CAU 569 is a complicated site containing many types of releases, it was agreed during the data quality objectives (DQO) process that these sites will be grouped. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the DQOs developed on September 26, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 569. The presence and nature of contamination at CAU 569 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. A field investigation will be performed to define any areas where TED exceeds the FAL and to determine whether contaminants of concern are present at the site from other potential releases. The presence and nature of contamination from other types of releases (e.g., excavation, migration, and any potential releases discovered during the investigation) will be evaluated using soil samples collected from biased locations indicating the highest levels of contamination. Appendix A provides a detailed discussion of the DQO methodology and the objectives specific to each study group.

  9. National Geothermal Data System Deployed | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deployed National Geothermal Data System Deployed In support of the Obama Administration's Open Data Policy, on May 28, 2014, the United States Department of Energy (DOE) announced deployment of the National Geothermal Data System (NGDS), an online, open-source platform that facilitates discovery and use of subsurface geothermal data for research and energy production. This open source platform responds to one of industry's greatest barriers to geothermal development and deployment: the

  10. Corrective Action Decision Document for Corrective Action Unit 568. Area 3 Plutonium Dispersion Sites, Nevada National Security Site, Nevada Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2015-08-01

    The purpose of this Corrective Action Decision Document is to identify and provide the rationale for the recommendation of corrective action alternatives (CAAs) for the 14 CASs within CAU 568. Corrective action investigation (CAI) activities were performed from April 2014 through May 2015, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 568: Area 3 Plutonium Dispersion Sites, Nevada National Security Site, Nevada; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices. The purpose of the CAI was to fulfill data needs as defined during the DQO process. The CAU 568 dataset of investigation results was evaluated based on a data quality assessment. This assessment demonstrated that the dataset is complete and acceptable for use in fulfilling the DQO data needs. Based on the evaluation of analytical data from the CAI, review of future and current operations at the 14 CASs, and the detailed and comparative analysis of the potential CAAs, the following corrective actions are recommended for CAU 568: • No further action is the preferred corrective action for CASs 03-23-17, 03-23-22, 03-23-26. • Closure in place is the preferred corrective action for CAS 03-23-19; 03-45-01; the SE DCBs at CASs 03-23-20, 03-23-23, 03-23-31, 03-23-32, 03-23-33, and 03-23-34; and the Pascal-BHCA at CAS 03-23-31. • Clean closure is the preferred corrective action for CASs 03-08-04, 03-23-30, and 03-26-04; and the four well head covers at CASs 03-23-20, 03-23-23, 03-23-31, and 03-23-33.

  11. 2015 APPA National Conference

    Broader source: Energy.gov [DOE]

    The American Public Power Association (APPA) is hosting their national conference that covers the political, economic, and technological trends shaping the electric utility industry.

  12. Coalition for Rainforest Nations Feed | Open Energy Information

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  13. Savannah River National Laboratory Feed | Open Energy Information

    Open Energy Info (EERE)

    US Savannah River National Laboratory (SRNL) UNEP-Risoe Centre on Energy, Climate and Sustainable Development United Nations Environment Programme (UNEP) United Nations...

  14. National Nuclear Science Week 2014 - SRSCRO

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Week is celebrated annually across the United States. It is a week-long educational opportunity to focus local, regional and national interest on all aspects of nuclear science. The SRS Community Reuse Organization and its affiliated Nuclear Workforce Initiative are collaborating with local organizations to conduct activities designed to encourage and bring awareness of nuclear technology and the many careers available within nuclear technology and other high-tech industries. Regional

  15. Wind Vision: A New Era for Wind Power in the United States | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated with industry, environmental organizations, academic institutions, and national laboratories to develop a renewed Wind Vision, documenting the contributions of wind to date and envisioning a

  16. Industrial Energy Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  17. Estimated Water Flows in 2005: United States

    SciTech Connect (OSTI)

    Smith, C A; Belles, R D; Simon, A J

    2011-03-16

    Flow charts depicting water use in the United States have been constructed from publicly available data and estimates of water use patterns. Approximately 410,500 million gallons per day of water are managed throughout the United States for use in farming, power production, residential, commercial, and industrial applications. Water is obtained from four major resource classes: fresh surface-water, saline (ocean) surface-water, fresh groundwater and saline (brackish) groundwater. Water that is not consumed or evaporated during its use is returned to surface bodies of water. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states in addition to Puerto Rico and the Virgin Islands) and one national water flow chart representing a comprehensive systems view of national water resources, use, and disposition.

  18. Industrial Fuel Flexibility Workshop

    SciTech Connect (OSTI)

    none,

    2006-09-01

    On September 28, 2006, in Washington, DC, ITP and Booz Allen Hamilton conducted a fuel flexibility workshop with attendance from various stakeholder groups. Workshop participants included representatives from the petrochemical, refining, food and beverage, steel and metals, pulp and paper, cement and glass manufacturing industries; as well as representatives from industrial boiler manufacturers, technology providers, energy and waste service providers, the federal government and national laboratories, and developers and financiers.

  19. UK Department of Trade and Industry Renewables Group | Open Energy...

    Open Energy Info (EERE)

    Trade and Industry Renewables Group Jump to: navigation, search Name: UK Department of Trade and Industry Renewables Group Place: London, United Kingdom Sector: Renewable Energy...

  20. U.S. Photovoltaic Industry Roadmap | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic Industry Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: U.S. Photovoltaic Industry Roadmap AgencyCompany Organization: United States...

  1. BOC Lienhwa Industrial Gases BOCLH | Open Energy Information

    Open Energy Info (EERE)

    Lienhwa Industrial Gases (BOCLH) Place: Taipei, Taiwan Sector: Solar Product: BOCLH is a joint venture between the Lien Hwa Industrial Corporation and the BOC Group in the United...

  2. Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-07-01

    Corrective Action Unit 106 comprises the four corrective action sites (CASs) listed below: 05-20-02, Evaporation Pond 05-23-05, Atmospheric Test Site - Able 05-45-04, 306 GZ Rad Contaminated Area 05-45-05, 307 GZ Rad Contaminated Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 19, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 106. The presence and nature of contamination at CAU 106 will be evaluated based on information collected from a field investigation. The CAU includes land areas impacted by the release of radionuclides from groundwater pumping during the Radionuclide Migration study program (CAS 05-20-02), a weapons-related airdrop test (CAS 05-23-05), and unknown support activities at two sites (CAS 05-45-04 and CAS 05-45-05). The presence and nature of contamination from surface-deposited radiological contamination from CAS 05-23-05, Atmospheric Test Site - Able, and other types of releases (such as migration and excavation as well as any potential releases discovered during the investigation) from the remaining three CASs will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 106 includes the following activities: Conduct radiological surveys. Collect and submit environmental samples for laboratory analysis to determine internal dose rates and the presence of contaminants of concern. If contaminants of concern are present, collect additional samples to define the extent of the contamination and determine the area where the total effective dose at the site exceeds final action levels (i.e., corrective action boundary). Collect samples of investigation-derived waste, as needed, for waste management purposes.

  3. Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-09-01

    Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): • 02-23-04, Atmospheric Test Site - Whitney • 02-23-05, Atmospheric Test Site T-2A • 02-23-06, Atmospheric Test Site T-2B • 02-23-08, Atmospheric Test Site T-2 • 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU 105 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted after the plan is approved.

  4. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2011-09-01

    The purpose of this CADD/CAP is to present the corrective action alternatives (CAAs) evaluated for CAU 547, provide justification for selection of the recommended alternative, and describe the plan for implementing the selected alternative. Corrective Action Unit 547 consists of the following three corrective action sites (CASs): (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; and(3) CAS 09-99-06, Gas Sampling Assembly. The gas sampling assemblies consist of inactive process piping, equipment, and instrumentation that were left in place after completion of underground safety experiments. The purpose of these safety experiments was to confirm that a nuclear explosion would not occur in the case of an accidental detonation of the high-explosive component of the device. The gas sampling assemblies allowed for the direct sampling of the gases and particulates produced by the safety experiments. Corrective Action Site 02-37-02 is located in Area 2 of the Nevada National Security Site (NNSS) and is associated with the Mullet safety experiment conducted in emplacement borehole U2ag on October 17, 1963. Corrective Action Site 03-99-19 is located in Area 3 of the NNSS and is associated with the Tejon safety experiment conducted in emplacement borehole U3cg on May 17, 1963. Corrective Action Site 09-99-06 is located in Area 9 of the NNSS and is associated with the Player safety experiment conducted in emplacement borehole U9cc on August 27, 1964. The CAU 547 CASs were investigated in accordance with the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 547. Existing radiological survey data and historical knowledge of the CASs were sufficient to meet the DQOs and evaluate CAAs without additional investigation. As a result, further investigation of the CAU 547 CASs was not required. The following CAAs were identified for the gas sampling assemblies: (1) clean closure, (2) closure in place, (3) modified closure in place, (4) no further action (with administrative controls), and (5) no further action. Based on the CAAs evaluation, the recommended corrective action for the three CASs in CAU 547 is closure in place. This corrective action will involve construction of a soil cover on top of the gas sampling assembly components and establishment of use restrictions at each site. The closure in place alternative was selected as the best and most appropriate corrective action for the CASs at CAU 547 based on the following factors: (1) Provides long-term protection of human health and the environment; (2) Minimizes short-term risk to site workers in implementing corrective action; (3) Is easily implemented using existing technology; (4) Complies with regulatory requirements; (5) Fulfills FFACO requirements for site closure; (6) Does not generate transuranic waste requiring offsite disposal; (7) Is consistent with anticipated future land use of the areas (i.e., testing and support activities); and (8) Is consistent with other NNSS site closures where contamination was left in place.

  5. CASL Industry Council Meeting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Council Meeting 4 - 5 November 2015 Meeting Minutes The autumn 2015 meeting of the Industry Council (IC) for the Consortium for Advanced Simulation of Light Water Reactors (CASL) was held on 4 - 5 November 2015 at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, TN. The first day of meeting was a joint meeting of the CASL Industry and Science Councils and was held at the Spallation Neutron Source (SNS) facility at ORNL. An independent IC meeting was held the morning of the second

  6. Industry Partners Panel

    Broader source: Energy.gov [DOE]

    Industry Panel presenters include: Michael G. Andrew, Director - Academic and Technical Programs, Advanced Products and Materials, Johnson Controls Power Solutions Michael A. Fetcenko, Vice President and Managing Director, BASF Battery Materials – Ovonic, BASF Corporation Adam Kahn, Founder and CEO, AKHAN Technologies, Inc. Stephen E. Zimmer, Executive Director, United States Council for Automotive Research (USCAR)

  7. ET Industries: Order (2012-SE-2902)

    Broader source: Energy.gov [DOE]

    DOE ordered ET Industries, Inc. to pay a $39,000 civil penalty after finding ET Industries had manufactured and distributed in commerce in the U.S. 974 units of basic model TH-1, a noncompliant showerhead.

  8. DOE Issues RFI and Industry Day Announcement on Optimal Design...

    Energy Savers [EERE]

    Disposal Units at the Savannah River Site DOE Issues RFI and Industry Day Announcement on Optimal Design of Saltstone Disposal Units at the Savannah River Site January 11, ...

  9. EV-Smart Grid Interoperability Centers in Europe and the United States |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory EV-Smart Grid Interoperability Centers in Europe and the United States The EV-Smart Grid Interoperability Centers at the U.S. Department of Energy's Argonne National Laboratory and the European Commission's Joint Research Centre (JRC) are providing a venue for global industry-government cooperation that is focused on the joint development of EV standards and test procedures. PDF icon es_ev-smartgrid-ctrs

  10. SANDIA NATIONAL LABORATORIES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    who require access must be United States citizens, or foreign nationals who are legal aliens or have the required authorization to perform work in the Unites States. CS31 -...

  11. Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007 - 2012; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Hand, Maureen

    2015-06-15

    This presentation provides a summary of IEA Wind Task 26 report on Wind Technology, Cost, and Performance Trends in Denmark, Germany, Ireland, Norway, the European Union, and the United States: 2007-2012

  12. Development of a National M and O Contractor Work Prioritisation Process and its Use as a Progress Measure for Nuclear Clean Up in the United Kingdom

    SciTech Connect (OSTI)

    Waite, R.; Hudson, I.D.; Wareing, M.I.

    2006-07-01

    In July 2004, Her Majesty's Government established a Nuclear Decommissioning Authority (NDA) to assume responsibility for the discharge of the vast majority of the United Kingdom's public sector civil nuclear liabilities. The Energy Act of 2004 outlines in greater detail how the NDA functions, what its responsibilities are, and how these fit into the overall structure of the UK programme for managing and disposing of the liabilities created by a significant element of the UK's early commercial and nuclear weapons activities. The amount of Government funding provided to the NDA will be a key factor in determining what can be achieved. In agreeing how the funds are distributed to the licensed sites, the NDA will need to keep in mind the 'guiding principles' stated in 'Managing the Nuclear Legacy - A Strategy for Action': - Focus on getting the job done to high safety, security and environmental standards; - Best value for money consistent with safety, security and environmental performance; - Openness and transparency. To satisfy these requirements there is a need for a transparent process for justifying and prioritising work that aids decisions about what should be done and when, is straightforward to understand and can be applied by a wide range of stakeholders. To develop such a process, a multi-stakeholder group (the 'Prioritisation Working Group') produced a report published in April 2005 that examined how the process would align with the NDA's overall management processes. It also identified six criteria or 'attributes' that should be taken into account, and a variety of measures, or 'metrics' that could be used to assess each attribute. The report formed the basis of preliminary guidance from NDA to the site licensees that was used to guide their submissions on plans and programmes of work in 2005. Since this report the NDA has been working, with stakeholder input, to develop a prioritisation process to be used during the production of future Life Cycle Baseline (LCBL) and Near Term Work Plan (NTWP) submissions. This paper describes: - The key attributes chosen to address the selection criteria important to various stakeholder groups; - The methodology selected for ranking and weighing the relative importance of each proposed activity; - The linkage between the decision-making processes at the national and site-specific levels with the NDA's annual planning cycles; - The stakeholder engagement activities undertaken to ensure that the process will operate in an open and transparent manner; - The proposed methods by which this process will not only assist in the early selection of the highest priority work, but also will facilitate the annual management of the portfolio of activities being performed at each site; and - The status of actions to institutionalise these processes into the formal procedures for future NDA work planning and progress measurement. Further information can be obtained from the NDA web site www.nda.gov.uk. (authors)

  13. " Level: National Data;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: ...

  14. " Level: National Data;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: ...

  15. " Level: National Data;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    11 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: ...

  16. " Level: National Data;" " ...

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2002;" " Level: National Data;" " Row: NAICS Codes;" " Column: Energy Sources;" " Unit: ...

  17. Los alamos national laboratory

    National Nuclear Security Administration (NNSA)

    hosted representatives from 11StatesParties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and one representative from the United Nations Office for...

  18. NREL and Industry Advance Low-Cost Solar Water Heating R&D (Fact Sheet), NREL Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Rhotech develop cost-effective solar water heating prototype to rival natural gas water heaters. Water heating energy use represents the second largest energy demand for homes nationwide, offering an opportunity for innovative solar water heating (SWH) technologies to offset energy use and costs. In the Low-Cost Solar Water Heating Research and Development Roadmap, researchers at the National Renewable Energy Laboratory (NREL) outlined a strategy to expand the SWH market. Recognizing that

  19. Industrial Scale Demonstration of Smart Manufacturing Achieving...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    unit processes, smart manufacturing (SM) systems that ... A smart system that not only sought to recover waste heat, ... is based on current manufacturing and IT industry standards. ...

  20. Microcab Industries Ltd | Open Energy Information

    Open Energy Info (EERE)

    Microcab Industries Ltd Place: Coventry, United Kingdom Zip: CV1 2TT Sector: Hydro, Hydrogen Product: Urban taxi and light freight vehicle powered by a hydrogen fuel cell....

  1. A New Vision for United States Hydropower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A New Vision for United States Hydropower A New Vision for United States Hydropower The U.S. Department of Energy (DOE) Water Power Program is looking toward the future of the hydropower industry by initiating the development of a long-range national Hydropower Vision. This landmark vision will establish the analytical basis for an ambitious roadmap to usher in a new era of growth in sustainable domestic hydropower over the next half century. Included in this effort will be: A close examination

  2. Industrial Demand Module - NEMS Documentation

    Reports and Publications (EIA)

    2014-01-01

    Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

  3. Industrial Hygienist/Health Physicist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position wil l serve as an Industrial Hygienist/Health Physicist in the Operations and Oversight Division, providing technical oversight of the Oak Ridge National...

  4. Borla Performance Industries, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Borla Performance Industries, Inc. America's Next Top Energy Innovator Challenge 1830 likes Borla Performance Industries, Inc. Oak Ridge National Laboratory Borla Performance Industries is a 35-year technology leader, manufacturer and marketer of exhaust for the automotive industry, delivering innovative, patented exhaust systems that enhance the performance of internal combustion engines. Borla has an option to license a novel, nano-pore membrane technology from OakRidge National Laboratory.

  5. Addendum to the Closure Report for Corrective Action Unit 113: Area 25 R-MAD Facility, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-02-24

    This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.

  6. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by cosmic-ray-induced neutrons upon miniature electronic devices, such as chips that help control aircraft or complex integrated circuits in automobiles. Industrial User...

  7. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  8. India-International Industrial Energy Efficiency Deployment Project...

    Open Energy Info (EERE)

    Lawrence Berkeley National Laboratory, Oak Ridge National Laboratory (ORNL), Alliance for Energy Efficient Economy (India), Confederation of Indian Industry Sector Energy Focus...

  9. Sandia National Laboratories- West Flank

    Broader source: Energy.gov [DOE]

    The West Flank FORGE team proposes an R&D plan that aims to effectively reduce risks to industry and enable development of the enormous EGS resource potential. The team is working in partnership with the U.S. Department of Defense to reduce our Nation’s dependency on fossil fuels and to safeguard the military readiness for the United States. Drilling in and around the selected FORGE location has indicated remarkably low permeability and very attractive temperatures - key elements for an EGS test site. The West Flank FORGE team is led by Sandia National Laboratories and includes members from: Lawrence Berkeley National Laboratory, U.S. Navy & the U.S. Navy Geothermal Program Office, Coso Operating Company, U.S. Geological Survey (Menlo Park, California), University of Nevada, Reno (UNR), GeothermEx / Schlumberger, and Itasca Consulting Group, Inc.

  10. Webinar: Delivering Transformational HPC Solutions to Industry

    SciTech Connect (OSTI)

    Streitz, Frederick

    2014-04-15

    Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.

  11. Webinar: Delivering Transformational HPC Solutions to Industry

    ScienceCinema (OSTI)

    Streitz, Frederick

    2014-07-22

    Dr. Frederick Streitz, director of the High Performance Computing Innovation Center, discusses Lawrence Livermore National Laboratory computational capabilities and expertise available to industry in this webinar.

  12. Solar industrial process heat

    SciTech Connect (OSTI)

    Lumsdaine, E.

    1981-04-01

    The aim of the assessment reported is to candidly examine the contribution that solar industrial process heat (SIPH) is realistically able to make in the near and long-term energy futures of the United States. The performance history of government and privately funded SIPH demonstration programs, 15 of which are briefly summarized, and the present status of SIPH technology are discussed. The technical and performance characteristics of solar industrial process heat plants and equipment are reviewed, as well as evaluating how the operating experience of over a dozen SIPH demonstration projects is influencing institutional acceptance and economoc projections. Implications for domestic energy policy and international implications are briefly discussed. (LEW)

  13. Eight National Labs Offer Streamlined Partnership Agreements...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eight National Labs Offer Streamlined Partnership Agreements to Help Industry Bring New Technologies to Market Eight National Labs Offer Streamlined Partnership Agreements to Help...

  14. Recap: Advancing Scientific Innovation at the National Labs

    Broader source: Energy.gov [DOE]

    Learn how the National Labs are advancing scientific innovation through user facilities and industry partnerships.

  15. Industrial Users

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Users - Media Publications and Information The Invisible Neutron Threat Neutron-Induced Failures in Semiconductor Devices Nuclear Science Research at the LANSCE-WNR Facility Links About WNR Industrial Users 4FP30L-A/ICE House 4FP30R/ICE II Media

  16. Consumption trend analysis in the industrial sector: Regional historical trends. Draft report (Final)

    SciTech Connect (OSTI)

    Not Available

    1981-05-01

    Data on the use of natural gas, electricity, distillate and residual fuel oil, coal, and purchased coke were collected from the United States Bureau of the Census and aggregated nationally and by Census Region. Trend profiles for each fuel and industry were developed and economic, regulatory, and regional factors contributing to these trends were examined. The recession that followed the OPEC embargo in 1973 affected the industrial sector and the heavily industrialized regions of the country most severely. Both industrial production and fuel consumption fell significantly in 1975. As production recovered, spiraling fuel prices promoted conservation efforts, and overall fuel consumption remained at pre-recession levels. From 1975 to 1977 natural gas consumption decreased in almost all the industries examined with curtailments of gas supplies contributing to this trend.

  17. 2015 National Solar Jobs Census

    Broader source: Energy.gov [DOE]

    The Solar Foundation's National Solar Jobs Census 2015 is the sixth annual edition of current employment, trends, and projected growth in the U.S. solar industry. Given this industry's rapid...

  18. S. 1089: A Bill to amend to the National Environmental Policy Act. Introduced in the Senate of the United States, One Hundredth First Congress, Second Session, June 1, 1989

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    A bill, S.1089, was introduced in the Senate of the United States on June 1, 1989. The bill focuses on authorizing appropriations for the Office of Environmental Quality for fiscal years 1989, 1990, 1990, 1992, and 1993. There is an attempt to clarify National Environmental Policy, as well as reporting to congress the President's strategy for environmental progress. One million dollars is appropriated for each of the fiscal years 1989 and 1990, and three million dollars for each of the fiscal years 1991 and 1992.

  19. National Nanotechnology Initiative's Signature Initiative Sustainable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanotechnology Initiative National Nanotechnology Initiative's Signature Initiative Sustainable Nanomanufacturing: Creating the Industries of the Future Dr. Robert Pohanka Director ...

  20. DOE National Laboratory Releases Annual Accomplishments Report...

    Broader source: Energy.gov (indexed) [DOE]

    with other national laboratories, government agencies, industry, academia, and international research organizations. "Since the founding of its first predecessor...

  1. Agile Biomanufacturing Industry Listening Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agile Biomanufacturing Industry Listening Workshop Agile Biomanufacturing Industry Listening Workshop A consortium of nine national laboratories is holding the Agile Biomanufacturing Industry Listening Workshop on March 15, 2016 in Berkeley, California, to increase understanding of industry needs around synthetic biology. U.S. Department of Energy national laboratories have developed deep and unique capabilities to build powerful infrastructure and scientific engineering activities. This

  2. Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Percent of Establishments by Levels of Price Difference that Would Cause Fuel Switching from Coal to a Less Expensive Substitute, 2010; Level: National Data; Row: NAICS Codes; Column: Levels of Price Difference; Unit: Establishment Counts. Would Switch Would Not Estimate to More NAICS Establishments Switch Due 1 to 10 11 to 25 26 to 50 Over 50 Cannot Expensive Code(a) Subsector and Industry Able to Switch(b) to Price Percent Percent Percent Percent Be Provided Substitute Total United States

  3. Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.; Kelly, M.

    2010-05-01

    As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

  4. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the United States Forest Service: Caribou-Targhee National Forest

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort; Ian Nienhueser

    2014-06-01

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect and evaluate data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect and evaluate data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Caribou-Targhee National Forest (CTNF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements. ITSNA acknowledges the support of Idaho National Laboratory and CTNF for participation in the study. ITSNA is pleased to provide this report and is encouraged by enthusiasm and support from the Forest Service and CTNF personnel.

  5. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  6. NWTC Helps Chart the World's Wind Resource Potential (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chart the World's Wind Resource Potential The potential wind capacity of the United States at a hub height of 140 meters. This resource map represents near-future technology options. It shows land area with a gross capacity factor of 35% and higher, which may be suitable for wind energy development. The darker the color, the larger the potentially developable area. Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry,

  7. supercomputing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    at Lawrence Livermore National Laboratory, is available to industry collaborators to test big data technologies, architectures and applications.Developed by Facility Operations and...

  8. 2015 National Indian Timber Symposium

    Broader source: Energy.gov [DOE]

    The Intertribal Timber Council is hosting the Annual National Indian Timber Symposium to facilitate communication from the perspective of Tribes, the BIA, private industry, legislative bodies, and...

  9. Industry Economist

    Broader source: Energy.gov [DOE]

    A successful candidate in this position will report to the Manager of Load Forecasting and Analysis of the Customer Services Organization. He/she serves as an industry economist engaged in load...

  10. Industry Perspective

    Broader source: Energy.gov [DOE]

    Fuel cell and biogas industries perspectives. Presented by Mike Hicks, Fuel Cell and Hydrogen Energy Association, at the NREL/DOE Biogas and Fuel Cells Workshop held June 11-13, 2012, in Golden, Colorado.

  11. Emulsified industrial oils recycling

    SciTech Connect (OSTI)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  12. Industry @ ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry @ ALS Industry @ ALS Hewlett Packard Labs Gains Insights with Innovative ALS Research Tools Print Thursday, 05 May 2016 11:21 For the past eight years, Hewlett Packard Labs, the central research organization of Hewlett Packard Enterprise, has been using cutting-edge ALS techniques to advance some of their most promising technological research, including vanadium dioxide phase transitions and atomic movement during memristor operation. Read more... ALS, Molecular Foundry, and aBeam

  13. National Electricity Delivery Division

    Energy Savers [EERE]

    (DOE) Office of Electricity Delivery and Energy Reliability (OE) National Electricity Delivery Division Julie Ann Smith, PhD September 24, 2015 The Federal Indian Trust Responsibility is a legal obligation under which the United States has charged itself with moral obligations of the highest responsibility and trust toward American Indian tribes. (Seminole Nation v. United States, 1942; Cherokee Nation v. Georgia, 1831). "When the trust responsibility is acknowledged and upheld by the

  14. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us » Strategic Programs » National Laboratory Impact Initiative Team National Laboratory Impact Initiative Team The mission of the Office of Energy Efficiency and Renewable Energy's (EERE's) National Laboratory Impact Initiative is to significantly increase the industrial impact of the Energy Department's national laboratories on the U.S. clean energy sector. The goals of the Initiative are to: Increase and enhance laboratory-private sector relationships Increase and streamline access to

  15. UAIEE and Industrial Assessment Centers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UAIEE and Industrial Assessment Centers UAIEE and Industrial Assessment Centers Details about the locations and proceedures of Industrial Assessment Centers in the United States. PDF icon session_2_industry_track_muller_en.pdf PDF icon session_2_industry_track_muller_cn.pdf More Documents & Publications Industrial Energy Efficiency Assessments U.S. Industrial Energy Efficiency Programs Realizing Building End-Use Efficiency with Ermerging Technologies

  16. Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings;

    U.S. Energy Information Administration (EIA) Indexed Site

    9.1 Enclosed Floorspace and Number of Establishment Buildings, 2010; Level: National Data; Row: NAICS Codes; Column: Floorspace and Buildings; Unit: Floorspace Square Footage and Building Counts. Approximate Approximate Average Enclosed Floorspace Average Number Number of All Buildings Enclosed Floorspace of All Buildings of Buildings Onsite NAICS Onsite Establishments(b) per Establishment Onsite per Establishment Code(a) Subsector and Industry (million sq ft) (counts) (sq ft) (counts) (counts)

  17. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    ... Economic Dependence Oil Imports Fuel at the Pump National Grid Coal-based Power Water Transport Foreign Manufacturing Agro-Industry "He who has the gold, makes the rules." ...

  18. Corrective Action Decision Document for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-09-01

    CAU 366 comprises six corrective action sites (CASs): 11-08-01, Contaminated Waste Dump #1 11-08-02, Contaminated Waste Dump #2 11-23-01, Radioactively Contaminated Area A 11-23-02, Radioactively Contaminated Area B 11-23-03, Radioactively Contaminated Area C 11-23-04, Radioactively Contaminated Area D The purpose of this CADD is to identify and provide the rationale for the recommendation of corrective action alternatives (CAA) for the six CASs within CAU 366. Corrective action investigation (CAI) activities were performed from October 12, 2011, to May 14, 2012, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites.

  19. Metrics for the National SCADA Test Bed Program

    SciTech Connect (OSTI)

    Craig, Philip A.; Mortensen, J.; Dagle, Jeffery E.

    2008-12-05

    The U.S. Department of Energy Office of Electricity Delivery and Energy Reliability (DOE-OE) National SCADA Test Bed (NSTB) Program is providing valuable inputs into the electric industry by performing topical research and development (R&D) to secure next generation and legacy control systems. In addition, the program conducts vulnerability and risk analysis, develops tools, and performs industry liaison, outreach and awareness activities. These activities will enhance the secure and reliable delivery of energy for the United States. This report will describe metrics that could be utilized to provide feedback to help enhance the effectiveness of the NSTB Program.

  20. Wind Vision. A New Era for Wind Power in the United States (Executive Summary, Full Report, and Appendices); U.S. Department of Energy (DOE), NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    none,

    2015-03-02

    The Wind Vision analysis demonstrates the economic value that wind power can bring to the nation, a value exceeding the costs of deployment. Wind’s environmental benefits can address key societal challenges such as climate change, air quality and public health, and water scarcity. Wind deployment can provide U.S. jobs, U.S. manufacturing, and lease and tax revenues in local communities to strengthen and support a transition of the nation’s electricity sector towards a low-carbon U.S. economy. The path needed to achieve 10% wind by 2020, 20% by 2030, and 35% by 2050 requires new tools, priorities, and emphases beyond those forged by the wind industry in growing to 4.5% of current U.S. electricity demand. Consideration of new strategies and updated priorities as identified in the Wind Vision could provide substantial positive outcomes for future generations.

  1. Profile of the chemicals industry in California: Californiaindustries of the future program

    SciTech Connect (OSTI)

    Galitsky, Christina; Worrell, Ernst

    2004-06-01

    The U.S. Department of Energy (DOE) Office of Industrial Technologies (OIT) established the Industries of the Future (IOF) program to increase energy efficiency, reduce waste production and to improve competitiveness, currently focusing on nine sectors. The IOF is a partnership strategy involving industry, the research community and the government, working together to identify technology needs, promote industrial partnerships and implement joint measures with all partners involved. The State Industries of the Future (SIOF) program delivers the accomplishments of the national Industries of the Future strategy to the local level, to expand the technology opportunities to a larger number of partners and reach smaller businesses and manufacturers that were not initially involved in the IOF effort. The state programs bring together industry, academia, and state agencies to address the important issues confronting industry in the state. These public-private coalitions facilitate industry solutions locally and enhance economic development. California has started a State Industries of the Future effort, in collaboration with the U.S. Department of Energy. The California Energy Commission (CEC) is leading the SIOF program in California, as part of many other programs to improve the energy efficiency and performance of industries in California. The California State IOF program aims to build a network of participants from industry, academia and government in four selected industrial sectors as a basis for the development of a strategic partnership for industrial energy efficient technology in the state. In California the IOF effort focuses petroleum refining, chemical processing, food processing and electronics. As part of this effort, the SIOF program will develop roadmaps for technology development for the selected sectors. On the basis of the roadmap, the program will develop successful projects with co-funding from state and federal government, and promote industry-specific energy-efficiency. An important element of the SIOF-program is the preparation of R&D roadmaps for each of the selected industries. The roadmap will help to identify priority needs for the participating industries to meet their energy challenges. The roadmap effort builds on the roadmaps developed by DOE, and on the conditions specific for the industry in California. Key to the successful preparation of a roadmap in the selected industries is the development of a profile of the industries. The profile provides a basis for the participants in the roadmap-effort, especially as the structure of the industries in California can be different than in the nation. The sector profiles describe the current economic and energy situation of these industries in California, the processes and energy uses, and the potential future developments in each industry. The profiles are an integral part of the roadmap, to help working group partners to evaluate the industry's R&D needs for their industry in California. In this report, we focus on the chemicals industry. The industry is an important economic factor in the state, providing over 82,300 jobs directly, and more in indirect employment. Value of shipments in 2001 was just under $25.7 Billion, or 6% of all manufacturing in California. There are over 1,500 chemical plants in California, of which 52% are pharmaceutical companies. Many companies operate chemical plants in California. The industry consumes 8% of the electricity and 5% of the natural gas in California. In this report, we start with a description of the chemical industry in the United States and California. This is followed by a discussion of the energy consumption and energy intensity of the Californian chemical industry. Chapter 3 focuses on the main sub-sectors. For each of the sub-sectors a general process description is provided in Chapter 4. Based on this analysis, in Chapter 5, we discuss potential technology developments that can contribute to further improving the energy efficiency in chemical plants, with a focus on the situation in California.

  2. NERSC Seeks Industry Partners for Collaborative Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Seeks Industry Partners for Collaborative Research NERSC Seeks Industry Partners for Collaborative Research January 28, 2015 Contact: David Skinner, NERSC Strategic Partnerships Lead, deskinner@lbl.gov, 510-486-4748 Edison7 The National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory has launched a private sector partnership program (PSP) to make its computing capabilities available to industry partners working in key technology areas. Led by David

  3. national labs | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    national labs

  4. Commercial / Industrial Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Commercial Program Development Commercial Current Promotions Industrial Federal Agriculture Commercial & Industrial Lighting Efficiency Program The Commercial & Industrial...

  5. Emerging energy-efficient industrial technologies

    SciTech Connect (OSTI)

    Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

    2000-10-01

    U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

  6. Remedial investigation/feasibility study Work Plan and addenda for Operable Unit 4-12: Central Facilities Area Landfills II and III at the Idaho National Engineering Laboratory

    SciTech Connect (OSTI)

    Keck, K.N.; Stormberg, G.J.; Porro, I.; Sondrup, A.J.; McCormick, S.H.

    1993-07-01

    This document is divided into two main sections -- the Work Plan and the addenda. The Work Plan describes the regulatory history and physical setting of Operable Unit 4-12, previous sampling activities, and data. It also identifies a preliminary conceptual model, preliminary remedial action alternatives, and preliminary applicable or relevant and appropriate requirements. In addition, the Work Plan discusses data gaps and data quality objectives for proposed remedial investigation activities. Also included are tasks identified for the remedial investigation/feasibility study (RI/FS) and a schedule of RI/FS activities. The addenda include details of the proposed field activities (Field Sampling Plan), anticipated quality assurance activities (Quality Assurance Project Plan), policies and procedures to protect RI/FS workers and the environment during field investigations (Health and Safety Plan), and policies, procedures, and activities that the Department of Energy will use to involve the public in the decision-making process concerning CFA Landfills II and III RI/FS activities (Community Relations Plan).

  7. Sandia National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    fieldoffices Sandia National Laboratory NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, New Mexico; Livermore, California; Kauai, Hawaii; and Tonopah, Nevada. Sandia Field Office Contact the Field Office Contract Administration & Business Management Emergency Information

  8. IMPACTS: Industrial Technologies Program, Summary of Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Because energy is an important input for many of the nation's key manufacturing ... greenhouse gases, and other emissions and will improve productivity per unit of output. ...

  9. Working with SRNL - AMC - Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry The dynamic, long-term relationships that would emerge from this laboratory, industry, and academic collaborative would generate new concepts and approaches that not only "spin in" modern manufacturing methods that support DOE mission success but also "spin out" new innovations to support overall chemical and manufacturing competitiveness within the United States. Technology and innovation are being driven by the need to work smarter to reduce risk. The Advanced

  10. Level: National Data; Row: Employment Sizes within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 562.6 4.7 2.4 50-99 673.1 5.1 2.4 100-249 1,072.8 6.5 3.0 250-499 1,564.3

  11. Level: National Data; Row: Employment Sizes within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Employment Sizes within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Employment Size Under 50 625.5 3.3 1.7 50-99 882.3 5.8 2.5 100-249 1,114.9 5.8 2.5 250-499 2,250.4

  12. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2006 Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 183 0 105 38 Q 0 W 8 3112 Grain and Oilseed Milling 36 0 Q 13 W 0 0 6 311221 Wet Corn Milling W 0 0 0 0 0 0 W 31131 Sugar

  13. Level: National Data; Row: NAICS Codes; Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,113 326 1,462 11,395 2,920 67 13 1,240 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 148 311221 Wet Corn Milling 47 47 W 17

  14. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    2.4 Number of Establishments by Nonfuel (Feedstock) Use of Combustible Energy, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any Combustible NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Fuel Oil Fuel Oil(c) Natural Gas(d) NGL(e) Coal and Breeze Other(f) Total United States 311 Food 592 W Q Q Q 0 0 345 3112 Grain and Oilseed Milling 85 0 W 15 Q 0 0 57 311221 Wet Corn Milling 8 0 0 0 0 0 0 8 31131 Sugar

  15. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3.4 Number of Establishments by Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Net Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,416 10,373 4,039 64 7 1,538 3112 Grain and Oilseed Milling 602 602 9 204 489 268 30 0 140 311221 Wet Corn Milling 59 59 W 28

  16. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 13,269 13,265 144 2,413 10,373 4,039 64 W 1,496 3112 Grain and Oilseed Milling 602 602 9 201 489 268 30 0 137 311221 Wet Corn

  17. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Not Electricity Natural Distillate Residual Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 67 21 49 W 19 10 W W W 3112 Grain and Oilseed Milling 35 7 29 W 7 3 0 W W 311221 Wet Corn Milling 18 4 17 0 4 W 0 W

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 2,920 325 1,945 171 174 25 W 0 0 15 3112 Grain and Oilseed Milling 269 36 152 Q Q W W 0 0 W

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Distillate Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 11,395 1,830 6,388 484 499 245 Q 555 0 203 3112

  20. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Number of Establishments with Capability to Switch Residual Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Residual Fuel Oil(b) Alternative Energy Sources(c) Coal Coke NAICS Total Not Electricity Natural Distillate and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 326 178 23 0 150 Q 0 Q 0 W 3112 Grain and

  1. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Natural Distillate Residual and Code(a) Subsector and Industry Receipts(d) Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 14,109 708 8,259 384 162 0 Q 105 0 84 3112 Grain and Oilseed Milling 580 27 472 3 Q 0 W W 0 W 311221 Wet

  2. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Not Electricity Natural Residual and Code(a) Subsector and Industry Consumed(d) Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 1,462 276 900 Q 217 8 0 25 0 16 3112 Grain and Oilseed Milling 174 10 131 W 4 W 0 W 0 W 311221

  3. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Number of Establishments with Capability to Switch Coal to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. NAICS Total Establishments Not Electricity Natural Distillate Residual Code(a) Selected Subsectors and Industry Consuming Coal(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil LPG Other(f) Total United States 311 Food 64 19 54 0 17 6 W W W 3112 Grain and Oilseed Milling 30 13 24 0 12 W 0 W W 311221 Wet

  4. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch LPG to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Distillate Residual and Code(a) Selected Subsectors and Industry Consuming LPG(d) Switchable Switchable Receipts(e) Gas Fuel Oil Fuel Oil Coal Breeze Other(f) Total United States 311 Food 4,039 600 2,860 356 221 Q W 0 0 16 3112 Grain and Oilseed Milling

  5. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments with Capability to Switch Natural Gas to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Natural Gas(b) Alternative Energy Sources(c) Coal Coke NAICS Total Establishments Not Electricity Distillate Residual and Code(a) Selected Subsectors and Industry Consuming Natural Gas(d Switchable Switchable Receipts(e) Fuel Oil Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 10,373 1,667

  6. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    7 Number of Establishments with Capability to Switch Electricity to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Natural Distillate Residual and Code(a) Selected Subsectors and Industry with Electricity Receipts(d Switchable Switchable Gas Fuel Oil Fuel Oil Coal LPG Breeze Other(e) Total United States 311 Food 13,265 765 11,829 482 292 Q Q 51 Q Q 3112 Grain and Oilseed

  7. Level: National Data; Row: NAICS Codes; Column: Energy Sources;

    U.S. Energy Information Administration (EIA) Indexed Site

    9 Number of Establishments with Capability to Switch Distillate Fuel Oil to Alternative Energy Sources, 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources; Unit: Establishment Counts. Coal Coke NAICS Total Establishments Not Electricity Natural Residual and Code(a) Selected Subsectors and Industry Consuming Distillate Fuel Oil(d Switchable Switchable Receipts(e) Gas Fuel Oil Coal LPG Breeze Other(f) Total United States 311 Food 2,416 221 2,115 82 160 Q 0 Q 0 30 3112 Grain and

  8. Level: National Data; Row: Values of Shipments within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2006; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 330.6 3.6 2.0 20-49 550.0 4.5 2.2

  9. Level: National Data; Row: Values of Shipments within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Consumption Ratios of Fuel, 2010; Level: National Data; Row: Values of Shipments within NAICS Codes; Column: Energy-Consumption Ratios; Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Economic Characteristic(b) (million Btu) (thousand Btu) (thousand Btu) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Value of Shipments and Receipts (million dollars) Under 20 405.4 4.0 2.1 20-49 631.3 4.7 2.2

  10. External Peer Review Team Report for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 0

    SciTech Connect (OSTI)

    Marutzky, Sam J.; Andrews, Robert

    2015-01-01

    The peer review team commends the Navarro-Intera, LLC (N-I), team for its efforts in using limited data to model the fate of radionuclides in groundwater at Yucca Flat. Recognizing the key uncertainties and related recommendations discussed in Section 6.0 of this report, the peer review team has concluded that U.S. Department of Energy (DOE) is ready for a transition to model evaluation studies in the corrective action decision document (CADD)/corrective action plan (CAP) stage. The DOE, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) clarified the charge to the peer review team in a letter dated October 9, 2014, from Bill R. Wilborn, NNSA/NFO Underground Test Area (UGTA) Activity Lead, to Sam J. Marutzky, N-I UGTA Project Manager: “The model and supporting information should be sufficiently complete that the key uncertainties can be adequately identified such that they can be addressed by appropriate model evaluation studies. The model evaluation studies may include data collection and model refinements conducted during the CADD/CAP stage. One major input to identifying ‘key uncertainties’ is the detailed peer review provided by independent qualified peers.” The key uncertainties that the peer review team recognized and potential concerns associated with each are outlined in Section 6.0, along with recommendations corresponding to each uncertainty. The uncertainties, concerns, and recommendations are summarized in Table ES-1. The number associated with each concern refers to the section in this report where the concern is discussed in detail.

  11. Egypt National Cleaner Production Center (ENCPC) | Open Energy...

    Open Energy Info (EERE)

    Egypt National Cleaner Production Center (ENCPC) Jump to: navigation, search Name Egypt National Cleaner Production Center (ENCPC) AgencyCompany Organization United Nations...

  12. Industrial & Manufacturing Processes | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    consisting of various compounds including lead, magnesium, barium, zirconium, titanium and other elements Fiber Characterization and Analysis Automatic characterization of ...

  13. Oak Ridge National Laboratory (ORNL): Industrial Collaborations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Nanoscale Characterization, Advanced Microscopy, and In-Situ Diagnosics Collaborators 6 ... durability through world-class microscopy and chemical analysis capabilities. * ...

  14. For Industrial Users | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... If you require a nondisclosure agreement (NDA) to discuss details of your work, we will gladly send you Argonne's standard NDA. For proprietary user proposals: Contact the CNM ...

  15. Corrective Action Decision Document/Closure Report for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Sloop, Christy

    2013-04-01

    This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 569: Area 3 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 569 comprises the following nine corrective action sites (CASs): 03-23-09, T-3 Contamination Area 03-23-10, T-3A Contamination Area 03-23-11, T-3B Contamination Area 03-23-12, T-3S Contamination Area 03-23-13, T-3T Contamination Area 03-23-14, T-3V Contamination Area 03-23-15, S-3G Contamination Area 03-23-16, S-3H Contamination Area 03-23-21, Pike Contamination Area The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 569 based on the implementation of the corrective actions listed in Table ES-2.

  16. Industry Cluster Development Grant winners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Cluster Development Grant winners Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Industry Cluster Development Grant winners Recipients include Picuris Pueblo and Rio Arriba County February 1, 2015 A new community mural on the Hunter Ford facility in Española celebrates the building's planned revitalization and the future location of the Northern New Mexico Food Hub. A new community

  17. Corrective Action Investigation Plan for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-08-01

    CAU 570 comprises the following six corrective action sites (CASs): 02-23-07, Atmospheric Test Site - Tesla 09-23-10, Atmospheric Test Site T-9 09-23-11, Atmospheric Test Site S-9G 09-23-14, Atmospheric Test Site - Rushmore 09-23-15, Eagle Contamination Area 09-99-01, Atmospheric Test Site B-9A These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 570. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The presence and nature of contamination at CAU 570 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed near the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  18. Corrective Action Investigation Plan for Corrective Action Unit 571: Area 9 Yucca Flat Plutonium Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Bailey, Bernadine; Matthews, Patrick

    2013-07-01

    CAU 571 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 571, which comprises the following corrective action sites (CASs): 09-23-03, Atmospheric Test Site S-9F 09-23-04, Atmospheric Test Site T9-C 09-23-12, Atmospheric Test Site S-9E 09-23-13, Atmospheric Test Site T-9D 09-45-01, Windrows Crater These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on March 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (now the Nevada Field Office). The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 571. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 571 CASs are from nuclear testing activities. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary exceeds the final action level (FAL) and requires corrective action. The presence and nature of contamination outside the default contamination boundaries at CAU 571 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based FAL. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Chemical contamination will be evaluated by comparing soil sample results to the FAL. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  19. OIT Wireless Telemetry for Industrial Applications

    SciTech Connect (OSTI)

    Manges, WW

    2002-09-03

    The need for advanced wireless technology has been identified in the National Research Council publication (1) ''Manufacturing Process Controls for the Industries of the Future as a Critical Technology for the Future''. The deployment challenges to be overcome in order for wireless to be a viable option include: (1) eliminating interference (assuring reliable communications); (2) easing the deployment of intelligent, wireless sensors; (3) developing reliable networks (robust architectures); (4) developing remote power (long-lasting and reliable); and (5) developing standardized communication protocols. This project demonstrated the feasibility of robust wireless sensor networks that could meet these requirements for the harsh environments common to the DOE/OIT Industries of the Future. It resulted in a wireless test bed that was demonstrated in a paper mill and a steel plant. The test bed illustrated key protocols and components that would be required in a real-life, wireless network. The technologies for low power connectivity developed and demonstrated at the plant eased fears that the radios would interfere with existing control equipment. The same direct sequence, spread spectrum (DSSS) technology that helped assure the reliability of the connection also demonstrated that wireless communication was feasible in these plants without boosting the transmitted power to dangerous levels. Our experience and research have indicated that two key parameters are of ultimate importance: (1) reliability and (2) inter-system compatibility. Reliability is the key to immediate acceptance among industrial users. The importance cannot be overstated, because users will not tolerate an unreliable information network. A longer term issue that is at least as important as the reliability of a single system is the inter-system compatibility between these wireless sensor networks and other wireless systems that are part of our industries. In the long run, the ability of wireless sensor networks to operate cooperatively in an environment that includes wireless LANs, wireless headsets, RF heating, wireless crane controls and many other users of the electromagnetic spectrum will probably be the most important issue we can address. A network of units (Figure 1) has been developed that demonstrates the feasibility of direct-sequence spread spectrum wireless sensor networking for industrial environments. The hardware consists of a group of reprogrammable transceivers that can act as sensor nodes or network nodes or both. These units and the team that built them are the heart of a test bed development system that has been used successfully in demonstrations at various industrial sites. As previously reported, these units have been successfully tested at a paper mill. More recently, these units were utilized in a permanent installation at a steel mill. Both of these applications demonstrated the ease with which a new network could be installed, and the reality that DSSS units can operate successfully in plants where narrow band transmitters had previously caused interference with plant operations.

  20. National Laboratory]; Kim, Young Jin [Los Alamos National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    EDM Abstract Not Provided Los Alamos National Laboratory (LANL) DOELANL United States 2014-11-05 English Conference Conference: Challenges of the worldwide experimental search...

  1. Phase I Flow and Transport Model Document for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nye County, Nevada, Revision 1 with ROTCs 1 and 2

    SciTech Connect (OSTI)

    Andrews, Robert

    2013-09-01

    The Underground Test Area (UGTA) Corrective Action Unit (CAU) 97, Yucca Flat/Climax Mine, in the northeast part of the Nevada National Security Site (NNSS) requires environmental corrective action activities to assess contamination resulting from underground nuclear testing. These activities are necessary to comply with the UGTA corrective action strategy (referred to as the UGTA strategy). The corrective action investigation phase of the UGTA strategy requires the development of groundwater flow and contaminant transport models whose purpose is to identify the lateral and vertical extent of contaminant migration over the next 1,000 years. In particular, the goal is to calculate the contaminant boundary, which is defined as a probabilistic model-forecast perimeter and a lower hydrostratigraphic unit (HSU) boundary that delineate the possible extent of radionuclide-contaminated groundwater from underground nuclear testing. Because of structural uncertainty in the contaminant boundary, a range of potential contaminant boundaries was forecast, resulting in an ensemble of contaminant boundaries. The contaminant boundary extent is determined by the volume of groundwater that has at least a 5 percent chance of exceeding the radiological standards of the Safe Drinking Water Act (SDWA) (CFR, 2012).

  2. National Laboratory Impact Initiative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Impact Initiative National Lab Impact Summit National Lab Impact Summit On May 4, 2016, EERE hosted a National Lab Impact Summit to celebrate recent National Laboratory successes and bring together the nation's public- and private-sector energy leaders to formulate the next stage of clean energy technology innovation. Read more Map of the United States showing locations of the National Laboratories for the Department of Energy Map of the United States showing locations of the

  3. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) to the dose-based final action level (FAL). The presence of TED exceeding the FAL is considered a radiological contaminant of concern (COC). Anything identified as a COC will require corrective action. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters will be used to measure external radiological dose. Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plume, it was determined that the releases from the nuclear tests are co-located and will be investigated concurrently. A field investigation will be performed to define areas where TED exceeds the FAL and to determine whether other COCs are present at the site. The investigation will also collect information to determine the presence and nature of contamination associated with migration and excavation, as well as any potential releases discovered during the investigation. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  4. Los Alamos National Laboratory again

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the ninth consecutive year are the largest contributors to the United Way of Santa Fe County's annual giving campaign. Laboratory employees and Los Alamos National...

  5. Los Alamos National Laboratory again

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the eighth consecutive year are the largest contributors to the United Way of Santa Fe County's annual giving campaign. Laboratory employees and Los Alamos National...

  6. Corrective Action Decision Document/Closure Report for Corrective Action Unit 561: Waste Disposal Areas, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2011-08-01

    CAU 561 comprises 10 CASs: (1) 01-19-01, Waste Dump; (2) 02-08-02, Waste Dump and Burn Area; (3) 03-19-02, Debris Pile; (4) 05-62-01, Radioactive Gravel Pile; (5) 12-23-09, Radioactive Waste Dump; (6) 22-19-06, Buried Waste Disposal Site; (7) 23-21-04, Waste Disposal Trenches ; (8) 25-08-02, Waste Dump; (9) 25-23-21, Radioactive Waste Dump; and (10) 25-25-19, Hydrocarbon Stains and Trench. The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure of CAU 561 with no further corrective action. The purpose of the CAI was to fulfill the following data needs as defined during the DQO process: (1) Determine whether COCs are present; (2) If COCs are present, determine their nature and extent; and (3) Provide sufficient information and data to complete appropriate corrective actions. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) No contamination exceeding FALs was identified at CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06. (2) The surface and subsurface soil within the burn area at CAS 02-08-02 contains arsenic and lead above the FALs of 23 milligrams per kilogram (mg/kg) and 800 mg/kg, respectively. The surface and subsurface soil within the burn area also contains melted lead slag (potential source material [PSM]). The soil within the waste piles contains polyaromatic hydrocarbons (PAHs) above the FALs. The contamination within the burn area is spread throughout the area, as it was not feasible to remove all the PSM (melted lead), while at the waste piles, the contamination is confined to the piles. (3) The surface and subsurface soils within Trenches 3 and 5 at CAS 23-21-04 contain arsenic and polychlorinated biphenyls (PCBs) above the FALs of 23 mg/kg and 0.74 mg/kg, respectively. The soil was removed from both trenches, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead bricks and counterweights were also removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. (4) The concrete-like material at CAS 25-08-02 contains arsenic above the FAL of 23 mg/kg. This concrete-like material was removed, and the soil that remains at this CAS does not contain contamination exceeding the FALs. Lead-acid batteries were also removed, and the soil below the batteries does not contain contamination that exceeds the FAL for lead. (5) The surface soils within the main waste dump at the posted southern radioactive material area (RMA) at CAS 25-23-21 contain cesium (Cs)-137 and PCBs above the FALs of 72.9 picocuries per gram (pCi/g) and 0.74 mg/kg, respectively. The soil was removed from the RMA, and the soil that remains at this CAS does not contain contamination exceeding the FALs. (6) The surface and subsurface soils at CAS 25-25-19 do not contain contamination exceeding the FALs. In addition, lead bricks were removed, and the soil below these items does not contain contamination that exceeds the FAL for lead. The following best management practices were implemented: (1) Housekeeping debris at CASs 02-08-02, 23-21-04, 25-08-02, 25-23-21, and 25-25-19 was removed and disposed of; (2) The open trenches at CAS 23-21-04 were backfilled; (3) The waste piles at CAS 25-08-02 were removed and the area leveled to ground surface; and (4) The remaining waste piles at the main waste dump at CAS 25-23-21 were leveled to ground surface. Therefore, NNSA/NSO provides the following recommendations: (1) No further action for CASs 01-19-01, 03-19-02, 05-62-01, 12-23-09, and 22-19-06; (2) Closure in place with an FFACO use restriction (UR) at CAS 02-08-02 for the remaining PAH-, arsenic-, and lead-contaminated soil, and the melted lead PSM. The UR form and map have been filed in the NNSA/NSO Facility Information Management System, the FFACO database, and the NNSA/NSO CAU/CAS files; (3) No further corrective action at CAS 23-21-04, as the lead bricks and counterweights (PSM) have been removed, and the COCs of arsenic and PCBs in soil have been removed; (4) No further corrective action at CAS 25-08-02, as the COC of arsenic in soil has been removed, and the lead-acid batteries have been removed; (5) No further corrective action at CAS 25-23-21, as the COCs of Cs-137 and PCBs in soil have been removed, and the cast-iron pipes have been removed and disposed of; (6) No further corrective action at CAS 25-25-19, as the lead bricks (PSM) been removed; (7) A Notice of Completion to the NNSA/NSO is requested from the Nevada Division of Environmental Protection for closure of CAU 561; and (8) Corrective Action Unit 561 should be moved from Appendix III to Appendix IV of the FFACO.

  7. Petroleum industry in Iran

    SciTech Connect (OSTI)

    Farideh, A.

    1981-01-01

    This study examines the oil industry in Iran from the early discovery of oil nearly two hundred years ago in Mazandaran (north part) to the development of a giant modern industry in the twentieth century. Chapter I presents a brief historical setting to introduce the reader to the importance of oil in Iran. It focuses on the economic implications of the early oil concessions in the period 1901 to 1951. Chapter II discusses the nationalization of the Iranian oil industry and creation of NIOC in 1951 and the international political and economic implication of these activities. Chapter III explains the activities of NIOC in Iran. Exploration and drilling, production, exports, refineries, natural gas, petrochemicals and internal distributions are studied. Chapter IV discusses the role of the development planning of Iran. A brief presentation of the First Development Plan through the Fifth Development Plan is given. Sources and uses of funds by plan organization during these Five Plans is studied. The Iran and Iraq War is also studied briefly, but the uncertainty of its resolution prevents any close analysis of its impact on the Iranian oil industry. One conclusion, however, is certain; oil has been a vital resource in Iran's past and it will remain the lifetime of its economic development in the future.

  8. Electric trade in the United States, 1996

    SciTech Connect (OSTI)

    1998-12-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1996, the wholesale trade market totaled 2.3 trillion kilowatthours, over 73% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1996 (ELECTRA), is the sixth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1996. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. 1 fig., 43 tabs.

  9. Agile Biomanufacturing Industry Listening Workshop

    Broader source: Energy.gov [DOE]

    A consortium of nine national labs is excited to announce the Agile Biomanufacturing Industry Listening Workshop on March 15, 2016 in Berkeley, CA. Lawrence Berkeley National Lab, Ames National Lab, Argonne National Lab, Idaho National Lab, Los Alamos National Lab, the National Renewable Energy Lab, Oak Ridge National Lab, Pacific Northwest National Lab, and Sandia National Labs seek to build an agile biomanufacturing platform for biological approaches to produce advanced biofuels, renewable chemicals, and materials that represent low greenhouse gas alternatives to molecules currently derived from petroleum. The labs envision a distributed Agile Biomanufacturing consortium that includes a Foundry to productionize the design-build-test-learn cycle for engineering biology while incorporating process integration, predictable scaling, and techno-economic analyses and life cycle assessments for bioprocess design. The DOE National Laboratories have built deep and unique capabilities that can be brought to bear to build powerful infrastructure and scientific engineering activities that will render design and implementation of new bio-based products scalable, predictable, and more cost-effective. An agile biomanufacturing platform will enable companies, national labs, and universities to develop biological processes efficiently and with reduced risk to create products with better performance than their predecessors.

  10. Coal industry annual 1997

    SciTech Connect (OSTI)

    1998-12-01

    Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

  11. Industrial Technologies Program Research Plan for Energy-Intensive Process Industries

    SciTech Connect (OSTI)

    Chapas, Richard B.; Colwell, Jeffery A.

    2007-10-01

    In this plan, the Industrial Technologies Program (ITP) identifies the objectives of its cross-cutting strategy for conducting research in collaboration with industry and U.S. Department of Energy national laboratories to develop technologies that improve the efficiencies of energy-intensive process industries.

  12. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 million to local United Way organizations, other nonprofits November 18, 2010 LOS ALAMOS, New Mexico, November 18, 2010-Los Alamos National Laboratory employees have again demonstrated concern for their communities and those in need by pledging a record $1.5 million to United Way and other eligible nonprofit programs. Los Alamos National Security, LLC, which operates the Laboratory, plans to prorate its $1 million match among the selected nonprofit organizations, bringing the total donation to

  13. UNITED STATES OF AMERICA DEPARTMENT OF ENERGY OFFICE OF FOSSIL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    domestically produced liquefied natural gas (LNG) by vessel to nations with which the United States has not entered into a free trade agreement providing for national treatment...

  14. United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    l 0 United States Office of Research and Environmental Protection Agency Development Washington, DC 20460 EPA 600/R-94/209 January 1993 Offsite Environment itoring Report adiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS, NEVADA 89193-3478 , 702/798-2100 April 20, 1995 Dear Reader: Since 1954, the U.S.

  15. United States

    Office of Legacy Management (LM)

    - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe

  16. Delivered Energy Consumption Projections by Industry in the Annual Energy Outlook 2002

    Reports and Publications (EIA)

    2002-01-01

    This paper presents delivered energy consumption and intensity projections for the industries included in the industrial sector of the National Energy Modeling System.

  17. National Laboratories and Internatioanl Partnering

    SciTech Connect (OSTI)

    Eagan, R.J.; Gauster, W.B.; Hartley, D.L.; Jones, G.J.

    1998-12-07

    For nearly fifty years the US held a dominant position in research and development in the free world. The situation has changed dramatically in the last decade. Countries around the world realize that to foster sustainable economic growth, they must build and maintain a foundation in science and technology. The time in which a country could base its gross national product solely on extraction of raw materials or on people-intensive manufacturing is drawing to a close. The funding for research and development has been growing in the rest of the world, while US expenditures have not kept pace. In 1961, the United States funded 71 `?40 of the world's R&D. It is estimated that the US contribution to research and development fimding today has reached the 3 3o/0 level, and will drop to 26o/0 of the world's total by 2003.1 In 1981 US government spending per capita on non-defense research and development was nearly fifty percent above our major competitors; by 2002 it is projected to be f@ percent below them.2 This trend has a profound impact on how research and development institutions in the United States plan for their future technical growth. Sandia National Laboratories, as one of the largest US-government tided research establishments, has been watching this trend for some time. %ndi~ focusing on the Laboratories' missions in nuclear weapons and related defense systems, energy security, environmental integrity, and emerging national challenges, is committed to bringing the best in world-class technology to bear on the nation's problems. We realize maintaining our state-of-the-art technolo=~ base requires we look not only to domestic sources in universities, industries and other laboratories, but also to sources overseas. The realization that we must be "worldwide gatherers of technology" has led Sandia National Laboratories to consider the question of international partnering in some detaiI. As a national laboratory with a national security mission we are well aware of the issues that we face in pursuing international collaborations. In order to make the proper decisions, we are interested in understanding the history of such partnerships, when they are appropriate, why we expect them to be important, the risks they present and what we can do to mitigate those risks.

  18. National facility for advanced computational science: A sustainable path to scientific discovery

    SciTech Connect (OSTI)

    Simon, Horst; Kramer, William; Saphir, William; Shalf, John; Bailey, David; Oliker, Leonid; Banda, Michael; McCurdy, C. William; Hules, John; Canning, Andrew; Day, Marc; Colella, Philip; Serafini, David; Wehner, Michael; Nugent, Peter

    2004-04-02

    Lawrence Berkeley National Laboratory (Berkeley Lab) proposes to create a National Facility for Advanced Computational Science (NFACS) and to establish a new partnership between the American computer industry and a national consortium of laboratories, universities, and computing facilities. NFACS will provide leadership-class scientific computing capability to scientists and engineers nationwide, independent of their institutional affiliation or source of funding. This partnership will bring into existence a new class of computational capability in the United States that is optimal for science and will create a sustainable path towards petaflops performance.

  19. Zoe Industries: Order (2011-SW-2912)

    Broader source: Energy.gov [DOE]

    DOE ordered Zoe Industries, Inc. to pay a $25,000 civil penalty after finding Zoe had manufactured and distributed in commerce in the U.S. at least 2,235 units of basic model 150043, a noncompliant showerhead.

  20. Microsoft Word - UPDATE 4 - Unit 4.doc

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    cause or contribute to exceedances of the National Ambient Air Quality Standards (NAAQS). ... Unit 4 operating at any load produces ambient air concentrations that are better than ...

  1. United States Department of Energy

    Energy Savers [EERE]

    Energy -Japan Joint Nuclear Energy Action Plan United States -Japan Joint Nuclear Energy Action Plan President Bush of the United States and Prime Minister Koizumi of Japan have both stated their strong support for the contribution of nuclear power to energy security and the global environment. Japan was the first nation to endorse President Bush's Global Nuclear Energy Partnership. This describes a background of the partnership. PDF icon United States -Japan Joint Nuclear Energy Action Plan

  2. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structure (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Technical Report) | SciTech Connect Effects of Deployment Investment on the Growth of the Biofuels Industry Citation Details In-Document Search Title: Effects of Deployment Investment on the Growth of the Biofuels Industry In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in

  3. Abandoned Uranium Mine Technical Services and Cleanup Industry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abandoned Uranium Mine Technical Services and Cleanup Industry Day In January 2015, the United States (U.S.) and the Anadarko Litigation Trust ("Litigation Trust") entered into a...

  4. Chemical Industry Vision 2020. Annual Report 2004 (Technical...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Industry; ITP; AMO; Chemicals; Vision Word Cloud More ...

  5. Oil inventories in industrialized countries to reach record high...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration said it expects commercial oil inventories in the United States and other industrialized countries to total 2.83 billion barrels at the end of this ...

  6. The changing structure of the electric power industry: Selected issues, 1998

    SciTech Connect (OSTI)

    1998-07-01

    More than 3,000 electric utilities in the United States provide electricity to sustain the Nation`s economic growth and promote the well-being of its inhabitants. At the end of 1996, the net generating capability of the electric power industry stood at more than 776,000 megawatts. Sales to ultimate consumers in 1996 exceeded 3.1 trillion kilowatthours at a total cost of more than $210 billion. In addition, the industry added over 9 million new customers during the period from 1990 through 1996. The above statistics provide an indication of the size of the electric power industry. Propelled by events of the recent past, the industry is currently in the midst of changing from a vertically integrated and regulated monopoly to a functionally unbundled industry with a competitive market for power generation. Advances in power generation technology, perceived inefficiencies in the industry, large variations in regional electricity prices, and the trend to competitive markets in other regulated industries have all contributed to the transition. Industry changes brought on by this movement are ongoing, and the industry will remain in a transitional state for the next few years or more. During the transition, many issues are being examined, evaluated, and debated. This report focuses on three of them: how wholesale and retail prices have changed since 1990; the power and ability of independent system operators (ISOs) to provide transmission services on a nondiscriminatory basis; and how issues that affect consumer choice, including stranded costs and the determination of retail prices, may be handled either by the US Congress or by State legislatures.

  7. SLAC National Accelerator Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator Laboratory (SLAC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. SLAC National Accelerator Laboratory 2 Technology Marketing Summaries Category Title and Abstract Laboratories Date Industrial

  8. Idaho National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Idaho National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Idaho National Laboratory (INL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Idaho National Laboratory 37 Technology Marketing Summaries Category Title and Abstract Laboratories Date Building Energy Efficiency Industrial Technologies Find More

  9. Argonne National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Argonne National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Argonne National Laboratory (ANL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Argonne National Laboratory 69 Technology Marketing Summaries Category Title and Abstract Laboratories Date Advanced Materials Industrial Technologies Find More

  10. Sustainable Nanomaterials Industry Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industry Perspective U.S. Department of Energy Advanced Manufacturing Office Sustainable ... the forest products industry through innovation 2 The U.S. Forest Products Industry's ...

  11. Energy Systems | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Research to strengthen the economy, protect the environment and enable energy independence and national security The Energy Systems (ES) division conducts applied energy research to strengthen the economy, protect the environment and enable energy independence and national security. From invention through demonstration, ES actively forms critical alliances with industrial partners, universities, other national laboratories and other Argonne divisions to conduct research,

  12. Work with Argonne | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laboratories is to promote the economic interests of the United States by facilitating development, transfer, and use of federally owned or originated technology to industry for...

  13. National Nuclear Security Administration United States Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Chairman, Subcommittee on Energy and Water Development ... area was the Apex Gold scenario-based policy discussion, ... in Jordan and Vienna, Austria, which was the largest ...

  14. National Nuclear Security Administration United States Department...

    National Nuclear Security Administration (NNSA)

    ... from developing or acquiring nuclear, chemical, or biological weapons, or the materials ... Weapons and Toxins Convention, and Chemical Weapons Convention). Presidential ...

  15. Sandia National Laboratories for the United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    time. Precisely targeting and disabling internal components is possible, even from a robot. XTK has over 3,000 users and continues to grow daily. www.sandia.govresearch...

  16. National Nuclear Security Administration United States Department...

    National Nuclear Security Administration (NNSA)

    Control Program NPT Treaty on the Non-proliferation of Nuclear Weapons NRAT Nuclear... Meeting the Challenges of Nuclear Proliferation & Terrorism 1.1 Enduring Mission, ...

  17. National Nuclear Security Administration United States Department...

    National Nuclear Security Administration (NNSA)

    and respond to the threats of nuclear proliferation and terrorism make a vital ... The JCPOA has dramatically reduced the threat of nuclear proliferation by blocking Iran's ...

  18. UNITED NATIONS ENVIRONMENT PROGRAMME PROJECT DOCUMENT SUMMARY

    Open Energy Info (EERE)

    will be performed. ACTIVITY COMPONENT 1: SOLAR RESOURCE ASSESSMENT ACTIVITY 1.1 SOLAR METHODOLOGY AND INFORMATION REVIEW PANEL 15. In view of the wide range of capability...

  19. MOU signed between CIAE and Jefferson National Lab, USA. (China...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOU signed between CIAE and Jefferson National Lab, USA. (China Nuclear Industry News, ... of Jefferson National Lab, USA visited the China Institute of Atomic Energy (CIAE). ...

  20. GTO Director Doug Hollett Delivers Keynote at the Nation's Largest...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GTO Director Doug Hollett Delivers Keynote at the Nation's Largest Industry Gathering, September 29, 2014 GTO Director Doug Hollett Delivers Keynote at the Nation's Largest...

  1. National Geothermal Data System (NGDS) Fact Sheet | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Data System (NGDS) Fact Sheet National Geothermal Data System (NGDS) Fact Sheet Industry has named one of the largest barriers to widespread adoption of ...

  2. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  3. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  4. 2008 Industrial Technologies Market Report, May 2009

    SciTech Connect (OSTI)

    Energetics; DOE

    2009-07-01

    The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

  5. Task automation in a successful industrial telerobot

    SciTech Connect (OSTI)

    Spelt, P.F.; Jones, S.L.

    1994-01-01

    In this paper, we discuss cooperative work by Oak Ridge National Laboratory and Remotec{trademark}, Inc., to automate components of the operator`s workload using Remotec`s Andros telerobot, thereby providing an enhanced user interface which can be retroll to existing fielded units as well as being incorporated into now production units. Remotec`s Andros robots are presently used by numerous electric utilities to perform tasks in reactors where substantial exposure to radiation exists, as well as by the armed forces and numerous law enforcement agencies. The automation of task components, as well as the video graphics display of the robot`s position in the environment, will enhance all tasks performed by these users, as well as enabling performance in terrain where the robots cannot presently perform due to lack of knowledge about, for instance, the degree of tilt of the robot. Enhanced performance of a successful industrial mobile robot leads to increased safety and efficiency of performances in hazardous environments. The addition of these capabilities will greatly enhance the utility of the robot, as well as its marketability.

  6. United States Government

    Energy Savers [EERE]

    .. a . r-z . "*& ., . .. uoi UA o. --.- flI gj UUX DOE F 1325.8 (08.93) United States Government Department of Ene memorandum DATE: August 19, 2004 Audit Report Number: OAS-L-04-18 REPLY TO ATTN OF: IG-36 (A03IF009) SUBJECT: Audit of the "Revised Pit 9 Cleanup Project at the Idaho National Engineering and Environmental Laboratory" TO: Paul Golan, Acting Assistant Secretary, Office of Environmental Management INTRODUCTION AND OBJECTIVE The Idaho National Engineering and

  7. United States Government

    Energy Savers [EERE]

    cr--ceut w.:3 i-Kun: TO:202 586 1660 P.002/006 DOE F 1325. EFG (07.PO) United States Government Department of Energy memorandum DATE: September 24, 2004 Audit Report Number: OAS-L-04-24 REPLY TO ATTN OF: IG-35 (A04AL004) SUBJECT: Audit Report on "The National Nuclear Security Administration's Secure Transportation Asset Program" TO: Deputy Administrator for Defense Programs, National Nuclear Security Administration INTRODUCTION AND OBIECTV E The Secure Transportation Asset (STA)

  8. Industrial Assessment Centers: AMO Technical Assistance Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Assessment Centers Overview * DOE funds engineering programs at national ... Fabricated Metal, 11.5% All Others, 15.2% Food Products, 14.9% Stone, Clay & Glass, 4.2% ...

  9. Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce PDF icon Carlsbad Industrial Safety and Health PIA, Carlsbad Field Offce More Documents & Publications Integrated Safety Management Workshop Registration, PIA, Idaho National Laboratory Occupational Medicine - Assistant PIA, Idaho National Laboratory Occupational Injury &

  10. Sandia National Laboratories | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Sandia National Laboratories NNSA's Sandia National Laboratories are responsible for the development, testing, and production of specialized nonnuclear components and quality assurance and systems engineering for all of the United States' nuclear weapons. Sandia has locations in Albuquerque, NM; Livermore, CA; Kauai, HI; and Tonopah, NV. The labs are operated by Sandia Corporation. Visit our website Z-Machine Related News NNSA hosts international CTBT on-site inspection experts at Nevada

  11. Activities implemented jointly: First report to the Secretariat of the United Nations Framework Convention on Climate Change. Accomplishments and descriptions of projects accepted under the U.S. Initiative on Joint Implementation

    SciTech Connect (OSTI)

    1996-07-01

    More than 150 countries are now Party to the United Nations Framework Convention on Climate Change (FCCC), which seeks, as its ultimate objective, to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the climate system. As a step toward this goal, all Parties are to take measures to mitigate climate change and to promote and cooperate in the development and diffusion of technologies and practices that control or reduce emissions and enhance sinks of greenhouse gases. In the US view, efforts between countries or entities within them to reduce net greenhouse gas emissions undertaken cooperatively--called joint implementation (JI)--holds significant potential both for combating the threat of global warming and for promoting sustainable development. To develop and operationalize the JI concept, the US launched its Initiative on Joint Implementation (USIJI) in October 1993, and designed the program to attract private sector resources and to encourage the diffusion of innovative technologies to mitigate climate change. The USIJI provides a mechanism for investments by US entities in projects to reduce greenhouse gas emissions worldwide and has developed a set of criteria for evaluating proposed projects for their potential to reduce net GHG emissions.

  12. SECRETARY MONIZ TO HOST NATIONAL LABORATORY DAY ON CAPITOL HILL...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sustainability, manufacturing innovations, high performance computing, national ... the sciences and generated technological advances that have led to entire new industries. ...

  13. Available 45 MILITARY TECHNOLOGY, WEAPONRY, AND NATIONAL DEFENSE...

    Office of Scientific and Technical Information (OSTI)

    NATIONAL DEFENSE; CHEMICAL EXPLOSIONS; SHOCK WAVES; INDUSTRIAL PLANTS; ACCIDENTS; SAFETY; MECHANICAL STRUCTURES; BLAST EFFECTS; DYNAMIC LOADS; BUILDINGS; CHEMICAL EXPLOSIVES;...

  14. National Security and Cyber Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Security and Cyber Security National Security and Cyber Security National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of both. No place on Earth pursues a broader array of world-class scientific endeavors. Contact thumbnail of Business Development Business Development Richard P. Feynman Center for Innovation (505) 665-9090 Email National security and weapons science at the laboratory spans essentially all the

  15. DOE Announces Awardees for the Industrial Energy Efficiency Grand...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    interests, the industrial sector remains a major part of the Nation's clean energy equation. This funding announced today will promote breakthrough achievements in the...

  16. Kansas City National Security Campus | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration Kansas City National Security Campus The NNSA's Kansas City National Security Campus, located near Kansas City, MO, is responsible for manufacturing and procuring nonnuclear components for nuclear weapons, including electronic, mechanical, and engineered material components. It supports national laboratories, universities, and U.S. industry. The KCNSC is operated by Honeywell Federal Manufacturing & Technologies. Visit our website Caption1 Related News Kansas City National

  17. Feedback following the Industry Engagement of the NNSA Unique Identifier and Global Monitoring 5 year plan

    SciTech Connect (OSTI)

    White-Horton, Jessica L; Whitaker, J Michael; Durbin, Karyn R.

    2013-01-01

    The National Nuclear Security Administration s project for developing a unique identifier and a concept for a global monitoring system for UF6 cylinders made significant progress on developing functional requirements and a concept of operation for such a system. The multi-laboratory team is working to define the functional requirements for both the unique identifier and the global monitoring system and to develop a preliminary concept of operations to discuss with key industry stakeholders. Team members began meeting with industry representatives in January 2013 to discuss the preliminary concept and solicit feedback and suggestions. The team has met with representatives from United States Enrichment Corporation, Cameco, URENCO, Honeywell/ConverDyn, and others. This paper presents an overview of the preliminary concept of operations and shares the feedback obtained from the industry engagement meetings.

  18. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    SciTech Connect (OSTI)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  19. National Renewable Energy Laboratory Technologies Available for...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories National Renewable Energy ...

  20. May 2014 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    at Lawrence Livermore National Laboratory, is available to industry collaborators to test big data technologies, architectures and applications. Developed by a partnership of Cray,...

  1. Sandia National Laboratories: Advanced Simulation Computing:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Partnerships among the national laboratories, industry, and academia leverage a broad spectrum of talent and multiply the effectiveness of our research efforts. These ...

  2. Mineral industries of Australia, Canada, and Oceania (including a discussion of Antarctica's mineral resources). Mineral perspective

    SciTech Connect (OSTI)

    Kimbell, C.L.; Lyday, T.Q.; Newman, H.H.

    1985-12-01

    The Bureau of Mines report gives the mineral industry highlights of two of the world's major mineral producing countries, Australia and Canada, and seven Pacific island nations or territories--Fiji, New Caledonia, New Zealand, Papua New Guinea, Republic of Nauru, Solomon Islands, and Vanuatu. The mineral resources of Antarctica are also discussed. Because of the size of the Australian and Canadian mineral industries, summary reviews are presented for each of the States, Provinces, or Territories. The most current information available from all nations is given on major minerals or mineral-commodity production, share of world production, and reserves. Reported also are significant mining companies, locations and capacities of their main facilities, and their share of domestic production. Other information is provided on mineral-related trade with the United States, government mineral policy, energy production-consumption and trade, the mining industry labor force, and prospects for the mineral industry. Maps show the locations of selected mineral deposits, oilfields and gasfields, mines, and processing facilities including iron and steel plants, nonferrous smelters and refineries, and cement plants, as well as infrastructure pertinent to the mineral industry.

  3. Estimated Carbon Dioxide Emissions in 2008: United States

    SciTech Connect (OSTI)

    Smith, C A; Simon, A J; Belles, R D

    2011-04-01

    Flow charts depicting carbon dioxide emissions in the United States have been constructed from publicly available data and estimates of state-level energy use patterns. Approximately 5,800 million metric tons of carbon dioxide were emitted throughout the United States for use in power production, residential, commercial, industrial, and transportation applications in 2008. Carbon dioxide is emitted from the use of three major energy resources: natural gas, coal, and petroleum. The flow patterns are represented in a compact 'visual atlas' of 52 state-level (all 50 states, the District of Columbia, and one national) carbon dioxide flow charts representing a comprehensive systems view of national CO{sub 2} emissions. Lawrence Livermore National Lab (LLNL) has published flow charts (also referred to as 'Sankey Diagrams') of important national commodities since the early 1970s. The most widely recognized of these charts is the U.S. energy flow chart (http://flowcharts.llnl.gov). LLNL has also published charts depicting carbon (or carbon dioxide potential) flow and water flow at the national level as well as energy, carbon, and water flows at the international, state, municipal, and organizational (i.e. United States Air Force) level. Flow charts are valuable as single-page references that contain quantitative data about resource, commodity, and byproduct flows in a graphical form that also convey structural information about the system that manages those flows. Data on carbon dioxide emissions from the energy sector are reported on a national level. Because carbon dioxide emissions are not reported for individual states, the carbon dioxide emissions are estimated using published energy use information. Data on energy use is compiled by the U.S. Department of Energy's Energy Information Administration (U.S. EIA) in the State Energy Data System (SEDS). SEDS is updated annually and reports data from 2 years prior to the year of the update. SEDS contains data on primary resource consumption, electricity generation, and energy consumption within each economic sector. Flow charts of state-level energy usage and explanations of the calculations and assumptions utilized can be found at: http://flowcharts.llnl.gov. This information is translated into carbon dioxide emissions using ratios of carbon dioxide emissions to energy use calculated from national carbon dioxide emissions and national energy use quantities for each particular sector. These statistics are reported annually in the U.S. EIA's Annual Energy Review. Data for 2008 (US. EIA, 2010) was updated in August of 2010. This is the first presentation of a comprehensive state-level package of flow charts depicting carbon dioxide emissions for the United States.

  4. Materials needs and opportunities in the pulp and paper industry

    SciTech Connect (OSTI)

    Angelini, P.

    1995-08-01

    The Department of Energy`s (DOE) Office of Industrial Technologies (OIT) supports research and development (R&D) in industry, the DOE national laboratories, and in universities to develop energy efficient, environmentally-acceptable industrial technologies. The Office of Industrial Technologies is working with seven energy-intensive industries to develop R&D roadmaps that will facilitate cooperative government-industry efforts to achieve energy-efficient, environmentally-acceptable, sustainable industries of the future. The forest products industry is one of the industries with which OIT is working to develop an R&D roadmap. The Advanced Industrial Materials (AIM) Program of the Office of Industrial Technologies sponsors long-term, directed research on materials that will enable industry to develop and utilize more energy-efficient, sustainable processes and technologies. The purpose of the study described in this report was to identify the material R&D needs and opportunities for the pulp and paper mill of the future.

  5. Y-12 National Security Campus | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Y-12 National Security Campus Ambassador Ensher visits Y-12 and NNSS Ambassador Henry S. Ensher, the top U.S. diplomat at the United States Mission to International Organizations in Vienna, Austria, recently visited two facilities to understand NNSA's mission better: the Y-12 National Security Complex and the Nevada National Security Site (NNSS). At Y-12, he

  6. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    0 Reasons that Made Electricity Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million kWh. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Electricity Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel Electricity Fuel Use Another Fuel the Products

  7. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    1 Reasons that Made Natural Gas Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Billion cubic feet. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Natural Gas Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry Consumed as a FueNatural Gas Fuel Use Another Fuel the

  8. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 Reasons that Made Coal Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million short tons. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS Coal Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel Coal Fuel Use Another Fuel the Products Fuel

  9. Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Reasons that Made LPG Unswitchable, 2006; Level: National Data; Row: NAICS Codes; Column: Reasons that Made Quantity Unswitchable; Unit: Million barrels. Total Amount of Total Amount of Equipment is Not Switching Unavailable Long-Term Unavailable Combinations of NAICS LPG Consumed Unswitchable Capable of Using Adversely Affects Alternative Environmenta Contract Storage for Another Columns F, G, Code(a) Subsector and Industry as a Fuel LPG Fuel Use Another Fuel the Products Fuel

  10. Deregulation-restructuring: Evidence for individual industries

    SciTech Connect (OSTI)

    Costello, K.W.; Graniere, R.J.

    1997-05-01

    Several studies have measured the effects of regulation on a particular industry. These studies range widely in sophistication, from simple observation (comparison) of pre-transformation and post-transformation actual industry performance to econometric analysis that attempt to separate the effects of deregulation from other factors in explaining changes in an industry`s performance. The major problem with observation studies is that they are unable to measure the effect of one particular event, such as deregulation, on an industry`s performance. For example, at the same time that the United Kingdom privatized its electric power industry, it also radically restructured the industry to encourage competition and instituted a price-cap mechanism to regulate the prices of transmission, distribution, and bundled retail services. Subsequent to these changes in 1991, real prices for most UK electricity customers have fallen. It is not certain however, which of these factors was most important or even contributed to the decline in price. In any event, one must be cautious in interpreting the results of studies that attempt to measure the effect of deregulation per se for a specific industry. This report highlights major outcomes for five industries undergoing deregulation or major regulatory and restructuring reforms. These include the natural gas, transportation, UK electric power, financial, and telecommunications industries. Particular attention was given to the historical development of events in the telecommunications industry.

  11. Industry turns its attention south

    SciTech Connect (OSTI)

    Marhefka, D.

    1997-08-01

    The paper discusses the outlook for the gas and oil industries in the Former Soviet Union and Eastern Europe. Significant foreign investment continues to elude Russia`s oil and gas industry, so the Caspian nations of Kazakhstan and Azerbaijan are picking up the slack, welcoming the flow of foreign capital to their energy projects. Separate evaluations are given for Russia, Azerbaijan, Kazakhstan, Turkmenistan, Ukraine, Armenia, Belarus, Georgia, Lithuania, Latvia, Estonia, Moldova, Tajikstan, Uzbekistan, Albania, Bulgaria, Croatia, Czech Republic, Hungary, Poland, Romania, Slovakia, Slovenia, and Serbia.

  12. United States

    Office of Legacy Management (LM)

    onp5fGonal Ruord United States of America . I. .' - PROCEEDINGS AND DEBATES OF THE 9t?lh CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Wash!ogtm. 0.C 20402 OFFICIAL BUSINESS Penalty for pwate use. sco Congressmal Record (USPS 087-390) Postage and Fees Pad I.) s ~lJ"er"ment Prlntlng OffIce 375 SECOND CLASS NEWSPAPER -...~-- -~- -- --- H 45' 78 ' cCJ~GRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 213: Mr. BOLAND, Mr. WAXM.UG Mr. OBERSTAR.

  13. United States

    Office of Legacy Management (LM)

    onSres;eional atecord United States of America :- PROCEEDINGS AND DEBATES OF THE 981h CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washwtn. D C 20402 OFFICIAL BUSINESS Penalty for plvate use. $300 Congressmnal Record (USPS 087-390) Postage and Fees Pad U S Government Prtnttng Offlce 375 SECOND CLASS NEWSPAPER H 45' 78 * C.QvGRESSIONAL RECORD - HOUSE .-. June 28, 1983 H.J. Res. 273: Mr. BOLAND. Mr. Whxrdhr?. Mr. OBERsThx. Mi. BEDELL, Mr. BONER of

  14. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, H.R.; Meltzer, M.P.

    1996-05-28

    The portable Contamination Analysis Unit (CAU) measures trace quantities of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surfaces by measuring residual hazardous surface contamination, such as tritium and trace organics. It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings. 1 fig.

  15. Contamination analysis unit

    DOE Patents [OSTI]

    Gregg, Hugh R.; Meltzer, Michael P.

    1996-01-01

    The portable Contamination Analysis Unit (CAU) measures trace quantifies of surface contamination in real time. The detector head of the portable contamination analysis unit has an opening with an O-ring seal, one or more vacuum valves and a small mass spectrometer. With the valve closed, the mass spectrometer is evacuated with one or more pumps. The O-ring seal is placed against a surface to be tested and the vacuum valve is opened. Data is collected from the mass spectrometer and a portable computer provides contamination analysis. The CAU can be used to decontaminate and decommission hazardous and radioactive surface by measuring residual hazardous surface contamination, such as tritium and trace organics It provides surface contamination data for research and development applications as well as real-time process control feedback for industrial cleaning operations and can be used to determine the readiness of a surface to accept bonding or coatings.

  16. National Solar Jobs Census 2014

    Broader source: Energy.gov [DOE]

    The Solar Foundation’s National Solar Jobs Census 2014 is the fifth annual update of current employment, trends, and projected growth in the U.S. solar industry. Data for Census 2014 is derived...

  17. 2015 National Indian Timber Symposium

    Broader source: Energy.gov [DOE]

    The Intertribal Timber Council is hosting the Annual National Indian Timber Symposium to facilitate communication from the perspective of Tribes, the BIA, private industry, legislative bodies, and academia on issues and concerns of current forestry management practices.

  18. visit | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    visit NNSA Hosts NPT Parties at Los Alamos and Sandia National Laboratories WASHINGTON D.C. - On March 25-27, 2015, the National Nuclear Security Administration (NNSA) hosted representatives from 11 States Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and one representative from the United Nations Office for Disarmament Affairs. The

  19. Partnerships For Industry - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    115.jpg Partnerships For Industry Connect With JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP Connect with JCAP Contact Us Partnerships For Researchers Partnerships For Industry Visit JCAP partnerships for industry JCAP has established an Industrial Partnership Program. For more information on Industrial Partnership Program or to learn more about other modes of industrial interactions with JCAP, please contact: California Institute of Technology Office of

  20. Final environmental impact statement for the construction and operation of an independent spent fuel storage installation to store the Three Mile Island Unit 2 spent fuel at the Idaho National Engineering and Environmental Laboratory. Docket Number 72-20

    SciTech Connect (OSTI)

    1998-03-01

    This Final Environmental Impact Statement (FEIS) contains an assessment of the potential environmental impacts of the construction and operation of an Independent Spent Fuel Storage Installation (ISFSI) for the Three Mile Island Unit 2 (TMI-2) fuel debris at the Idaho National Engineering and Environmental laboratory (INEEL). US Department of Energy-Idaho Operations Office (DOE-ID) is proposing to design, construct, and operate at the Idaho Chemical Processing Plant (ICPP). The TMI-2 fuel debris would be removed from wet storage, transported to the ISFSI, and placed in storage modules on a concrete basemat. As part of its overall spent nuclear fuel (SNF) management program, the US DOE has prepared a final programmatic environmental impact statement (EIS) that provides an overview of the spent fuel management proposed for INEEL, including the construction and operation of the TMI-2 ISFSI. In addition, DOE-ID has prepared an environmental assessment (EA) to describe the environmental impacts associated with the stabilization of the storage pool and the construction/operation of the ISFSI at the ICPP. As provided in NRC`s NEPA procedures, a FEIS of another Federal agency may be adopted in whole or in part in accordance with the procedures outlined in 40 CFR 1506.3 of the regulations of the Council on Environmental Quality (CEQ). Under 40 CFR 1506.3(b), if the actions covered by the original EIS and the proposed action are substantially the same, the agency adopting another agency`s statement is not required to recirculate it except as a final statement. The NRC has determined that its proposed action is substantially the same as actions considered in DOE`s environmental documents referenced above and, therefore, has elected to adopt the DOE documents as the NRC FEIS.

  1. INDUSTRIAL SAFETY & HEALTH (ISH)

    Office of Environmental Management (EM)

    IIT-Industry Collaboration - Synchrophasor Engineering Research and Training Applicant: Illinois Institute of Technology (IIT) Principal Investigator: Alexander J. Flueck, flueck@iit.edu, 312-567-3625 Project Description Illinois Institute of Technology (IIT) has installed 12 Phasor Measurement Units (PMUs) on its main campus, home to the DOE-funded Perfect Power Microgrid. With the assistance of IIT Facilities, the PMU project has been gathering synchrophasor data from the 4 kV campus

  2. S. 2166: An act to reduce the Nation's dependence on imported oil, to provide for the energy security of the Nation, and for other purposes, introduced in the United States Senate and House of Representatives, One Hundred Second Congress, Second Session, February 19, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This bill, also referred to as the National Energy Security Act of 1992, contains the following: Title I - Findings and purposes: Climate protection goals,least-cost energy strategy, and Director of climate protection: Title II - Definitions; Title III (none); Title IV - Fleets and alternative fuels: Alternative fuel fleets, Alternative fuels, Mass transit and training; Title V - Renewable energy: CORECT and COEECT, Renewable energy initiatives, Hydropower; Title VI - Energy efficiency: Industrial, commercial, and residential, Federal energy management, Utilities, State, local, insular, and tribal energy assistance, LIHEAP options pilot program, Consultative commission on western hemisphere energy and environment; Title VII (none); Title VIII - Advanced nuclear reactor commercialization; Title IX - Nuclear reactor licensing; Title X - Uranium: Uranium enrichment, Uranium; Title XI - Natural gas; Title XII - Outer continental shelf: Coastal communities impact assistance, Coastal resources enhancement fund, relationship to other law, Prohibition of leasing and preleasing activity; Title XIII - Research, development, demonstration and commercialization activities; Title XIV - Coal and coal technology, Electricity, Innovative technology transfer; Title XV - Public Utility Holding Company Act reform; Title XVI - Strategic Petroleum Reserve; Title XVII - Stratospheric ozone depletion; Title XVIII - Indian energy resource development commission; Title XIX - General provisions.

  3. Capabilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Catalysis Partnerships Licensing Sponsored Research Technical Services Technologist in Residence News Press Releases Feature Stories In the News Photos Videos Ombudsman Ombudsman Argonne National Laboratory Technology Development and Commercialization About Technologies Available for Licensing Capabilities Partnerships News Capabilities Catalysis Capabilities Argonne offers a wide range of R&D capabilities that collaborators from private industry, federal agencies, and state and local

  4. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  5. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  6. AMERICA'S NATIONAL LABS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMERICA'S NATIONAL LABS by 50 50 M A D E IN U S A B r e a k t h r o u g h s America's National Laboratory system has been changing and improving the lives of millions for more than 80 years. Born at a time of great societal need, this network of Department of Energy Laboratories has now grown into 17 facilities, working together as engines of prosperity and invention. As this list of 50 Break- throughs attests, National Laboratory discoveries have spawned industries, saved lives, generated new

  7. Ames Lab Named an Industry Safety Leader

    ScienceCinema (OSTI)

    Wessels, Tom

    2013-03-01

    The U.S. Department of Energy's Ames Laboratory has been named a 2010 Industry Leader Award winner by the National Safety Council. The Ames Laboratory was one of only 81 companies/organizations to receive the award for their safety performance and the only DOE national laboratory on the list. The award represents the top 5 percent of members that have qualified for the National Safety Council 2010 Occupational Excellence Achievement Award, based on 2009 calendar year data.

  8. Argonne National Laboratory | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory Argonne National Laboratory Argonne National Laboratory | October 21, 2008 Aerial View Argonne National Laboratory | October 21, 2008 Aerial View Argonne is a multidisciplinary science and engineering research center, where "dream teams" of world-class researchers work alongside experts from industry, academia and other government laboratories to address vital national challenges in clean energy, environment, technology and national security. Enforcement

  9. The chemical industry, by country

    SciTech Connect (OSTI)

    Not Available

    1995-03-01

    Beijing will be the site for the third ACHEMASIA, international petrochemical and chemical exhibition and conference, May 15--20, 1995. In preparation for this conference, Hydrocarbon Processing contacted executives of petrochemical/chemical industries and trade associations, seeking views on the state of the industry. The Asia-Pacific region is the center of new construction and expanded capacity and also a mixture of mature, developing and emerging petrochemical industries. Established countries must mold and grow with emerging economies as the newcomers access natural resources and develop their own petrochemical infrastructures. The following nation reports focus on product supply/demand trends, economic forecasts, new construction, etc. Space limitations prohibit publishing commentaries from all countries that have petrochemical/chemical capacity. Reports are published from the following countries: Australia, China, Japan, Korea, Malaysia, Philippines, Thailand, and Vietnam.

  10. Wells Fargo National Cleantech Group | Open Energy Information

    Open Energy Info (EERE)

    Fargo National Cleantech Group Jump to: navigation, search Name: Wells Fargo National Cleantech Group Place: Palo Alto, California Product: California based commercial banking unit...

  11. Impact of Extended Daylight Saving Time on National Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Documentation Impact of Extended Daylight Saving Time on National Energy ... of Extended Daylight Saving Time on the national energy consumption in the United States. ...

  12. Moldova National Inventory Report - Lessons Learned | Open Energy...

    Open Energy Info (EERE)

    Moldova National Inventory Report - Lessons Learned Jump to: navigation, search Name Moldova Second National Inventory Report - Lessons Learned AgencyCompany Organization United...

  13. U.S. National Hydrogen Energy Roadmap | Open Energy Information

    Open Energy Info (EERE)

    National Hydrogen Energy Roadmap Jump to: navigation, search Tool Summary LAUNCH TOOL Name: U.S. National Hydrogen Energy Roadmap AgencyCompany Organization: United States...

  14. Vision for Bioenergy and Biobased Products in the United States

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... viable, bioenergy and biobased products industry." A November 2005 assessment of the current status on the ... so that our nation has the creative, well-prepared workforce that ...

  15. Level: National Data;

    U.S. Energy Information Administration (EIA) Indexed Site

    .5 First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: Energy Sources and Shipments, including Further Classification of 'Other' Energy Sources; Column: First Use per Energy Sources and Shipments; Unit: Trillion Btu. Total Energy Source First Use Total United States Coal 1,433 Natural Gas 5,911 Net Electricity 2,851 Purchases 2,894 Transfers In 20 Onsite Generation from Noncombustible Renewable Energy 4 Sales and Transfers Offsite 67 Coke and Breeze 272

  16. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    2 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Residual and LPG and (excluding Coal Code(a) End Use Total Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Other(f) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 15,658 2,850 251 129 5,512 79 1,016 5,820 Indirect Uses-Boiler Fuel --

  17. Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    4.4 Number of Establishments by Offsite-Produced Fuel Consumption, 2006; Level: National Data; Row: NAICS Codes (3-Digit Only); Column: Energy Sources Unit: Establishment Counts. Any NAICS Energy Residual Distillate LPG and Coke Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal and Breeze Other(g) Total United States 311 Food 14,128 14,109 326 1,462 11,395 2,920 67 13 1,149 3112 Grain and Oilseed Milling 580 580 15 174 445 269 35 0 144 311221

  18. Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments

    U.S. Energy Information Administration (EIA) Indexed Site

    1.4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2006; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 14,128 14,113 326 1,475 11,399 2,947 67 15

  19. Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments;

    U.S. Energy Information Administration (EIA) Indexed Site

    .4 Number of Establishments by First Use of Energy for All Purposes (Fuel and Nonfuel), 2010; Level: National Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit: Establishment Counts. Any Shipments NAICS Energy Net Residual Distillate LPG and Coke and of Energy Sources Code(a) Subsector and Industry Source(b) Electricity(c) Fuel Oil Fuel Oil(d) Natural Gas(e) NGL(f) Coal Breeze Other(g) Produced Onsite(h) Total United States 311 Food 13,269 13,265 151 2,494 10,376 4,061 64 7

  20. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2006; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Subsector and Industry Establishments(b) in Use(c) In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know In Use(d) Not in Use Don't Know Total United States 311 Food 14,128 297

  1. Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies;

    U.S. Energy Information Administration (EIA) Indexed Site

    3 Number of Establishments by Usage of Cogeneration Technologies, 2010; Level: National Data; Row: NAICS Codes; Column: Usage within Cogeneration Technologies; Unit: Establishment Counts. Establishments with Any Cogeneration NAICS Technology Code(a) Selected Subsectors and Industry Establishments(b) in Use(c) In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know In Use(d) Not in Use(e) Don't Know Total United

  2. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2006; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know Not Applicable Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 159,258 9,922 25,553 -- Set Goals for

  3. Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes;

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be fielded in 2015 Table 8.4 Number of Establishments by Participation in Specific Energy-Management Activities, 2010; Level: National Data; Row: Specific Energy-Management Activities within NAICS Codes; Column: Participation; Unit: Establishment Counts. NAICS Code(a) Energy-Management Activity No Participation Participation(b) Don't Know No Steam Used Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES Full-Time Energy Manager (c) 142,267 12,536 15,365 -- Set Goals for

  4. Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios

    U.S. Energy Information Administration (EIA) Indexed Site

    Next MECS will be conducted in 2010 Table 6.1 Consumption Ratios of Fuel, 2006 Level: National and Regional Data; Row: NAICS Codes; Column: Energy-Consumption Ratios Unit: Varies. Consumption Consumption per Dollar Consumption per Dollar of Value NAICS per Employee of Value Added of Shipments Code(a) Subsector and Industry (million Btu) (thousand Btu) (thousand Btu) Total United States 311 Food 879.8 5.0 2.2 3112 Grain and Oilseed Milling 6,416.6 17.5 5.7 311221 Wet Corn Milling 21,552.1 43.6

  5. Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources

    U.S. Energy Information Administration (EIA) Indexed Site

    August 2009 Next MECS will be conducted in 2010 Table 3.6 Selected Wood and Wood-Related Products in Fuel Consumption, 2006 Level: National and Regional Data; Row: Selected NAICS Codes; Column: Energy Sources Unit: Trillion Btu. Wood Residues and Wood-Related Pulping Liquor Wood Byproducts and NAICS or Biomass Agricultural Harvested Directly from Mill Paper-Related Code(a) Subsector and Industry Black Liquor Total(b) Waste(c) from Trees(d) Processing(e) Refuse(f) Total United States 311 Food 0

  6. Carbon Emissions: Food Industry

    U.S. Energy Information Administration (EIA) Indexed Site

    Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct....

  7. Chemicals Industry Vision

    SciTech Connect (OSTI)

    none,

    1996-12-01

    Chemical industry leaders articulated a long-term vision for the industry, its markets, and its technology in the groundbreaking 1996 document Technology Vision 2020 - The U.S. Chemical Industry. (PDF 310 KB).

  8. PERMITTING LEADERSHIP IN THE UNITED STATES

    SciTech Connect (OSTI)

    Ken Nemeth

    2002-09-01

    In accordance with the Southern States Energy Board (SSEB) proposal, as incorporated into NETL/DE-FC26-97FT34199, the objective of this agreement is to streamline the environmental technology permitting process site-to-site, state-to-state, and industry-to-industry to achieve remediation and waste processing faster, better and cheaper. SSEB is working with member Governors, legislators and regulators to build consensus on streamlining the permitting process for new and innovative technologies for addressing the legacy of environmental problems from 50 years of weapons research, development and production. This report reviews mechanisms whereby industry consortiums and the Department of Energy (DOE) have been working with State regulators and other officials in technology deployment decisions within the DOE complex. The historic development of relationships with State regulators is reviewed and the current nature of the relationships examined. The report contains observations from internal DOE reviews as well as recommendations from the General Accounting Office (GAO) and other external organizations. The report discusses reorganization initiatives leading up to a DOE Top-to-Bottom review of the Environmental Management (EM) Program and highlights points of consideration for maintaining effective linkages with State regulators. It notes how the proposed changes will place new demands upon the National Energy Technology Laboratory (NETL) and how NETL can leverage its resources by refocusing existing EM efforts specifically to states that have DOE facilities within their borders (host-states). Finally, the report discusses how SSEB's Permitting Leadership in the United States (PLUS) program can provide the foundation for elements of NETL's technical assistance program that are delivered to regulators and other decision- makers in host-states. As a regional compact commission, SSEB provides important direct linkages to regulators and stakeholders who need technical assistance to evaluate DOE's cleanup plans. In addition, the PLUS program has facilitated the involvement of key regulators from host-states beyond the Southern region.

  9. " Million Housing Units, Final...

    U.S. Energy Information Administration (EIA) Indexed Site

    Final" ,,"Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ... ,,"RSEs for Housing Unit Type" ,,"Single-Family Units",,"Apartments in Buildings With" ...

  10. Tennessee | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Tennessee Ambassador Ensher visits Y-12 and NNSS Ambassador Henry S. Ensher, the top U.S. diplomat at the United States Mission to International Organizations in Vienna, Austria, recently visited two facilities to understand NNSA's mission better: the Y-12 National Security Complex and the Nevada National Security Site (NNSS). At Y-12, he... Pantex/Y-12 donate $1.1M to local United Way campaigns United Way contributions at the Pantex Plant and the Y-12 National Security Complex totaled some $1.1

  11. Sandia National Laboratories:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Prognostics Management System Reduces Offshore Wind O&M Costs | Department of Energy Sandia National Laboratories' Structural Health Monitoring and Prognostics Management System Reduces Offshore Wind O&M Costs Sandia National Laboratories' Structural Health Monitoring and Prognostics Management System Reduces Offshore Wind O&M Costs September 16, 2015 - 11:53am Addthis Offshore wind energy could potentially play a significant role in helping the United States obtain an energy

  12. Chemical Industry Corrosion Management

    SciTech Connect (OSTI)

    2003-02-01

    Improved Corrosion Management Could Provide Significant Cost and Energy Savings for the Chemical Industry. In the chemical industry, corrosion is often responsible for significant shutdown and maintenance costs.

  13. Industrial | Open Energy Information

    Open Energy Info (EERE)

    Trends Despite a 54-percent increase in industrial shipments, industrial energy consumption increases by only 19 percent from 2009 to 2035 in the AEO2011 Reference case....

  14. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  15. Industrial Technologies Program - A Clean, Secure Energy Future via Industrial Energy Efficiency

    SciTech Connect (OSTI)

    2010-05-01

    The Industrial Technologies Program (ITP) leads the national effort to save energy and reduce greenhouse gas emissions in the largest energy-using sector of the U.S. economy. ITP drives energy efficiency improvements and carbon dioxide reductions throughout the manufacturing supply chain, helping develop and deploy innovative technologies that transform the way industry uses energy.

  16. UNITED STATES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DEPARTMENT OF ENERGY CARLSBAD FIELD OFFICE P.O. BOX 3090 4021 NATIONAL PARKS HIGHWAY CARLSBAD, NEW MEXICO 88220 REQUEST FOR REPORT OF RADIATION EXPOSURE HISTORY FOR THE WASTE ISOLATION PILOT PLANT ON:________________________________________________________________________________ (PRINT FULL NAME- -FIRST, MIDDLE AND LAST ALSO INDICATE MAIDEN NAME AND ALIASES IF APPLICABLE.) Pursuant to the Privacy Act of 1974, and the U.S. DOE Order 435.1 or Title 10, Section 1008 of the Federal Code of

  17. Corrective Action Decision Document/Corrective Action Plan for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-11-22

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada National Security Site (NNSS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NNSS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the potential CAAs, Closure in Place with Administrative Controls is the preferred CAA for the 92-Acre Area. Closure activities will include the following: (1) Constructing an engineered evapotranspiration cover over the 92-Acre Area; (2) Installing use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; (3) Establishing vegetation on the cover; (4) Implementing a UR; and (5) Implementing post-closure inspections and monitoring. The Closure in Place with Administrative Controls alternative meets all requirements for the technical components evaluated, fulfills all applicable federal and state regulations for closure of the site, and will minimize potential future exposure pathways to the buried waste at the site.

  18. LS Industrial Systems Co Ltd formerly LG Industrial Systems ...

    Open Energy Info (EERE)

    LS Industrial Systems Co Ltd formerly LG Industrial Systems Jump to: navigation, search Name: LS Industrial Systems Co Ltd (formerly LG Industrial Systems) Place: Anyang,...

  19. United States

    Energy Savers [EERE]

    Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act

  20. United States

    Energy Savers [EERE]

    BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) .

  1. UNITED STEELWORKERS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOIARequestNovember 13, 2015 UNITED STEELWORKERS " ' " ' " USW Local 12-369 797 Stevens Drive Richland, Washington 99352 --P-hone-509-7-1-3-~J.180-or-FA-X:-509-71-3-1-783- - - * - - - UNRY AND $JIU!N$'!'H FQ.11; wc:HU<Elt5 November 13, 2015 USW-DLR-015-075 Dorothy Riehle, FOIA Officer Depa.rtment of Energy Richland Operations (RL) and (ORP) P.O. Box 550, Mail Stop A7-75 . Richland, WA 99352 SUBJECT: FREEDOM OF INFORMATION ACT AND/OR PRIVACY ACT REQUEST Dear Ms. Riehle: I am

  2. New Jersey Industrial Energy Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jersey Industrial Energy Program New Jersey Industrial Energy Program Map highlighting New Jersey New Jersey is home to energy-intensive industrial manufacturing sectors such as chemicals, computers and electronics, and transportation equipment manufacturing. In 2007, industrial manufacturing in the state contributed to approximately 10% of New Jersey's gross domestic product and 20% of the state's energy usage, consuming 452.1 trillion British thermal units (Btu). As part of an initiative to

  3. DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The list only includes deployments that can be traced to DOE FCT Office involvement. References ii : 1. "MHE Units Deployed by Class: ARRA", National Renewable Energy Laboratory, ...

  4. Industrial Hygiene Functional Area Qualification Standard

    Energy Savers [EERE]

    Barriers to Industrial Energy Efficiency Report to Congress June 2015 United States Department of Energy Washington, DC 20585 Department of Energy | June 2015 Message from the Assistant Secretary The industrial sector has shown steady progress in improving energy efficiency over the past few decades and energy efficiency improvements are expected to continue. Studies suggest, however, that there is potential to accelerate the rate of adopting energy efficient technologies and practices that

  5. United States Government Department of Energy

    Energy Savers [EERE]

    k08-93) United States Government Department of Energy memorandum DATE: September 23, 2004 Audit Report Number: OAS-L-04-23 REPLY TO ATTN OF: IG-32 (A03SR041) SUBJECT: Audit of the National Nuclear Security Administration's Tritium Production Plan TO: Administrator, National Nuclear Security Administration INTRODUCTION AND OBJECTIVE The Department of Energy's National Nuclear Security Administration (NNSA) is responsible for maintaining and enhancing the nation's nuclear weapons stockpile, of

  6. Career Map: Industrial Engineer

    Broader source: Energy.gov [DOE]

    The Wind Program's Career Map provides job description information for Industrial Engineer positions.

  7. National Residential Efficiency Measures Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Residential Efficiency Measures Database Development Document, v3.0 Final Draft, June 2012 National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado i Executive Summary The National Residential Efficiency Measures Database is a publicly available, centralized resource of residential building retrofit measures and costs for the U.S. building industry. With support from the U.S. Department of Energy, NREL developed this tool to help users determine the most

  8. Colorado Scientists Win National Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists Win National Award For more information contact: e:mail: Public Affairs Golden, Colo., July 14, 1999 — Two Colorado scientists will share a major national award for their part in developing a process that can help turn common waste from city landfills and the paper mill industry into environmentally friendly products, such as biodegradable pesticides and gasoline additives. Dr. Joseph Bozell and Dr. Luc Moens at the U.S. Department of Energy's (DOE) National Renewable Energy

  9. Baruch Plan Presented | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    14, 1946 Baruch Plan Presented New York, NY Bernard Baruch presents the American plan for international control of atomic research to the United Nations. The Soviet Union opposes...

  10. Maintaining the Stockpile | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    from 11 States Parties to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT) and one representative from the United Nations Office for Disarmament Affairs. ...

  11. Oak Ridge National Laboratory | Open Energy Information

    Open Energy Info (EERE)

    Tool 4 References 4.1 References Overview "Oak Ridge National Laboratory (ORNL) is a science and technology laboratory managed for the United States Department of Energy by...

  12. National Grid EnergyWise Financing program

    Broader source: Energy.gov [DOE]

    National Grid offers 0% financing to its customers to install energy efficient heating equipment in Rhode Island homes. Only residential customers of National Grid (electric or gas) with 1-4 unit...

  13. S.2058: This act may be cited as the Department of Energy National Security Act for Fiscal Year 1999, introduced in the Senate of the United States, One Hundred Fifth Congress, Second Session, May 11, 1998

    SciTech Connect (OSTI)

    1998-12-31

    This bill is to authorize appropriations for fiscal year 1999 for defense activities of the Department of Energy, and for other purposes. Topics addressed in the bill include DOE national security programs including recurring general provisions and program authorizations, restrictions,and limitations; defense nuclear facilities safety board; national defense stockpile; naval petroleum reserves; and Panama Canal commission.

  14. Users from Industry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users from Industry Users from Industry Print The Advanced Light Source (ALS) welcomes industrial users from large and small companies whose projects advance scientific knowledge, investigate the development of new products and manufacturing methods, and/or provide economic benefits and jobs to the economy. The nature of industrial research can be different from traditional university and government sponsored projects, so the ALS has created unique opportunities for new and existing industrial

  15. MSET: An Early Warning System with Broad Industrial Application - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Find More Like This Return to Search MSET: An Early Warning System with Broad Industrial Application Argonne National Laboratory Contact ANL About This Technology MSET Fault Detection Algorithm MSET Fault Detection Algorithm Technology Marketing Summary The success of modern industries- especially those that are electricity-intensive-depends on complex engineering systems to ensure safe,

  16. New Wind Career Map Navigates Industry Jobs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Career Map Navigates Industry Jobs New Wind Career Map Navigates Industry Jobs November 3, 2014 - 2:00pm Addthis Workers prepare to service a turbine. | Photo credit National Renewable Energy Lab (NREL). Workers prepare to service a turbine. | Photo credit National Renewable Energy Lab (NREL). Siemens' employees Israel Garay, left and Eric Eggleston work on the nacelle of a Siemens 2.3 MW, 80 meter wind turbine at NREL's National Wind Technology Center (NWTC) in Boulder County, Colorado. |

  17. Energy Department Announces New Initiative to Remove Barriers for Industry

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Work with National Labs, Commercialize Technology | Department of Energy Initiative to Remove Barriers for Industry to Work with National Labs, Commercialize Technology Energy Department Announces New Initiative to Remove Barriers for Industry to Work with National Labs, Commercialize Technology December 8, 2011 - 12:30pm Addthis Washington, D.C. - As part of President Obama's commitment to helping U.S businesses create jobs and strengthen their competitiveness by speeding up the transfer

  18. Industry Group Learns About Light Source Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Group Learns About Light Source Opportunities Industry Group Learns About Light Source Opportunities Print Tuesday, 25 September 2012 08:45 On Monday, September 24, the Silicon Valley Leadership Group (SVLG) hosted a meeting to introduce its members to the area's light sources and how they help advance innovation and promote economic competitiveness. The event was sponsored by Congresswomen Zoe Lofgren and Anna Eshoo together with Berkeley Lab (LBNL) and SLAC National Accelerator

  19. Optimization of Industrial Enzymes - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Optimization of Industrial Enzymes A Breakthrough for Greater Enzyme Efficiency Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing Summary Enzymes are highly efficient naturally occurring catalysts that are used in a wide range of applications from industrial processes to new drug development. Conventional mechanism for understanding the mechanisms of enzyme functions are costly and

  20. National Geoscience Data Repository System. Final report

    SciTech Connect (OSTI)

    Schiffries, C.M.; Milling, M.E.

    1994-03-01

    The American Geological Institute (AGI) has completed the first phase of a study to assess the feasibility of establishing a National Geoscience Data Repository System to capture and preserve valuable geoscientific data. The study was initiated in response to the fact that billions of dollars worth of domestic geological and geophysical data are in jeopardy of being irrevocably lost or destroyed as a consequence of the ongoing downsizing of the US energy and minerals industry. This report focuses on two major issues. First, it documents the types and quantity of data available for contribution to a National Geoscience Data Repository System. Second, it documents the data needs and priorities of potential users of the system. A National Geoscience Data Repository System would serve as an important and valuable source of information for the entire geoscience community for a variety of applications, including environmental protection, water resource management, global change studies, and basic and applied research. The repository system would also contain critical data that would enable domestic energy and minerals companies to expand their exploration and production programs in the United States for improved recovery of domestic oil, gas, and mineral resources.

  1. Landmark Report Analyzes Current State of U.S. Offshore Wind Industry (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    New report assesses offshore wind industry, offshore wind resource, technology challenges, economics, permitting procedures, and potential risks and benefits. The National Renewable Energy Laboratory (NREL) recently published a new report that analyzes the current state of the offshore wind energy industry, Large-Scale Offshore Wind Power in the United States. It provides a broad understanding of the offshore wind resource, and details the associated technology challenges, economics, permitting procedures, and potential risks and benefits of developing this clean, domestic, renewable resource. The United States possesses large and accessible offshore wind energy resources. The availability of these strong offshore winds close to major U.S. coastal cities significantly reduces power transmission issues. The report estimates that U.S. offshore winds have a gross potential generating capacity four times greater than the nation's present electric capacity. According to the report, developing the offshore wind resource along U.S. coastlines and in the Great Lakes would help the nation: (1) Achieve 20% of its electricity from wind by 2030 - Offshore wind could supply 54 gigawatts of wind capacity to the nation's electrical grid, increasing energy security, reducing air and water pollution, and stimulating the domestic economy. (2) Provide clean power to its coastal demand centers - Wind power emits no carbon dioxide (CO2) and there are plentiful winds off the coasts of 26 states. (3) Revitalize its manufacturing sector - Building 54 GW of offshore wind energy facilities would generate an estimated $200 billion in new economic activity, and create more than 43,000 permanent, well-paid technical jobs in manufacturing, construction, engineering, operations and maintenance. NREL's report concludes that the development of the nation's offshore wind resources can provide many potential benefits, and with effective research, policies, and commitment, offshore wind energy can play a vital role in future U.S. energy markets.

  2. Termination unit

    DOE Patents [OSTI]

    Traeholt, Chresten [Frederiksberg, DK; Willen, Dag [Klagshamn, SE; Roden, Mark [Newnan, GA; Tolbert, Jerry C [Carrollton, GA; Lindsay, David [Carrollton, GA; Fisher, Paul W [Heiskell, TN; Nielsen, Carsten Thidemann [Jaegerspris, DK

    2014-01-07

    This invention relates to a termination unit comprising an end-section of a cable. The end section of the cable defines a central longitudinal axis and comprising end-parts of N electrical phases, an end-part of a neutral conductor and a surrounding thermally insulation envelope adapted to comprising a cooling fluid. The end-parts of the N electrical phases and the end-part of the neutral conductor each comprising at least one electrical conductor and being arranged in the cable concentrically around a core former with a phase 1 located relatively innermost, and phase N relatively outermost in the cable, phase N being surrounded by the neutral conductor, electrical insulation being arrange between neighboring electrical phases and between phase N and the neutral conductor, and wherein the end-parts of the neutral conductor and the electrical phases each comprise a contacting surface electrically connected to at least one branch current lead to provide an electrical connection: The contacting surfaces each having a longitudinal extension, and being located sequentially along the longitudinal extension of the end-section of the cable. The branch current leads being individually insulated from said thermally insulation envelope by individual electrical insulators.

  3. Issued by Sandia National Laboratories,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or

  4. The future steelmaking industry and its technologies

    SciTech Connect (OSTI)

    Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. |

    1995-01-01

    The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

  5. Savannah River National Laboratory Technology Marketing Summaries - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal Savannah River National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Savannah River National Laboratory (SRNL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Savannah River National Laboratory 27 Technology Marketing Summaries Category Title and Abstract Laboratories Date Industrial Technologies Startup

  6. National hydrogen energy roadmap

    SciTech Connect (OSTI)

    None, None

    2002-11-01

    This report was unveiled by Energy Secretary Spencer Abraham in November 2002 and provides a blueprint for the coordinated, long-term, public and private efforts required for hydrogen energy development. Based on the results of the government-industry National Hydrogen Energy Roadmap Workshop, held in Washington, DC on April 2-3, 2002, it displays the development of a roadmap for America's clean energy future and outlines the key barriers and needs to achieve the hydrogen vision goals defined in

  7. Awards | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Awards Each year, Argonne National Laboratory and many of its world-class scientists and engineers are recognized for their outstanding talents and the innovative technologies they develop with their research teams and in association with industry partners. Argonne researchers have received or been recognized by: R&D 100 Awards: Each year, R&D Magazine recognizes the 100 most technologically significant new products of the last year. The competition has two purposes: to recognize

  8. National Renewable Energy Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal National Renewable Energy Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the National Renewable Energy Laboratory (NREL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. National Renewable Energy Laboratory 117 Technology Marketing Summaries Category Title and Abstract Laboratories Date Energy Storage Solar

  9. Thomas Jefferson National Accelerator Facility Technology Marketing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summaries - Energy Innovation Portal Thomas Jefferson National Accelerator Facility Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Thomas Jefferson National Accelerator Facility (TJNAF). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Thomas Jefferson National Accelerator Facility 3 Technology Marketing Summaries Category Title and

  10. National Center for Photovoltaics at NREL

    ScienceCinema (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2014-06-10

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  11. National Center for Photovoltaics at NREL

    SciTech Connect (OSTI)

    VanSant, Kaitlyn; Wilson, Greg; Berry, Joseph; Al-Jassim, Mowafak; Kurtz, Sarah

    2013-11-07

    The National Center for Photovoltaics at the National Renewable Energy Laboratory (NREL) focuses on technology innovations that drive industry growth in U.S. photovoltaic (PV) manufacturing. The NCPV is a central resource for our nation's capabilities in PV research, development, deployment, and outreach.

  12. Lawrence Livermore National Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Lawrence Livermore National Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Lawrence Livermore National Laboratory (LLNL). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Lawrence Livermore National Laboratory 23 Technology Marketing Summaries Category Title and Abstract Laboratories Date Energy Storage

  13. Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity;

    U.S. Energy Information Administration (EIA) Indexed Site

    4 End Uses of Fuel Consumption, 2006; Level: National Data; Row: End Uses within NAICS Codes; Column: Energy Sources, including Net Demand for Electricity; Unit: Trillion Btu. Distillate Fuel Oil Coal NAICS Net Demand Residual and LPG and (excluding Coal Code(a) End Use for Electricity(b) Fuel Oil Diesel Fuel(c) Natural Gas(d) NGL(e) Coke and Breeze) Total United States 311 - 339 ALL MANUFACTURING INDUSTRIES TOTAL FUEL CONSUMPTION 3,335 251 129 5,512 79 1,016 Indirect Uses-Boiler Fuel 84 133 23

  14. Nevada | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Nevada Ambassador Ensher visits Y-12 and NNSS Ambassador Henry S. Ensher, the top U.S. diplomat at the United States Mission to International Organizations in Vienna, Austria, recently visited two facilities to understand NNSA's mission better: the Y-12 National Security Complex and the Nevada National Security Site (NNSS). At Y-12, he... Department of Energy's chief risk officer visits Nevada National Security Site Earlier this month, Associate Deputy Secretary John MacWilliams visited the

  15. NM (United States)] 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS...

    Office of Scientific and Technical Information (OSTI)

    Clayton, Steven Los Alamos National Lab. (LANL), Los Alamos, NM (United States) 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS;...

  16. Characteristics of seal formations (confining units) for CO2...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Sandia National Laboratories Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES; CARBON ...

  17. Industrial Carbon Management Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Industrial Assessment Centers (IACs) Small- and medium-sized manufacturers may be eligible to receive a no-cost assessment provided by DOE Industrial Assessment Centers (IACs). Teams located at 24 universities around the country conduct the energy audits to identify opportunities to improve productivity, reduce waste, and save energy. IACs typically identify more than $130,000 in potential annual savings opportunities for

  18. Industrial Green | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Energy Efficiency Basics Industrial Energy Efficiency Basics The industrial sector is vital to the U.S. economy, but at the same time consumes the most energy in the country to manufacture products we use every day. Among the most energy-intensive industries are aluminum, chemicals, forest product, glass, metal casting, mining, petroleum refining, and steel. The energy supply chain begins with electricity, steam, natural gas, coal, and other fuels supplied to a manufacturing plant

  19. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  20. Industrial Strength Pipes

    Energy Science and Technology Software Center (OSTI)

    2006-01-23

    Industrial Strength Pipes (ISP) is a toolkit for construction pipeline applications using the UNIX pipe and filter model.