Powered by Deep Web Technologies
Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Alternative Fuels Data Center: Delaware Reduces Truck Idling With  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Reduces Truck Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Delicious Rank Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Digg Find More places to share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on AddThis.com...

2

Microbial enhanced waterflooding pilot project, Mink Unit, Delaware-Childers (OK) field  

Science Conference Proceedings (OSTI)

The first microbial-enhanced waterflood field project was initiated in October of 1986. The site selected for the project is in the Mink Unit of Delaware-Childers field in Nowata County, Oklahoma. The pilot area consists of four adjacent inverted five-spot patterns drilled on 5-acre spacing. There are 21 injection and 15 production wells on this pilot. Four of the 21 injection wells were treated with microbial formulation. Laboratory screening criteria were developed to evaluate microorganisms for this project. Several different microbial formulations were tested. Injectivity and microbial field survivability tests were conducted during the baseline period on two off-pattern wells, and a chemical tracer, fluorescein, was injected into the four injection wells during the baseline period. Methodologies for field applications of microorganisms in ongoing waterfloods were developed as a result of this project. Results from the field pilot showed that microorganisms could be injected into an ongoing waterflood without causing any problems in injectivity. Microbial treatment did improve oil production rate, and water/oil ratios for producing wells nearest the microbially treated injection wells continue to be more favorable than baseline values. 23 refs., 30 figs., 28 tabs.

Bryant, R.S.; Burchfield, T.E.; Dennis, D.M.; Hitzman, D.O.

1991-08-01T23:59:59.000Z

3

Recovery Act State Memos Delaware  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

weatherization efforts in the state, creating jobs, reducing carbon emissions, and saving money for Delaware's low-income families. Over the course of the Recovery Act,...

4

Delaware State University | .EDUconnections  

Office of Scientific and Technical Information (OSTI)

Delaware State University Delaware State University Research Office of the Associate Provost for Research General Research Capability Center for Integrated Biological & Environmental Research Experimental Program to Stimulate Competitive Research Delaware IDeA Network of Biomedical Research Excellence Faculty Research DSU Leads the Way in Better Buildings DSU is one of the first university partners in the US to join the Department of Energy's Better Buildings inititative to reduce its carbon footprint by 25% by 2015. Secretary of Energy Chu participated in the DSU kick-off program to commemorate the school's efforts in July 2012. Read more about this showcase project. Search this site: Search Prestigious research projects underway by Delaware State University (DSU) serve to enhance DSU's land-grant mission and its contributions to the

5

Delaware Solid Waste Authority (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

6

Tax-Exempt Bond Financing (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bond Financing (Delaware) Bond Financing (Delaware) Tax-Exempt Bond Financing (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Systems Integrator Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Bond Program Provider Delaware Economic Development Office The Delaware Economic Development Authority provides tax-exempt bond financing for financial assistance to new or expanding businesses, governmental units and certain organizations that are exempt from federal

7

Delaware Strategic Fund (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Fund (Delaware) Strategic Fund (Delaware) Delaware Strategic Fund (Delaware) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Grant Program Provider Business Financing The Delaware Strategic Fund represents the primary funding source used by Delaware Economic Development Authority (DEDA) to provide customized loans and grants to businesses for job creation, relocation and expansion. For businesses considering locating in the state of Delaware, financial assistance may be provided in the form of low interest loans, grants, or other creative instruments to support the attraction of businesses that pay sustainable wages. Assistance terms are negotiated specific to each

8

Clean Cities: State of Delaware Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State of Delaware Clean Cities Coalition State of Delaware Clean Cities Coalition The State of Delaware Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of Delaware Clean Cities coalition Contact Information Morgan Ellis 302-739-9053 morgan.ellis@state.de.us Clean Cities Coordinator Morgan Ellis Photo of Morgan Ellis Morgan Ellis has been with the Delaware Division of Energy and Climate for three years and became the Clean Cities coordinator in 2013. Her roles and responsibilities include representing the State of Delaware on the Transportation Climate Initiative, the Regional Greenhouse Gas Initiative, as well as working on climate related policies for the State of Delaware. Ellis worked with Delaware's Clean Cities Coalition on implementing the

9

Delaware River Basin Commission (Multiple States) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) Delaware River Basin Commission (Multiple States) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Systems Integrator Savings Category Water Buying & Making Electricity Home Weatherization Program Info Start Date 1961 State Delaware Program Type Environmental Regulations Siting and Permitting Provider Project Review Section The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states (Pennsylvania, New York, New

10

Delaware - State Energy Profile Overview - U.S. Energy Information...  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware - State Energy Profile Overview - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States...

11

Delaware - Rankings - U.S. Energy Information Administration...  

U.S. Energy Information Administration (EIA) Indexed Site

not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida...

12

Climate Action Plan (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

The Delaware Climate Change Action Plan (DCCAP) was prepared with funding from the Delaware State Energy Office and the U.S. Environmental Protection Agencys State and Local Climate Change Program...

13

Delaware Land Protection Act (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) Delaware Land Protection Act (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Start Date 1990 State Delaware Program Type Environmental Regulations Provider Delaware Department of Natural Resources and Environmental Control The Land Protection Act requires the Department of Natural Resources and Environmental Control to work with the Delaware Open Space Council to develop standards and criteria for determining the existence and location

14

Alternative Fuels Data Center: Delaware Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Code Title 30, Chapter 51, Subchapter II) Laws and Regulations State Agency Energy Plan To improve air quality and reduce operating expenses from state vehicle use,...

15

Alternative Fuels Data Center: Delaware Laws and Incentives for...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware laws and incentives related to HEVs PHEVs. Laws and Regulations State Agency Energy Plan To improve air quality and reduce operating expenses from state vehicle use,...

16

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Categorical Exclusion Determination Control System for Buoyancy Stabilized Offshore Wind Turbine CX(s) Applied: A9, A11 Date: 12202011 Location(s): Delaware Offices(s):...

17

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Prices",10,"Annual",2012,"6301967" ,"Release Date:","10312013" ,"Next Release...

18

,"Delaware Natural Gas Prices"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Delaware Natural Gas Prices" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

19

Delaware/Incentives | Open Energy Information  

Open Energy Info (EERE)

Incentives Incentives < Delaware Jump to: navigation, search Contents 1 Financial Incentive Programs for Delaware 2 Rules, Regulations and Policies for Delaware Download All Financial Incentives and Policies for Delaware CSV (rows 1 - 61) Financial Incentive Programs for Delaware Download Financial Incentives for Delaware CSV (rows 1 - 22) Incentive Incentive Type Active DEMEC - Green Energy Program Incentives (Delaware) State Rebate Program No DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) (Delaware) Utility Rebate Program Yes Delaware Electric Cooperative - Green Energy Program Incentives Utility Rebate Program Yes Delaware Energy An$wers Home Performance Program (Delaware) State Rebate Program No Delaware Energy An$wers for Business (Delaware) State Grant Program No

20

Natural Gas Regulation - Delaware Public Service Commission (Delaware) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Natural Gas Regulation - Delaware Public Service Commission Natural Gas Regulation - Delaware Public Service Commission (Delaware) Natural Gas Regulation - Delaware Public Service Commission (Delaware) < Back Eligibility Utility Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Fuel Distributor Program Info State Delaware Program Type Generating Facility Rate-Making Provider Delaware Public Service Commission The Delaware Public Service Commission regulates only the distribution of natural gas to Delaware consumers. The delivery and administrative costs associated with natural gas distribution are determined in base rate proceedings before the Commission. The recovery of costs associated with the natural gas used by customers is determined annually as part of fuel adjustment proceedings. As a result of this process, rates for natural gas

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Delaware Gasoline Price Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov. We offer these external links for your convenience in accessing additional...

22

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy CX(s) Applied: B3.6 Date: 01152010 Location(s): Delaware Office(s): Advanced Research Projects Agency - Energy October 27, 2009 Vice President Biden Announces...

23

Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Greenhouse Gas Reduction Projects Grant Program (Delaware) Greenhouse Gas Reduction Projects Grant Program (Delaware) Delaware Greenhouse Gas Reduction Projects Grant Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Schools State/Provincial Govt Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source Greenhouse Gas Reduction Projects Fund State Delaware Program Type Grant Program Provider Delaware Department of Natural Resources and Environmental Control The Delaware Greenhouse Gas Reduction Projects Grant Program is funded by the Greenhouse Gas Reduction Projects Fund, established by the Act to Amend Title 7 of the Delaware Code Relating to a Regional Greenhouse Gas

24

Delaware.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

25

Delaware - Green Power Requirement For State Facilities (Delaware...  

Open Energy Info (EERE)

to make the state government of Delaware a leader by example in clean energy and sustainability. The order includes a provision directing executive branch state agencies to...

26

Delaware - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Delaware - Seds - U.S. Energy Information Administration (EIA) Delaware - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

27

Delaware Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

The State added its first utility-scale wind project in 2010, a one-turbine project built by the University of Delaware. ... Kentucky, Colorado, and ...

28

Brownfield Assistance Program (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Brownfield Assistance Program (Delaware) Brownfield Assistance Program (Delaware) Brownfield Assistance Program (Delaware) < Back Eligibility Commercial Agricultural Industrial Construction Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info Funding Source Delaware Strategic Fund State Delaware Program Type Grant Program Provider Business Financing The Brownfield Assistance Program, administrated by the Delaware Economic Development Office (DEDO) and funded from Delaware Strategic Fund, provides matching grants to owners and developers to encourage the redevelopment of environmentally distressed sites within the state. Brownfield redevelopment is an important tool for Delaware's livable growth, recycling the state's

29

Delaware Datos del Precio de la Gasolina  

NLE Websites -- All DOE Office Websites (Extended Search)

(Busqueda por Ciudad o Cdigo Postal) - GasBuddy.com Delaware Gas Prices (Ciudades Selectas) - GasBuddy.com Delaware Gas Prices (Organizado por Condado) -...

30

Hazardous Waste Management (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management (Delaware) Hazardous Waste Management (Delaware) Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility StateProvincial Govt Industrial...

31

Energy Efficiency Resource Standards (Delaware) | Open Energy...  

Open Energy Info (EERE)

DSIRE1 Summary In July 2009 the Delaware legislature enacted legislation creating energy savings targets for Delaware's investor-owned, municipal, and cooperative electric...

32

Bubble deaeration of water at reduced unit loads  

Science Conference Proceedings (OSTI)

Whenever the load is reduced, the parameters of the water and steam being introduced into the deaerator, as well as the pressure, also change. A study was conducted to ascertain the reasons for the improvement in water deaeration whenever the unit load is reduced. The study of the deaerator demonstrated that reducing the load on the turbine produces a reduction in the amount of oxygen contained in the feedwater from 25-30 to 8-12 ..mu..g/kg.

Kondrat'ev, A.D.; Kurnyk, L.N.

1982-11-01T23:59:59.000Z

33

Think Tank: Delaware Department of Natural Resources  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Spring 2009 Number 58 Spring 2009 Number 58 UST Regulations Revision Update Jill Hall The Tank Management Branch (TMB) conducted 3 public workshops in October 2008 to roll out changes to the Delaware Regulations Governing Underground Storage Tanks (UST Regulations). The UST Regulations were completely re- vamped last year and became effective January 11, 2008. Changes were made last year for 2 reasons: (1) the UST Reg- ulations were woefully out of date with regards to technological changes, and (2) the Federal Energy Policy Act (EPACT) dictated that states make several chang- es to their UST programs. The changes required by EPACT have deadlines rang- ing from 2008 to August 2009. Delaware could not make all the required changes by January 11, 2008 because the United States Environmental Protection Agency

34

Alternative Fuels Data Center: Delaware Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Information Delaware Information to someone by E-mail Share Alternative Fuels Data Center: Delaware Information on Facebook Tweet about Alternative Fuels Data Center: Delaware Information on Twitter Bookmark Alternative Fuels Data Center: Delaware Information on Google Bookmark Alternative Fuels Data Center: Delaware Information on Delicious Rank Alternative Fuels Data Center: Delaware Information on Digg Find More places to share Alternative Fuels Data Center: Delaware Information on AddThis.com... Delaware Information This state page compiles information related to alternative fuels and advanced vehicles in Delaware and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

35

Delaware | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Map Printable Version Development Adoption Adoption Process State Technical Assistance Status of State Energy Code Adoption Compliance Regulations Resource Center Delaware Last updated on 2013-08-02 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information Agriculture structures are excluded. Approved Compliance Tools Can use COMcheck State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Delaware (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 07/01/2010 Adoption Date 07/29/2009 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Delaware DOE Determination Letter, May 31, 2013 Delaware State Certification of Commercial and Residential Building Energy Codes

36

Delaware/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Geothermal Geothermal < Delaware Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Delaware Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Delaware No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Delaware No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Delaware No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Delaware Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

37

Forestry Policies (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware) Delaware) Forestry Policies (Delaware) < Back Eligibility Commercial Agricultural Program Info State Delaware Program Type Environmental Regulations Provider Agriculture Delaware's forests are managed by the State Forest Service (DFS), within the State Department of Agriculture. In 2010, the Forest Service issued its Resource Assessment and Strategy documents: Delaware Forest Resource Assessment: http://dda.delaware.gov/forestry/061810_DFS_ResourceAssessment.pdf Statewide Forest Strategy: http://dda.delaware.gov/forestry/061810_DFS_Strategy.pdf The Forest Strategy document sets several goals with respect to biomass energy, including an analysis of the resource, developing restrictions on wood energy facilities, promoting a Fuels for Schools program, and developing at least one new market for low-value wood such as bio-energy

38

Energy Crossroads: Utility Energy Efficiency Programs Delaware...  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Chesapeake Utilities Information for Businesses Delmarva Power...

39

SREC Procurement Program (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SREC Procurement Program (Delaware) SREC Procurement Program (Delaware) SREC Procurement Program (Delaware) < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Utility Savings Category Solar Buying & Making Electricity Program Info Start Date 04/02/2012 State Delaware Program Type Performance-Based Incentive Provider Delaware Sustainable Energy Utility '''''Note: The SREC procurement program will accept applications from March 25 to April 12, 2013. The summary below is intended to reflect the 2013 program as described in the [http://depsc.delaware.gov/electric/12-526%20Staff%20Report.pdf Public Service Commission Staff Report] and [http://depsc.delaware.gov/orders/8281.pdf Order No. 8281]. More information on bid requirements, the application process and payments

40

Categorical Exclusion Determinations: Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Categorical Exclusion Determinations: Delaware Location Categorical Exclusion Determinations issued for actions in Delaware. DOCUMENTS AVAILABLE FOR DOWNLOAD August 12, 2013 CX-011107: Categorical Exclusion Determination High Efficiency Thin Film Fe2SiS4 and Fe2GeS4-based Cells Prepared from Low-Cost Solution CX(s) Applied: B3.6 Date: 08/12/2013 Location(s): Delaware Offices(s): Golden Field Office September 18, 2012 CX-010528: Categorical Exclusion Determination Durability Investigation for Quarternary Phosphonium-based Polymer Hydroxide Exchange Membranes CX(s) Applied: B3.6 Date: 09/18/2012 Location(s): Delaware Offices(s): Advanced Research Projects Agency-Energy September 6, 2012 CX-009147: Categorical Exclusion Determination Delaware State Energy Program Formula Grant Application

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Delaware City, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

City, Delaware: Energy Resources City, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5778901°, -75.588815° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5778901,"lon":-75.588815,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

42

Categorical Exclusion Determinations: Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Categorical Exclusion Determinations: Delaware Location Categorical Exclusion Determinations issued for actions in Delaware. DOCUMENTS AVAILABLE FOR DOWNLOAD September 28, 2010 CX-004018: Categorical Exclusion Determination High Performance Hollow Fiber Membranes for Lubricating Fluid Dehydration and Stabilization Systems CX(s) Applied: B3.6, B5.1 Date: 09/28/2010 Location(s): Newport, Delaware Office(s): Energy Efficiency and Renewable Energy August 23, 2010 CX-003463: Categorical Exclusion Determination Carbon Dioxide Capture by Sub-Ambient Membrane Operation CX(s) Applied: A9, B3.6 Date: 08/23/2010 Location(s): Newark, Delaware Office(s): Fossil Energy, National Energy Technology Laboratory August 18, 2010 CX-003402: Categorical Exclusion Determination

43

University of Delaware Wind | Open Energy Information  

Open Energy Info (EERE)

University of Delaware Wind University of Delaware Wind Jump to: navigation, search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of Delaware Developer First Marine Wind Energy Purchaser University of Delaware Location Lewes DE Coordinates 38.783739°, -75.160654° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.783739,"lon":-75.160654,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Dam Safety (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dam Safety (Delaware) Dam Safety (Delaware) Dam Safety (Delaware) < Back Eligibility Construction Fed. Government Investor-Owned Utility Local Government Municipal/Public Utility State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info Start Date 2004 State Delaware Program Type Safety and Operational Guidelines Provider Delaware Department of Natural Resources and Environmental Control The Delaware Dam Safety Law was adopted in 2004 and provides the framework for proper design, construction, operation, maintenance, and inspection of dams in the interest of public health, safety, and welfare. The law requires licensing, inspections and preparation of emergency action plans (EAPs) for publicly owned dams with a high or significant hazard potential.

45

Geochemistry of Delaware Basin groundwaters  

DOE Green Energy (OSTI)

Fluids from various formations were sampled and analyzed in order to characterize groundwaters in the Delaware Basin. Waters were analyzed for solute content and/or stable isotope ratios (D/H and /sup 18/O//sup 16/O). Three lines of geochemical arguments are summarized, in order to present the natures and probable origins of analyzed fluids: solute chemistry, thermodynamic modelling of low-temperature aqueous species, and stable isotope ratios. (JGB)

Lambert, S.J.

1977-04-25T23:59:59.000Z

46

Pollution Prevention Act (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Pollution Prevention Act (Delaware) Pollution Prevention Act (Delaware) Pollution Prevention Act (Delaware) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Delaware Program Type Environmental Regulations This act lays out objectives for pollution prevention, education and outreach. The Department shall create a multimedia waste reduction assistance program to provide technical assistance to targeted industries, focusing on small

47

Delaware Number of Natural Gas Consumers  

Gasoline and Diesel Fuel Update (EIA)

California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan...

48

,"Delaware Natural Gas Consumption by End Use"  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption by End Use" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural...

49

University of Delaware Institute of Energy Conversion | Open...  

Open Energy Info (EERE)

Energy Conversion Jump to: navigation, search Name University of Delaware Institute of Energy Conversion Place Delaware Product String representation "University rese ... dium tin...

50

Delaware Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and...

51

Delaware Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million...

52

Hess Retail Natural Gas and Elec. Acctg. (Delaware) | Open Energy...  

Open Energy Info (EERE)

Delaware) Jump to: navigation, search Name Hess Retail Natural Gas and Elec. Acctg. Place Delaware Utility Id 22509 References EIA Form EIA-861 Final Data File for 2010 -...

53

Climate Action Plan (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware) Delaware) Climate Action Plan (Delaware) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Climate Policies Provider Delaware Division of Energy and Climate To better understand the current and future vulnerabilities and risks to climate change, DNREC Secretary Collin O'Mara directed the Division of

54

Energy Incentive Programs, Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Delaware Energy Incentive Programs, Delaware October 29, 2013 - 11:29am Addthis Updated August 2013 What public-purpose-funded energy efficiency programs are available in my state? Delaware's 1999 restructuring legislation mandated the creation of a systems benefit charge to fund low-income, energy efficiency, and renewable energy programs. Also, in the late 2000s, the state created the Delaware Sustainable Energy Utility, a non-profit corporation initially funded from bond issues, proceeds from the Regional Greenhouse Gas Initiative (RGGI), and federal government stimulus monies. The SEU's business and institutional programs have not been sustained, but the state's systems benefit charge continues to fund renewable energy programs for customers of the three largest utilities (see section below).

55

Delaware Electric Cooperative - Green Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Electric Cooperative - Green Energy Fund Delaware Electric Cooperative - Green Energy Fund Delaware Electric Cooperative - Green Energy Fund < Back Eligibility Agricultural Commercial Industrial Nonprofit Residential Rural Electric Cooperative Savings Category Appliances & Electronics Commercial Lighting Lighting Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info State Delaware Program Type Public Benefits Fund Provider Delaware Department of Natural Resources and Environmental Control '''''Note: The Green Energy Fund regulations are currently under revision to improve program function and meet the requirements of the Delaware Energy Act. The Delaware Division of Energy and Climate

56

Alternative Fuels Data Center: Delaware Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Points of Delaware Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Delaware Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Delaware Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Delaware Points of Contact on Google Bookmark Alternative Fuels Data Center: Delaware Points of Contact on Delicious Rank Alternative Fuels Data Center: Delaware Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Delaware Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Points of Contact The following people or agencies can help you find more information about Delaware's clean transportation laws, incentives, and funding

57

Alternative Fuels Data Center: Delaware Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Delaware Laws and Delaware Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Delaware. Your Clean Cities coordinator at

58

Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9108325,"lon":-75.5276699,"alt":0,"address":"Delaware","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

59

New waste-heat refrigeration unit cuts flaring, reduces pollution  

Science Conference Proceedings (OSTI)

Planetec Utility Services Co. Inc. and Energy Concepts Co. (ECC), with the help of the US Department of Energy (DOE), developed and commissioned a unique waste-heat powered LPG recovery plant in August 1997 at the 30,000 b/d Denver refinery, operated by Ultramar Diamond Shamrock (UDS). This new environmentally friendly technology reduces flare emissions and the loss of salable liquid-petroleum products to the fuel-gas system. The waste heat ammonia absorption refrigeration plant (Whaarp) is the first technology of its kind to use low-temperature waste heat (295 F) to achieve sub-zero refrigeration temperatures ({minus}40 F) with the capability of dual temperature loads in a refinery setting. The ammonia absorption refrigeration is applied to the refinery`s fuel-gas makeup streams to condense over 180 b/d of salable liquid hydrocarbon products. The recovered liquid, about 64,000 bbl/year of LPG and gasoline, increases annual refinery profits by nearly $1 million, while substantially reducing air pollution emissions from the refinery`s flare.

Brant, B.; Brueske, S. [Planetec Utility Services Co., Inc., Evergreen, CO (United States); Erickson, D.; Papar, R. [Energy Concepts Co., Annapolis, MD (United States)

1998-05-18T23:59:59.000Z

60

DELAWARE  

Science Conference Proceedings (OSTI)

... formerly a division of Eastern Industrial Services (EIS), specializes in custom-engineered, LEED-eligible exterior and interior HVAC systems that ...

2013-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Reducing GHG emissions in the United States' transportation sector  

SciTech Connect

Reducing GHG emissions in the U.S. transportation sector requires both the use of highly efficient propulsion systems and low carbon fuels. This study compares reduction potentials that might be achieved in 2060 for several advanced options including biofuels, hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), assuming that technical and cost reduction targets are met and necessary fueling infrastructures are built. The study quantifies the extent of the reductions that can be achieved through increasing engine efficiency and transitioning to low-carbon fuels separately. Decarbonizing the fuels is essential for achieving large reductions in GHG emissions, and the study quantifies the reductions that can be achieved over a range of fuel carbon intensities. Although renewables will play a vital role, some combination of coal gasification with carbon capture and sequestration, and/or nuclear energy will likely be needed to enable very large reductions in carbon intensities for hydrogen and electricity. Biomass supply constraints do not allow major carbon emission reductions from biofuels alone; the value of biomass is that it can be combined with other solutions to help achieve significant results. Compared with gasoline, natural gas provides 20% reduction in GHG emissions in internal combustion engines and up to 50% reduction when used as a feedstock for producing hydrogen or electricity, making it a good transition fuel for electric propulsion drive trains. The material in this paper can be useful information to many other countries, including developing countries because of a common factor: the difficulty of finding sustainable, low-carbon, cost-competitive substitutes for petroleum fuels.

Das, Sujit [ORNL; Andress, David A [ORNL; Nguyen, Tien [U.S. DOE

2011-01-01T23:59:59.000Z

62

Environmental Control (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Control (Delaware) Control (Delaware) Environmental Control (Delaware) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Rural Electric Cooperative Tribal Government Nonprofit Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Environmental Regulations This act has various provisions set for the local governments for greenhouse gas trading initiatives, solid waste recycling and water protection. The act also includes the Clean Air Act Operating Permit Program with a detailed account of fees to be paid for air pollution sources. The act establishes the collection of CO2 allowances, with 65 percent of

63

University of Delaware | Open Energy Information  

Open Energy Info (EERE)

Delaware Delaware Jump to: navigation, search Name University of Delaware Place Newark, Delaware Sector Solar Product University with a research department leading a solar cell development consortium. Coordinates 44.690435°, -71.951685° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.690435,"lon":-71.951685,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Delaware Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

65

Alternative Fuels Data Center: Delaware Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Other The list below contains summaries of all Delaware laws and incentives

66

Alternative Fuels Data Center: Delaware Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives Listed below are the summaries of all current Delaware laws, incentives, regulations, funding opportunities, and other initiatives related to

67

Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

NEVs to someone by E-mail NEVs to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for NEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for NEVs The list below contains summaries of all Delaware laws and incentives

68

Alternative Fuels Data Center: Delaware Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Other The list below contains summaries of all Delaware laws and incentives

69

Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rebates to someone by E-mail Rebates to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Rebates on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Rebates The list below contains summaries of all Delaware laws and incentives

70

Alternative Fuels Data Center: Delaware Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for EVs The list below contains summaries of all Delaware laws and incentives

71

Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Exemptions The list below contains summaries of all Delaware laws and incentives

72

Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Ethanol The list below contains summaries of all Delaware laws and incentives

73

Delaware/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources < Delaware Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

74

Delaware Electric Cooperative - Green Energy Program Incentives |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Electric Cooperative - Green Energy Program Incentives Delaware Electric Cooperative - Green Energy Program Incentives Delaware Electric Cooperative - Green Energy Program Incentives < Back Eligibility Agricultural Commercial Industrial Institutional Local Government Nonprofit Residential Schools Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Maximum Rebate PV: $7,500 for Class A, $10,000 for Class B or non-profits Solar Thermal (domestic water): $3,000 for residential, $7,500 for non-residential Solar Thermal (radiant space heating): $5,000 for residential, $7,500 for non-residential Wind: $2,500 Fuel Cells: $7,500 for residential, $10,000 for non-residential Geothermal Heat Pumps: $5,000 for residential, $10,000 for non-residential

75

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III  

SciTech Connect

The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

Dutton, Shirley P.; Flanders, William A.

2001-11-04T23:59:59.000Z

76

Alternative Fuels Data Center: Delaware Laws and Incentives for Driving /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Driving / Idling to someone by E-mail Driving / Idling to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Driving / Idling on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Driving / Idling

77

Alternative Fuels Data Center: Delaware Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Tax Incentives

78

Chrome Deposit Corporation and the University of Delaware IAC: Another  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chrome Deposit Corporation and the University of Delaware IAC: Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story Chrome Deposit Corporation and the University of Delaware IAC: Another Energy Efficiency Success Story November 2, 2011 - 2:11pm Addthis Pictured left to right: University of Delaware students Joseph Camp and Nicole Suto; Keith Goossen, director of the Industrial Assessment Center; and Cesar Duarte, University of Delaware grad student. | Image courtesy of UD. Pictured left to right: University of Delaware students Joseph Camp and Nicole Suto; Keith Goossen, director of the Industrial Assessment Center; and Cesar Duarte, University of Delaware grad student. | Image courtesy of UD. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs

79

Alternative Fuels Data Center: Delaware Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Propane (LPG)

80

Alternative Fuels Data Center: Delaware Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Idle Reduction

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Delaware Mountain Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Delaware Mountain Wind Farm Delaware Mountain Wind Farm Jump to: navigation, search Name Delaware Mountain Wind Farm Facility Delaware Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer American National Wind Power/Orion Energy Energy Purchaser Lower Colorado River Authority Location Culberson County TX Coordinates 31.670717°, -104.739534° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.670717,"lon":-104.739534,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

82

DOE Solar Decathlon: The University of Delaware: Soaring to New Heights  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovation Technology Exploration Center that shows the solar panels on the University of Delaware house. Innovation Technology Exploration Center that shows the solar panels on the University of Delaware house. Enlarge image The University of Delaware's Solar Decathlon entry has been integrated into the Innovation Technology Exploration Center at the Delaware AeroSpace Education Foundation. (Courtesy of Lynn Bloom, Delaware AeroSpace Education Foundation) Who: University of Delaware What: Solar House Where: Delaware AeroSpace Education Foundation 585 Big Oak Road Smyrna, Delaware 19977 Map This House Public tours: Contact the Delaware AeroSpace Education Foundation at 302-659-5003 for information about visiting the Innovation Technology Exploration Center. Solar Decathlon 2002 The University of Delaware: Soaring to New Heights The University of Delaware donated its solar-powered house to the Delaware

83

Renewable Energy Facilities Revolving Loan Fund (Delaware) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Revolving Loan Fund (Delaware) Facilities Revolving Loan Fund (Delaware) Renewable Energy Facilities Revolving Loan Fund (Delaware) < Back Eligibility Commercial Industrial Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info Funding Source U.S. Department of Commerce, Delaware Strategic Fund State Delaware Program Type Loan Program Provider Delaware Economic Development Office Renewable Energy Facilities Revolving Loan Fund provides loans at market to below-market interest rates to businesses that cannot otherwise obtain capital, provided that those businesses will create or retain jobs in industries that promote energy efficiency and/or recycling. The new fund was made possible with a $500,000 grant from the U.S. Department of

84

Delaware's At-large congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Delaware's At-large congressional district: Energy Resources Delaware's At-large congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Delaware. Registered Energy Companies in Delaware's At-large congressional district AstroPower Inc Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) Butamax Advanced Biofuels LLC Citizenre Group Delmarva Power Light Company Delmarva Power DuPont DuPont Biofuels Dupont Fuel Cells Galt Power Inc GlobalWatt Inc Ion Power Inc Naveen Energy Hydra Energy LLC O2Diesel Corporation formerly Dynamic Ventures RNK Capital LLC Sentry Power LLC Sentry Power Technology Textronics Inc Tristabella Consulting LLC University of Delaware Registered Financial Organizations in Delaware's At-large congressional

85

Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

86

Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fueling / TSE Infrastructure Owner on

87

Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

88

Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

89

Delaware Company Breathes New Life into Old Post Office Building |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building November 26, 2013 - 12:51pm Addthis Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Thanks to the Energy Department, Delaware-based Brandywine CAD Design was able to breathe new life into a local historic building while saving on its energy costs. | Photo courtesy of Brandywine CAD Design. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program What are the key facts? Delaware company Brandywine CAD Design, Inc., (B-CAD) purchased a

90

Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

91

Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

92

Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

93

Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Purchaser to someone by E-mail Purchaser to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State Advanced Search

94

Delaware Electric Cooperative | Open Energy Information  

Open Energy Info (EERE)

Electric Cooperative Electric Cooperative Jump to: navigation, search Name Delaware Electric Cooperative Place Delaware Utility Id 5070 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Energy Efficiency Rider Residential General Service--Schedule GS Commercial General Service--Schedule GS-TOU Commercial Home Surge Protection Program--Schedule HSPP Residential Irrigation Service--Schedule IR Commercial Irrigation-Demand Off-Peak--Schedule IR-DOP Lighting Service--Schedule L-1 - Yard Light (100w) Halide Lighting

95

Hockessin, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hockessin, Delaware: Energy Resources Hockessin, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7876112°, -75.6966001° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7876112,"lon":-75.6966001,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Odessa, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Odessa, Delaware: Energy Resources Odessa, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.457334°, -75.6613184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.457334,"lon":-75.6613184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

97

Wilmington, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wilmington, Delaware: Energy Resources Wilmington, Delaware: Energy Resources (Redirected from Wilmington, DE) Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7459467°, -75.5465889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7459467,"lon":-75.5465889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

98

Brookside, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6670561°, -75.7268779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6670561,"lon":-75.7268779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Claymont, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Claymont, Delaware: Energy Resources Claymont, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8006685°, -75.4596404° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8006685,"lon":-75.4596404,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Clayton, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2906671°, -75.6343727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2906671,"lon":-75.6343727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Ardencroft, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ardencroft, Delaware: Energy Resources Ardencroft, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8051323°, -75.4861752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8051323,"lon":-75.4861752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

102

Elsmere, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Elsmere, Delaware: Energy Resources Elsmere, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7392796°, -75.5979812° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7392796,"lon":-75.5979812,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

103

Newport, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7137237°, -75.6093709° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7137237,"lon":-75.6093709,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

104

Bear, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bear, Delaware: Energy Resources Bear, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6292788°, -75.6582628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6292788,"lon":-75.6582628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

105

Delaware, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware, Ohio: Energy Resources Delaware, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.2986724°, -83.067965° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2986724,"lon":-83.067965,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

106

Edgemoor, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Edgemoor, Delaware: Energy Resources Edgemoor, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7501139°, -75.4996414° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7501139,"lon":-75.4996414,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Ardentown, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ardentown, Delaware: Energy Resources Ardentown, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.808446°, -75.4829752° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.808446,"lon":-75.4829752,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

108

Arden, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Arden, Delaware: Energy Resources Arden, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8092794°, -75.4865866° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8092794,"lon":-75.4865866,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Low E Brings High Savings in Newark, Delaware | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

stood near four giant aluminum-framed picture windows in Newark, Delaware's municipal building, the sun streamed through with such intensity that it made staffers sweat from...

110

Consolidated Edison Sol Inc (Delaware) | Open Energy Information  

Open Energy Info (EERE)

References "EIA Form EIA-861 Final Data File for 2010 - File22010" Retrieved from "http:en.openei.orgwindex.php?titleConsolidatedEdisonSolInc(Delaware)&oldid412475...

111

Delaware - State Energy Profile Data - U.S. Energy Information ...  

U.S. Energy Information Administration (EIA)

Kansas: Kentucky Louisiana Maine Maryland ... (Conectiv Delmarva Gen Inc) ; Delaware City Plant (The Premcor Refining Group Inc) ; McKee Run ... Ethanol Plant Capacity

112

Delaware Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

113

Delaware Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

114

Delaware Natural Gas Delivered for the Account of Others  

Annual Energy Outlook 2012 (EIA)

Gas Delivered for the Account of Others (Million Cubic Feet) Area: U.S. Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida...

115

Home Performance with Energy Star Loans (Delaware) | Open Energy...  

Open Energy Info (EERE)

must meet the eligibility standards of the Delaware Green Energy Incentives programs.* Energy savings associated with renewable energy installations is not included in the...

116

Delaware - State Energy Profile Analysis - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas: Utah ... Delaware has few energy resources aside from wind power potential, ...

117

Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.  

Science Conference Proceedings (OSTI)

Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

Elcock, D. (Environmental Science Division)

2011-05-09T23:59:59.000Z

118

Reducing water freshwater consumption at coal-fired power plants : approaches used outside the United States.  

SciTech Connect

Coal-fired power plants consume huge quantities of water, and in some water-stressed areas, power plants compete with other users for limited supplies. Extensive use of coal to generate electricity is projected to continue for many years. Faced with increasing power demands and questionable future supplies, industries and governments are seeking ways to reduce freshwater consumption at coal-fired power plants. As the United States investigates various freshwater savings approaches (e.g., the use of alternative water sources), other countries are also researching and implementing approaches to address similar - and in many cases, more challenging - water supply and demand issues. Information about these non-U.S. approaches can be used to help direct near- and mid-term water-consumption research and development (R&D) activities in the United States. This report summarizes the research, development, and deployment (RD&D) status of several approaches used for reducing freshwater consumption by coal-fired power plants in other countries, many of which could be applied, or applied more aggressively, at coal-fired power plants in the United States. Information contained in this report is derived from literature and Internet searches, in some cases supplemented by communication with the researchers, authors, or equipment providers. Because there are few technical, peer-reviewed articles on this topic, much of the information in this report comes from the trade press and other non-peer-reviewed references. Reducing freshwater consumption at coal-fired power plants can occur directly or indirectly. Direct approaches are aimed specifically at reducing water consumption, and they include dry cooling, dry bottom ash handling, low-water-consuming emissions-control technologies, water metering and monitoring, reclaiming water from in-plant operations (e.g., recovery of cooling tower water for boiler makeup water, reclaiming water from flue gas desulfurization [FGD] systems), and desalination. Some of the direct approaches, such as dry air cooling, desalination, and recovery of cooling tower water for boiler makeup water, are costly and are deployed primarily in countries with severe water shortages, such as China, Australia, and South Africa. Table 1 shows drivers and approaches for reducing freshwater consumption in several countries outside the United States. Indirect approaches reduce water consumption while meeting other objectives, such as improving plant efficiency. Plants with higher efficiencies use less energy to produce electricity, and because the greater the energy production, the greater the cooling water needs, increased efficiency will help reduce water consumption. Approaches for improving efficiency (and for indirectly reducing water consumption) include increasing the operating steam parameters (temperature and pressure); using more efficient coal-fired technologies such as cogeneration, IGCC, and direct firing of gas turbines with coal; replacing or retrofitting existing inefficient plants to make them more efficient; installing high-performance monitoring and process controls; and coal drying. The motivations for increasing power plant efficiency outside the United States (and indirectly reducing water consumption) include the following: (1) countries that agreed to reduce carbon emissions (by ratifying the Kyoto protocol) find that one of the most effective ways to do so is to improve plant efficiency; (2) countries that import fuel (e.g., Japan) need highly efficient plants to compensate for higher coal costs; (3) countries with particularly large and growing energy demands, such as China and India, need large, efficient plants; (4) countries with large supplies of low-rank coals, such as Germany, need efficient processes to use such low-energy coals. Some countries have policies that encourage or mandate reduced water consumption - either directly or indirectly. For example, the European Union encourages increased efficiency through its cogeneration directive, which requires member states to assess their

Elcock, D. (Environmental Science Division)

2011-05-09T23:59:59.000Z

119

Regional well-log correlation in the New Mexico portion of the Delaware Basin  

SciTech Connect

Although well logs provide the most complete record of stratigraphy and structure in the northern Delaware Basin, regional interpretations of these logs generate problems of ambiguous lithologic signatures and on-hole anomalies. Interpretation must therefore be based on log-to-log correlation rather than on inferences from single logs. In this report, logs from 276 wells were used to make stratigraphic picks of Ochoan horizons (the Rustler, Salado, and Castile Formations) in the New Mexico portion of the Delaware Basin. Current log correlation suggests that: (1) the Castile is characterized by lateral thickening and thinning; (2) some Castile thinnings are of Permian age; (3) irregular topography in the Guadalupian Bell Canyon Formation may produce apparent structures in the overlying Ochoan units; and (4) extensive dissolution of the Salado is not apparent in the area of the Waste Isolation Pilot Project (WIPP) site. 13 refs., 37 figs.

Borns, D.J.; Shaffer, S.E.

1985-09-01T23:59:59.000Z

120

Tuesday, November 6, 2007 Arsenic Status in Delaware Soils.  

E-Print Network (OSTI)

Tuesday, November 6, 2007 186-4 Arsenic Status in Delaware Soils. Jennifer Seiter, University of Delaware, 531 South College Ave, Rm 152, Department of Plant & Soil Sciences, Newark, DE 19717 & Soil Sciences, Newark, DE 19717-1303. The Delmarva Peninsula is one of the most concentrated poultry

Sparks, Donald L.

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Delaware Community Saves with Solar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Community Saves with Solar Delaware Community Saves with Solar Delaware Community Saves with Solar November 28, 2012 - 4:41pm Addthis With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. Christina Stowers Communications Specialist in the Office of Weatherization and Intergovernmental Program

122

Qualifying RPS State Export Markets (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware) Delaware) Qualifying RPS State Export Markets (Delaware) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Delaware as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

123

Efforts to Reduce the Impacts of Hydroelectric Power Production on Reservoir Fisheries in the United States.  

DOE Green Energy (OSTI)

Research into the environmental effects of hydroelectric power production in the United States has focused increasingly on resident and migratory fish populations. Hydropower dams and reservoirs can block fish movements in both upstream and downstream directions. These movements are essential for important stocks of anadromous and catadromous fish. In addition, some strictly freshwater fish may move long distances within a river during their life cycle.A dam can pose an impassable barrier for fish trying to move upstream unless mitigation measures in the form of ladders or lifts are provided. Fish moving downstream to the sea may become disoriented when they encounter static water within a reservoir. Both resident and migratory fish may be injured or killed by passing through the turbine or over the spillway. In the United States, a variety of organizations conduct applied research and development of measures to (1) enhance fish passage, (2) reduce the numbers of fish that are drawn into the turbine intakes, and (3) reduce the injury and mortality rates of fish that pass through the turbines. Examples of these efforts from a variety of river systems and hydroelectric power plants are described.

Cada, G. F.

1997-09-08T23:59:59.000Z

124

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III  

Science Conference Proceedings (OSTI)

The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

2000-05-24T23:59:59.000Z

125

Washington Gas Energy Services (Delaware) | Open Energy Information  

Open Energy Info (EERE)

Services (Delaware) Services (Delaware) Jump to: navigation, search Name Washington Gas Energy Services Place Delaware Utility Id 20659 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1080/kWh Commercial: $0.0893/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010" Retrieved from "http://en.openei.org/w/index.php?title=Washington_Gas_Energy_Services_(Delaware)&oldid=412876" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here Related changes

126

University of Delaware Energy Institute Inauguration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Delaware Energy Institute Inauguration Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy Department - relies on our partners in academia, as well as in the private sector, to fulfill our critical missions. With its many contributions to the field of energy research, the University of Delaware is certainly one of our valued partners. With the launch of the Energy Institute here today, you are not only

127

Town of Clayton, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Clayton, Delaware (Utility Company) Clayton, Delaware (Utility Company) Jump to: navigation, search Name Town of Clayton Place Delaware Utility Id 3732 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand (less than 300 KW) Commercial Commercial/ non-demand (less than 3500 kwh) Commercial Residential Rate Residential Average Rates Residential: $0.1630/kWh Commercial: $0.1590/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Clayton,_Delaware_(Utility_Company)&oldid=411710"

128

Delaware Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Delaware Regions Delaware Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Delaware Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Delaware Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

129

University of Delaware Energy Institute Inauguration | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University of Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy Department - relies on our partners in academia, as well as in the private sector, to fulfill our critical missions. With its many contributions to the field of energy research, the University of Delaware is certainly one of our valued partners. With the launch of the Energy Institute here today, you are not only

130

Delaware Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Delaware Regions Delaware Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Delaware Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Delaware Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

131

Public Utilities Tax Rebate (Delaware) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utilities Tax Rebate (Delaware) Utilities Tax Rebate (Delaware) Public Utilities Tax Rebate (Delaware) < Back Eligibility Commercial Agricultural Industrial Retail Supplier Fuel Distributor Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Delaware Program Type Corporate Tax Incentive Provider Department of Finance This rebate is part of the Blue Collar Jobs Act, which establishes tax breaks for businesses that have sustainable jobs and make significant investments in the state. Firms meeting the criteria for targeted industry tax credits are eligible for a rebate of 50 percent of the public utilities tax imposed on new or increased consumption of natural gas and electricity for four years. The

132

Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

133

Delaware Natural Gas LNG Storage Additions (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Additions (Million Cubic Feet) Delaware Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's...

134

Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet...  

Annual Energy Outlook 2012 (EIA)

Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

135

Delaware Natural Gas Number of Residential Consumers (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

136

Delaware Profile - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

The State added its first utility-scale wind project in 2010, a one-turbine project built by the ... for developing offshore wind farms off the coast of Delaware ...

137

Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

138

The Readable Delaware General Corporation Law  

E-Print Network (OSTI)

of the United States Internal Revenue Code, or any successorunder the United States internal revenue laws and whosesubsequent United States internal revenue law). Subchapter

LoPucki, Lynn

2013-01-01T23:59:59.000Z

139

PROGRESS IN REDUCING THE NUCLEAR THREAT: UNITED STATES PLUTONIUM CONSOLIDATION AND DISPOSITION  

SciTech Connect

Following the end of the Cold War, the United States identified 61.5 metric tons (MT) of plutonium and larger quantities of enriched uranium that are permanently excess to use in nuclear weapons programs. The Department of Energy (DOE) also began shutting down, stabilizing, and removing inventories from production facilities that were no longer needed to support weapons programs and non-weapons activities. The storage of 'Category I' nuclear materials at Rocky Flats, Sandia National Laboratories, and several smaller sites has been terminated to reduce costs and safeguards risks. De-inventory continues at the Hanford site and the Lawrence Livermore National Laboratory. Consolidation of inventories works in concert with the permanent disposition of excess inventories, including several tonnes of plutonium that have already been disposed to waste repositories and the preparation for transfers to the planned Mixed Oxide (MOX) Fuel Fabrication Facility (for the bulk of the excess plutonium) and alternative disposition methods for material that cannot be used readily in the MOX fuel cycle. This report describes status of plutonium consolidation and disposition activities and their impacts on continuing operations, particularly at the Savannah River Site.

Allender, J.; Koenig, R.; Davies, S.

2009-06-01T23:59:59.000Z

140

Impacts of the 2009 IECC for Residential Buildings at State Level - Delaware  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN DELAWARE BUILDING ENERGY CODES PROGRAM IMPACTS OF THE 2009 IECC FOR RESIDENTIAL BUILDINGS IN DELAWARE Analysis of 2009 International Energy Conservation Code Requirements for Residential Buildings in Delaware Summary Delaware recently adopted the 2009 International Energy Conservation Code (IECC). The code becomes effective July 1, 2010. Overview of the 2009 IECC The IECC scope includes residential single-family housing and multifamily housing three stories or less above-

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Delaware Laws and Incentives for Natural Gas The list below contains summaries of all Delaware laws and incentives

142

Integrated Assessment as a Step Toward Reducing Climate Vulnerability in the Southwestern United States  

Science Conference Proceedings (OSTI)

Managing the effects of climate change requires new approaches to develop and deliver relevant climate information to regional and local decision makers, and to infuse that knowledge into their decision support systems. In the southwestern United ...

R. C. Bales; D. M. Liverman; B. J. Morehouse

2004-11-01T23:59:59.000Z

143

City of Dover, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Dover, Delaware (Utility Company) Dover, Delaware (Utility Company) Jump to: navigation, search Name Dover City of Place Delaware Utility Id 5335 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Private Outdoor Lighting: Decorative Lighting, Metered, 150 watt HPS w/o ladder rest Lighting Private Outdoor Lighting: Decorative Lighting, Metered, 70 watt HPS w/o ladder rest Lighting Private Outdoor Lighting: Decorative Lighting, Unmetered, 150 watt HPS w/o

144

City of Newark, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Delaware (Utility Company) Delaware (Utility Company) Jump to: navigation, search Name Newark City of Place Delaware Utility Id 13519 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial General Service Demand Industrial Large Light and Power Service(Classification UD) Industrial Large Light and Power Service(P) Industrial Large Light and Power Service(U) Industrial Residential Service Residential Average Rates Residential: $0.1550/kWh

145

Delaware/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources/Full Version < Delaware‎ | Wind Resources Jump to: navigation, search Print PDF Delaware Wind Resources DelawareMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

146

City of Lewes, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Lewes, Delaware (Utility Company) Lewes, Delaware (Utility Company) Jump to: navigation, search Name City of Lewes Place Delaware Utility Id 10935 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Single Phase Commercial Commercial, Three Phase Commercial Industrial Single Phase Industrial Industrial, Three Phase Industrial Residential Residential Average Rates Residential: $0.1880/kWh Commercial: $0.1690/kWh Industrial: $0.1300/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

147

Department of Energy Official in Newark, Delaware, to Highlight $168  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Official in Newark, Delaware, to Highlight Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects Department of Energy Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects March 16, 2007 - 12:00pm Addthis Funding will help further President Bush's Solar America Initiative NEWARK, DE - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Andy Karsner today highlighted DOE's selection of 13 industry-led solar technology development projects for negotiation of up to $168 million (FY'07-'09), subject to appropriation from Congress. These solar projects serve as the centerpiece of the President's Solar America Initiative (SAI), which aims to make solar energy cost-competitive with conventional forms of electricity by 2015 - helping

148

City of Seaford, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Seaford, Delaware (Utility Company) Seaford, Delaware (Utility Company) Jump to: navigation, search Name City of Seaford Place Delaware Utility Id 16852 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL NON-DEMAND METERING Commercial COMMERCIAL WITH DEMAND METERING Commercial LARGE GENERAL SERVICE -PRIMARY ENERGY Industrial LARGE GENERAL SERVICE ENERGY Industrial MEDIUM GENERAL SERVICE Industrial RESIDENTIAL Residential SECURITY LIGHTS Lighting STREET CHARGE Commercial Average Rates Residential: $0.1580/kWh

149

Table PT2. Energy Production Estimates in Trillion Btu, Delaware ...  

U.S. Energy Information Administration (EIA)

Table PT2. Energy Production Estimates in Trillion Btu, Delaware, 1960 - 2011 1960 0.0 0.0 0.0 0.0 NA 5.0 5.0 5.0 1961 0.0 0.0 0.0 0.0 NA 5.1 5.1 5.1

150

Aggregate effects of reducing the motor fuels excise tax in the United States  

SciTech Connect

The analysis in this article examines the impact of reducing the excise tax on gasoline and diesel fuel on the U.S. economy. The analytical approach used consists of a computable general equilibrium model composed of 14 producing sectors, 14 consuming sectors, 6 household categories classified by income, and a government. The effects are examined of a 4.3 cents per gallon reduction in the excise tax on gasoline and diesel fuel on prices and quantities. The results suggest, for example, a decrease in the tax would result in higher output by the producing sectors (by about $2.86 billion), an expansion in the consumption of goods and services (by about $3.48 billion), and an increase in welfare (by about $3.59 billion). The government would realize a decrease in revenue of about $2.37 billion. When subjected to a sensitivity analysis, the results are reasonably robust with regard to the assumption of the values of the substitution elasticities.

Uri, N.D. [Dept. of Agriculture, Washington, DC (United States); Boyd, R. [Ohio Univ., Athens, OH (United States). Dept. of Economics

1997-10-01T23:59:59.000Z

151

Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Air Quality / Emissions to someone by E-mail Air Quality / Emissions to someone by E-mail Share Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Facebook Tweet about Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Twitter Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Google Bookmark Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Delicious Rank Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on Digg Find More places to share Alternative Fuels Data Center: Delaware Laws and Incentives for Air Quality / Emissions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

152

EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

82: University of Delaware Lewes Campus Onsite Wind Energy 82: University of Delaware Lewes Campus Onsite Wind Energy Project EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project SUMMARY The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware's Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been

153

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Delaware  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN DELAWARE BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN DELAWARE Delaware Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state code, the 2001 IECC. Standard 90.1-2007 would improve energy efficiency in commercial buildings in Delaware. The analysis of the impact of Standard 90.1-2007 resulted in energy and cost savings. Main Differences Between the Current State Code and Standard 90.1-2007

154

City of Milford, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Milford Milford Place Delaware Utility Id 12540 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Contract Service-Primary Voltage Industrial General Service- Primary Voltage Industrial Large General Industrial Medium General Industrial Residential Residential Small General Commercial Average Rates Residential: $0.1470/kWh Commercial: $0.1450/kWh Industrial: $0.1200/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Milford,_Delaware_(Utility_Company)&oldid=409946

155

Town of Smyrna, Delaware (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Town of Smyrna Town of Smyrna Place Delaware Utility Id 17457 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Commercial Electric Hot Water/Heat Commercial Industrial Industrial Residential Residential Residential Electric Heat Only Residential Average Rates Residential: $0.1570/kWh Commercial: $0.1580/kWh Industrial: $0.1190/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Town_of_Smyrna,_Delaware_(Utility_Company)&oldid=411816

156

New Castle, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6620572°, -75.5663132° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6620572,"lon":-75.5663132,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

157

North Star, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7612226°, -75.7191006° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7612226,"lon":-75.7191006,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

158

New Castle County, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Castle County, Delaware: Energy Resources Castle County, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5392979°, -75.667356° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.5392979,"lon":-75.667356,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

159

Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Delaware Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply & Disposition

160

Pike Creek, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7309451°, -75.704099° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7309451,"lon":-75.704099,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Wilmington Manor, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Wilmington Manor, Delaware: Energy Resources Wilmington Manor, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6867795°, -75.5843694° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6867795,"lon":-75.5843694,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

162

Kent County, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Delaware: Energy Resources Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2713804°, -76.1319953° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2713804,"lon":-76.1319953,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

163

Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks  

DOE Green Energy (OSTI)

Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their effect on fuel economy was determined, either through on-road testing or full-size wind tunnel testing. All of the manufacturers worked with devices and systems that offer practical solutions to reduce aerodynamic drag, accounting for functionality, durability, cost effectiveness, reliability, and maintainability. The project team members and their roles and responsibilities are shown in Figure 2-1. Figure 2-2 shows the Phase I and II project schedules for all four projects and associated management activities.

Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

2007-04-30T23:59:59.000Z

164

Technical Potential of Solar Water Heating to Reduce Fossil Fuel Use and Greenhouse Gas Emissions in the United States  

DOE Green Energy (OSTI)

Use of solar water heating (SWH) in the United States grew significantly in the late 1970s and early 1980s, as a result of increasing energy prices and generous tax credits. Since 1985, however, expiration of federal tax credits and decreased energy prices have virtually eliminated the U.S. market for SWH. More recently, increases in energy prices, concerns regarding emissions of greenhouse gases, and improvements in SWH systems have created new interest in the potential of this technology. SWH, which uses the sun to heat water directly or via a heat-transfer fluid in a collector, may be particularly important in its ability to reduce natural gas use. Dependence on natural gas as an energy resource in the United States has significantly increased in the past decade, along with increased prices, price volatility, and concerns about sustainability and security of supply. One of the readily deployable technologies available to decrease use of natural gas is solar water heating. This report provides an overview of the technical potential of solar water heating to reduce fossil fuel consumption and associated greenhouse gas emissions in U.S. residential and commercial buildings.

Denholm, P.

2007-03-01T23:59:59.000Z

165

Energy Conservation Standards for State Facilities (Delaware...  

Open Energy Info (EERE)

achieving the target. Requirement State agencies and departments must reduce energy consumption from FY 2008 levels by 10% in FY 2011, 20% in FY 2013, and 30% in FY 2015; LEED...

166

Blackout 2003: The August 14, 2003 Blackout One Year Later: Actions Taken in the United States and Canada To Reduce Blackout Risk  

Energy.gov (U.S. Department of Energy (DOE))

A report to the US-Canada Power System Outage Task Force on steps taken in the United States and Canada to reduce blackout risk one year after the August 14, 2003 blackout.

167

Delaware Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Delaware Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 IECC Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost-effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and additional costs financed in the mortgage, homeowners should see net positive cash flows

168

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin).  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, water flood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other present at ions, the knowledge gained in the comparative study of these two fields can then be applied to increase product ion from the more than 100 other Delaware Mountain Group reservoirs.

Dutton, S.P.

1997-10-30T23:59:59.000Z

169

Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope, and Basin Clastic Reservoirs, West Texas (Delaware Basin)  

SciTech Connect

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi 2 in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO 2 flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Through technology transfer workshops and other presentations, the knowledge gained in the comparative study of these two fields can then be applied to increase production from the more than 100 other Delaware Mountain Group reservoirs.

Shirley P. Dutton

1997-04-30T23:59:59.000Z

170

Surface Currents and Winds at the Delaware Bay Mouth  

SciTech Connect

Knowledge of the circulation of estuaries and adjacent shelf waters has relied on hydrographic measurements, moorings, and local wind observations usually removed from the region of interest. Although these observations are certainly sufficient to identify major characteristics, they lack both spatial resolution and temporal coverage. High resolution synoptic observations are required to identify important coastal processes at smaller scales. Long observation periods are needed to properly sample low-frequency processes that may also be important. The introduction of high-frequency (HF) radar measurements and regional wind models for coastal studies is changing this situation. Here we analyze synoptic, high-resolution surface winds and currents in the Delaware Bay mouth over an eight-month period (October 2007 through May 2008). The surface currents were measured by two high-frequency radars while the surface winds were extracted from a data-assimilating regional wind model. To illustrate the utility of these monitoring tools we focus on two 45-day periods which previously were shown to present contrasting pictures of the circulation. One, the low-outflow period is from 1 October through 14 November 2007; the other is the high-outflow period from 3 March through 16 April 2008. The large-scale characteristics noted by previous workers are clearly corroborated. Specifically the M2 tide dominates the surface currents, and the Delaware Bay outflow plume is clearly evident in the low frequency currents. Several new aspects of the surface circulation were also identified. These include a map of the spatial variability of the M2 tide (validating an earlier model study), persistent low-frequency cross-mouth flow, and a rapid response of the surface currents to a changing wind field. However, strong wind episodes did not persist long enough to set up a sustained Ekman response.

Muscarella, P A; Barton, N P; Lipphardt, B L; Veron, D E; Wong, K C; Kirwan, A D

2011-04-06T23:59:59.000Z

171

How One Delaware County is Saving Money and Creating Jobs | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

One Delaware County is Saving Money and Creating Jobs One Delaware County is Saving Money and Creating Jobs How One Delaware County is Saving Money and Creating Jobs April 26, 2011 - 3:23pm Addthis Tweedie Doe Project Officer, Golden Field Office What does this project do? New Castle County will carry out 158 conservation measures, including heat pump and boiler replacements, high-efficiency motors, lighting retrofits and controls, and a white reflective roof. The project impacts over 20 facilities and 461,643 square feet of building space. Solar arrays, installed on the Government Center and Hockessin Library roofs, will provide 128 kilowatts of electricity to the two buildings. Federal, state and county officials were in New Castle County, Delaware last week to kick off the next phase of the county's Smart Energy

172

A Tree-Ring-Based Reconstruction of Delaware River Basin Streamflow Using Hierarchical Bayesian Regression  

Science Conference Proceedings (OSTI)

A hierarchical Bayesian regression model is presented for reconstructing the average summer streamflow at five gauges in the Delaware River basin using eight regional tree-ring chronologies. The model provides estimates of the posterior ...

Naresh Devineni; Upmanu Lall; Neil Pederson; Edward Cook

2013-06-01T23:59:59.000Z

173

Multiyear Observations of Cloud Lines Associated with the Chesapeake and Delaware Bays  

Science Conference Proceedings (OSTI)

Satellite and corresponding near-surface in situ observations have been made of single- and dual-band cloud events [dubbed anomalous cloud lines (ACLs)] associated with the Chesapeake and Delaware Bays. A previous study developed the basis for ...

Todd D. Sikora; David M. Halverson

2002-08-01T23:59:59.000Z

174

Subscriber access provided by University of Delaware | Library Environmental Science & Technology is published by the American Chemical  

E-Print Network (OSTI)

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Article for Critical Zone Research, University of Delaware, Newark, Delaware 19717-1303, CNR-IMIP Instituto di. TEM analyses were made using a Philips CM 300 FEG microscope equipped with an Oxford light element

Sparks, Donald L.

175

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Technical progress report  

SciTech Connect

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. One the reservoir-characterization study of both field is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to: (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area; (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments; and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill well will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and producibility problem characterization.

Dutton, S.P.

1996-04-30T23:59:59.000Z

176

American Ref-Fuel of Delaware Valley Biomass Facility | Open Energy  

Open Energy Info (EERE)

Biomass Facility Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley Sector Biomass Facility Type Municipal Solid Waste Location Delaware County, Pennsylvania Coordinates 39.907793°, -75.3878525° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.907793,"lon":-75.3878525,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

177

Forward stratigraphic modeling of the Permian of the Delaware Basin  

SciTech Connect

Permian platform-to-basin strata of the Delaware Basin In west Texas and New Mexico represent one of the world's most complete, best studied, and most hydrocarbon productive records of this geologic period in the world. This superb marriage of a refined stratigraphic framework and active exploration provided impetus to develop a forward stratigraphic model of this section to better predict the distribution of reservoir and seal relationships. The approximately 30 m.y. interval modeled is composed of 2 km of platform strata and 3 km of basinal strata divided into 8 composite sequences (average 3 m.y. duration) and 45 high-frequency sequences (400 ky m.y. duration). A 130 km dip section through the basin margin Guadalupe/Deleware Mountain outcrop is inversely modeled to derive local tectonic subsidence and a sea level curve for the Permian. In this process, the highest and lowest shoreline positions of each sequence are interpreted based on facies description which are assumed to approximate the highest and lowest relative sea level. A eustatic sea level curve is calculated by restoring these shoreline positions and removing local tectonic subsidence using a polynomial fit to the derived relative sea level curve. The quantitatively constrained curve for the Permian contains 2nd, 3rd, and 4th order 180m. This quantitatively constrained accommodation history (calculated eustatic curve and subsidence history) are input into the PHIL forward modeling program. Model variables of sediment supply are depositional system are adjusted to match known outcrop relations. The resulting model is potentially capable of predicting stratigraphy elsewhere in the basin using only subsidence history data from the inverse model.

Qiucheng, Ye; Kerans, C.; Bowman, S. (Univ. of Texas, Austin, TX (United States)) (and others)

1996-01-01T23:59:59.000Z

178

United States Datasites | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

United States Datasites United States Datasites This map requires Flash. If you are seeing this text, then you may want to install the Flash Player plugin http://get.adobe.com/flashplayer/ or prefer to view the map info as text only (for accessibility reasons). Text links are listed below: US State Data Sites Alabama - http://open.alabama.gov/ Arizona - http://openbooks.az.gov/app/transparency/index.html California - http://data.ca.gov/ Colorado - http://www.colorado.gov/data/ Delaware - http://www.delaware.gov/data/ District of Columbia - http://data.octo.dc.gov/ Florida - http://www.floridahasarighttoknow.com/ Georgia - http://www.open.georgia.gov/ Illinois - http://data.illinois.gov/ Indiana - http://inmap.indiana.edu/viewer.htm Iowa - http://data.iowa.gov/ Kansas - http://www.kansas.gov/KanView/

179

The Potential for Energy-Efficient Technologies to Reduce Carbon Emissions in the United States: Transport Sector  

SciTech Connect

The world is searching for a meaningful answer to the likelihood that the continued build-up of greenhouse gases in the atmosphere will cause significant changes in the earth`s climate. If there is to be a solution, technology must play a central role. This paper presents the results of an assessment of the potential for cost-effective technological changes to reduce greenhouse gas emissions from the U.S. transportation sector by the year 2010. Other papers in this session address the same topic for buildings and industry. U.S.transportation energy use stood at 24.4 quadrillion Btu (Quads) in 1996, up 2 percent over 1995 (U.S. DOE/EIA, 1997, table 2.5). Transportation sector carbon dioxide emissions amounted to 457.2 million metric tons of carbon (MmtC) in 1995, almost one third of total U.S. greenhouse gas emissions (U.S. DOE/EIA,1996a, p. 12). Transport`s energy use and CO{sub 2} emissions are growing, apparently at accelerating rates as energy efficiency improvements appear to be slowing to a halt. Cost-effective and nearly cost-effective technologies have enormous potential to slow and even reverse the growth of transport`s CO{sub 2} emissions, but technological changes will take time and are not likely to occur without significant, new public policy initiatives. Absent new initiatives, we project that CO{sub 2} emissions from transport are likely to grow to 616 MmtC by 2010, and 646 MmtC by 2015. An aggressive effort to develop and implement cost-effective technologies that are more efficient and fuels that are lower in carbon could reduce emissions by about 12% in 2010 and 18% in 2015, versus the business-as- usual projection. With substantial luck, leading to breakthroughs in key areas, reductions over the BAU case of 17% in 2010 and 25% in 2015,might be possible. In none of these case are CO{sub 2} emissions reduced to 1990 levels by 2015.

Greene, D.L.

1997-07-01T23:59:59.000Z

180

Geothermal energy: tomorrow's alternative today. A handbook for geothermal-energy development in Delaware  

DOE Green Energy (OSTI)

This is a general procedure guide to various technical, economic, and institutional aspects of geothermal development in Delaware. The following are covered: geothermal as an alternative, resource characteristics, geology, well mechanics and pumping systems, fluid disposal, direct heat utilization-feasibility, environmental and legal issues, permits and regulations, finance and taxation, and steps necessary for geothermal development. (MHR)

Mancus, J.; Perrone, E.

1982-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Effect of Biocidal Treatments on Cation Exchange Capacity and Fusarium Blight of Soybean in Delaware Soils  

E-Print Network (OSTI)

in Delaware Soils H. A. Sandier, R. B. Carroll,* and D. L. Sparks ABSTRACT Fusarium wilt has caused it is caused by the soil-borne fungus Fusarium oxysporum. A better understanding of the relationship between soil characteristics and the pathogen and between biocidal treatments and physiochemical properties

Sparks, Donald L.

182

Feasibility Study of Economics and Performance of Solar Photovoltaics at the Standard Chlorine of Delaware Superfund Site in Delaware City, Delaware. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

2013-06-01T23:59:59.000Z

183

,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n3035de3m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n3035de3m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:24:04 PM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" 36906,7.37 36937,4.61

184

,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM" "Back to Contents","Data 1: Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" "Sourcekey","NA1570_SDE_2" "Date","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)" 32324,0 32689,0 33054,0 33419,0 33785,0 34150,0 34515,1 34880,1

185

Preliminary targeting of geothermal resources in Delaware. Progress report, July 15, 1978-July 14, 1979  

DOE Green Energy (OSTI)

Results of temperature logging the five DOE 1000 foot test wells in Delaware indicate that the potential is good for a relatively low temperature geothermal resource (temperatures less than about 80/sup 0/C). A preliminary Bouguer gravity map was made for portions of Kent and Sussex counties in order to detect gravity anomalies possibly related to granitic plutons. The map indicates a gravity low trending northeast-southwest across Sussex County that could be indicative of other structural features within the basement rocks beneath the Coastal Plain. Other logging activities and study of the cores and drill cuttings in the DOE test holes were useful in better defining the stratigraphic framework and in determining the fresh-salt water interface in southern Delaware.

Woodruff, K.D.

1979-07-01T23:59:59.000Z

186

Permian Bone Spring formation: Sandstone play in the Delaware basin. Part I - slope  

SciTech Connect

New exploration in the Permian (Leonardian) Bone Spring formation has indicated regional potential in several sandstone sections across portions of the northern Delaware basin. Significant production has been established in the first, second, and third Bone Spring sandstones, as well as in a new reservoir interval, the Avalon sandstone, above the first Bone Spring sandstone. These sandstones were deposited as submarine-fan systems within the northern Delaware basin during periods of lowered sea level. The Bone Spring as a whole consists of alternating carbonate and siliciclastic intervals representing the downdip equivalents to thick Abo-Yeso/Wichita-Clear Fork carbonate buildups along the Leonardian shelf margin. Hydrocarbon exploration in the Bone Spring has traditionally focused on debris-flow carbonate deposits restricted to the paleoslope. Submarine-fan systems, in contrast, extend a considerable distance basinward of these deposits and have been recently proven productive as much as 40-48 km south of the carbonate trend.

Montgomery, S.L. [Petroleum Consultant, Seattle, WA (United States)

1997-08-01T23:59:59.000Z

187

Chrome Deposit Corporation and the University of Delaware IAC...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

additional changes as upgrades to equipment are required. The company insulated tanks and pipes, installed covers on plant exhaust fans, reduced compressed air pressure, and...

188

Delaware County Elec Coop Inc | Open Energy Information  

Open Energy Info (EERE)

County Elec Coop Inc County Elec Coop Inc Place New York Utility Id 5021 Utility Location Yes Ownership C NERC Location NPCC NERC NPCC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service-Single Phase(Residential Service Class #2) Residential General Service-Single Phase(Residential Service class #1) Residential Large CommerciaL (SC-4B-; <25 kw) Commercial Large Commercial(> 25kW) Industrial Public Building Commercial Security Lights (40W Unit LED-Unmetered) Lighting Security Lights(100 W HPS-Unmetered) Lighting Small Commercial (SC-3) Commercial

189

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, July 1 - September 30, 1996  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sup 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Accomplishments for this past quarter are discussed.

Dutton, S.P.

1996-10-01T23:59:59.000Z

190

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, October 1 - December 31, 1996  

SciTech Connect

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir-characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Technical progress is summarized for: geophysical characterization; reservoir characterization; outcrop characterization; and recovery technology identification and analysis.

Dutton, S.P.

1997-01-01T23:59:59.000Z

191

Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin). Quarterly report, April 1,1996 - June 30, 1996  

Science Conference Proceedings (OSTI)

The objective of this project is to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Project objectives are divided into two major phases. The objectives of the reservoir characterization phase of the project are to provide a detailed understanding of the architecture and heterogeneity of two fields, the Ford Geraldine unit and Ford West field, which produce from the Bell Canyon and Cherry Canyon Formations, respectively, of the Delaware Mountain Group and to compare Bell Canyon and Cherry Canyon reservoirs. Reservoir characterization will utilize 3-D seismic data, high-resolution sequence stratigraphy, subsurface field studies, outcrop characterization, and other techniques. Once the reservoir- characterization study of both fields is completed, a pilot area of approximately 1 mi{sup 2} in one of the fields will be chosen for reservoir simulation. The objectives of the implementation phase of the project are to (1) apply the knowledge gained from reservoir characterization and simulation studies to increase recovery from the pilot area, (2) demonstrate that economically significant unrecovered oil remains in geologically resolvable untapped compartments, and (3) test the accuracy of reservoir characterization and flow simulation as predictive tools in resource preservation of mature fields. A geologically designed, enhanced-recovery program (CO{sub 2} flood, waterflood, or polymer flood) and well-completion program will be developed, and one to three infill wells will be drilled and cored. Progress to date is summarized for reservoir characterization.

Dutton, S.P.

1996-07-01T23:59:59.000Z

192

,"Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals (MMcf)" Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1350_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1350_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:42:28 PM"

193

,"Delaware Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (MMcf)" Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Withdrawals (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5060de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5060de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:19 PM"

194

,"Delaware Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

195

,"Delaware Natural Gas Input Supplemental Fuels (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (MMcf)" Input Supplemental Fuels (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Input Supplemental Fuels (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1400_sde_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1400_sde_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/19/2013 6:58:50 AM"

196

Chemistry of atmospheric precipitation at Lewes, Delaware, as part of the MAP3S study  

Science Conference Proceedings (OSTI)

The purpose of this proposal is to request continuation of funding for the routine operation and research activities at the MAP3S precipitation chemistry site at Lewes, Delaware (Site No. 7). Specifically, financial support is being requested to provide for (1) collection of precipitation samples on an event basis, (2) routine field analyses, processing and shipment of samples to Battelle Northwest Laboratories for further analyses, and (3) modest additional salary and laboratory costs to partially support centrally related research projects as described later.

Church, T.M.

1986-07-31T23:59:59.000Z

197

Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC  

Science Conference Proceedings (OSTI)

The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

2012-04-01T23:59:59.000Z

198

United States - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Seds - U.S. Energy Information Administration (EIA) Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

199

United States - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Energy Information Administration (EIA) U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

200

Preliminary targeting of geothermal resources in Delaware. Progress report, July 15, 1979-May 30, 1980  

DOE Green Energy (OSTI)

Work completed included additional gravity mapping in southern Delaware, development of a computer program for contouring gravity data, and some preliminary quantitative interpretations of gravity and magnetic data in southern Delaware. No significant changes were made in the original Bouguer gravity map produced during the original contract period as a result of this later mapping. The SYMAP and SCONTOUR computing programs, developed by Harvard Graphics and adapted for the B7700, were used to generate computer drawn Bouguer gravity maps for the study area. Maximum depths calculated for the top of a gravity anomaly in the Bridgeville area ranged from about 2.3 to 2.7 kilometers (7500 to 8000 feet). Depth to magnetic basement in the same general area was calculated to be between about 1.5 and 2.9 kilometers (4920 and 6200 feet). Both gravity and magnetic data agree with trends noted on regional maps and suggest that in selected cases fracture zones beneath the coastal plain might be a possible target for future geothermal exploration.

Woodruff, K.D.

1980-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)"  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet)" Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1570_sde_3a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1570_sde_3a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:51:13 PM"

202

,"Delaware Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (MMcf)" Net Withdrawals All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Net Withdrawals All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5070de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5070de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:45 PM"

203

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

204

united stadium. united station.  

E-Print Network (OSTI)

??DC United is one of Major League Soccers most decorated franchises, yet it still plays its home games within the crumbling confines of RFK Stadium. (more)

Groff, David R.

2011-01-01T23:59:59.000Z

205

Kinetics of nickel precipitate formation in soils Edward Peltier and D. L. Sparks. Department of Plant and Soil Sciences, University of Delaware, 152  

E-Print Network (OSTI)

GEOC 26 Kinetics of nickel precipitate formation in soils Edward Peltier and D. L. Sparks. Department of Plant and Soil Sciences, University of Delaware, 152 Townsend Hall, Newark, DE 19711 and sequestration of nickel in contaminated soils. As these precipitates age, their stability increases, resulting

Sparks, Donald L.

206

Reducing fischer-tropsch catalyst attrition losses in high ...  

Reducing fischer-tropsch catalyst attrition losses in high agitation reaction systems United States Patent

207

Legend Units  

Science Conference Proceedings (OSTI)

... Syntax: LEGEND UNIT units> where is an integer number or parameter in the range 1 to 100 that specifies the legend identifier; and ...

2013-11-27T23:59:59.000Z

208

English Units  

Science Conference Proceedings (OSTI)

English Units. A, B, C, D, E, F, G, H, I, J. 1, Steam Point Calculator: English Units, ... 6, Height of steam point apparatus above ground (ft.), 0, ft. ...

2011-12-22T23:59:59.000Z

209

Unit Conversions  

Science Conference Proceedings (OSTI)

... volume flow units, which contain "atm", assume that the gas is: ideal; at a pressure of 101325 Pa; at a temperature of 0 C. Be aware that the unit "atm ...

2012-10-02T23:59:59.000Z

210

Reduce Stress!  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Stress! Stress! x Take a break every hour. Do some relaxation or stretching exercises or talk with someone about topics unrelated to work. Give your body and mind a rest. x Massage your hands and forearms several times a day with a vitamin E lotion. The massage will improve circulation and break up adhesions. Since you can't touch a keyboard until the lotion is absorbed, it also enforces a good break. x Massage the muscles in your neck working your way down from the skull to the shoulders, applying more force to the larger muscles as you go down. x Periodically evaluate your environment for ways to reduce stress. Try to keep your desk uncluttered so you can always find things. Make sure programs are set up correctly on the computer, and see if you can use a macro program to reduce

211

United States - U.S. Energy Information Administration (EIA) - U.S ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. ... California Colorado Connecticut Delaware: District of Columbia Florida Georgia Hawaii Idaho ...

212

Metric Units  

Science Conference Proceedings (OSTI)

... A, B, C, D, E, F, G, H, I, J. 1, Steam Point Calculator: Metric Units, Elevation Converter, ... 6, Height of steam point apparatus above ground (m), 0, m, ...

2011-12-22T23:59:59.000Z

213

United States  

Office of Legacy Management (LM)

- I - I United States Department of Energy D lSCk Al M E R "This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency

214

Regional geologic characterization of the Second Bone Spring Sandstone, Delaware basin, Lea and Eddy Counties, New Mexico  

E-Print Network (OSTI)

The Bone Spring Formation is a series of interbedded siliciclastics and carbonates that were deposited in the Delaware basin during the Leonardian (Early Permian). It consists of the First, Second and Third Carbonate and the First, Second and Third Sandstone, as well as the informally named Avalon Sandstone. The Second Bone Spring Sandstone, the focus of the study, can be subdivided into 4 distinct sand bodies separated by pelagic zones. These sands are designated the A-D Sands. The depositional patterns of the Bone Spring Formation are reflective of the underlying structure that resulted from compression during the Mississippian and Pennsylvanian. The Second Bone Spring Sandstone (specifically the C Sand) is essentially a dolomitic, coarse siltstone that is composed of facies reflective of deposition by turbidity currents in a slope fan environment. The midfan, levee/overbank and hemipelagic environments of deposition identified in the Second Bone Spring Sandstone are consistent with those of the typical slope fan of Walker (1978). The slope fans of the C Sand were confined by north-to-south trending reverse faults, which inhibited lateral migration of both the fans and the channels within them. The A-D Sands are correlatable throughout the study area but thicken in the underlying structural lows. These thicker sands are lobate in plan view and are located adjacent to, rather than directly on top of, underlying thick sands. This is likely a result of differential compaction of underlying sediment which served to further confine the fans. The sediment comprising the Second Bone Spring Sandstone was likely transported through basinward migration of sand dunes in an arid environment during relative sea level lowstands. Periodically, brief rises in sea level choked off sediment supply allowing hemipelagic material to be draped over underlying sands. With sea level fall, sands were again deposited in the tectonic sub-basins.

Downing, Amanda Beth

2001-01-01T23:59:59.000Z

215

Comparison of the National Green Building Standard (ICC 700-2008) and LEED for Homes to the Residential Provisions of the 2009 IECC for the Delaware Green for Green Program  

Science Conference Proceedings (OSTI)

Adhering to Delawares Green for Green program specifications results in homes being built to more energy-efficient levels than the 2009 IECC levels. Specifically: Certifying at the Silver Performance Level for the ICC 700 standard using either the Prescriptive or Performance Paths will result in a residential building that is more efficient than if the building only complied with the 2009 IECC. Certifying at the Silver level under LEED for Homes standard, including mandatory compliance with ENERGY STAR 2006 and earning two additional energy points will result in a residential building that is more efficient than if the building only complied with the 2009 IECC.

Britt, Michelle L.; Makela, Eric J.

2011-01-30T23:59:59.000Z

216

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

BP Energy Company BP Energy Company OE Docket No. EA- 3 14 Order Authorizing Electricity Exports to Mexico Order No. EA-3 14 February 22,2007 BP Energy Company Order No. EA-314 I. BACKGROUND Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(Q of the Department of Energy Organization Act (42 U.S.C. 7 15 l(b), 7172(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.S24a(e)) . On May 22,2006, BP Energy Company (BP Energy) applied to DOE for an authorization to transmit electric energy from the United States to Mexico as a power marketer. BP Energy proposes to purchase surplus electric energy from electric utilities and other suppliers within the United States and to export that energy to ~Mexico. The cnergy

217

United States  

Office of Legacy Management (LM)

Office of Research and EPA 600/R-941209 Environmental Protection Development January 1993 Agency Washington, DC 20460 Offsite Environmental 57,,7 Monitoring Report Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1992 UNITED STATES ENVIRONMENTAL PROTECTION AGENCY OFFICE OF RESEARCH AND DEVELOPMENT ENVIRONMENTAL MONITORING SYSTEMS LABORATORY-LAS VEGAS P.O. BOX 93478 LAS VEGAS. NEVADA 891 93-3478 702/798-2100 Dear Reader: Since 1954, the U.S. Environmental Protection Agency (EPA) and its predecessor the U.S, Public Health Service (PHs) has conducted radiological monitoring in the offsite areas around United States nuclear test areas. The primary objective of this monitoring has been the protection of the health and safety of

218

The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis  

E-Print Network (OSTI)

Opinion about Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.

Hoen, Ben

2010-01-01T23:59:59.000Z

219

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

E-T Global Energy, LLC E-T Global Energy, LLC OE Docket No. EA-381 Order Authorizing Electricity Exports to Mexico Order No. EA-381 June 10, 2011 I. BACKGROUND E-T Global Energy, LLC Order No. EA-381 Exports of electricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department ofEnergy Organization Act (42 U.S.C. 7151(b), 7172(f)) and require authorization under section 202(e) ofthe Federal Power Act (FPA) (16 U.S.C.824a(e)) 1 * On May 10,2011, DOE received an application from E-T Global Energy, LLC (E-T Global) for authority to transmit electric energy from the United States to Mexico for five years as a power marketer using existing international transmission facilities. E-

220

United States  

Office of Legacy Management (LM)

WASHINGTON, TUESDAY, JUNE 28, 1983 @nngmeional Ruord United States of America .__ -- . . ,- PROCEEDINGS AND DEBATES OF THE 9@ CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmgton, D C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $xX Congresstonal Record (USPS 087-390) Postage and Fees Pad U S Government Prlnhng 0ffv.X 375 SECOND CLASS NEWSPAPER H.4578 ' C.QNGRESSIONAL RECORD - HOUSE June 28, 1983 H.J. Res. 273: Mr. BOUND. Mr. W~.XMAN. Mr. OBERSTAR, Mr. BEDELL. Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB, Mr. CONTE. Mr. RAHALL; Mr. GRAY, Mr. VANDER JACT. Mr. TRAKLER, and Mr. Vxrrro. H. Con. Res. 107: Mr. KASICH. Mr. AUCOIN. Mr. CARPER, and Mr. SIZHFIJER. H. Con. Res. 118: Mr. FISH. Mr. LANTOS.

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

United States  

Office of Legacy Management (LM)

ongrees;ional Record ongrees;ional Record United States of America __._ -.. I. :- PROCEEDINGS AND DEBATES OF THE 9tth CONGRESS, FIRST SESSION United States Government Printing Office SUPERINTENDENT OF DOCUMENTS Washmcqton. Cl C 20402 OFFICIAL BUSINESS Penalty Ior pwate use. $300 Congressmal Record (USPS 087-390) Postage and Fees Pad U S Governme3n:jPnntmg OfIce SECOND CLASS NEWSPAPER H.4578 ' June 28, 1983 -: I H.J. Res. 273: Mr. BOLAND, Mr. WA-. Mr. OBERSTAFC, M' r. BEDELL, Mr. BONER of Tennessee, Mr. OWENS. Mr. DAUB. Mr. CONTE. Mr. RAHALL,. Mr. GRAY, Mr. VANDER JAGT. Mr. TRAKLER. and Mr. VENTO. H. Con. Res. iO7: Mr. KASICH. Mr. ALCOIN. Mr. CARPER. and Mr. SCHEUER. H. Con. Res. 118: Mr. FISH, Mr. LANTOS. Mr. KILDEE. Mr. SOLARZ Mr. Bmrr, Mr. BELWLL, Mr. RANG~L, Mr. DYMALLY. Mr.

222

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CC-1-I Availability: This rate schedule shall be available to public bodies and cooperatives served through the facilities of Carolina Power & Light Company, Western Division (hereinafter called the Customers). Applicability: This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the "Cumberland Projects") and sold in wholesale quantities. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

223

Prepared by: Assessment Unit Staff  

E-Print Network (OSTI)

: Blackfeet (2); Delaware (2); Grande Ronde (2); Makah (2); Navajo (2); Brotherton (1); Chickasaw (1 2 4 ASSINIBOINE 1 1 MAKAH 3 4 7 SNOHOMISH 2 2 4 BLACKFEET 1 2 3 MANZANITA 1 1 SNOQUALMIE 1 1 2 AMERIND WHITE 1 1 2 2 ARAPAHO 1 1 1 1 BLACKFEET 1 1 1 1 CANADIAN INDIAN 1 1 1 1 CAYUSE 1 1 1 1 CHEROKEE 3

Hochberg, Michael

224

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tenaslta Power Services Co. Tenaslta Power Services Co. OE Docket No. EA-243-A Order Authorizing Electricity Exports to Canada Order No. EA-243-A March 1,2007 Tenaska Power Services Co. Order No. EA-243-A I. BACKGROUND Exports of elcctricity from the United States to a foreign country are regulated by the Department of Energy (DOE) pursuant to sections 30 I(b) and 402(f) of the Departrncnt of' Energy Organizatio~l Act (42 U, S.C. 7 15 1 (b), 7 1 72Cf)) and rcquirc authorization under section 202(e) of the Federal Power Act (FPA) ( Z 6 U. s.c.824a(e)j1. On August 16,2001, DOE issued Order No. EA-243 authorizing Tenaska Power Scrvices Co. (Tenaska) to transmit electric cncrgy from the United States to Canada as a power marketer. That authority expired on August 16,2003. On August 14,2006, Teilaska applied to renew the electricity export authority

225

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TexMex Energy, LLC TexMex Energy, LLC OE Docket No. EA-294-A Order Authorizing Electricity Exports to Mexico Order No. EA-294-A February 22, 2007 TexMex Energy, LLC Order No. EA-294-A I. BACKGROUND Exports of electricity from the United States to a foreign count~y are regulated by the Department of Energy (DOE) pursuant to sections 301(b) and 402(f) of the Department of Energy Organization Act (42 U.S.C. 7 15 1 (b), 71 72(f)) and require authorization under section 202(e) of the Federal Power Act (FPA) (16 U.S.C.824a(e)) . On August 25,2004, DOE issued Order No. EA-294 authorizing TexMex Energy LLC (TexMex) to transmit electric energy fiom the United States to Mexico as a power marketer. That authority expired on August 25, 2006. On September 8, 2006, TexMex applied to renew the electricity export authority

226

United States  

Gasoline and Diesel Fuel Update (EIA)

United States United States Coal ................................................ 4,367 4,077 4,747 4,181 4,473 4,125 4,983 4,330 4,414 4,003 4,796 4,178 4,344 4,479 4,348 Natural Gas .................................... 2,802 2,843 3,694 2,863 2,713 2,880 3,636 2,707 2,792 2,972 3,815 2,849 3,052 2,986 3,109 Petroleum (a) .................................. 74 73 81 67 73 70 75 66 75 70 76 66 74 71 71 Other Gases ................................... 32 33 36 32 32 34 37 33 33 35 39 34 33 34 35 Nuclear ........................................... 2,176 2,044 2,257 2,170 2,106 2,037 2,167 2,010 2,144 2,074 2,206 2,055 2,162 2,080 2,120 Renewable Energy Sources: Conventional Hydropower ........... 736 886 716 633 765 887 708 646 767 919 729 659 742 751 768 Wind ............................................ 491 520 353 449 477 521 379 475

227

Delaware Natural Gas Summary  

Gasoline and Diesel Fuel Update (EIA)

78-2005 78-2005 Citygate 7.58 8.32 6.54 5.67 9.03 7.19 1984-2012 Residential 16.21 16.07 17.79 15.12 15.38 15.24 1967-2012 Commercial 14.48 14.24 15.87 13.26 13.58 13.31 1967-2012 Industrial 8.93 12.54 13.99 10.18 11.69 11.61 1997-2012 Vehicle Fuel 21.90 26.48 14.12 24.55 28.76 30.97 1995-2012 Electric Power W W W W W -- 1997-2012 Underground Storage (Million Cubic Feet) Injections 1967-1975 Withdrawals 1967-1975 Net Withdrawals 1967-1975 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 215 122 121 73 64 117 1980-2012 Withdrawals 220 104 118 76 96 66 1980-2012 Net Withdrawals -6 17 3 -2 -31 51 1980-2012 Consumption (Million Cubic Feet) Total Consumption 48,155 48,162 50,148 54,825 79,715 101,676 1997-2012 Lease and Plant Fuel

228

Delaware Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

6.56 8.19 1989-2013 Residential Price 12.80 12.32 12.19 12.38 13.12 16.23 1989-2013 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0...

229

Department of Energy - Delaware  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

509 en Wind Access and Permitting Law http:energy.govsavingswind-access-and-permitting-law Wind...

230

Delaware.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

lets you compare window performance options by calculating performance based on utility rates for your climate, house design options, and window design options. 5. Ensure...

231

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the public utilities tax imposed on new or increased consumption of natural gas and electricity for four years. The public utilities tax rate is 4.25 percent. The utility tax on...

232

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

be a bigger producer of these magnets - which are not actually rare - and are used in hybrid vehicle motors and wind turbine generators. | Illustration Courtesy of of Electron...

233

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

manufacturers can apply for a tax break equal to 75% of the corporation income tax. The incentive is an increase from the Investment and Employment Credit Against Corporation...

234

Delaware | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CX-001577: Categorical Exclusion Determination Wind Turbine Model and Pilot Project for Alternative Energy: Infrastructure for Research, Policy, Education and Outreach on Wind...

235

Retail Unbundling - Delaware  

U.S. Energy Information Administration (EIA)

Status: The State's one pilot choice program was discontinued as of October 31, 2001. Overview: In November 2000, Connectiv Power Delivery Company ...

236

,"Delaware Natural Gas Summary"  

U.S. Energy Information Administration (EIA) Indexed Site

1967" ,"Data 2","Underground Storage",3,"Annual",1975,"6301967" ,"Data 3","Liquefied Natural Gas Storage",3,"Annual",2011,"6301980" ,"Data 4","Consumption",9,"Annual",2012,"...

237

Delaware Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

19.64 22.31 24.12 1989-2013 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2013 Commercial Price 11.25 11.64 12.74 13.72...

238

Delaware Natural Gas Prices  

U.S. Energy Information Administration (EIA) Indexed Site

15.12 15.38 15.24 1967-2012 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 1989-2012 Commercial Price 14.48 14.24 15.87 13.26...

239

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Bangor Hydro-Electric Company Bangor Hydro-Electric Company OE Docket No. PP-89-1 Amendment to Presidential Permit Order No. PP-89-1 December 30,2005 PRESIDENTIAL PERMIT AMENDMENT Bangor Hydro-Electric Company Order No. PP-89-1 I. BACKGROUND The Department of Energy (DOE) has responsibility for implementing Executive Order (E.O.) 10485, as amended by E.O. 12038, which requires the issuance of a Presidential permit by DOE before electric trans~nission facilities may be constructed, operated, maintained, or connected at the borders of the United States. DOE may issue such a permit if it determines that the permit is in the public interest and after obtaining favorable recommendations from the U.S. Departments of State and Defense. On December 16, 1988, Bangor Hydro-Electric Company (BHE) applied to DOE

240

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 7 United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTV-1-H Availability: This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and TVA. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating current at a frequency of approximately 60 hertz at the outgoing terminals of the Cumberland

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule CTVI-1-A Availability: This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. Applicability: This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland Projects") and the Laurel Project sold under agreement between the Department of Energy and the Customer. Character of Service: The electric capacity and energy supplied hereunder will be three-phase alternating

242

UNITED STATES  

Office of Legacy Management (LM)

f).~<~~ \--\c :y-,ai F p"- KG f).~<~~ \--\c :y-,ai F p"- KG WASHINOTDN 28.0. C. ' -lr ' \ ' ' --- ".I ?--" ' z I. .~;-4.' J frr*o& 2 ii, - - -4 70-147 LRL:JCD JAN !! 8 1958 Oregon Metallurgical Corporation P. 0. Box 484 Albany, Oregon Attention: Mr. Stephen M. Shelton General Manager Gentlemen: Enclosed is Special Nuclear Material License No. SNM-144, as amended. Very 33uly yours, r:; I,;, ll)~gQ""d".- Lyall Johnson Chief, Licensing Branch Division of Licensing & Regulation Enclosure: SNM-144, as amended Distribution: bRO0 Attn: Dr. H.M.Roth DFMusser NMM MMMann INS JCRyan FIN (2) HSteele LRL SRGustavson LRL Document room Formal file Suppl. file Br & Div rf's ' .b liwwArry s/VW- ' q+ ' yj/ 2; 2-' , COP' 1 J JAM01958 -- UNITED STATES ATOMIC ENERGY COMMISSION

243

United States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Department of Energy Southeastern Power Administration Wholesale Power Rate Schedule JW-2-F Availability: This rate schedule shall be available to the Florida Power Corporation (or Progress Energy Florida, hereinafter called the Company). Applicability: This rate schedule shall be applicable to electric energy generated at the Jim Woodruff Project (hereinafter called the Project) and sold to the Company in wholesale quantities. Points of Delivery: Power sold to the Company by the Government will be delivered at the connection of the Company's transmission system with the Project bus. Character of Service: Electric power delivered to the Company will be three-phase alternating current at a nominal frequency of 60 cycles per second.

244

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ng ng United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: APR 18 2003 REPLY TO ATTN OF: IG-34 (A02PR010) Audit Report No.: OAS-L-03-15 SUBJECT: Audit of the Weatherization Assistance Program TO: Director, Weatherization and Intergovernmental Program, EE-2K The purpose of this report is to inform you of the results of our audit of the Weatherization Assistance Program. INTRODUCTION AND OBJECTIVE The Weatherization Assistance Program (Program) was established to increase energy efficiency in dwellings owned or occupied by low-income persons to reduce their residential energy expenditures and improve their health and safety. Since its inception in 1976, the Program has reported that approximately 5 million dwelling units owned or occupied by low-income individuals have been weatherized.

245

Reduction in Unit Steam Production  

E-Print Network (OSTI)

In 2001 the company's Arch-Brandenburg facility faced increased steam costs due to high natural gas prices and decreased production due to shutdown of a process. The facility was challenged to reduce unit steam consumption to minimize the effects of thes

Gombos, R.

2004-01-01T23:59:59.000Z

246

Energy Management in Olefins Units  

E-Print Network (OSTI)

The previous generations of olefin units were typically importers of utilities such as high pressure steam and electricity. But, in the new generation of units, diligent energy conservation efforts have reduced the high pressure steam demand to the point where waste heat from pyrolysis generates more than enough steam to power the olefins unit recovery section. Furthermore, incorporating gas turbine driven electrical generators or process compressors adds to the utility export potential of the unit. It is necessary, therefore, to consider utility export as a valuable byproduct of olefins production and incorporate it within the utility network of the petrochemical complex. As with any byproduct of a process, it is necessary to be able to control its production and distribution.

Wells, T. A.

1982-01-01T23:59:59.000Z

247

United States - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

Idaho: 28.50 : Massachusetts: 9,728 : Minnesota: 1,647 : 18: Utah: 28.37 : Maryland: 9,253 : Delaware: 1,640 : 19: Montana: 28.31 : Wisconsin: 8,833 : ...

248

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 DOE F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: April 23, 2004 Audit Report Number: OAS-L-04-16 REPLY TO ATTN OF: IG-35 (A04YT023) SUBJECT: Audit Report on "Modernization Activities at the Y-12 National Security Complex" TO: Richard Speidel, Director, Policy and Internal Controls Management, NA-66 INTRODUCTION AND OBJECTIVE As part of the National Nuclear Security Administration's (NNSA) nuclear weapons complex, the Y-12 National Security Complex (Y-12) performs critical roles in strengthening national security and reducing the global threat from weapons of mass destruction. The Y-12 modernization plan (plan) seeks to foster the development of a physical plant that is efficient and effective in serving its national security missions. The

249

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2011 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: FRIDAY MARCH 4, 2011 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

250

Unit Outline Training Guide  

E-Print Network (OSTI)

Unit Outline Builder Training Guide Document Status: Final Revision Number: 6.0 Revision Date: 14 Approved #12;Online Unit Outline Builder Training Guide Curtin University of Technology Page 2 TABLE................................................................................................................. 4 4. Log in and Select a Unit Outline

251

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2013 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: MARCH 5, 2013 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

252

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2012 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: FRIDAY MARCH 2, 2012 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

253

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: CLASSIFICATION / TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2014 FRANKLIN STAFF SERVICE AWARDS START DATE IN DEPARTMENT / UNIT: ACTUAL NUMBER MEMBER DEADLINE: MARCH 7, 2014 ADDITIONAL COMMENTS: Signature of Head / Director of Nominee's Unit

Arnold, Jonathan

254

CONCEPT OF OPERATIONS PLANS for Phase I the INTERNATIONAL PILOT FOR Global Radiological source SORTING, Tracking, AND MONITORING (GradSStraM) Using eMERGING RFID AND WEB 2.0 TECHNOLOGIES TO PROVIDE TOTAL ASSET AND INFORMATION VISUALIZATIONA United states- European Union Lighthouse Priority Project for fostering trade and reducing regulatory burden  

SciTech Connect

Thousands of shipments of radioisotopes developed in the United States (US) are transported domestically and internationally for medical and industrial applications, including to partner laboratories in European Union (EU) countries. Over the past five years, the Environmental Protection Agency (EPA), the Department of Energy (DOE), and Oak Ridge National Laboratory (ORNL) have worked with state regulatory compliance personnel, key private sector shippers and carriers, the Department of Homeland Security (DHS), the Department of Transportation (DOT), the Department of Defense (DoD) and the Nuclear Regulatory Commission (NRC) on Radio Frequency Identification (RFID) tracking and monitoring of medical and industrial radioisotopes in commerce. The EPA Radiological Source Tracking and Monitoring (RadSTraM) project tested, evaluated, and integrated RFID technologies in laboratory settings, and at multiple private-sector shipping and distribution facilities (Perkin Elmer and DHL) using common radioisotopes used in everyday commerce. The RFID tracking was also tested in association with other deployed technologies including radiation detection, chemical/explosives detection, advanced imaging, lasers, and infrared scanning. At the 2007 EU-US Summit, the leaders of the US Department of Commerce (DOC) and EU European Commission (EC) committed to pursue jointly directed Lighthouse Priority Projects. These projects are intended to 'foster cooperation' and 'reduce regulatory burdens' with respect to transatlantic commerce. The Transatlantic Economic Council (TEC) Lighthouse Project on Radio Frequency Identification (RFID) has been directed to 'develop a joint framework for cooperation on identification and development of best practices for Radio Frequency Identification (RFID) technologies.' The RFID Lighthouse Priority Project commits both sides to endeavor to align U.S. and EU regulatory and policy approaches on RFID technologies, including pilot projects in the public sector. The RadSTraM project was specifically cited as a candidate for a RFID Lighthouse Project by the EU/DOC collaboration in meeting their mutual goal of developing a 'joint framework for cooperation on identification and development of best practices for RFID technologies.' Concurrently, the Universal Postal Union (UPU) identified this project as a candidate for radioisotope packages shipped by the postal service between the United State Postal Service (USPS). and European Post Agencies.

Walker, Randy M [ORNL

2009-01-01T23:59:59.000Z

255

Reducing waste, Photoby stcvcchan  

E-Print Network (OSTI)

I ' I I t Reducing waste, Photoby stcvcchan AMs President Mike Lee (left to right), Point Grey M U recycling given high priority on campus By GAVIN WILSON UBC is taking stepsto reduce waste and encourageGellatly,Vice-President,Administration and Finance,to develop and recommend university policies on waste recycling. Another task force has submitted

Farrell, Anthony P.

256

Reducing the Federal Energy Bill  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 Reducing the Federal Energy Bill Berkeley Lab's Work with the Federal Energy Management Program It costs billions of dollars and uses more energy than any other entity in the United States. What is it? Answer: the Federal government. In fiscal year 1995, the Federal government spent $8 billion on a net energy consumption of 1.15 quadrillion BTUs. While that may be a lot of energy in absolute terms, the numbers have been improving for years. Compared with fiscal year 1985, the 1995 energy-use figure is down by 22.5%, and the costs are down $2.5 billion. The decline is explained in part by the activities of FEMP (the Federal Energy Management Program) and the efforts of energy-efficiency experts at national laboratories, such as those at Berkeley Lab's Environmental Energy

257

Reduce Oil Dependence Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Oil Dependence Costs U.S. Petroleum Use, 1970-2010 Nearly 40% of the oil we use is imported, costing us roughly 300 billion annually. Increased domestic oil production from...

258

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2014 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: MARCH 7, 2014 PLEASE

Arnold, Jonathan

259

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2012 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: FRIDAY MARCH 2, 2012

Arnold, Jonathan

260

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2011 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: FRIDAY MARCH 4, 2011

Arnold, Jonathan

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nomination Form DEPARTMENT / UNIT  

E-Print Network (OSTI)

Nomination Form DEPARTMENT / UNIT: CAMPUS ADDRESS: JOB TITLE: DEPARTMENT EMAIL ADDRESS: DEPARTMENT TELEPHONE: 2013 FRANKLIN STAFF EXCELLENCE AWARDS START DATE IN DEPARTMENT / UNIT: Nominee Information NAME / RESEARCHPROFESSIONAL Signature of Head / Director of Nominee's Unit: NOMINATION PACKET DEADLINE: MARCH 5, 2013 PLEASE

Arnold, Jonathan

262

Reducing Diesel Engine Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Reducing Diesel Engine Emissions 2 0 1 0 Green TransporTaTion TechnoloGies Compared to traditional gasoline engines, diesel engines require less maintenance, generate energy more efficiently, and produce less carbon dioxide emissions. But when uncontrolled, diesel engines churn out harmful emissions like particu- late matter (PM) and nitrogen oxides (NO x ). Researchers at Argonne National Laboratory are currently working to develop

263

Special Feature: Reducing Energy Costs with Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

or less to consumers. Such a vehicle would reduce the United States' reliance on foreign oil and lower energy costs for the average American, so one of the Department of Energy's...

264

Reduced Nitrogen and Natural Gas Consumption at Deepwell Flare  

E-Print Network (OSTI)

Facing both an economic downturn and the liklihood of steep natural gas price increases, company plants were challenged to identify and quickly implement energy saving projects that would reduce natural gas usage. Unit operating personnel and engineers w

Williams, C.

2004-01-01T23:59:59.000Z

265

STATEMENT OF CONSIDERATIONS REQUEST BY UNITED TECHNOLOGIES CORPORATION (UNITED  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RTGHTS TO INVENTIONS MADE UNDER RTGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-02AL67628, DOE WAIVER NO. W(A) 02-038. The Petitioner, United Technologies, acting through the United Technologies Research Center (UTRC), has requested a waiver of all domestic and foreign patent iights to inventions that may be conceived or first actually reduced to practice in the course of UTRC's work as the prime contractor under Cooperative Agreement Number DI-FC04- 02AL67628 entitled "On-Board Vehicle, Cost Effective, Hydrogen Enhancement Technology PEM Fuel Cells" with the U S. Department of Energy (DOE). The work to be done will be the development and fabrication of an integrated high temperature water gas shift reactor/hydrogen separator for use in a PEM fuel cell power

266

STATEMENT OF CONSIDERATIONS REQUEST BY UNITED TECHNOLOGIES CORPORATION (UNITED  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RIGHTS TO INVENTIONS MADE UNDER RIGHTS TO INVENTIONS MADE UNDER COOPERATIVE AGREEMENT NUMBER DE-FC04-02AL67610, DOE WAIVER NO. W(A) 02-026. The Petitioner, United Technologies, acting through the United Technologies Research Center (UTRC), has requested a waiver of all domestic and foreign pateni rights to inventions that may be conceived or first actually reduced to practice in the course of UTRC's work as the prime contractor under Cooperative Agreement Number DE-FC04- 02AL67610 entitled "High Density Hydrogen Storage System Demonstration Using NaAIH4 Based Complex Compound Hydrides" with the U.S. Department of Energy (DOE). The work to be done will be the design, development and evaluation of a nydrogen storage medium and system based on NaAIH4 with a 5 kg hydrogen storage capacity and

267

Processes Influencing the Diversity of Middle Permian Brachiopods in the Bell Canyon Formation of the Delaware Basin (West Texas, Guadalupe Mountains National Park)  

E-Print Network (OSTI)

A fundamental question of long standing in the study of life on Earth is, Why are there so many species? This question concerns the distribution of and relationships among species in the present day, but also requires an understanding of the history of diversity. Patterns of diversity result from multiple, interconnected ecological processes operating at different spatial scales. The goal of this research is to gain knowledge about processes that control diversity by using fossil data to provide a temporal perspective that is unavailable when studying modern ecological communities. The fossil record provides the only natural historical account of changes in the diversity of ecological communities in Earths past. This research examines the taxonomic composition and diversity of brachiopod paleocommunities in the Delaware Basin of west Texas (Guadalupe Mountains National Park). The study interval is the Bell Canyon Formation, a 5.4-Myr interval of upper Middle Permian (Capitanian) siliciclastic and carbonate rocks deposited on the toe-ofslope of the basin. Silicified brachiopods extracted from the carbonate rocks provide the basis to test two hypotheses: (1) the taxonomic composition of local fossil brachiopod paleocommunities remains uniform, and (2) the changes in diversity of local fossil brachiopod paleocommunities reflects the relative importance of regional processes. Multivariate analyses of clustering analysis and ordination, diversity partitioning, and rank abundance plots are used to evaluate brachiopod taxonomic composition and diversity within an ecological framework. Sequence stratigraphic analysis provides the means to place the results within an environmental context related to sea-level changes. Results indicate that the reorganization of brachiopod paleocommunity structure coincides with major basinal-scale disruptions. Large disruptions allowed rare taxa and invaders from outside the basin to become dominant within paleocommunities. The dynamics within paleocommunities do not appear to prevent the replacement of the incumbent taxa with new taxa. The importance of these findings indicate that paleocommunities are not static through this interval and can be perturbed into configurations with new dominant taxa. Therefore, ecological responses of paleocommunities are resolvable at the geological time scale.

Fall, Leigh Margaret

2010-08-01T23:59:59.000Z

268

Conserve Energy: Modernize Your Solvent Deasphalting Unit  

E-Print Network (OSTI)

Deasphalting units provide high quality feedstocks for lube oil manufacture, fluid catalytic cracking, or hydrocracking, and can reduce the 'Bottom of the Barrel' by up to 90%. Older units built when energy was less expensive can be easily remodeled to save as much as 46% of the original total utilities required. The energy saving may pay for the improvements in one year or less before taxes. In some cases the charge rate can be increased at the same time as utility costs are reduced.

Lambert, J. S.; Gleitsmann, J. W.

1983-01-01T23:59:59.000Z

269

Reduced power consumption in  

E-Print Network (OSTI)

and a potential energy savings of over $30 Billion/year. This new approach is demanded by the exponentiallyBenefits Reduced power consumption in IC devices; hence potential energy savings of 300 Billion KWh://www.sia- online.org) CuRIE Interconnect Technology for Improved Energy Efficiency in IC Chips ARPA-E Technology

270

Reduces electric energy consumption  

E-Print Network (OSTI)

implementation of the assessment recommendations is estimated to be $843,000 with a total implementation cost. Manufacturing at the facility includes both casting and extrusion processes. Process equipment, air compressors productivity. As a result, facility production costs can be reduced and profits can be increased. August 2001

271

CO2 Emissions - United Korea  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil Fuel CO2 Emissions Regional Centrally Planned Asia United Korea CO2 Emissions from United Korea Data graphic Data CO2 Emissions from United Korea...

272

BNL United Way Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

about Long Island issues and challenges. Because we care, we come together to raise money towards The United Way of Long Island, which provides "services to children and...

273

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

'OQOl - United States Government - Department of Energy National Nuclear Security Administration memorandum January 19, 201 1 DATE. REPLY TO ATTN OF: Y12-60:Gorman SUBJECT ANNUAL...

274

UnitOverview  

NLE Websites -- All DOE Office Websites (Extended Search)

UNIT OVERVIEW A general overview of LHC physics, accelerator and detector design, and how data inform claims and reasoning begins with an exploration of the "Big Questions" that...

275

Redefining the SI Units  

Science Conference Proceedings (OSTI)

... and accuracy, simplify and normalize the unit definitions, and liberate the system from dependence on the prototype kilogram, an artifact adopted in ...

2013-06-24T23:59:59.000Z

276

Base unit definitions: Kilogram  

Science Conference Proceedings (OSTI)

... Unit of mass (kilogram), Abbreviations: CGPM, CIPM, BIPM. At the end of the 18th century, a kilogram was the mass of a cubic decimeter of water. ...

277

United States Patent  

NLE Websites -- All DOE Office Websites (Extended Search)

( 1 of 1 ) United States Patent 6,994,831 Gentile , et al. February 7, 2006 Oxidative tritium decontamination system Abstract The Oxidative Tritium Decontamination System, OTDS,...

278

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

0 Appliances in Homes in South Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"South Census Region" ,,,"South Atlantic Census Division",,,,,,"East South...

279

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

8 Home Appliances in Homes in Northeast Region, Divisions, and States, 2009" " Million Housing Units, Final" ,,"Northeast Census Region" ,,,"New England Census Division",,,"Middle...

280

Rooftop Unit Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

919-943-7291 April 4, 2013 BTO Program Review 2 | Building Technologies Office eere.energy.gov Purpose & Objectives - Problem Statement * Packaged rooftop units (RTUs)...

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to this report. INTRODUCTION AND OBJECTIVE The European Laboratory for Particle Physics, CERN, in collaboration with the United States (U.S.) and other non-member states,...

282

Reduce Climate Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Reduce Climate Change Reduce Climate Change Highway vehicles release about 1.5 billion metric tons of greenhouse gases (GHGs) into the atmosphere each year-mostly in the form of carbon dioxide (CO2)-contributing to global climate change. Each gallon of gasoline you burn creates 20 pounds of CO2. That's roughly 5 to 9 tons of CO2 each year for a typical vehicle. more... How can a gallon of gasoline create 20 pounds of carbon dioxide? It seems impossible that a gallon of gasoline, which weighs about 6.3 pounds, could produce 20 pounds of carbon dioxide (CO2) when burned. However, most of the weight of the CO2 doesn't come from the gasoline itself, but the oxygen in the air. When gasoline burns, the carbon and hydrogen separate. The hydrogen combines with oxygen to form water (H2O), and carbon combines with oxygen

283

Naval electrochemical corrosion reducer  

DOE Patents (OSTI)

A corrosion reducer for use with ships having a hull, a propeller mounted a propeller shaft and extending through the hull, bearings supporting the shaft, at least one thrust bearing and one seal. The improvement includes a current collector and a current reduction assembly for reducing the voltage between the hull and shaft in order to reduce corrosion due to electrolytic action. The current reduction assembly includes an electrical contact, the current collector, and the hull. The current reduction assembly further includes a device for sensing and measuring the voltage between the hull and the shaft and a device for applying a reverse voltage between the hull and the shaft so that the resulting voltage differential is from 0 to 0.05 volts. The current reduction assembly further includes a differential amplifier having a voltage differential between the hull and the shaft. The current reduction assembly further includes an amplifier and a power output circuit receiving signals from the differential amplifier and being supplied by at least one current supply. The current selector includes a brush assembly in contact with a slip ring over the shaft so that its potential may be applied to the differential amplifier.

Clark, Howard L. (Ballston Lake, NY)

1991-10-01T23:59:59.000Z

284

JC REDUCED TALK  

Gasoline and Diesel Fuel Update (EIA)

ENERGY AND NATURAL RESOURCES ENERGY AND NATURAL RESOURCES UNITED STATES SENATE JULY 13, 2000 Rising Crude Oil and Gasoline Prices Thank you, Mr. Chairman. I would like to begin by thanking the Committee for the opportunity to testify on behalf of Mark Mazur for the Energy Information Administration (EIA). With gasoline prices at $1.59 nationwide, compared to $1.16 on average last July, consumers want an explanation. In EIA's view, this summer's run-up, like other recent price spikes, stemmed from a number of factors. The stage was set for gasoline volatility as a result of tight crude oil supplies, which led to low crude oil and low product stocks and high crude oil prices. With little stock cushion to absorb unexpected events, Midwest gasoline prices surged when a number of supply problems developed,

285

Summary Max Total Units  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Max Total Units Max Total Units *If All Splits, No Rack Units **If Only FW, AC Splits 1000 52 28 28 2000 87 59 35 3000 61 33 15 4000 61 33 15 Totals 261 153 93 ***Costs $1,957,500.00 $1,147,500.00 $697,500.00 Notes: added several refrigerants removed bins from analysis removed R-22 from list 1000lb, no Glycol, CO2 or ammonia Seawater R-404A only * includes seawater units ** no seawater units included *** Costs = (total units) X (estimate of $7500 per unit) 1000lb, air cooled split systems, fresh water Refrig Voltage Cond Unit IF-CU Combos 2 4 5 28 References Refrig Voltage C-U type Compressor HP R-404A 208/1/60 Hermetic SA 2.5 R-507 230/1/60 Hermetic MA 2.5 208/3/60 SemiHerm SA 1.5 230/3/60 SemiHerm MA 1.5 SemiHerm HA 1.5 1000lb, remote rack systems, fresh water Refrig/system Voltage Combos 12 2 24 References Refrig/system Voltage IF only

286

Composite stabilizer unit  

DOE Patents (OSTI)

This invention is comprised of an improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabilizer unit by an injection molded engineering grade polymer.

Ebaugh, L.R.; Sadler, C.P.; Carter, G.D.

1990-12-31T23:59:59.000Z

287

Composite stabilizer unit  

DOE Patents (OSTI)

This invention is comprised of an improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabilizer unit by an injection molded engineering grade polymer.

Ebaugh, L.R.; Sadler, C.P.; Carter, G.D.

1990-01-01T23:59:59.000Z

288

Composite stabilizer unit  

SciTech Connect

An improved fin stabilized projectile including multiple stabilizer fins upon a stabilizer unit situated at the aft end of the projectile is provided, the improvement wherein the stabilizer fins are joined into the stabillizer unit by an injection molded engineering grade polymer.

Ebaugh, Larry R. (Los Alamos, NM); Sadler, Collin P. (Los Alamos, NM); Carter, Gary D. (Espanola, NM)

1992-01-01T23:59:59.000Z

289

Associative list processing unit  

SciTech Connect

An associative list processing unit and method comprising employing a plurality of prioritized cell blocks and permitting inserts to occur in a single clock cycle if all of the cell blocks are not full. Also, an associative list processing unit and method comprising employing a plurality of prioritized cell blocks and using a tree of prioritized multiplexers descending from the plurality of cell blocks.

Hemmert, Karl Scott; Underwood, Keith D.

2013-01-29T23:59:59.000Z

290

University of Delaware Library Associates  

E-Print Network (OSTI)

Project with responsibility for development of the atomic bomb. "The value of Conant's anecdotal approach as a business reporter at Newsweek magazine, and after seven years at the newsweekly moved to long-form profiles

Gao, Guang R.

291

Microsoft Word - delaware.doc  

Annual Energy Outlook 2012 (EIA)

... 55 48 Independent Power Producers & Combined Heat and Power ... 3,334 29 Net Generation (megawatthours)...

292

Microsoft Word - delaware.doc  

U.S. Energy Information Administration (EIA) Indexed Site

landfill gas, sludge waste, agriculture byproducts, other biomass, geothermal, solar thermal, photovoltaic energy, and wind. 3 Other includes non-biogenic municipal solid...

293

Delaware Imports of Residual Fuel  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: See Definitions ...

294

Supporting Solar Power in Renewables Portfolio Standards: Experience from the United States  

E-Print Network (OSTI)

the small solar targets in Pennsylvania and Delaware wereiii Pennsylvania) fully achieved their solar/DG targets inPennsylvania, and Washington D.C. ) all had relatively small solar

Wiser, Ryan

2010-01-01T23:59:59.000Z

295

Window solar heating unit  

SciTech Connect

The unit may be mounted either in a window or between the studs of a building that is to be supplied with solar heat. The bottom of the unit extends farther from the building than the top and is wider than the top of the unit such that the transparent side away from the building has an arcuate form and is gradually flared outwardly in a downward direction to increase the exposure to the sun during the day. A plurality of absorptive tubes within the unit are slanted from the upper portion of the unit downwardly and outwardly to the front arcuate portion of the bottom. Openings between the unit and the building are provided for air flow, and a thermostatically controlled fan is mounted in one of the openings. A baffle is mounted between the absorptive tubes and the mounting side of the solar heating unit, and the surfaces of the baffle and the absorptive tubes are painted a dull black for absorbing heat transmitted from the sun through the transparent, slanting side.

Davis, E.J.

1978-09-12T23:59:59.000Z

296

Next Generation Rooftop Unit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Rooftop Unit - Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient systems needed

297

Next Generation Rooftop Unit  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Generation Rooftop Unit - Next Generation Rooftop Unit - CRADA Bo Shen Oak Ridge National Laboratory shenb@ornl.gov; 865-574-5745 April 3, 2013 ET R&D project in support of DOE/BTO Goal of 50% Reduction in Building Energy Use by 2030. CRADA project with Trane TOP US Commercial HVAC Equipment OEM 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: half of all US commercial floor space cooled by packaged AC units, consumes more than 1.0 Quad source energy/year; highly efficient systems needed

298

Pressure reducing regulator  

DOE Patents (OSTI)

A pressure reducing regulator that controls its downstream or outlet pressure to a fixed fraction of its upstream or inlet pressure is disclosed. The regulator includes a housing which may be of a titanium alloy, within which is located a seal or gasket at the outlet end which may be made of annealed copper, a rod, and piston, each of which may be made of high density graphite. The regulator is insensitive to temperature by virtue of being without a spring or gas sealed behind a diaphragm, and provides a reference for a system in which it is being used. The rod and piston of the regulator are constructed, for example, to have a 1/20 ratio such that when the downstream pressure is less than 1/20 of the upstream pressure the regulator opens and when the downstream pressure exceeds 1/20 of the upstream pressure the regulator closes. 10 figs.

Whitehead, J.C.; Dilgard, L.W.

1995-10-10T23:59:59.000Z

299

Reducing Leaking Electricity  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Reducing Leaking Electricity Figure 1. Full and standby power draws of some compact audio systems. A surprisingly large number of appliances-from computer peripherals to cable TV boxes to radios-consume electricity even after they have been switched off. Other appliances, such as cordless telephones, remote garage door openers, and battery chargers don't get switched off but draw power even when they are not performing their principal functions. The energy used while the appliance is switched off or not performing its primary purpose is called "standby consumption" or "leaking electricity." This consumption allows TVs, VCRs and garage-door openers to be ready for instant-on with a remote control, microwave ovens to display a digital

300

United Cool Air  

Energy.gov (U.S. Department of Energy (DOE))

While our process may start with a "basic model" it is seldom that we fabricate more than a few units that are identical. Therefore, the definition of "basic model" has a large impact on the...

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

the 2009 Poverty Guidelines for families published by the U.S. Department of Health and Human Services. 3Use of heating equipment for another housing unit also includes the use...

302

United States Government  

Office of Legacy Management (LM)

"- .-A*" (MQ) EfG (07-W) United States Government rrla.g-a Department of Energy memorandum DATE: tlEC 1 F: l??? REPLYTo EM-421 (W. A. W illiams , 903-8149) AJTN OF: SUBJECT:...

303

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

that do not contain a storage tank. The water is only heated as it passes through the heat exchanger. 3Use of a water heater for another housing unit also includes the use of...

304

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

that do not contain a storage tank. The water is only heated as it passes through the heat exchanger. 4Use of a water heater for another housing unit also includes the use of...

305

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

5 Appliances in U.S. Homes, by Household Income, 2009" " Million Housing Units, Final" ,,"Household Income" ,"Total U.S.1 (millions)",,,"Below Poverty Line2" ,,"Less than...

306

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

3 Appliances in U.S. Homes, by Year of Construction, 2009" " Million Housing Units, Final" ,,"Year of Construction" ,"Total U.S.1 (millions)" ,,"Before 1940","1940 to 1949","1950...

307

" Million Housing Units, Final...  

U.S. Energy Information Administration (EIA) Indexed Site

6 Appliances in U.S. Homes, by Climate Region, 2009" " Million Housing Units, Final" ,,"Climate Region2" ,"Total U.S.1 (millions)" ,,"Very Cold","Mixed- Humid","Mixed-Dry"...

308

Daily snow depth measurements from 195 stations in the United States  

SciTech Connect

This document describes a database containing daily measurements of snow depth at 195 National Weather Service (NWS) first-order climatological stations in the United States. The data have been assembled and made available by the National Climatic Data Center (NCDC) in Asheville, North Carolina. The 195 stations encompass 388 unique sampling locations in 48 of the 50 states; no observations from Delaware or Hawaii are included in the database. Station selection criteria emphasized the quality and length of station records while seeking to provide a network with good geographic coverage. Snow depth at the 388 locations was measured once per day on ground open to the sky. The daily snow depth is the total depth of the snow on the ground at measurement time. The time period covered by the database is 1893--1992; however, not all station records encompass the complete period. While a station record ideally should contain daily data for at least the seven winter months (January through April and October through December), not all stations have complete records. Each logical record in the snow depth database contains one station`s daily data values for a period of one month, including data source, measurement, and quality flags.

Allison, L.J. [ed.] [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Easterling, D.R.; Jamason, P.; Bowman, D.P.; Hughes, P.Y.; Mason, E.H. [National Oceanic and Atmospheric Administration, Asheville, NC (United States). National Climatic Data Center

1997-02-01T23:59:59.000Z

309

FETC Programs for Reducing Greenhouse Gas Emissions  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Energy Technology Center Federal Energy Technology Center Pittsburgh, Pennsylvania Morgantown, West Virginia FETC's Customer Service Line: (800) 553-7681 FETC's Homepage: http://www.fetc.doe.gov/ DOE/FETC-98/1058 (DE98002029) FETC Programs for Reducing Greenhouse Gas Emissions John A. Ruether February 1998 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein

310

Stewarding a Reduced Stockpile  

Science Conference Proceedings (OSTI)

The future of the US nuclear arsenal continues to be guided by two distinct drivers: the preservation of world peace and the prevention of further proliferation through our extended deterrent umbrella. Timely implementation of US nuclear policy decisions depends, in part, on the current state of stockpile weapons, their delivery systems, and the supporting infrastructure within the Department of Defense (DoD) and the Department of Energy's National Nuclear Security Administration (NNSA). In turn, the present is a product of past choices and world events. Now more than ever, the nuclear weapons program must respond to the changing global security environment and to increasing budget pressures with innovation and sound investments. As the nation transitions to a reduced stockpile, the successes of the Stockpile Stewardship Program (SSP) present options to transition to a sustainable complex better suited to stockpile size, national strategic goals and budgetary realities. Under any stockpile size, we must maintain essential human capital, forefront capabilities, and have a right-sized effective production capacity. We present new concepts for maintaining high confidence at low stockpile numbers and to effectively eliminate the reserve weapons within an optimized complex. We, as a nation, have choices to make on how we will achieve a credible 21st century deterrent.

Goodwin, B T; Mara, G

2008-04-18T23:59:59.000Z

311

Take Steps to Reduce Heart Risks  

NLE Websites -- All DOE Office Websites (Extended Search)

Take Steps to Reduce Heart Risks Take Steps to Reduce Heart Risks February is American Heart Month -- a time to reflect on the sobering fact that heart disease remains the number one killer of both women and men in the United States. The good news is you have the power to protect and improve your heart health. NIH and other government agencies have been working to advance our understanding of heart disease so that people can live longer, healthier lives. Research has found that you can lower your risk for heart disease simply by adopting sensible health habits. To protect your heart, the first step is to learn your own personal risk factors for heart disease. Risk factors are conditions or habits that make you more likely to develop a disease. Risk factors can also increase the chances that an existing disease will get worse.

312

Argonne Transportation - Engines - Reducing Heavy Vehicle Idling  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Vehicle Idling Reducing Vehicle Idling What is Idling? graphic of a hypothetical no-idling sign When a vehicle's engine is on but the vehicle is not in motion, it is idling. Sitting at traffic lights, waiting in a running car to pick someone up, trucks idling while their drivers make deliveries or sleep during rest stops - these are all examples of idling. Why Care About Idling? Although many individual idling episodes are small, the cumulative impacts of idling are large! Consider that idling in the United States uses more than 6 billion gallons of fuel at a cost of more than $20 billion EACH year. Add to that the costs of maintenance related to the extra engine running time and the added emissions of particulates (PM10), nitrogen oxides (NOx), carbon monoxide (CO) and carbon dioxide (CO2) related to

313

Second United Nations  

NLE Websites -- All DOE Office Websites (Extended Search)

Nations Nations . DISCLAIMER This report was prepared a s an account of work sponsored by an agency of the United States Government. Neither t h e United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and

314

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.2/06 WED 17:02 FAX 423 241 3897 OIG .2/06 WED 17:02 FAX 423 241 3897 OIG -** HQ . 001 United States Government Department of Energy Department of Energy memorandum DATE: February 9, 2006 Audit Report Number: OAS-L-06-07 REPLY TO ATTN OF; IG-32 (A050R014) SUBJECT: Audit of "The Department's Management of United States Enrichment Corporation Site Services" TO: Manager, Portsmouth/Paducah Project Office INTRODUCTTON AND OBJECTIVE The Paducah Gaseous Diffusion Plant (Paducah), located in western Kentucky, was constructed by the Department of Energy (Department) in the early 1950s to enrich uranium for use in various military and commercial applications. The Department operated the plant until the Energy Policy Act of 1992 created the United States Enrichment Corporation (USEC) as a Government-owned

315

C. Uniform Unit Pricing Regulation  

Science Conference Proceedings (OSTI)

... to permit retail stores that voluntarily provide unit pricing to present prices using various ... with requirements that specify that the unit price is to be ...

2013-10-25T23:59:59.000Z

316

United Biofuels | Open Energy Information  

Open Energy Info (EERE)

United Biofuels Jump to: navigation, search Name United Biofuels Place York, Pennsylvania Product Waste and animal fats to biofuel producer, switched to animal fats from soy in...

317

Exemplary Units Markup Language usage  

Science Conference Proceedings (OSTI)

Sample UnitsML tools and usage. ... Its usage is limited to demonstrating capabilities of plain XSLT processing with the data stored in UnitsML. ...

318

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

319

Solving Unit Commitment by a Unit Decommitment Method  

E-Print Network (OSTI)

demand, and operating constraints such as spinning reserve requirements, over a short time horizon of power unit i is generating in time period t pmin i pmax i : minimum maximum rated capacity of unit i rmax i : maximum reserve for unit i ripit : reserve available from unit i in time period t minrmax i

320

Microsoft Word - UPDATE 2 - Unit 1.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 to: 2 to: A Dispersion Modeling Analysis of Downwash from Mirant's Potomac River Power Plant Modeling Unit 1 Emissions at Maximum and Minimum Loads ENSR Corporation December 20, 2005 Document Number 10350-002-410 (Update 2) December, 2005 1-1 1.0 INTRODUCTION This report describes AERMOD modeling results performed for Unit 1 at Mirant's Potomac River Generating Station. The purpose of these runs was to demonstrate that operation of Unit 1 for 24 hours a day at loads from 35 MW to 88 MW with the use of trona to reduce SO 2 emissions will not cause or contribute to modeled exceedances of the National Ambient Air Quality Standards (NAAQS). Mirant proposes to use trona on an as needed basis to limit SO 2 emissions to less than 0.89 lb/MMBtu

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

COOPERATIVE RESEARCH UNITS2009  

E-Print Network (OSTI)

. The CRU program expects to continue to work with cooperators in identify- ing high priority hiring actions Cooperators' Coalition (NCC) for the CRU program, which targets efforts in CRU to (i) find new ways to workCOOPERATIVE RESEARCH UNITS2009 Year In Review PROGRAM YEAR IN REVIEW In Fiscal Year (FY) 2009

322

Beowawe Bottoming Binary Unit - Final Technical Report for EE0002856  

SciTech Connect

This binary plant is the first high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a butane based cycle are not necessary. The unit is modularized, meaning that the units individual skids were assembled in another location and were shipped via truck to the plant site. This project proves the technical feasibility of using low temperature brine The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy for Nevada, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

McDonald, Dale Edward

2013-02-12T23:59:59.000Z

323

Reducing Petroleum Consumption from Transportation  

E-Print Network (OSTI)

The United States consumed more petroleum-based liquid fuel per capita than any other OECD- high-income country- 30 percent more than the second-highest country (Canada) and 40 percent more than the third-highest (Luxemburg). ...

Knittel, Christopher R.

2011-12-01T23:59:59.000Z

324

Reducing Petroleum Consumption from Transportation  

E-Print Network (OSTI)

The United States consumes more petroleum-based liquid fuel per capita than any other OECD high-income country30 percent more than the second-highest country (Canada) and 40 percent more than the third-highest (Luxembourg). ...

Knittel, Christopher Roland

2012-01-01T23:59:59.000Z

325

Essentials of the SI: Base & derived units  

Science Conference Proceedings (OSTI)

... Table 1. SI base units. SI base unit. Base quantity, Name, Symbol. length, meter, m. ... Table 2. Examples of SI derived units. SI derived unit. ...

326

United States Government Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OE r 1325.0 OE r 1325.0 (01.93) United States Government Department of memorandum DATE: March 23, 2006 Audit Report Number: OAS-L-06-09 REPLY TO ATTN OF: IG-32 (A060R040) SUBJECT: Audit of"The Department of Energy's Management of the Northeast Home Heating Oil Reserve" TO, Deputy Assistant Secrctary for Petroleum Reserves INTRODUCTION AND OBJECTIVE The Energy Act of 2000 authorized the Secretary of Energy to create a Northeast Home Heating Oil Reserve (Reserve). The Reserve was established as an "emergency buffer" to supplement commercial supplies should a severe supply disruption occur in the heavily heating oil-dependent northeast United States. The Reserve consists of 2 million barrels of emergency home heating oil, enough to provide Northeast consumers adequate supplies for approximately

327

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Government United States Government Department of Energy Memorandum DATE: July 29, 2005 REPLY TO ATTN TO: IG-34 (A05HQ002) Audit Report No. OAS-L-05-10 SUBJECT: Agreed-Upon Procedures for Federal Payroll TO: Director, Office of Management, Budget, and Evaluation/Chief Financial Officer, ME-1 INTRODUCTION AND OBJECTIVE The Office of Management and Budget (OMB) Bulletin No. 01-02, "Audit Requirements for Federal Financial Statement," dated October 16, 2000, requires an annual audit of civilian payroll of executive departments and other Government agencies. Auditors are required to follow the agreed-upon procedures in Appendix I-1 of OMB Bulletin No. 01-02, to assess the reasonableness of life insurance, health benefits, and retirement withholdings and contributions.

328

UNITED STATES GOVERNMENT  

Office of Legacy Management (LM)

Menxmmhmz 9 Menxmmhmz 9 1 / UNITED STATES GOVERNMENT i TO : ThcFFles . mx.f I A. B. Piccct, +3lation section : DATE: .@.eti 16, 1949 SUBJECT: VISIT To HAVY OFfDHAlfCE DEPOT, EARIZ, B.J. FmmlTo ,sYmOL: DH:ARP . . : OnJuly 8,&g the uriterattendedameeting at the Navy Oxdnce Depot at Farle, Ii. J. for the purpose of advising the navy on i-adlatlon hazards involved In the dmping of contadnated AEC wastes at /?ea. " Presint were: J. Cook - Traffic & Transportation, AEC ~J.Moren- Utilifation, AEC ..J. Ccnmigl.io - Chief of Middlesex Operaticns A. PIhot -~Hadiation Section, AEC Captain Blossoin - Navy Captain hall - Navy ThefoSkndngwas agreedupcmby AFC andthe l&v. 1. 2. 3. 4. Contaminatedmaterial dnmied, I (loose in case of large contaminated units) loaded on truck&and lsonltored at'

329

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

uv /uu/u* ±.u.. J.OJ..L rAA , *. . uv /uu/u* ±.u.. J.OJ..L rAA , *. . 'A4 .. ± OO, I U444 flmI I.j102 ' -f- $I)002 EP<.1 (o-.vu) United States Government Department of Energy memorandum DATE: January 30, 2004 REP.YTO: IG-35 (A03DN039) Audit Report No.: OAS-L-04-10 SUBJECT: Audit of the Safeguards and Security Program at the Rocky Flats Environmental Technology Site To: Frazer Lockhart, Manager, Rocky Flats Field Office INTRODUCTION AND OBJECTIVE Because of the terrorist attacks against the United States on September 11, 2001, the Department of Energy (Department) instituted additional security requirements beyond those already in place for normal security operations. These "Security Conditions" requirements were established by Department Notice 473.8 (Notice). The requirements are based on

330

United States Environmental Monitoring  

Office of Legacy Management (LM)

EPA 60014-91/030 EPA 60014-91/030 Environmental Protection Systems Laboratory DOE/DP00539-063 Agency P.O. Box 93478 Las Vegas NV 891 93-3478 Research and Development Offsite Environmental Monitoring Report: 1 - 3 5 Radiation Monitorina Around * / (- P 7 1 United States ~ u c l g a r Test Areas Calendar Year 1990 This page intentionally left blank EPN60014-90 DOWDP Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1990 Contributors: D.J. Chaloud, B.B. Dicey, D.G. Easterly, C.A. Fontana, R.W. Holloway, A.A. Mullen, V.E. Niemann, W.G. Phillips, D.D. Smith, N.R. Sunderland, D.J. Thome, and Nuclear Radiation Assessment Division Prepared for: U.S. Department of Energy under Interagency Agreement Number DE-A108-86-NV10522

331

l UNITED STATES GOVERNMENT  

Office of Legacy Management (LM)

UNITED STATES GOVERNMENT UNITED STATES GOVERNMENT lb 15 SUBJECT: THORFJM PROCURENENT PMF'N:TBU Jesse C. Johnson, Gtnager of IRaw Materials Operations3s.Office 3 R. W. Cook, Director of Production ~',LL:::+ I--- DATE: MAR ! 9 1951 The following list of suppliers of thorium and the amounts of materials procured from them by the Mew York Operations Office during calendar year 1950 is being supplied in accordance with Mr. Spelmanls telephone request of March 19. Thorium Lannett Bleachery iinde Air Products Co. Lindsey Light & Chemical Co. lliscellaneous NY0 Liscensing Division Rare Earths, Inc. Wolff-Alport Total - (kilograms) 179 38,2;2 -3 4,210 /vyeoi 4 -q- 2 : i ' \ iti 1 i 0 ;;\I:' --' I F 10 i;;;?/ \ --' L & ;:I :,- :,j( EZi 5 1 :' -I I ri _ I ' R i; .- . )- .i

332

Thermal insulated glazing unit  

SciTech Connect

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

1991-01-01T23:59:59.000Z

333

Thermal insulated glazing unit  

DOE Patents (OSTI)

An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

1988-04-05T23:59:59.000Z

334

Laser system preset unit  

DOE Patents (OSTI)

An electronic circuit is provided which may be used to preset a digital display unit of a Zeeman-effect layer interferometer system which derives distance measurements by comparing a reference signal to a Doppler signal generated at the output of the interferometer laser head. The circuit presets dimensional offsets in the interferometer digital display by electronically inducing a variation in either the Doppler signal or the reference signal, depending upon the direction of the offset, to achieve the desired display preset.

Goodwin, William L. (Knoxville, TN)

1977-01-01T23:59:59.000Z

335

Hoechst plans Mexican unit  

SciTech Connect

Hoechst is considering plans to build its first ethoxylates project in Mexico, Mark Sijthoff, head of surfactants and auxiliaries for Hoechst`s specialty chemical business unit, tells CW. The company expects to make a decision on the 30,000-m.t./year project by the end of the year. Sijthoff would not disclose the site or where ethylene oxide (EO) feed would be obtained. The plan may depend on results of the privatization of Petroleos Mexicanos (Pemex), which is the only producer of EO in Mexico. Hoechst is part of a consortium bidding on the privatization. Sources say the unit will be built at Quimica Hoechst`s Coatzacoalcos site, close to Pemex`s EO plants at Cangregera and Morelos. A planned EO expansion at Morelos will probably move ahead when the sell-off is completed. Sijthoff says that Hoechst is also looking at improving its US surfactants position, although the company has no plans to expand ethoxylates, as there is {open_quotes}plenty of capacity.{close_quotes} Hoechst started up a 150-million lbs/year plant at Clear Lake, TX last year, ending a tolling agreement with Union Carbide. In addition, Rhone-Poulenc recently started a unit at Marcus Hook, PA, and Condea Vista is doubling its ethoxylation capacity at Lake Charles, LA. Meanwhile, Hoechst is still considering construction of 30,000-m.t./year ethoxylation plant in India or China. A decision is expected later this year.

Wood, A.; Alperowicz, N.

1996-05-22T23:59:59.000Z

336

Mathematical structure of unit systems  

E-Print Network (OSTI)

We investigate the mathematical structure of unit systems and the relations between them. Looking over the entire set of unit systems, we can find a mathematical structure that is called preorder (or quasi-order). For some pair of unit systems, there exists a relation of preorder such that one unit system is transferable to the other unit system. The transfer (or conversion) is possible only when all of the quantities distinguishable in the latter system are always distinguishable in the former system. By utilizing this structure, we can systematically compare the representations in different unit systems. Especially, the equivalence class of unit systems (EUS) plays an important role because the representations of physical quantities and equations are of the same form in unit systems belonging to an EUS. The dimension of quantities is uniquely defined in each EUS. The EUS's form a partially ordered set. Using these mathematical structures, unit systems and EUS's are systematically classified and organized as a hierarchical tree.

Masao Kitano

2013-05-04T23:59:59.000Z

337

Oxygen-reducing catalyst layer  

DOE Patents (OSTI)

An oxygen-reducing catalyst layer, and a method of making the oxygen-reducing catalyst layer, where the oxygen-reducing catalyst layer includes a catalytic material film disposed on a substrate with the use of physical vapor deposition and thermal treatment. The catalytic material film includes a transition metal that is substantially free of platinum. At least one of the physical vapor deposition and the thermal treatment is performed in a processing environment comprising a nitrogen-containing gas.

O' Brien, Dennis P. (Maplewood, MN); Schmoeckel, Alison K. (Stillwater, MN); Vernstrom, George D. (Cottage Grove, MN); Atanasoski, Radoslav (Edina, MN); Wood, Thomas E. (Stillwater, MN); Yang, Ruizhi (Halifax, CA); Easton, E. Bradley (Halifax, CA); Dahn, Jeffrey R. (Hubley, CA); O' Neill, David G. (Lake Elmo, MN)

2011-03-22T23:59:59.000Z

338

Reduce Air Infiltration in Furnaces  

Science Conference Proceedings (OSTI)

This DOE Industrial Technologies Program tip sheet describes how to save energy and costs by reducing air infiltration in industrial furnaces; tips include repairing leaks and increasing insulation.

Not Available

2006-01-01T23:59:59.000Z

339

Links to on-line unit conversions  

Science Conference Proceedings (OSTI)

... Basic physical quantities. General unit, currency, and temperature conversion. ... Many conversions, including unusual and ancient units. ...

340

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Type of Housing Unit, 2005" " Million U.S. Housing Units" ,,"Type of Housing Unit" ,"Housing Units (millions)","Single-Family Units",,"Apartments in...

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Million U.S. Housing Units Total...............................  

U.S. Energy Information Administration (EIA) Indexed Site

Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions)...

342

DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Draft Strategic Plan for Reducing Greenhouse Gas Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology DOE Releases Draft Strategic Plan for Reducing Greenhouse Gas Emissions through Deployment of Advanced Technology September 22, 2005 - 10:45am Addthis WASHINGTON, DC - The Department of Energy today released for public review and comment a plan for accelerating the development and reducing the cost of new and advanced technologies that avoid, reduce, or capture and store greenhouse gas emissions - the technology component of a comprehensive U.S. approach to climate change. The technologies developed under the Climate Change Technology program will be used and deployed among the United States' partners in the Asia-Pacific Partnership for Clean Development that was announced earlier this year.

343

Current Name Academic Unit Request  

E-Print Network (OSTI)

Current Name Academic Unit Request Department/College/School/Institute/Center Names: New or Changes This form is to be used to request new academic units (departments, colleges, schools, institutes, or centers) or to request changes to existing academic units. Complete the following and submit

Hart, Gus

344

Verti Jack Pumping Unit evaluation  

Science Conference Proceedings (OSTI)

The Verti Jack Pumping Unit was tested primarily to establish the energy comsumption efficiency of the unit as compared with that of conventional pumping unit. Before the unit was field tested, extensive static testing was performed to determine the effect of the counterbalance system throughout the operational cycle. The field test included comparing the performance of the Verti Jack Unit and conventional pump jacks - a Bethlehem 16 and Cabot 25 pumping unit. The Verti Jack unit was operated at four different pumping conditions. The Verti Jack unit peformed satisfactorily during the testing. Only minor problems that could not be attributed to the design or operation of the unit were encountered. Changing the stroke length was difficult in the field, but such operational problems were expected in operating the first phototype and can be corrected on future models. During the higher pumping rate tests of the Verti Jack unit, the well ceased to deliver fluid quantities at rates adequate to the pumping rate. These data are shown in table 8. Therefore, evaluation data are based on theoretical pump performance and are presented in table 9. The data show that the Verti Jack is more efficient than the conventional units tested. The most direct comparison was the Verti Jack test at 36-inch stroke and 12 1/2 strokes per minute versus the Cabot unit at 37-inch stroke and 12 strokes per minute. In the comparison the Verti Jack operated about 24 percent more efficiently than the Cabot unit. Comparing the summation of all Verti Jack tests with that of all conventional unit tests, the Verti Jack operated about 15 percent more efficiently. Compared to the Cabot unit only, the Verti Jack was about 17 percent more energy efficient. 13 figs., 12 tabs.

Porter, R.; Spence, K.

1985-11-01T23:59:59.000Z

345

Overview of the structural geology and tectonics of the Central Basin Platform, Delaware Basin, and Midland Basin, West Texas and New Mexico  

SciTech Connect

The structural geology and tectonics of the Permian Basin were investigated using an integrated approach incorporating satellite imagery, aeromagnetics, gravity, seismic, regional subsurface mapping and published literature. The two primary emphases were on: (1) delineating the temporal and spatial evolution of the regional stress state; and (2) calculating the amount of regional shortening or contraction. Secondary objectives included delineation of basement and shallower fault zones, identification of structural style, characterization of fractured zones, analysis of surficial linear features on satellite imagery and their correlation to deeper structures. Gandu Unit, also known as Andector Field at the Ellenburger level and Goldsmith Field at Permian and younger reservoir horizons, is the primary area of interest and lies in the northern part of Ector county. The field trends northwest across the county line into Andrews County. The field(s) are located along an Ellenburger thrust anticline trap on the eastern margin of the Central Basin Platform.

Hoak, T. [Kestrel Geoscience, Littleton, CO (United States); Sundberg, K. [Phillips Petroleum Co., Bartlesville, OK (United States); Ortoleva, P. [Indiana Univ., Bloomington, IN (United States)

1998-12-31T23:59:59.000Z

346

,. United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

i. 001 i. 001 DOE F 1325.8 (8-89) EFG (07-90) ,. United States Government Department of Energy memorandum DATE: September 11, 2003 REPLYTO: IG-34 (A03NE045) Audit Report No.: OAS-L-03-20 SUBJECT: Audit of Procurement Administration at the Oak Ridge National Laboratory TO: Director, Office of Management, Budget and Evaluation/Chief Financial Officer, ME-1 The purpose of this report is to inform you of the results of our survey of procurement administration at the Oak Ridge National Laboratory (Laboratory). This review was initiated in May 2003 and fieldwork was conducted through August 2003. Our review methodology is described in an attachment to this report. INTRODUCTION AND OBJECTIVE In Fiscal Year (FY) 2002, the Department of Energy's (Department) management contractors procured approximately $6.4 billion worth of goods and services from

347

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31/07 THU 18:20 FAX 865 241 3897 OIG --- HQ 31/07 THU 18:20 FAX 865 241 3897 OIG --- HQ 00 DOE F 1325.8 (08&93) United States Government Department of Energy memorandum DATE: May 31, 2007 Audit Report Number: OAS-L-07-13 REPLY TO ATTN OF: IG-32 (A07RL048) SUBJECT: Audit of Safety Allegations Related to the Waste Treatment Plant at the Hanford Site TO: Manager, Office of River Protection INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Hanford Site is responsible for treating and preparing 53 million gallons of radioactive and chemically hazardous waste for disposal. Bechtel National, Inc. (Bechtel) is designing, building and commissioning the Waste Treatment Plant (Plant), a category II nuclear facility, which is comprised of a complex of treatment facilities to vitrify and immobilize radioactive waste into a

348

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OEF 1325.8 OEF 1325.8 (U8-93) United States Government Department of Energy memorandum DATE: April 11, 2007 Audit Report Number: OAS-L-07-I1 REPLY TO ATTN OF: IG-32 (A07DN056) SUSJECT: Audit of the Department of Energy's Community and Regulatory Support Funding at the Richland Operations Office TO: Manager, Richland Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Office of Environmental Management provided $60.1 million in Community and Regulatory Support funding in Fiscal Year (FY) 2005 to a number of Departm- nt sites. The funding is intended to be used for activities indirectly related to nuclear and hazardous waste cleanup, such as agreements with state regulatory agencies and transportation departments. During FY 2005, the Department's Richland

349

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a . a . r-z . "*& ., . .. uoi UA o. --.- flI gj UUX DOE F 1325.8 (08.93) United States Government Department of Ene memorandum DATE: August 19, 2004 Audit Report Number: OAS-L-04-18 REPLY TO ATTN OF: IG-36 (A03IF009) SUBJECT: Audit of the "Revised Pit 9 Cleanup Project at the Idaho National Engineering and Environmental Laboratory" TO: Paul Golan, Acting Assistant Secretary, Office of Environmental Management INTRODUCTION AND OBJECTIVE The Idaho National Engineering and Environmental Laboratory's (iNEEL) subsurface disposal area was established in 1952 for disposal of solid radioactive waste and now encompasses an area of approximately 88 acres. Wastes from the INEEL and other Department of Energy (Department) sites, rmost notably Rocky Flats, were buried in

350

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

vu & . vu & . ,I / v a L U ; .8 " ',X v &..'*. "o uu V"x Ijo tf J ,*- , , i 4 w i tiJ U U 1 OEF S.a 135 (0B93) United States Government - Department of Energy memorandum DATE: February 27, 2007 REPLY TO Audit Repor Number: OAS-L-07-08 ATTN OF: IG-32 (A06ID015) SUBJECT: Audit of the "Design of the Engineered Barrier System at the Yucca Mountain Site" TO: Principal Deputy Director, Office of Civilian Radioactive Waste Management INTRODUCTION AND OBJECTrVE In accordance with the Nuclear Waste Policy Act of 1982, the Department of Energy's (Department) Office of Civilian Radioactive Waste Management (OCRWM) is responsible for designing, licensing, constructing, and operating a repository, known as Yucca Mountain, for the permanent disposal of spent nuclear fuel and high-level -

351

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

F 1325.8 F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: August 13, 2007 . . Audit Report Number: OAS-L-07-18 REPLY TO ATTN OF: IG-32 (A07PR061) SUBJECT: Audit of Executive Compensation at Brookhaven National Laboratory TO: Manager, Brookhaven Site Office INTRODUCTION AND OBJECTIVE As part of a Department of Energy-wide audit of executive compensation, we reviewed executive compensation at the Office of Science's Brookhaven National La --- _ .r . . tc. av .... n . Ou audit covered executive cuupoci'A ;is in curred and claimed for Fiscal Years 2003, 2004, and 2005. Brookhaven Science Associates, LLC, operated Brookhaven under Department of Energy (Department) contract number DE-AC02-98CH10886. The amount of executive compensation that can be reimbursed to Department

352

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

')/06 MON 14:28 FAX 423 241 3897 OIG ')/06 MON 14:28 FAX 423 241 3897 OIG --- HQ 1o001 ,O " F 1325.8 (08-93) United States Government Department of Energy memorandum DATE: April 10, 2006 Audit Report No.: OAS-L-06-11 REPLY TO ATTN OF: IG-32 (A05ID043) SUBJECT: Audit of "Contract Transition Activities at the Idaho Operations Office" TO: Manager, Idaho Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy's Idaho Operations Office has ongoing missions focused primarily in the areas of nuclear energy and environmental cleanup. From October 1, 1999 to February 1, 2005, Bechtel BWXT Idaho, LLC (Bechtel) managed facility operations for both of these missions. In Fiscal Year 2005, two separate contracts began in order to add focus and clarity to each respective mission. First, the Idaho National

353

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

-93) -93) United States Government Department of Energy memorandum DATE: July 12, 2007 Audit Report Number: OAS-L-07-15 REPLY TO ATnN OF: IG-32 (A07ID055) SUBJECr: Audit of the Idaho National Laboratory Facility Footprint Reduction TO: Manager, Idaho Operations Office INTRODUCTION AND OBJECTTVE On February 1, 2005, Battelle Energy Alliance, LLC (BEA) assumed responsibility for managing and operating the Idaho National Laboratory (INL) for the Department of Energy (Department) under a new 10 year contract. ThI m.ion for ,the L s to nntance the Nation's energy security by becoming the preeminent, internationally recognized nuclear energy research, development, and demonstration laboratory.. To accomplish this mission, BEA proposed aggressive infrastructure initiatives

354

United States Government Departmen  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7/05 TUE 07:58 FAX 423 241 3897 OIG -** HQ @]002 7/05 TUE 07:58 FAX 423 241 3897 OIG -** HQ @]002 DOE F 1325.8 (08-93) United States Government Departmen of Energy memorandum DATE: December 20, 2005 Audit Report Number: OAS-L-06-03 REPLY TO A1TN OF; IG-36 (A05SR025) SUBJECT: Audit of "Defense Waste Processing Facility Operations at the Savannah River Site" TO: Jeffrey M. Allison, Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy's (Department) Savannah River Site stores approximately 36 million gallons of liquid, high-level radioactive waste in 49 underground waste storage tanks. The contents of the waste tanks are broadly characterized as either "sludge waste" or "salt waste". Sludge waste is insoluble and settles to the bottom of a waste tank, beneath a layer of liquid supernate. Salt

355

* United States Government  

Office of Legacy Management (LM)

-- -- DE;$r,e /q f-j * I3 - I * United States Government memorandum MAY 21 I991 DATE: REPLY TO Al-fN OF: 4ih55YhL Department of Energy JT:,i 5, f&A 0 ' - j4.~, ' -/ jl.a' \ A t -3 __..-_-. EM-421 SUBJECT: Elimination of the American Potash and Chemical Site The File TO: I have reviewed the attached site summary and elimination recommendation for the American Potash and Chemical Company Site in West Hanover, Massachusetts. I have determined that there is little likelihood of radioactive contamination at this site. Based on the above, the American Potash and Chemical Company site is hereby eliminated from further consideration under the Formerly Utilized Sites Remedial Action Program. W. Alexander Williams, PhD Designation and Certification Manager

356

United States Goveinment  

Office of Legacy Management (LM)

,325.B ,325.B jO8.93) United States Goveinment ~~~rntir-andu~rvi Depr?rtnient of Energy \L, IO' " 1' !ATE:' MAY i o 1995 ,' Kzb9. ":cz$ EM-421 (W.,A. Williams, 301-903-8149) SUBJECT: Records for the West Chicago Site .The File TO: After review.of the available r&rds concerning the former 'Lindsay Light and Chemical.Corhpany site in West Chicago, Illinois. I have determined that it is not necessary to transmit Department of Energy (DOE) records to the municipa,llty to inform public officials of the activities at this ~ site. This site has been licgnsed by the Nuclear Regulatory Commission (NRC) for many.years, and the nature of the. rare'earth and thorium production at the site, are well known. Remediation of this faci'lity ii~ being addressed by the current owner, 'the NRC, the U.S; Environmental

357

; United States Government  

Office of Legacy Management (LM)

Don F 1328.8 Don F 1328.8 . . .449J ' Em wm ; United States Government , % - memorandum L c*m Al.)G 2 9 a34 yz;; EM-421 (If. A. Willlams, 427-1719) lq,iMAL Department of Energy m5 MA, \i& SUBJECT: Elimination of the Sites from the Formerly Utllized Sites Remedial A&Ion Prograa ' a The File In 1990, with the assistance of Hr. Doug Tonkay and Ms. Htchelle L&is, I reviewed a number of sites that had fomerly provided goods and/or services to the Fernald faclllty as subcontractors. For 24 of.these sites, recoarwndations were ude to eliainate thm from further consideratton under Formerly Utilized Sites Reaedial Actlon Progrm (FUSRAP). In each case, I made or revlewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more

358

UNITED STATES GOVERNMENT  

Office of Legacy Management (LM)

'.... '|le , * f C. '.... '|le , * f C. Office Memorandum · UNITED STATES GOVERNMENT .-- J TO ' Leo Graup, Chief, DATE: September 29, 1958 Property Management Branch rFi0 : M. S. Weinstein Industrial Hygiene Branch, HASL SUBJBT: SURVEY AT HAIST PROPETIY SYMBOL: HSH:MSW. Thisl property was purchased during MED operation and used as a dumping ground for refinery residues generated by Linde Air Products during their period of participation in the refinery operations program. \It 2 consists of 10 acres in addition to a perpetual .ease- ment right to a strip of land, 10 feet wide and 3600 feet long. The area is located in North Tonawanda, New York near the Niagara River. Because of the growth of adjacent industries, this particular piece of property has appreciated in value. During its tenure as responsible property management office, Oak

359

United States Government  

Office of Legacy Management (LM)

OOE F 1325.8 OOE F 1325.8 - EFgzk3) United States Government tiemorandum 0 wt;? -J Department of Energy DATE: SEP 2 5 1992 REPLY TO Al-TN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at Diamond Magnesium Site in Painesville, Ohio TO: L. Price, OR The former Diamond Magnesium Company site located at 720 Fairport-Nursery Road in Painesville, Ohio, is designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The site is owned by Uniroyal Chemical Company and by Lonza Chemical, Incorporated. This designation is based on the results of a radiological survey and conclusions from an authority review as noted in the attached Designation Summary. Copies of the radiological survey reports and the authority

360

United States Government  

Office of Legacy Management (LM)

Z&Et,? y-p . c' Z&Et,? y-p . c' )7q/ I cuq,~ United States Government Department of Energy memoranduin I " . : I ;/ ,I DATE: hufi 2 9 1594 \ ' - y:oTFq M-421 (W. A. Ylllius, 427-1719) ' ii Y - SIJWECT: Elimination of the Sites from the Formerly Utilfzed Sites Remedial Actjon Progru TO The File In 1990, with the assistance of Mr. reviewed a number of sites that had services to the Fernald facility as sites, recommendations were made to ___ _- _ consideration under Formerly Utiltzed Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more formal record of the decision on these sites and to ratify and confirm the prior elimination of each site froa FUSRAP.

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

United States Government  

Office of Legacy Management (LM)

DOE F t325.8 DOE F t325.8 (s8s) Dl? l 36-z EFG (07-90) United States Government m e m o randum Department of Energy DATE: LUG 2 ' 3 1394 ",cl,'," EM-421 (W. A. W illiams, 427-1719) SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of M r. Doug Tonkay and Ms. M ichelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of these sites, recoamnendations were aade to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more

362

- United States Government  

Office of Legacy Management (LM)

8 8 my EFG (07.90) . - United States Government . * Department of. Energy * inemorandum DATE: DEC :! ;j 1993 REPLY TO ATTN OF: EM-421 (W.'A. W illiams, 903-8149) : NY 41 I .' 41 G I? SUBJECT: Elimination of the T itanium Alloy Manufacturing Co., Niagara Falls, New York TO: The F ile I have reviewed the attached site. summary and elimination recommendation for the T itanium Alloy Manufacturing Company. I have determined that the potential for radiological contamination is low because of the lim ited duration of the activities at the site. Further, at least some of the contractual activities at the site were licensed under the Atomic Energy Act, and the licensed activities are thereby disqualified from further consideration under the Department of Energy's Formerly Utilized Sites

363

United States Government  

Office of Legacy Management (LM)

UOEF 1325.8 UOEF 1325.8 (5831 , - a.. L . . L. . c ,, . . . t ,' <, .* -,. .--1^ a "-2 (J 7 , pe-;L, United States Government memorandum Departmen: of Energy DATEAUG 1 0 1984 REPLY TO Al-fN OF: NE-20 SUBJECT: Action Description Memorandum (ADM) Review: Wayne, New Jersey Proposed 1984 Remedial Actions at TO: File After reviewing all of the pertinent facts including the attached Action Description Memorandum (ADM), I have determined that the remedial action described in the subject ADM is an action which in and of itself will have a clearly insignificant impact on the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA), 42 U.S.C. 4321 et seq. The Conference Report accompanying the Energy and Water Appropriation Act

364

United States Government  

Office of Legacy Management (LM)

I8 891 I8 891 EFG (07.90) United States Government m e m o randum bepartrne% of Energy -P ' ; N. A *I Pi id : DATE: AUG 3, 9 1994 REPLY TO Al-iN OF: EM-421 (W. A. W illiams, 427-1719) r, )' \, ! c ' d, ' t ' 3 ' 2 -L SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of M r. Doug Tonlsay and Ms. M ichelle Landis, I reviewed a nmber of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recommdations were made to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more

365

United States Government  

Office of Legacy Management (LM)

81278 81278 United States Government Department of Energy memorandum - ?71 S.EP 23 F; i: 54 DATE: SEP 1 8 1991 REPLY TO ATTNOF: EM-421 (P. Blom, 3-8148) SUBJECT: Approved Categorical Exclusion for Removal Actions at Elza Gate, Tennessee TO: Lester K. Price, OR Attached is a copy of the approved Categorical Exclusion (CX) for removal of contaminated material at the Elza Gate site in Tennessee. The removal action involves the removal of radioactive contaminated soil and concrete as well as the removal of Polychlorinated Biphenyl (PCB) contaminated soil. This CX was approved by Carol Borgstrom, Office of National Environmental Policy Act Oversight (EH-25), September 9, 1991. Paul F. Blom Off-Site Branch Division of Eastern Area Programs Office of Environmental Restoration

366

United States Government  

Office of Legacy Management (LM)

D;F&g,8 C-r-I 3-3 D;F&g,8 C-r-I 3-3 .*. United States Government . memorandum DATE: JUNZO 1994 -... REPLY TO A?TN OF: EM-421 (W. A. Williams, 903-8149) Authority Determination -- Combustion Engineering Site, Windsor, SUBJECT: Connecticut To' The File The attached review, documents the basis for determining whether the Department of Energy (DOE) has authority for taking remedial action at the Combustion Engineering (CE) Site in Windsor, Connecticut, under the Formerly Utilized Sites Remedial Action Program. CE was a prime contractor for the Atomic Energy Commission (AEC) and performed high-enriched uranium fuel fabrication work from 1955 to 1967. The services furnished at the CE site included some experimental work; however, it primarily consisted of fabrication of high-enriched uranium

367

United States Government  

Office of Legacy Management (LM)

DOEF1325.8 P4 0 * 1 - 1 DOEF1325.8 P4 0 * 1 - 1 - Iq \ b- United States Government memorandum pJ .T\ \b Department of Energy DATE: OCT 9 1984 REPLY TO NE-20 All-N OF: .- Authorizations for Actions Under the Formerly Utilized Sites Remedial Action SUBJECT: Program (FUSRAP) at the St. Louis Airport Storage Site, St. Louis, MO. and the W. R. Grace Site at Curtis Bay, Md. To: J. LaGrone, Manager Oak Ridge Operations Office St. Louis Airport Storage Site, MO The House and Senate Reports for the Energy and Water Development Appropriation Act (P.L. 98-360) directed the Department of Energy "...to take the necessary steps to consolidate and dispose of the waste material from the Latty Avenue site and nearby St. Louis Airport vicinity properties locally, by reacquiring, stabilizing, and using the old 21.7

368

United States Government  

Office of Legacy Management (LM)

ooc F r325.8 ooc F r325.8 imo, EFO ,ww United States Government memorandum Department of Energy -fw?w 81ua DATE: FEB 1 5 1991 l+Ks6 sUsJECT: Elimination of the Buflovak Company Site from FUSRAP ho: The File I have reiiewed the attached preliminary site summary and recommendation for the Buflovak Company site in Buffalo, New York. I have determined that there is little likelihood of contamination at this site. Based on the above, the Buflovak Company site is hereby eliminated from further consideration under the Formerly Utilized Sites Remedial Action Program. W. Alexander Williams Designation and Certification Manager Off-Site Branch Division of Eastern Area Programs Office of Environmental Restoration Attachment - I . b e e : W e s to n E M - 4 0 ( 3 ) E M - 4 2 ( 2 ) W illiams r

369

United States Attorney General  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

93, 5 U.S. Op. Off. Legal Counsel 1, 1981 WL 30865 (U.S.A.G.) 93, 5 U.S. Op. Off. Legal Counsel 1, 1981 WL 30865 (U.S.A.G.) United States Attorney General ***1 *293 January 16, 1981 **1 The President The White House Washington, D.C. 20500 MY DEAR MR. PRESIDENT: You have asked my opinion concerning the scope of currently existing legal and constitutional authorities for the continuance of government functions during a temporary lapse in appropriations, such as the Government sustained on October 1, 1980. As you know, some initial determination concerning the extent of these authorities had to be made in the waning hours of the last fiscal year in order to avoid extreme administrative confusion that might have arisen from Congress' failure timely to enact 11 of the 13 anticipated regular appropriations bills, FN;B1[FN1]FN;F1 or a

370

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3/02 TUE 08:59 FAX 423 241 3897 OIG *-* HQ 00o2 3/02 TUE 08:59 FAX 423 241 3897 OIG *-* HQ 00o2 DOE F 132,.8 W.I: ((07.9u) United States Government Department of Energy Memorandum DATE: December 2, 2002 REPLY TO REPLY TO -36 (A02SR013) Audit Report No.: OAS-L-03-07 ATTN OF: SUBJECT: Audit of Subcontracting Practices at the Savannah River Site TO: Jeffrey M. Allison, Acting Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Department of Energy (Department) has contracted with Westinghouse Savannah River Company, LLC (Westinghouse) to manage and operate the Savannah River Site (Savannah River) through September 30, 2006. As of August 2, 2002, Westinghouse had 534 open and active service procurements worth $100,000 or more each, with a total value of about $518 million, that it had awarded since October 1996.

371

United States Goverment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6/03 15:37 FAX 301 903 4656 _ CAPITAL REGION * FORS FIVEA 91002/004 6/03 15:37 FAX 301 903 4656 _ CAPITAL REGION * FORS FIVEA 91002/004 DOE-F 1325.8 (68-93) Depament of Energy United States Goverment Department of Energy Memorandum OFFICE OF .NSPECTOR GENERAL DATE: February 26, 2003 REPLY TO ATTN OF: IG-34 (A02CG004) Audit Report No.: OAS-L-03-11 SUBJECT: Audit of the Office of Science Infrastructure Modernization Initiatives TO: Acting Associate Director, Office of Laboratory Operations and Environment, Safety and Health, SC-80 The purpose of this report is to inform you of the results of our audit of the Office of Science's infrastructure modernization initiatives. The audit was performed between May and September 2002 at Departmental Headquarters, Brookhaven National Laboratory, and Argonne National Laboratory. The audit methodology is described in

372

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

w w f.b wr w f k--w .^^- - w w f.b wr w f k--w .^^- - - r - T- - * -* p -ldt - f f - - -J -vv- A n JV DOE F 1325.8 (08-93) United States Government ------- Department of Energy memorandum DATE: June 15, 2006 REPLY TO Audit Report Number: OAS-L-06-15 ATTN OF: IG-32 (A05SR029) SUBJECT Audit of "Storage Capacity of the Iligh Level Waste Tanks at the Savannah River TO: Manager, Savannah River Operations Office INTRODUCTION AND OBJECTIVE The Savannah River Site in South Carolina currently stores about 36 million gallons of waste in 49 active underground storag,* .ks. Twenty-two of these .anks do not meet Environmcntal Protection A&-.y (EPA) requirements ybr full secondary containment and must be emptied and closed by 2022 in accordance with a closure schedule approved by the EPA and the 5oith Carolina Department

373

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0/02 WED 09:58 FAX 423 241 3897 OIG 0/02 WED 09:58 FAX 423 241 3897 OIG -.- +-+ HQ ]002 rFG (07-;1) United States Government Department of Energy Memorandum DATE: October 29, 2002 REPLY TO 1G-36 (A02DN028) Audit Report No.: OAS-L-03-01 ATTN OF; SUBJECT: Audit of Procurement at the Rocky Flats Environmental Technology Site TO: Eugene Schmitt, Manager, Rocky Flats Field Office ' INTRODUCTION AND OBJECTIVE The Department of Energy (Department) and its site contractor, Kaiser-Hill Company, LLC (Kaiser-Hill), contracted in January 2000 to close the Rocky Flats Environmental Technology Site (Rocky Flats) by a target date of December'15, 2006. As of May 2002, Kaiser-Hill had awarded 784 procurements worth more than $25,000 each, with a total value of about $368.6 million, to support the complex activities required for site closure.

374

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

uV,./ J.r./ i L .. * i. uV,./ J.r./ i L .. * i. 0 r '± J o ,. NL . Jurt -. rur.mO rI[ V Jg, ]VJUU"/UU4 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: January 10, 2006 REPLY TO ATTN OF: IG-34 (A06GT029) Audit Report No.: OAS-L-06-06 SUBJECT: Review of the Independent Auditor's Report on The Institute for Genomic Research for the Year Ending December 31, 2004 * TO: Manager, Chicago Office INTRODUCTION AND OBJECTIVE The Institute for Genomic Research (Institute) in Rockville, Maryland is a not-for- profit center that studies areas such as plant, microbial and mammalian genomics. The Institute receives funding from seven Federal agencies to advance its research and development. As required by the Office of Management and Budget (0MB)

375

United States Government Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Department of Energy United States Government Memorandum DATE: March 21, 2008 Audit Report Number: OAS-L-08-08 REPLY TO ATTN OF: IG-321 (A07LV042) SUBJECT: Audit Report on "Accountability of Sensitive and High Risk Property at the Nevada Site Office" TO: Acting Manager, Nevada Site Office INTRODUCTION AND OBJECTIVE and control over sensitive and high risk property because of the vulnerability to loss, theft or misuse and its potential impact on national security interests or proliferation concerns. Items such as portable and desktop computers, ammunition. and firearms are examples of sensitive property. In addition, federal regulations require that Departmental organizations and designated contractors account for and control govemroent-owned high risk property, such as body armor and gas masks,

376

United States Government DATE:  

Office of Legacy Management (LM)

5oE(E;,8 ' 0 H .2+ L-1 5oE(E;,8 ' 0 H .2+ L-1 United States Government DATE: MAR 0 8 1994 REPLY TO AlTN OF: EM-421 (W. A. Williams, 903-8149) SUBJECT: Authority Determination -- Former Herring-Hall-Marvin Safe Co., Hamilton, Ohio TO: The File The attached review documents the basis for determining whether the Department of Energy (DOE) has authority for taking remedial action at the former Herring-Hall-Marvin Safe Co. facility in Hamilton, Ohio, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The facility was used for the shaping and machining of uranium metal by the Manhattan Engineer District (MED) during the Second World War. The following factors are significant in reaching a decision and are discussed in more detail in the attached authority review:

377

United States Government  

Office of Legacy Management (LM)

D;il$;,8 p! A . I I& - ' D;il$;,8 p! A . I I& - ' z United States Government &mtrne&' of Energy DATE: &uG 3, 9 394 REPLY TO AITN OF: EH-421 (W. A. Williams, 427-1719) SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Mr. Doug Toukay and Ms. Michelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recommdations were made to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more formal record of the decision on these sites and to ratify and confirm the

378

Unite2 States Government  

Office of Legacy Management (LM)

+39J +39J t% (3740~ - Unite2 States Government m e m o randuin L3 DATE: AU6 3, 9 %g4 REPLY TO All-N OF: m -421 (U. A. W illiams, 427-1719) -. - >' SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Hr. Doug Toukay and Ms. M ichelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recouwndations were made to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more formal record of the decision on these sites and to ratify and confirm the

379

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LICE F 137: r.e Electr LICE F 137: r.e Electr onic Form App roved by CllR - 1010fJI2002 i/JI~~I United States Government Department of Energy Bonneville Power Admi istration memorandum DATE : REPLY TO AnN OF : KEPR-4 SUBJECT: Environmental Clearance Memorandum TO: Stephen Duncan Project Manager - TERS-3 Proposed Action: Removal of de-stabilized and downed trees resulting from a December 200 8 wind storm on the de-energized Lyons Ultra High Voltage Test Line NO.1. PP&A Project No.: PP&A 1309 Budget Information: Work Order # 184006 Categorical Exclusion Applied (from Subpart 0, 10 C.F.R. Part 1021): B 1.3 Routine maintenance/custodial services for buildings, structures, infrastructures, equipment. Location: Fee-owned ROW on the de-energized Lyons UHV Te st Line No .1 to the south of

380

United States Government Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

B.89) B.89) EFO (07-90) United States Government Department of Energ Memorandum SEP 24 20t DATE: REPLY TO: IG-34 (A04TG032) Audit Report No.: OAS-L-04-21 SUBJECT: Evaluation of "The Federal Energy Regulatory Commission's Cyber Security Program - 2004" TO: Chairman, Federal Energy Regulatory Commission The purpose of this report is to inform you of the results of our annual evaluation of the Federal Energy Regulatory Commission's unclassified cyber security program. This evaluation was initiated in June 2004 and our field work was conducted through September 2004. The evaluation methodology is described in the attachment to this report. Introduction and Objective The Commission's increasing reliance on information technology (IT) is consistent with satisfying the President's Management Agenda initiative of expanding electronic

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

/18/04 THU 11:31 FAX 423 241 3897 OIG -- /18/04 THU 11:31 FAX 423 241 3897 OIG -- + HQ 1002 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: March 17, 2004 Audit Report No. OAS-L-04-1 1 REPLY TO IG-36 (A04DN003) ATTN OF: SUBJECT; Audit of "Requests for Equitable Adjustment at the Rocky Flats Environmental Technology Site" TO: Frazer R. Lockhart, Manager, Rocky Flats Project Office INTRODUCTION AND OBJECTIVE Effective February 1, 2000, the Department of Energy's (Department) Rocky Flats Project Office (RFPO) and Kaiser-Hill Co., LLC (Kaiser-Hill), entered into a cost- plus-incentive-fee contract to close the Rocky Flats Environmental Technology Site (Rocky Flats) by December 15, 2006. Under the contract terms, Kaiser-Hlill's final incentive fee earned will be based on how well it meets established cost targets. For

382

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

. . . .... ...... ..... .. . .. . . .. . , . . . . ..- - --. -- -. , . . DOEF 1325,8 (08.93) United States Government Department of Energy memorandum DATE: August 13, 2007 1 Audit Report Number: OAS-L-07-21 REPLY TO ATTN OF: IG-32 (A06PR047) SUBJECT: Audit of Executive Compensation at Selected National Nuclear Security Administration Sites TO: Director, Policy and Internal Controls Management, NA-66 INTRODUCTION AND OBJECTIVE As part of a Department of Energy-wide audit of executive compensation, we reviewed fourN* Lti nai-.AL 4 ... :.. ,._*i Amiinistration (NiNSA)SsitCe. Speuiiiu-~l we reviewed executive cormpeisation costs incurred and claimed for Fiscal Years 2003, 2004, and 2005 at Los Alamos National Laboratory (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories, and the Y-12

383

United States Government  

Office of Legacy Management (LM)

. v-w. . v-w. ' ;H; (07.901 United States Government 0' ; Td 2, <.<~ Department of Energy ' m e m o randum DATE: REPLY TO Al-TN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at Alba Craft Laboratory in Oxford, Ohio L. Price, OR TO: The former Alba Craft Laboratory site at lo-14 West Rose Avenue, Oxford, Ohio, is designated for remedial action under the Formerly Utilized Sites Remedial Action Program (FUSRAP). Dr. and M rs. Gilbert Pacey, of Oxford, Ohio, own the site. This designation is based on the results of a radiological survey and conclusions from an authority review as noted in the attached Designation Summary. Copies of the radiological survey letter report and the authority review are provided for your information.

384

UNITED STATES GOVERKMENT  

Office of Legacy Management (LM)

Ojice Memornndz~nz 0 Ojice Memornndz~nz 0 UNITED STATES GOVERKMENT By application dated ;!ay 11, 1959, as a~zen:ii:d Hay 25, 1959, the a--T+- I-r-- cant requests that its license SW-33 be amend,ed to authorizt? proced- ures for t>e CCLl-ect conversion of LT6 to '3$ and by applicaticn datzci June 29, 1959, a.3 n:odifizd July 15, 1059, the shipment of uranium rdioxide pellets. Based on our rexiew of the information finished by the applicant, it is hereby determined that the applicant is qualified, by training and experience, to use special nuclear material for the pwpose requested and that the ap@icant's procedures, facilities and equip- ment are adequate to protect health and minimize danger to life and property. It is, therefore, determined that ~NM-33 may be amended to

385

United States Government  

Office of Legacy Management (LM)

ocy F 1325.8 ocy F 1325.8 rcro1 . 6Fo0?-001 w 2 3-q United States Government Department of Energ) ~mc DATE: AUG 3,9 1994 y$Jf EH-421 (W. A. Yllliams, 427-1719) MA. \tQ SUBJECT: _ Elirinrtion of the Sites froa the Formerly Utilized Sites Remedial Action Program TQ The File In 1990, with the assistance of Hr. Doug Tonkay and Hr. Nlchelle Landis, I reviewed a number of sites that had fomerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recomendations were made to eliminate them from further consideration under Forwrly Utilized Sites Remedial A&Ion Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more formal record of the decision on these sites l hd to ratify and confim the

386

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

:)£ F 13 :)£ F 13 ;' 5 H e Etectroou: Form Approved by CGJR - 01120195 (n·/w! United States Government Department of Energy Bonneville Power Administration memorandum DATE: 0 I. 7 20D 9 REPLY TO AnN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum TO : Robert Macy Project Manager - TELF-TPP-3 Proposed Action: Perform routine access road maintenance to the Rockdale Microwave site . Budget Information: Work Order #180709 PP&A Project No.: 1389 Categorical Exclusions Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities .. .for structures, rights-of-way, infrastructures such as roads, equipment. .. routine maintenance activities, corrective .... are required to maintain ... infrastructures . ..in a condition suitable for a facility to be used for its designed purpose.

387

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE:F 1325.8 7 DOE:F 1325.8 7 (08-93) United States Government Department of Energy memorandum DATE: April 10, 2006 REPLY TO ATTN OF: IG-32 (A05AL045) Audit Report Number: OAS-L-06-12 SUBJECT: Audit of Sandia National Laboratories' Safeguards and Security Path Forward Management Plan TO: Associate Administrator for Defense Nuclear Security INTRODUCTION AND OBJECTIVE From 2001 to 2003, approximately 500 security-related findings and observations were identified at Sandia National Laboratories (Sandia) by the Department of Energy's Office of Independent Oversight and Performance Assurance (OA), the National Nuclear Security Administration's (NNSA) Sandia Site Office (SSO), and Sandia's self assessments. Sandia senior management acknowledged the significance of the numerous findings and, in

388

United States Government Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy United States Government Memorandum DATE: January 26, 2007 Audit Report Number: OAS-L-07-05 REPLY TO ATTN OF: IG-34 (A06GT035) SUBJECT: Report on "The Department of Energy's Implementation of Revised OMB Circular No. A-123" TO: Acting Chief Financial Officer, CF-1 INTRODUCTION AND OBJECTIVE The Office of Management arid Budget's (OMB) revised Circular No. A-123 (Circular) requires Federal agencies to assess the adequacy of their internal controls. Beginning in Fiscal Year (FY) 2006, the Circular requires agencies to strengthen their assessment, documentation and testing of internal controls over financial reporting and prepare an annual assurance statement on the operating effectiveness of those controls. In August 2005, the Department of Energy's

389

. United States Government  

Office of Legacy Management (LM)

,:n5.5.8 ,:n5.5.8 ,849, EfG pw, . United States Government DATE: AUG 2 i994 y#J;; EM-421 (W. A. Williams, 427-1719) sUBJECT: -Elimination of the Robbins & Myers Site, Springfield, Ohio 11179 I The File TO: I have reviewed the attached elimination recommendation and the original historical records for the Myers & Robbins facility in Springfield, Ohio. I have determined that there is little likelihood of radioactive contamination at these sites. The only record of activity at this site by Department of Energy predecessors is an equipment test of a pump in March 1975. This test involved limited amounts of radioactive materials and there was a serious effort to decontaminate the equipment at the conclusion of the tests. Based on the above, the Myers & Robbins site in Springfield, Ohio, is

390

United States Government  

Office of Legacy Management (LM)

DOE F 1325.8 DOE F 1325.8 E&M&& +\A .wz United States Government Department of Energy DATE: RUG 3, 9 %g4 y;;;; EM-421 (W. A. W illiaas, 427-1719) "; :+ 1 SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of M r. Doug Tohkay and Ms. M ichelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recomendations were made to eliminate then from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more formal record of the decision on these sites and to ratify and confirm the

391

Uniter+ States Government  

Office of Legacy Management (LM)

EFG (07-90) EFG (07-90) Uniter+ States Government ~L.aQ-i; Department of Energy inemorandum DATE: SEP 2 5 1992 REPLY TO Al-fN OF: EM-421 (W. A. W illiams, 903-8149) SUBJECT: Authorization for Remedial Action at the Former Dow Chemical Company Facility in M a d ison, Illinois TO: L. Price, OR The site of the Former Dow Chemical Company in M a d ison, Illinois, which is currently owned and operated by the Spectrulite Consortium, is designated for inclusion in the Formerly Utilized Sites Remedial Action Program (FUSRAP). This designation is based upon the results of a preliminary radiological survey and other information described in the attached Designation Summary. The authority determination and preliminary survey report also are attached for information. The site has been assigned a low priority under the FUSRAP protocol, as

392

United States Government  

Office of Legacy Management (LM)

# Xx i' # Xx i' !325 8 I c&egJw, i&l d, 4 -1 United States Government Department of Energy DATE; AUG 3, 9 !gg4 I REPLYTo m-421 (W. A. Williams, 427-1719) sy I AlTN OF: SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Mr. Doug Tonkay and Ms. Nichelle Landis, I reviewed a number of sites that had formerly provided goods a&/or services to the Fernald facility as subcontractors. For 24 of these sites, recoumendations were made to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more

393

United States Government  

Office of Legacy Management (LM)

EFS (07-W EFS (07-W United States Government memorandukn Department of Energy j ; I.-- ' -i;: /J DATE: j.gjG 2 9 1994 REPLY TO En-421 (W. A. Williams, 427-1719) AlTN OF: h p)\;--/ ;,;' J ( SUBJECT: Elimination of the Sites from the Formerly Utilized Sites Remedial Action Program To' The File In 1990, with the assistance of Ur. Doug Tonkay and Us. Michelle Landis, I reviewed a number of sites that had formerly provided goods and/or services to the Fernald facility as subcontractors. For 24 of.these sites, recoPraendations were made to eliminate them from further consideration under Formerly Utilized Sites Remedial Action Program (FUSRAP). In each case, I made or reviewed the evaluation, and, in each case, a handwritten evaluation was prepared. This is to provide a more

394

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nUnited States Government Department of Energy Bonneville Power Administration memorandum REPLY TO AnN OF: KEP-4 SUBJECT: Environmental Clearance Memorandum TO: Robert Macy Project Manager - TELF-TPP-3 Proposed Action: Access road improvement and bridge replacement for the Raver-Paul No. transmission line structure 18/1. Budget Information: Work Order # 00220048 PP&A Project No.: 954 Proposed by: Bonneville Power Administration (BPA) Categorical Exclusion Applied (from Subpart D, 10 C.F.R. Part 1021): B1.3, Routine maintenance activities .. .for structures, rights-of-way, infrastructures such as roads, equipment. .. routine maintenance activities, corrective ....are required to

395

United States Government Memorandum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8/16/07 09:15 FAX 301 903 4656 CAPITAL REGION 8/16/07 09:15 FAX 301 903 4656 CAPITAL REGION * 002 DOE F 1325.8 (08-93) Department of Energy United States Government Memorandum DATE: August 15, 2007 Audit Report Number: OAS-L-07-22 REPLY TO ATTN OF: IG-34 (A06GT006) SUBJECT: Report on "Hazardous Chemicals Inventory Management at the Savannah River Site" TO: Manager, Savannah River Operations Office BACKGROUND The Savannah River Site (Savannah River) maintains large inventories of hazardous chemicals for its scientific, environmental cleanup and production operations. Many of these chemicals are known carcinogens; some are corrosive, while others are highly flammable. As such, these chemicals can pose serious health and safety risks to workers and members of the public, the environment, and to emergency first responders if not properly managed and controlled.

396

Reduced shedding regenerator and method  

DOE Patents (OSTI)

A reduced shedding regenerator and method are disclosed with regenerator surfaces to minimize shedding of particles from the regenerator thereby alleviating a source of potential damage and malfunction of a thermal regenerative machine using the regenerator.

Qiu, Songgang (Richland, WA); Augenblick, John E. (Richland, WA); Erbeznik, Raymond M. (Kennewick, WA)

2007-05-22T23:59:59.000Z

397

CONVERT 15 WELLS TO BORS PUMPING UNITS AND TEST/COMPARE TO CONVENTIONAL UNITS  

Science Conference Proceedings (OSTI)

A new type of fluid lifting equipment called Balanced Oil Recovery System (trade named BORS Lift{trademark}) was installed on several idle oil wells to demonstrate the operating efficiency of this innovative equipment technology. The BORS Lift system is designed to bring oil to the surface without the accompanying formation water. The BORS Lift system uses an innovative strap mechanism that takes oil from the top of the downhole oilwater column and lifts it to the surface, eliminating production of the formation water. Eliminating salt water production could potentially increase oil production, reduce operational costs, benefit the environment, and cut salt water disposal costs. Although the BORS Lift units did not function as intended, lessons learned during the course of the field demonstration project resulted in improvements in the technology and redesign of subsequent generation BORS Lift units which are reported to have significantly improved their performance characteristics. BORS Lift units were installed on 15 temporarily abandoned wells which had been shut down due to low oil production, high water production, and uneconomic operating conditions. The wells had been producing with artificial lift at a high watercut from a shallow (850-900 feet), pressure depleted oil sand reservoir prior to being shut down. The electrical motor driven BORS Lift units provided a possible approach for economically returning the shallow, low-volume oil wells to production. The BORS Lift units used in this field demonstration were designed to recover up to roughly 22 barrels of fluid per day from depths ranging to 1,700 feet, ideal for many marginal stripper well operations. The BORS units were first-production-model test units, operated under oil field conditions for the first time, and were naturally expected to experience some design problems. From the onset, the operator experienced mechanical, design, and operational problems with the BORS Lift units and was unable to maintain un-interrupted production operations. The inventor provided considerable on-site technical support in an ongoing effort to correct the problems with the units and the inventor worked extensively with the operator to make design and manufacturing changes to the units to try to improve their reliability and performance. The operational problems were mostly related to the durability of the various components under oil field operating conditions such as inadequate mechanical, electrical, and electronic design for rough service, extended operation, and severe weather conditions. During the course of the demonstration project, it further appeared that the producing formation lacked sufficient reservoir energy and/or favorable oil properties to mobilize and displace oil from the formation into the well bore in order to recharge the oil column in the well. The BORS Lift units were then moved to a second lease which appeared to have more favorable WTI quality oil properties. Eight of these units were reported to have been installed and placed in operation on the second lease, however, operational difficulties continued. It was determined that the units were inadequately designed and would need to be replace by improved second generation units. Due to the lack of success with the first generation units and the extra cost to replace them with the redesigned units, the operators decided not to continue with the project and the project was terminated at that point.

Walter B. North

2003-02-04T23:59:59.000Z

398

Total U.S. Housing Units.................................  

U.S. Energy Information Administration (EIA) Indexed Site

Housing Units (millions) Single-Family Units Apartments in Buildings With-- Space Heating Usage Indicators Million U.S. Housing Units Detached Attached Energy Information...

399

Maximal Reliability for Unit-weighted Composites  

E-Print Network (OSTI)

Maximal Reliability for Unit-weighted Composites Peter M.Maximal Reliability for Unit-weighted Composites Althoughconsistency coefficient for a unit-weighted composite. The

Peter M. Bentler

2011-01-01T23:59:59.000Z

400

Collaborative Unit Construction in Korean: Pivot Turns  

E-Print Network (OSTI)

A. (1996). Interactional units in conversation: Syntactic,M. (2000). The construction of units in conversational talk.character of grammatical units in conversation: Conditional

Ju, Hee

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Unsuspected Pulmonary Embolism in Observation Unit Patients  

E-Print Network (OSTI)

department observation unit. Emerg Med Clin North Am. 2001;ED) managed acute care unit on ED overcrowding and emergencyof a chest pain observation unit compared with routine care.

Limkakeng, Alexander T.; Glickman, Seth W; Cairns, Charles B; Chandra, Abhinav

2009-01-01T23:59:59.000Z

402

United States Goverment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UO/J±0ou4 TcdJ ± O:S'. Aa. ou* o *.I. I 01j ' . UO/J±0ou4 TcdJ ± O:S'. Aa. ou* o *.I. I 01j ' . - - 00E F 1325,8 (08-93) United States Goverment Department of Energy memorandum DATE: August 13, 2007 Audit Report Number: OAS-L-07-19 REPLY TO ATTN OF: IG-32 (A07PR059) SUBJECT: Audit of Executive Compensation at Selected Office of Science Sites TO: Chief Operating, Officer, Office of Science INTRODUCTION AND OBJECTIVE As part of a Department of Energy-wide audit of executive compensation, we reviewed seven Office of Science sites. Specifically, we reviewed executive compensation costs incurred ~,r claim~.- fr- F".*l*- Y. rs 2003, 2 , and 2005 at - Argonne National Laboratory (Argonne), Brookhaven National Laboratory (Brookhaven), Lawrence Berkeley National Laboratory (LBNL), Oak Ridge Institute for Science and Education, Oak Ridge National Laboratory, Princeton Plasma Physics

403

United States Government Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1/03 07:45 FAX 301 903 4656 CAPITAL REGION -* FORS FIVEA I002/004 1/03 07:45 FAX 301 903 4656 CAPITAL REGION -* FORS FIVEA I002/004 DOE F 1325 ' (8-69) EFO (07-90) United States Government Department of Eneray memorandum DATE: PR17 2003 Audit Report No.: OAS-L-03-14 REPLY TO ATTN OF: IG-34 (A03PT040) SUBJECT: Audit of the Office of Energy Efficiency and Renewable Energy's (EE) Grants, Subsidies, and Cost Sharing Arrangements TO: Assistant Secretary for Energy Efficiency and Renewable Energy, EE-1 The purpose of this report is to inform you of the results of our review of the Office of Energy Efficiency and Renewable Energy's (EE) incentive payments and cost-share arrangements. The review was initiated in February 2003, and fieldwork was conducted through April 2003 at Department of Energy (Department) Headquarters. Our methodology is described in the attachment to this report.

404

Second United Nations  

NLE Websites -- All DOE Office Websites (Extended Search)

i' i' Second United Nations t Jnternational Conference 1 , of Atomic Energy on the Peaceful Uses 4 i \ Confidential until official release during Conference ORIGINAL: ENGLISH METHODS O F PARTICLE DETECTION FOR HIGH-ENERGY PHYSICS EXPERIMENTS t * H. B r a d n e r and D. A. Glaser - INTRODUCTION J 1 % c Recent advances in our knowledge of t h e phenomena of high-energy physics and o'f the e l e m e n t a r y p a r t i c l e s h a s r e s u l t e d f r o m rapid advances in the technology of p a r t i c l e a c c e l e r a t o r s and the art of p a r t i c l e detection. cl'asses: (1) the "track-imaging" device in which one s e e s o r photographs t r a c k s which coincide with the a c t u a l path taken by the p a r t i c l e s , and ( 2 ) counting d e - v i c e s which give only an indication that the p a r t i c l e s p a s s somewhere in the

405

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

uq/Uu.3/uo U-L:i ' rAA OuL a uo oUu. 0tri.l± i m,.i,*, u". run.' r.yrcir V e.u uq/Uu.3/uo U-L:i ' rAA OuL a uo oUu. 0tri.l± i m,.i,*, u". run.' r.yrcir V e.u O000DOE F 1325.8 (08-93) Department of Energy United States Government Department of Energy Memorandum OFFICE OF INSPECTOR GENERAL DATE: March 31,2006 REPLY TO ATTN OF: IG-34 (A05TG028) Audit Report No.: OAS-L-06-10 SUBJECT: Report on Audit of "The Department's Information Technology Capital Planning and Investment Control Process" TO: Chief Information Officer, IM-1 INTRODUCTION AND OBJECTIVE Federal guidance requires that Agencies develop and implement capital planning and investment control (CPIC) processes to help ensure that their major information technology investments achieve intended outcomes, represent the best allocation of resources, and reach strategic goals and objectives. The Department of Energy

406

United States Government  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2/04 THU 14:52 FAX 423 241 3897 OIG -**- HQ l015 2/04 THU 14:52 FAX 423 241 3897 OIG -**- HQ l015 ol: Fi 13 5.8 (8-09) £1*G (in'mi^)) United States Government Department of Energy Memorandum DATE: April. 22, 2004 REPLY TO ATTN OF: T -36 (A04RL018) Audit Report No.: OAS-L-04-15 SUBJECT: Audit of Disposition of Excess Facilities at the Hanford Site TO: Keith A. Klein, Manager, Richland Operations Office INTRODUCTION AND OBJECTIVE The Hanford Site (Hanford) is the largest of the three original defense production sites founded during World War II. Between 1943 and 1963, nine plutonium production reactors were built along the Columbia River and five processing facilities were built on the site's Central Plateau, with about 1,000 support facilities. Currently, Hanford has a total of 1,500 facilities of which an estimated 1,000 are excess to current and future mission

407

Solar heating unit  

SciTech Connect

A solar heating unit is disclosed for disposition exteriorly of a building window for heating the air within the space interiorly of the window embodying a casing with a transverse divider for creating a rear passage and a front passage which are in communication in their lower portions. The upper end of the rear passage connects with the forward end of a rearwardly extending lower duct having a cool air inlet at the rearward end thereof. The upper end of the front passage connects with the forward end of an upper duct progressing rearwardly above the lower duct and with there being a warm air outlet at the rearward extremity thereof. A heat exchanger is disposed within the front passage for impingement thereon of solar radiation passing through a transparent panel defining the front of said casing. A thermal responsive closure is provided at the upper end of said front passage for closing same when the temperature within the front passage has descended to a predetermined level.

Grisbrook, R.B.

1978-10-24T23:59:59.000Z

408

Special Feature: Reducing Energy Costs with Better Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Energy Costs with Better Batteries Reducing Energy Costs with Better Batteries Special Feature: Reducing Energy Costs with Better Batteries September 9, 2013 Contact: Linda Vu, +1 510 495 2402, lvu@lbl.gov Electricvehicles8331019248.jpg Electric vehicles lined up in Cascade Locks. Credit: Oregon Department of Transportation A better battery-one that is cheap and safe, but packs a lot of power-could lead to an electric vehicle that performs better than today's gasoline-powered cars, and costs about the same or less to consumers. Such a vehicle would reduce the United States' reliance on foreign oil and lower energy costs for the average American, so one of the Department of Energy's (DOE's) goals is to fund research that will revolutionize the performance of next-generation batteries. In honor of DOE's supercomputing month, we are highlighting some of the

409

Microbial methods of reducing technetium  

DOE Patents (OSTI)

The present invention is directed toward a method for microbial reduction of a technetium compound to form other compounds of value in medical imaging. The technetium compound is combined in a mixture with non-growing microbial cells which contain a technetium-reducing enzyme system, a stabilizing agent and an electron donor in a saline solution under anaerobic conditions. The mixture is substantially free of an inorganic technetium reducing agent and its reduction products. The resulting product is Tc of lower oxidation states, the form of which can be partially controlled by the stabilizing agent. It has been discovered that the microorganisms Shewanella alga, strain Bry and Shewanelia putrifacians, strain CN-32 contain the necessary enzyme systems for technetium reduction and can form both mono nuclear and polynuclear reduced Tc species depending on the stabilizing agent.

Wildung, Raymond E. (Richland, WA); Garland, Thomas R. (Greybull, WY); Gorby, Yuri A. (Richland, WA); Hess, Nancy J. (Benton City, WA); Li, Shu-Mei W. (Richland, WA); Plymale, Andrew E. (Richland, WA)

2001-01-01T23:59:59.000Z

410

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect

The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

National Lab Directors, . .

2001-04-05T23:59:59.000Z

411

Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions  

SciTech Connect

The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology feasibility and options to reduce greenhouse gas emissions. These technology pathways (which are described in greater detail in Appendix B, Technology Pathways) address three areas: energy efficiency, clean energy, and carbon sequestration (removing carbon from emissions and enhancing carbon storage). Based on an assessment of each of these technology pathways over a 30-year planning horizon, the directors of the Department of Energy's (DOE's) national laboratories conclude that success will require pursuit of multiple technology pathways to provide choices and flexibility for reducing greenhouse gas emissions. Advances in science and technology are necessary to reduce greenhouse gas emissions from the United States while sustaining economic growth and providing collateral benefits to the nation.

National Lab Directors, . .

2001-04-05T23:59:59.000Z

412

Ultrasonic Transducers and Search Units  

Science Conference Proceedings (OSTI)

Table 2   Primary applications of ultrasonic search units...tears, seams, cracks Castings??slag, porosity, cold shuts, tears, shrinkage cracks,

413

OpenEI - United Nations  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm5810 en Overview of the United Nations Environment Programme's Solar and Wind Energy Resource Assessment (SWERA) Project http:...

414

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Household Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit"...

415

Rheological measurements in reduced gravity  

Science Conference Proceedings (OSTI)

Rheology of fluidized beds and settling suspensions were studied experimentally in a series of reduced gravity parabolic flights aboard NASAs KC?135 aircraft. Silica sands of two different size distributions were fluidized by air. The slurries were made using silica sand and Glycerol solution. The experimental set up incorporated instrumentation to measure the air flow rate

Sayavur I. Bakhtiyarov; Ruel A. Overfelt

1999-01-01T23:59:59.000Z

416

METHOD OF REDUCING PLUTONIUM COMPOUNDS  

DOE Patents (OSTI)

A method is described for reducing plutonium compounds in aqueous solution from a higher to a lower valence state. This reduction of valence is achieved by treating the aqueous solution of higher valence plutonium compounds with hydrogen in contact with an activated platinum catalyst.

Johns, I.B.

1958-06-01T23:59:59.000Z

417

Reduces a processor's energy consumption  

E-Print Network (OSTI)

). Clearly, this is energy inefficient and wasteful of energy. 2 More precisely, the faster that a processor decide that energy is being wasted and will decrease the frequency/voltage level. Translation: LowerReduces a processor's energy consumption by up to 70% Diminishes greenhouse gas emissions Improves

418

Aggregate effects of reducing the motor fuels excise tax in the United States  

SciTech Connect

This paper assesses the effects of the proposed reduction in the excise tax on gasoline and diesel fuel on the US economy. The analytical approach used consists of a computable general equilibrium model composed of 14 producing sectors, 14 consuming sectors, 6 household categories classified by income, and a government. The effects of a 4.3 cents per gallon reduction in the excise tax on gasoline and diesel fuel on prices and quantities are examined. The results suggests, for example, a decrease in the tax would result in higher output by the producing sectors (by about $2.86 billion), an expansion in the consumption of goods and services (by about $3.48 billion), and an increase in welfare (by about $3.59 billion). The government would realize a decrease in revenue of about $2.37 billion. When subjected to a sensitivity analysis, the results are reasonably robust with regard to the assumption of the values of the substitution elasticities.

Uri, N.D.; Boyd, R.

1996-12-31T23:59:59.000Z

419

NIST: Hydrocarbons - Special Units, ... and Useful Conv. ...  

Science Conference Proceedings (OSTI)

5. Special Units, Fundamental Constants, and Useful Conversion Factors. 5.a. Special Units. ... 5.b. Fundamental Constants and Conversion Factors. ...

420

International System of Units from NIST  

Science Conference Proceedings (OSTI)

... Background Definitions of the SI base units and their historical context International aspects of the SI Unit conversions. Bibliography ...

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

United States Environmental Protection Agency  

E-Print Network (OSTI)

, University of Salford, Salford, UK. Nigel Langford is in the BNFL Corporate Communication Research Unit, University of Salford, Salford, UK. Richard J. Varey is in the BNFL Corporate Communication Research Unit University Press . ISSN 1356-3289 #12;As organizations grow and segment through specialization, so do zones

422

Unconventional Groundwater System Proves Effective in Reducing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project Unconventional Groundwater System Proves Effective in Reducing...

423

Pd/k for RTF and 232-H TCAP units  

DOE Green Energy (OSTI)

The Thermal Cycling Absorption Process (TCAP) will be used in the Replacement Tritium Facility (RTF) and 232-H Tritium Facility for separation of hydrogen isotopes. These TCAP units will be filled with palladium deposited on kieselguhr (Pd/k) that has been heat treated to reduce particle breakdown and sieved to remove particles smaller than 50 mesh (300{mu}m). Pd/k ordered for several applications in the RTF, including TCAP, was received at SRL in April 1989. Shortly thereafter, flow restriction caused by breakdown of the Pd/k particles was detected during operation of a TCAP unit in the Advanced Hydride Laboratory (AHL). Subsequent research at SRL showed that heating Pd/k at 1100{degrees}C in air for 2 hours greatly reduces mechanical breakdown. Based on these favorable results, sufficient Pd/k was heat treated to fill RTF and Building 232-H TCAP units. 11 refs., 11 figs., 7 tabs.

Mosley, W.C.

1991-01-29T23:59:59.000Z

424

Brain and Heart 1. Reducing your risk of stroke and heart attack. . . . 3  

E-Print Network (OSTI)

#12;Contents Brain and Heart 1. Reducing your risk of stroke and heart attack. . . . 3 2. Exercising for a healthy heart . . . . . . . . . . . . . . . . 4 3. Choosing a home blood pressure unit . . . . . . . . . . . . . . . . . 47 #12;BRAIN AND HEART Reducing your risk of stroke and heart attack One of the best ways to protect

Jagannatham, Aditya K.

425

Advanced Unit Commitment Strategies in the United States Eastern Interconnection  

DOE Green Energy (OSTI)

This project sought to evaluate the impacts of high wind penetrations on the U.S. Eastern Interconnection and analyze how different unit commitment strategies may affect these impacts.

Meibom, P.; Larsen, H. V.; Barth, R.; Brand, H.; Tuohy, A.; Ela, E.

2011-08-01T23:59:59.000Z

426

,"Housing Units1","Average Square Footage Per Housing Unit",...  

U.S. Energy Information Administration (EIA) Indexed Site

the U.S. Department of Energy's Office of Energy and Efficiency and Renewable Energy (EERE). 5Rented includes households that occupy their primary housing unit without payment of...

427

Reducing the Consequences of a Nuclear Detonation.  

SciTech Connect

The 2002 National Strategy to Combat Weapons of Mass Destruction states that 'the United States must be prepared to respond to the use of WMD against our citizens, our military forces, and those of friends and allies'. Scenario No.1 of the 15 Department of Homeland Security national planning scenarios is an improvised nuclear detonation in the national capitol region. An effective response involves managing large-scale incident response, mass casualty, mass evacuation, and mass decontamination issues. Preparedness planning activities based on this scenario provided difficult challenges in time critical decision making and managing a large number of casualties within the hazard area. Perhaps even more challenging is the need to coordinate a large scale response across multiple jurisdictions and effectively responding with limited infrastructure and resources. Federal response planning continues to make improvements in coordination and recommending protective actions, but much work remains. The most critical life-saving activity depends on actions taken in the first few minutes and hours of an event. The most effective way to reduce the enormous national and international social and economic disruptions from a domestic nuclear explosion is through planning and rapid action, from the individual to the federal response. Anticipating response resources for survivors based on predicted types and distributions of injuries needs to be addressed.

Buddemeier, B R

2007-11-09T23:59:59.000Z

428

Reducing the Consequences of a Nuclear Detonation.  

SciTech Connect

The 2002 National Strategy to Combat Weapons of Mass Destruction states that 'the United States must be prepared to respond to the use of WMD against our citizens, our military forces, and those of friends and allies'. Scenario No.1 of the 15 Department of Homeland Security national planning scenarios is an improvised nuclear detonation in the national capitol region. An effective response involves managing large-scale incident response, mass casualty, mass evacuation, and mass decontamination issues. Preparedness planning activities based on this scenario provided difficult challenges in time critical decision making and managing a large number of casualties within the hazard area. Perhaps even more challenging is the need to coordinate a large scale response across multiple jurisdictions and effectively responding with limited infrastructure and resources. Federal response planning continues to make improvements in coordination and recommending protective actions, but much work remains. The most critical life-saving activity depends on actions taken in the first few minutes and hours of an event. The most effective way to reduce the enormous national and international social and economic disruptions from a domestic nuclear explosion is through planning and rapid action, from the individual to the federal response. Anticipating response resources for survivors based on predicted types and distributions of injuries needs to be addressed.

Buddemeier, B R

2007-11-09T23:59:59.000Z

429

Reducing rural poverty through increased access to energy services: a  

Open Energy Info (EERE)

Reducing rural poverty through increased access to energy services: a Reducing rural poverty through increased access to energy services: a review of the multifunctional platform project in Mali Jump to: navigation, search Tool Summary Name: Reducing rural poverty through increased access to energy services: a review of the multifunctional platform project in Mali Agency/Company /Organization: Abeeku Brew-Hammond & Anna Crole-Rees Partner: United Nations Development Programme (UNDP) Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy, Energy Efficiency, People and Policy Phase: Create a Vision, Determine Baseline, Develop Goals, Evaluate Effectiveness and Revise as Needed Topics: Co-benefits assessment, - Energy Access Resource Type: Publications User Interface: Website Website: www.beta.undp.org/undp/en/home/librarypage/environment-energy/sustaina

430

Seize Opportunities to Reduce Cost  

NLE Websites -- All DOE Office Websites (Extended Search)

Specify for maximum energy savings Specify for maximum energy savings Windows must meet local energy code requirements. For even higher energy performance, consider ENERGY STAR windows, which are recommended for low-rise dwellings and are often suitable for mid-rise dwellings as well. For window and storm window options with superior performance in cold climates, check out the U.S. Department of Energy's highly insulating windows purchasing program (see next page). Seize Opportunities to Reduce Cost Government or utility incentives and financing may be available for energy efficiency in low-income housing. Check www.dsireusa.org for up-to-date information on incentive

431

New Mexico grape growers unite  

NLE Websites -- All DOE Office Websites (Extended Search)

New Mexico grape growers unite, increase production New Mexico grape growers unite, increase production Grape Growers Association enlivens agriculture Growers association unites small parcels of land, enlivens production, protects water rights for Northern New Mexico agriculturists. August 6, 2012 Northern New Mexico Micro Grape Growers Association The NMSBA Entrepreneurial Networking program is helping Lucia Sanchez (C) Tim Martinez (R) and Robert Naranjo, the Northern New Mexico Micro Grape Growers Association, put small parcels of land back into production in Rio Arriba County. Contact Mariann Johnston (505) 667-4391 Email New Mexico grape growers unite to increase production, with help of Northern New Mexico Connect Over the last decade, a string of wineries has come to grace the scenic High Road to Taos. In 2010, Robert Naranjo, network facilitator for the

432

DROUGHT IN THE UNITED STATES  

Science Conference Proceedings (OSTI)

Using state monthly values of the Palmer Drought Index from January 1895 through April 1981, thespatial and temporal features of dry and wet episodes over the contiguous United States were analyzed. Thevariance spectrum of the area under both ...

Henry F. Diaz

1983-01-01T23:59:59.000Z

433

(12) United States Patent x ...................................  

Science Conference Proceedings (OSTI)

... The electrical resistance per unit length of each section ... 4(b): T2>TI' The electric field in each ... 0I holes were drilled through the cooling copper blocks ...

2010-07-27T23:59:59.000Z

434

OpenEI - United States  

Open Energy Info (EERE)

United States United States Renewable Energy Technical Potential http://en.openei.org/datasets/node/912 License

435

Observational Evidence for Reduction of Daily Maximum Temperature by Croplands in the Midwest United States  

Science Conference Proceedings (OSTI)

Climate model simulations have shown that conversion of natural forest vegetation to croplands in the United States cooled climate. The cooling was greater for daily maximum temperature than for daily minimum temperature, resulting in a reduced ...

Gordon B. Bonan

2001-06-01T23:59:59.000Z

436

Million U.S. Housing Units Total............................................................................  

U.S. Energy Information Administration (EIA) Indexed Site

Attached Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables Million U.S. Housing Units Attached 2 to 4 Units Table HC2.12 Home Electronics Usage Indicators by Type of Housing Unit, 2005 5 or More Units Mobile Homes Type of Housing Unit Housing Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Status of PC When Not in Use Left On..............................................................

437

A Comprehensive Energy Audit of a Large Production Unit in Six Weeks  

E-Print Network (OSTI)

Past energy audits of petrochemical plant production units at Union Carbide have demonstrated that the key to an effective, comprehensive audit of a large production unit is to minimize the time period requirement for the team activity. This paper describes a comprehensive energy audit performed in six weeks on a large and relatively new production unit. This audit resulted in identifying and evaluating 62 opportunities reducing annual energy usage by $2,000.000.

Korich, R. D.

1980-01-01T23:59:59.000Z

438

Quench cooling under reduced gravity  

E-Print Network (OSTI)

We report the quench cooling experiments performed with liquid O2 under different levels of gravity simulated with the magnetic gravity compensation. A copper disk is quenched from 270K to 90K. It is found that the cooling time in microgravity is very long in comparison with any other gravity level. This phenomenon is explained by the isolation effect of the gas surrounding the disk. The liquid subcooling is shown to drastically improuve the heat exchange thus reducing the cooling time (about 20 times). The effect of subcooling on the heat transfer is analyzed at different gravity levels. It is shown that such type of experiments cannot be used for the analysis of the critical heat flux (CHF) of the boiling crisis. The minimum heat flux (MHF) of boiling is analyzed instead.

Chatain, D; Nikolayev, V S; Beysens, D

2013-01-01T23:59:59.000Z

439

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

1997-11-11T23:59:59.000Z

440

United States Government Department of Ener  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ZZ/Ub IUE UU:-3 FAAL 423 241 3897 UIG ** HQU 10oo1 ZZ/Ub IUE UU:-3 FAAL 423 241 3897 UIG ** HQU 10oo1 S OEF 1325.8 to-o)Dp m Ene United States Government Department of Ener memorandum DATE: November 21, 2005 Audit Report Number: OAS-L-06-02 REPLY TO ATTN OF: IG-36 (A0SOR016) SUBJECT: Audit of "Property Transfers at the East Tennessee Technology Park" TO: Gerald Boyd, Manager, Oak Ridge Ollice INTRODUCTION AND OBJECTIVE In 1999, the Oak Ridge Office (Oak Ridge) implemented a personal, property title transfer strategy at the East Tennessee Technology Park (E'TTP) aimed at increasing the effectiveness of property management and disposal methods. Oak Ridge planned to transfer the title of Government personal property to subcontractors in exchange for reduced subcontract costs. It was expected that the transfers would

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

United States Government Department of Eney  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

l 'vl/OU Wy) :jJ. rI A o Aooa IUL u. * * .. - l 'vl/OU Wy) :jJ. rI A o Aooa IUL u. * * .. - DOE F 13218 United States Government Department of Eney memorandum DATE: November 28, 2006 Audit Report Number: OAS-L-07-03 REPLY TO ATT OF: IG-32 (A06PR022) SUBJECT: Audit of the "Department of Energy's Carbon Sequestration Program" TO: Assistant Secretary, Office of Fossil Energy INTRODUCTION AND OBJECTIVE Carbon sequestration is the capture and storage of carbon dioxide and other greenhouse gases that would otherwise be emitted into the atmosphere. The Department of Energy's Carbon Sequestration Prograr (Program) seeks to move sequestration technologies forward in order that their potential can be realized and they can play a major role in reducing greenhoue gas emissions. The Program's overarching goal is to develop by 2012 fossil ful conversion systems that offer

442

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Regional Carbon Sequestration Partnership The Midwest Regional Carbon Sequestration Partnership (MRCSP) region consists of nine neighboring states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. Battelle Memorial Institute leads MRCSP, which includes nearly 40 organizations from the research community, energy industry, universities, non-government, and government organizations. The region has a diverse range of CO 2 sources and many opportunities for reducing CO 2 emissions through geologic storage and/or EOR. Potential locations for geologic storage in the MRCSP states extend from the deep rock formations in the broad

443

Electric trade in the United States 1994  

SciTech Connect

Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994.

NONE

1998-08-01T23:59:59.000Z

444

Transfer Rate vs. I/O Units  

NLE Websites -- All DOE Office Websites (Extended Search)

O Units Transfer Rate vs. IO Units These plots show the transfer rate from the IO benchmarks as a function of the number of elizaio units in use for each particular eliza at the...

445

Reversible (unitized) PEM fuel cell devices  

DOE Green Energy (OSTI)

Regenerative fuel cells (RFCs) are enabling for many weight-critical portable applications, since the packaged specific energy (>400 Wh/kg) of properly designed lightweight RFC systems is several-fold higher than that of the lightest weight rechargeable batteries. RFC systems can be rapidly refueled (like primary fuel cells), or can be electrically recharged (like secondary batteries) if a refueling infrastructure is not conveniently available. Higher energy capacity systems with higher performance, reduced weight, and freedom from fueling infrastructure are the features that RFCs promise for portable applications. Reversible proton exchange membrane (PEM) fuel cells, also known as unitized regenerative fuel cells (URFCs), or reversible regenerative fuel cells, are RFC systems which use reversible PEM cells, where each cell is capable of operating both as a fuel cell and as an electrolyzer. URFCs further economize portable device weight, volume, and complexity by combining the functions of fuel cells and electrolyzers in the same hardware, generally without any system performance or efficiency reduction. URFCs are being made in many forms, some of which are already small enough to be portable. Lawrence Livermore National Laboratory (LLNL) has worked with industrial partners to design, develop, and demonstrate high performance and high cycle life URFC systems. LLNL is also working with industrial partners to develop breakthroughs in lightweight pressure vessels that are necessary for URFC systems to achieve the specific energy advantages over rechargeable batteries. Proton Energy Systems, Inc. (Proton) is concurrently developing and commercializing URFC systems (UNIGEN' product line), in addition to PEM electrolyzer systems (HOGEN' product line), and primary PEM fuel cell systems. LLNL is constructing demonstration URFC units in order to persuade potential sponsors, often in their own conference rooms, that advanced applications based on URFC s are feasible. Safety and logistics force these URFC demonstration units to be small, transportable, and easily set up, hence they already prove the viability of URFC systems for portable applications.

Mitlitsky, F; Myers, B; Smith, W F; Weisberg, Molter, T M

1999-06-01T23:59:59.000Z

446

Low-cost inertial measurement unit.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories performs many expensive tests using inertial measurement units (IMUs)--systems that use accelerometers, gyroscopes, and other sensors to measure flight dynamics in three dimensions. For the purpose of this report, the metrics used to evaluate an IMU are cost, size, performance, resolution, upgradeability and testing. The cost of a precision IMU is very high and can cost hundreds of thousands of dollars. Thus the goals and results of this project are as follows: (1) Examine the data flow in an IMU and determine a generic IMU design. (2) Discuss a high cost IMU implementation and its theoretically achievable results. (3) Discuss design modifications that would save money for suited applications. (4) Design and implement a low cost IMU and discuss its theoretically achievable results. (5) Test the low cost IMU and compare theoretical results with empirical results. (6) Construct a more streamlined printed circuit board design reducing noise, increasing capabilities, and constructing a self-contained unit. Using these results, we can compare a high cost IMU versus a low cost IMU using the metrics from above. Further, we can examine and suggest situations where a low cost IMU could be used instead of a high cost IMU for saving cost, size, or both.

Deyle, Travis Jay

2005-03-01T23:59:59.000Z

447

Affordable housing: Reducing the energy cost burden  

SciTech Connect

Residential energy expenditures are a key determinant of housing affordability, particularly for lower Income households. For years, federal, state and local governments and agencies have sought to defray energy expenses and Increase residential energy efficiency for low Income households through legislative and regulatory actions and programs. Nevertheless, household energy costs continue to place a major burden on lower Income families. This issue paper was written to help formulate national energy policy by providing the United States Department of Energy`s (DOE`s) Office of Energy Efficiency and Renewable Energy (EE) with Information to help define the affordable housing issue; Identify major drivers, key factors, and primary stakeholders shaping the affordable housing issue; and review how responding to this Issue may impact EE`s goals and objectives and Influence the strategic direction of the office. Typically, housing affordability is an Issue associated with lower income households. This issue paper adopts this perspective, but it is important to note that reducing energy utility costs can make {open_quotes}better{close_quote} housing affordable to any household regardless of income. As energy efficiency is improved throughout all sectors of the economy, special consideration must be given to low income households. Of all households, low income households are burdened the most by residential energy costs; their residences often are the least energy-efficient and have the greatest potential for efficiency improvements, but the occupants have the fewest resources to dedicate to conservation measures. This paper begins with a definition of {open_quotes}affordability{close_quotes} as it pertains to total housing costs and summarizes several key statistics related to housing affordability and energy use by lower income households.

Lee, A.D.; Chin, R.I.; Marden, C.L.

1995-01-01T23:59:59.000Z

448

Prime movers reduce energy costs  

SciTech Connect

Many industrial plants have found that reciprocating engines used to power generator sets and chiller systems are effective in reducing energy costs as part of a load management strategy, while meeting other plant energy needs. As the trend towards high electric utility costs continues, familiarity with basic analyses used to determine the economic viability of engine-driven systems is essential. A basic method to determine the economic viability of genset or chiller systems is to review the supplying utility`s rate structure, determine approximate costs to install and operate an engine-driven system, and calculate a simple equipment payback period. If the initial analysis shows that significant savings are possible and a quick payback is likely, a thorough analysis should be conducted to analyze a plant`s actual electric load profile. A load profile analysis takes into consideration average loads, peak loads, and peak duration. A detailed study should cover myriad considerations, including local air quality regulations and permitting, space availability, auxiliary system components, and financing options. A basic analysis takes relatively little time and can rule out the need for a detailed study.

Swanson, J.E. [Caterpillar, Inc., Mossville, IL (United States)

1996-01-01T23:59:59.000Z

449

Reduced vibration motor winding arrangement  

DOE Patents (OSTI)

The present invention relates generally to an electric motor winding and, more particularly, to a three phase motor armature winding arrangement designed to reduce motor vibration and improve efficiency. An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor.

Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

1995-12-31T23:59:59.000Z

450

United Energy | Open Energy Information  

Open Energy Info (EERE)

United Energy United Energy Name United Energy Address 284, Old Deal Rd Place Eatontown, New Jersey Zip 07722 Sector Solar Product Energy Efficiency, Renewable Energy Year founded 2009 Number of employees 1-10 Phone number 201-697-8770 Website http://www.unitedenergypro.com Coordinates 40.2785975°, -74.0359722° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.2785975,"lon":-74.0359722,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

unit process | OpenEI  

Open Energy Info (EERE)

unit process unit process Dataset Summary Description Datasets are for the US electricity grid system interconnect regions (ASCC, FRCC, HICC, MRO, NPCC, RFC, SERC, SPP, TRE, WECC) for 2008. The data is provided in life cycle inventory (LCI) forms (both xls and xml). A module report and a detailed spreadsheet are also included. Source US Life Cycle Inventory Database Date Released May 01st, 2011 (3 years ago) Date Updated Unknown Keywords ASCC FRCC HICC interconnect region LCI life cycle inventory MRO NPCC RFC SERC SPP TRE unit process US utilities WECC Data application/zip icon interconnect_lci_datasets_2008.zip (zip, 6.3 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Open Data Commons Public Domain Dedication and Licence (PDDL)

452

United States Environmental Monitoring EPA  

Office of Legacy Management (LM)

United United States Environmental Monitoring EPA 600/R-93/141 Environmental Protection Systems Laboratory January 1992 Agency P.O. Box 93478 Las Vegas NV 89193-3478 Research and Development _EPA Offsite Environmental Monitoring Report: Radiation Monitoring Around United States Nuclear Test Areas, Calendar Year 1991 Available to DOE and DOE contractors from the Office of Scientificand Technical Information, P.O. Box 62, Oak ridge,TN 39831; pricesavailablefrom (615) 576-8401 Availableto the publicfrom the NationalTechnicalInformationService, U.S. Departmentof Commerce, 5285 Port Royal Road, Springfield, VA 22161 Price Code: PrintedCopyof MicroficheA01 Frontand back cover: CommunityMonitorStation (front) and Whole BodyLaboratory(back), Craig A. Tsosle EnvironmentalMonitoringSystemsLaboratory-LasVegas, Nevada Offsite Environmental Monitoring Report:

453

Did You Know, BNL United Way Campaign  

NLE Websites -- All DOE Office Websites (Extended Search)

and independent United Ways in the nation. The United Way of Long Island raises money for over 180+ health and human service agencies, which provide services to children...

454

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Lighting Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2...

455

Million U.S. Housing Units Total...............................  

Gasoline and Diesel Fuel Update (EIA)

Units (millions) Single-Family Units Apartments in Buildings With-- Home Electronics Usage Indicators Detached Energy Information Administration: 2005 Residential Energy...

456

" Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

7 Air-Conditioning Usage Indicators by Number of Household Members, 2005" " Million U.S. Housing Units" ,,"Number of Households With --" ,"Housing Units (millions)" ,,"1 Member","2...

457

United Oil Company | Open Energy Information  

Open Energy Info (EERE)

United Oil Company Jump to: navigation, search Name United Oil Company Place Pittsburgh, Pennsylvania Product Vegetable-Oil producer Biodiesel producer based in Pittsburgh, PA...

458

GEO UNIT AGREEMENT | Open Energy Information  

Open Energy Info (EERE)

UNIT AGREEMENT Jump to: navigation, search GEO UNIT AGREEMENT Mineral interest joined together to explore, develop and produce geothermal resources Retrieved from "http:...

459

NIST Realization of related photometric units  

Science Conference Proceedings (OSTI)

... Luminance units are commonly established using a white reflectance standard or ... the NIST standard photometers to realize the luminance unit on a ...

2012-10-02T23:59:59.000Z

460

THE UNITED STATES AND THE METRIC SYSTEM  

Science Conference Proceedings (OSTI)

... time the United States became a dominant force in world trade and was able to impose its products, manufactured in their unconventional units, on ...

2010-07-27T23:59:59.000Z

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

United Biofuels Private Limited | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon United Biofuels Private Limited Jump to: navigation, search Name United Biofuels Private Limited Place Tamil Nadu, India...

462

United Biofuels Inc | Open Energy Information  

Open Energy Info (EERE)

United Biofuels Inc Jump to: navigation, search Name United Biofuels Inc Place Plover, Wisconsin Zip 54467 Sector Biomass Product Wisconsin-based manufacturer and distributor of...

463

Energy Audits in Process Units  

E-Print Network (OSTI)

Emphasis is placed on practical considerations in the effective organization and execution of a successful in-house energy audit of a process unit, based upon experience gained in several such audits of Gulf Coast petrochemical units. Staffing requirements, membership qualifications, probable time span for the audit, cost-benefit ratios, and necessary line management commitment are discussed. The scope and importance of pre-audit preparation and related responsibilities are explained. Activities of the Audit Team are likely to fall naturally into six general phases, each of which is reviewed in detail.

Corwin, J. D.

1980-01-01T23:59:59.000Z

464

Newark, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

9.6837226°, -75.7496572° 9.6837226°, -75.7496572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6837226,"lon":-75.7496572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Townsend, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

3951115°, -75.6915973° 3951115°, -75.6915973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3951115,"lon":-75.6915973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Middletown, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

449556°, -75.7163207° 449556°, -75.7163207° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.449556,"lon":-75.7163207,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Delaware Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History Volumes Delivered to Consumers

468

Delaware Natural Gas Consumption by End Use  

U.S. Energy Information Administration (EIA) Indexed Site

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

469

Smyrna, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

998339°, -75.6046494° 998339°, -75.6046494° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.2998339,"lon":-75.6046494,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Bellefonte, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

663°, -75.498313° 663°, -75.498313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7663,"lon":-75.498313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Glasgow, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

048338°, -75.7452119° 048338°, -75.7452119° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.6048338,"lon":-75.7452119,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Greenville, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

790012°, -75.5982599° 790012°, -75.5982599° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7790012,"lon":-75.5982599,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

Wilmington, Delaware: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7459467°, -75.5465889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7459467,"lon":-75.5465889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

Delaware Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History Volumes Delivered to Consumers

475

Delaware Natural Gas Consumption by End Use  

Gasoline and Diesel Fuel Update (EIA)

Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2007 2008 2009 2010 2011 2012 View History Total Consumption

476

Delaware/EZ Policies | Open Energy Information  

Open Energy Info (EERE)

facilities use lab certified equipment or field approved interconnection equipment. Lab certified equipment is defined to mean equipment tested and approved by a nationally...

477

Retail Unbundling - Delaware - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S. Dept. of Energy) ... The tariff specifies a marketer code of conduct that includes bill dispute procedures, ...

478

Retail Unbundling - Delaware - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Chesapeake Utilities applies for rate increase and new service ... Chesapeake filed a base rate application that includes extensive proposed changes to its ...

479

Delaware Rack Prices for Motor Gasoline  

U.S. Energy Information Administration (EIA)

Gasoline Prices by Formulation, Grade, Sales Type (Dollars per Gallon Excluding Taxes) ... History; Gasoline, Average: 2.144: 2.529: 1.724: 2.165 - ...

480

Delaware Natural Gas Prices - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet, except where noted) Area: ... electric power price data are for regulated electric utilities only; ...

Note: This page contains sample records for the topic "unit delaware reduces" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Delaware Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Idle refineries ...

482

Delaware/EZFeed Policies | Open Energy Information  

Open Energy Info (EERE)

Development Authority (DEDA) to provide customized loans and grants to businesses for job creation, relocation and expansion. For businesses considering locating in the state of...

483

Delmarva Power - Green Energy Program Incentives (Delaware) ...  

Open Energy Info (EERE)

Solar Thermal (radiant heating): 5,000 for residential, 10,000 for non-residential Wind: 15,000 for residential, 24,000 for non-residential, 48,000 for non-profits Fuel...

484

Retail Unbundling - Delaware - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Connectiv Power Delivery will continue to provide metering and billing services and will be the supplier of last resort. Marketers ...

485

Delaware Electric Cooperative - Green Energy Program Incentives...  

Open Energy Info (EERE)

W for non-profits Solar Thermal (water and radiant space heating): 20% of installed costs Wind: 1.25W Fuel Cells: 20% of installed costs Geothermal Heat Pumps: 700 - 800...

486

Extremely Hazardous Substances Risk Management Act (Delaware)  

Energy.gov (U.S. Department of Energy (DOE))

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

487

Units  

NLE Websites -- All DOE Office Websites (Extended Search)

Unidades Unidades Principal ESTOY PERDIDO!!! En la Aventura de la Partículas, usamos a menudo distintas unidades, sin explicar formalmente qué significan. Aquí le damos una breve sinopsis de las unidades más comunes en la física de partículas: Energía: en electrón-volts (eV). La energía ganada por un electrón que remonta una diferencia de potencial de un volt. 1 eV = 1.6 x 10^(-19) joules. Un MeV es un millón de electrón volts, y un GeV es un billón de electrón volts. Un GeV es aproximadamente 1/1000 de la energía cinética de un mosquito! Masa: en GeV/c2 (un billón de electrón volts dividido por la velocidad de la luz al cuadrado. La masa es medida en términos de energía, debido a que la masa es justamente una forma de energía -- recuerde .) 1 GeV es

488

United States Senate Committee on Energy and Natural Resources | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States Senate Committee on Energy and Natural Resources United States Senate Committee on Energy and Natural Resources United States Senate Committee on Energy and Natural Resources February 7, 2007 - 10:15am Addthis Testimony of Energy Secretary Samuel Bodman Chairman Bingaman, Ranking Member Domenici, and members of the Committee, I am pleased to be with you this morning to present the President's FY 2008 budget proposal for the Department of Energy. Before I discuss the details of our budget proposal, I would like to briefly mention the President's energy initiatives announced during the State of the Union. As you know, President Bush asked Congress and America's scientists, farmers, industry leaders and entrepreneurs to join him in pursuing the goal of reducing U.S. gasoline usage by 20 percent in the next ten years. We have named this our "Twenty in Ten" plan and I

489

Sensor Control Unit Light Submitted by:  

E-Print Network (OSTI)

With the growing need to conserve energy, more people are becoming conscious of energy consumption and are looking for ways to reduce costly waste associated with electricity. Though most consumers do not think about lighting until the light bulb fails or the power goes out, expenses incurred due to lighting have been found to be a large part of overall energy consumption and lighting has now become the focus of efforts aimed at reducing the high cost of electricity. The purpose of our project is to design an Automatic Light Control Device (ALCD) to help curb the high cost of internal lighting while creating a convenient effortlessly lighted environment for the consumer. Today, energy saving devices, such as occupancy or motion sensors, is used by a multiple of people for the conservation of power. Motion detectors cause lights to turn on after entering the room and off after no movement is detected for a certain amount of time. This unit is efficient; however, energy is loss due to the presence and absence of movement in a particular room by the sensor continuously activating on or off. Unneeded cycling uses more power and defeats the intended purpose of saving energy. The ALCD will save energy by eliminating false conditions, thereby minimizing light

Professor Joseph Picone; Ece Senior Design I; John Thompson; Marshalia Green; Brad Lowe; Lutrisha Johnson; Automatic Light Control Device

2001-01-01T23:59:59.000Z

490

Objects as Communicating Prolog Units  

Science Conference Proceedings (OSTI)

The aim of this paper is to present a set of extensions to the Prolog language in order to insert in it concepts typical of parallel, distributed object-oriented systems. A program is a collection of objects (P-Units) that represent chunks of knowledge ...

Paola Mello; Antonio Natali

1987-06-01T23:59:59.000Z

491

Unit Testing of Z Specifications  

Science Conference Proceedings (OSTI)

We propose a simple framework for validation unit testing of Z specifications, and illustrate this framework by testing the first few levels of a POSIX specification. The tests are written in standard Z, and are executable by the CZT animator, ZLive.

Mark Utting; Petra Malik

2008-09-01T23:59:59.000Z

492

Texas refiner optimizes by integrating units from idle plant  

SciTech Connect

In 1993, Phibro Energy USA Inc. purchased Dow Chemical Co.`s idle 200,000 b/d refinery at Freeport, TX. The Dow facility, known as the Oyster Creek refinery, was incapable of producing gasoline, and therefore was somewhat incomplete as a stand-alone refinery. By relocating and integrating units from the Dow plant with Phibro`s 130,700 b/d refinery at Texas City, TX, and adding a new residual oil solvent extraction (ROSE) unit, Phibro will optimize its Texas refinery operations. The dismantling, movement, and re-erection phases of the project are all but finished, and installation of piping and new instrumentation for the major relocated units is well under way. When the project is complete, Phibro will drastically reduce fuel oil production at Texas City and increase output of middle distillate. Resid, which the company now produces in excess, will be converted to a heavy fluid catalytic cracking (FCC) feedstock. Most of this stream will be fed to the oversized FCC unit at Phibro`s 71,000 b/d Houston refinery, thus eliminating Phibro`s reliance on purchased FCC feed. The paper discusses the Oyster Creek refinery, the decision to reduce residual fuel oil production company-wide, building versus moving equipment, dismantling and transport, construction, products, operational changes, utilities, process wastes, regulations, preparations, and future prospects. The remaining equipment at Oyster Creek was sold to a South Korean refinery.

Rhodes, A.K.

1995-03-20T23:59:59.000Z

493

Chiller-heater unit nets building 2-yr payback  

SciTech Connect

A 500-ton double-absorption Hitachi Paraflow chiller-heater that switches from purchased steam to natural gas will reduce a Manhattan office building's energy costs by 55% and achieve a two-year payback. The new system replaces a steam-powered, single-stage absorption chiller. By reusing heat in a second-stage generator, the Hitachi unit uses only half as many Btus per ton as a conventional chiller. (DCK)

Duffy, J.

1983-05-09T23:59:59.000Z

494

Non-Unit Faculty Effective Date  

E-Print Network (OSTI)

SUBJECT: Non-Unit Faculty Evaluation Effective Date: 05-18-11 Policy Number: 4-500.1 Supersedes: 4 Adoption: 03-30-05 APPLICABILITY/ACCOUNTABILITY: This policy is applicable to all units and departments that employ non-unit faculty employees in regular positions. POLICY STATEMENT: Non-unit faculty members

Glebov, Leon

495

The United States Government Configuration Baseline ...  

Science Conference Proceedings (OSTI)

... ITL). The United States Government Configuration Baseline (USGCB) - Windows Vista Firewall Content. Warning Notice. ...

2013-08-02T23:59:59.000Z

496

The United States Government Configuration Baseline ...  

Science Conference Proceedings (OSTI)

... Laboratory (ITL). The United States Government Configuration Baseline (USGCB) - Windows 7 Content. Warning Notice. Do ...

2013-08-02T23:59:59.000Z

497

United States 1995 Vintage Oil Well History  

U.S. Energy Information Administration (EIA)

United States 1995 Vintage Oil Well History. Energy Information Administration (U.S. Dept. of Energy)

498

Alternative Fuels Data Center: Reduced Biofuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Biofuels Tax Reduced Biofuels Tax to someone by E-mail Share Alternative Fuels Data Center: Reduced Biofuels Tax on Facebook Tweet about Alternative Fuels Data Center: Reduced Biofuels Tax on Twitter Bookmark Alternative Fuels Data Center: Reduced Biofuels Tax on Google Bookmark Alternative Fuels Data Center: Reduced Biofuels Tax on Delicious Rank Alternative Fuels Data Center: Reduced Biofuels Tax on Digg Find More places to share Alternative Fuels Data Center: Reduced Biofuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Reduced Biofuels Tax A tax of $0.12 per gallon is imposed on gasoline containing at least 70% ethanol (E70) and diesel fuel containing at least 5% biodiesel (B5). This is a $0.07 discount compared to the conventional gasoline tax of $0.19 per

499

Reducing Your Electricity Use | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reducing Your Electricity Use Reducing Your Electricity Use Reducing Your Electricity Use July 15, 2012 - 4:11pm Addthis An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. An energy audit can help you find the most effective ways to save money and reduce energy use in your home. | Photo courtesy of Dennis Schroeder, NREL. What are the key facts? Reducing energy saves money and reduces pollution. When considering a renewable energy system purchase for your home, the first step is to lower your energy use through efficiency measures. Energy audits can help point you to the most effective ways to reduce energy in your home. Reducing energy use in your home saves you money, increases our energy

500

SunShot Initiative: Reducing Photovoltaic Costs  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Photovoltaic Costs to Reducing Photovoltaic Costs to someone by E-mail Share SunShot Initiative: Reducing Photovoltaic Costs on Facebook Tweet about SunShot Initiative: Reducing Photovoltaic Costs on Twitter Bookmark SunShot Initiative: Reducing Photovoltaic Costs on Google Bookmark SunShot Initiative: Reducing Photovoltaic Costs on Delicious Rank SunShot Initiative: Reducing Photovoltaic Costs on Digg Find More places to share SunShot Initiative: Reducing Photovoltaic Costs on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Systems Integration Balance of Systems Reducing Photovoltaic Costs Photo of gloved hands pouring liquid from a glass bottle to glass beaker. Past Incubator awardee, Innovalight, is creating high-efficiency, low-cost