Powered by Deep Web Technologies
Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Anode Materials  

Science Conference Proceedings (OSTI)

Table 6   Properties of polymeric mesh anodes used for construction applications...(a) Average current output

2

Anode Raw Materials  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Anodes for aluminum production are composed of coal tar pitch (CTP) ... This paper reports a study on the structure and porosity of calcined...

3

Sulfur tolerant anode materials  

DOE Green Energy (OSTI)

The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

Not Available

1988-05-01T23:59:59.000Z

4

NANOTUBE COMPOSITE ANODE MATERIALS SUITABLE FOR LITHIUM ION ...  

The present invention provides a composite material suitable for use in an anode for a lithium ion battery, the composite material comprising a layer of a lithium ...

5

High Performance Anode Material - Oak Ridge National Laboratory  

... low temperature, catalyst-free scalable process. The anode material consists of a vertically-aligned metal- core-shell nano-wire array.

6

Influence of Raw Materials on the Properties of Anodes & Their ...  

Science Conference Proceedings (OSTI)

Then the course will outline different process steps and describe the influence of raw materials, such as petroleum coke, coal tar pitch, and anode butts on the...

7

Oxide-based SOFC Anode Materials - Available Technologies ...  

Researchers at PNNL have developed a new class of nickel-free anode materials, consisting of a composite of doped cerium oxide and doped strontium ...

8

Carbonaceous materials as lithium intercalation anodes  

Science Conference Proceedings (OSTI)

Commercial and polymer-derived carbonaceous materials were examined as lithium intercalation anodes in propylene carbonate (pyrolysis graphites) electrolytes. The reversible capacity (180--355 mAh/g) and the irreversible capacity loss (15--200 % based on reversible capacity) depend on the type of binder, carbon type, morphology, and phosphorus doping concentration. A carbon-based binder was chosen for electrode fabrication, producing mechanically and chemically stable electrodes and reproducible results. Several types of graphites had capacity approaching LiC{sub 6}. Petroleum fuel green cokes doped with phosphorous gave more than a 20 % increase in capacity compared to undoped samples. Electrochemical characteristics are related to SEM, TEM, XRD and BET measurements.

Tran, T.D.; Feikert, J.H. [Lawrence Livermore National Lab., CA (United States); Mayer, S.T. [Polystor, Livermore, CA (United States); Song, X.; Kinoshita, K. [Lawrence Berkeley Lab., CA (United States)

1994-10-01T23:59:59.000Z

9

Carbonaceous materials as lithium intercalation anodes  

DOE Green Energy (OSTI)

Commercial and polymer-derived carbonaceous materials were examined as lithium intercalation anodes in propylene carbonate (pyrolysis < 1350C, carbons) and ethylene carbonate/dimethyl carbonate (graphites) electrolytes. The reversible capacity (180--355 mAh/g) and the irreversible capacity loss (15--200 % based on reversible capacity) depend on the type of binder, carbon type, morphology, and phosphorus doping concentration. A carbon-based binder was chosen for electrode fabrication, producing mechanically and chemically stable electrodes and reproducible results. Several types of graphites had capacity approaching LiC{sub 6}. Petroleum fuel green cokes doped with phosphorous gave more than a 20 % increase in capacity compared to undoped samples. Electrochemical characteristics are related to SEM, TEM, XRD and BET measurements.

Tran, T.D.; Feikert, J.H. [Lawrence Livermore National Lab., CA (United States); Mayer, S.T. [Polystor, Livermore, CA (United States); Song, X.; Kinoshita, K. [Lawrence Berkeley Lab., CA (United States)

1994-10-01T23:59:59.000Z

10

Anode Raw Materials and Green Carbon  

Science Conference Proceedings (OSTI)

Mar 1, 2011 ... Property Profile of Lab- Scale Anodes Produced with 180C Mettler Coal Tar Pitch: Winfried Boenigk1; Claudia Boltersdorf1; Falk Lindner1;...

11

Novel Anode Materials For Solid Oxide Fuel Cells Dissertation committee  

E-Print Network (OSTI)

and fabrication of alternative anodes for direct methane oxidation in SOFC". Publisher: Twente University Press, P cells (SOFC). The principles and materials employed for SOFC are described. Emphasis is on the anode (PAFC), · the molten carbonate fuel cell (MCFC), · the solid oxide fuel cell (SOFC). Each type of fuel

Verweij, Henk

12

Anode Materials for Rechargeable Li-Ion Batteries  

DOE Green Energy (OSTI)

This research is on materials for anodes and cathodes in electrochemical cells. The work is a mix of electrochemical measurements and analysis of the materials by transmission electron microscopy and x-ray diffractometry. At present, our experimental work involves only materials for Li storage, but we have been writing papers from our previous work on hydrogen-storage materials.

Fultz, B.

2001-01-12T23:59:59.000Z

13

Silicon Anode Materials for All-Solid-State Lithium-ion Microbatteries  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors. Presentation Title, Silicon Anode Materials for All-Solid-State...

14

Beryllium - A Unique Material in Nuclear Applications  

SciTech Connect

Beryllium, due to its unique combination of structural, chemical, atomic number, and neutron absorption cross section characteristics, has been used successfully as a neutron reflector for three generations of nuclear test reactors at the Idaho National Engineering and Environmental Laboratory (INEEL). The Advanced Test Reactor (ATR), the largest test reactor in the world, has utilized five successive beryllium neutron reflectors and is scheduled for continued operation with a sixth beryllium reflector. A high radiation environment in a test reactor produces radiation damage and other changes in beryllium. These changes necessitate safety analysis of the beryllium, methods to predict performance, and appropriate surveillances. Other nuclear applications also utilize beryllium. Beryllium, given its unique atomic, physical, and chemical characteristics, is widely used as a window for x-rays and gamma rays. Beryllium, intimately mixed with high-energy alpha radiation emitters has been successfully used to produce neutron sources. This paper addresses operational experience and methodologies associated with the use of beryllium in nuclear test reactors and in windows for x-rays and gamma rays. Other nuclear applications utilizing beryllium are also discussed.

T., A. Tomberlin

2004-11-01T23:59:59.000Z

15

Anode Materials for Rechargeable Li-Ion Batteries  

DOE Green Energy (OSTI)

This is the annual progress report for the Grant DE-FG03-00ER15035. This research is on materials for anodes and cathodes in electrochemical cells. The work is a mix of electrochemical measurements and analysis of the materials by transmission electron microscopy and x-ray diffractometry. Our materials studies on electrode materials divide into electronic studies of the valence at and around Li atoms, and the crystal structures of these materials. We are addressing the basic questions of how these change with Li concentration, and what long-term changes take place during charge/discharge cycling of the materials.

B. Fultz

2001-01-12T23:59:59.000Z

16

High Energy Density Anode Materials Based on SiO-SnCo/FeC for ...  

Science Conference Proceedings (OSTI)

Abstract Scope, High energy density anode material SiO-SnCoC is synthesized by mechanical alloying method and tested for lithium battery applications.

17

Fullerene Film as a Coating Material for Silicon Thick Film Anodes ...  

Science Conference Proceedings (OSTI)

Presentation Title, Fullerene Film as a Coating Material for Silicon Thick Film Anodes for Lithium Ion Batteries. Author(s), Arenst Andreas Arie. On-Site Speaker

18

Traceability of Raw Materials in Silos in an Anode Plant  

Science Conference Proceedings (OSTI)

Different coke and pitch mixtures are commonly used in anode manufacturing to meet various regulations and/or due to economics and availability. This makes it

19

Investigation on Aluminum-Based Amorphous Metallic Glass as New Anode Material in Lithium Ion Batteries  

E-Print Network (OSTI)

Aluminum based amorphous metallic glass powders were produced and tested as the anode materials for the lithium ion rechargeable batteries. Ground Al??Ni₁?La₁? was found to have a ...

Meng, Shirley Y.

20

Cathode Contact Materials for Anode-Supported Cell Development - Lawrence Berkeley National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Cathode Contact Materials for Anode- Cathode Contact Materials for Anode- Supported Cell Development- Lawrence Berkeley National Laboratory Background The mission of the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) is to advance energy options to fuel our economy, strengthen our security, and improve our environment. With the Solid State Energy Conversion Alliance (SECA), NETL is leading the research, development, and demonstration of solid oxide

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Autogenic Pressure Reactions for Battery Materials Manufacture...  

NLE Websites -- All DOE Office Websites (Extended Search)

Autogenic Pressure Reactions for Battery Materials Manufacture Technology available for licensing: A unique method for anode and cathode manufacture autogenicpressurereactions...

22

Novel carbonaceous materials used as anodes in lithium ion cells  

DOE Green Energy (OSTI)

The objective of this work is to synthesize disordered carbons used as anodes in lithium ion batteries, where the porosity and surface area are controlled. Both parameters are critical since the irreversible capacity obtained in the first cycle seems to be associated with the surface area (an exfoliation mechanism occurs in which the exposed surface area continues to increase).

Sandi, G.; Winans, R.E.; Carrado, K.A.

1997-09-01T23:59:59.000Z

23

Durability Prediction of Solid Oxide Fuel Cell Anode Material under Thermo-Mechanical and Fuel Gas Contaminants Effects  

Science Conference Proceedings (OSTI)

Solid Oxide Fuel Cells (SOFCs) operate under harsh environments, which cause deterioration of anode material properties and service life. In addition to electrochemical performance, structural integrity of the SOFC anode is essential for successful long-term operation. The SOFC anode is subjected to stresses at high temperature, thermal/redox cycles, and fuel gas contaminants effects during long-term operation. These mechanisms can alter the anode microstructure and affect its electrochemical and structural properties. In this research, anode material degradation mechanisms are briefly reviewed and an anode material durability model is developed and implemented in finite element analysis. The model takes into account thermo-mechanical and fuel gas contaminants degradation mechanisms for prediction of long-term structural integrity of the SOFC anode. The proposed model is validated experimentally using a NexTech ProbostatTM SOFC button cell test apparatus integrated with a Sagnac optical setup for simultaneously measuring electrochemical performance and in-situ anode surface deformation.

Iqbal, Gulfam; Guo, Hua; Kang , Bruce S.; Marina, Olga A.

2011-01-10T23:59:59.000Z

24

Primary cell of high energy density in which the anode active material is an alkali metal  

Science Conference Proceedings (OSTI)

A primary cell of high specific energy in which the anode active material is an alkali metal and the cathode active material is sulphur oxychloride which simultaneously acts as an electrolyte solvent, said electrolyte further containing a dissolved salt and a co-solvent. The co-solvent is chosen from among phosphoryl chloride and benzoyl chloride; the dissolved salt is lithium tetrachloroaluminate.

Gabano, J.

1983-02-01T23:59:59.000Z

25

Dissolution of Plutonium Scrub Alloy and Anode Heel Materials in H-Canyon  

SciTech Connect

H-Canyon has a ''gap'' in dissolver operations during the last three months of FY03. One group of material to be processed during the gap is pre-existing scrub alloy material. There are 14 cans of material containing approximately 3.8 kilograms of plutonium. Of the 14 cans, it was anticipated that four cans contain salts, two cans contain anode heel materials, and eight cans contain scrub alloy buttons. H-Canyon desires to process the materials using a flowsheet similar to the SS and C (sand, slag and crucible) dissolution flowsheet used in F-Canyon. The materials will be loaded into carbon steel cans and then placed into aluminum metal charging bundles. Samples were sent to Savannah River Technology Center (SRTC) for characterization and flowsheet testing -- four MSE salts, two anode heels, and seven scrub alloy buttons. SRTC dissolved and characterized each of the samples. Two of them, originally thought to be MSE salts, were found to be graphite mold materials and were unsuitable for processing in H-Canyon. Characterization studies confirmed that the identification of the remaining items as MSE salts, scrub alloy buttons, and anode heel materials was correct. The MSE salts and anode heels solids are comprised primarily of plutonium, potassium, sodium and chloride. Both the MSE salts and anode heels left behind small amounts of residual solids. The scrub alloy buttons are comprised primarily of plutonium and aluminum. The solids dissolve readily with light, effervescent gas generation at the material surface and only trace amounts of NOx generation. Of the seven button samples, four dissolved completely. Two button samples contained small amounts of tantalum that did not dissolve. The last of the seven scrub alloy samples left a trace amount of residual plutonium solids. It is anticipated that the presence of undissolved fissile material is a function of where the sample was located relative to the button surface.

PIERCE, RA

2004-04-12T23:59:59.000Z

26

Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)  

DOE Green Energy (OSTI)

Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

Dr. Malgorzata Gulbinska

2009-08-24T23:59:59.000Z

27

Double Perovskite Materials for use as Sulfur Tolerant Anodes in ...  

Science Conference Proceedings (OSTI)

Phase Change Materials for Enhancing Heat Transfer in Thermal Energy Storage for Concentrating Solar Power (CSP) Phase Field Simulation of...

28

Synthesis, Characterization and Testing of Novel Anode and Cathode Materials for Li-Ion Batteries  

DOE Green Energy (OSTI)

During this program we have synthesized and characterized several novel cathode and anode materials for application in Li-ion batteries. Novel synthesis routes like chemical doping, electroless deposition and sol-gel method have been used and techniques like impedance, cyclic voltammetry and charge-discharge cycling have been used to characterize these materials. Mathematical models have also been developed to fit the experimental result, thus helping in understanding the mechanisms of these materials.

White, Ralph E.; Popov, Branko N.

2002-10-31T23:59:59.000Z

29

Surface treated natural graphite as anode material for high-power Li-ion battery applications.  

Science Conference Proceedings (OSTI)

High power application of Li-ion battery in hybrid electrical vehicles requires low cost and safe cell materials. Among the various carbon anode materials used in lithium ion batteries, natural graphite shows the most promise with advantages in performance and cost. However, natural graphite is not compatible with propylene carbonate (PC)-based electrolytes, which have a lower melting point and improved safety characteristics. The problem with it is that the molecules of propylene carbonate intercalate with Li+ into graphite, and that frequently leads to the exfoliation of the graphite matrix.

Liu, J.; Vissers, D. R.; Amine, K.; Barsukov, I. V.; Henry, F.; Doniger, J.; Chemical Engineering; Superior Graphite Co.

2006-01-01T23:59:59.000Z

30

Mesoporous carbon -Cr2O3 composite as an anode material for lithium ion batteries  

SciTech Connect

Mesoporous carbon-Cr2O3 (M-C-Cr2O3) composite was prepared by co-assembly of in-situ formed phenolic resin, chromium precursor, and Pluronic block copolymer under acidic conditions, followed by carbonization at 750oC under Argon. The TEM results confirmed that the Cr2O3 nanoparticles, ranging from 10 to 20 nm, were well dispersed in the matrix of mesoporous carbon. The composite exhibited an initial reversible capacity of 710 mAh g-1 and good cycling stability, which is mainly due to the synergic effects of carbons within the composites, i.e. confining the crystal growth of Cr2O3 during the high temperature treatment step and buffering the volume change of Cr2O3 during the cycling step. This composite material is a promising anode material for lithium ion batteries.

Guo, Bingkun [ORNL; Chi, Miaofang [ORNL; Sun, Xiao-Guang [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

31

Composit, Nanoparticle-Based Anode material for Li-ion Batteries Applied in Hybrid Electric (HEV's)  

SciTech Connect

Lithium-ion batteries are promising energy storage devices in hybrid and electric vehicles with high specific energy values ({approx}150 Wh/kg), energy density ({approx}400 Wh/L), and long cycle life (>15 years). However, applications in hybrid and electric vehicles require increased energy density and improved low-temperature (<-10 C) performance. Silicon-based anodes are inexpensive, environmentally benign, and offer excellent theoretical capacity values ({approx}4000 mAh/g), leading to significantly less anode material and thus increasing the overall energy density value for the complete battery (>500 Wh/L). However, tremendous volume changes occur during cycling of pure silicon-based anodes. The expansion and contraction of these silicon particles causes them to fracture and lose electrical contact to the current collector ultimately severely limiting their cycle life. In Phase I of this project Yardney Technical Products, Inc. proposed development of a carbon/nano-silicon composite anode material with improved energy density and silicon's cycleability. In the carbon/nano-Si composite, silicon nanoparticles were embedded in a partially-graphitized carbonaceous matrix. The cycle life of anode material would be extended by decreasing the average particle size of active material (silicon) and by encapsulation of silicon nanoparticles in a ductile carbonaceous matrix. Decreasing the average particle size to a nano-region would also shorten Li-ion diffusion path and thus improve rate capability of the silicon-based anodes. Improved chemical inertness towards PC-based, low-temperature electrolytes was expected as an additional benefit of a thin, partially graphitized coating around the active electrode material.

Dr. Malgorzata Gulbinska

2009-08-24T23:59:59.000Z

32

Defective graphene as promising anode material for Na-ion battery and Ca-ion battery  

E-Print Network (OSTI)

We have investigated adsorption of Na and Ca on graphene with divacancy (DV) and Stone-Wales (SW) defect. Our results show that adsorption is not possible on pristine graphene. However, their adsorption on defective sheet is energetically favorable. The enhanced adsorption can be attributed to the increased charge transfer between adatoms and underlying defective sheet. With the increase in defect density until certain possible limit, maximum percentage of adsorption also increases giving higher battery capacity. For maximum possible DV defect, we can achieve maximum capacity of 1459 mAh/g for Na-ion batteries (NIBs) and 2900 mAh/g for Ca-ion batteries (CIBs). For graphene full of SW defect, we find the maximum capacity of NIBs and CIBs is around 1071 mAh/g and 2142 mAh/g respectively. Our results will help create better anode materials with much higher capacity and better cycling performance for NIBs and CIBs.

Datta, Dibakar; Shenoy, Vivek B

2013-01-01T23:59:59.000Z

33

Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution  

DOE Patents (OSTI)

An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

Tomczuk, Zygmunt (Orland Park, IL); Miller, William E. (Naperville, IL); Wolson, Raymond D. (Lockport, IL); Gay, Eddie C. (Park Forest, IL)

1991-01-01T23:59:59.000Z

34

Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution  

DOE Patents (OSTI)

An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U{sup +4} cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd{sup +2} cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode. 5 figs.

Tomczuk, Z.; Miller, W.E.; Wolson, R.D.; Gay, E.C.

1989-08-25T23:59:59.000Z

35

Electrodeposition of Ni5Sb2 nanowires array and its application as a high-performance anode material for lithium ion batteries  

Science Conference Proceedings (OSTI)

Single crystal Ni"5Sb"2 nanowires array is synthesized by direct-current electrodeposition technique. The initial specific discharge and charge capacity of the as-produced Ni"5Sb"2 nanowires array electrode as an anode material for lithium-ion batteries ... Keywords: Anode, Array structure, Charge/discharge capacity, Lithium-ion batteries, Nanowires

You-Wen Yang; Tian-Ying Li; Fei Liu; Wen-Bin Zhu; Xue-Liang Li; Yu-Cheng Wu; Ming-Guang Kong

2013-04-01T23:59:59.000Z

36

In search of high performance anode materials for Mg batteries: computational studies of Mg in Ge, Si, and Sn  

E-Print Network (OSTI)

We present ab initio studies of structures, energetics, and diffusion properties of Mg in Si, Ge, and Sn diamond structures to evaluate their potential as insertion type anode materials for Mg batteries. We show that Si could provide the highest specific capacities (3817 mAh g-1) and the lowest average insertion voltage (~0.15 eV vs. Mg) for Mg storage. Nevertheless, due to its significant percent lattice expansion (~216%) and slow Mg diffusion, Sn and Ge are more attractive; both anodes have lower lattice expansions (~120 % and ~178 %, respectively) and diffusion barriers (~0.50 and ~0.70 eV, respectively for single-Mg diffusion) than Si. We show that Mg-Mg interactions at different stages of charging can decrease significantly the diffusion barrier compared to the single atom diffusion, by up to 0.55 eV.

Malyi, Oleksandr I; Manzhos, Sergei; 10.1016/j.jpowsour.2013.01.114

2013-01-01T23:59:59.000Z

37

Sulfur tolerant anode materials. Quarterly report, January 1--March 31, 1988  

DOE Green Energy (OSTI)

The goal of this program is the development of a molten carbonate fuel cell (MCFC) anode which is more tolerant of sulfur contaminants in the fuel than the current state-of-the-art nickel-based anode structures. This program addresses two different but related aspects of the sulfur contamination problem. The primary aspect is concerned with the development of a sulfur tolerant electrocatalyst for the fuel oxidation reaction. A secondary issue is the development of a sulfur tolerant water-gas-shift reaction catalyst and an investigation of potential steam reforming catalysts which also have some sulfur tolerant capabilities. These two aspects are being addressed as two separate tasks.

Not Available

1988-05-01T23:59:59.000Z

38

Nano-structured anode material for high-power battery system in electric vehicles.  

SciTech Connect

A new MSNP-LTO anode is developed to enable a high-power battery system that provides three times more power than any existing battery system. It shows excellent cycle life and low-temperature performance, and exhibits unmatched safety characteristics.

Amine, K.; Belharouak, I.; Chen, Z.; Taison, T.; Yumoto, H.; Ota, N.; Myung, S.-T.; Sun, Y.-K. (Chemical Sciences and Engineering Division); (Enerdel Lithium Power Systems); (Iwate Univ.); (Hanyang Univ.)

2010-07-27T23:59:59.000Z

39

Lignin-based Active Anode Materials Synthesized from Low-Cost ...  

cost battery material obtained from a renewable resource. This material can be made binder-free, eliminating a major cost in battery materials.

40

Development of Low Cost Carbonaceous Materials for Anodes in Lithium-Ion Batteries for Electric and Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Final report on the US DOE CARAT program describes innovative R & D conducted by Superior Graphite Co., Chicago, IL, USA in cooperation with researchers from the Illinois Institute of Technology, and defines the proper type of carbon and a cost effective method for its production, as well as establishes a US based manufacturer for the application of anodes of the Lithium-Ion, Lithium polymer batteries of the Hybrid Electric and Pure Electric Vehicles. The three materials each representing a separate class of graphitic carbon, have been developed and released for field trials. They include natural purified flake graphite, purified vein graphite and a graphitized synthetic carbon. Screening of the available on the market materials, which will help fully utilize the graphite, has been carried out.

Barsukov, Igor V.

2002-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Corrosion-resistant iridium-platinum anode material for high polarization application in corrosive acids  

DOE Patents (OSTI)

The present invention relates to highly corrosion resistant components for use in an electrochemical cell. Specifically, these components are resistant to corrosion under very extreme conditions such as exposure to aqua regia in the presence of a constant current density of 100mA/m{sup 2}. The components are comprised of an iridium-platinum alloy that comprises less than 30% iridium. In a preferred embodiment of the present invention, the iridium-platinum alloy comprises 15-20% iridium. In another preferred embodiment of the present invention, the iridium-platinum alloy is deposited on the surface of an electrochemical cell component by magnetron sputtering. The present invention also relates to a method for conducting an electrochemical reaction in the presence of highly corrosive acids under a high degree of polarization wherein the electrochemical cell comprises a component, preferably the anode, containing an iridium-platinum alloy that comprises less than 30% iridium.

Farmer, J.; Summers, L.; Lewis, P.

1993-09-08T23:59:59.000Z

42

A new phase in Ni-Sn-P system and its property as an anode material for lithium-ion batteries  

SciTech Connect

A new metastable phase was synthesized by ball milling. The new phase is tetragonal with lattice parameters a = 3.671 A and c = 4.033 A. It was found that the new phase transformed into equilibrium orthorhombic Ni{sub 2}SnP phase at 973 K. The initial capacity of the lithium battery with the tetragonal Ni{sub 2}SnP phase as anode material reaches 500.4 mAh/g, but decreases to 181.8 mAh/g after 25 cycles. However, its initial irreversible capacity is 102 mAh/g, which makes it a promising anode material.

Xia, Z.P.; Lin, Y. [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Li, Z.Q. [Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)], E-mail: zongquanli@zju.edu.cn

2008-09-15T23:59:59.000Z

43

Anodes for alkaline electrolysis  

DOE Patents (OSTI)

A method of making an anode for alkaline electrolysis cells includes adsorption of precursor material on a carbonaceous material, conversion of the precursor material to hydroxide form and conversion of precursor material from hydroxide form to oxy-hydroxide form within the alkaline electrolysis cell.

Soloveichik, Grigorii Lev (Latham, NY)

2011-02-01T23:59:59.000Z

44

Ball-milled Materials as Inert Anodes for Aluminum Production in KF ...  

Science Conference Proceedings (OSTI)

In this study, various nanostructured materials including Cu-Ni-Fe, Cu-Al-Ni-Fe based alloys and (Cu-Ni-Fe + MOx) composites were prepared by ball milling,...

45

Solid-state resistance upset welding: A process with unique advantages for advanced materials  

SciTech Connect

Solid-state resistance upset welding is suitable for joining many alloys that are difficult to weld using fusion processes. Since no melting takes place, the weld metal retains many of the characteristics of the base metal. Resulting welds have a hot worked structure, and thereby have higher strength than fusion welds in the same mate. Since the material being joined is not melted, compositional gradients are not introduced, second phase materials are minimally disrupted, and minor alloying elements, do not affect weldability. Solid-state upset welding has been adapted for fabrication of structures considered very large compared to typical resistance welding applications. The process has been used for closure of capsules, small vessels, and large containers. Welding emphasis has been on 304L stainless steel, the material for current applications. Other materials have, however, received enough attention to have demonstrated capability for joining alloys that are not readily weldable using fusion welding methods. A variety of other stainless steels (including A-286), superalloys (including TD nickel), refractory metals (including tungsten), and aluminum alloys (including 2024) have been successfully upset welded.

Kanne, W.R. Jr.

1993-12-31T23:59:59.000Z

46

Novel Processing of Unique Ceramic-Based Nuclear Materials and Fuels  

Science Conference Proceedings (OSTI)

Advances in nuclear reactor technology and the use of gas-cooled fast reactors require the development of new materials that can operate at the higher temperatures expected in these systems. These include refractory alloys base on Nb, Zr, Ta, Mo, W, and Re; ceramics and composites such as those based on silicon carbide (SiCf-SiC); carbon-carbon composites; and advanced coatings. Besides the ability to handle higher expected temperatures, effective heat transfer between reactor componets is necessary for improved efficiency. Improving thermal conductivity of the materials used in nuclear fuels and other temperature critical components can lower the center-line fuel temperature and thereby enhance durability and reduce the risk of premature failure.

Hui Zhang; Raman P. Singh

2008-11-30T23:59:59.000Z

47

Li4Ti5O12 as an anode material for Li ion batteries in situ XRD and XPS studies.  

E-Print Network (OSTI)

?? This thesis examines parts of the kinetics and performance in Li-battery cells using lithium titanate anodes and lithium manganese oxide cathodes. Lithium titanate (Li4Ti5O12) (more)

Nordh, Tim

2013-01-01T23:59:59.000Z

48

Exfoliated MoS2 Nanocomposite as an Anode Material for Lithium Ion Batteries  

DOE Green Energy (OSTI)

Nanocomposites of molybdenum disulfide (MoS2) and poly(ethylene oxide) (PEO) were prepared by the exfoliation/absorption method that involved the hydrolysis of lithiated MoS2 in an aqueous solution of PEO. The absorption and subsequent interaction of PEO on the colloidal MoS2 formed a nanocomposite which restacked into layered secondary particles. X-ray diffraction and high resolution TEM indicated that highly disordered nanocomposites were produced when the Lix(PEO)yMoS2 stoichiometry was limited to y < 1. An improvement of greater than 5x in capacity accompanied by high cycle stability and efficiency was observed for the disordered nanocomposites providing a novel approach to utilize low-cost MoS2 and similar materials for a high capacity energy storage system.

Xiao, Jie; Choi, Daiwon; Cosimbescu, Lelia; Koech, Phillip K.; Liu, Jun; Lemmon, John P.

2010-05-04T23:59:59.000Z

49

Nickel anode electrode  

DOE Patents (OSTI)

A nickel anode electrode fabricated by oxidizing a nickel alloying material to produce a material whose exterior contains nickel oxide and whose interior contains nickel metal throughout which is dispersed the oxide of the alloying material and by reducing and sintering the oxidized material to form a product having a nickel metal exterior and an interior containing nickel metal throughout which is dispersed the oxide of the alloying material.

Singh, Prabhakar (Bethel, CT); Benedict, Mark (Monroe, CT)

1987-01-01T23:59:59.000Z

50

Anodic films  

DOE Green Energy (OSTI)

Surface layers are formed on many metals by anodic reaction. Such layers include the products of charge and discharge in many storage batteries, dielectric films used in electronic and optical circuits and display devices, layers responsible for passivity and corrosion protection, and films generated in metal shaping and finishing operations such as anodization, coloring, electropolishing, electrochemical machining and deburring. Anodic films are formed by solid-solid transformations or by dissolution-precipitation processes. Film properties and mechanisms of formation can be determined in situ by a number of optical techniques which have recently become available.

Muller, R.H.

1983-08-01T23:59:59.000Z

51

Nanotube Composite Anode Materials  

Increased battery capacity, safety, ... Electric and plug-in hybrid electric vehicles; Portable electronic devices; Medical devices; and

52

Simply AlF3-treated Li4Ti5O12 composite anode materials for stable and ultrahigh power lithium-ion batteries  

SciTech Connect

The commercial Li4Ti5O12 (LTO) is successfully modified by AlF3 via a low temperature process. After being calcined at 400oC for 5 hours, AlF3 reacts with LTO to form a composite material which mainly consists of Al3+ and F- co-doped LTO with small amounts of anatase TiO2 and Li3AlF6. Al3+ and F- co-doped LTO demonstrates largely improved rate capability comparing to the pristine LTO. Since the amount of the byproduct TiO2 is relatively small, the modified LTO electrodes retain the main voltage characteristics of LTO with a minor feature similar to those of anatase TiO2. The doped LTO anodes deliver higher discharge capacity and significantly improved high-rate performance when compared to the pristine LTO anode. They also demonstrate excellent long-term cycling stability at elevated temperatures. Therefore, Al3+ and F- co-doped LTO synthesized at low temperature is an excellent anode for stable and ultra-high power lithium-ion batteries.

Xu, Wu; Chen, Xilin; Wang, Wei; Choi, Daiwon; Ding, Fei; Zheng, Jianming; Nie, Zimin; Choi, Young Joon; Zhang, Jiguang; Yang, Zhenguo

2013-08-15T23:59:59.000Z

53

Anode Baking/Anode Properties  

Science Conference Proceedings (OSTI)

Feb 17, 2010... introducing a new state-of-the-art firing system, replacing the waste gas ... In this test, an anode core sample is exposed to CO2 at 960C for 7...

54

Low cost MCFC anodes  

DOE Green Energy (OSTI)

This paper outlines a project, funded under a DOE SBIR grant, which tested a potentially lower cost method of manufacturing MCFC stack anodes and evaluated the feasibility of using the technology in the existing M-C Power Corp. manufacturing facility. The procedure involves adding activator salts to the anode tape casting slurry with the Ni and Cr or Al powders. Two different processes occur during heat treatment in a reducing environment: sintering of the base Ni structure, and alloying or cementation of the Cr or Al powders. To determine whether it was cost-effective to implement the cementation alloying manufacturing process, the M-C Power manufacturing cost model was used to determine the impact of different material costs and processing parameters on total anode cost. Cost analysis included equipment expenditures and facility modifications required by the cementation alloying process.

Erickson, D.S.

1996-12-31T23:59:59.000Z

55

Nanostructured Metal Oxide Anodes (Presentation)  

DOE Green Energy (OSTI)

This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

2009-05-01T23:59:59.000Z

56

Nanostructured Metal Oxide Anodes (Presentation)  

SciTech Connect

This summarizes NREL's FY09 battery materials research activity in developing metal oxide nanostructured anodes to enable high-energy, durable and affordable li-ion batteries for HEVs and PHEVs.

Dillon, A. C.; Riley, L. A.; Lee, S.-H.; Kim, Y.-H.; Ban, C.; Gillaspie, D. T.; Pesaran, A.

2009-05-01T23:59:59.000Z

57

REACTIVE FORCE FIELDS FOR Y-DOPED BaZrO3 ELECTROLYTE AND NI-ANODE. POTENTIAL CATHODE MATERIALS FOR APPLICATION IN PROTON CERAMIC FUEL CELLS  

DOE Green Energy (OSTI)

Based on quantum mechanical data obtained for the Y-doped BaZrO{sub 3} electrolyte and Ni-anode Reactive Force Field parameters have been developed for further molecular dynamics simulations of the proton diffusion and electrode/electrolyte interfaces. Electronic and atomic structures of different terminations of the (001) BaZrO{sub 3} surface have been studied using first-principles calculations. Several potential cathode materials for the Y-doped BaZrO{sub 3} system were synthesized via glycine nitrate combustion method. Of the five potential cathode materials examined BaZr{sub 0.40}Pr{sub 0.40}Gd{sub 0.20}O{sub 3} and BaZr{sub 0.60}Y{sub 0.20}Co{sub 0.20}O{sub 3} appear to be the most promising for further applications in proton ceramic fuel cells. Fuel cell test of a Y-doped BaZrO{sub 3} thin film using platinum ink for both electrodes have been performed. The obtained results shows that a robust method for fabricating crack-free thin membranes, as well as methods for sealing anode and cathode chambers, have successfully been developed.

Boris Merinov; Adri van Duin; Sossina Haile; William A. Goddard III

2004-10-30T23:59:59.000Z

58

Thermodynamic and phase relations of intermetallic anode ...  

Science Conference Proceedings (OSTI)

The experimental data obtained are necessary for thermodynamic optimizations and direct estimations of the performance of respective anode materials in an...

59

Enhanced performance of graphite anode materials by AlF3 coating for lithium-ion batteries  

Science Conference Proceedings (OSTI)

In order to form the stable surface film and to further enhance the long-term cycling stability of the graphite anodes of lithium-ion batteries, the surface of graphite powders has been modified by AlF3 coating through chemical precipitation method. The AlF3-coated graphite shows no evident changes in the bulk structure and a thin AlF3-coating layer of about 2 nm thick is found to uniformly cover the graphite particles with 2 wt% AlF3 content. However, it delivers a higher initial discharge capacity and largely improved rate performances compared to the pristine graphite. Remarkably, AlF3 coated graphite demonstrated a much better cycle life. After 300 cycles, AlF3 coated graphite and uncoated graphite show capacity retention of 92% and 81%, respectively. XPS measurement shows that a more conductive solid electrode interface (SEI) layer was formed on AlF3 coated graphite as compared to uncoated graphite. SEM monograph also reveals that the AlF3-coated graphite particles have a much more stable surface morphology after long-term cycling. Therefore, the improved electrochemical performance of AlF3 coated graphite can be attributed to a more stable and conductive SEI formed on coated graphite anode during cycling process.

Ding, Fei; Xu, Wu; Choi, Daiwon; Wang, Wei; Li, Xiaolin; Engelhard, Mark H.; Chen, Xilin; Yang, Zhenguo; Zhang, Jiguang

2012-04-27T23:59:59.000Z

60

Novel Design of Nanostructured Si Anode on Nanohair Array ...  

Science Conference Proceedings (OSTI)

Symposium, Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors. Presentation Title, Novel Design of Nanostructured Si Anode on ...

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Anodizing Processes  

Science Conference Proceedings (OSTI)

Table 2   Typical products for which anodizing is used in final finishing...ft by 7 by 4 6063-T6 (d) Sulfuric acid (e) Seal, lacquer (f) Urban atmosphere Name plates Various sizes Various sizes 3003??1114 (g) Sulfuric acid Dye, seal Atmospheric exposure Percolator shell 125 mm diam by 150 5 in. diam by 6 ? Buff, chemical brighten Sulfuric acid Seal Coffee Seaplane-hull skin 2850...

62

Understanding Anode Overpotential  

Science Conference Proceedings (OSTI)

Industrial carbon anodes are produced from coke blends, but the effect of coke type on anodic overpotential has not been well studied. In this work, lab-scale...

63

Surface modifications for carbon lithium intercalation anodes  

SciTech Connect

A prefabricated carbon anode containing predetermined amounts of passivating film components is assembled into a lithium-ion rechargeable battery. The modified carbon anode enhances the reduction of the irreversible capacity loss during the first discharge of a cathode-loaded cell. The passivating film components, such as Li.sub.2 O and Li.sub.2 CO.sub.3, of a predetermined amount effective for optimal passivation of carbon, are incorporated into carbon anode materials to produce dry anodes that are essentially free of battery electrolyte prior to battery assembly.

Tran, Tri D. (Livermore, CA); Kinoshita, Kimio (Cupertino, CA)

2000-01-01T23:59:59.000Z

64

A 3D Porous Architecture of Si/graphene Nanocomposite as High-performance Anode Materials for Li-ion Batteries  

SciTech Connect

A 3D porous architecture of Si/graphene nanocomposite has been rationally designed and constructed through a series of controlled chemical processes. In contrast to random mixture of Si nanoparticles and graphene nanosheets, the porous nanoarchitectured composite has superior electrochemical stability because the Si nanoparticles are firmly riveted on the graphene nanosheets through a thin SiO{sub x} layer. The 3D graphene network enhances electrical conductivity, and improves rate performance, demonstrating a superior rate capability over the 2D nanostructure. This 3D porous architecture can deliver a reversible capacity of {approx}900 mA h g{sup -1} with very little fading when the charge rates change from 100 mA g{sup -1} to 1 A g{sup -1}. Furthermore, the 3D nanoarchitechture of Si/graphene can be cycled at extremely high Li{sup +} extraction rates, such as 5 A g{sup -1} and 10 A g{sup -1}, for over than 100 times. Both the highly conductive graphene network and porous architecture are considered to contribute to the remarkable rate capability and cycling stability, thereby pointing to a new synthesis route to improving the electrochemical performances of the Si-based anode materials for advanced Li-ion batteries.

Xin X.; Zhu Y.; Zhou, X.; Wang, F.; Yao, X.; Xu, X.; Liu, Z.

2012-04-28T23:59:59.000Z

65

Virus-Enabled Silicon Anode for Lithium-Ion Batteries  

E-Print Network (OSTI)

Virus-Enabled Silicon Anode for Lithium-Ion Batteries Xilin Chen, Konstantinos Gerasopoulos emerged as one of the most promising next-generation anode materials for lithium-ion batteries due to its with remarkable cycling stability. KEYWORDS: silicon anode · lithium-ion battery · Tobacco mosaic virus · physical

Ghodssi, Reza

66

A study of lithium ion intercalation induced fracture of silicon particles used as anode material in Li-ion battery  

Science Conference Proceedings (OSTI)

The fracture of Si particles due to internal stresses formed during the intercalation of lithium ions was described by means of thermal analogy model and brittle fracture damage parameter. The stresses were calculated following the diffusion equation and equations of elasticity with appropriate volumetric expansion term. The damage parameter takes into account triaxiality of the stress state and change in elasticity upon tension and compression, and represents the probability of fracture under given stress state, - an approach suitable for brittle materials. The results were compared with the acoustic emission data from the experiments on electrochemical cycling of Li ion half-cells with silicon electrodes. A good correlation between experiment and prediction was observed.

Daniel, Claus [ORNL; Kalnaus, Sergiy [ORNL; Rhodes, Kevin [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

67

FLUORINE CELL ANODE ASSEMBLY  

DOE Patents (OSTI)

An improved anode assembly is deslgned for use in electrolytlc cells ln the productlon of hydrogen and fluorlne from a moIten electrolyte. The anode assembly comprises a copper post, a copper hanger supported by the post, a plurality of carbon anode members, and bolt means for clamplng half of the anode members to one slde of the hanger and for clamplng the other half of the anode members to the other slde of the hanger. The heads of the clamplng bolts are recessed withln the anode members and carbon plugs are inserted ln the recesses above the bolt heads to protect the boIts agalnst corroslon. A copper washer is provided under the head of each clamplng boIt such that the anode members can be tightly clamped to the hanger with a resultant low anode jolnt resistance. (AEC)

Cable, R.E.; Goode, W.B. Jr.; Henderson, W.K.; Montillon, G.H.

1962-06-26T23:59:59.000Z

68

Anode Baking Furnace Operation  

Science Conference Proceedings (OSTI)

The course is directed toward plant managers, anode area managers, process engineers, technical managers, and baking furnace ... ENERGY MANAGEMENT.

69

An Insoluble Titanium-Lead Anode for Sulfate Electrolytes  

SciTech Connect

The project is devoted to the development of novel insoluble anodes for copper electrowinning and electrolytic manganese dioxide (EMD) production. The anodes are made of titanium-lead composite material produced by techniques of powder metallurgy, compaction of titanium powder, sintering and subsequent lead infiltration. The titanium-lead anode combines beneficial electrochemical behavior of a lead anode with high mechanical properties and corrosion resistance of a titanium anode. In the titanium-lead anode, the titanium stabilizes the lead, preventing it from spalling, and the lead sheathes the titanium, protecting it from passivation. Interconnections between manufacturing process, structure, composition and properties of the titanium-lead composite material were investigated. The material containing 20-30 vol.% of lead had optimal combination of mechanical and electrochemical properties. Optimal process parameters to manufacture the anodes were identified. Prototypes having optimized composition and structure were produced for testing in operating conditions of copper electrowinning and EMD production. Bench-scale, mini-pilot scale and pilot scale tests were performed. The test anodes were of both a plate design and a flow-through cylindrical design. The cylindrical anodes were composed of cylinders containing titanium inner rods and fitting over titanium-lead bushings. The cylindrical design allows the electrolyte to flow through the anode, which enhances diffusion of the electrolyte reactants. The cylindrical anodes demonstrate higher mass transport capabilities and increased electrical efficiency compared to the plate anodes. Copper electrowinning represents the primary target market for the titanium-lead anode. A full-size cylindrical anode performance in copper electrowinning conditions was monitored over a year. The test anode to cathode voltage was stable in the 1.8 to 2.0 volt range. Copper cathode morphology was very smooth and uniform. There was no measurable anode weight loss during this time period. Quantitative chemical analysis of the anode surface showed that the lead content after testing remained at its initial level. No lead dissolution or transfer from the anode to the product occurred.A key benefit of the titanium-lead anode design is that cobalt additions to copper electrolyte should be eliminated. Cobalt is added to the electrolyte to help stabilize the lead oxide surface of conventional lead anodes. The presence of the titanium intimately mixed with the lead should eliminate the need for cobalt stabilization of the lead surface. The anode should last twice as long as the conventional lead anode. Energy savings should be achieved due to minimizing and stabilizing the anode-cathode distance in the electrowinning cells. The anode is easily substitutable into existing tankhouses without a rectifier change.The copper electrowinning test data indicate that the titanium-lead anode is a good candidate for further testing as a possible replacement for a conventional lead anode. A key consideration is the cost. Titanium costs have increased. One of the ways to get the anode cost down is manufacturing the anodes with fewer cylinders. Additional prototypes having different number of cylinders were constructed for a long-term commercial testing in a circuit without cobalt. The objective of the testing is to evaluate the need for cobalt, investigate the effect of decreasing the number of cylinders on the anode performance, and to optimize further the anode design in order to meet the operating requirements, minimize the voltage, maximize the life of the anode, and to balance this against a reasonable cost for the anode. It is anticipated that after testing of the additional prototypes, a whole cell commercial test will be conducted to complete evaluation of the titanium-lead anode costs/benefits.

Ferdman, Alla

2005-05-11T23:59:59.000Z

70

Synthesis of nanospherical Fe{sub 3}BO{sub 6} anode material for lithium-ion battery by the rheological phase reaction method  

Science Conference Proceedings (OSTI)

This paper developed a novel method, the rheological phase reaction method, to synthesize nanospherical Fe{sub 3}BO{sub 6}. The sizes and morphologies of products vary with the calcination temperatures. Spherical particles with a uniform size about 40 nm in a monodisperse state were obtained at 800 deg. C, while the spherical particles with a larger size of 100-500 nm were obtained at 900 deg. C. The electrochemical properties of these Fe{sub 3}BO{sub 6} nanospheres were investigated. Sample synthesized at 800 deg. C delivers a high reversible capacity above 500 mAh g{sup -1}. Sample synthesized at 900 deg. C possesses relatively good cycleability with a capacity retaining of 376 mAh g{sup -1} after 10 cycles. The measurement of electrochemical impedance spectra for the first time indicated that smaller Fe{sub 3}BO{sub 6} nanoparticles intend to give higher impedance of solid-electrolyte interface layer and lower charge-transfer impedance after the first discharge. Additionally, it can be speculated that the increase of resistance charge-transfer is the possible reason for the capacity fading during cycling. - Graphical abstract: Nanospherical Fe{sub 3}BO{sub 6} anode material for lithium-ion battery has been synthesized by the rheological phase reaction method. The electrochemical properties of these Fe{sub 3}BO{sub 6} nanospheres show that sample synthesized at 800 deg. C delivers a high reversible capacity above 500 mAh g{sup -1}, and sample synthesized at 900 deg. C possesses relatively good cycleability with a capacity retaining of 376 mAh g{sup -1} after 10 cycles.

Shi Xixi; Chang Caixian; Xiang Jiangfeng; Xiao Yong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Yuan Liangjie [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)], E-mail: ljyuan@whu.edu.cn; Sun Jutang [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

2008-09-15T23:59:59.000Z

71

Facile synthesis and electrochemical characterization of Sn{sub 4}Ni{sub 3}/C nanocomposites as anode materials for lithium ion batteries  

SciTech Connect

Sn{sub 4}Ni{sub 3}/C nanocomposites were synthesized by a pyrolyzing-annealing two-step strategy. The phase structure, carbon content and morphology of the nanocomposites were investigated. The results reveal that the crystallinity, carbon structure and purity were enhanced obviously after heat-treatment. Electrochemical performance was evaluated by cyclic voltammograms (CV), galvanostatic discharge/charge and electrochemical impedance spectra (EIS). The annealed Sn{sub 4}Ni{sub 3}/C powders deliver an initial charge capacity of 525.2 mA h g{sup -1}, 400 mA h g{sup -1} over 10 cycles at 36 mA g{sup -1}, >300 mA h g{sup -1} after 40 cycles at 72 mA g{sup -1} and maintain 240 mA h g{sup -1} for 40 cycles at 150 mA g{sup -1}. TEM investigation of the cycled electrodes shows the discharge/charge process neither destroyed the structure of nanocomposites nor changed the crystallinity of the materials. So the high capacity and stable cyclability are ascribed to the synergetic effect of ductile nickel and conductive carbon constituent and the influence of heat-treatment. - Graphical abstract: TEM image of the annealed Sn{sub 4}Ni{sub 3}/C nanocomposites reveals that the crystallized Sn{sub 4}Ni{sub 3} nanoparticles are dispersed in the carbon layer. The synergetic effect of ductile Ni and carbon layer is beneficial to buffer the volume change of Sn during discharge/charge process, thus improving the electrochemical performance when used as anode materials for lithium ion batteries. Highlights: Black-Right-Pointing-Pointer Sn{sub 4}Ni{sub 3} nanoparticles well dispersed in carbon matrix were successfully fabricated. Black-Right-Pointing-Pointer Stable cycling property was achieved due to the synergetic effect of Ni and carbon. Black-Right-Pointing-Pointer The cycling process did not change the structure and crystallinity of the materials.

Ma, Ruguang [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)] [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); Lu, Zhouguang, E-mail: zglucsu@gmail.com [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China) [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China); School of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083 (China); Yang, Shiliu; Xi, Liujiang; Wang, Chundong; Wang, H.E.; Chung, C.Y. [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)] [Department of Physics and Materials Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong (China)

2012-12-15T23:59:59.000Z

72

Degradation of SOFC anodes and SOFC performance in coal ...  

Science Conference Proceedings (OSTI)

Symposium, Materials in Clean Power Systems V: Clean Coal-, Hydrogen ... of SOFC anodes and SOFC performance in coal syngas containing phosphine.

73

Characterization of Dry Aggregates in Carbon Anodes by Image ...  

Science Conference Proceedings (OSTI)

Anodes are mainly composed of dry aggregates such as calcined petroleum coke and recycled materials with pitch as the binder. Granulometry of the dry...

74

Traditional and Inert Anode Materials  

Science Conference Proceedings (OSTI)

Feb 16, 2010 ... Some of these include the movement to higher amperage pots, the concern for employee exposure to coal tar pitch volatiles and polynuclear...

75

Anode material for lithium batteries  

DOE Patents (OSTI)

Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Westmont, IL); Amine, Khalil (Downers Grove, IL)

2012-01-31T23:59:59.000Z

76

Anode material for lithium batteries  

DOE Patents (OSTI)

Primary and secondary Li-ion and lithium-metal based electrochemical cell system. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plastized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Downers Grove, IL)

2008-06-24T23:59:59.000Z

77

Anode material for lithium batteries  

DOE Patents (OSTI)

Primary and secondary Li-ion and lithium-metal based electrochemical cell systems. The suppression of gas generation is achieved through the addition of an additive or additives to the electrolyte system of respective cell, or to the cell itself whether it be a liquid, a solid- or plasticized polymer electrolyte system. The gas suppression additives are primarily based on unsaturated hydrocarbons.

Belharouak, Ilias (Bolingbrook, IL); Amine, Khalil (Oak Brook, IL)

2011-04-05T23:59:59.000Z

78

Processing of Anode Cover Material  

Science Conference Proceedings (OSTI)

Determination of Cryolite Ratio of Aluminum Electrolytes Development and Application of a Multivariate Process Parameters Intelligence Control Technology ...

79

Influence of Reduction Pretreatment and Methane Reforming on Nickel Solubility in YSZ Grains and Nickel Sintering within Ni-YSZ SOFC Anode Materials  

Science Conference Proceedings (OSTI)

Internal reforming of hydrocarbon fuels (e.g. methane or natural gas) can improve the thermal efficiency of solid oxide fuel cells (SOFC) by balancing exothermic electrochemical oxidation of H2 and CO at the anode/cathode interface with endothermic steam reforming reactions on the anode1. Generally the rate of reforming is much greater than the rate of H2 and CO oxidation leading to extensive thermal gradients across the cell that can compromise the physical integrity of the cell. Therefore, methods to control reformation activity and predict thermal gradients are needed. Computational modeling is used to predict thermal gradients and fuel conversion profiles across the cell, thus accurate and predictable methane reforming kinetics are required. Significant discrepancies in activation energy, rate expressions, and rate constants for methane reforming over nickel-yttria stabilized zirconia (Ni-YSZ) are reported in the open literature1-4. The objective of this work is to provide clarity on factors leading to discrepancies in kinetic information reported in the literature and identify potential methods to control reforming rates over NiYSZ anodes. Effects of pretreatment and reforming on Ni microstructure and activity of NiYSZ anodes for methane reforming were examined under open-circuit conditions.

Strohm, James J.; King, David L.; Saraf, Laxmikant V.; Lea, Alan S.; Wang, Chong M.; Singh, Prabhakar

2009-08-15T23:59:59.000Z

80

NANOSTRUCTURED METAL OXIDES FOR ANODES OF LI-ION RECHARGEABLE BATTERIES  

DOE Green Energy (OSTI)

The aligned nanorods of Co{sub 3}O{sub 4} and nanoporous hollow spheres (NHS) of SnO{sub 2} and Mn{sub 2}O{sub 3} were investigated as the anodes for Li-ion rechargeable batteries. The Co{sub 3}O{sub 4} nanorods demonstrated 1433 mAh/g reversible capacity. The NHS of SnO{sub 2} and Mn{sub 2}O{sub 3} delivered 400 mAh/g and 250 mAh/g capacities respectively in multiple galvonastatic discharge-charge cycles. It was found that high capacity of NHS of metal oxides is sustainable attributed to their unique structure that maintains material integrity during cycling. The nanostructured metal oxides exhibit great potential as the new anode materials for Li-ion rechargeable batteries with high energy density, low cost and inherent safety.

Au, M.

2009-12-04T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Towards Eliminating Anode Effects  

Science Conference Proceedings (OSTI)

Retrofit of a Combined Breaker Feeder with a Chisel Bath Contact Detection System to Reduce Anode Effect Frequency in a Potroom Simulating Traffic in a...

82

Anode Quality and Performance  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... Relationships between Coke Properties and Anode Properties Round Robin 19: Lorentz Petter Lossius1; Marvin Lubin2; Les Edwards2;...

83

Titanium Oxides Thin Film Anodes for All-Solid-State Lithium Ion ...  

Science Conference Proceedings (OSTI)

Metallic lithium is not a suitable anode material for all-solid-state thin film batteries ... Application of Biomass Waste Materials in the Nano Mineral Synthesis.

84

Anodic oxidation of methanol using a new base electrocatalyst  

Science Conference Proceedings (OSTI)

Anodic oxidation of methanol, the reaction employed on the anode of the direct methanol fuel cell, is conventionally carried out using noble electrocatalysts. The best of these has been found to be a codeposited mixture of platinum and ruthenium. The use of base materials as anode catalysts requires, in addition to electrocatalytic activity, a low corrosion rate in the cell electrolyte. The authors present here some preliminary results of measurements of the anodic oxidation of methanol using a newly synthesized base electrocatalyst: this catalyst is passivated by the highly aggressive electrolyte.

Burstein, G.T.; Barnett, C.J.; Kucernak, A.R.J.; Williams, K.R. [Univ. of Cambridge (United Kingdom). Dept. of Materials Science and Metallurgy

1996-07-01T23:59:59.000Z

85

Electrolytic production of high purity aluminum using inert anodes  

DOE Patents (OSTI)

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The inert anodes used in the process preferably comprise a cermet material comprising ceramic oxide phase portions and metal phase portions.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2001-01-01T23:59:59.000Z

86

Low cost fuel cell diffusion layer configured for optimized anode water management  

DOE Patents (OSTI)

A fuel cell comprises a cathode gas diffusion layer, a cathode catalyst layer, an anode gas diffusion layer, an anode catalyst layer and an electrolyte. The diffusion resistance of the anode gas diffusion layer when operated with anode fuel is higher than the diffusion resistance of the cathode gas diffusion layer. The anode gas diffusion layer may comprise filler particles having in-plane platelet geometries and be made of lower cost materials and manufacturing processes than currently available commercial carbon fiber substrates. The diffusion resistance difference between the anode gas diffusion layer and the cathode gas diffusion layer may allow for passive water balance control.

Owejan, Jon P; Nicotera, Paul D; Mench, Matthew M; Evans, Robert E

2013-08-27T23:59:59.000Z

87

Structural micro-porous carbon anode for rechargeable lithium-ion batteries  

DOE Patents (OSTI)

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc. 6 figs.

Delnick, F.M.; Even, W.R. Jr.; Sylwester, A.P.; Wang, J.C.F.; Zifer, T.

1995-06-20T23:59:59.000Z

88

Structural micro-porous carbon anode for rechargeable lithium-ion batteries  

DOE Patents (OSTI)

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic electrolyte solution absorbed therein is provided. The anode comprises three-dimensional microporous carbon structures synthesized from polymeric high internal phase emulsions or materials derived from this emulsion source, i.e., granules, powders, etc.

Delnick, Frank M. (Albuquerque, NM); Even, Jr., William R. (Livermore, CA); Sylwester, Alan P. (Washington, DC); Wang, James C. F. (Livermore, CA); Zifer, Thomas (Manteca, CA)

1995-01-01T23:59:59.000Z

89

Definition: Anode | Open Energy Information  

Open Energy Info (EERE)

Anode Anode Jump to: navigation, search Dictionary.png Anode The positive electrode in an electrochemical cell, or battery.[1] View on Wikipedia Wikipedia Definition An anode is an electrode through which electric current flows into a polarized electrical device. The direction of electric current is, by convention, opposite to the direction of electron flow. In other words, the electrons flow from the anode into, for example, an electrical circuit. Mnemonic: ACID (Anode Current into Device). A widespread misconception is that anode polarity is always positive (+). This is often incorrectly inferred from the correct fact that in all electrochemical devices, negatively charged anions move towards the anode (hence their name) and positively charged cations move away from it. In fact anode polarity

90

Protective lithium ion conducting ceramic coating for lithium metal anodes and associate method  

SciTech Connect

A battery structure including a cathode, a lithium metal anode and an electrolyte disposed between the lithium anode and the cathode utilizes a thin-film layer of lithium phosphorus oxynitride overlying so as to coat the lithium anode and thereby separate the lithium anode from the electrolyte. If desired, a preliminary layer of lithium nitride may be coated upon the lithium anode before the lithium phosphorous oxynitride is, in turn, coated upon the lithium anode so that the separation of the anode and the electrolyte is further enhanced. By coating the lithium anode with this material lay-up, the life of the battery is lengthened and the performance of the battery is enhanced.

Bates, John B. (Oak Ridge, TN)

1994-01-01T23:59:59.000Z

91

ESS 2012 Peer Review - Unique Li-ion Batteries for Utility Applications - Daiwon Choi, PNNL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unique Li-ion Batteries for Utility Unique Li-ion Batteries for Utility Applications Daiwon Choi, Vilayanur V. Viswanathan, Wei Wang, Vincent L. Sprenkle Pacific Northwest National Laboratory 902 Battelle Blvd., P. O. Box 999, Richland, WA 99352, USA DOE Energy Storage Program Review, Washington, DC Sept. 26-28, 2012 Acknowledgment: Dr. Imre Gyuk - Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability  Investigate the Li-ion battery for stationary energy storage unit in ~kWh level.  Fabrication and optimization of LiFePO 4 / Li 4 Ti 5 O 12 18650 cell.  Li-ion battery energy storage with effective thermal management.  Improve rate and cycle life of Li-ion battery.  Screen possible new cathode/anode electrode materials and its combinations

92

Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions  

E-Print Network (OSTI)

CA 94720 Performance of Lithium Ion Cell Anode Graphitesevaluated (in coin cells with lithium counter electrodes) asanode materials for lithium-ion cells intended for use in

Ridgway, Paul

2010-01-01T23:59:59.000Z

93

Electrochemical characterization of Li4Ti5O12/C anode material prepared by starch-sol-assisted rheological phase method for Li-ion battery  

Science Conference Proceedings (OSTI)

Li4Ti5O12/C composite was synthesized by starch-sol-assisted rheological phase method using inexpensive raw material starch as carbon coating precursor. The Li4Ti5O12/C powder was characterized ...

Zhenpo Wang, Guowei Xie, Lijun Gao

2012-01-01T23:59:59.000Z

94

Six Thousand Electrochemical Cycles of Double-Walled Silicon Nanotube Anodes for Lithium Ion Batteries  

DOE Green Energy (OSTI)

Despite remarkable progress, lithium ion batteries still need higher energy density and better cycle life for consumer electronics, electric drive vehicles and large-scale renewable energy storage applications. Silicon has recently been explored as a promising anode material for high energy batteries; however, attaining long cycle life remains a significant challenge due to materials pulverization during cycling and an unstable solid-electrolyte interphase. Here, we report double-walled silicon nanotube electrodes that can cycle over 6000 times while retaining more than 85% of the initial capacity. This excellent performance is due to the unique double-walled structure in which the outer silicon oxide wall confines the inner silicon wall to expand only inward during lithiation, resulting in a stable solid-electrolyte interphase. This structural concept is general and could be extended to other battery materials that undergo large volume changes.

Wu, H

2011-08-18T23:59:59.000Z

95

Anode for a secondary, high-temperature electrochemical cell  

DOE Patents (OSTI)

A high-temperature, secondary electrochemical cell includes an anode containing lithium, an electrolyte containing lithium ions and a cathode containing a chalcogen material such as sulfur or a metallic sulfide. The anode includes a porous substrate formed of, for instance, a compacted mass of entangled metallic fibers providing interstitial crevices for receiving molten lithium metal. The surfaces of the interstitial crevices are provided with a coating of cobalt metal to enhance the retention of the molten lithium metal within the substrate.

Vissers, Donald R. (Naperville, IL); Tani, Benjamin S. (Chicago, IL)

1976-01-01T23:59:59.000Z

96

Methanol fuel cell model: Anode  

Science Conference Proceedings (OSTI)

An isothermal, steady-state model of an anode in a direct methanol feed, polymer electrolyte fuel cell is presented. The anode is considered to be a porous electrode consisting of an electronically conducting catalyst structure that is thinly coated with an ion-selective polymer electrolyte. The pores are filled with a feed solution of 2 M methanol in water. Four species are transported in the anode: water, methanol, hydrogen ions, and carbon dioxide. All four species are allowed to transport in the x-direction through the depth of the electrode. Species movement in the pseudo y-direction is taken into account for water, methanol, and carbon dioxide by use of an effective mass-transfer coefficient. Butler-Volmer kinetics are observed for the methanol oxidation reaction. Predictions of the model have been fitted with kinetic parameters from experimental data, and a sensitivity analysis was performed to identify critical parameters affecting the anode`s performance. Kinetic limitations are a dominant factor in the performance of the system. At higher currents, the polymer electrolyte`s conductivity and the anode`s thickness were also found to be important parameters to the prediction of a polymer electrolyte membrane fuel cell anode`s behavior in the methanol oxidation region 0.5--0.6 V vs. a reversible hydrogen electrode.

Baxter, S.F. [Argonne National Lab., IL (United States); Battaglia, V.S.; White, R.E. [Univ. of South Carolina, Columbia, SC (United States). Dept. of Chemical Engineering

1999-02-01T23:59:59.000Z

97

Thin film buried anode battery  

DOE Patents (OSTI)

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

98

Anodization of process tubes  

SciTech Connect

This report discusses the presence of corrosion products upon aluminum process tubes removed from wet portions of F Pile which led to the suspicion that the tubes might be corroding at an accelerated rate because of water entrapped in the channels between the tubes and the graphite blocks. Corrosion was especially noted on those tubes that were tightly stuck within the blocks. Analysis of the corrosion products showed that the major constituent was a hydrated aluminum oxide, containing iron oxide, calcium carbonate, and other substances in lower concentrations. This led to placement of an order for the anodizing of 200 process tubes.

Pitzer, E.C.

1952-09-17T23:59:59.000Z

99

Corrosion of cermet anodes during low temperature electrolysis of alumina. Final report  

SciTech Connect

Successful development of inert anodes to replace carbon anodes in Hall cells has the potential benefits of lower energy consumption,lower operating costs, and reduced CO{sub 2} and CO emissions. Using inert anodes at reduced current density and reduced operating temperature (800 C) has potential for decreasing the corrosion rate of inert anodes. It may also permit the use of new materials for containment and insulation. This report describes the fabrication characteristics and the corrosion performance of 5324-17% Cu Cermet anodes in 100 hour tests. Although some good results were achieved, the corrosion rate at low temperature (800 C) is varied and not significantly lower than typical results at high temperature ({approximately} 960 C). This report also describes several attempts at 200 hour tests, with one anode achieving 177 hours of continuous operation and another achieving a total of 235 hours but requiring three separate tests of the same anode. The longest run did show a lower wear rate in the last test; but a high resistance layer developed on the anode surface and forced an unacceptably low current density. It is recommended that intermediate temperatures be explored as a more optimal environment for inert anodes. Other electrolyte chemistries and anode compositions (especially high conductivity anodes) should be considered to alleviate problems associated with lower temperature operation.

Kozarek, R.L.; Ray, S.P.; Dawless, R.K.; LaCamera, A.F.

1997-09-26T23:59:59.000Z

100

Anode Effect Supression and Prediction - TMS  

Science Conference Proceedings (OSTI)

Apr 1, 2003 ... Anode Effect Supression and Prediction ... the overall effort to reduce the quantity of greenhouse gas emitted by the pots during anode effects.

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Optimizing Anode Performance in DUBAL Reduction Cells  

Science Conference Proceedings (OSTI)

Reduction in Gross Carbon consumption by 5% over the past 4 years was achieved through optimization of anode quality, modification of anode design and...

102

Silicon-Graphene Anodes | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Anodes Technology available for licensing: Production process for low-cost, long-life, high-energy anodes with five times the specific energy slicon-grapheneelectrodes...

103

ADVANCED NUMERICAL APPROACH TO REDUCE THE ANODIC ...  

Science Conference Proceedings (OSTI)

Operation of an Open Type Anode Baking Furnace with a Temporary Crossover ... Wireless Communication for Secured Firing and Control Systems of Anode...

104

High Performance Sealing for Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

Operation of an Open Type Anode Baking Furnace with a Temporary Crossover ... Wireless Communication for Secured Firing and Control Systems of Anode...

105

Energy Efficiency Improvement in Anode Baking Furnaces  

Science Conference Proceedings (OSTI)

One of the high energy consumption facilities in a smelter is the Anode Baking ... Hydro Aluminium's Historical Evolution of Closed Type Anode Baking Furnace...

106

Anode film formation and control  

DOE Patents (OSTI)

A protective film is created about the anode within a cryolite-based electrolyte during electrolytic production of aluminum from alumina. The film functions to minimize corrosion of the anode by the cryolitic electrolyte and thereby extend the life of the anode. Various operating parameters of the electrolytic process are controlled to maintain the protective film about the anode in a protective state throughout the electrolytic reduction of alumina. Such parameters include electrolyte temperature, electrolyte ratio, current density, and Al[sub 2]O[sub 3] concentration. An apparatus is also disclosed to enable identification of the onset of anode corrosion due to disruption of the film to provide real time information regarding the state of the film. 3 figs.

Koski, O.; Marschman, S.C.

1990-05-01T23:59:59.000Z

107

Gaining Access Unique Opportunities  

E-Print Network (OSTI)

Reactor (HFIR) User Facilities High Temperature Materials Laboratory (HTML) Holifield Radioactive Ion Beam such as physics, chemistry, materials science, engineering, and biology. HFIR also provides capabilities

Oak Ridge National Laboratory

108

A MORE EFFICIENT ANODE MICROSTRUCTURE FOR SOFCs BASED ON PROTON CONDUCTORS  

Science Conference Proceedings (OSTI)

While the desired microstructure of the state-of-the-art Ni-YSZ anode for a solid oxide fuel cell (SOFC) based on YSZ is well known, the anode microstructure for a SOFC based on a proton conductor is yet to be optimized. In this study, we examined the effect of anode porosity on the performance of a SOFC based on BaZr{sub 0.1}Ce{sub 0.7}Y{sub 0.1}Yb{sub 0.1}O{sub 3??} (BZCYYb), a mixed ion (proton and oxygen anion) conductor with high ionic conductivity at intermediate temperatures. Three cells with Ni-BZCYYb cermet anodes of different porosities (37%, 42%, and 50%) and identical electrolytes and cathode components were fabricated and tested. Under typical fuel cell operating conditions, the cell with anode of the lowest porosity (37%), prepared without pore former, achieved the highest performance, demonstrating a peak power density of 1.2 W/cm{sup 2} at 750 C. This is radically different from the results of Ni-YSZ anodes for YSZ based cells, where high anode porosity (?55%) is necessary to achieve high performance. The observed increase in performance (or electrocatalytic activity for anode reactions) is attributed primarily to the unique microstructure of the anode fabricated without the use of pore forming precursors.

Rainwater, Ben H; Liu, Mingfei; Liu, Meilin

2012-01-01T23:59:59.000Z

109

Inert Anodes, Cell Materials and Alternative Processes  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... The study contains a thermodynamic analysis for the Al-C-H2S system and preliminary results from experimental work. The results of the...

110

Characterization of Anode Materials - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 14, 2012 ... Improving the Precision and Productivity of Green Coke VCM Analysis: Les Edwards1; Kevin Hon1; James Marino1; Marvin Lubin1; 1Rain CII...

111

Multi-anode ionization chamber  

DOE Patents (OSTI)

The present invention includes a high-energy detector having a cathode chamber, a support member, and anode segments. The cathode chamber extends along a longitudinal axis. The support member is fixed within the cathode chamber and extends from the first end of the cathode chamber to the second end of the cathode chamber. The anode segments are supported by the support member and are spaced along the longitudinal surface of the support member. The anode segments are configured to generate at least a first electrical signal in response to electrons impinging thereon.

Bolotnikov, Aleksey E. (South Setauket, NY); Smith, Graham (Port Jefferson, NY); Mahler, George J. (Rocky Point, NY); Vanier, Peter E. (Setauket, NY)

2010-12-28T23:59:59.000Z

112

Electrochemical Evaluation of Thin-Film Li-Si Anodes Prepared by Plasma Spraying  

DOE Green Energy (OSTI)

Thin-film electrodes of a plasma-sprayed Li-Si alloy were evaluated for use as anodes in high-temperature thermally activated (thermal) batteries. These anodes were prepared using 44% Li/56% Si (w/w) material as feed material in a special plasma-spray apparatus under helium or hydrogen, to protect this air- and moisture-sensitive material during deposition. Anodes were tested in single cells using conventional pressed-powder separators and lithiated pyrite cathodes at temperatures of 400 to 550 C at several different current densities. A limited number of 5-cell battery tests were also conducted. The data for the plasma-sprayed anodes was compared to that for conventional pressed-powder anodes. The performance of the plasma-sprayed anodes was inferior to that of conventional pressed-powder anodes, in that the cell emfs were lower (due to the lack of formation of the desired alloy phases) and the small porosity of these materials severely limited their rate capability. Consequently, plasma-sprayed Li-Si anodes would not be practical for use in thermal batteries.

GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; SCHARRER,GREGORY L.

1999-09-08T23:59:59.000Z

113

EMSL: Science: Energy Materials and Processes  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Materials & Processes Energy Materials & Processes Energy Materials logo TEM image In situ transmission electron microscopy at EMSL was used to study structural changes in the team’s new anode system. Real-time measurements show silicon nanoparticles inside carbon shells before (left) and after (right) lithiation. Energy Materials and Processes focuses on the dynamic transformation mechanisms and physical and chemical properties at critical interfaces in catalysts and energy materials needed to design new materials and systems for sustainable energy applications. By facilitating the development and rapid dissemination of critical molecular-level information along with predictive modeling of interfaces and their unique properties EMSL helps enable the design and development of practical, efficient, environmentally

114

Novel Sulfur-Tolerant Anodes for Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

One of the unique advantages of SOFCs over other types of fuel cells is the potential for direct utilization of hydrocarbon fuels (it may involve internal reforming). Unfortunately, most hydrocarbon fuels contain sulfur, which would dramatically degrade SOFC performance at parts-per-million (ppm) levels. Low concentration of sulfur (ppm or below) is difficult to remove efficiently and cost-effectively. Therefore, knowing the exact poisoning process for state-of-the-art anode-supported SOFCs with Ni-YSZ cermet anodes, understanding the detailed anode poisoning mechanism, and developing new sulfur-tolerant anodes are essential to the promotion of SOFCs that run on hydrocarbon fuels. The effect of cell operating conditions (including temperature, H{sub 2}S concentration, cell voltage/current density, etc.) on sulfur poisoning and recovery of nickel-based anode in SOFCs was investigated. It was found that sulfur poisoning is more severe at lower temperature, higher H{sub 2}S concentration or lower cell current density (higher cell voltage). In-situ Raman spectroscopy identified the nickel sulfide formation process on the surface of a Ni-YSZ electrode and the corresponding morphology change as the sample was cooled in H{sub 2}S-containing fuel. Quantum chemical calculations predicted a new S-Ni phase diagram with a region of sulfur adsorption on Ni surfaces, corresponding to sulfur poisoning of Ni-YSZ anodes under typical SOFC operating conditions. Further, quantum chemical calculations were used to predict the adsorption energy and bond length for sulfur and hydrogen atoms on various metal surfaces. Surface modification of Ni-YSZ anode by thin Nb{sub 2}O{sub 5} coating was utilized to enhance the sulfur tolerance. A multi-cell testing system was designed and constructed which is capable of simultaneously performing electrochemical tests of 12 button cells in fuels with four different concentrations of H{sub 2}S. Through systematical study of state-of-the-art anode-supported SOFC button cells, it is seen that the long-term sulfur poisoning behavior of those cells indicate that there might be a second-stage slower degradation due to sulfur poisoning, which would last for a thousand hour or even longer. However, when using G-18 sealant from PNNL, the 2nd stage poisoning was effectively prohibited.

Lei Yang; Meilin Liu

2008-12-31T23:59:59.000Z

115

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium-Ion Batteries  

E-Print Network (OSTI)

Synthesis and Electrochemical Performance of a Lithium Titanium Phosphate Anode for Aqueous Lithium** Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA Lithium cells that use organic electrolytes. The equilibrium reaction potential of lithium titanium phosphate

Cui, Yi

116

CARBON TECHNOLOGY: III: Anode Production/Performance  

Science Conference Proceedings (OSTI)

ANODE PROPERTY DEVELOPMENT DURING HEAT TREATMENT: Mona Jacobsen, Department of Thermal Energy and Hydro Power, the Norwegian Institute...

117

Hydriodic acid-anode-depolarized hydrogen generator  

SciTech Connect

Hydrogen is recovered from aqueous hydriodic acid in the presence of sulfuric acid, in an electrolysis cell having an anode and cathode compartment separated by a hydrogen ion permeable membrane, by electrochemically liberating iodine in the anode compartment by anodization of iodide anions, and electrochemically generating hydrogen in the cathode compartment from hydrogen cations that migrate across the membrane.

Maskalick, N.J.

1984-07-17T23:59:59.000Z

118

Ellipsometry of anodic film growth  

DOE Green Energy (OSTI)

An automated computer interpretation of ellisometer measurements of anodic film growth was developed. Continuous mass and charge balances were used to utilize more fully the time dependence of the ellipsometer data and the current and potential measurements. A multiple-film model was used to characterize the growth of films which proceeds via a dissolution--precipitation mechanism; the model also applies to film growth by adsorption and nucleation mechanisms. The characteristic parameters for film growth describe homogeneous and heterogeneous crystallization rates, film porosities and degree of hydration, and the supersaturation of ionic species in the electrolyte. Additional descriptions which may be chosen are patchwise film formation, nonstoichiometry of the anodic film, and statistical variations in the size and orientation of secondary crystals. Theories were developed to describe the optical effects of these processes. An automatic, self-compensating ellipsometer was used to study the growth in alkaline solution of anodic films on silver, cadmium, and zinc. Mass-transport conditions included stagnant electrolyte and forced convection in a flow channel. Multiple films were needed to characterize the optical properties of these films. Anodic films grew from an electrolyte supersatuated in the solution-phase dissolution product. The degree of supersaturation depended on transport conditions and had a major effect on the structure of the film. Anodic reaction rates were limited by the transport of charge carriers through a primary surface layer. The primary layers on silver, zinc, and cadmium all appeared to be nonstoichiometric, containing excess metal. Diffusion coefficients, transference numbers, and the free energy of adsorption of zinc oxide were derived from ellipsometer measurements. 97 figures, 13 tables, 198 references.

Smith, C.G.

1978-08-01T23:59:59.000Z

119

MSD Molecular Materials - Argonne National Laboratories, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Molecular Materials Molecular Materials Group carries out synthesis and characterization of novel materials whose unique properties originate at the molecular level. Our...

120

Argonne CNM News: Batteries Get a Quick Charge with New Anode Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Batteries Get a Quick Charge with New Anode Technology Batteries Get a Quick Charge with New Anode Technology Tijana Rajh Argonne nanoscientist Tijana Rajh holds a strip of material created from titanium dioxide nanotubes. A team of researchers led by Tijana Rajh (Group Leader, Argonne Center for Nanoscale Materials NanoBio Interfaces Group), and Christopher Johnson (Argonne's Chemical Sciences & Engineering Division), working under a CNM user science project, discovered that nanotubes composed of titanium dioxide can switch their phase as a battery is cycled, gradually boosting their operational capacity. New batteries produced with this material can be recharged up to half of their original capacity in less than 30 seconds. By switching out conventional graphite anodes with titanium nanotube anodes, a surprising phenomenon occurs. As the battery cycles through

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Effect of entropy of lithium intercalation in cathodes and anodes on Li-ion battery thermal management  

Science Conference Proceedings (OSTI)

The entropy changes (?S) in various cathode and anode materials, as well as complete Li-ion batteries, were measured using an electrochemical thermodynamic measurement system (ETMS). LiCoO2 has a much larger entropy change than electrodes based on LiNixCoyMnzO2 and LiFePO4, while lithium titanate based anode has lower entropy change compared to graphite anodes. Reversible heat generation rate was found to be a significant portion of the total heat generation rate. The appropriate combinations of cathode and anode were investigated to minimize reversible heat.

Viswanathan, Vilayanur V.; Choi, Daiwon; Wang, Donghai; Xu, Wu; Towne, Silas A.; Williford, Ralph E.; Zhang, Jiguang; Liu, Jun; Yang, Zhenguo

2010-06-01T23:59:59.000Z

122

CALPHAD and Its Development for Materials Genome  

Science Conference Proceedings (OSTI)

Thermodynamic Assessment of Pu-based Alloys Thermodynamic Assessment of the Sn Based Anode Material Systems for Li-ion Batteries Thermodynamic...

123

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

124

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries Print A Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

125

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Better Anode Design to Improve Lithium-Ion Batteries Print Better Anode Design to Improve Lithium-Ion Batteries Print Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds The anode achievement described in this highlight provides a rare scientific showcase, combining advanced tools of synthesis, characterization, and simulation in a novel approach to materials development. Gao Liu's original research team, part of Berkeley Lab's Environmental Energy Technologies Division (EETD), got the ball rolling by designing the original series of polyfluorene-based conducting polymers. Then, Wanli Yang of the ALS suggested soft x-ray absorption spectroscopy to determine their key electronic properties. To better understand these results, and their relevance to the conductivity of the polymer, the growing team sought a theoretical explanation from Lin-Wang Wang of Berkeley Lab's Materials Sciences Division (MSD). By conducting calculations on the promising polymers at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC), the team gained insight into what was really happening in the PF with the carbonyl functional group, singling it out for further development.

126

Carbons for battery anodes prepared using inorganic templates  

DOE Green Energy (OSTI)

Unique carbons with demonstrated utility as anodes for lithium secondary batteries have been prepared by heating hydrocarbons within an inorganic template. Disordered carbons with novel and desirable molecular porosity were synthesized by the pyrolysis of pyrene at 700 C within a pillared clay. The clay was removed by treatment with acid, leaving behind carbons with 15 to 50 {angstrom} holes. These holey carbons, when converted into electrodes, allow rapid diffusion of the lithium into and out of a carbon. Favorable results have been obtained in several tests, for example, a reversible capacity of 825 mAh/g has been achieved, about four times greater than commercial batteries using convention pyrolytic carbon.

Winans, R.E.; Carrado, K.A.; Sandi, G. [Argonne National Lab., IL (United States). Chemistry Div.

1997-07-01T23:59:59.000Z

127

Inert anode containing oxides of nickel, iron and zinc useful for the electrolytic production of metals  

DOE Patents (OSTI)

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and ZnO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and ZnO: 0.2 to 0.99 NiO; 0.0001 to 0.8 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.3 ZnO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2002-01-01T23:59:59.000Z

128

Inert anode containing oxides of nickel iron and cobalt useful for the electrolytic production of metals  

DOE Patents (OSTI)

An inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode includes a ceramic oxide material preferably made from NiO, Fe.sub.2 O.sub.3 and CoO. The inert anode composition may comprise the following mole fractions of NiO, Fe.sub.2 O.sub.3 and CoO: 0.15 to 0.99 NiO; 0.0001 to 0.85 Fe.sub.2 O.sub.3 ; and 0.0001 to 0.45 CoO. The inert anode may optionally include other oxides and/or at least one metal phase, such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. The Ni--Fe--Co--O ceramic material exhibits very low solubility in Hall cell baths used to produce aluminum.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Jr., Douglas A. (Murrysville, PA)

2002-01-01T23:59:59.000Z

129

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Title Comparison of Cycling Performance of Lithium Ion Cell Anode Graphites Publication Type Journal Article Year of Publication 2012 Authors Ridgway, Paul L., Honghe Zheng, A. F. Bello, Xiangyun Song, Shidi Xun, Jin Chong, and Vincent S. Battaglia Journal Journal of The Electrochemical Society Volume 159 Issue 5 Pagination A520 Date Published 2012 ISSN 00134651 Abstract Battery grade graphite products from major suppliers to the battery industry were evaluated in 2325 coin cells with lithium counter electrodes. First and ongoing cycle efficiency, total and reversible capacity, cycle life and discharge rate performance were measured to compare these anode materials. We then ranked the graphites using a formula which incorporates these performance measures to estimate the cost of the overall system, relative to the cost of a system using MCMB. This analysis indicates that replacing MCMB with CCP-G8 (Conoco Phillips) would add little to no cost, whereas each of the other graphites would lead to a more costly system. Therefore we chose CCP-G8 as the new baseline graphite for the BATT program.

130

Hybrid Anode for Semiconductor Radiation Detectors - Energy ...  

The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the ...

131

Solid Solution Lithium Alloy Cermet Anodes  

E-Print Network (OSTI)

Solid Solution Lithium Alloy Cermet Anodes Thomas J.94720 USA Abstract Lithium-magnesium solid solution alloysHeating mixtures of lithium nitride and magnesium provides a

Richardson, Thomas J.; Chen, Guoying

2006-01-01T23:59:59.000Z

132

Nano Structural Anodes for Radiation Detectors  

Nano Structural Anodes for Radiation Detectors Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

133

Carbon Technology III: Anode Quality Control - TMS  

Science Conference Proceedings (OSTI)

A fully automatic method for image analysis of porosity in baked carbon anodes has been developed. The method is based on optical microscopy, and is...

134

Silicon Based Anodes for Li-Ion Batteries  

SciTech Connect

Silicon is environmentally benign and ubiquitous. Because of its high specific capacity, it is considered one of the most promising candidates to replace the conventional graphite negative electrode used in today's Li ion batteries. Silicon has a theoretical specific capacity of nearly 4200 mAh/g (Li21Si5), which is 10 times larger than the specific capacity of graphite (LiC6, 372 mAh/g). However, the high capacity of silicon is associated with huge volume changes (more than 300 percent) when alloyed with lithium, which can cause severe cracking and pulverization of the electrode and lead to significant capacity loss. Significant scientific research has been conducted to circumvent the deterioration of silicon based anode materials during cycling. Various strategies, such as reduction of particle size, generation of active/inactive composites, fabrication of silicon based thin films, use of alternative binders, and the synthesis of 1-D silicon nanostructures have been implemented by a number of research groups. Fundamental mechanistic research has also been performed to better understand the electrochemical lithiation and delithiation process during cycling in terms of crystal structure, phase transitions, morphological changes, and reaction kinetics. Although efforts to date have not attained a commercially viable Si anode, further development is expected to produce anodes with three to five times the capacity of graphite. In this chapter, an overview of research on silicon based anodes used for lithium-ion battery applications will be presented. The overview covers electrochemical alloying of the silicon with lithium, mechanisms responsible for capacity fade, and methodologies adapted to overcome capacity degradation observed during cycling. The recent development of silicon nanowires and nanoparticles with significantly improved electrochemical performance will also be discussed relative to the mechanistic understanding. Finally, future directions on the development of silicon based anodes will be considered.

Zhang, Jiguang; Wang, Wei; Xiao, Jie; Xu, Wu; Graff, Gordon L.; Yang, Zhenguo; Choi, Daiwon; Li, Xiaolin; Wang, Deyu; Liu, Jun

2012-06-15T23:59:59.000Z

135

AvAilAble for licensing A unique method for anode and cathode manufacture.  

E-Print Network (OSTI)

and portable device battery markets. Lithium-ion batteries offer significant advantages in weight and energy is developing advanced cell components that will enable new market applications for lithium-ion (Li-ion batteries. Battery Technology 20-cell 80-volt 8-kW Li-ion battery module designed by ANL for Hybrid Electric

Kemner, Ken

136

60 TPH Single Line Green Anode Plant Commissionned at Qatalum  

Science Conference Proceedings (OSTI)

Abstract Scope, The first single line 60 t/h green anode plant ever was ... This green anode plant was designed to fulfil the anode requirements of the 585,000...

137

Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Materials and methods are available as supplementary materials on Science Online. 16. W. Benz, A. G. W. Cameron, H. J. Melosh, Icarus 81, 113 (1989). 17. S. L. Thompson, H. S. Lauson, Technical Rep. SC-RR-710714, Sandia Nat. Labs (1972). 18. H. J. Melosh, Meteorit. Planet. Sci. 42, 2079 (2007). 19. S. Ida, R. M. Canup, G. R. Stewart, Nature 389, 353 (1997). 20. E. Kokubo, J. Makino, S. Ida, Icarus 148, 419 (2000). 21. M. M. M. Meier, A. Reufer, W. Benz, R. Wieler, Annual Meeting of the Meteoritical Society LXXIV, abstr. 5039 (2011). 22. C. B. Agnor, R. M. Canup, H. F. Levison, Icarus 142, 219 (1999). 23. D. P. O'Brien, A. Morbidelli, H. F. Levison, Icarus 184, 39 (2006). 24. R. M. Canup, Science 307, 546 (2005). 25. J. J. Salmon, R. M. Canup, Lunar Planet. Sci. XLIII, 2540 (2012). Acknowledgments: SPH simulation data are contained in tables S2 to S5 of the supplementary materials. Financial support

138

Remote control for anode-cathode adjustment  

DOE Patents (OSTI)

An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode.

Roose, Lars D. (Albuquerque, NM)

1991-01-01T23:59:59.000Z

139

Remote control for anode-cathode adjustment  

DOE Patents (OSTI)

An apparatus for remotely adjusting the anode-cathode gap in a pulse power machine has an electric motor located within a hollow cathode inside the vacuum chamber of the pulse power machine. Input information for controlling the motor for adjusting the anode-cathode gap is fed into the apparatus using optical waveguides. The motor, controlled by the input information, drives a worm gear that moves a cathode tip. When the motor drives in one rotational direction, the cathode is moved toward the anode and the size of the anode-cathode gap is diminished. When the motor drives in the other direction, the cathode is moved away from the anode and the size of the anode-cathode gap is increased. The motor is powered by batteries housed in the hollow cathode. The batteries may be rechargeable, and they may be recharged by a photovoltaic cell in combination with an optical waveguide that receives recharging energy from outside the hollow cathode. Alternatively, the anode-cathode gap can be remotely adjusted by a manually-turned handle connected to mechanical linkage which is connected to a jack assembly. The jack assembly converts rotational motion of the handle and mechanical linkage to linear motion of the cathode moving toward or away from the anode. 3 figs.

Roose, L.D.

1989-10-04T23:59:59.000Z

140

A study of the failure mechanism of chlorine anodes  

DOE Green Energy (OSTI)

Thin coating RuO{sub 2}{minus}TiO{sub 2} electrodes, which mimic the DSA anodes, have been prepared and tested for their activity toward the chlorine evolution reaction and subjected to life time testing. Rutherford Backscattering Spectrometry has been used concurrently with electrochemical measurements to analyze changes in the ruthenium content of the coating. The decrease in electrode activity is found to be closely related to a decrease in Ru content, and the measured profiles indicate that the loss takes place across the thin coating. Failure is observed for electrodes with a Ru content below a critical concentration, but there is no evidence for the build up of a pure TiO{sub 2} layer. AFM imaging of an anode after failure sustained the hypothesis of loss of material.

Vallet, C.E.; Zuhr, R.A. [Oak Ridge National Lab., TN (United States); Tilak, B.V.; Chen, C.P. [Occidental Chemical Corp., Grand Island, NY (United States)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Structural micro-porous carbon anode for rechargeable lithium ...  

A secondary battery having a rechargeable lithium-containing anode, a cathode and a separator positioned between the cathode and anode with an organic ...

142

Baked Anode Density Improvement through Optimization of Green ...  

Science Conference Proceedings (OSTI)

Abstract Scope, At Alba, green anodes were manufactured as per the dry aggregate ... Amelios, A Performance Analysis Tool for Green Anode Plant.

143

Material  

DOE Green Energy (OSTI)

Li(Ni{sub 0.4}Co{sub 0.15}Al{sub 0.05}Mn{sub 0.4})O{sub 2} was investigated to understand the effect of replacement of the cobalt by aluminum on the structural and electrochemical properties. In situ X-ray absorption spectroscopy (XAS) was performed, utilizing a novel in situ electrochemical cell, specifically designed for long-term X-ray experiments. The cell was cycled at a moderate rate through a typical Li-ion battery operating voltage range. (1.0-4.7 V) XAS measurements were performed at different states of charge (SOC) during cycling, at the Ni, Co, and the Mn edges, revealing details about the response of the cathode to Li insertion and extraction processes. The extended X-ray absorption fine structure (EXAFS) region of the spectra revealed the changes of bond distance and coordination number of Ni, Co, and Mn absorbers as a function of the SOC of the material. The oxidation states of the transition metals in the system are Ni{sup 2+}, Co{sup 3+}, and Mn{sup 4+} in the as-made material (fully discharged), while during charging the Ni{sup 2+} is oxidized to Ni{sup 4+} through an intermediate stage of Ni{sup 3+}, Co{sup 3+} is oxidized toward Co{sup 4+}, and Mn was found to be electrochemically inactive and remained as Mn{sup 4+}. The EXAFS results during cycling show that the Ni-O changes the most, followed by Co-O, and Mn-O varies the least. These measurements on this cathode material confirmed that the material retains its symmetry and good structural short-range order leading to the superior cycling reported earlier.

Rumble, C.; Conry, T.E.; Doeff, Marca; Cairns, Elton J.; Penner-Hahn, James E.; Deb, Aniruddha

2010-06-14T23:59:59.000Z

144

MXene - A New Family of Two Dimensional Materials for Use in ...  

Science Conference Proceedings (OSTI)

More recently, we reported on the use of Ti2C as an anode material in lithium ion batteries, LIBs, that can be cycled at high rates. Anodes of...

145

Solid oxide fuel cell with single material for electrodes and interconnect  

DOE Patents (OSTI)

A solid oxide fuel cell having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed therebetween, and the anode, cathode and interconnect elements are comprised of substantially one material.

McPheeters, Charles C. (Naperville, IL); Nelson, Paul A. (Wheaton, IL); Dees, Dennis W. (Downers Grove, IL)

1994-01-01T23:59:59.000Z

146

Alternative anodic reactions in water splitting. Final report  

DOE Green Energy (OSTI)

An anodic depolarization path to hydrogen production through water electrolysis has been examined, using lignite, grass and household wastes. Iron was removed from lignite by extensive washing. The degree of dissolution of lignite in 5 M H/sub 2/So/sub 4/ at 100/sup 0/C is ca. 0.1 wt %. Washed lignite dissolves less than unwashed material. Cyclic voltammograms showed peaks arising from dissolved organics. Increase of temperature produced more peaks. In alkaline solution, peaks disappeared. Oxidation currents were three times greater if the lignite particles were in contact with the electrode compared with their absence from solution. Platinum anodes oxidized lignite better than PbO/sub 2/. Redox systems, added to the electrolyte, helped compound formation. Grass and household wastes gave similar results but lower oxidation currents. Compounds present in solution prior to electrolysis dissolve off the internal surfaces of lignite particles. Increased oxidation currents, caused when lignite particles came in contact with the anode, arose, not because of enhanced electrochemical reactions, but from enhanced lignite dissolution following erosion. The organic compounds eventually form CO/sub 2/; the presence of heavy oils lasts for 10 hr. Current densities up to 750 mA cm/sup -2/ at ca. 1 V should be obtainable. The hydrocarbons are formed via a Kolbe mechanism from carboxylic acids. Speculative economic considerations show that the final cost of hydrogen produced, using lignite as an anode depolarizer, is considerably cheaper than that from natural gas: $0.40 per GJ, or less, compared to $5 per GJ.

Murphy, O.J.; Bockris, J. O'M.

1984-10-01T23:59:59.000Z

147

Doped Yttrium Chromite-Ceria Composite as a Redox-Stable and Sulfur-Tolerant Anode for Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

A Ca- and Co-doped yttrium chromite (YCCC) - samaria-doped ceria (SDC) composite was studied in relation to a potential use as a solid oxide fuel cell (SOFC) anode material. Tests performed using the yttria-stabilized zirconia (YSZ) electrolyte-supported cells revealed that the electrocatalytic activity of the YCCC-SDC anode towards hydrogen oxidation at 800 C was comparable to that of the Ni-YSZ anode. In addition, the YCCC-SDC anode exhibited superior sulfur tolerant characteristics showing less than 10% increase in a polarization resistance, fully reversible, upon exposure to 20 ppm H2S at 800 C. No performance degradation was observed during multiple reduction-oxidation (redox) cycles when the anode was intentionally exposed to the air environment followed by the reduction in hydrogen. The redox tolerance of the YCCC-SDC anode was attributed to the dimensional and chemical stability of the YCCC exhibiting minimal isothermal chemical expansion upon redox cycling.

Yoon, Kyung J.; Coyle, Christopher A.; Marina, Olga A.

2011-12-11T23:59:59.000Z

148

Photovoltaic Cell Materials  

Energy.gov (U.S. Department of Energy (DOE))

Although crystalline silicon cells are the most common type, photovoltaic (PV), or solar cells, can be made of many semiconductor materials. Each material has unique strengths and characteristics...

149

Working Principle of the Hollow-Anode Plasma Source Hollow-Anode Plasma  

NLE Websites -- All DOE Office Websites (Extended Search)

36240 36240 Plasma Sources Science and Technology 4 (1995) 571-575. Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 ABSTRACT The hollow-anode discharge is a special form of glow discharge. It is shown that a drastically reduced anode area is responsible for a positive anode voltage drop of 30-40 V and an increased anode sheath thickness. This leads to an ignition of a relatively dense plasma in front of the anode hole. Langmuir probe measurements inside a specially designed hollow anode plasma source give an electron density and temperature of n e = 10 9 -10 11 cm -3 and T e = 1 - 3 eV, respectively (nitrogen, current 100 mA, flow rate 5-50 scc/min). Driven by a pressure gradient, the "anode" plasma is blown through the anode hole and forms a bright plasma jet streaming with supersonic velocity (Mach number 1.2). The plasma stream can be used, for instance, in plasma-assisted deposition of thin films

150

New OLED Cathode Materials with Tailored Low Work Function ...  

The requirements of the cathode and anode limit the types of organic material that can be used for the light emitting ... Energy-saving displays on televisions, ...

151

Mesoporous Titanium Oxide Based Anodes for Batteries  

Presentation_namefor the U.S. Department of Energy Mesoporous TiO 2 Anodes for Lithium Ion Batteries Mesoporous TiO 2 ... Increased energy density ?Mesoporous TiO. 2 .

152

Lithium ion batteries with titania/graphene anodes  

DOE Patents (OSTI)

Lithium ion batteries having an anode comprising at least one graphene layer in electrical communication with titania to form a nanocomposite material, a cathode comprising a lithium olivine structure, and an electrolyte. The graphene layer has a carbon to oxygen ratio of between 15 to 1 and 500 to 1 and a surface area of between 400 and 2630 m.sup.2/g. The nanocomposite material has a specific capacity at least twice that of a titania material without graphene material at a charge/discharge rate greater than about 10 C. The olivine structure of the cathode of the lithium ion battery of the present invention is LiMPO.sub.4 where M is selected from the group consisting of Fe, Mn, Co, Ni and combinations thereof.

Liu, Jun; Choi, Daiwon; Yang, Zhenguo; Wang, Donghai; Graff, Gordon L; Nie, Zimin; Viswanathan, Vilayanur V; Zhang, Jason; Xu, Wu; Kim, Jin Yong

2013-05-28T23:59:59.000Z

153

Structural transformation of nickel hydroxide films during anodic oxidation  

DOE Green Energy (OSTI)

The transformation of anodically formed nickel hydroxide/oxy-hydroxide electrodes has been investigated. A mechanism is proposed for the anodic oxidation reaction, in which the reaction interface between the reduced and oxidized phases of the electrode evolves in a nodular topography that leads to inefficient utilization of the active electrode material. In the proposed nodular transformation model for the anodic oxidation reaction, nickel hydroxide is oxidized to nickel oxy-hydroxide in the region near the metal substrate. Since the nickel oxy-hydroxide is considerably more conductive than the surrounding nickel hydroxide, as further oxidation occurs, nodular features grow rapidly to the film/electrolyte interface. Upon emerging at the electrolyte interface, the reaction boundary between the nickel hydroxide and oxy-hydroxide phases spreads laterally across the film/electrolyte interface, creating an overlayer of nickel oxy-hydroxide and trapping uncharged regions of nickel hydroxide within the film. The nickel oxy-hydroxide overlayer surface facilitates the oxygen evolution side reaction. Scanning tunneling microscopy of the electrode in its charged state revealed evidence of 80 {endash} 100 Angstrom nickel oxy-hydroxide nodules in the nickel hydroxide film. In situ spectroscopic ellipsometer measurements of films held at various constant potentials agree quantitatively with optical models appropriate to the nodular growth and subsequent overgrowth of the nickel oxy-hydroxide phase. A two-dimensional, numerical finite difference model was developed to simulate the current distribution along the phase boundary between the charged and uncharged material. The model was used to explore the effects of the physical parameters that govern the electrode behavior. The ratio of the conductivities of the nickel hydroxide and oxy-hydroxide phases was found to be the dominant parameter in the system.

Crocker, R.W.; Muller, R.H.

1992-05-01T23:59:59.000Z

154

Silicon-tin oxynitride glassy composition and use as anode for lithium-ion battery  

DOE Patents (OSTI)

Disclosed are silicon-tin oxynitride glassy compositions which are especially useful in the construction of anode material for thin-film electrochemical devices including rechargeable lithium-ion batteries, electrochromic mirrors, electrochromic windows, and actuators. Additional applications of silicon-tin oxynitride glassy compositions include optical fibers and optical waveguides.

Neudecker, Bernd J. (Knoxville, TN); Bates, John B. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

155

Arrays of Sealed Silicon Nanotubes As Anodes for Lithium Ion Batteries  

E-Print Network (OSTI)

,12 nanowires13-17 (NW), bundled Si nanotubes,18 and thin films19 as candidate anode materials in lithium ion morphology change. In particular, the axial void spaces of the Si NTs provide additional free surfaces physics, to account for experimental observations and to derive optimized dimen- sions in the tubes

Rogers, John A.

156

Electrolytic Cell For Production Of Aluminum Employing Planar Anodes.  

SciTech Connect

A method of producing aluminum in an electrolytic cell containing alumina dissolved in an electrolyte, the method comprising providing a molten salt electrolyte having alumina dissolved therein in an electrolytic cell. A plurality of anodes and cathodes having planar surfaces are disposed in a generally vertical orientation in the electrolyte, the anodes and cathodes arranged in alternating or interleaving relationship to provide anode planar surfaces disposed opposite cathode planar surfaces, the anode comprised of carbon. Electric current is passed through anodes and through the electrolyte to the cathodes depositing aluminum at the cathodes and forming carbon containing gas at the anodes.

Barnett, Robert J. (Goldendale, WA); Mezner, Michael B. (Sandy, OR); Bradford, Donald R (Underwood, WA)

2004-10-05T23:59:59.000Z

157

Phase III Advanced Anodes and Cathodes Utilized in Energy Efficient Aluminum Production Cells  

SciTech Connect

During Phase I of the present program, Alcoa developed a commercial cell concept that has been estimated to save 30% of the energy required for aluminum smelting. Phase ii involved the construction of a pilot facility and operation of two pilots. Phase iii of the Advanced Anodes and Cathodes Program was aimed at bench experiments to permit the resolution of certain questions to be followed by three pilot cells. All of the milestones related to materials, in particular metal purity, were attained with distinct improvements over work in previous phases of the program. NiO additions to the ceramic phase and Ag additions to the Cu metal phase of the cermet improved corrosion resistance sufficiently that the bench scale pencil anodes met the purity milestones. Some excellent metal purity results have been obtained with anodes of the following composition: Further improvements in anode material composition appear to be dependent on a better understanding of oxide solubilities in molten cryolite. For that reason, work was commissioned with an outside consultant to model the MeO - cryolite systems. That work has led to a better understanding of which oxides can be used to substitute into the NiO-Fe2O3 ceramic phase to stabilize the ferrites and reduce their solubility in molten cryolite. An extensive number of vertical plate bench electrolysis cells were run to try to find conditions where high current efficiencies could be attained. TiB2-G plates were very inconsistent and led to poor wetting and drainage. Pure TiB2 did produce good current efficiencies at small overlaps (shadowing) between the anodes and cathodes. This bench work with vertical plate anodes and cathodes reinforced the importance of good cathode wetting to attain high current efficiencies. Because of those conclusions, new wetting work was commissioned and became a major component of the research during the third year of Phase III. While significant progress was made in several areas, much work needs to be done. The anode composition needs further improvements to attain commercial purity targets. At the present corrosion rate, the vertical plate anodes will wear too rapidly leading to a rapidly increasing anode-cathode gap and thermal instabilities in the cell. Cathode wetting as a function of both cathode plate composition and bath composition needs to be better understood to ensure that complete drainage of the molten aluminum off the plates occurs. Metal buildup appears to lead to back reaction and low current efficiencies.

R.A. Christini; R.K. Dawless; S.P. Ray; D.A. Weirauch, Jr.

2001-11-05T23:59:59.000Z

158

Performance of Lithium Ion Cell Anode Graphites Under Various Cycling Conditions  

Science Conference Proceedings (OSTI)

Graphites MCMB-2810 and OMAC-15 (made by Osaka Gas Inc.), and SNG12 (Hydro Quebec, Inc.) were evaluated (in coin cells with lithium counter electrodes) as anode materials for lithium-ion cells intended for use in hybrid electric vehicles. Though the reversible capacity obtained for SNG was slightly higher than that of OMAC or MCMB, its 1st cycle efficiency was lower. Voltage vs capacity plots of cycling data show that the discharge and charge limits shift to higher capacity values due to continuation of anode side reactions. Varying the cycle charge and discharge limits was found to have no significant effect on fractional capacity shift per cycle.

Ridgway, Paul; Zheng, Honghe; Liu, Gao; Song, Xiangun; Guerfi, Abdelbast; Charest, Patrick; Zaghib, Karim; Battaglia, Vincent

2009-06-15T23:59:59.000Z

159

Superposition, A Unique Cogeneration Opportunity  

E-Print Network (OSTI)

Industrial steam systems provide opportunities for the economic cogeneration of heat energy and shaft power. Progressive plant owners and managers have utilized these potentials. Too often opportunities are not exploited. A plant that is expanding, is being substantially modernized, or is converting from petroleum fuels to coal, should carefully examine cogeneration design options. Depending on the thermodynamic condition of throttle steam for its major turbines, a high pressure/temperature power plant may be SUPERPOSED on the existing plant. Extraction/backpressure turbogenerators can exhaust into retained high performance turbines and to process steam loads. They will produce high value, favorably priced power for in-plant use and/or sale to the franchised utility. The concepts are not new, but increasing tendencies to fuel conversion and the combining of cycles should prompt unique applications. Microcomputer modeling and systems analyses are used to develop examples.

Viar, W. L.

1985-05-01T23:59:59.000Z

160

Aerogel and xerogel composites for use as carbon anodes  

Science Conference Proceedings (OSTI)

A method for forming a reinforced rigid anode monolith and fuel and product of such method. The method includes providing a solution of organic aerogel or xerogel precursors including at least one of a phenolic resin, phenol (hydroxybenzene), resorcinol(1,3-dihydroxybenzene), or catechol(1,2-dihydroxybenzene); at least one aldehyde compound selected from the group consisting of formaldehyde, acetaldehyde, and furfuraldehyde; and an alkali carbonate or phosphoric acid catalyst; adding internal reinforcement materials comprising carbon to said precursor solution to form a precursor mixture; gelling said precursor mixture to form a composite gel; drying said composite gel; and pyrolyzing said composite gel to form a wettable aerogel/carbon composite or a wettable xerogel/carbon composite, wherein said composites comprise chars and said internal reinforcement materials, and wherein said composite is suitable for use as an anode with the chars being fuel capable of being combusted in a molten salt electrochemical fuel cell in the range from 500 C to 800 C to produce electrical energy. Additional methods and systems/compositions are also provided.

Cooper, John F. (Oakland, CA); Tillotson, Thomas M. (Tracy, CA); Hrubesh, Lawrence W. (Pleasanton, CA)

2010-10-12T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

ARAC: A unique command and control resource  

SciTech Connect

The Atmospheric Release Advisory Capability (ARAC) at Lawrence Livermore National Laboratory (LLNL) is a centralized federal facility designed to provide real-time, world-wide support to military and civilian command and control centers by predicting the impacts of inadvertent or intentional releases of nuclear, biological, or chemical materials into the atmosphere. ARAC is a complete response system consisting of highly trained and experienced personnel, continually updated computer models, redundant data collection systems, and centralized and remote computer systems. With over 20 years of experience responding to domestic and international incidents, strong linkages with the Department of Defense, and the ability to conduct classified operations, ARAC is a unique command and control resource.

Bradley, M.M.; Baskett, R.L.; Ellis, J.S. [and others

1996-04-01T23:59:59.000Z

162

Lithium intercalation in porous carbon anodes  

DOE Green Energy (OSTI)

Carbon foams derived from the phase separation of polyacrylonitrile/solvent mixtures were investigated as lithium intercalation anodes for rechargeable lithium-ion batteries. The carbon foams have a bulk density of 0.35--0.5 g/cm{sup 3}, low surface area (< 50 m{sup 2}/g), and an average cell size of 5--10 {mu}m. Polyacrylonitrile-based carbon foams doped with phosphoric acid had capacity as high as 450 mAh/g. Carbon capacity increased with increasing phosphoric acid concentration in the doping solution. The doped porous carbon anodes exhibited good cyclability and excellent coulombic efficiency.

Tran, T.D.; Pekala, R.W. [Lawrence Livermore National Lab., CA (United States). Chemistry and Materials Science Dept.; Mayer, S.T. [Polystor Corp., Livermore, CA (United States)

1994-11-23T23:59:59.000Z

163

Copper-tin anodes for rechargeable lithium batteries : an example of the matrix effect in an intermetallic system.  

DOE Green Energy (OSTI)

Lithium batteries are typically constructed from a lithium cobalt oxide cathode and a carbon anode. We have investigated intermetallic anode materials based on tin, which can provide a high capacity at a slightly higher voltage (400 mV) than metallic lithium and thus reduce the safety concerns associated with the carbon anode. In particular, we have investigated the copper-tin system at around the composition Cu{sub 6}Sn{sub 5} and have determined the effect on cycling and capacity of electrodes with various ratios of copper to tin. Anode compositions that are slightly copper rich (Cu{sub 6}Sn{sub 4}) were found to exhibit greater utilization of the tin than those with the stoichiometric bronze ratio (Cu{sub 6}Sn{sub 5}) or those having a slight excess of tin (Cu{sub 6}Sn{sub 6}). The differences in electrochemical behavior are explained in terms of an inert matrix model.

Kepler, K. D.

1998-09-02T23:59:59.000Z

164

Uncertainty Studies of Real Anode Surface Area in Computational Analysis for Molten Salt Electrorefining  

SciTech Connect

This study examines how much cell potential changes with five differently assumed real anode surface area cases. Determining real anode surface area is a significant issue to be resolved for precisely modeling molten salt electrorefining. Based on a three-dimensional electrorefining model, calculated cell potentials compare with an experimental cell potential variation over 80 hours of operation of the Mark-IV electrorefiner with driver fuel from the Experimental Breeder Reactor II. We succeeded to achieve a good agreement with an overall trend of the experimental data with appropriate selection of a mode for real anode surface area, but there are still local inconsistencies between theoretical calculation and experimental observation. In addition, the results were validated and compared with two-dimensional results to identify possible uncertainty factors that had to be further considered in a computational electrorefining analysis. These uncertainty factors include material properties, heterogeneous material distribution, surface roughness, and current efficiency. Zirconium's abundance and complex behavior have more impact on uncertainty towards the latter period of electrorefining at given batch of fuel. The benchmark results found that anode materials would be dissolved from both axial and radial directions at least for low burn-up metallic fuels after active liquid sodium bonding was dissolved.

Sungyeol Choi; Jaeyeong Park; Robert O. Hoover; Supathorn Phongikaroon; Michael F. Simpson; Kwang-Rag Kim; Il Soon Hwang

2011-09-01T23:59:59.000Z

165

Solution for a modular die-level anodic bonder  

E-Print Network (OSTI)

Anodic bonding is a common way to package silicon with Pyrex. The anodic bonding process requires high temperature, voltage, and moderate pressure to occur. Often, there are also expectations of alignment of features for ...

Khan, Christopher Joseph, 1982-

2004-01-01T23:59:59.000Z

166

Fuel cell system shutdown with anode pressure control  

DOE Patents (OSTI)

A venting methodology and pressure sensing and vent valving arrangement for monitoring anode bypass valve operating during the normal shutdown of a fuel cell apparatus of the type used in vehicle propulsion systems. During a normal shutdown routine, the pressure differential between the anode inlet and anode outlet is monitored in real time in a period corresponding to the normal closing speed of the anode bypass valve and the pressure differential at the end of the closing cycle of the anode bypass valve is compared to the pressure differential at the beginning of the closing cycle. If the difference in pressure differential at the beginning and end of the anode bypass closing cycle indicates that the anode bypass valve has not properly closed, a system controller switches from a normal shutdown mode to a rapid shutdown mode in which the anode inlet is instantaneously vented by rapid vents.

Clingerman, Bruce J. (Palmyra, NY); Doan, Tien M. (Columbia, MD); Keskula, Donald H. (Webster, NY)

2002-01-01T23:59:59.000Z

167

Improving Baked Anode Density and Air Permeability Through ...  

Science Conference Proceedings (OSTI)

Presentation Title, Improving Baked Anode Density and Air Permeability Through Process Optimization and Coke Blending. Author(s), Bienvenu Ndjom,...

168

Electrospinning of polymeric nanofiber materials : process characterization and unique applications  

E-Print Network (OSTI)

Electrospinning or electrostatic fiber spinning employs electrostatic force to draw a fiber from a spinneret. This fiber solidifies and lies down on a collector in the form of a non-woven fiber mat. Electrospinning has ...

Yu, Jian Hang, Ph. D. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

169

Sohar Aluminium's Anode Baking Furnace Operation  

Science Conference Proceedings (OSTI)

Gas consumption of less 1.9 GJ/t for a baking level (Lc) of greater than 33 angstrom has ... Historical and Future Challenges with the Vibrated Bulk Density Test Methods for ... Prebaked Anode from Coal Extract (2) - Effects of the Properties of...

170

Anode depolarizers in electrolytic hydrogen production  

SciTech Connect

Brookhaven National Laboratory manages an extensive program in the areas of hydrogen and energy storage potentials. As part of an ongoing portfolio analysis of projects, the prospects for applications for anode depolarizers are presented. The system requirements are outlined, and economic criteria are developed. It is concluded that moderate incentives exist for successful development. Research and Development priorities are formulated.

Beller, M.

1982-06-01T23:59:59.000Z

171

Lithiation Induced Stress and Failure of Anode Materials in Lithium ...  

Science Conference Proceedings (OSTI)

Interface-Dominated Mechanical Properties of Layered/Fibrous Composites Interface Bond Strength of HIP-Clad Depleted Uranium and 6061-Aluminum.

172

Porous Silicon/Carbon Nanocomposite as Anode Materials for ...  

Science Conference Proceedings (OSTI)

A21: First-Principles Molecular Dynamics Simulation of Chemical ... A3: Investigation on Co-combustion Kinetics of Anthracite Coal and Biomass Char by ... Lithium Redox Process for Thermochemical Water-Splitting as Energy Conversion.

173

Carbon Materials for Anode and Cathode - Programmaster.org  

Science Conference Proceedings (OSTI)

Mar 13, 2012 ... In this report, we will describe the carbonization properties of hypercoal blended with coal-tar pitch in an attempt to utililze the hypercoal as an...

174

Anode Materials for Reprocessing of Spent Nuclear Fuel  

Science Conference Proceedings (OSTI)

In order to consume current stockpiles, uranium dioxide spent nuclear fuel will be .... and Synthesis of Intermetallic Clathrates for Energy Storage and Recovery.

175

Nanotube composite anode materials improve lithium-ion battery ...  

Rechargeable lithium-ion batteries are a critical technology for many applications, ... while simultaneously providing enhanced stability at a lower c ...

176

Candidate anode materials for iron production by molten oxide electrolysis  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) has been identified by the American Iron and Steel Institute (AISI) as one of four possible breakthrough technologies to alleviate the environmental impact of iron and steel production. This ...

Paramore, James D

2010-01-01T23:59:59.000Z

177

High Performance Anode Material - Oak Ridge National Laboratory | ORNL  

for the U.S. Department of Energy Presentation_name Markets ... Nano-enabled battery market was $169MM in 2008, expected to be $1.13BB in 2013(A to Z WEB site)

178

Oxide-based SOFC Anode Materials - Energy Innovation Portal  

... tolerant to intermittent air exposure and sulfur-containing compounds in hydrocarbon fuels such as gasoline, diesel and natural gas. ...

179

High Performance Anode Material - Oak Ridge National Laboratory  

charging and power release, ... be $1.13BB in 2013 ... charge to 0.1 V Si( +c)-C [3] Yes High cost HT template-impregnation

180

Modeling and Performance of Anode-Supported SOFC  

Science Conference Proceedings (OSTI)

A "one-dimensional", steady-state model of an SOFC stack was needed to support the design of balance-of-plant components for a 5 kW mobile SOFC system. This "stack module" was required to predict appropriate stack voltage responses to changes in fuel composition, fuel flow rate, stack temperature and current demand, with response characteristics that were adjustable to changes in stack component materials and dimensions as well as to electrode porosity. The spreadsheet-based stack module was derived from the work by Kim, Virkar et al (see J. Electrochem. Soc. 146(1) 69-78 (1999)), with modifications suggested by Riess and Schoonman, p291 in CRC Handbook of Electrochemistry (1997) CRC Press. The usual overpotential terms account for ohmic resistance of the cell components, losses due to charge transfer at the electrodes, and losses due to diffusion of reactants into and products out of the porous electrodes. Response of the module is compared to published cell and stack data. After fitting adjustable parameters to match particular cell performance characteristics, the module responds reasonably well to changes in temperature and fuel concentration. The module is used to analyze the performance of anode-supported cells that were fabricated at PNNL (see abstract submitted by Stevenson, Meinhardt, Simner, Habeger and Canfield, "Fabrication and Testing of Anode-Supported SOFC").

Chick, Lawrence A.; Stevenson, Jeffry W.; Meinhardt, Kerry D.; Simner, Steven P.; Jaffe, John E.; Williford, Rick E.

2001-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cu2Sb thin films as anode for Na-ion batteries  

SciTech Connect

Cu2Sb thin films prepared by magnetron sputtering are evaluated as an anode material for Na-ion batteries. The starting material is composed of nanocrystallites with the desired tetragonal P4/nmm structure. The study of the reaction mechanism reveals the formation of an amorphous/nanocrystalline phase of composition close to Na3Sb as the final reaction product. The solid electrolyte interphase (SEI) material is mostly composed of carbonates (Na2CO3, NaCO3R). The Cu2Sb anode possesses moderate capacity retention with a reversible storage capacity (250 mAh/g) close to the theoretical value (323 mAh/g), an average reaction potential of around 0.55 V vs. Na/Na+, and a high rate performance (10 C-rate).

Baggetto, Loic [ORNL; Allcorn, Eric [University of Texas, Austin; Manthiram, Arumugam [University of Texas, Austin; Veith, Gabriel M [ORNL

2013-01-01T23:59:59.000Z

182

Electrode materials for the electrolysis of metal oxides  

E-Print Network (OSTI)

Carbon, tungsten, platinum, and iridium were examined as candidate anode materials for an electrolytic cell. The materials were pre-selected to endure high process temperatures and were characterized for inertness and high ...

Cooper, Benjamin D

2006-01-01T23:59:59.000Z

183

Exhibitor: STELLAR MATERIALS INC.  

Science Conference Proceedings (OSTI)

Booth #637 Detroit, Michigan. Thermbond is a unique new refractory material with features and benefits unavailable in traditional refractories. Thermbond is...

184

Unique Uranium Source in Naturally Bioreduced Sediment  

NLE Websites -- All DOE Office Websites (Extended Search)

| 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Unique Uranium Source in Naturally Bioreduced Sediment DECEMBER 2, 2009 Bookmark and Share Scanning...

185

Improved anode catalysts for coal gas-fueled phosphoric acid fuel cells; Progress report No. 15, Quarterly No. 5, June 3--September 2, 1989  

SciTech Connect

The development, optimization and demonstration of contaminant-tolerant anode catalyst formulations for phosphoric acid fuel cells is the overall objective of this project. During this quarter, anode electrodes were prepared from the following carbon-supported catalysts for evaluation in the hydrogen/hydrogen test cell: 70Pt:10Ti:20Cr, 59Pt:26Ti:15Cu, 91Pt:6Ti:3Sn, 72Pt:22Ti:6Ru and 67Pt:33Ti:0.2Zn. The catalyst preparation with a target composition of 70Pt:20Ti:10Zn resulted in a material with very low Zn content, only 0.2%. This catalyst was processed into an anode electrode for testing, despite the low Zn content, since Pt--Ti materials have also shown promise as CO and H{sub 2}S-tolerant anode catalysts. 5 tabs.

Kackley, N.; Kosek, J.A.

1989-09-01T23:59:59.000Z

186

Metric spaces with unique pretangent spaces  

E-Print Network (OSTI)

We find necessary and sufficient conditions under which an arbitrary metric space $X$ has a unique pretangent space at the marked point $a\\in X$. Key words: Metric spaces; Tangent spaces to metric spaces; Uniqueness of tangent metric spaces; Tangent space to the Cantor set.

Dovgoshey, Oleksiy; Kugukaslan, Mehmet

2009-01-01T23:59:59.000Z

187

Use of under Calcined Coke to Produce Baked Anodes for ...  

Science Conference Proceedings (OSTI)

Studies on Impact of Calcined Petroleum from Different Sources on Anode Quality Study on Graphitization of Cathode Carbon Blocks for Aluminum Electrolysis.

188

ARTS - Anode & Rod Tracking System A New Tool for ...  

Science Conference Proceedings (OSTI)

Abstract Scope, ARTS is a combination of an anode and rod identification and tracking system, together with a customized database and analytical software.

189

Hydro Aluminium's Historical Evolution of Closed Type Anode ...  

Science Conference Proceedings (OSTI)

The increasing demand for higher production and larger anodes during the last ... rebuilding of the furnaces are described, including maximum utilisation of the...

190

Anode Dusting from a Potroom Perspective at Nordural And ...  

Science Conference Proceedings (OSTI)

Retrofit of a Combined Breaker Feeder with a Chisel Bath Contact Detection System to Reduce Anode Effect Frequency in a Potroom Simulating Traffic in a...

191

Bubble Transport by Electro-Magnetophoretic Foces at Anode ...  

Science Conference Proceedings (OSTI)

Retrofit of a Combined Breaker Feeder with a Chisel Bath Contact Detection System to Reduce Anode Effect Frequency in a Potroom Simulating Traffic in a...

192

Large Gas Bubbles under the Anodes of Aluminum Electrolysis Cells  

Science Conference Proceedings (OSTI)

Retrofit of a Combined Breaker Feeder with a Chisel Bath Contact Detection System to Reduce Anode Effect Frequency in a Potroom Simulating Traffic in a...

193

The Initiation, Propagation and Termination of Anode Effects in Hall ...  

Science Conference Proceedings (OSTI)

Retrofit of a Combined Breaker Feeder with a Chisel Bath Contact Detection System to Reduce Anode Effect Frequency in a Potroom Simulating Traffic in a...

194

Method to Reduce Camber in Anode-Supported SOFCs - Energy ...  

A) Typical camber developed in 7 cm x 7 cm anode-supported SOFC. B) Details on matched TEC backing layer opposite electrolyte surface for camber ...

195

Cathode/Anode Selection and Full Cell Performance for Stationary ...  

Science Conference Proceedings (OSTI)

Presentation Title, Cathode/Anode Selection and Full Cell Performance for Stationary Li-ion Battery System. Author(s), Daiwon Choi, Donghai Wang, Vilayanur...

196

Passivation Behaviour of Copper Anodes with Various Chemical ...  

Science Conference Proceedings (OSTI)

May 1, 2007 ... Anode passivation is one of the existing problems faced by copper refineries with the increase of current density and impurities content of the...

197

Ultrasound Removing Oxygen Gas Bubbles on Anode and ...  

Science Conference Proceedings (OSTI)

Cell voltage varies as the bubbles formed on the anodes surface. ... A Study on Heat Transfer Coefficient Distribution in High Pressure Hydrogen Quenching.

198

Composite Silicon Carbon Nano-fiber Anode for High Energy ...  

Science Conference Proceedings (OSTI)

Presentation Title, Composite Silicon Carbon Nano-fiber Anode for High .... of Super P Carbon Black and Silicon Carbide in Si-based Lithium Ion Batteries.

199

Investigation on Formation Mechanism of Non-Anode Effect Related ...  

Science Conference Proceedings (OSTI)

NAE-PFC will emit when there is not enough alumina under some or other anode's ... PFC and CO2 Emissions from an Australian Aluminium Smelter Using ...

200

Thermo-Electro-Mechanical Characterization of Anode Sealing ...  

Science Conference Proceedings (OSTI)

... and prepared in such a way that is representative of the industrial sealing process. ... Investigation on Air Reactivity and Electrolysis Consumption of Anode

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Anodization of Aluminum-Titanium Alloys for Solar Cell Applications  

Science Conference Proceedings (OSTI)

Presentation Title, Anodization of Aluminum-Titanium Alloys for Solar Cell ... Migration of Nanotechnology from Laboratory to Market Place: Arci Experience.

202

Reliability Model for Different Configurations of Planar-SOFC Anode ...  

Science Conference Proceedings (OSTI)

The temperature field and contaminant concentration on planar-SOFC anode are interpreted from DREAM-SOFC, a multi-physics solver. Due to larger active...

203

A Green Anode Plant Performance Analysis Tool Fully Embedded In ...  

Science Conference Proceedings (OSTI)

Presentation Title, A Green Anode Plant Performance Analysis Tool Fully Embedded In The Plant Control System. Author(s), Xavier Genin, Pasquale Calo,

204

Ultrathin Alumina Coated Carbon Nanotubes as Anodes for High ...  

Science Conference Proceedings (OSTI)

Presentation Title, Ultrathin Alumina Coated Carbon Nanotubes as Anodes for High Capacity Li-Ion Battery. Author(s), Indranil Lahiri, Wonbong Choi. On-Site...

205

Nanostructured Anodes for Lithium-Ion Batteries - Energy ...  

New Anodes for Lithium-ion Batteries Increase Energy Density Four-Fold Savannah River Nuclear Solutions (SRNS), managing contractor of the Savannah River Site (SRS ...

206

A Model for Predicting the Electrical Resistivity of Baked Anodes  

Science Conference Proceedings (OSTI)

One of the desired properties of the anodes is low electrical resistivity. A proper understanding of the effect of different parameters on electrical resistivity can...

207

Carbon Anode Modeling for Electric Energy Savings in  

Science Conference Proceedings (OSTI)

Presentation Title, Carbon Anode Modeling for Electric Energy Savings in the Aluminium Reduction Cell. Author(s), Dag Herman Andersen, Z. L. Zhang. On- Site...

208

Evolution of Anode Grade Calcined Coke - Programmaster.org  

Science Conference Proceedings (OSTI)

The term "anode grade coke" has been used as a broad definition to describe delayed coke with a sponge structure containing relatively low levels of trace...

209

Anode Paste Plants: Innovative Solution for Optimum Emission ...  

Science Conference Proceedings (OSTI)

Low PAH concentration streams from the anode former area are treated using a coke dry-scrubber whereas the higher concentration streams from the paste...

210

Determination of Coke Calcination Level and Anode Baking Level  

Science Conference Proceedings (OSTI)

Presentation Title, Determination of Coke Calcination Level and Anode Baking Level Application and Reproducibility of Lc Based Methods. Author(s), Stein...

211

Why Is Pt So Unique A Chemical Physics Approach  

NLE Websites -- All DOE Office Websites (Extended Search)

Is Pt So Unique Is Pt So Unique A Chemical Physics Approach Philip N. Ross, Jr. Materials Sciences Division Lawrence Berkeley National Laboratory Berkeley, CA 94708 Outline * A brief history of electrode kinetics * Reaction pathway for oxygen reduction * Effect of pH * Systematic trends across Periodic Table * One electron makes a big difference d 9 s 1 versus d 10 s 1 * Pt at the top of the Volcano Curve Mechanism of the ORR at metal electrodes Addition of first electron needed to break O-O bond Rate limiting step in electrochemical reduction of O 2 is 1 st electron transfer O 2 + - → (O 2 - ) sol Outer Sphere E 0 ' =-0.3 V) O 2 + - → (O 2 - ) ads Inner Sphere (E 0 ' + ∆G ad /F) O 2 - adsorption strength nic properties of the electrode material Establish general trends across Periodic Table using

212

A three-dimensional Macroporous Cu/SnO2 composite anode sheet prepared via a novel method  

SciTech Connect

Macroporous Cu/SnO2 composite anode sheets were prepared by a novel method which is based on slurry blending, tape casting, sintering, and reducing of metal oxides. Such composite Cu/SnO2 anode sheets have no conducting carbons and binders, and show improved discharge capacity and cycle life than the SnO2 electrode from conventional tape-casting method on Cu foil. This methodology produces limited wastes and is also adaptable to many other materials. It is easy for industrial scale production. With the optimization of particle size of the metal oxide, pore size, pore volume and other factors, this kind of macroporous Cu/SnO2 composite anode sheets could give significantly improved capacity and cycle life.

Xu, Wu; Canfield, Nathan L.; Wang, Deyu; Xiao, Jie; Nie, Zimin; Zhang, Jiguang

2010-11-01T23:59:59.000Z

213

#LabChat: Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Extreme Circumstances, Unique Solutions, June 28 at 1pm Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT #LabChat: Extreme Circumstances, Unique Solutions, June 28 at 1pm EDT June 27, 2012 - 2:31pm Addthis The simple, portable device identifies materials through their characteristic energy signals as unique as fingerprints. The three detectors are housed in a thermos-sized container that is connected to a laptop computer. The device issues a signal turning the laptop display bright red when nuclear material of interest is identified. | Photo courtesy of Princeton University The simple, portable device identifies materials through their characteristic energy signals as unique as fingerprints. The three detectors are housed in a thermos-sized container that is connected to a laptop computer. The device issues a signal turning the laptop display

214

Alternative Anode Reaction for Copper Electrowinning  

DOE Green Energy (OSTI)

This report describes a project funded by the Department of Energy, with additional funding from Bechtel National, to develop a copper electrowinning process with lower costs and lower emissions than the current process. This new process also includes more energy efficient production by using catalytic-surfaced anodes and a different electrochemical couple in the electrolyte, providing an alternative oxidation reaction that requires up to 50% less energy than is currently required to electrowin the same quantity of copper. This alternative anode reaction, which oxidizes ferric ions to ferrous, with subsequent reduction back to ferric using sulfur dioxide, was demonstrated to be technically and operationally feasible. However, pure sulfur dioxide was determined to be prohibitively expensive and use of a sulfur burner, producing 12% SO{sub 2}, was deemed a viable alternative. This alternate, sulfur-burning process requires a sulfur burner, waste heat boiler, quench tower, and reaction towers. The electrolyte containing absorbed SO{sub 2} passes through activated carbon to regenerate the ferrous ion. Because this reaction produces sulfuric acid, excess acid removal by ion exchange is necessary and produces a low concentration acid suitable for leaching oxide copper minerals. If sulfide minerals are to be leached or the acid unneeded on site, hydrogen was demonstrated to be a potential reductant. Preliminary economics indicate that the process would only be viable if significant credits could be realized for electrical power produced by the sulfur burner and for acid if used for leaching of oxidized copper minerals on site.

Not Available

2005-07-01T23:59:59.000Z

215

Advanced Materials at ORNL - Oak Ridge National Laboratory  

Nuclear materials Strategy: Take advantage of Unique capabilities in synthesis, characterization, theory ... High Flux Isotope Reactor:

216

Electrolytic production of high purity aluminum using ceramic inert anodes  

DOE Patents (OSTI)

A method of producing commercial purity aluminum in an electrolytic reduction cell comprising ceramic inert anodes is disclosed. The method produces aluminum having acceptable levels of Fe, Cu and Ni impurities. The ceramic inert anodes used in the process may comprise oxides containing Fe and Ni, as well as other oxides, metals and/or dopants.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA); DiMilia, Robert A. (Baton Rouge, LA); Dynys, Joseph M. (New Kensington, PA); Phelps, Frankie E. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

2002-01-01T23:59:59.000Z

217

Microsoft PowerPoint - NanoAnode for Li-ion Batteries SRNL-L9100...  

NLE Websites -- All DOE Office Websites (Extended Search)

Anodes for Lithium-Ion Batteries at a glance patent pending increase energy density longer cyclic life replaces graphite anodes simple and lower cost...

218

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

A Better Anode Design to Improve A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart phones, laptops, most other consumer electronics, and the newest electric cars. Good as these batteries are, the need for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy. A team of Berkeley Lab scientists has designed a new kind of anode that absorbs eight times the lithium of current designs, and has maintained its greatly increased energy capacity after more than a year of testing and many hundreds of charge-discharge cycles. Cyclical Science Succeeds

219

Real Space Mapping of Li-Ion Transport in Amorphous Si Anodes with Nanometer Resolution  

SciTech Connect

The electrical bias driven Li-ion motion in silicon anode materials in thin film battery heterostructures is investigated using electrochemical strain microscopy (ESM), which is a newly developed scanning probe microscopy based characterization method. ESM utilizes the intrinsic link between bias-controlled Li-ion concentration and molar volume of electrode materials, providing the capability for studies on the sub-20 nm scale, and allows the relationship between Li-ion flow and microstructure to be established. The evolution of Li-ion transport during the battery charging is directly observed.

Balke, Nina [ORNL; Jesse, Stephen [ORNL; Kim, Yoongu [Oak Ridge National Laboratory (ORNL); Adamczyk, Leslie A [ORNL; Tselev, Alexander [ORNL; Ivanov, Ilia N [ORNL; Dudney, Nancy J [ORNL; Kalinin, Sergei V [ORNL

2010-01-01T23:59:59.000Z

220

Material Challenges and Perspectives  

Science Conference Proceedings (OSTI)

General history and principals of Li-ion battery, characterization techniques and terminology of its operation will be discussed and explained. Current Li-ion battery applications and comparison to other energy storage and conversion systems will be outlined. Chemistry, material and design of currently commercialized Li-ion batteries will be discussed including various electrode materials for cathodes and anodes. The electrode material candidates and its physical and chemical properties including crystal structure, capacity, cycling stability, cost and safety. Also, current limitations of Li-ion batteries will be discussed.

Choi, Daiwon; Wang, Wei; Yang, Zhenguo

2011-12-14T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Inert anodes and advanced smelting of aluminum  

SciTech Connect

This report provides a broad assessment of open literature and patents that exist in the area of inert anodes and their related cathode systems and cell designs, technologies that are relevant for the advanced smelting of aluminum. The report also discusses the opportunities, barriers, and issued associated with these technologies from a technical, environmental, and economic viewpoint. It discusses the outlook for the direct retrofit of advanced reduction technologies to existing aluminum smelters, and compares retrofits to ''brown field'' usage and ''green field'' adoption of the technologies. A number of observations and recommendations are offered for consideration concerning further research and development efforts that may be directed toward these advanced technologies. The opportunities are discussed in the context of incremental progress that is being made in conventional Hall-Heroult cell systems.

ASME Technical Working Group on Inert Anode Technologies

1999-07-01T23:59:59.000Z

222

Economical Remediation of Plastic Waste into Advanced Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

spheres (2-12 m outside diameter). The tubes can be used as anode material in advanced batteries such as lithium-ion and eventually, lithium-air batteries. wastetoadvanced...

223

Atomic layer deposition for the conformal coating of nanoporous materials  

Science Conference Proceedings (OSTI)

Atomic layer deposition (ALD) is ideal for applying precise and conformal coatings over nanoporous materials. We have recently used ALD to coat two nanoporous solids: anodic aluminum oxide (AAO) and silica aerogels. AAO possesses hexagonally ordered ...

Jeffrey W. Elam; Guang Xiong; Catherine Y. Han; H. Hau Wang; James P. Birrell; Ulrich Welp; John N. Hryn; Michael J. Pellin; Theodore F. Baumann; John F. Poco; Joe H. Satcher, Jr.

2006-01-01T23:59:59.000Z

224

Combined Theoretical and Experimental Investigation and Design of H2S Tolerant Anode for Solid Oxide Fuel Cells  

DOE Green Energy (OSTI)

A solid oxide fuel cell (SOFC) is a high temperature fuel cell and it normally operates in the range of 850 to 1000 C. Coal syngas has been considered for use in SOFC systems to produce electric power, due to its high temperature and high hydrogen and carbon monoxide content. However, coal syngas also has contaminants like carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S). Among these contaminants, H{sub 2}S is detrimental to electrode material in SOFC. Commonly used anode material in SOFC system is nickel-yttria stabilized zirconia (Ni-YSZ). The presence of H{sub 2}S in the hydrogen stream will damage the Ni anode and hinder the performance of SOFC. In the present study, an attempt was made to understand the mechanism of anode (Ni-YSZ) deterioration by H{sub 2}S. The study used computation methods such as quantum chemistry calculations and molecular dynamics to predict the model for anode destruction by H{sub 2}S. This was done using binding energies to predict the thermodynamics and Raman spectroscopy to predict molecular vibrations and surface interactions. On the experimental side, a test stand has been built with the ability to analyze button cells at high temperature under syngas conditions.

Gerardine G. Botte; Damilola Daramola; Madhivanan Muthuvel

2009-01-07T23:59:59.000Z

225

On the uniqueness of Bertrand equilibrium  

Science Conference Proceedings (OSTI)

We introduce product differentiation in the model of price competition with strictly convex costs in which firms have to supply all of the forthcoming demand. We find that although a continuum of equilibria exists in a homogeneous product market, the ... Keywords: Increasing marginal cost, Price competition, Product differentiation, Strictly convex cost, Uniqueness of equilibrium

Daisuke Hirata; Toshihiro Matsumura

2010-11-01T23:59:59.000Z

226

Ads by Goooooogle Unique, Unusual Gifts  

E-Print Network (OSTI)

Internet Marketing Gas prices high? Try an eco-friendly, 3.5 mln dollars Skycar Home > News > World News A Hairstyles Survey! HighPaySurveys.com Birthday Gifts & Ideas Unique gifts for their special day Tailored Posted on 30 Sep 2005 # Reuters Gas prices high? Try an eco- friendly, 3.5 mln dollars Skycar CHICAGO

McGraw, Kevin J.

227

Basic properties of a liquidt in anode solid oxide fuel cell  

Science Conference Proceedings (OSTI)

An unconventional high temperature fuel cell system, the liquidt in anode solid oxide fuel cell(LTA-SOFC), is discussed. A thermodynamic analysis of a solid oxide fuel cell with a liquid metal anode is developed. Pertinent thermo chemical and thermo physical properties of liquid tin in particular are detailed. An experimental setup for analysis of LTA-SOFC anode kinetics is described, and data for a planar cell under hydrogen indicated an effective oxygen diffusion coefficient of 5.310?5 cm2 s?1 at 800 ?C and 8.910?5 cm2 s?1 at 900 ?C. This value is similar to previously reported literature values for liquid tin. The oxygen conductivity through the tin, calculated from measured diffusion coefficients and theoretical oxygen solubility limits, is found to be on the same order of thatofyttria-stabilizedzirconia(YSZ), a traditional SOFC electrolyte material. As such,the ohmicloss due to oxygen transport through the tin layer must be considered in practical system cell design since the tin layer will usually be at least as thick as the electrolyte.

Harry Abernathy; RandallGemmen; KirkGerdes; Mark Koslowske; ThomasTao

2010-12-17T23:59:59.000Z

228

Inert Anode Life in Low Temperature Reduction Process  

Science Conference Proceedings (OSTI)

The production of aluminum metal by low temperature electrolysis utilizing metal non-consumable anodes and ceramic cathodes was extensively investigated. Tests were performed with traditional sodium fluoride--aluminum fluoride composition electrolytes, potassium fluoride-- aluminum fluoride electrolytes, and potassium fluoride--sodium fluoride--aluminum fluoride electrolytes. All of the Essential First-Tier Requirements of the joint DOE-Aluminum Industry Inert Anode Road Map were achieved and those items yet to be resolved for commercialization of this technology were identified. Methods for the fabrication and welding of metal alloy anodes were developed and tested. The potential savings of energy and energy costs were determined and potential environmental benefits verified.

Bradford, Donald R.

2005-06-30T23:59:59.000Z

229

Designer carbons as potential anodes for lithium secondary batteries  

DOE Green Energy (OSTI)

Carbons are the material of choice for lithium secondary battery anodes. Our objective is to use designed synthesis to produce a carbon with a predictable structure. The approach is to pyrolyze aromatic hydrocarbons within a pillared clay. Results from laser desorption mass spectrometry, scanning tunneling microscopy, X-ray diffraction, and small angle neutron scattering suggest that we have prepared disordered, porous sheets of carbon, free of heteroatoms. One of the first demonstrations of template-directed carbon formation was reported by Tomita and co-workers, where polyacrylonitrile was carbonized at 700{degrees}C yielding thin films with relatively low surface areas. More recently, Schwarz has prepared composites using polyfurfuryl alcohol and pillared clays. In the study reported here, aromatic hydrocarbons and polymers which do not contain heteroatoms are being investigated. The alumina pillars in the clay should act as acid sites to promote condensation similar to the Scholl reaction. In addition, these precursors should readily undergo thermal polymerization, such as is observed in the carbonization of polycyclic aromatic hydrocarbons.

Winans, R.E.; Carrado, K.A.; Thiyagarajan, P. [and others

1995-07-01T23:59:59.000Z

230

ANODE, CATHODE AND THIN FILM STUDIES FOR LOW TEMPERATURE SOFC'S  

DOE Green Energy (OSTI)

In this research the microstructure {leftrightarrow} property relations in solid oxide fuel cells (SOFC's) are being studied to better understand the mechanisms involved in cell performance. The overall aim is to fabricate SOFC's with controlled, stable, high performance microstructure. Most cathode studies were completed in the last DOE contract; studies during this year focused more on the influence of nonstoichiometry on the electrical performance. Studies indicate that nonstoichiometric La{sub x}Sr{sub 0.20}MnO{sub 3}(x = 0.70, 0.75, and 0.79) cathode compositions exhibit the best properties. A series of studies using these compositions fired on at temperatures of 1100, 1200, 1300 and 1400 C were performed. In all instances, 1200 C was the optimum, with the x = 0.70 composition being the best. It has an overpotential of only 0.04V at 1 A/cm{sup 2}. SEM analyses indicated no second phases or interdiffusion is detectable. Studies on optimization of anode compositions yielded the optimum volume fraction of Ni (45vol%), the best sintering temperature/time (1400 C/2 h), and the best starting materials (glycine-nitrate derived NiO and normal YSZ). In essence these results simply reflect the optimum microstructure. As such, they are being used to guide the development of optimized anodes for lower temperature operation based on Cu/CeO{sub 2} cermets. Marked success has been achieved on the placement of thin YSZ electrolytes on porous Ni/YSZ electrodes. The process being used is a transfer technique in which dense YSZ films are initially fabricated on NaCl or polymeric substrates, followed by partial dissolution of the substrate and placement of the film on the porous substrate. This technique has allowed us to produce structures with film thicknesses ranging from 70 to 3000 nm, and grain sizes ranging from 2 to 300 nm. Cells based on electrolytes this thick should operate in the 400--700 C range.

Dr. Wayne Huebner; Dr. Harlan U. Anderson

1999-11-01T23:59:59.000Z

231

Graphene/Si multilayer structure anodes for advanced half and ...  

paper composite as anodes for rechargeable LIBs with high ... Basic Energy Sciences, of the U.S. Department of Energy under Contract no. DE-AC02-05CH11231.

232

Inconel Inert Anode Current Collector for Solid Oxide Membrane  

Science Conference Proceedings (OSTI)

Abstract Scope, An innovative inert anode current collector is successfully developed and ... During electrolysis at 1423 K, magnesium cations in the flux are reduced at a ... Inclusions from Molten Steel Using a High Frequency Magnetic Field.

233

BSA 08-14: A Multi-Anode Ionization Chamber  

BSA 08-14: A Multi-Anode Ionization Chamber. BNL Reference Number: BSA 08-14. Patent Status: U.S. Patent Number 7,858,949 was issued on December 28, 2010

234

Viscoplastic Modeling of the Green Anode Forming Process  

Science Conference Proceedings (OSTI)

... viscoplastic constitutive law using the concept of natural configuration has been developed. ... Improving Fuel Gas Injection in Anode Baking Furnace ... USE OF COAL TAR PITCH COKE FOR PRODUCING PREBAKED ELECTRODES.

235

A Better Anode Design to Improve Lithium-Ion Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

for energy storage in batteries is surpassing current technologies. In a lithium-ion battery, charge moves from the cathode to the anode, a critical component for storing energy....

236

Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency  

E-Print Network (OSTI)

shift" (8). HydroQuebec's SNG-12 anode graphite was chosenElectrode laminates with SNG-12 graphite as the activePrevious experiments with SNG-12 graphite in coin cells with

Ridgway, Paul

2010-01-01T23:59:59.000Z

237

Porous anodic aluminum oxide scaffolds; formation mechanisms and applications  

E-Print Network (OSTI)

Nanoporous anodic aluminium oxide (AAO) can be created with pores that self-assemble into ordered configurations. Nanostructured metal oxides have proven to be very useful as scaffolds for growth of nanowires and nanotubes ...

Oh, Jihun

2010-01-01T23:59:59.000Z

238

Fuel cell having dual electrode anode or cathode  

DOE Patents (OSTI)

A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

Findl, Eugene (Coram, NY)

1985-01-01T23:59:59.000Z

239

Fuel cell having dual electrode anode or cathode  

DOE Patents (OSTI)

A fuel cell that is characterized by including a dual electrode anode that is operable to simultaneously electro-oxidize a gaseous fuel and a liquid fuel. In alternative embodiments, a fuel cell having a single electrode anode is provided with a dual electrode cathode that is operable to simultaneously reduce a gaseous oxidant and a liquid oxidant to electro-oxidize a fuel supplied to the cell.

Findl, E.

1984-04-10T23:59:59.000Z

240

Advanced Anodes for Solid Oxide Fuel Cells  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , High-temperature Material Systems for Energy Conversion and Storage.

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Photoactivation of the processes of formation of nanostructures by local anodic oxidation of a titanium film  

Science Conference Proceedings (OSTI)

Experimental results on the conditions of activation of probe nanolithography of a thin titanium film by means of local anodic oxidation are reported. It is established that ultraviolet stimulation reduces the geometric dimensions of nanometric oxide structures. The stimulation is accompanied by an increase in the amplitude and duration of the threshold voltage pulse, correspondingly, from 6 to 7 V and from 50 to 100 ms at the relative humidity 50%. The experimental data on the effect of the cantilever coating material and substrate temperature on the geometric dimensions of nanometric oxide structures are reported.

Ageev, O. A.; Alyab'eva, N. I.; Konoplev, B. G., E-mail: kbg@tsure.ru; Polyakov, V. V.; Smirnov, V. A. [Southern Federal University, Taganrog Institute of Technology (Russian Federation)

2010-12-15T23:59:59.000Z

242

Three-dimensional microstructural changes in the NiYSZ solid oxide fuel cell anode during operation  

Science Conference Proceedings (OSTI)

Microstructural evolution in solid oxide fuel cell (SOFC) cermet anodes has been investigated using X-ray nanotomography along with differential absorption imaging. SOFC anode supports composed of Ni and yttria-stabilized zirconia (YSZ) were subjected to extended operation and selected regions were imaged using a transmission X-ray microscope. X-ray nanotomography provides unique insight into microstructure changes of all three phases (Ni, YSZ, pore) in three spatial dimensions, and its relation to performance degradation. Statistically significant 3D microstructural changes were observed in the anode Ni phase over a range of operational times, including phase size growth and changes in connectivity, interfacial contact area and contiguous triple-phase boundary length. These observations support microstructural evolution correlated to SOFC performance. We find that Ni coarsening is driven by particle curvature as indicated by the dihedral angles between the Ni, YSZ and pore phases, and hypothesize that growth occurs primarily by means of diffusion and particle agglomeration constrained by a pinning mechanism related to the YSZ phase. The decrease in Ni phase size after extended periods of time may be the result of a second process connected to a mobility-induced decrease in the YSZ phase size or non-uniform curvature resulting in a net decrease in Ni phase size.

Nelson G. J.; Chu Y.; Grew, K.N.; Izzo Jr. J.R.; Lombardo, J.J.; Harris, W.M.; Faes, A.; Hessler-Wyser, A.; Van herle, J.; Wang, S.; Virkar, A.V.; Chiu, W.K.S.

2012-04-07T23:59:59.000Z

243

Denver Museum Taps Into Unique Geothermal Source | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home Denver Museum Taps Into Unique Geothermal Source Denver Museum Taps Into Unique Geothermal Source March 9, 2010 - 4:59pm...

244

The effects of silicon doping on the performance of PMAN carbon anodes in Li-ion cells  

DOE Green Energy (OSTI)

Carbons derived from polymethylacrylonitrile (PMAN) have been studied for use as intercalation anodes in Li-ion cells. The effect of Si doping upon the electrochemical performance of PMAN carbons was studied using tetravinylsilane (TVS) and tetramethysilane (TMS) as sources of Si during the formation of the PMAN precursors. The carbons were characterized by galvanostatic cycling, cyclic voltammetry, and complex impedance. The presence of 9 to 11 w/o Si in the PMAN lattice greatly increased the irreversible capacity of these materials.

Guidotti, R.A.; Johnson, B.J. [Sandia National Labs., Albuquerque, NM (United States); Even, W. Jr. [Sandia National Labs., Livermore, CA (United States)

1996-05-01T23:59:59.000Z

245

Solid oxide fuel cell with single material for electrodes and interconnect  

DOE Patents (OSTI)

A solid oxide fuel cell is described having a plurality of individual cells. A solid oxide fuel cell has an anode and a cathode with electrolyte disposed there between, and the anode, cathode and interconnect elements are comprised of substantially one material. 9 figs.

McPheeters, C.C.; Nelson, P.A.; Dees, D.W.

1994-07-19T23:59:59.000Z

246

Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders  

NLE Websites -- All DOE Office Websites (Extended Search)

Working Principle of the Hollow-Anode Plasma Source Working Principle of the Hollow-Anode Plasma Source André Anders and Simone Anders Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 Abstract The hollow-anode discharge is a special form of glow discharge. It is shown that a drastically reduced anode area is responsible for a positive anode voltage drop of 30-40 V and an increased anode sheath thickness. This leads to an ignition of a relatively dense plasma in front of the anode hole. Langmuir probe measurements inside a specially designed hollow anode plasma source give an electron density and temperature of n e = 10 9 - 10 11 cm -3 and T e = 1 - 3 eV, respectively (nitrogen, current 100 mA, flow rate 5-50 scc/min). Driven by a pressure gradient, the "anode" plasma is blown through

247

Materials Science & Tech Division | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Supporting Organizations Supporting Organizations Center for Nanophase Materials Sciences Chemical Sciences Division Materials Science and Technology BES Chemical Sciences, Geosciences, and Biosciences Program BES Materials Sciences and Engineering Program Joint Institute For Advanced Materials Advanced Materials Home | Science & Discovery | Advanced Materials | Supporting Organizations | Materials Science and Technology SHARE Materials Science and Technology Division The Materials Science and Technology Division is unique within the Department of Energy (DOE) System with mission goals that extend from fundamental materials science to applied materials science and technology. One key component of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of materials theory, synthesis

248

Plant-scale anodic dissolution of unirradiated IFR fuel pins  

Science Conference Proceedings (OSTI)

This report discusses anodic dissolution which is a major operation in the pyrometallurgical process for recycling spent metal fuels from the Integral Fast Reactor (IFR), an advanced reactor design developed at Argonne National Laboratory. This process involves electrorefining the heavy metals (uranium and plutonium) from chopped, steel-clad fuel segments. The heavy metals are electrotransported from anodic dissolution baskets to solid and liquid cathodes in a molten salt electrolyte (LiCl-KCI) at 500{degrees}C. Uranium is recovered on a solid cathode mandrel, while a uranium-plutonium mixture is recovered in a liquid cadmium cathode. The anode configuration consists of four baskets mounted on an anode shaft. These baskets provide parallel circuits in the electrolyte and salt flow through the chopped fuelbed as the baskets are rotated. The baskets for the engineering-scale tests were sized to contain up to 2.5 kg of heavy metal. Anodic dissolution of 10 kg batches of chopped, steel-clad simulated tuel (U-10% Zr and U-Zr-Fs alloy) was demonstrated.

Gay, E.C.; Tomczuk, Z.; Miller, W.E.

1993-09-01T23:59:59.000Z

249

Quasi-rigidity: some uniqueness issues  

E-Print Network (OSTI)

Quasi-rigidity means that one builds a theory for assemblies of grains under a slowly changing external load by using the deformation of those grains as a small parameter. Is quasi-rigidity a complete theory for these granular assemblies? Does it provide unique predictions of the assembly's behavior, or must some other process be invoked to decide between several possibilities? We provide evidence that quasi-rigidity is a complete theory by showing that two possible sources of indeterminacy do not exist for the case of disk shaped grains. One possible source of indeterminacy arises from zero-frequency modes present in the packing. This problem can be solved by considering the conditions required to obtain force equilibrium. A second possible source of indeterminacy is the necessity to choose the status (sliding or non-sliding) at each contact. We show that only one choice is permitted, if contacts slide only when required by Coulomb friction.

S. McNamara; H. J. Herrmann

2006-03-28T23:59:59.000Z

250

Effects of Entropy Changes in Anode and Cathode on Thermo Behavior of Lithium Ion Batteries  

SciTech Connect

The entropies (?S) in various cathode and anode materials, as well as complete lithium ion bat-teries, were investigated by Electrochemical Thermodynamic Measurement System (ETMS). A thermodynamic model based on the fundamental properties of individual electrodes is used to obtain the transient and equilibrium temperature distribution of lithium ion batteries. The results from theoretical simulations are compared with the results obtained in experimental measure-ments. It is found that detailed shape of the entropy curves strongly depends on the manufac-turer of the materials even for the same nominal compositions. LiCoO2 has a much larger en-tropy change than those of LiNixCoyMnzO2. This means that LiNixCoyMnzO2 is much more thermodynamically stable than LiCoO2. The temperatures around the positive terminal of a prismatic battery are consistently higher than those at the negative terminal. When all other simulation parameters are the same, the effects of using battery-averaged entropy in the simulation tends to overestimate the predicted temperatures than using individual entropies for anode and cathode.

Williford, Ralph E.; Vishwanathan, Vilanyur V.; Zhang, Jiguang

2009-04-01T23:59:59.000Z

251

Battery with modular air cathode and anode cage  

DOE Patents (OSTI)

A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

Niksa, Marilyn J. (Painesville, OH); Pohto, Gerald R. (Mentor, OH); Lakatos, Leslie K. (Mentor, OH); Wheeler, Douglas J. (Cleveland Heights, OH); Niksa, Andrew J. (Painesville, OH); Schue, Thomas J. (Huntsburg, OH)

1987-01-01T23:59:59.000Z

252

Battery with modular air cathode and anode cage  

DOE Patents (OSTI)

A battery assembly of the consumable metal anode type has now been constructed for ready assembly as well as disassembly. In a non-conductive and at least substantially inert cell body, space is provided for receiving an open-structured, non-consumable anode cage. The cage has an open top for facilitating insertion of an anode. A modular cathode is used, comprising a peripheral current conductor frame clamped about a grid reinforced air cathode in sheet form. The air cathode may be double gridded. The cathode frame can be sealed, during assembly, with electrolyte-resistant-sealant as well as with adhesive. The resulting cathode module can be assembled outside the cell body and readily inserted therein, or can later be easily removed therefrom.

Niksa, Marilyn J. (Painesville, OH); Pohto, Gerald R. (Mentor, OH); Lakatos, Leslie K. (Mentor, OH); Wheeler, Douglas J. (Cleveland Heights, OH); Niksa, Andrew J. (Painesville, OH); Schue, Thomas J. (Huntsburg, OH); Turk, Thomas R. (Mentor, OH)

1988-01-01T23:59:59.000Z

253

Pulsed neutron generator using shunt between anode and cathode  

SciTech Connect

A pulsed neutron generator for well logging is provided having a resistor connected between the anode and cathode. The resistor provides a direct current path whereby corona current can flow between the cathode and a corona point without the necessity for the ion source to conduct. In an alternative embodiment, the secondary coil of a pulsing transformer is connected in series with a resistor between the anode and cathode. In an alternative embodiment, a corona regulator in series with the collector-emitter of a transistor is connected between the cathode and anode of the neutron source and the base drive to the transistor is provided by a light-responsive solar cell activatable by an external lamp. Circuitry is provided for utilizing the various neutron sources.

Culver, R.B.

1976-12-07T23:59:59.000Z

254

The dependence of natural graphite anode performance on electrode density  

DOE Green Energy (OSTI)

The effect of electrode density for lithium intercalation and irreversible capacity loss on the natural graphite anode in lithium ion batteries was studied by electrochemical methods. Both the first-cycle reversible and irreversible capacities of the natural graphite anode decreased with an increase in the anode density though compression. The reduction in reversible capacity was attributed to a reduction in the chemical diffusion coefficient for lithium though partially agglomerated particles with a larger stress. For the natural graphite in this study the potentials for Li (de)insertion shifted between the first and second formation cycles and the extent of this shift was dependent on electrode density. The relation between this peak shift and the irreversible capacity loss are probably both due to the decrease in graphite surface area with compression.

Shim, Joongpyo; Striebel, Kathryn A.

2003-11-01T23:59:59.000Z

255

Electrode Materials  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... PH3 Removal by Means of Prefilter for Ni-YSZ Anode-Supported SOFC: Chunchuan Xu1; John Zondlo1; Edward Sabolsky1; 1West Virginia...

256

Electrolytic production of metals using a resistant anode  

DOE Patents (OSTI)

An electrolytic process is described comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO[sub 2] and/or Cu[sub 2]O. 2 figs.

Tarcy, G.P.; Gavasto, T.M.; Ray, S.P.

1986-11-04T23:59:59.000Z

257

Overview of SOFC Anode Interactions with Coal Gas Impurities  

SciTech Connect

An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

O. A. Marina; L. R. Pederson; R. Gemmen; K. Gerdes; H. Finklea; I. B. Celik

2010-03-01T23:59:59.000Z

258

Overview of SOFC Anode Interactions with Coal Gas Impurities  

Science Conference Proceedings (OSTI)

An overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic and actual coal gas for periods greater than 1000 hours. Post-test analyses were performed to identify reaction products formed and their distribution, and compared to phases expected from thermochemical modeling. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

2010-05-01T23:59:59.000Z

259

Electrolytic production of metals using a resistant anode  

DOE Patents (OSTI)

An electrolytic process comprising evolving oxygen on an anode in a molten salt, the anode comprising an alloy comprising a first metal and a second metal, both metals forming oxides, the oxide of the first metal being more resistant than the second metal to attack by the molten salt, the oxide of the second metal being more resistant than the first metal to the diffusion of oxygen. The electrode may also be formed of CuAlO.sub.2 and/or Cu.sub.2 O.

Tarcy, Gary P. (Plum Borough, PA); Gavasto, Thomas M. (New Kensington, PA); Ray, Siba P. (Plum Borough, PA)

1986-01-01T23:59:59.000Z

260

Controlling Activity and Stability of Ni-YSZ Catalysts for On-Anode Reforming  

DOE Green Energy (OSTI)

The purposes of the project are to develop an effective Ni-YSZ-based anode for on-anode reforming of methane and natural gas and develop methods to control endothermic steam reforming activity.

King, D.L.; Wang, Y.; Chin, Y-H.; Lin, Y.; Roh, H-S.; Rozmiarek, B.

2005-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Solid state thin film battery having a high temperature lithium alloy anode  

SciTech Connect

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures.

Hobson, David O. (Oak Ridge, TN)

1998-01-01T23:59:59.000Z

262

Pure Oxygen Anodes for Low- or Zero-carbon Energy Efficient ...  

Science Conference Proceedings (OSTI)

A solid electrolyte, e.g. zirconia, between the salt and anode removes the molten salt stability constraint, and can act as a container for a liquid metal anode.

263

Effect of Sulfur and Hydrocarbon Fuels on Titanate/Ceria SOFC Anodes  

DOE Green Energy (OSTI)

The purpose of the project is to develop low-cost, high-performance anodes that offer low polarization resistance as well as improved tolerance for nonidealities in anode environment such as redox cycles, sulfur and other poisons, and hydrocarbons.

Marina, O.A.; Pedersen, L.R.; Stevenson, J.W.

2005-01-27T23:59:59.000Z

264

New Green Anode Plant at EMAL Start-Up and Operation in the ...  

Science Conference Proceedings (OSTI)

... EMAL Aluminium Smelter project located in the Khalifa Port & Industrial Zone at Al Taweelah, halfway ... Energy Saving Technologies for Anode Manufacturing ... New Method for Representative Measurement of Anode Electrical Resistance.

265

Factors determining the consumption of ruthenium during electrosynthesis of sodium hypochlorite with the use of ruthenium oxide-titanium anodes  

Science Conference Proceedings (OSTI)

The authors studied the rate of destruction of the active coating as a function of the electrolysis conditions during electrochemical production of sodium hypochlorite. Corrosion tests were carried out on specimens made by the thermochemical method, in an electrochemical cell without a diaphragm; the method used was based on neutron activation analysis. It was shown that losses of ruthenium can be lowered by conducting the electrolysis at low temperatures, higher current densities, and moderately low hypochlorite concentrations. However, the increase of current density may raise the ROTA potential above the critical value, when rapid anode failure is possible. It was also shown that under conditions such that the critical ROTA potential is not reached sodium hypochlorite solutions of fairly high concentrations can be obtained with a low comsumption of ruthenium, which is not possible with the use of many other anode materials.

Klement'eva, V.S.; Kubasov, V.L.; Lambrev, V.G.; Uzbekov, A.A.

1985-09-01T23:59:59.000Z

266

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts (Presentation)  

DOE Green Energy (OSTI)

This presentation is a summary of a Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts.

Dinh, H.; Gennett, T.

2010-06-11T23:59:59.000Z

267

DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Preparing for Sale of Unique RMOTC Property and Equipment in Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming October 24, 2013 - 8:59am Addthis DOE Preparing for Sale of Unique RMOTC Property and Equipment in Wyoming Did you know? RMOTC's mission is to ensure America's energy security and prosperity by assisting its partners in developing and commercializing energy efficient and environmentally friendly technologies to address critical global energy challenges. NPR-3, the site of RMOTC, is the only remaining Naval Petroleum Reserve administered by DOE and the government's only operating oilfield. The government's sale of NPR-3 by the end of 2014 will include the sale of all RMOTC-owned equipment and materials. In the eastern Rocky Mountains about 40 miles north of Casper, Wyo., is a

268

Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy  

E-Print Network (OSTI)

Layer-by-Layer Characterization of a Model Biofuel Cell Anode by (in Situ) Vibrational Spectroscopy during the construction of a model biofuel cell anode. The model anode was a layered structure formedDH to the CB layer confirmed successful enzyme immobilization. 1. Introduction Biofuel cells use microorganisms

Brolo, Alexandre G.

269

FEM analysis of voltage drop in the anode connector induced by steel stub diameter reduction  

Science Conference Proceedings (OSTI)

Primary aluminium production is a high-energy consumption process, and improving the energy efficiency of smelters could be economically viable. An issue in the Hall-Heroult prebake anode technology is the voltage drop in the anode connector caused by ... Keywords: Aluminium reduction cell, Carbon anode, Energy efficiency, Finite element method, Stub hole, Thermo-electro-mechanical modelling

Hugues Fortin; Nedeltcho Kandev; Mario Fafard

2012-05-01T23:59:59.000Z

270

Reduced temperature aluminum production in an electrolytic cell having an inert anode  

DOE Patents (OSTI)

Aluminum is produced by electrolytic reduction of alumina in a cell having a cathode, an inert anode and a molten salt bath containing metal fluorides and alumina. The inert anode preferably contains copper, silver and oxides of iron and nickel. Reducing the molten salt bath temperature to about 900-950.degree. C. lowers corrosion on the inert anode constituents.

Dawless, Robert K. (Monroeville, PA); Ray, Siba P. (Murrysville, PA); Hosler, Robert B. (Sarver, PA); Kozarek, Robert L. (Apollo, PA); LaCamera, Alfred F. (Trafford, PA)

2000-01-01T23:59:59.000Z

271

Mechanics of Low Dimensional Material for Energy Harvesting  

Science Conference Proceedings (OSTI)

Abstract Scope, Low dimensional materials have received considerable attention for their unique properties in energy storage (batteried) and energy harvesting...

272

Microstructure Change of SOFC Anode Caused by Electrochemical Redox Cycles  

E-Print Network (OSTI)

Power Systems. All Rights Reserved. 2 Contents Manufacturing development dependencies SOFC elements Reserved. 6 SOFC Elements: Independent of Construction Need to create and join the electrochemical Rights Reserved. 7 SOFC Stack Elements Fuel cell ­ Electrolyte, cathode, anode Interconnects ­ Deliver

Tokyo, University of

273

Evolution of a Unique Systems Engineering Capability  

SciTech Connect

The Idaho National Laboratory (INL) is a science-based, applied engineering laboratory dedicated to supporting U.S. Department of Energy missions in nuclear and energy research, science, and national security. The INLs Systems Engineering organization supports all of the various programs under this wide array of missions. As with any multifaceted organization, strategic planning is essential to establishing a consistent culture and a value discipline throughout all levels of the enterprise. While an organization can pursue operational excellence, product leadership or customer intimacy, it is extremely difficult to excel or achieve best-in-class at all three. In fact, trying to do so has resulted in the demise of a number of organizations given the very intricate balancing act that is necessary. The INLs Systems Engineering Department has chosen to focus on customer intimacy where the customers needs are first and foremost and a more total solution is the goal. Frequently a total solution requires the employment of specialized tools to manage system complexity. However, it is only after understanding customer needs that tool selection and use would be pursued. This results in using both commercial-off-the-shelf (COTS) tools and, in some cases, requires internal development of specialized tools. This paper describes how a unique systems engineering capability, through the development of customized tools, evolved as a result of this customer-focused culture. It also addresses the need for a common information model or analysis framework and presents an overview of the tools developed to manage and display relationships between entities, support trade studies through the application of utility theory, and facilitate the development of a technology roadmap to manage system risk and uncertainty.

Robert M. Caliva; James A. Murphy; Kyle B. Oswald

2011-06-01T23:59:59.000Z

274

Multiphoton Laser Processing: A Unique and Simple Way to Enter the  

NLE Websites -- All DOE Office Websites (Extended Search)

Multiphoton Laser Processing: A Unique and Simple Way to Enter the Multiphoton Laser Processing: A Unique and Simple Way to Enter the Nano-Platform Speaker(s): Andreas Ostendorf Date: January 27, 2006 - 12:00pm Location: Bldg. 90 Multiphoton laser processing is one of the rapidly advancing laser technologies, providing unique possibilities for the fabrication of two- and three-dimensional microstructures. Multiphoton material processing has very important advantages over processes based on single photon absorption: an increased spatial resolution and the possibility of photofabrication inside transparent materials. Due to nonlinear nature of multiphoton processing, applications of ultrashort laser systems allow one to overcome the diffraction limit and to produce high quality 3D microstructures with a sub-wavelength resolution. This is very powerful

275

USD(AT&L) SUBJECT: Organization Unique Identification (OUID) Standards for Unique Identification of  

E-Print Network (OSTI)

b. Implements requirements to use national and international standards to uniquely identify commercial enterprises, other Federal government agencies, and foreign governments that deliver materiel items to the DoD under contracts or other agreements. c. Prescribes procedures and assigns responsibilities for identifying approved OUID standards and guidelines for use in DoD business transactions with Federal and State agencies, non-governmental organizations, and domestic and foreign persons and organizations external to DoD.

unknown authors

2012-01-01T23:59:59.000Z

276

A New Family of Two Dimensional Materials for Use in Lithium Ion ...  

Science Conference Proceedings (OSTI)

More recently, we reported on the use of Ti2C as an anode material in lithium-ion batteries (LIBs) that can be cycled at high rates. Herein, we report for first time...

277

Improving Microstructure of Silicon/Carbon Nanofiber Composites as A Li Battery Anode  

SciTech Connect

We report the interfacial study of a silicon/carbon nanofiber (Si/CNF) nanocomposite material as a potentially high performance anode for rechargeable lithium ion batteries. The carbon nanofiber is hollow, with a graphitic interior and turbostratic exterior. Amorphous silicon layers were uniformly coated via chemical vapor deposition on both the exterior and interior surfaces of the CNF. The resulting Si/CNF composites were tested as anodes for Li ion batteries and exhibited capacities near 800 mAh g{sup -1} for 100 cycles. After cycling, we found that more Si had fallen off from the outer wall than from the inner wall of CNF. Theoretical calculations confirmed that this is due to a higher interfacial strength at the Si/C-edge interface at the inner wall than that of the Si/C-basal interface at the outer wall. Based upon the experimental analysis and theoretical calculation, we have proposed several interfacial engineering approaches to improve the performance of the electrodes by optimizing the microstructure of this nanocomposite.

Howe, Jane Y [ORNL; Burton, David J. [Applied Sciences, Inc.; Meyer III, Harry M [ORNL; Nazri, Maryam [Applied Sciences, Inc.; Nazri, G. Abbas [General Motors Corporation-R& D; Palmer, Andrew C. [Applied Sciences, Inc.; Lake, Patrick D. [Applied Sciences, Inc.

2013-01-01T23:59:59.000Z

278

A study of the uniqueness of source code  

Science Conference Proceedings (OSTI)

This paper presents the results of the first study of the uniqueness of source code. We define the uniqueness of a unit of source code with respect to the entire body of written software, which we approximate with a corpus of 420 million lines ... Keywords: large scale study, software uniqueness, source code

Mark Gabel; Zhendong Su

2010-11-01T23:59:59.000Z

279

Quantum Unique Ergodicity for maps on the torus  

E-Print Network (OSTI)

When a map is classically uniquely ergodic, it is expected that its quantization will posses quantum unique ergodicity. In this paper we give examples of Quantum Unique Ergodicity for the perturbed Kronecker map, and an upper bound for the rate of convergence.

Lior Rosenzweig

2005-01-16T23:59:59.000Z

280

Turning a Nuclear Spotlight on Illegal Weapons Material  

Science Conference Proceedings (OSTI)

... research neutron source, which bathes material samples with low-energy neutrons. ... count acts as a unique signature of special nuclear material. ...

2013-09-12T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Characterization and Quantification of Electronic and Ionic Ohmic Overpotential and Heat Generation in a Solid Oxide Fuel Cell Anode  

Science Conference Proceedings (OSTI)

The development of a solid oxide fuel cell (SOFC) with a higher efficiency and power density requires an improved understanding and treatment of the irreversibilities. Losses due to the electronic and ionic resistances, which are also known as ohmic losses in the form of Joule heating, can hinder the SOFC's performance. Ohmic losses can result from the bulk material resistivities as well as the complexities introduced by the cell's microstructure. In this work, two-dimensional (2D), electronic and ionic transport models are used to develop a method of quantification of the ohmic losses within the SOFC anode microstructure. This quantification is completed as a function of properties determined from a detailed microstructure characterization, namely, the tortuosity of the electronic and ionic phases, phase volume fraction, contiguity, and mean free path. A direct modeling approach at the level of the pore-scale microstructure is achieved through the use of a representative volume element (RVE) method. The correlation of these ohmic losses with the quantification of the SOFC anode microstructure are examined. It is found with this analysis that the contributions of the SOFC anode microstructure on ohmic losses can be correlated with the volume fraction, contiguity, and mean free path.

Grew, Kyle N.; Izzo, John R.; Chiu, Wilson K.S.

2011-08-16T23:59:59.000Z

282

MSD Information - Argonne National Laboratories, Materials Sicence...  

NLE Websites -- All DOE Office Websites (Extended Search)

wind collectors of NASA Genesis spacecraft and to novel nanolayered materials for energy applications, and will highlight its unique capability of conducting in-situ synthesis...

283

Thermodynamically Stabilized Nano- and Metastable Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, Nano- and metastable materials are of great interest to the U.S. Army, as their unique properties provide new opportunities for future force...

284

NNSA: Securing Domestic Radioactive Material | National Nuclear...  

National Nuclear Security Administration (NNSA)

Feb 1, 2011 The Department of Energy's National Nuclear Security Administration (NNSA), which has unique expertise in nuclear weapons and nuclear material, plays a key role in the...

285

Electrochemical oxidation of organic materials  

DOE Patents (OSTI)

This invention is a method and apparatus for the direct oxidation of organic materials, especially organic wastes, in an electrochemical cell. It fulfills the need for a simple, cost-effective way for generators of small quantities of waste to deal with that waste. It does not use an electron transfer agent, which may be a source of additional hazardous waste. The anode is made of carbon felt; the cathode is platinum; and the electrolyte is a strong oxidizer, preferably nitric acid. The potential difference is 2 to 3 volts; the current density is 0.15 to 0.25 A/cm{sup 2}. The porous barrier is a medium grade alumina frit or an ion exchange membrane. The organic materials are fed to the anode compartment; the resulting oxygen bubbling circumvents the need for stirring or circulating the waste. Many different types of waste (e.g. rubber gloves, TBP, process solutions, etc.) can be fed to the anode compartment without the need to process or store it. 3 figs. (DLC)

Almon, A.C.

1991-01-01T23:59:59.000Z

286

OPERATION OF SOLID OXIDE FUEL CELL ANODES WITH PRACTICAL HYDROCARBON FUELS  

DOE Green Energy (OSTI)

This work was carried out to achieve a better understanding of how SOFC anodes work with real fuels. The motivation was to improve the fuel flexibility of SOFC anodes, thereby allowing simplification and cost reduction of SOFC power plants. The work was based on prior results indicating that Ni-YSZ anode-supported SOFCs can be operated directly on methane and natural gas, while SOFCs with novel anode compositions can work with higher hydrocarbons. While these results were promising, more work was clearly needed to establish the feasibility of these direct-hydrocarbon SOFCs. Basic information on hydrocarbon-anode reactions should be broadly useful because reformate fuel gas can contain residual hydrocarbons, especially methane. In the Phase I project, we have studied the reaction mechanisms of various hydrocarbons--including methane, natural gas, and higher hydrocarbons--on two kinds of Ni-containing anodes: conventional Ni-YSZ anodes and a novel ceramic-based anode composition that avoid problems with coking. The effect of sulfur impurities was also studied. The program was aimed both at achieving an understanding of the interactions between real fuels and SOFC anodes, and providing enough information to establish the feasibility of operating SOFC stacks directly on hydrocarbon fuels. A combination of techniques was used to provide insight into the hydrocarbon reactions at these anodes during SOFC operation. Differentially-pumped mass spectrometry was be used for product-gas analysis both with and without cell operation. Impedance spectroscopy was used in order to understand electrochemical rate-limiting steps. Open-circuit voltages measurements under a range of conditions was used to help determine anode electrochemical reactions. Life tests over a wide range of conditions were used to establish the conditions for stable operation of anode-supported SOFC stacks directly on methane. Redox cycling was carried out on ceramic-based anodes. Tests on sulfur tolerance of Ni-YSZ anodes were carried out.

Scott A. Barnett; Jiang Liu; Yuanbo Lin

2004-07-30T23:59:59.000Z

287

Advanced materials for solid oxide fuel cells  

DOE Green Energy (OSTI)

The purpose of this research is to improve the properties of the current state-of-the-art materials used for solid oxide fuel cells (SOFCs). The objectives are to: (1) develop materials based on modifications of the state-of-the-art materials; (2) minimize or eliminate stability problems in the cathode, anode, and interconnect; (3) Electrochemically evaluate (in reproducible and controlled laboratory tests) the current state-of-the-art air electrode materials and cathode/electrolyte interfacial properties; (4) Develop accelerated electrochemical test methods to evaluate the performance of SOFCs under controlled and reproducible conditions; and (5) Develop and test materials for use in low-temperature SOFCs.

Armstrong, T.; Stevenson, J.

1995-12-31T23:59:59.000Z

288

Materials Processing for Advanced Manufacturing  

Science Conference Proceedings (OSTI)

Oct 28, 2013 ... Their consumption during electrolysis requires the production of a large number of anodes. The final step in the production of anodes is the...

289

NEWTON's Material Science Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Archive: Materials Science Archive: Loading Most Recent Materials Science Questions: Hydrogen Compounds and Heat Conduction Weaving Carbon Nanotubes Metal as Electrical Conductor, Not Thermal Steel Changes with Age PETE, Ultraviolet Light, Benefits Strength of Yarn by Spinning Each Substance Unique Density Alloy versus Constituent Density Knowing When Material is Melted Crystalline Metal Versus Metallic Glass and Conduction Super Glue, Surgery, and Skin Silica Gel Teflon Non-Stick Property Salt Crystal Formation Lubricating Rubber Bands and Elasticity Materials for Venus Probe Crystalline Solids and Lowest Energy Sodium Polycarbonate and Salt Water Early Adhesives Surface Energy and Temperature Separating Polypropylene, Polyester, and Nylon Factors Effecting Polymer Flexibility

290

Photovoltaic Materials  

Science Conference Proceedings (OSTI)

The goal of the current project was to help make the US solar industry a world leader in the manufacture of thin film photovoltaics. The overall approach was to leverage ORNLs unique characterization and processing technologies to gain a better understanding of the fundamental challenges for solar cell processing and apply that knowledge to targeted projects with industry members. ORNL has the capabilities in place and the expertise required to understand how basic material properties including defects, impurities, and grain boundaries affect the solar cell performance. ORNL also has unique processing capabilities to optimize the manufacturing process for fabrication of high efficiency and low cost solar cells. ORNL recently established the Center for Advanced Thin-film Systems (CATS), which contains a suite of optical and electrical characterization equipment specifically focused on solar cell research. Under this project, ORNL made these facilities available to industrial partners who were interested in pursuing collaborative research toward the improvement of their product or manufacturing process. Four specific projects were pursued with industrial partners: Global Solar Energy is a solar industry leader in full scale production manufacturing highly-efficient Copper Indium Gallium diSelenide (CIGS) thin film solar material, cells and products. ORNL worked with GSE to develop a scalable, non-vacuum, solution technique to deposit amorphous or nanocrystalline conducting barrier layers on untextured stainless steel substrates for fabricating high efficiency flexible CIGS PV. Ferro Corporations Electronic, Color and Glass Materials (ECGM) business unit is currently the worlds largest supplier of metallic contact materials in the crystalline solar cell marketplace. Ferros ECGM business unit has been the world's leading supplier of thick film metal pastes to the crystalline silicon PV industry for more than 30 years, and has had operational cells and modules in the field for 25 years. Under this project, Ferro leveraged world leading analytical capabilities at ORNL to characterize the paste-to-silicon interface microstructure and develop high efficiency next generation contact pastes. Ampulse Corporation is developing a revolutionary crystalline-silicon (c-Si) thin-film solar photovoltaic (PV) technology. Utilizing uniquely-textured substrates and buffer materials from the Oak Ridge National Laboratory (ORNL), and breakthroughs in Hot-Wire Chemical Vapor Deposition (HW-CVD) techniques in epitaxial silicon developed at the National Renewable Energy Laboratory (NREL), Ampulse is creating a solar technology that is tunable in silicon thickness, and hence in efficiency and economics, to meet the specific requirements of multiple solar PV applications. This project focused on the development of a high rate deposition process to deposit Si, Ge, and Si1-xGex films as an alternate to hot-wire CVD. Mossey Creek Solar is a start-up company with great expertise in the solar field. The primary interest is to create and preserve jobs in the solar sector by developing high-yield, low-cost, high-efficiency solar cells using MSC-patented and -proprietary technologies. The specific goal of this project was to produce large grain formation in thin, net-shape-thickness mc-Si wafers processed with high-purity silicon powder and ORNL's plasma arc lamp melting without introducing impurities that compromise absorption coefficient and carrier lifetime. As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

291

Anode sputtering characteristics of the Berkeley 2.5 MV source  

SciTech Connect

An investigation was made of a number of parameters affecting the performance of the SuperHILAC 2.5 MV Adam injector source. The description will emphasize anode sputtered materials, and will discuss in some detail calcium and gold ion production. Parameters varied include electrode geometry, support gas type and electrode bias, to optimize beam intensity and electrode consumption. A factor of three improvement with high n$sup +$ gold ions appears evident with a new displaced electrode geometry. The source is operated in cold mode, is pulsed and operates usually at less than 0.6 amperes average current. Under these conditions source life has been measured to be sixteen hours at 25 percent duty factor when generating calcium ions with neon support gas. (auth)

Gavin, B.

1975-10-01T23:59:59.000Z

292

"Plasma Thruster with Magnetically Insulated Anode: Inventor Yevgeny  

NLE Websites -- All DOE Office Websites (Extended Search)

Plasma Thruster with Magnetically Insulated Anode: Inventor Yevgeny Plasma Thruster with Magnetically Insulated Anode: Inventor Yevgeny Raitses This invention relates to a new plasma thruster for space applications. The key innovations of this thruster allow it to effectively ionize different propellants, including gases, liquids and solids, at different flow rates, and to operate with wallout losses. Due to these characteristics and the design simplicity, this thruster can be miniaturized to operate at low power levels, including, but not limited to a few watts input power, and regimes relevant to Cubesat applications. The new thruster uses plasma with magnetized electrons and non-magnetized ions and consists of at least two stages, ionization and acceleration, which are physically separated by the geometry, magnetic field topology and

293

Electrocatalyst for alcohol oxidation at fuel cell anodes  

DOE Patents (OSTI)

In some embodiments a ternary electrocatalyst is provided. The electrocatalyst can be used in an anode for oxidizing alcohol in a fuel cell. In some embodiments, the ternary electrocatalyst may include a noble metal particle having a surface decorated with clusters of SnO.sub.2 and Rh. The noble metal particles may include platinum, palladium, ruthenium, iridium, gold, and combinations thereof. In some embodiments, the ternary electrocatalyst includes SnO.sub.2 particles having a surface decorated with clusters of a noble metal and Rh. Some ternary electrocatalysts include noble metal particles with clusters of SnO.sub.2 and Rh at their surfaces. In some embodiments the electrocatalyst particle cores are nanoparticles. Some embodiments of the invention provide a fuel cell including an anode incorporating the ternary electrocatalyst. In some aspects a method of using ternary electrocatalysts of Pt, Rh, and SnO.sub.2 to oxidize an alcohol in a fuel cell is described.

Adzic, Radoslav (East Setauket, NY); Kowal, Andrzej (Cracow, PL)

2011-11-02T23:59:59.000Z

294

Dense Membranes for Anode Supported all Perovskite IT-SOFCs  

DOE Green Energy (OSTI)

Innovative wet chemical synthetic techniques were employed to obtain highly ionic conducting dense perovskites, mixed conducting porous perovskites, and electronically conducting perovskite membranes to be as electrolyte, cathode, anode, and interconnect for assembling all perovskite IT-SOFC system. Processing conditions were optimized to obtain well sintered LSM, LSF, LSCF, LNF, and LCF for SOFC cell and stacks working at 600-800 C. Series of nanocrystalline bulk and thin films of La{sub 0.8}Sr{sub 0.2}Ga{sub 0.83}Mg{sub 0.17}O{sub 2.815}, LaSr{sub 0.2}Fe{sub 0.8}O{sub 3}, LaSr{sub 0.2}Co{sub 0.8}Fe{sub 0.2}O{sub 3}, La{sub 0.8}Ni{sub 0.7}Fe{sub 0.3}O{sub 3}, LaCr{sub 0.7}Fe{sub 0.3}O{sub 3} were prepared at very low temperatures and characterized using XRD, SEM, HRTEM, XPS, EXAFS, and EIS techniques. The influence of preparation techniques on the microstructure, grain-size and consequently on the electrical transport properties were investigated. Processing conditions, sintering temperature (1200-1500 C) and time severely affected the grain size (< 0.1 {micro}m to 10 {micro}m) and the resistance in all grain-boundary (3 k{Omega} to175 k{Omega}). Through investigations of A and B site doping in perovskite materials, we have reduced cathode-electrolyte interfacial resistance, will be very effective for the SOFCs operating {approx} 750 C. Epitaxial films of LiFeNiO{sub 3}, for SOFCs cathode were deposited on LaAl{sub 2}O{sub 3}, MgO, and YSZ single crystals by pulsed laser deposition (PLD) method, and characterized using advanced spectroelectrochemical techniques. The film orientations depend on the substrate planes. Surface morphology of the films also depends on the substrate orientations. These films showed different electrode properties depending on the orientations. The porous characteristic of the electrode materials are achieved by the combination of combustion and microwave sintering using SiC as susceptor (1200-1400 C). Concurrently, the other oxygen ionic/protonic conducting oxides (perovskites, pyrochlores, and apatites) were also prepared, characterized and understood the role in the development of reduced temperature SOFCs. In this HBCU/MI -research and educational project, we have emphasized the need to expand research opportunities for talented undergraduate and graduate African American students and junior faculty in the field of power sources based on nanoscience. We have paired the selected three undergraduate and two graduate students with full time research staff (PDF), for experimental measurements and discussions via preparing students to present the work in regional, national and international conferences. These students on an average made one presentation per year out side the SUBR campus. The effort in this project yielded 7 publications in refereed journals and about 15 in conference proceedings including NETL annual review meetings. Further, we have initiated a collaborative research and educational outreach project entitled 'Center for Hydrogen Energy and Advanced Power [CHEAP]' with University of West Indies-St. Augustine, Trinidad & Tobago (T &T).

Rambabu Bobba

2007-09-15T23:59:59.000Z

295

Materials Performance in USC Steam  

DOE Green Energy (OSTI)

Materials Performance in USC Steam: (1) pressure effects on steam oxidation - unique capability coming on-line; (2) hydrogen evolution - hydrogen permeability apparatus to determine where hydrogen goes during steam oxidation; and (3) NETL materials development - steam oxidation resource for NETL developed materials.

G. R. Holcomb; J. Tylczak; G. H. Meier; N. M. Yanar

2011-09-07T23:59:59.000Z

296

Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency  

NLE Websites -- All DOE Office Websites (Extended Search)

Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency Title Effect of Vinylene Carbonate on Graphite Anode Cycling Efficiency Publication Type Journal Article Year of Publication 2009 Authors Ridgway, Paul L., Honghe Zheng, Xiangyun Song, Gao Liu, Philip N. Ross, and Vincent S. Battaglia Journal Electrochemical Society Volume 19 Start Page 51 Issue 25 Pagination 51-57 Abstract Vinylene Carbonate (VC) was added to the electrolyte in graphite-lithium half-cells. We report its effect on the coulombic efficiency (as capacity shift) of graphite electrodes under various formation cycling conditions. Cyclic voltammetry on glassy carbon showed that VC passivates the electrode against electrolyte reduction. The dQ/dV plots of the first lithiation of the graphite suggest that VC alters the SEI layer, and that by varying the cell formation rate, the initial ratio of ethylene carbonate to VC in the SEI layer can be controlled. VC was found to decrease first cycle efficiency and reversible capacity (in ongoing cycling) when used to excess. However, experiments with VC additive used with various formation rates did not show any decrease in capacity shift.

297

Crystalline structure transformation of carbon anodes during gasification  

Science Conference Proceedings (OSTI)

The crystalline structure transformation of five carbon anodes during gasification in air and carbon dioxide was studied using quantitative X-ray diffraction (XRD) analysis and high-resolution transmission electron microscopy (HRTEM). XRD analysis and HRTEM observations confirmed that anodes have a highly ordered graphitic structure. The examination of partially gasified samples indicated that crystalline structure transformation occurred in two stages during gasification. The first stage involved the consumption of disorganized carbon matter in the initial 15% conversion. Oxygen was found to be more reactive toward disorganized carbon at this stage of the gasification process compared to carbon dioxide. Following this stage, as more carbon was consumed, especially with the removal of smaller crystallites, it was found that the crystalline structure became more ordered with increasing conversion levels. This is due to the merging of neighboring crystallites, required to maintain the minimum energy configuration. In addition, the interaction between the pitch and the coke components was found to be strongly linked to the initial coke structure. 'Stress graphitization' occurred at the pitch-coke interface, which helps to enhance the structural development of the anodes. 26 refs., 9 figs., 3 tabs.

Kien N. Tran; Adam J. Berkovich; Alan Tomsett; Suresh K. Bhatia [University of Queensland, St. Lucia, Qld. (Australia). Division of Chemical Engineering

2008-05-15T23:59:59.000Z

298

Precipitation in a lead calcium tin anode  

SciTech Connect

Samples from a hot rolled sheet of a tin and calcium bearing lead alloy were solution heat treated at 300 Degree-Sign C and cooled down to room temperature at different rates; these samples were left at room temperature to study natural precipitation of CaSn{sub 3} particles. The samples were aged for 45 days before analysing their microstructure, which was carried out in a scanning electron microscope using secondary and backscattered electron detectors. Selected X-ray spectra analyses were conducted to verify the nature of the precipitates. Images were taken at different magnifications in both modes of observation to locate the precipitates and record their position within the images and calculate the distance between them. Differential scanning calorimeter analyses were conducted on selected samples. It was found that the mechanical properties of the material correlate with the minimum average distance between precipitates, which is related to the average cooling rate from solution heat treatment. - Highlights: Black-Right-Pointing-Pointer The distance between precipitates in a lead alloy is recorded. Black-Right-Pointing-Pointer The relationship between the distance and the cooling rate is established. Black-Right-Pointing-Pointer It is found that the strengthening of the alloy depends on the distance between precipitates.

Perez-Gonzalez, Francisco A., E-mail: fco.aurelio@inbox.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico); Camurri, Carlos G., E-mail: ccamurri@udec.cl [Departamento de Ingenieria de Materiales, Universidad de Concepcion (Chile); Carrasco, Claudia A., E-mail: ccarrascoc@udec.cl [Departamento de Ingenieria de Materiales, Universidad de Concepcion (Chile); Colas, Rafael, E-mail: rafael.colas@uanl.edu.mx [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia, Universidad Autonoma de Nuevo Leon (Mexico)

2012-02-15T23:59:59.000Z

299

Materials: An interdisciplinary integrative approach  

Science Conference Proceedings (OSTI)

A full-year survey-of-materials-science course as offered at Bowling Green State University for the past 5 years is described. The course has several unique features

Robert I. Boughton

2001-01-01T23:59:59.000Z

300

Position-sensitive proportional counter with low-resistance metal-wire anode  

DOE Patents (OSTI)

A position-sensitive proportional counter circuit is provided which allows the use of a conventional (low-resistance, metal-wire anode) proportional counter for spatial resolution of an ionizing event along the anode of the counter. A pair of specially designed active-capacitance preamplifiers are used to terminate the anode ends wherein the anode is treated as an RC line. The preamplifiers act as stabilized active capacitance loads and each is composed of a series-feedback, low-noise amplifier, a unity-gain, shunt-feedback amplifier whose output is connected through a feedback capacitor to the series-feedback amplifier input. The stabilized capacitance loading of the anode allows distributed RC-line position encoding and subsequent time difference decoding by sensing the difference in rise times of pulses at the anode ends where the difference is primarily in response to the distributed capacitance along the anode. This allows the use of lower resistance wire anodes for spatial radiation detection which simplifies the counter construction and handling of the anodes, and stabilizes the anode resistivity at high count rates (>10.sup.6 counts/sec).

Kopp, Manfred K. (Oak Ridge, TN)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

NREL: Technology Transfer - Unique Research Tool Aims to ...  

Unique Research Tool Aims to Reduce PV Cost July 13, 2009. Thin film photovoltaics made with semiconducting inks promise to revolutionize the solar ...

302

Unique Aspects and Scientific Challenges - Advanced R and D|...  

Office of Science (SC) Website

Advanced R and D Unique Aspects and Scientific Challenges High Energy Physics (HEP) HEP Home About Research Snowmass P5 Planning Process Energy Frontier Intensity Frontier Cosmic...

303

Intermetallic insertion anodes for lithium batteries.  

DOE Green Energy (OSTI)

Binary intermetallic compounds containing lithium, or lithium alloys, such as Li{sub x}Al, Li{sub x}Si and Li{sub x}Sn have been investigated in detail in the past as negative electrode materials for rechargeable lithium batteries. It is generally acknowledged that the major limitation of these systems is the large volumetric expansion that occurs when lithium reacts with the host metal. Such large increases in volume limit the practical use of lithium-tin electrodes in electrochemical cells. It is generally recognized that metal oxide electrodes, MO{sub y}, in lithium-ion cells operate during charge and discharge by means of a reversible lithium insertion/extraction process, and that the cells offer excellent cycling behavior when the crystallographic changes to the unit cell parameters and unit cell volume of the Li{sub x}MO{sub y} electrode are kept to a minimum. An excellent example of such an electrode is the spinel Li{sub 4}Ti{sub 5}O{sub 12}, which maintains its cubic symmetry without any significant change to the lattice parameter (and hence unit cell volume) during lithium insertion to the rock-salt composition Li{sub 7}Ti{sub 5}O{sub 12}. This spinel electrode is an example of a ternary Li{sub x}MO{sub y} system in which a binary MO{sub y} framework provides a stable host structure for lithium. With this approach, the authors have turned their attention to exploring ternary intermetallic systems Li{sub x}MM{prime} in the hope of finding a system that is not subject to the high volumetric expansion that typifies many binary systems. In this paper, the authors present recent data of their investigations of lithium-copper-tin and lithium-indium-antimonide electrodes in lithium cells. The data show that lithium can be inserted reversibly into selected intermetallic compounds with relatively small expansion of the lithiated intermetallic structures.

Thackeray, M. M.; Vaughey, J.; Johnson, C. S.; Kepler, K. D.

1999-11-12T23:59:59.000Z

304

Unique marker finder algorithm generates molecular diagnostic markers  

Science Conference Proceedings (OSTI)

By taking advantage of the power of comparative genomics, we devised an algorithm, Unique Marker Finder (U-MarFin), to generate a collection of unique DNA sequences from a target organism. The whole target genome is partitioned into a scoring ...

Sung-Kay Chiu; Ming-Hua Hsieh; Chi-Meng Tzeng

2011-03-01T23:59:59.000Z

305

Liquid Tin Anode Direct Coal Fuel Cell - CellTech Power  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquid Tin Anode Direct Coal Liquid Tin Anode Direct Coal Fuel Cell-CellTech Power Background Direct carbon solid oxide fuel cells (SOFCs) offer a theoretical efficiency advantage over traditional SOFCs operating on gasified carbon (syngas). CellTech Power LLC (CellTech) has been developing a liquid tin anode (LTA) SOFC that can directly convert carbonaceous fuels including coal into electricity without gasification. One of the most significant impediments

306

Reduction of Anode Effect Duration in 400kA Prebake Cells  

Science Conference Proceedings (OSTI)

Retrofit of a Combined Breaker Feeder with a Chisel Bath Contact Detection System to Reduce Anode Effect Frequency in a Potroom Simulating Traffic in a...

307

Cyclability Study of Si/TiN/C Composite Anode with High Rate ...  

Science Conference Proceedings (OSTI)

Presentation Title, Cyclability Study of Si/TiN/C Composite Anode with High Rate Capability for Lithium-Ion Batteries. Author(s), Jiguo Tu, Shuqiang Jiao,...

308

Si-Graphene Anodes (ANL-10-018 and ANL-11-034)  

AV AILABLE FOR LICENSING Production process for low-cost, long-life, high-energy anodes with five times the specific energy. The Invention An advanced ...

309

BSA 99-05: Anodes to Oxidize Alcohol in Fuel Cells  

BSA 99-05: Anodes to Oxidize Alcohol in Fuel Cells. BNL Reference Number: BSA 99-05. Summary. ... Brookhaven National Laboratory conducts research in ...

310

Study of the Behaviour of LSCM Anode Composites in a Segmented ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Conversion/Fuel Cells. Presentation Title, Study of the Behaviour of LSCM Anode Composites in a Segmented Planar Solid Oxide Fuel Cell.

311

Aligned TiO2 Nanotubes as Long Durability Anodes for Lithium-Ion ...  

Science Conference Proceedings (OSTI)

Aligned TiO2 Nanotubes as Long Durability Anodes for Lithium-Ion Batteries Aniline Coated Carbon Cryogel with Improved Cyclic Stability for Supercapacitor ...

312

Adsorption of Propane on the Magnesium Oxide (100) Surface and Synthesis of Anodized Aluminum Oxide.  

E-Print Network (OSTI)

??This work is divided into two parts: the adsorption of propane on the magnesium oxide (100) surface and the synthesis of anodized aluminum oxide. The (more)

Felty, Michael John

2008-01-01T23:59:59.000Z

313

Pitch Production Using Solvent Extraction of Coal: Suitability as Carbon Anode Precursor.  

E-Print Network (OSTI)

??Albertan coal has been used to produce extracts as precursor for production of anode coke. Coal extractability was studied using digestion with Tetralin in a (more)

Mohammad Ali Pour, Mehdi

2009-01-01T23:59:59.000Z

314

Ractivit de l'anode et dsulfuration : effet du niveau de calcination du coke.  

E-Print Network (OSTI)

??Les proprits du coke et la performance des anodes sont affectes par le niveau de calcination du coke. Une densit de coke (VBD) leve implique (more)

Bergeron-Lagac, Charles-Luc

2012-01-01T23:59:59.000Z

315

PEMFC reconfigured anodes for enhancing CO tolerance with air bleed.  

DOE Green Energy (OSTI)

Practical PEM fuel cells based on perfluorinated ionomer membranes (eg Nafion), most probably will use reformed fuel as primary source for the anode feed. The reformate, besides hydrogen, may contain trace amounts of carbon monoxide (CO. from a few to hundreds ppm), whose presence is detrimental to the cell performance. Energy conversion at fuel cells depends on highly dispersed carbon-supported Pt, where the hydrogen electro-oxidatisn takes place. However, CO strongly adsorbs on the Pt surface leading to a decreasing of the Pt active Surface area and consequently to losses in electrical current that are unacceptable for a practical device.

Uribe, F. J. (Francisco J.); Zawodzinski, T. A. (Thomas A.), Jr.

2001-01-01T23:59:59.000Z

316

Ni/YSZ Anode Interactions with Impurities in Coal Gas  

DOE Green Energy (OSTI)

Performance of solid oxide fuel cell (SOFC) with nickel/zirconia anodes on synthetic coal gas in the presence of low levels of phosphorus, arsenic, selenium, sulfur, hydrogen chloride, and antimony impurities were evaluated. The presence of phosphorus and arsenic led to the slow and irreversible SOFC degradation due to the formation of secondary phases with nickel, particularly close to the gas inlet. Phosphorus and antimony surface adsorption layers were identified as well. Hydrogen chloride and sulfur interactions with the nickel were limited to the surface adsorption only, whereas selenium exposure also led to the formation of nickel selenide for highly polarized cells.

Marina, Olga A.; Pederson, Larry R.; Coyle, Christopher A.; Thomsen, Edwin C.; Coffey, Greg W.

2009-10-16T23:59:59.000Z

317

FREE STANDING NANOSTRUCTURED ANODES FOR LI-ION RECHARGEABLE BATTERIES  

DOE Green Energy (OSTI)

The free standing nanorodes of aluminum and cobalt oxides were grown on electrode and tested as the anodes directly in the half-cell. The average diameter and length of the nanorods are 80 nm and 200 nm respectively. The aligned nanorods demonstrated high initial capacity from 1200-1400 mAh/g at rate of 0.5C. The gradually decrease of initial capacity was observed. The preliminary characterization shows that the changes of the crystalline structure and morphology during cycling may be responsible for the capacity decay.

Au, M.

2009-07-20T23:59:59.000Z

318

Guide to good practices for operations aspects of unique processes  

Science Conference Proceedings (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Operations Aspects of Facility Chemistry and Unique Processes, Chapter XIII of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered when planning or reviewing employee training and facility management programs. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Operations Aspects of Unique Processes is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for all personnel to coordinate interrelated activities affecting unique processes.

NONE

1998-12-01T23:59:59.000Z

319

Unique Solar Thermal Laboratory Gets an Upgrade | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade Unique Solar Thermal Laboratory Gets an Upgrade September 10, 2010 - 2:54pm Addthis This “power tower” is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories This "power tower" is part of the National Solar Thermal Test Facility in Albuquerque, which is getting upgrades through Recovery Act funding. | Photo Courtesy of Sandia National Laboratories Lorelei Laird Writer, Energy Empowers The National Solar Thermal Test Facility at Sandia National Laboratories is unique - and in demand. The Facility has been instrumental in NASA tests, national defense programs and concentrated solar technology development.

320

DOE Program Offers Participants Unique Opportunity to Gain Carbon Capture  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Program Offers Participants Unique Opportunity to Gain Carbon Program Offers Participants Unique Opportunity to Gain Carbon Capture and Storage Knowledge DOE Program Offers Participants Unique Opportunity to Gain Carbon Capture and Storage Knowledge February 8, 2011 - 12:00pm Addthis Washington, DC - Future leaders and innovators in the area of carbon capture and storage (CCS) can gain a unique and intensive tutorial on the subject by participating in the U.S. Department of Energy's (DOE) Research Experience in Carbon Sequestration (RECS) program. Supported by the Office of Fossil Energy (FE), the program for graduate students and early career professionals is currently accepting applications for RECS 2011, scheduled for June 5-15, in Birmingham, AL, and the deadline to apply is April 15. An intensive science-based program, RECS 2011 will combine classroom

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Multiphoton Laser Processing: A Unique and Simple Way to Enter...  

NLE Websites -- All DOE Office Websites (Extended Search)

Multiphoton Laser Processing: A Unique and Simple Way to Enter the Nano-Platform Speaker(s): Andreas Ostendorf Date: January 27, 2006 - 12:00pm Location: Bldg. 90 Multiphoton laser...

322

DOE Joint Genome Institute: Rot's Unique Wood Degrading Machinery...  

NLE Websites -- All DOE Office Websites (Extended Search)

February 5, 2009 Rot's Unique Wood Degrading Machinery to be Harnessed for Better Biofuels Production WALNUT CREEK, CA-An international team led by scientists from the U.S....

323

Applications of laser produced ion beams to nuclear analysis of materials  

Science Conference Proceedings (OSTI)

Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of {approx} 1.0 {mu}m at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi{sub 0.85}Co{sub 0.15}O{sub 2} anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5{mu}m FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S. [Graduate School for the Creation of New Photonics Industries, Shizuoka (Japan) and Institute de Fusion Nuclear, Universidad Politecnica de Madrid, Madrid (Spain) and Institute of Laser Engineering, Osaka University, Osaka (Japan); Toyota Central R and D Labs., Inc., Aichi (Japan); Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency (JAEA), Gunnma (Japan); Toyota Central R and D Labs., Inc., Aichi (Japan)

2012-07-11T23:59:59.000Z

324

Old Electrochromic Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrochromic Materials Electrochromic Materials DOE also supports the development of electrochromic coatings through several mechanisms. Three companies are engaged in development of commercial prototypes through the Electrochromics Initiative and an SBIR small business grant. LBNL and another DOE laboratory, the National Renewable Energy Laboratory (NREL) perform a variety of measurements to evaluate the energy performance and durability of these prototypes . Other research activities are intended to assist the efforts of the industry in general. At LBNL, research focuses on rapid development and analysis of electrode materials. Among recent accomplishments was the production of a stoichiometric form of Li0.5Ni0.5O by laser deposition and sputtering with excellent electrochromic properties. Dr. Stuart Cogan of EIC Laboratories tested the films and declared them to have "the highest coloration efficiency of any known anodic electrochromic material." EIC will test the films in their own devices in the near future. We also work on several binary electrodes produced by cosputtering from two targets simultaneously. For example, enhanced forms of tungsten oxide produced in this way have wide application because of the prevalence of tungsten oxide in today's devices. In addition to testing durability, NREL also investigates the degradation mechanisms which lead to failure in the hope of being able to correlate accelerated testing to real time failure as well as to diagnose and correct device problems.

325

Overview of SOFC Anode Interactions with Coal Gas Impurities  

Science Conference Proceedings (OSTI)

Efficiencies greater than 50 percent (higher heating value) have been projected for solid oxide fuel cell (SOFC) systems fueled with gasified coal, even with carbon sequestration. Multiple minor and trace components are present in coal that could affect fuel cell performance, however, which vary widely depending on coal origin and type. Minor and trace components have been classified into three groups: elements with low volatility that are likely to remain in the ash, elements that will partition between solid and gas phases, and highly volatile elements that are unlikely to condense. Those in the second group are of most concern. In the following, an overview of the results of SOFC anode interactions with phosphorus, arsenic, selenium, sulfur, antimony, and hydrogen chloride as single contaminants or in combinations is discussed. Tests were performed using both anode- and electrolyte-supported cells in synthetic coal gas. The ultimate purpose of this work is to establish maximum permissible concentrations for impurities in coal gas, to aid in the selection of appropriate coal gas clean-up technologies.

Marina, Olga A.; Pederson, Larry R.; Gemmen, Randall; Gerdes, Kirk; Finklea, Harry; Celik, Ismail B.

2009-08-11T23:59:59.000Z

326

Design and simulation of a unique signal mechanism  

Science Conference Proceedings (OSTI)

The design and operation of an unique signal mechanism is described. The mechanism remains locked until a unique signal sequence is inserted and then the mechanism moves to an enable position. An erroneous pattern causes the mechanism to lock requiring manual reset. The dynamic performance of the mechanism is evaluated using Sandia's Mechanism Simulation and Analysis Program. The simulation results are compared to experimental data.

Erickson, P.A.; Ferguson, G.M.; Kenderdine, E.W.

1982-01-01T23:59:59.000Z

327

Nanomanufacturing of random branching material architectures  

Science Conference Proceedings (OSTI)

Research in vital fields such as micro/opto-electronics, fuel cells and tissue engineering calls for fabrication of functional structures with optimal harvesting or perfusion of matter, energy and information, via permeation and transport through random ... Keywords: Anodized aluminum oxide, Block copolymer self-assembly, Carbon nanofoams, Carbon nanotubes, Fiber electrospining, Fractals, Nanocomposite foils, Nanoheaters, Nanomanufacturing, Plasma processing, Random branching materials, Tissue scaffolds, Ultrasonic corrosion texturing, Ultrasonic powder consolidation

Charalabos C. Doumanidis

2009-04-01T23:59:59.000Z

328

Materials Processing for Lithium-Ion Batteries  

SciTech Connect

Extensive efforts have been undertaken to develop and optimize new materials for lithium-ion batteries to address power and energy demands of mobile electronics and electric vehicles. However, the introduction of large-format lithium-ion batteries is hampered by high cost, safety concerns, and deficiencies in energy density and calendar life. Advanced materials-processing techniques can contribute solutions to such issues. From that perspective, this work summarizes the materials-processing techniques used to fabricate the cathodes, anodes, and separators used in lithium-ion batteries.

Li, Jianlin [ORNL; Daniel, Claus [ORNL; Wood III, David L [ORNL

2010-01-01T23:59:59.000Z

329

Solid state thin film battery having a high temperature lithium alloy anode  

DOE Patents (OSTI)

An improved rechargeable thin-film lithium battery involves the provision of a higher melting temperature lithium anode. Lithium is alloyed with a suitable solute element to elevate the melting point of the anode to withstand moderately elevated temperatures. 2 figs.

Hobson, D.O.

1998-01-06T23:59:59.000Z

330

In situ reduction and evaluation of anode supported single chamber solid oxide fuel cells  

E-Print Network (OSTI)

cracking (reaction VII) CH4 + H2O CO + 3H2 steam reforming (reaction VIII) CH4 + CO2 2CO + 2H2 dry.05.118 #12;Abstract Single chamber anode-supported fuel cells are investigated under several methane analyses of anode reduction are performed at 700°C. Carbon deposition is observed under diluted methane

331

Diagnostic Setup for Characterization of Near-Anode Processes in Hall Thrusters  

DOE Green Energy (OSTI)

A diagnostic setup for characterization of the near-anode processes in Hall thrusters was designed and assembled. Experimental results with a single floating probe show that radial probe insertion does not cause perturbations to the discharge and therefore can be used for near-anode measurements.

L. Dorf; Y. Raitses; N. J. Fisch

2003-05-29T23:59:59.000Z

332

Assembly of Colloidal Nanoparticles into Anodic Aluminum Oxide Templates by Dip-Coating Process  

Science Conference Proceedings (OSTI)

In this paper, the assembly behavior of colloidal nanoparticles into anodic aluminum oxide (AAO) templates is investigated. Approximately 20-nm-diameter iron oxide (Fe2O3) particles stabilized by oleic acid and 5-nm-diameter CdSe ... Keywords: Anodic aluminum oxide, colloid nanoparticle, dip coating, self-assembly

Il Seo; Chang-Woo Kwon; Hyun Ho Lee; Yong-Sang Kim; Ki-Bum Kim; Tae-Sik Yoon

2009-11-01T23:59:59.000Z

333

Carbon Supported Polyaniline as Anode Catalyst: Pathway to Platinum-Free Fuel Cells  

E-Print Network (OSTI)

The effectiveness of carbon supported polyaniline as anode catalyst in a fuel cell (FC) with direct formic acid electrooxidation is experimentally demonstrated. A prototype FC with such a platinum-free composite anode exhibited a maximum room-temperature specific power of about 5 mW/cm2

Zabrodskii, A G; Malyshkin, V G; Sapurina, I Y

2006-01-01T23:59:59.000Z

334

The effect of compression on natural graphite anode performance and matrix conductivity  

DOE Green Energy (OSTI)

Anodes for lithium-ion cells were constructed from three types of natural graphite, two coated spherical and one flaky. Anode samples were compressed from 0 to 300 kg/cm2 and studied in half-cells to study the relations between anode density, SEI formation and anode cyclability. The C/25 formation of the SEI layer was found to depend on the nature of the graphite and the anode density. Compression of the uncoated graphite lead to an increased conductivity, but only slight improvements in the efficiency of the formation process. Compression of the anodes made from the amorphous-carbon-coated graphites greatly improved both the reversible capacity and first-cycle efficiency. In addition, the fraction of the irreversible charge associated with the surface of the graphite increased with compression, from both an increase in the electrolyte contact as well as compression of the amorphous layer. The cyclability of all of the anodes tended to improve with compression. This suggests that it is the improvement in the conductivity of the anode plays more of a role in the improvement in the cyclability than the formation process.

Striebel, K.A.; Sierra, A.; Shim, J.; Wang, C.-W.; Sastry, A.M.

2004-03-11T23:59:59.000Z

335

Conductive Rigid Skeleton Supported Silicon as High-Performance Li-Ion Battery Anodes  

Science Conference Proceedings (OSTI)

A cost effective and scalable method is developed to prepare a core-shell structured Si/B4C composite with graphite coating with high efficiency, exceptional rate performance and long-term stability. In this material, conductive B4C with high Mohs hardness serves not only as micro-/nano- millers in the ball-milling process to break down micron-sized Si but also as the conductive rigid skeleton to support the in-situ formed sub-10 nm Si particles to alleviate the volume expansion during charge/discharge. The Si/B4C composite is coated with a few graphitic layers to further improve the conductivity and stability of the composite. The Si/B4C/graphite (SBG) composite anode shows excellent cyclability with a specific capacity of ~822 mAh?g-1 (based on the weight of the entire electrode, including binder and conductive carbon) and ~94% capacity retention over 100 cycles at 0.8C rate. This new structure has the potential to provide adequate storage capacity and stability for practical applications, and good opportunity for large scale manufacturing using commercially available materials and technologies.

Chen, Xilin; Li, Xiaolin; Ding, Fei; Xu, Wu; Xiao, Jie; Cao, Yuliang; Meduri, Praveen; Liu, Jun; Graff, Gordon L.; Zhang, Jiguang

2012-08-08T23:59:59.000Z

336

CHARACTERIZATION OF COAL- AND PETROLEUM-DERIVED BINDER PITCHES AND THE INTERACTION OF PITCH/COKE MIXTURES IN PRE-BAKED CARBON ANODES.  

E-Print Network (OSTI)

??Carbon anodes are manufactured from calcined petroleum coke (i.e. sponge coke) and recycled anode butts as fillers, and coal tar pitch (SCTP) as the binder. (more)

Suriyapraphadilok, Uthaiporn

2008-01-01T23:59:59.000Z

337

Manipulation of ring strain and antiaromaticity in the design and synthesis of unique optoelectronic materials  

E-Print Network (OSTI)

Polycyclic aromatic hydrocarbons (PAHs) and fully-conjugated ladder polymers are leading candidates for organics electronics, as their inherent conformational rigidity encourages electron delocalization. Many of these ...

Parkhurst, Rebecca R. (Rebecca Rosenberg)

2012-01-01T23:59:59.000Z

338

Materials Preparation Center | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Preparation Center Materials Preparation Center Materials Preparation Center The Materials Preparation Center (MPC) is a U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences & Engineering specialized research center located at the Ames Laboratory. MPC operations are primarily funded by the Materials Discovery, Design, & Synthesis team's Synthesis & Processing Science core research activity. MPC is recognized throughout the worldwide research community for its unique capabilities in purification, preparation, and characterization of: Rare earth metals [learn about rare earths] Single crystal growth Metal Powders/Atomization Alkaline-earth metals [learn more, wikipedia] External Link Icon Refractory metal [learn more, wikipedia] External Link Icon

339

Anodic dissolution characteristics and electrochemical migration lifetimes of Sn solder in NaCl and Na2SO4 solutions  

Science Conference Proceedings (OSTI)

In situ water drop tests and anodic polarization tests of pure Sn solder were carried out in deaerated 0.001% NaCl and Na"2SO"4 solutions to determine the correlation between anodic dissolution characteristics and the electrochemical migration lifetime. ... Keywords: Anodic dissolution, Electrochemical migration, Life time, Na2SO4, NaCl, Sn solder

Ja-Young Jung; Shin-Bok Lee; Young-Chang Joo; Ho-Young Lee; Young-Bae Park

2008-07-01T23:59:59.000Z

340

OXIDATION OF DRY HYDROCARBONS AT HIGH-POWER DENSITY ANODES  

DOE Green Energy (OSTI)

This work builds upon discoveries by the University of Pennsylvania and others pertaining to the oxidation of dry hydrocarbon fuels in high temperature solid oxide fuel cells. The work reported here was restricted primarily to dry methane and confirms that YSZ-based cells, having ceria in the anode as a catalyst and copper in the anode as a current collector, can operate on dry methane for extended periods. Thirty-three lab-scale cells of various designs were fabricated and operated under a variety of conditions. The longest-lived cell gave stable performance on dry methane at 800 C for over 305 hours. Only slight carbon deposition was noted at the completion of the test. A corresponding nickel/YSZ-based anode would have lasted for less than an hour under these test conditions (which included open circuit potential measurements) before carbon fouling essentially destroyed the cell. The best performing cell achieved 112 mW/cm{sub 2} on dry methane at 800 C. Several problems were encountered with carbon fouling and declining open circuit voltages in many of the test cells after switching from operation on hydrogen to dry methane. Although not rigorously confirmed by experimentation, the results suggested that air infiltration through less than perfect perimeter seals or pinholes in the electrolytes, or both gave rise to conditions that caused the carbon fouling and OCV decline. Small amounts of air reacting with methane in a partial oxidation reaction could produce carbon monoxide that, in turn, would deposit the carbon. If this mechanism is confirmed, it implies that near perfect hardware is required for extended operation. Some evidence was also found for the formation of electrical shorts, probably from carbon deposits bridging the electrolyte. Work with odorized methane and with methane containing 100-ppm hydrogen sulfide confirmed that copper is stable at 800 C in dry hydrocarbon fuels in the presence of sulfur. In a number of cases, but not exclusively, the performance life on dry methane with sulfur compounds was much longer than with dry methane alone. The effect of sulfur compounds in these cases appeared to correlate with inhibition of carbon deposition. Mixed results were obtained for the effect of the sulfur compounds on power density. Progress also was made in understanding the mechanisms involved in direct utilization of dry natural gas. Evidence was developed for three possible mechanisms for dry methane utilization in addition to the usually cited mechanism--direct oxidation of methane by oxygen anions. Further work is required at a fundamental level before the knowledge gained here can be translated into higher levels of performance.

K.Krist; O. Spaldon-Stewart; R. Remick

2004-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Amorphous Al-transition Metal Alloys as Anode Material for Lithium Ion Battery  

E-Print Network (OSTI)

Al based alloy powders (Al??Ni?Y?Co?Fe?) are produced by spray atomization method. High energy ball milling is done to modify the surface topology and particle size for better electrochemical performance. X ray diffraction ...

Wang, C.Y.

342

Effects of Physical Properties of Anode Raw Materials on the Paste ...  

Science Conference Proceedings (OSTI)

Quality and Process Performance of Rotary Kilns and Shaft Calciners Real Time Temperature Distribution during Sealing Process and Room Temperature Air...

343

Materials Technology @ TMS  

Science Conference Proceedings (OSTI)

Dec 12, 2010 ... A benchtop version of the world's smallest batteryits anode one ... and discharging of a battery in real time and at atomic scale resolution,...

344

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: ... Description: Group focus in materials science (inkjet metrology, micro-macro, advanced characterizations). ...

2012-10-02T23:59:59.000Z

345

Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Dinh (PI) Dinh (PI) Thomas Gennett National Renewable Energy Laboratory October 1, 2009 Novel Approach to Advanced Direct Methanol Fuel Cell Anode Catalysts This presentation does not contain any proprietary, confidential, or otherwise restricted information Objectives Develop cost-effective, reliable, durable fuel cells for portable power applications (e.g., cell phones, computers, etc.) that meet all DOE targets. Note that the energy density (Wh/L), volumetric (W/L), and specific power (W/kg) all depend on knowing the weight and volume of the entire DMFC system as well as the volume and concentration of fuel, which are system specific (power application and manufacturer dependent). In our model study the surface power density levels on HOPG will allow for indirect evaluation of our system to DOE's energy density

346

Anode reactive bleed and injector shift control strategy  

DOE Patents (OSTI)

A system and method for correcting a large fuel cell voltage spread for a split sub-stack fuel cell system. The system includes a hydrogen source that provides hydrogen to each split sub-stack and bleed valves for bleeding the anode side of the sub-stacks. The system also includes a voltage measuring device for measuring the voltage of each cell in the split sub-stacks. The system provides two levels for correcting a large stack voltage spread problem. The first level includes sending fresh hydrogen to the weak sub-stack well before a normal reactive bleed would occur, and the second level includes sending fresh hydrogen to the weak sub-stack and opening the bleed valve of the other sub-stack when the cell voltage spread is close to stack failure.

Cai, Jun [Rochester, NY; Chowdhury, Akbar [Pittsford, NY; Lerner, Seth E [Honeoye Falls, NY; Marley, William S [Rush, NY; Savage, David R [Rochester, NY; Leary, James K [Rochester, NY

2012-01-03T23:59:59.000Z

347

Sn/SnOx Core-Shell Nanospheres: Synthesis, Anode Performance in Li Ion Batteries, and Superconductivity  

Science Conference Proceedings (OSTI)

Sn/SnO{sub x} core?shell nanospheres have been synthesized via a modified polyol process. Their size can be readily controlled by tuning the usage of surface stabilizers and the temperature. Anode performance in Li ion batteries and their superconducting properties is detailed. As anode materials, 45 nm nanospheres outperform both larger and smaller ones. Thus, they exhibit a capacity of about 3443 mAh cm{sup -3} and retain about 88% of after 10 cycles. We propose a model based on the microstructural evolution to explain the size impact on nanosphere performance. Magnetic measurements indicate that the nanospheres become superconducting below the transition temperature T{sub C} = 3.7 K, which is similar to the value obtained in bulk tin. Although T{sub C} does not significantly change with the size of the Sn core, we determined that the critical field H{sub C} of nanospheres can be as much as a factor of 30 larger compared to the bulk value. Alternating current measurements demonstrated that a transition from conventional to filamentary superconducting structure occurs in Sn/SnO{sub x} particles as their size increases. The transition is determined by the relationship between the particle size and the magnetic field penetration depth.

Wang, X.L.; Feygenson, M.; Aronson, M.C.; Han, W.-Q.

2010-09-09T23:59:59.000Z

348

Moab Project Offers Unique Educational Resource in Site Tours | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Offers Unique Educational Resource in Site Tours Project Offers Unique Educational Resource in Site Tours Moab Project Offers Unique Educational Resource in Site Tours May 2, 2013 - 12:00pm Addthis Students from the University of Utah contemplate the hillside geology at the rail load out area while Moab Federal Project Director Donald Metzler (in orange vest) addresses a question. The uranium mill tailings pile is behind and below the viewing area. Students from the University of Utah contemplate the hillside geology at the rail load out area while Moab Federal Project Director Donald Metzler (in orange vest) addresses a question. The uranium mill tailings pile is behind and below the viewing area. As Durham University students stand on the bank of the Colorado River, Moab Groundwater Manager Ken Pill (in yellow vest at left) explains how the groundwater interim action system operates. A well vault is in the foreground.

349

Denver Museum Taps Into Unique Geothermal Source | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Denver Museum Taps Into Unique Geothermal Source Denver Museum Taps Into Unique Geothermal Source Denver Museum Taps Into Unique Geothermal Source March 9, 2010 - 4:59pm Addthis Denver Museum of Nature & Science is planning to install a heat pump system that utilizes the city’s municipal water system. | Photo courtesy of Denver Museum of Nature & Science Denver Museum of Nature & Science is planning to install a heat pump system that utilizes the city's municipal water system. | Photo courtesy of Denver Museum of Nature & Science Stephen Graff Former Writer & editor for Energy Empowers, EERE What will the project do? These energy efficient practices could save the museum up to $7 million over the next 20 years. The heating and air conditioning in the new wing of the Denver Museum if

350

Nonlocal actin orientation models select for a unique orientation pattern  

E-Print Network (OSTI)

Many models have been developed to study the role of branching actin networks in motility. One important component of those models is the distribution of filament orientations relative to the cell membrane. Two mean-field models previously proposed are generalized and analyzed. In particular, we find that both models uniquely select for a dominant orientation pattern. In the linear case, the pattern is the eigenfunction associated with the principal eigenvalue. In the nonlinear case, we show there exists a unique equilibrium and that the equilibrium is locally stable. Approximate techniques are then used to provide evidence for global stability.

Daniel Smith; Jian Liu

2013-01-25T23:59:59.000Z

351

Investigation of RF plasma spraying synthesis of rare earth oxide nano-materials.  

E-Print Network (OSTI)

??Nano rare earth materials have attracted great interest recently due to their unique properties and extensive applications. Among the methods for nano rare earth materials (more)

Sun, Xiao Long.

2010-01-01T23:59:59.000Z

352

EFFECT OF FUEL IMPURITY ON STRUCTURAL INTEGRITY OF Ni-YSZ ANODE OF SOFCs  

SciTech Connect

Electricity production through the integration of coal gasification with solid oxide fuel cells (SOFCs) may potentially be an efficient technique for clean energy generation. However, multiple minor and trace components are naturally present in coals. These impurities in coal gas not only degrade the electrochemical performance of Ni-YSZ anode used in SOFCs, but also severely endanger the structural integrity of the Ni-YSZ anode. In this paper, effect of the trace impurity of the coal syngases on the mechanical degradation of Ni-YSZ anode was studied by using an integrated experimental/modeling approach. Phosphorus is taken as an example of impurity. Anode-support button cell was used to experimentally explore the migration of phosphorous impurity in the Ni-YSZ anode of SOFCs. X-ray mapping was used to show elemental distributions and new phase formation. The subsequent finite element stress analyses were conducted using the actual microstructure of the anode to illustrate the degradation mechanism. It was found that volume expansion induced by the Ni phase change produces high stress level such that local failure of the Ni-YSZ anode is possible under the operating conditions

Liu, Wenning N.; Sun, Xin; Marina, Olga A.; Pederson, Larry R.; Khaleel, Mohammad A.

2011-01-01T23:59:59.000Z

353

Materials for low temperature SOFCs.  

Science Conference Proceedings (OSTI)

Solid oxide fuel cells (SOFCs) are one of the potentially most efficient and clean energy conversion technologies for electric utility applications. Laboratory cells have shown extraordinary durability, and actual utility-scale prototypes have worked very well. The main obstacle to commercialization has been the relatively high manufacturing cost. To reduce these costs, efforts have been underway for several years to adapt manufacturing technology from the semiconductor industry to the SOFCs; however, tape casting, screen printing and similar methods are more applicable to planar configurations than to the more proven tubular ones. In planar cells the bipolar plate and edge seals become more critical elements, and material selection may have repercussions for the other fuel cell components. Ferritic stainless steel bipolar plates may be a good choice for reducing the cost of the stacks, but ferritic steels oxidize rapidly at temperatures above 800 C. Inexorably, one is led to the conclusion that anodes, cathodes and electrolytes operating below 800 C need to be found. Another motivation for developing planar SOFCs operating at reduced temperature is the prospect of new non-utility applications. The U.S. Department of Energy has initiated the Solid State Energy Conversion Alliance (SECA) program for developing small modular stacks ranging in capacity from 5 to 10 kW{sup (1)}. This size range meets the power requirements of auxiliary power units for heavy and perhaps even light-duty vehicles, and also for remote stationary applications. In terms of electric capacity, the distributed electric utility market may well exceed the potential market for APUs, but the number of units produced could be higher for the latter, yielding cost benefits related to mass production. On the other hand, the fuel for use in transportation or remote stationary applications will consist of gasoline, diesel or propane, which contain higher sulfur levels than natural gas. Anodes with some resistance to sulfur poisoning would be desirable. Also, during the more frequent shutdowns and startups in these applications, the anodes may get exposed to air. Typical nickel-based SOFC anodes may not tolerate air exposure very well and may need to be modified. Argonne National Laboratory is engaged in developing new materials options for SECA applications, as discussed here.

Krumpelt, M.; Ralph, J.; Cruse, T.; Bae, J.-M.

2002-08-02T23:59:59.000Z

354

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

A simple, approximate analysis of the effect of differing cathode and anode areas on the measurement of cell performance on anode-supported solid oxide fuel cells, wherein the cathode area is smaller than the anode area, is presented. It is shown that the effect of cathode area on cathode polarization, on electrolyte contribution, and on anode resistance, as normalized on the basis of the cathode area, is negligible. There is a small but measurable effect on anode polarization, which results from concentration polarization. Effectively, it is the result of a greater amount of fuel transported to the anode/electrolyte interface in cases wherein the anode area is larger than the cathode area. Experiments were performed on cells made with differing cathode areas and geometries. Cathodic and anodic overpotentials measured using reference electrodes, and the measured ohmic area specific resistances by current interruption, were in good agreement with expectations based on the analysis presented. At 800 C, the maximum power density measured with a cathode area of {approx}1.1 cm{sup 2} was {approx}1.65 W/cm{sup 2} compared to {approx}1.45 W/cm{sup 2} for cathode area of {approx}2 cm{sup 2}, for anode thickness of {approx}1.3 mm, with hydrogen as the fuel and air as the oxidant. At 750 C, the measured maximum power densities were {approx}1.3 W/cm{sup 2} for the cell with cathode area {approx}1.1 cm{sup 2}, and {approx}1.25 W/cm{sup 2} for the cell with cathode area {approx}2 cm{sup 2}.

Anil V. Virkar

2001-06-21T23:59:59.000Z

355

Development of metal-coated ceramic anodes for molten carbonate fuel cells. Final report  

DOE Green Energy (OSTI)

This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

1990-03-01T23:59:59.000Z

356

Development of metal-coated ceramic anodes for molten carbonate fuel cells  

DOE Green Energy (OSTI)

This report documents the developmental efforts on metal coating of various ceramic substrates (LiAlO{sub 2}, SrTiO{sub 3}, and LiFeO{sub 2}) and the critical issues associated with fabricating anodes using metal-coated LiAlO{sub 2} substrates. Electroless Ni and Cu coating technology was developed to achieve complete metal coverage on LiAlO{sub 2} powder substrates. Metal coated SrTiO{sub 3} powders were fabricated into anodes by a process identical to that reported in the GE literature. Microstructural examination revealed that the grains of the ceramic had fused together, with the metal having dewetted from the surface of the ceramic. Alternate substrates that might allow for better wetting of the metal on the ceramic such as LiFeO{sub 2} and Li{sub 2}MnO{sub 3} were identified. Cu/Ni-coated (50:50 mol ratio, 50 w/o metal loading) LiFeO{sub 2} anodes were optimized to meet the MCFC anode specifications. Metal-coated gamma-LiAlO{sub 2} substrates were also developed. By using suitable chemical surface modification methods, the gamma-UAlO{sub 2} substrate surface may be modified to allow a stable metal coated anode to be fabricated. Creep testing of the metal coated ceramic anodes were conducted at IGT. It was determined that the predominant creep mechanism is due to particle rearrangement. The anode porosity, and mean pore size had significant effect on the creep of the anode. Lower porosity and pore size consistent with performance criteria are desired to reduce creep. Lower metal loading with uniformity of coverage will result in lower creep behavior of the anode. Of the two substrates evaluated, LiFeO{sub 2} in general exhibited lower creep which was attributed to superior metal adhesion.

Khandkar, A.C.; Elangovan, S.; Marianowski, L.G.

1990-03-01T23:59:59.000Z

357

Thermodynamic analysis of interactions between Ni-based solid oxide fuel cells (SOFC) anodes and trace species in a survey of coal syngas  

Science Conference Proceedings (OSTI)

A thermodynamic analysis was conducted to characterize the effects of trace contaminants in syngas derived from coal gasification on solid oxide fuel cell (SOFC) anode material. The effluents from 15 different gasification facilities were considered to assess the impact of fuel composition on anode susceptibility to contamination. For each syngas case, the study considers the magnitude of contaminant exposure resulting from operation of a warm gas cleanup unit at two different temperatures and operation of a nickel-based SOFC at three different temperatures. Contaminant elements arsenic (As), phosphorous (P), and antimony (Sb) are predicted to be present in warm gas cleanup effluent and will interact with the nickel (Ni) components of a SOFC anode. Phosphorous is the trace element found in the largest concentration of the three contaminants and is potentially the most detrimental. Poisoning was found to depend on the composition of the syngas as well as system operating conditions. Results for all trace elements tended to show invariance with cleanup operating temperature, but results were sensitive to syngas bulk composition. Synthesis gas with high steam content tended to resist poisoning.

Andrew Martinez; Kirk Gerdes; Randall Gemmen; James Postona

2010-03-20T23:59:59.000Z

358

Observation of isolated nanopores formed by patterned anodic oxidation of aluminum thin films  

SciTech Connect

We report the formation of confined nanometer-scale regions of porous anodic alumina from thin aluminum films. Confinement is achieved by masking a thin Al film with a sputtered SiO{sub 2} layer, patterned by nanoimprint lithography of a polystyrene transfer layer. Anodization in 0.3 molar oxalic acid creates vertically aligned pores that were imaged with a combination of focused ion beam milling and scanning electron microscopy. Triplets, pairs, and single pores were observed following the anodization of isolated mask features approximately 100 nm in diameter.

Huang Qiyu; Lye, W.-K.; Reed, Michael L. [School of Microelectronics, Shanghai Jiaotong University, 1954 Huashan Road, Shanghai 200030 (China); Department of Electrical and Computer Engineering University of Virginia, Charlottesville, Virginia 22904 (United States)

2006-06-05T23:59:59.000Z

359

Non-consumable anode and lining for aluminum electrolytic reduction cell  

DOE Patents (OSTI)

An oxidation resistant, non-consumable anode, for use in the electrolytic reduction of alumina to aluminum, has a composition comprising copper, nickel and iron. The anode is part of an electrolytic reduction cell comprising a vessel having an interior lined with metal which has the same composition as the anode. The electrolyte is preferably composed of a eutectic of AlF.sub.3 and either (a) NaF or (b) primarily NaF with some of the NaF replaced by an equivalent molar amount of KF or KF and LiF.

Beck, Theodore R. (Seattle, WA); Brooks, Richard J. (Seattle, WA)

1994-01-01T23:59:59.000Z

360

Inert anode containing base metal and noble metal useful for the electrolytic production of aluminum  

DOE Patents (OSTI)

An inert anode for production of metals such as aluminum is disclosed. The inert anode comprises a base metal selected from Cu and Ag, and at least one noble metal selected from Ag, Pd, Pt, Au, Rh, Ru, Ir and Os. The inert anode may optionally be formed of sintered particles having interior portions containing more base metal than noble metal and exterior portions containing more noble metal than base metal. In a preferred embodiment, the base metal comprises Cu, and the noble metal comprises Ag, Pd or a combination thereof.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Chemical and mechanical spinodals a unique liquid-gas instability  

E-Print Network (OSTI)

We demonstrate that the instabilities of asymmetric nuclear matter at sub-saturation densities do not present two types of instabilities as usually discussed but a unique one. The associated order parameter is everywhere dominated by the isoscalar density and so the transition is of liquid-gas type even in the so-called chemical instability region.

Philippe Chomaz; Jerome Margueron

2003-03-11T23:59:59.000Z

362

Uniqueness and Approximated Computation of Optimal Incomplete Transportation Plans  

E-Print Network (OSTI)

Uniqueness and Approximated Computation of Optimal Incomplete Transportation Plans P. C. ´Alvarez Transportation, where a part of the mass could be not necessarily transported. Since optimal transportation plans consistency result. As a remarkable and unexpected additional result, with important implications for future

Cuesta, Juan Antonio

363

On the geomagnetic directional problem: A uniqueness result  

E-Print Network (OSTI)

On the geomagnetic directional problem: A uniqueness result Ralf Kaiser Fakultat fur Mathematik = f D. This problem is related to the problem of reconstructing the geomagnetic #12;eld outside on S. Key words: Nonlinear boundary value problem, geomagnetism, directional problem 35J65, 86A25 1

Kaiser, Ralf

364

Charcoal in Anodes for Aluminium Production - Programmaster.org  

Science Conference Proceedings (OSTI)

Symposium, Electrode Technology for Aluminum Production. Presentation Title ... Lower Aluminium Production Cost through Refractory Material Selection.

365

A Yolk-Shell Design for Stabilized and Scalable Li-Ion Battery Alloy Anodes  

SciTech Connect

Silicon is regarded as one of the most promising anode materials for next generation lithium-ion batteries. For use in practical applications, a Si electrode must have high capacity, long cycle life, high efficiency, and the fabrication must be industrially scalable. Here, we design and fabricate a yolk-shell structure to meet all these needs. The fabrication is carried out without special equipment and mostly at room temperature. Commercially available Si nanoparticles are completely sealed inside conformal, thin, self-supporting carbon shells, with rationally designed void space in between the particles and the shell. The well-defined void space allows the Si particles to expand freely without breaking the outer carbon shell, therefore stabilizing the solid-electrolyte interphase on the shell surface. High capacity (?2800 mAh/g at C/10), long cycle life (1000 cycles with 74% capacity retention), and high Coulombic efficiency (99.84%) have been realized in this yolk-shell structured Si electrode.

Liu, Nian; Wu, Hui; Mcdowell, Matthew T.; Yao, Yan; Wang, Chong M.; Cui, Yi

2012-05-02T23:59:59.000Z

366

Catalytic activity of ZrO2 nanotube arrays prepared by anodization method  

Science Conference Proceedings (OSTI)

ZrO2 nanotube arrays were prepared by anodization method in aqueous electrolyte containing (NH4)2SO4 and NH4F. The morphology and structure of nanotube arrays were characterized through scanning ...

Xixin Wang; Jianling Zhao; Xiaorui Hou; Qi He; Chengchun Tang

2012-01-01T23:59:59.000Z

367

ESS 2012 Peer Review - Flow-Assisted Zinc Anode Batteries for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6&91&>09-+&@C:40(:&O7B0& %.PQRR340(+;"""GS8P(+:S:75& FLOW-ASSISTED ZINC ANODE BATTERIES FOR GRID-SCALE ELECTRICITY STORAGE Prof. Sanjoy Banerjee, banerjee@che.ccny.cuny.e...

368

Reactions of the Carbon Anode in Alternative Battery and Fuel Cell Configurations  

Science Conference Proceedings (OSTI)

A model is formulated by combining carbonate dissociation with pre-existing anode mechanisms involving heterogeneous reaction kinetics. The proposed model accounts for both the observed preponderance of CO{sub 2} evolution and dependence of rate on carbon anode microstructure. Implications of the model for the design of carbon batteries and fuel cells are discussed, and the laboratory cells used in earlier research are described. High coulombic efficiencies for the net reaction C + O{sub 2} = CO{sub 2} require severely limiting the thickness of paste anodes in powder-fed fuel cells while the unreacting surfaces of solid prismatic anodes must be isolated from the CO{sub 2} product atmosphere to prevent Boudouard corrosion, according to C + CO{sub 2} = 2CO.

Cooper, J F; Krueger, R

2003-10-01T23:59:59.000Z

369

Full Control of Pitch Burn during Baking: It's Impact on Anode Quality ...  

Science Conference Proceedings (OSTI)

... costs, negatively impact on operational safety and a higher fuel consumption. ... Historical and Future Challenges with the Vibrated Bulk Density Test Methods for ... Prebaked Anode from Coal Extract (2) - Effects of the Properties of...

370

Amorphous Metallic Glass as New High Power and Energy Density Anodes For Lithium Ion Rechargeable Batteries  

E-Print Network (OSTI)

We have investigated the use of aluminum based amorphous metallic glass as the anode in lithium ion rechargeable batteries. Amorphous metallic glasses have no long-range ordered microstructure; the atoms are less closely ...

Meng, Shirley Y.

371

Method for Plutonium-Gallium Separation by Anodic Dissolution of a Solid Plutonium-Gallium Alloy  

DOE Patents (OSTI)

Purified plutonium and gallium are efficiently recovered from a solid plutonium-gallium (Pu-Ga) alloy by using an electrorefining process. The solid Pu-Ga alloy is the cell anode, preferably placed in a moving basket within the electrolyte. As the surface of the Pu-Ga anode is depleted in plutonium by the electrotransport of the plutonium to a cathode, the temperature of the electrolyte is sufficient to liquify the surface, preferably at about 500 C, resulting in a liquid anode layer substantially comprised of gallium. The gallium drips from the liquified surface and is collected below the anode within the electrochemical cell. The transported plutonium is collected on the cathode surface and is recovered.

Miller, William E.; Tomczuk, Zygmunt

1998-12-08T23:59:59.000Z

372

Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Geek-Up08.20.10 -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome Geek-Up08.20.10 -- Turning Trash Bags...

373

Molten Salt Multi-anode Reactive Alloy Coating(MARC) of Ta-W ...  

Science Conference Proceedings (OSTI)

In this study, Ta-W coated samples (Ta-7.31W, Ta-4.12W and Ta-1.92W) were prepared by multi-anode reactive alloy coating (MARC) process in molten salt...

374

Design and construction of rigs for studying surface condensation and creating anodized metal oxide surfaces  

E-Print Network (OSTI)

This thesis details the design and construction of a rig for studying surface condensation and a rig for creating anodized metal oxides (AMOs). The condensation rig characterizes condensation for different surfaces; this ...

Sun, Wei-Yang

2011-01-01T23:59:59.000Z

375

Surface-Modified Copper Current Collector for Lithium Ion Battery Anode  

A team of Berkeley Lab researchers led by Gao Liu has developed an innovative approach to improve the adhesion of anode laminate to copper current collectors in lithium ion batteries. This nanotechnology directly addresses delamination of graphite ...

376

A study of certain trace metals in sea water using anodic stripping voltammetry  

E-Print Network (OSTI)

Anodic stripping voltammetry utilizing a thin film mercury composite graphite electrode has been evaluated and applied for the direct analysis of the metals, Zn,J Cu, Pb, and Cd in sea water. The electrode was observed to ...

Fitzgerald, William Francis, 1926-

1970-01-01T23:59:59.000Z

377

For cermet inert anode containing oxide and metal phases useful for the electrolytic production of metals  

DOE Patents (OSTI)

A cermet inert anode for the electrolytic production of metals such as aluminum is disclosed. The inert anode comprises a ceramic phase including an oxide of Ni, Fe and M, where M is at least one metal selected from Zn, Co, Al, Li, Cu, Ti, V, Cr, Zr, Nb, Ta, W, Mo, Hf and rare earths, preferably Zn and/or Co. Preferred ceramic compositions comprise Fe.sub.2 O.sub.3, NiO and ZnO or CoO. The cermet inert anode also comprises a metal phase such as Cu, Ag, Pd, Pt, Au, Rh, Ru, Ir and/or Os. A preferred metal phase comprises Cu and Ag. The cermet inert anodes may be used in electrolytic reduction cells for the production of commercial purity aluminum as well as other metals.

Ray, Siba P. (Murrysville, PA); Liu, Xinghua (Monroeville, PA); Weirauch, Douglas A. (Murrysville, PA)

2002-01-01T23:59:59.000Z

378

Modeling of the anode side of a direct methanol fuel cell with analytical solutions  

E-Print Network (OSTI)

In this work, analytical solutions were derived (for any methanol oxidation reaction order) for the profiles of methanol concentration and proton current density by assuming diffusion mass transport mechanism, Tafel kinetics, and fast proton transport in the anodic catalyst layer of a direct methanol fuel cell. An expression for the Thiele modulus that allows to express the anodic overpotential as a function of the cell current, and kinetic and mass transfer parameters was obtained. For high cell current densities, it was found that the Thiele modulus ($\\phi^2$) varies quadratically with cell current density; yielding a simple correlation between anodic overpotential and cell current density. Analytical solutions were derived for the profiles of both local methanol concentration in the catalyst layer and local anodic current density in the catalyst layer. Under the assumptions of the model presented here, in general, the local methanol concentration in the catalyst layer cannot be expressed as an explicit fun...

Mosquera, Martn A

2010-01-01T23:59:59.000Z

379

Stability of Iridium Anode in Molten Oxide Electrolysis for Ironmaking: Influence of Slag Basicity  

E-Print Network (OSTI)

Molten oxide electrolysis (MOE) is a carbon-neutral, electrochemical technique to decompose metal oxide directly into liquid metal and oxygen gas upon use of an inert anode. What sets MOE apart from other technologies is ...

Kim, Hojong

380

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Availability Technology Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And...

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Material-Independent Design of Photoluminescent Systems  

Nanomaterials have attracted much attention recently because of their unique functionality. Researchers at ORNL have discovered a method to make nonluminescent nanostructured materials luminescent (photoluminescent and/or electroluminescent), ...

382

Using Neutrons to Study Radioactive Materials  

Science Conference Proceedings (OSTI)

Symposium, Applied Neutron Scattering in Engineering and Materials Science Research ... to the unique infrastructure and specialized staff of the Nuclear Laboratory. Shielded cells enable neutron diffraction studies on highly radioactive...

383

ND in Materials Science and Technology II  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: ND in ... to the unique infrastructure and specialized staff of the Nuclear Laboratory. Shielded cells enable neutron diffraction studies on highly radioactive samples.

384

Materials Innovation in the Aerospace Industry  

Science Conference Proceedings (OSTI)

Detailed schedule information follows. ... to composites to hybrid materials offers the aerospace market unique design solutions to meet ever demanding requirements in ... Director of the Office of Economic Analysis U.S. Department of Energy

385

P-64: A Comparative Study of Metal Oxide Coated Indium-tin Oxide Anodes  

E-Print Network (OSTI)

Indium-tin oxide anodes capped with certain oxides of metals enhance while other oxides degrade the hole-injection and quantum efficiencies of organic light-emitting diodes (OLEDs). The oxides of tin, zinc, praseodymium, yttrium, gallium, terbium and titanium have been investigated. The power efficiency of an OLED with a 1nm thick praseodymium oxide cap is improved by 2.5 times over that of a conventional OLED without an oxide capped anode.

For Organic Light-Emitting; Chengfeng Qiu; Haiying Chen; Zhilang Xie; Man Wong; Hoi Sing Kwok

2002-01-01T23:59:59.000Z

386

NETL: News Release - DOE Program Offers Participants Unique Opportunity to  

NLE Websites -- All DOE Office Websites (Extended Search)

February 8, 2011 February 8, 2011 DOE Program Offers Participants Unique Opportunity to Gain Carbon Capture and Storage Knowledge Program for Graduate Students, Early Career Professionals Provides Intensive Hands-On Tutorial Washington, DC - Future leaders and innovators in the area of carbon capture and storage (CCS) can gain a unique and intensive tutorial on the subject by participating in the U.S. Department of Energy's (DOE) Research Experience in Carbon Sequestration (RECS) program. MORE INFO Application instructions on RECS website Supported by the Office of Fossil Energy (FE), the program for graduate students and early career professionals is currently accepting applications for RECS 2011, scheduled for June 5-15, in Birmingham, AL, and the deadline to apply is April 15.

387

Argonne launches unique research initiative to realize solar energy's  

NLE Websites -- All DOE Office Websites (Extended Search)

launches unique research initiative to realize solar energy's launches unique research initiative to realize solar energy's full potential By Angela Hardin * February 22, 2010 Tweet EmailPrint Spurred by global development and population growth, the world's energy needs are expected to double by 2050. The best solution to meet this coming demand is an energy mix that includes generous amounts of renewable energy sources such as solar, wind and biofuels, as well as nuclear energy and fossil fuels. Of the many options, the sun represents the most abundant renewable energy source. Its rays have a potential supply that dwarfs the global demand for energy today and for the foreseeable future. However, the costs of converting sunlight to usable electricity, heat or fuel must be radically reduced to realize this potential. And that can only be accomplished

388

Introducing FRED, Enabling Unique Visualization and Manipulation of Energy  

Open Energy Info (EERE)

Introducing FRED, Enabling Unique Visualization and Manipulation of Energy Introducing FRED, Enabling Unique Visualization and Manipulation of Energy Data at Multiple Scales Home > Groups > OpenEI Community Central Sfederspiel's picture Submitted by Sfederspiel(5) Member 20 May, 2013 - 13:28 FRED Free Energy Data Map OpenEI Tool Visualization The U.S. Department of Energy, the Pacific Northwest National Laboratory, and the Planetary Skin Institute recently released a new open platform hosted by OpenEI which enables state and local governments, agencies, corporations, and other energy analysts to effectively visualize energy use data and make energy data more useful for decision-making processes. The Free Energy Data (FRED) platform will contribute to the Energy Data Initiative to make energy data more transparent and adaptable for

389

Uniqueness of Bohmian Mechanics, and Solutions From Probability Conservation  

E-Print Network (OSTI)

We show that one-dimensional Bohmian mechanics is unique, in that, the Bohm trajectories are the only solutions that conserve total left (or right) probability. In Brandt et al., Phys. Lett. A, 249 (1998) 265--270, they define quantile motion--unique trajectories are solved by assuming that the total probability on each side of the particle is conserved. They argue that the quantile trajectories are identical to the Bohm trajectories. Their argument, however, fails to notice the gauge freedom in the definition of the quantum probability current. Our paper sidesteps this under-determinedness of the probability current. The one-dimensional probability conservation can be used for higher dimensional problems if the wave function is separable. Several examples are given using total left probability conservation, most notably, the two-slit experiment.

Timothy M. Coffey; Robert E. Wyatt; Wm. C. Schieve

2007-10-22T23:59:59.000Z

390

Microsoft Word - 25A2340 Continued  

NLE Websites -- All DOE Office Websites (Extended Search)

Silicon coated carbon nanofiber paper is a transformative advance for lithium ion batteries. This unique anode material shows stable cycling, low irreversible capacity, and energy...

391

Guide to good practices for operations aspects of unique processes  

Science Conference Proceedings (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Operations Aspects of Facility Chemistry and Unique Process, Chapter 13 of Department of Energy (DOE) Order 5480.19, ``Conduct of Operations Requirements for DOE Facilities.`` The practices in this guide should be considered when planning or reviewing employee training and facility management programs. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19.

Not Available

1993-06-01T23:59:59.000Z

392

Novel motor design for rotating anode x-ray tubes operating in the fringe field of a magnetic resonance imaging system  

SciTech Connect

Purpose: Using hybrid x-ray/MR (XMR) systems for image guidance during interventional procedures could enhance the diagnosis and treatment of neurologic, oncologic, cardiovascular, and other disorders. The authors propose a close proximity hybrid system design in which a C-arm fluoroscopy unit is placed immediately adjacent to the solenoid magnet of a MR system with a minimum distance of 1.2 m between the x-ray and MR imaging fields of view. Existing rotating anode x-ray tube designs fail within MR fringe field environments because the magnetic fields alter the electron trajectories in the x-ray tube and act as a brake on the induction motor, reducing the rotation speed of the anode. In this study the authors propose a novel motor design that avoids the anode rotation speed reduction. Methods: The proposed design replaces the permanent magnet stator found in brushed dc motors with the radial component of the MR fringe field. The x-ray tube is oriented such that the radial component of the MR fringe field is orthogonal to the cathode-anode axis. Using a feedback position sensor and the support bearings as electrical slip rings, the authors use electrical commutation to eliminate the need for mechanical brushes and commutators. A vacuum compatible prototype of the proposed motor design was assembled, and its performance was evaluated at various operating conditions. The prototype consisted of a 3.1 in. diameter anode rated at 300 kHU with a ceramic rotor that was 5.6 in. in length and had a 2.9 in. diameter. The material chosen for all ceramic components was MACOR, a machineable glass ceramic developed by Corning Inc. The approximate weight of the entire assembly was 1750 g. The maximum rotation speed, angular acceleration, and acceleration time of the motor design were investigated, as well as the dependence of these parameters on rotor angular offset, magnetic field strength, and field orientation. The resonance properties of the authors' assembly were also evaluated to determine its stability during acceleration, and a pulse width modulation algorithm was implemented to control the rotation speed of the motor. Results: At a magnetic flux density of 41 mT orthogonal to the axis of rotation (on the lower end of the expected flux density in the MR suite) the maximum speed of the motor was found to be 5150 revolutions per minute (rpm). The acceleration time necessary to reach 3000 rpm was found to be approximately 10 s at 59 mT. The resonance frequency of the assembly with the anode attached was 1310 rpm (21.8 Hz) which is far below the desired operating speeds. Pulse width modulation provides an effective method to control the speed of the motor with a resolution of 100 rpm. Conclusions: The proposed design can serve as a direct replacement to the conventional induction motor used in rotating anode x-ray tubes. It does not suffer from a reduced rotation speed when operating in a MR environment. The presence of chromic steel bearings in the prototype prevented testing at the higher field strengths, and future iterations of the design could eliminate this shortcoming. The prototype assembly demonstrates proof of concept of the authors' design and overcomes one of the major obstacles for a MR compatible rotating anode x-ray tube.

Lillaney, Prasheel; Pelc, Norbert [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Bioengineering, Stanford University, Stanford, California 94305 (United States); Shin Mihye [Department of Radiology, Stanford University, Stanford, California 94305 and Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Hinshaw, Waldo; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Bennett, N. Robert [Department of Radiology, Stanford University, Stanford, California 94305 and Qualcomm MEMS Technologies, San Jose, California 95134 (United States)

2013-02-15T23:59:59.000Z

393

WEDGE-AND-STRIP ANODES FOR CENTROID-FINDING POSITION-SENSITIVE PHOTOM AND PARTICLE DETECTORS  

SciTech Connect

We discuss new anode geometries, employing position-dependent charge partitioning, which can be used with microchannel plates, planar proportional counters, and mesh dynode electron multipliers to obtain a two-dimensional position signal from each detected photon or particle. Only three or four anode electrodes and signal paths are required, yet images comprised of a number of detected events have little geometric distortion and the resolution is not limited by thermal noise inherent in resistive sheet anodes. We present an analysis of the geometrical image nonlinearity in the relationship between event centroid location and the charge partition ratios. Fabrication and testing of two wedge-and-strip anode systems are discussed. Images obtained with EUV radiation and microchannel plates that verify the predicted performance of this readout system are shown. We emphasize that the spatial resolution of the wedge-and-strip anode is in no way limited by the coarseness of the anode conductor pattern. The resolution is of the order of 0.4% of the image field size, and could be further improved by adopting low noise signal circuitry. Tradeoffs encountered in the design of practical x-ray, EUV, and charge particle image systems are discussed.

Martin, C.; Jelinsky, P.; Lampto, M.; Malina, R.F.; Anger, H.O.

1981-02-01T23:59:59.000Z

394

Brightness enhancement of plasma ion source by utilizing anode spot for nano applications  

Science Conference Proceedings (OSTI)

Anode spots are known as additional discharges on positively biased electrode immersed in plasmas. The anode spot plasma ion source (ASPIS) has been investigated as a high brightness ion source for nano applications such as focused ion beam (FIB) and nano medium energy ion scattering (nano-MEIS). The generation of anode spot is found to enhance brightness of ion beam since the anode spot increases plasma density near the extraction aperture. Brightness of the ASPIS has been estimated from measurement of emittance for total ion beam extracted through sub-mm aperture. The ASPIS is installed to the FIB system. Currents and diameters of the focused beams with/without anode spot are measured and compared. As the anode spot is turned on, the enhancement of beam current is observed at fixed diameter of the focused ion beam. Consequently, the brightness of the focused ion beam is enhanced as well. For argon ion beam, the maximum normalized brightness of 12 300 A/m{sup 2} SrV is acquired. The ASPIS is applied to nano-MEIS as well. The ASPIS is found to increase the beam current density and the power efficiency of the ion source for nano-MEIS. From the present study, it is shown that the ASPIS can enhance the performance of devices for nano applications.

Park, Yeong-Shin; Lee, Yuna; Chung, Kyoung-Jae; Hwang, Y. S. [Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Yoon-Jae [Samsung Electronics Co. Ltd., Gyeonggi 445-701 (Korea, Republic of); Park, Man-Jin [Research Institute of Nano Manufacturing System, Seoul National University of Science and Technology, Seoul 139-743 (Korea, Republic of); Moon, Dae Won [Nanobio Fusion Research Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

2012-02-15T23:59:59.000Z

395

Mitigation of Sulfur Poisoning of Ni/Zirconia SOFC Anodes by Antimony and Tin  

Science Conference Proceedings (OSTI)

Surface Ni/Sb and Ni/Sb alloys were found to efficiently minimize the negative effects of sulfur on the performance of Ni/zirconia anode-supported solid oxide fuel cells (SOFC). Prior to operating on fuel gas containing low concentrations of H2S, the nickel/zirconia anodes were briefly exposed to antimony or tin vapor, which only slightly affected the SOFC performance. During the subsequent exposures to 1 and 5 ppm H2S, increases in anodic polarization losses were minimal compared to those observed for the standard nickel/zirconia anodes. Post-test XPS analyses showed that Sb and Sn tended to segregate to the surface of Ni particles, and further confirmed a significant reduction of adsorbed sulfur on the Ni surface in Ni/Sn and Ni/Sb samples compared to the Ni. The effect may be the result of weaker sulfur adsorption on bimetallic surfaces, adsorption site competition between sulfur and Sb or Sn on Ni, or other factors. The use of dilute binary alloys of Ni-Sb or Ni-Sn in the place of Ni, or brief exposure to Sb or Sn vapor, may be effective means to counteract the effects of sulfur poisoning in SOFC anodes and Ni catalysts. Other advantages, including suppression of coking or tailoring the anode composition for the internal reforming, are also expected.

Marina, Olga A.; Coyle, Christopher A.; Engelhard, Mark H.; Pederson, Larry R.

2011-02-28T23:59:59.000Z

396

Characterization of Petroleum Coke and Butts Used in Anode ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2013. Symposium, Particulate Composites. Presentation Title, Characterization of Petroleum Coke...

397

Graphene Based Anodes for Li-ion Batteries  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2013 TMS Annual Meeting & Exhibition. Symposium , Nanostructured Materials for Lithium Ion Batteries and for Supercapacitors.

398

High-Performance SOFC Anodes Prepared by Infiltration of ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Presentation Title, High-Performance SOFC...

399

Materials Characterization | Advanced Materials | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization Nuclear Forensics Scanning Probes Related Research Materials Theory and Simulation Energy Frontier Research Centers Advanced Materials Home | Science &...

400

Sol-gel processing of nanostructured inorganic scintillating materials  

Science Conference Proceedings (OSTI)

The development of scintillating materials is believed to reach a new step by controlling their preparation on a nanometric level. Sol-Gel chemistry offers very unique tools for nanoscale mastering of the materials preparation. In particular, shaping ...

J. M. Nedelec

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science Materials Science Materials Science1354608000000Materials ScienceSome of these resources are LANL-only and will require Remote Access./No/Questions? 667-5809library@lanl.gov Materials Science Some of these resources are LANL-only and will require Remote Access. Key Resources Data Sources Reference Organizations Journals Key Resources CINDAS Materials Property Databases video icon Thermophysical Properties of Matter Database (TPMD) Aerospace Structural Metals Database (ASMD) Damage Tolerant Design Handbook (DTDH) Microelectronics Packaging Materials Database (MPMD) Structural Alloys Handbook (SAH) Proquest Technology Collection Includes the Materials Science collection MRS Online Proceedings Library Papers presented at meetings of the Materials Research Society Data Sources

402

Variation of anode grid surface morphology and its effect on operation of a triode virtual cathode oscillator  

Science Conference Proceedings (OSTI)

After repeatedly operation of a triode virtual cathode oscillator, the surface morphology of anode grid is studied by a scanning electron microscope. It is found that there are many quasi-periodic sawteeth formed on the anode grid, which are about 300-500 {mu}m in height, {approx}200 {mu}m in width, and 150-200 {mu}m in period. The formation of this sawteeth implies that there is possible Rayleigh-Taylor-like instability on the anode grid during the irradiation by high-current relativistic electron beam. These sawteeth enhance the electric field on anode grid, leading to more feasible of anode plasma generation, and more rapidly expansion of that plasma. As a result, the electron transmissivity of anode grid is decreased, the output microwave power of the virtual cathode oscillator is lowered and its operational performance is degraded.

Xu Qifu; Cai Dan; Zhang Qiang; Zhao Xuelong; Zhao Qi; Cheng Guoxin; Liu Lie [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

2012-10-15T23:59:59.000Z

403

Unique Energy Management Training Offers Certification and Energy Savings  

E-Print Network (OSTI)

The Northwest Energy Education Institute1 (NEEI) has developed and presents a very unique energy efficiency training and certification program. Modeled after a similar course once offered in New Zealand, NEEI offers a two-week energy management certification program that requires students to place into practice what is learned in the classroom. Students who have completed the program show a significant return on investment for their training dollar and ongoing energy savings. This paper will present the Energy Management Certification2 (EMC) program in detail and five case studies of students who have completed the program.

Ebbage, R.

2004-01-01T23:59:59.000Z

404

Apparatus for controlling system state based on unique identifiers  

DOE Patents (OSTI)

An apparatus allows workers to assert and release control over the energization of a system. The apparatus does not require the workers to carry any additional paraphernalia, and is not be easily defeated by other workers. Users asserting and releasing control present tokens uniquely identifying each user to a reader, and the apparatus prevents transition of the system to an undesired state until an appropriate number of users are currently asserting control. For example, a dangerous manufacturing robot can be prevented from energizing until all the users that have asserted control when entering the robot's controlled space have subsequently released control when leaving the robot's controlled space.

Drotning, William D. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

405

Reactor Materials  

Energy.gov (U.S. Department of Energy (DOE))

The reactor materials crosscut effort will enable the development of innovative and revolutionary materials and provide broad-based, modern materials science that will benefit all four DOE-NE...

406

Electrocatalysis of anodic and cathodic oxygen-transfer reactions  

SciTech Connect

The electrocatalysis of oxygen-transfer reactions is discussed in two parts. In Part I, the reduction of iodate (IO{sub 3}{sup {minus}}) is examined as an example of cathodic oxygen transfer. On oxide-covered Pt electrodes (PtO), a large cathodic current is observed in the presence of IO{sub 3}{sup {minus}} to coincide with the reduction of PtO. The total cathodic charge exceeds the amount required for reduction of PtO and IO{sub 3}{sup {minus}} to produce an adsorbed product. An electrocatalytic link between reduction of IO{sub 3}{sup {minus}} and reduction of PtO is indicated. In addition, on oxide-free Pt electrodes, the reduction of IO{sub 3}{sup {minus}} is determined to be sensitive to surface treatment. The electrocatalytic oxidation of CN{sup {minus}} is presented as an example of anodic oxygen transfer in Part II. The voltametric response of CN{sup {minus}} is virtually nonexistent at PbO{sub 2} electrodes. The response is significantly improved by doping PbO{sub 2} with Cu. Cyanide is also oxidized effectively at CuO-film electrodes. Copper is concluded to serve as an adsorption site for CN{sup {minus}}. It is proposed that an oxygen tunneling mechanism comparable to electron tunneling does not occur at the electrode-solution interface. The adsorption of CN{sup {minus}} is therefore considered to be a necessary prerequisite for oxygen transfer. 201 refs., 23 figs., 2 tabs.

Wels, B.R.

1990-09-21T23:59:59.000Z

407

Novel High Capacity Anodes for Lithium Ion Batteries  

Science Conference Proceedings (OSTI)

Fracture Toughness Evaluation of Polymeric Materials for Wind Turbine Blades ... Hot Section Corrosion Issues in Microturbines Operating on B100 Bio-Diesel.

408

Lithium-Titanium-Oxide Anodes Improve Battery Safety and Performance  

titanium-oxide materials improves on the safety of graphite electrodes while also offering ... such as electric and hybrid-electric vehicles Portable electronic ...

409

Influence of Pore Former Loadings on Anode Microstructures for ...  

Science Conference Proceedings (OSTI)

A Novel Electrode Material for Symmetrical Solid Oxide Fuel Cells ... High Performance Oxide Protective Coatings for SOFC Components Influence of Pore...

410

Forming Gas Treatment of Lithium Ion Battery Anode Graphite ...  

WOOD III, DAVID L Materials Science and Technology Div Licensing Contact DETRANA, ALEXANDER G UT-Battelle, LLC Oak Ridge National Laboratory

411

Materials - Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Assessment The staff of the Energy Systems Division has a long history of technical and economic analysis of the production and recycling of materials for transportation...

412

Materials Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science science-innovationassetsimagesicon-science.jpg Materials Science National security depends on science and technology. The United States relies on Los Alamos...

413

Energy Production from Coal Syngas Containing H2S via Solid Oxide Fuel Cells Utilizing Lanthanum Strontium Vanadate Anodes.  

E-Print Network (OSTI)

??Lanthanum strontium vanadate (LSV), a perovskite ceramic electrocatalyst suitable for use as a solid oxide fuel cell (SOFC) anode, has shown significant activity toward the (more)

Cooper, Matthew E.

2008-01-01T23:59:59.000Z

414

Materials issues in lithium ion rechargeable battery technology  

DOE Green Energy (OSTI)

Lithium ion rechargeable batteries are predicted to replace Ni/Cd as the workhorse consumer battery. The pace of development of this battery system is determined in large part by the availability of materials and the understanding of interfacial reactions between materials. Lithium ion technology is based on the use of two lithium intercalating electrodes. Carbon is the most commonly used anode material, while the cathode materials of choice have been layered lithium metal chalcogenides (LiMX{sub 2}) and lithium spinel-type compounds. Electrolytes may be either organic liquids or polymers. Although the first practical use of graphite intercalation compounds as battery anodes was reported in 1981 for molten salt cells and in 1983 for ambient temperature systems, it was not until Sony Energytech announced a new lithium ion intercalating carbon anode in 1990, that interest peaked. The reason for this heightened interest is that these electrochemical cells have the high energy density, high voltage and light weight of metallic lithium, but without the disadvantages of dendrite formation on charge, improving their safety and cycle life.

Doughty, D.H.

1995-07-01T23:59:59.000Z

415

Electrochemical studies of Mg-doped Li{sub 4}Ti{sub 5}O{sub 12} anodes.  

DOE Green Energy (OSTI)

Commercial lithium-ion batteries use carbon as the material of choice for the anode. However, because lithiated carbon has a voltage very close to the potential of metallic lithium, there are concerns about the safety of fully-charged carbon electrodes. The safety issue can be addressed by using a material that intercalates lithium at a higher voltage. A promising material is the lithium-titanium-oxide spinel material Li{sub 4}Ti{sub 5}O{sub 12} which can accommodate 3 Li{sup +} ions per formula unit (corresponding to 175 mAh/g) in a two-phase reaction at approximately 1.5 V versus lithium. One of the drawbacks of this system is that the end-member Li{sub 4}Ti{sub 5}O{sub 12} is electronically insulating, which limits electron transfer at the electrode surface. By doping this material with magnesium, Li{sub 4{minus}x}Mg{sub x}Ti{sub 5}O{sub 12}, we introduced mixed-valent Ti{sup 4+}/Ti{sup 3+} into the stoichiometric spinel structure and thereby increased the electronic conductivity by several orders of magnitude without sacrificing electrochemical performance. In this presentation we will provide data on the extent of the solid solution in Li{sub 4{minus}x}Mg{sub x}Ti{sub 5}O{sub 12}, the variation of electronic conductivity as a function of dopant concentration and the rate capability of the doped material.

Chen, C. H.; Jansen, A. N.; Vaughey, J.

1999-07-19T23:59:59.000Z

416

Determination of the cathode and anode voltage drops in high power low-pressure amalgam lamps  

Science Conference Proceedings (OSTI)

For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.

Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation); Vasiliev, A. I., E-mail: vasiliev@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V.; Startsev, A. Yu. [Joint Stock Company NPO LIT (Russian Federation); Kudryavtsev, N. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation)

2011-12-15T23:59:59.000Z

417

Formation of Self-Organized Anode Patterns in Arc Discharge Simulations  

E-Print Network (OSTI)

Pattern formation and self-organization are phenomena commonly observed experimentally in diverse types of plasma systems, including atmospheric-pressure electric arc discharges. However, numerical simulations reproducing anode pattern formation in arc discharges have proven exceedingly elusive. Time-dependent three-dimensional thermodynamic nonequilibrium simulations reveal the spontaneous formation of self-organized patterns of anode attachment spots in the free-burning arc, a canonical thermal plasma flow established by a constant DC current between an axi-symmetric electrodes configuration in the absence of external forcing. The number of spots, their size, and distribution within the pattern depend on the applied total current and on the resolution of the spatial discretization, whereas the main properties of the plasma flow, such as maximum temperatures, velocity, and voltage drop, depend only on the former. The sensibility of the solution to the spatial discretization stresses the computational requirements for comprehensive arc discharge simulations. The obtained anode patterns qualitatively agree with experimental observations and confirm that the spots originate at the fringes of the arc - anode attachment. The results imply that heavy-species - electron energy equilibration, in addition to thermal instability, has a dominant role in the formation of anode spots in arc discharges.

Juan Pablo Trelles

2012-12-31T23:59:59.000Z

418

Thermoelectric Materials  

Science Conference Proceedings (OSTI)

Thermoelectric materials can generate electricity or provide cooling by converting thermal gradients to electricity or electricity to thermal gradients. More efficient thermoelectric materials would make feasible the widespread use of thermoelectric converters in mundane applications. This report summarizes the state-of-the-art of thermoelectric materials including currently available materials and applications, new developments, and future prospects.

2000-01-14T23:59:59.000Z

419

A. Materials for Energy  

Science Conference Proceedings (OSTI)

A13: Anode Properties of MgH2 for All Solid State Lithium Ion Battery ... A26; Effect of Atomic Layer Deposited Thin TiO2 Layers on the Performance of...

420

First-Principles Study of Novel Conversion Reactions for High-Capacity Li-Ion Battery Anodes in the Li-Mg-B-N-H System  

DOE Green Energy (OSTI)

Anodes for Li-ion batteries are primarily carbon-based due to their low cost and long cycle life. However, improvements to the Li capacity of carbon anodes, LiC{sub 6} in particular, are necessary to obtain a larger energy density. State-of-the-art light-metal hydrides for hydrogen storage applications often contain Li and involve reactions requiring Li transport, and light-metal ionic hydrides are candidates for novel conversion materials. Given a set of known solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble, as a function of lithium chemical potential. We present computational results for several new conversion reactions with capacities between 2400 and 4000 mAh g{sup -1} that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li{sub 4}BN{sub 3}H{sub 10}. While the predicted reactions involve multiple steps, the maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si.

Mason, T.H.; Graetz, J.; Liu, X.; Hong, J.; Majzoub, E.H.

2011-07-28T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8.20.10] -- Turning Trash Bags into Battery Anodes and 8.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome Geek-Up[08.20.10] -- Turning Trash Bags into Battery Anodes and Researching the Gut Microbiome August 20, 2010 - 5:18pm Addthis Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs What are the key facts? An Argonne Scholar has figured out a way to convert grocery bags into carbon nanotubes that can be used as components for lithium-ion batteries. We have about three pounds of bacteria living in our gut -- most of which is helpful for our immune system development and metabolism. Scientists at Ames Laboratory are making batteries that are "greener" and more cost-efficient by using rare earth elements -- neodymium

422

Method for providing uranium articles with a corrosion resistant anodized coating  

SciTech Connect

Uranium articles are provided with anodized oxide coatings in an aqueous solution of an electrolyte selected from the group consisting of potassium phosphate, potassium hydroxide, ammonium hydroxide, and a mixture of potassium tetraborate and boric acid. The uranium articles are anodized at a temperature greater than about 75.degree. C. with a current flow of less than about 0.036 A/cm.sup.2 of surface area while the pH of the solution is maintained in a range of about 2 to 11.5. The pH values of the aqueous solution and the low current density utilized during the electrolysis prevent excessive dissolution of the uranium and porosity in the film or watering. The relatively high temperature of the electrolyte bath inhibits hydration and the attendant deleterious pitting so as to enhance corrosion resistance of the anodized coating.

Waldrop, Forrest B. (Powell, TN); Washington, Charles A. (Oak Ridge, TN)

1982-01-01T23:59:59.000Z

423

Formation of Si-based nano-island array on porous anodic alumina  

SciTech Connect

Si-based nano-island arrays were fabricated on porous anodic alumina by two methods. In the first method, a thick silicon film was first deposited onto the surface with highly ordered bowl array prepared by anodizing an Al foil, followed by the formation of a polycrystalline silicon nano-island array on the surface close to the bowl array after dissolving aluminum. In the second method, porous anodization was performed on an Al thin film on Si and a SiO{sub 2} nano-island array was subsequently formed electrochemically. Time-resolved atomic force microscopy and photoluminescence were used to investigate the growth process as well as the mechanism of the growth process. Our proposed mechanism as well as assumptions made to formulate the model were found to be in agreement with the experimental results.

Mei, Y.F. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China)]. E-mail: yf.mei@plink.cityu.edu.hk; Huang, G.S. [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Li, Z.M. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Siu, G.G. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China); Fu, Ricky K.Y. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China); Yang, Y.M. [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Wu, X.L. [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Tang, Z.K. [Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Kowloon, Hong Kong (China)

2004-11-08T23:59:59.000Z

424

Effect of operating parameters and anode gas impurities upon polymer electrolyte fuel cells  

DOE Green Energy (OSTI)

PEM fuel cells are actively under development for transportation and other applications. Integration of a PEM fuel cell stack with a methanol reformer requires an understanding of single cell performance under a range of operating conditions using anode gas contaminated with impurities. The effect of temperature, pressure, and anode gas impurities on single cell PEM performance was investigated with platinum black electrodes. Single cell performance remained unchanged as temperature was varied between 80 and 100 at 3 atm pressure. High water partial pressures at 120C produced a mass transfer limiting current. While operation at 120C did not reverse CO{sub 2} poisoning, anode air addition proved effective. Air injection also decreased CO poisoning at injected concentrations up to 200 ppm CO. Higher single cell tolerance was observed for CH{sub 3}OH than CO. Up to 1 mole % CH{sub 3}OH in the gas phase reduced the current density by less than 10%.

Weisbrod, K.R.; Vanderborgh, N.E.

1994-07-01T23:59:59.000Z

425

Concentrated ion beam emitted from an enlarged cylindrical-anode-layer Hall plasma accelerator and mechanism  

SciTech Connect

An enlarged cylindrical-anode-layer Hall plasma accelerator with an outlet diameter of 150 mm is experimentally demonstrated to produce a concentrated ion beam, especially at a high discharge voltage, with a high current utilization efficiency of up to {approx}0.9. Numerical investigation based on the three-dimensional particle-in-cell method is performed to study the ion dynamics and elucidate the origin of the ion beam characteristics. The simulation results reveal that the equipotential lines play an important role in the surface near the anode emitting the ions. The ion emitting surface is determined by the magnetic field lines near the anode and the magnetic mirror contributes to the concentrated beam significantly. The high current utilization efficiency results from the appropriate obliquity of the magnetic mirror.

Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon (Hong Kong)

2013-01-28T23:59:59.000Z

426

Breathing oscillations in enlarged cylindrical-anode-layer Hall plasma accelerator  

SciTech Connect

Breathing oscillations in the discharge of an enlarged cylindrical-anode-layer Hall plasma accelerator are investigated by three-dimensional particle-in-cell (PIC) simulation. Different from the traditional breathing mode in a circular Hall plasma accelerator, the bulk plasma oscillation here is trigged by the potential barrier generated by the concentrated ion beam and substantial enough to compete with the anode voltage. The electric field near the anode is suppressed by the potential barrier thereby decreasing the electron density by {approx}36%. The discharge is restored to the normal level after the concentrated beam explodes and then it completes one cycle of electro-driven breathing oscillation. The breathing mode identified by the PIC simulation has a frequency range of {approx}156 kHz-{approx}250 kHz and does not vary monotonically with the discharge voltage.

Geng, S. F.; Wang, C. X. [Southwestern Institute of Physics, Chengdu 610041 (China) [Southwestern Institute of Physics, Chengdu 610041 (China); Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China); Tang, D. L.; Qiu, X. M. [Southwestern Institute of Physics, Chengdu 610041 (China)] [Southwestern Institute of Physics, Chengdu 610041 (China); Fu, R. K. Y. [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China)] [Plasma Technology Limited, Festival Walk Tower, Tat Chee Avenue, Kowloon, Hong Kong (China); Chu, Paul K. [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)] [Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong (China)

2013-05-28T23:59:59.000Z

427

Unique QA/QC requirements for analytical chemistry at LANL  

Science Conference Proceedings (OSTI)

One of the missions of group NMT-1 (Nuclear Materials Technology Division/Analytical Chemistry) at Los Alamos National Laboratory (LANL) is to provide analysis of both radioactive and nonradioactive materials to address the stockpile stewardship needs of the US Department of Energy (DOE). Trace to high levels of various constituents are measured using traditional analytical methods and state-of-the-art instrumental methods. The capabilities include Pu and U assay, wet chemistry, plasma spectroscopy, mass spectrometry radiochemistry, X-ray fluorescence, anion and cation analysis, special standards preparation, surface analysis, and gas analysis. The authors are currently developing and implementing a plan to independently assess the quality of the analytical data produced by NMT-1. Nuclear materials of a matrix similar to the client`s samples but having different concentration levels of analytes that are representative of the client`s samples will be used. Well-characterized, stable, homogeneous materials have been identified as possible candidates for single-blind quality control (QC) samples. These materials include Pu metal, Pu oxide, U metal, U oxide, and U-Pu mixed oxide (MOX) with varying degrees of purity. These single-blind samples will be periodically distributed along with regular client samples to be analyzed by the aforementioned analytical methods.

Tandon, L.; Gautier, M.A.; Hammond, C.F.; Porterfield, D.R. [Los Alamos National Lab., NM (United States)

1998-12-31T23:59:59.000Z

428

Unique QA/QC requirements for analytical chemistry at LANL  

Science Conference Proceedings (OSTI)

One of the missions of group NMT-1 (Nuclear Materials Technology Division/Analytical Chemistry) at Los Alamos National Laboratory (LANL) is to provide analysis of both radioactive and nonradioactive materials to address the stockpile stewardship needs of the US Department of Energy (DOE). Trace to high levels of various constituents are measured using traditional analytical methods and state-of-the-art instrumental methods. Capabilities include Pu and U assay, wet chemistry, plasma spectroscopy, mass spectrometry radiochemistry, x-ray fluorescence, anion and cation analysis, special standards preparation, surface analysis, and gas analysis. The authors are currently developing and implementing a plan to independently assess the quality of the analytical data produced by NMT-1. Nuclear materials of a matrix similar to the client`s samples but having different concentration levels of analytes that are representative of the client`s samples will be used. Well-characterized, stable, homogeneous materials have been identified as possible candidates for single-blind quality control (QC) samples. These materials include Pu metal, Pu oxide, uranium metal, uranium oxide, and uranium-plutonium mixed oxide with varying degrees of purity. These single-blind samples will be periodically distributed along with regular client samples to be analyzed by the above mentioned analytical methods.

Tandon, L.; Gautier, M.A.; Hammond, C.F.; Porterfield, D.R.

1998-12-31T23:59:59.000Z

429

NOVEL ELECTRODE MATERIALS FOR LOW-TEMPERATURE SOLID-OXIDE FUEL CELLS  

DOE Green Energy (OSTI)

Fuel cell performance depends strongly on the anode microstructure, which is determined by the anode compositions and fabrication conditions. Four types of anodes with two kinds of NiO and GDC powders were investigated. By carefully adjusting the anode microstructure, the GDC electrolyte/anode interfacial polarization resistances reduced dramatically. The interfacial resistance at 600 C decreased from 1.61 {Omega} cm{sup 2} for the anodes prepared using commercially available powders to 0.06 {Omega} cm{sup 2} for those prepared using powders derived from a glycine-nitrate process. The critical issues facing the development of economically competitive SOFC systems include lowering the operation temperature and creating novel anode materials and microstructures capable of efficiently utilizing hydrocarbon fuels. Anode-supported SOFCs with an electrolyte of 20 {micro}m- thick Gd-doped ceria (GDC) were fabricated by co-pressing, and both Ni- and Cu-based anodes were prepared by a solution impregnation process. At 600 C, SOFCs fueled with humidified H{sub 2}, methane, and propane, reached peak power densities of 602, 519, and 433 mW/cm{sup 2}, respectively. Both microstructure and composition of the anodes, as fabricated using a solution impregnation technique, greatly influence fuel cell performance. Although steam reforming or partial oxidation is effective in avoiding carbon deposition of hydrocarbon fuels, it increases the operating cost and reduces the energy efficiency. A catalyst (1 %wt Pt dispersed on porous Gd-doped ceria) for pre-reforming of propane was developed with relatively low steam to carbon (S/C) ratio ({approx}0.5), coupled with direct utilization of the reformate in low-temperature SOFCs. Propane was converted to smaller molecules during pre-reforming, including H{sub 2}, CH{sub 4}, CO, and CO{sub 2}. A peak power density of 247 mW/cm{sup 2} was observed when pre-reformed propane was directly fed to an SOFC operated at 600 C. No carbon deposition was observed in the fuel cell for a continuous operation of 10 hours at 600 C.

Shaowu Zha; Luis Aguilar; Meilin Liu

2003-12-01T23:59:59.000Z

430

Materials at LANL  

Science Conference Proceedings (OSTI)

Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

Taylor, Antoinette J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

431

Materials at LANL  

SciTech Connect

Exploring the physics, chemistry, and metallurgy of materials has been a primary focus of Los Alamos National Laboratory since its inception. In the early 1940s, very little was known or understood about plutonium, uranium, or their alloys. In addition, several new ionic, polymeric, and energetic materials with unique properties were needed in the development of nuclear weapons. As the Laboratory has evolved, and as missions in threat reduction, defense, energy, and meeting other emerging national challenges have been added, the role of materials science has expanded with the need for continued improvement in our understanding of the structure and properties of materials and in our ability to synthesize and process materials with unique characteristics. Materials science and engineering continues to be central to this Laboratory's success, and the materials capability truly spans the entire laboratory - touching upon numerous divisions and directorates and estimated to include >1/3 of the lab's technical staff. In 2006, Los Alamos and LANS LLC began to redefine our future, building upon the laboratory's established strengths and promoted by strongly interdependent science, technology and engineering capabilities. Eight Grand Challenges for Science were set forth as a technical framework for bridging across capabilities. Two of these grand challenges, Fundamental Understanding of Materials and Superconductivity and Actinide Science. were clearly materials-centric and were led out of our organizations. The complexity of these scientific thrusts was fleshed out through workshops involving cross-disciplinary teams. These teams refined the grand challenge concepts into actionable descriptions to be used as guidance for decisions like our LDRD strategic investment strategies and as the organizing basis for our external review process. In 2008, the Laboratory published 'Building the Future of Los Alamos. The Premier National Security Science Laboratory,' LA-UR-08-1541. This document introduced three strategic thrusts that crosscut the Grand Challenges and define future laboratory directions and facilities: (1) Information Science and Technology enabl ing integrative and predictive science; (2) Experimental science focused on materials for the future; and (3) Fundamental forensic science for nuclear, biological, and chemical threats. The next step for the Materials Capability was to develop a strategic plan for the second thrust, Materials for the Future. within the context of a capabilities-based Laboratory. This work has involved extending our 2006-2007 Grand Challenge workshops, integrating materials fundamental challenges into the MaRIE definition, and capitalizing on the emerging materials-centric national security missions. Strategic planning workshops with broad leadership and staff participation continued to hone our scientific directions and reinforce our strength through interdependence. By the Fall of 2008, these workshops promoted our primary strength as the delivery of Predictive Performance in applications where Extreme Environments dominate and where the discovery of Emergent Phenomena is a critical. These planning efforts were put into action through the development of our FY10 LDRD Strategic Investment Plan where the Materials Category was defined to incorporate three central thrusts: Prediction and Control of Performance, Extreme Environments and Emergent Phenomena. As with all strategic planning, much of the benefit is in the dialogue and cross-fertilization of ideas that occurs during the process. By winter of 2008/09, there was much agreement on the evolving focus for the Materials Strategy, but there was some lingering doubt over Prediction and Control of Performance as one of the three central thrusts, because it overarches all we do and is, truly, the end goal for materials science and engineering. Therefore, we elevated this thrust within the overarching vision/mission and introduce the concept of Defects and Interfaces as a central thrust that had previously been implied but not clearly articulated.

Taylor, Antoinette J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

432

The Economical Remediation of Plastic Waste into Advanced Materials with Coatings (IN-07-070)  

Argonne has developed an autogenic pyrolysis process to convert plastic waste into high-value carbon nanotubes (50?100 nm outside diameter) and perfectly round carbon spheres (2-12 ?m outside diameter). The tubes can be used as anode material in ...

433

Anodic polymerization of vinyl ethylene carbonate in Li-Ion battery electrolyte  

DOE Green Energy (OSTI)

A study of the anodic oxidation of vinyl ethylene carbonate (VEC) was conducted with post-mortem analysis of reaction products by ATR-FTIR and gel permeation chromatography (GPC). The half-wave potential (E1/2) for oxidation of VEC is ca. 3.6 V producing a resistive film on the electrode surface. GPC analysis of the film on a gold electrode produced by anodization of a commercial Li-ion battery electrolyte containing 2 percent VEC at 4.1 V showed the presence of a high molecular weight polymer. IR analysis indicated polycarbonate with alkyl carbonate rings linked by aliphatic methylene and methyl branches.

Chen, Guoying; Zhuang, Guorong V.; Richardson, Thomas J.; Gao, Liu; Ross Jr., Philip N.

2005-02-28T23:59:59.000Z

434

Fabrication of copper-based anodes via atmosphoric plasma spraying techniques  

SciTech Connect

A fuel electrode anode (18) for a solid oxide fuel cell is made by presenting a solid oxide fuel cell having an electrolyte surface (15), mixing copper powder with solid oxide electrolyte in a mixing step (24, 44) to provide a spray feedstock (30,50) which is fed into a plasma jet (32, 52) of a plasma torch to melt the spray feed stock and propel it onto an electrolyte surface (34, 54) where the spray feed stock flattens into lamellae layer upon solidification, where the layer (38, 59) is an anode coating with greater than 35 vol. % based on solids volume.

Lu, Chun (Monroeville, PA)

2012-04-24T23:59:59.000Z

435

Nuclear resonance scattering of synchrotron radiation as a unique electronic, structural and thermodynamic probe  

SciTech Connect

Discovery of Moessbauer effect in a nuclear transition was a remarkable development. It revealed how long-lived nuclear states with relatively low energies in the kiloelectron volt (keV) region can be excited without recoil. This new effect had a unique feature involving a coupling between nuclear physics and solid-state physics, both in terms of physics and sociology. Physics coupling originates from the fact that recoilless emission and absorption or resonance is only possible if the requirement that nuclei have to be bound in a lattice with quantized vibrational states is fulfilled, and that the finite electron density on the nucleus couples to nuclear degrees of freedom leading to hyperfine interactions. thus, Moessbauer spectroscopy allows peering into solid-state effects using unique nuclear transitions. Sociological aspects of this coupling had been equally startling and fruitful. The interaction between diverse scientific communities, who learned to use Moessbauer spectroscopy proved to be very valuable. For example, biologists, geologists, chemists, physics, materials scientists, and archeologists, all sharing a common spectroscopic technique, also learned to appreciate the beauty and intricacies of each other's fields. As a laboratory-based technique, Moessbauer spectroscopy matured by the end of the 1970s. Further exciting developments took place when accelerator-based techniques were employed, like synchrotron radiation or 'in-beam'Moessbauer experiments with implanted radioactive ions. More recently, two Moessbauer spectrometers on the surface of the Mars kept the technique vibrant and viable up until present time. In this chapter, the authors look into some of the unique aspects of nuclear resonance excited with synchrotron radiation as a probe of condensed matter, including magnetism, valence, vibrations, and lattice dynamics, and review the development of nuclear resonance inelastic x-ray scattering (NRIXS) and synchrotron Moessbauer spectroscopy (SMS). However, to place these two techniques into some perspective with respect to other methods that yield related information, they display their version of a frequently used map of momentum and energy transfer diagram in figure 17.1. Here, various probes like electrons, neutrons, or light, i.e., Brillouin or Raman, and relatively newer forms of X-ray scattering are placed according to their range of energy and momentum transfer taking place during the measurements. Accordingly, NRIXS is a method that needs to be considered as a complementary probe to inelastic neutron and X-ray scattering, while SMS occupies a unique space due to its sensitivity to magnetism, structural deformations, valence, and spin states.

Alp, E. Ercan; Sturhahn, Wolfgang; Toellner, Thomas S.; Zhao, Jiyong; Leu, Bogdan M.

2012-05-09T23:59:59.000Z

436

Parasitic corrosion-resistant anode for use in metal/air or metal/O/sub 2/ cells  

DOE Patents (OSTI)

A consumable metal anode is described which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

Joy, R.W.; Smith, D.F.

1982-09-20T23:59:59.000Z

437

Parasitic corrosion resistant anode for use in metal/air or metal/O.sub.2 cells  

SciTech Connect

A consumable metal anode which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.

Joy, Richard W. (Santa Clara, CA); Smith, David F. (Boulder Creek, CA)

1983-01-01T23:59:59.000Z

438

Aluminum bulk micromachining through an anodic oxide mask by electrochemical etching in an acetic acid/perchloric acid solution  

Science Conference Proceedings (OSTI)

A well-defined microstructure with microchannels and a microchamber was fabricated on an aluminum plate by four steps of a new aluminum bulk micromachining process: anodizing, laser irradiation, electrochemical etching, and ultrasonication. An aluminum ... Keywords: Aluminum, Anodizing, Bulk micromachining, Electrochemical etching, Laser irradiation

Tatsuya Kikuchi, Yuhta Wachi, Masatoshi Sakairi, Ryosuke O. Suzuki

2013-11-01T23:59:59.000Z

439

Magnetocaloric Materials  

Science Conference Proceedings (OSTI)

Magnetic Materials for Energy Applications IV: Magnetocaloric Materials ... due to cost-effectiveness as well as superior magneto-thermal characteristics. ... metals and p-block elements can be explored in a time- and energy-saving manner.

440

Materials Science  

Science Conference Proceedings (OSTI)

Materials Science. Summary: Key metrologies/systems: In situ spectroscopic ellipsometry, linear and non-linear spectroscopies ...

2012-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Training Materials  

Science Conference Proceedings (OSTI)

Training Materials. NIST Handbook 44 Self-Study Course. ... Chapter 3 Organization and Format of NIST Handbook 44 DOC. ...

2011-08-10T23:59:59.000Z

442

Nuclear Maintenance Applications Center: Material Handling Application Guide  

Science Conference Proceedings (OSTI)

Although the majority of the material handling activities at nuclear power plant sites are similar to the material handling activities in many other industries, there are several differences unique to the nuclear power industry. This guide to material handling equipment and its safe and effective operation at nuclear plants covers basic common practices while taking into account those unique differences. Recent industry experiences provide context for the guidance in the report.

2007-11-30T23:59:59.000Z

443

Material matting  

Science Conference Proceedings (OSTI)

Despite the widespread use of measured real-world materials, intuitive tools for editing measured reflectance datasets are still lacking. We present a solution inspired by natural image matting and texture synthesis to the material matting problem, ... Keywords: appearance models, material separation, matting, spatially-varying BRDFs, texture synthesis

Daniel Lepage; Jason Lawrence

2011-12-01T23:59:59.000Z

444

Materializing energy  

Science Conference Proceedings (OSTI)

Motivated and informed by perspectives on sustainability and design, this paper draws on a diverse body of scholarly works related to energy and materiality to articulate a perspective on energy-as-materiality and propose a design approach of ... Keywords: design, design theory, energy, materiality, sustainability

James Pierce; Eric Paulos

2010-08-01T23:59:59.000Z

445

The Universe as a Process of Unique Events  

E-Print Network (OSTI)

We describe a new class of models of quantum space-time based on energetic causal sets and show that under natural conditions space-time emerges from them. These are causal sets whose causal links are labelled by energy and momentum and conservation laws are applied at events. The models are motivated by principles we propose govern microscopic physics which posit a fundamental irreversibility of time. One consequence is that each event in the history of the universe has a distinct causal relationship to the rest; this requires a novel form of dynamics which an be applied to uniquely distinctive events. We hence introduce a new kind of deterministic dynamics for a causal set in which new events are generated from pairs of progenitor events by a rule which is based on extremizing the distinctions between causal past sets of events. This dynamics is asymmetric in time, but we find evidence from numerical simulations of a 1+1 dimensional model, that an effective dynamics emerges which restores approximate time reversal symmetry. Finally we also present a natural twistorial representation of energetic causal sets.

Marina Corts; Lee Smolin

2013-07-23T23:59:59.000Z

446

Unique applications of personal computers in the welding environment  

SciTech Connect

The personal computer was found to be useful in supporting a variety of welding applications: 3-D representation of crack propagation using CADD software, storage and retrieval of photographic data using an image capture board, automated positioning of the welding electrode for GTA welding, interactive computer based voice communication for welding operations, surface temperature measurements of welded structures, and inventory control of weld material through use of bar codes.

Glickstein, S.S.

1990-12-31T23:59:59.000Z

447

Materials Education Community  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

448

Emerging Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

449

Established Materials Technologies  

Science Conference Proceedings (OSTI)

Digital Resource Center Home. Materials Education. Materials Education. Established Materials Technologies. Magnesium Superalloys. Emerging Materials...

450

A Comparison of Molten Sn and Bi for Solid Oxide Fuel Cell Anodes  

Science Conference Proceedings (OSTI)

Molten Sn and Bi were examined at 973 and 1073 K for use as anodes in solid oxide fuel cells with yttria-stabilized zirconia (YSZ) electrolytes. Cells were operated under battery conditions, with dry He flow in the anode compartment, to characterize the electrochemical oxidation of the metals at the YSZ interface. For both metals, the open-circuit voltages (OCVs) were close to that expected based on their oxidation thermodynamics, ~0.93 V for Sn and ~0.48 V for Bi. With Sn, the cell performance degraded rapidly after the transfer of approximately 0.5-1.5 Ccm{sup 2} of charge due to the formation of a SnO{sub 2} layer at the YSZ interface. At 973 K, the anode impedance at OCV for freshly reduced Sn was approximately 3 {ohm}cm{sup 2} but this increased to well over 250 {ohm}cm{sup 2} after the transfer of of charge. Following the transfer of 8.2 Ccm{sup 2} at 1073 K, the formation of a 10{micro}m thick SnO{sub 2} layer was confirmed by scanning electron microscopy. With Bi, the OCV anode impedance at 973 K was less than 0.25 {ohm}cm{sup 2} and remained constant until essentially all of the Bi had been oxidized to BiO{sub 2}. Some implications of these results for direct carbon fuel cells are discussed.

Jayakumar, A.; Lee, Sang Bok; Horns, A.; Vohs, J. M.; Gorte, R. J.

2010-01-01T23:59:59.000Z

451

Phase transformations and microstructural design of lithiated metal anodes for lithium-ion rechargeable batteries  

E-Print Network (OSTI)

There has been great recent interest in lithium storage at the anode of Li-ion rechargeable battery by alloying with metals such as Al, Sn, and Sb, or metalloids such as Si, as an alternative to the intercalation of graphite. ...

Limthongkul, Pimpa, 1975-

2002-01-01T23:59:59.000Z

452

Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes  

E-Print Network (OSTI)

that lower- ing the price of batteries is a major goal, the cost of the processing and fabricationSolution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes Candace K. Chan, Reken N. Patel interest in using nanomaterials for advanced lithium-ion battery electrodes, par- ticularly for increasing

Cui, Yi

453

LSCF Synthesis and Syngas Reactivity over LSCF-modified Ni/YSZ Anode.  

E-Print Network (OSTI)

??Simulated coal syngas reactivity over Ni/YSZ and LSCF (La0.6Sr0.4Co0.2Fe0.8)-modified Ni/YSZ anode of SOFC (solid oxide fuel cell) was investigated in this study. The contribution of (more)

Mirzababaei, Jelvehnaz

2011-01-01T23:59:59.000Z

454

Predictions of particle size and lattice diffusion pathway requirements for sodium-ion anodes using eta-Cu6Sn5 thin films as a model system  

SciTech Connect

Geometrically well-defined Cu6Sn5 thin films were used as model systems to estimate the diffusion depth and diffusion pathway requirements of Li and Na ions in alloy anodes. eta-Cu6Sn5 anodes have an initial reversible capacity towards Li of 545 mAh g-1 (Li3.96Sn or 19.8 Li/Cu6Sn5) and a very low initial irreversible capacity of 1.6 Li/Cu6Sn5. In contrast, the reaction with Na is limited with a reversible capacity of 160 mAh g-1 compared to the expected 516 mAh g-1. The potential profile is analogous to that of pure Sn with an average potential of 0.3 V. X-ray diffraction and 119Sn-M ssbauer measurements show that this limited capacity is likely resulting from the limited diffusion of Na into the anode particles not the formation of a low Na-content phase. This is substantiated by the analysis of the structure of eta-Cu6Sn5 which revealed zig-zag and tunnel diffusion pathways with spherical voids with a diameter very close to that of Na+. Moreover, our results also indicate that an alloy of eta-Cu6Sn5 should have optimized particle sizes of about 10 nm in diameter to increase the Na-capacity significantly. An alternative system consisting of a mixture of Cu6Sn5 and Sn of nominal composition Cu6Sn10 has been studied as possible Na-ion anode material possessing higher storage capacity than pure Cu6Sn5. Indeed this mixture of phase delivers a larger initial reversible storage capacity up to 400 mAh g-1. Finally, we have evidenced that the presence of Cu in Cu6Sn5 and in Cu6Sn10 suppresses the anomalous electrolyte decomposition normally measured for pure Sn at 1.2 V during discharge.

Baggetto, Loic [ORNL; Jumas, Dr. Jean-Claude [Institut Charles Gerhardt, University of Montpellier II, FRANCE; Gorka, Joanna [ORNL; Bridges, Craig A [ORNL; Veith, Gabriel M [ORNL

2013-01-01T23:59:59.000Z

455

Gaseous Arginine Conformers and Their Unique Intramolecular Interactions  

DOE Green Energy (OSTI)

Extensive ab initio calculations were employed to characterize stable conformers of gaseous arginine, both canonical and zwitterionic tautomers. Step-by-step geometry optimizations of possible single-bond rotamers at the B3LYP/6-31G(d), B3LYP/6-31++G(d,p) and MP2/6-31++G(d,p) levels yield numerous structures that are more stable than any known ones. The final electronic energies of the conformers were determined at the CCSD/6-31++G(d,p) level. The lowest energies of the canonical and zwitterionic structures are lower than the existing ones by 2.0 and 2.3 kcal/mol, respectively. The relative energies, rotational constants, dipole moments and harmonic frequencies of the stable conformers were given for future experimental verifications. The conformational distributions at various temperatures, estimated based upon the thermodynamic principles, consist almost exclusively of the newly found structures. One striking feature is the occurrence of the blue-shifting hydrogen bonds in all the six most stable conformers. A unique feature of important conformations is the coexistence of dihydrogen, blue- and red-shifting hydrogen bonds. In addition to the hydrogen bonds, the stereoelectronic effects were also found to be important stabilization factors. The calculated and measured proton affinities agree within the theoretical and experimental uncertainties, affirming high quality of our conformational search. The theoretical gas phase basicity of 245.9 kcal/mol is also in good agreement with the experimental value of 240.6 kcal/mol. The extensive searches establish firmly that gaseous arginine exists primarily in the canonical and not the zwitterionic form. Computing resources were available through a Computational Grand Challenge Application grant from the Molecular Sciences Computing Facility in the Environmental Molecular Sciences Laboratory. PNNL is operated by Battelle for the U.S. DOE under Contract DE-AC06-76RLO 1830.

Ling, Sanliang; Yu, Wenbo; Huang, Zhijian; Lin, Zijing; Haranczyk, Maciej; Gutowski, Maciej S.

2006-11-09T23:59:59.000Z

456

Gaseous Arginine Conformers and Their Unique Intramolecular Interactions.  

DOE Green Energy (OSTI)

Extensive ab initio calculations were employed to characterize stable conformers of gaseous arginine, both the canonical and zwitterionic tautomers. Step-by-step geometry optimizations of possible single-bond rotamers at the B3LYP/6-31G(d), B3LYP/6-31++G(d,p), and MP2/6-31++G(d,p) levels yield numerous structures that are more stable than any known ones. The final electronic energies of the conformers were determined at the CCSD/6-31++G(d,p) level. The lowest energies of the canonical and zwitterionic structures are lower than the existing values by 2.0 and 2.3 kcal/mol, respectively. The relative energies, rotational constants, dipole moments, and harmonic frequencies of the stable conformers remain for future experimental verification. The conformational distributions at various temperatures, estimated according to thermodynamic principles, consist almost exclusively of the newly found structures. One striking feature is the occurrence of blueshifting hydrogen bonds in all six of the most stable conformers. A unique feature of important conformations is the coexistence of dihydrogen and blue- and red-shifting hydrogen bonds. In addition to the hydrogen bonds, the stereoelectronic effects were also found to be important stabilization factors. The calculated and measured proton affinities agree within the theoretical and experimental uncertainties, affirming the high quality of our conformational search. The theoretical gas-phase basicity of 245.9 kcal/mol is also in good agreement with the experimental value of 240.6 kcal/mol. The extensive searches establish firmly that gaseous arginine exists primarily in the canonical and not the zwitterionic form.

Ling, Sanliang; Yu, Wenbo; Huang, Zhijian; Lin, Zijing; Haranczyk, Maciej; Gutowski, Maciej S.

2006-11-09T23:59:59.000Z

457

OPS 9.13 Operations Aspects of Facility Chemistry and Unique...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPS 9.13 Operations Aspects of Facility Chemistry and Unique Processes 82498 OPS 9.13 Operations Aspects of Facility Chemistry and Unique Processes 82498 The objective of this...

458

Self-Aligned Cu-Si Core-Shell Nanowire Array as a High-Performance Anode for Li-Ion Batteries  

SciTech Connect

Silicon nanowires (NWs) have been reported as a promising anode that demonstrated high capacity without pulverization during cycling, however, they present some technical issues that remain to be solved. The high aspect ratio of the NWs and their small contact areas with the current collector cause high electrical resistance, which results in inefficient electron transport. The nano-size interface between a NW and the substrate experiences high shear stress during lithiation, causing the wire to separate from the current collector. In addition, most reported methods for producing silicon NWs involve high-temperature processing and require catalysts that later become contaminants. This study developed a new self-aligned Cu-Si core-shell NW array using a low-temperature, catalyst-free process to address the issues described. The silicon shell is amorphous as synthesized and accommodates Li-ions without phase transformation. The copper core functions as a built-in current collector to provide very short (nm) electron transport pathways as well as backbone to improve mechanical strength. Initial electrochemical evaluation has demonstrated good capacity retention and high Coulombic efficiency for this new anode material in a half-cell configuration. No wire fracture or core-shell separation was observed after cycling. However, electrolyte decomposition products largely covered the top surface of the NW array, restricting electrolyte access and causing capacity reduction at high charging rates.

Qu, Jun [ORNL; Li, Huaqing [ORNL; Henry Jr, John James [ORNL; Martha, Surendra K [ORNL; Dudney, Nancy J [ORNL; Lance, Michael J [ORNL; Mahurin, Shannon Mark [ORNL; Besmann, Theodore M [ORNL; Dai, Sheng [ORNL

2012-01-01T23:59:59.000Z

459

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1992-01-01T23:59:59.000Z

460

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1994-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography. 4 figs.

Anderson, D.F.; Kross, B.J.

1992-07-28T23:59:59.000Z

462

Scintillator material  

DOE Patents (OSTI)

An improved scintillator material comprising cerium fluoride is disclosed. Cerium fluoride has been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to known scintillator materials such as thallium-doped sodium iodide, barium fluoride and bismuth germanate. As a result, cerium fluoride is favorably suited for use as a scintillator material in positron emission tomography.

Anderson, David F. (Batavia, IL); Kross, Brian J. (Aurora, IL)

1994-01-01T23:59:59.000Z

463

Minor Materials  

Science Conference Proceedings (OSTI)

Table 1   Materials used in glass manufacture...Table 1 Materials used in glass manufacture Material Purpose Antimony oxide (Sb 2 O 3 ) Decolorizing and fining agent Aplite (K, Na, Ca, Mg, alumina silicate) Source of alumina Aragonite (CaCO 3 ) Source of calcium oxide Arsenic oxide (As 2 O 3 ) Fining and decolorizing agent Barite/barytes (BaSO 4 )...

464

Studies of electrolyte penetration in carbon anodes by NMR techniques.  

DOE Green Energy (OSTI)

A toroid cavity nuclear magnetic resonance (NMR) detector capable of recording radial concentration profiles, diffusion constants, and displacements of charge carriers was employed to investigate the lithium ion distribution in an electrochemical cell containing a carbonaceous material synthesized from pyrene and pillared clays as inorganic templates. A carbon rod was used in a control experiment to assign the Li{sup +} spectrum and to calibrate the one dimensional radial images.

Sandi, G.

1998-12-09T23:59:59.000Z

465

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Materials Advanced Materials Advanced Materials Express Licensing Active Terahertz Metamaterial Devices Express Licensing Anion-Conducting Polymer, Composition, And Membrane Express Licensing Analysis Of Macromolecule, Liggands And Macromolecule-Lingand Complexes Express Licensing Carbon Microtubes Express Licensing Chemical Synthesis Of Chiral Conducting Polymers Express Licensing Forming Adherent Coatings Using Plasma Processing Express Licensing Hydrogen Scavengers Express Licensing Laser Welding Of Fused Quartz Express Licensing Multiple Feed Powder Splitter Negotiable Licensing Boron-10 Neutron Detectors for Helium-3 Replacement Negotiable Licensing Insensitive Extrudable Explosive Negotiable Licensing Durable Fuel Cell Membrane Electrode Assembly (MEA) Express Licensing Method of Synthesis of Proton Conducting Materials

466

Advanced Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Conducting Materials Negotiable Licensing Microseismic Tracer Particles for Hydraulic Fracturing Negotiable Licensing A Photo-Stimulated Low Electron Temperature High Current...

467

Magnetic Materials  

Science Conference Proceedings (OSTI)

Oct 27, 2009 ... Extreme magnetic fields (>2 tesla), especially when combined with temperature, are being shown to revolutionize materials processing and...

468

materials processing  

Science Conference Proceedings (OSTI)

... of the Stainless Steel Elaborated by the Duplex Procedure (Electric Furnace- VOD Installation) [pp. ... Materials Processing on a Solar Furnace Satellite [pp.

469

Materials Studio  

Science Conference Proceedings (OSTI)

Jan 14, 2008 ... G. Fitzgerald; G. Goldbeck-Wood; P. Kung; M. Petersen; L. Subramanian; J. Wescott, " Materials Modeling from Quantum Mechanics to The...

470

Nuclear Materials  

Science Conference Proceedings (OSTI)

Materials and Fuels for the Current and Advanced Nuclear Reactors III ... response of oxide ceramics for nuclear applications through experiment, theory, and...

471

The uniqueness debate in computer ethics: What exactly is at issue, and why does it matter?  

Science Conference Proceedings (OSTI)

The purpose of this essay is to determine what exactly is meant by the claim computer ethics is unique, a position that will henceforth be referred to as the CEIU thesis. A brief sketch of the CEIU debate is provided, and an empirical case involving ... Keywords: CEIU thesis, ICT ethics, cyberstalking, moral issues, moral principles, objects of moral consideration, uniqueness advocates, uniqueness debate

Herman T. Tavani

2002-04-01T23:59:59.000Z

472

Electrochemical Performance and Stability of the Cathode for Solid Oxide Fuel Cells IV. On the Ohmic loss in anode supported button cells with LSM or LSCF cathodes  

Science Conference Proceedings (OSTI)

Anode-supported solid oxide fuel cells (SOFC) with a variety of YSZ electrolyte thicknesses were fabricated by tape casting and lamination. The preparation of the YSZ electrolyte tapes with various thicknesses was accomplished by using doctor blades with different gaps between the precision machined, polished blade and the casting surface. The green tape was cut into discs, sintered at 1385C for 2 h, and subsequently creep-flattened at 1350C for 2 h. Either LSCF with an SDC interlayer or LSM+YSZ composite was used as the cathode material for the fuel cells. The ohmic resistances of these anode-supported fuel cells were characterized by electrochemical impedance spectroscopy at temperatures from 500C to 750C. A linear relationship was found between the ohmic resistance of the fuel cell and the YSZ electrolyte thickness at all the measuring temperatures for both LSCF and LSM+YSZ cathode fuel cells. The ionic conductivities of the YSZ electrolyte, derived for the fuel cells with LSM+YSZ or LSCF cathodes, were independent of the cathode material and cell configuration. The ionic conductivities of the YSZ electrolyte was slightly lower than that of the bulk material, possibly due to Ni-doping into the electrolyte. The fuel cell with a SDC interlayer and LSCF cathode showed larger intercept resistance than the fuel cell with LSM+YSZ cathode, which was possibly due to the imperfect contact between the SDC interlayer and the YSZ electrolyte and the migration of Zr into the SDC interlayer to form an insulating solid solution during cell fabrication. Calculations of the contribution of the YSZ electrolyte to the total ohmic resistance showed that YSZ was still a satisfactory electrolyte at temperatures above 650C. Explorations should be directed to reduce the intercept resistance to achieve significant improvement in cell performance.

Lu, Zigui; Zhou, Xiao Dong; Templeton, Jared W.; Stevenson, Jeffry W.

2010-05-08T23:59:59.000Z

473

Photovoltaic Materials  

DOE Green Energy (OSTI)

As part of this project, ORNL also added specific pieces of equipment to enhance our ability to provide unique insight for the solar industry. These capabilities include a moisture barrier measurement system, a combined physical vapor deposition and sputtering system dedicated to cadmium-containing deposits, adeep level transient spectroscopy system useful for identifying defects, an integrating sphere photoluminescence system, and a high-speed ink jet printing system. These tools were combined with others to study the effect of defects on the performance of crystalline silicon and

Duty, C.; Angelini, J.; Armstrong, B.; Bennett, C.; Evans, B.; Jellison, G. E.; Joshi, P.; List, F.; Paranthaman, P.; Parish, C.; Wereszczak, A.

2012-10-15T23:59:59.000Z

474

Materials Science Advanced Materials News  

Science Conference Proceedings (OSTI)

... Contributes to Discovery of Novel Quantum Spin-Liquid Release Date ... Novel Filter Material Could Cut Natural Gas Refining Costs Release Date: 03 ...

2010-12-16T23:59:59.000Z

475

Materials Science Advanced Materials Portal  

Science Conference Proceedings (OSTI)

... to Discovery of Novel Quantum Spin-Liquid. illustration of metal organic framework Novel Filter Material Could Cut Natural Gas Refining Costs. ...

2013-06-27T23:59:59.000Z

476

Los Alamos Lab: Materials Physics & Applications Division  

NLE Websites -- All DOE Office Websites (Extended Search)

ADEPS Materials Physics and Applications, MPA ADEPS Materials Physics and Applications, MPA About Us Organization Jobs Materials Physics & Applications Home Center for Integrated Nanotechnologies Superconductivity Technology Center Condensed Matter and Magnet Science Sensors & Electrochemical Devices Materials Chemistry CONTACTS Division Leader Antoinette Taylor Deputy Division Leader David Watkins Point of Contact Susan Duran 505-665-1131 Materials Physics and Applications Division serves as the Laboratory's focal point for fundamental materials physics and materials chemistry, provides world-class user facilities, unique experimental capabilities, and the scientific talent and infrastructure to facilitate understanding and control of materials properties, and develops and apply materials-based solutions

477

Method for minimizing decarburization and other high temperature oxygen reactions in a plasma sprayed material  

SciTech Connect

A method is disclosed for spray coating material which employs a plasma gun that has a cathode, an anode, an arc gas inlet, a first powder injection port, and a second powder injection port. A suitable arc gas is introduced through the arc gas inlet, and ionization of the arc gas between the cathode and the anode forms a plasma. The plasma is directed to emenate from an open-ended chamber defined by the boundary of the anode. A coating is deposited upon a base metal part by suspending a binder powder within a carrier gas that is fed into the plasma through the first powder injection port; a material subject to degradation by high temperature oxygen reactions is suspended within a carrier gas that is fed into the plasma through the second injection port. The material fed through the second injection port experiences a cooler portion of the plasma and has a shorter dwell time within the plasma to minimize high temperature oxygen reactions. The material of the first port and the material of the second port intermingle within the plasma to form a uniform coating having constituent percentages related to the powder-feed rates of the materials through the respective ports.

Lenling, William J. (Madison, WI); Henfling, Joseph A. (Bosque Farms, NM); Smith, Mark F. (Albuquerque, NM)

1993-06-08T23:59:59.000Z

478

OOF Extensions and Applications to Multifunctional Materials ...  

Science Conference Proceedings (OSTI)

... Experimental Data: Christopher Marc Doyle Design and Simulation of Lithium Rechargeable Batteries. PhD thesis, Department ... Full Battery ... Anode ...

2013-07-05T23:59:59.000Z

479

Autogenic Pressure Reactions for Battery Materials Manufacture  

need any further chemical processing treatments. Spherical carbon particles offer the possibility of smoothing the current distribution at the anode ...

480

G. Biomaterials, Smart Materials, and Structures  

Science Conference Proceedings (OSTI)

Cross Sectional TEM Observations and Elemental Mapping on Anodic ... Use of Hybrid Nanoparticles to Enhance Thermal Energy Storage Capacity for...

Note: This page contains sample records for the topic "unique anode material" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Dense Membranes for Anode Supported all Perovskite IT-SOFCs  

DOE Green Energy (OSTI)

During this first year of the project, a post doctoral fellow (Dr. Hrudananda Jena), and two graduate students (Mr. Vinay B. V. Sivareddy, Aswin Somuru), were supported through this project funds. Also, partial support was provided to three undergraduate students (Jonthan Dooley, India Snowden, Jeremy Gilmore) majoring in Chemistry, Physics, and Engineering disciplines. Various wet chemical methods of synthesis have been attempted to prepare perovskite oxide powders with a hope to improve and engineer its properties to meet the requirements of Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFCs) components. Various compounds were synthesized, characterized by XRD, TEM, SEM, XPS, electron microprobe and their electrical transport properties were measured by EIS at elevated temperatures and compared. Sonochemical technique (power of ultra sonic probe 750 watt) combined with hydrothermal treatment of precursors for the preparation of calcium hydroxy apatites (Ca-HAp) was used for the first time. Ca-HAp was substituted with Sr and Mg (50% replacement of Ca in Ca-HAp) to study the effect of substitution on Ca-HAp. Calcium hydroxy apatite is a bioceramic and has potential applications as artificial bone, enamel materials. In this study we tried to investigate its use as proton conductors in PC-SOFC. The properties like electrical conductivity, crystal structure, compositions of CaHAp were studied and compared with the natural bone material. The comparison found to be excellent indicating the efficiency of the preparation techniques. The typical value of conductivity measured is 0.091 x 10{sup -6} Scm{sup -1} at 25 C and 19.26 x 10{sup -6} Scm{sup -1} at 850 C with an applied frequency of 100 kHz. The conductivity increases on increasing frequency and temperature and reaches 0.05mS/cm at 500 C. The crystal structure and phase stability of perovskites as well as apatites were investigated with respect to substitution of various iso-valent and alivalent ions to determine the % of solubility in the crystal lattice of perovskite, apatites. Various electrode and electrolyte material compositions were prepared and characterized by XRD, SEM, XPS and electron microprobe. The material compositions were selected based on their thermo-physical properties to achieve compatibility with each other in ideal fuel cell operating conditions. The series of electrode materials investigated are LaGa{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, x = 0.1), LaCr{sub 1-x}M{sub x}O{sub 3} (M = Mn, Mg, Co, x=0.1), LaNi{sub 1-x}Fe{sub x}O{sub 3} (0 < x < 0.6) and Gd{sub 1-x}M{sub x}CoO{sub 3} (M=Ca, x=0.1). Attempts were made to prepare proton-conducting perovskites of SrCe{sub 1-x} M{sub x}O{sub 3} (M= Dy, Eu, Er, Tb, x=0.1) by using sonochemical and hydrothermal technique followed by microwave sintering processes. These compositions were prepared characterized by XRD, TEM, SEM and electrical conductivity of the pellets was measured. The interest of low temperature proton conducting electrolyte is to replace the well known oxide ion conducting solid electrolyte in SOFCs, thereby reducing the operating temperature of SOFC to lower temperature (i.e 400-600 C) and named it as PC-SOFC (proton conducting-solid oxide fuel cell).

Rambabu Bobba

2006-09-14T23:59:59.000Z

482

Effect of Nickel Microstructure on Methane Steam-Reforming Activity of Ni-YSZ Cermet Anode Catalyst  

Science Conference Proceedings (OSTI)

The activity of nickel-yttria stabilized zirconia (Ni-YSZ) solid oxide fuel cell (SOFC) cermet anodes for the steam reforming of methane has been investigated in the absence of electrochemical effects. The cermet was prepared by co-milling and sintering NiO and 5YSZ powders at 1375oC in air. During the high temperature sintering step, NiO dissolved into the YSZ particles to form a solid NiO-YSZ solution. During the subsequent catalyst reduction step, Ni exolved from the YSZ. As a result, many small Ni particles on the order of 10-20 nm formed at the surface of the YSZ. These small particles contribute significantly to the overall reforming activity, along with the large bulk Ni particles within the Ni-YSZ cermet. We have observed high initial activity that decreases by as much as an order of magnitude with time on stream, until the anode catalyst reaches a stable steady state activity. The time to reach this stable activity is a function of the reaction conditions and feed gas composition. Higher temperature, hydrogen partial pressure, and space velocity all accelerated the deactivation rate at a constant steam-to-carbon ratio of 3. Initial and lined out activities and average turnover frequencies were obtained for both Ni-YSZ and bulk Ni, based on a rate expression that is first order in methane and zero order in steam. Comparative tests at 750oC show high initial activity on a per-Ni site basis with both materials, but these turnover rates decline over a period of a few hours. Following lineout, there appears to be a negligible effect of Ni particle size on turnover rate. These results indicate the presence of structure sensitivity for methane reforming, but only with freshly calcined and reduced catalysts that may contain highly coordinatively unsaturated sites. There is an apparent structure insensitivity with aged catalysts where Ni particle sizes are generally 50 nm and greater. Under reaction conditions that employ high space velocities and low methane conversions, the water-gas-shift reaction does not establish thermodynamic equilibrium.

King, David L.; Strohm, James J.; Wang, Xianqin; Roh, Hyun-Seog; Wang, Chong M.; Chin, Ya-Huei; Wang, Yong; Lin, Yuehe; Rozmiarek, Robert T.; Singh, Prabhakar

2008-09-10T23:59:59.000Z

483

Materials - Home  

NLE Websites -- All DOE Office Websites (Extended Search)

* Coatings & Lubricants * Coatings & Lubricants * Nanofluids * Deformation Joining * Recycling * Catalysts * Assessment * Illinois Center for Advanced Tribology Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Materials ring on liner reciprocating tester Tribology Lab: Ring-on-liner reciprocating tester. Argonne National Laboratory plays an important role in the Department of Energy's (DOE's) efforts to develop advanced materials for transportation. The materials are developed with DOE support from the EERE Office of Vehicle Technology and Office of Hydrogen, Fuel Cells, and Infrastructure Technologies in collaboration with worldwide industrial partners. Examples

484

Materials System for Intermediate Temperature Solid Oxide Fuel Cell  

DOE Green Energy (OSTI)

AC complex impedance spectroscopy studies were conducted between 600-800 C on symmetrical cells that employed strontium-and-magnesium-doped lanthanum gallate electrolyte, La{sub 0.9}Sr{sub 0.1}Ga{sub 0.8}Mg{sub 0.2}O{sub 3} (LSGM). The objective of the study was to identify the materials system for fabrication and evaluation of intermediate temperature (600-800 C) solid oxide fuel cells (SOFCs). The slurry-coated electrode materials had fine porosity to enhance catalytic activity. Cathode materials investigated include La{sub 1-x}Sr{sub x}MnO{sub 3} (LSM), LSCF (La{sub 1-x}Sr{sub x}Co{sub y}Fe{sub 1-y}O{sub 3}), a two-phase particulate composite consisting of LSM-doped-lanthanum gallate (LSGM), and LSCF-LSGM. The anode materials were Ni-Ce{sub 0.85}Gd{sub 0.15}O{sub 2} (Ni-GDC) and Ni-Ce{sub 0.6}La{sub 0.4}O{sub 2} (Ni-LDC) composites. Experiments conducted with the anode materials investigated the effect of having a barrier layer of GDC or LDC in between the LSGM electrolyte and the Ni-composite anode to prevent adverse reaction of the Ni with lanthanum in LSGM. For proper interpretation of the beneficial effects of the barrier layer, similar measurements were performed without the barrier layer. The ohmic and the polarization resistances of the system were obtained over time as a function of temperature (600-800 C), firing temperature, thickness, and the composition of the electrodes. The study revealed important details pertaining to the ohmic and the polarization resistances of the electrode as they relate to stability and the charge-transfer reactions that occur in such electrode structures.

Uday B. Pal; Srikanth Gopalan

2005-01-24T23:59:59.000Z

485

Mechanical properties of nanophase materials  

SciTech Connect

It has become possible in recent years to synthesize new materials under controlled conditions with constituent structures on a nanometer size scale (below 100 nm). These novel nanophase materials have grain-size dependent mechanical properties significantly different than those of their coarser-grained counterparts. For example, nanophase metals are much stronger and apparently less ductile than conventional metals, while nanophase ceramics are more ductile and more easily formed than conventional ceramics. The observed mechanical property changes are related to grain size limitations and/or the large percentage of atoms in grain boundary environments; they can also be affected by such features as flaw populations, strains and impurity levels that can result from differing synthesis and processing methods. An overview of what is presently known about the mechanical properties of nanophase materials, including both metals and ceramics, is presented. Some possible atomic mechanisms responsible for the observed behavior in these materials are considered in light of their unique structures.

Siegel, R.W. [Argonne National Lab., IL (United States); Fougere, G.E. [Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering

1993-11-01T23:59:59.000Z

486

Design and evaluation of lost circulation materials for severe environments  

DOE Green Energy (OSTI)

An independent analysis of lost circulation materials for geothermal applications has been completed using unique laboratory tools developed for the purpose. Test results of commercial materials as well as mathematical models for evaluating their performance are presented. Physical attributes that govern the performance of lost circulation materials are identified and correlated with test results. 9 refs., 27 figs., 4 tabs.

Loeppke, G.E.; Glowka, D.A.; Wright, E.K.

1988-01-01T23:59:59.000Z

487

Cr-Ga-N materials for negative electrodes in Li rechargeable batteries : structure, synthesis and electrochemical performance  

E-Print Network (OSTI)

Electrochemical performances of two ternary compounds (Cr2GaN and Cr3GaN) in the Cr-Ga-N system as possible future anode materials for lithium rechargeable batteries were studied. Motivation for this study was dealt in ...

Kim, Miso

2007-01-01T23:59:59.000Z

488

Ni coarsening in the three-phase solid oxide fuel cell anode - a phase-field simulation study  

E-Print Network (OSTI)

Ni coarsening in Ni-yttria stabilized zirconia (YSZ) solid oxide fuel cell anodes is considered a major reason for anode degradation. We present a predictive, quantative modeling framework based on the phase-field approach to systematically examine coarsening kinetics in such anodes. The initial structures for simulations are experimentally acquired functional layers of anodes. Sample size effects and error analysis of contact angles are examined. Three phase boundary (TPB) lengths and Ni surface areas are quantatively identified on the basis of the active, dead-end, and isolated phase clusters throughout coarsening. Tortuosity evolution of the pores is also investigated. We find that phase clusters with larger characteristic length evolve slower than those with smaller length scales. As a result, coarsening has small positive effects on transport, and impacts less on the active Ni surface area than the total counter part. TPBs, however, are found to be sensitive to local morphological features and are only i...

Chen, Hsun-Yi; Cronin, J Scott; Wilson, James R; Barnett, Scott A; Thornton, Katsuyo

2012-01-01T23:59:59.000Z

489

thermoelectric materials  

E-Print Network (OSTI)

It has been proven that the maximum cooling temperature of a thermoelectric material can be increased by using either pulsed operation or graded Seebeck profiles. In this paper, we show that the maximum cooling temperature can be further increased by the pulsed operation of optimal inhomogeneous thermoelectric materials. A random sampling method is used to obtain the optimal electrical conductivity profile of inhomogeneous materials, which can achieve a much higher cooling temperature than the best uniform materials under the steady-state condition. Numerical simulations of pulsed operation are then carried out in the time domain. In the limit of low thermoelectric figure-of-merit ZT, the finite-difference time-domain simulations are verified by an analytical solution for homogeneous material. This numerical method is applied to high ZT BiTe materials and simulations show that the effective figure-of-merit can be improved by 153 % when both optimal graded electrical conductivity profiles and pulsed operation are used. 1.

Q Zhou; Z Bian; A Shakouri

2007-01-01T23:59:59.000Z

490

"Buried-Anode" Technology Leads to Advanced Lithium Batteries (Fact Sheet), The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

It all began in 2001, when three NREL researchers took their thin-film It all began in 2001, when three NREL researchers took their thin-film expertise from window technology research and applied it to a solid-state, thin-film lithium battery. The researchers knew that lithium batteries tended to degrade quickly because the fragile lithium metal anode was on the top of the battery, where any cracks in the encapsulant could lead to rapid failure. The team developed the concept of building the battery in reverse order, depositing first the solid-state electrolyte, made of lithium phosphorous oxynitride (LiPON), then the cathode, a metal oxide. Lithium is typically intercalated (chemically trapped) within the cathode material. Placing an initial charge on the battery causes the lithium ions to migrate out of the cathode

491

Microsoft Word - Poster Abstract_2010_NETL_ liquid metal anode.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

coal solid oxide fuel cells with liquid tin anodes coal solid oxide fuel cells with liquid tin anodes U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 Harry Abernathy, Kirk Gerdes, Randy Gemmen Phone: (304)285-4342, Kirk.Gerdes@NETL.DOE.GOV Fuel cells are one of the most efficient methods for converting the chemical energy in coal directly to electrical energy, minimizing the amount of carbon dioxide and other pollutants produced per kilowatt of electricity even before scrubbing and carbon sequestration. To use coal as a fuel source, even the most tolerant solid ceramic fuel cell systems require prior gasification of the coal into syngas, which significantly adds to total system cost. By replacing the ceramic fuel electrode of a traditional high temperature solid oxide fuel cell (SOFC) with a liquid metal

492

LOW-TEMPERATURE, ANODE-SUPPORTED HIGH POWER DENSITY SOLID OXIDE FUEL CELLS WITH NANOSTRUCTURED ELECTRODES  

DOE Green Energy (OSTI)

This report summarizes the work done during the entire project period, between October 1, 1999 and March 31, 2003, which includes a six-month no-cost extension. During the project, eight research papers have, either been, published, accepted for publication, or submitted for publication. In addition, several presentations have been made in technical meetings and workshops. The project also has provided support for four graduate students working towards advanced degrees. The principal technical objective of the project was to analyze the role of electrode microstructure on solid oxide fuel cell performance. Prior theoretical work conducted in our laboratory demonstrated that the particle size of composite electrodes has a profound effect on cell performance; the finer the particle size, the lower the activation polarization, the better the performance. The composite cathodes examined consisted of electronically conducting perovskites such as Sr-doped LaMnO{sub 3} (LSM) or Sr-doped LaCoO{sub 3} (LSC), which is also a mixed conductor, as the electrocatalyst, and yttria-stabilized zirconia (YSZ) or rare earth oxide doped CeO{sub 2} as the ionic conductor. The composite anodes examined were mixtures of Ni and YSZ. A procedure was developed for the synthesis of nanosize YSZ by molecular decomposition, in which unwanted species were removed by leaching, leaving behind nanosize YSZ. Anode-supported cells were made using the as-synthesized powders, or using commercially acquired powders. The electrolyte was usually a thin ({approx}10 microns), dense layer of YSZ, supported on a thick ({approx}1 mm), porous Ni + YSZ anode. The cathode was a porous mixture of electrocatalyst and an ionic conductor. Most of the cell testing was done at 800 C with hydrogen as fuel and air as the oxidant. Maximum power densities as high as 1.8 W/cm{sup 2} were demonstrated. Polarization behavior of the cells was theoretically analyzed. A limited amount of cell testing was done using liquid hydrocarbon fuels where reforming was achieved internally. Significant polarization losses also occur at the anode, especially at high fuel utilizations. An analysis of polarization losses requires that various contributions are isolated, and their dependence on pertinent parameters is quantitatively described. An investigation of fuel composition on gas transport through porous anodes was investigated and the role of fuel diluents was explored. This work showed that the molecular weight of the diluent has a significant effect on anode concentration