Powered by Deep Web Technologies
Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Persistent Uniform Resource Locators (PURLs) | Scientific and Technical  

Office of Scientific and Technical Information (OSTI)

Persistent Uniform Resource Locators (PURLs) Persistent Uniform Resource Locators (PURLs) Print page Print page Email page Email page PURLs (Persistent Uniform Resource Locators) are Web addresses that act as permanent identifiers in the face of a dynamic and changing Web infrastructure. Instead of resolving directly to Web resources, PURLs describe an intermediate location that allows the underlying Web addresses of resources to change over time without negatively affecting systems that depend on them. This capability provides continuity of references to network resources that may migrate from machine to machine for various reasons. Operation PURLs look just like URLs because they are valid URLs. A PURL has three parts: the protocol used to access the PURL resolver, the resolver IP address or domain, and a user-assigned name.

2

A uniform price auction with locational price adjustments for competitive electricity markets  

E-Print Network (OSTI)

A uniform price auction with locational price adjustments for competitive electricity markets in an electricity context requires that the offers used in the auction reflect the appropriate locational price necessary to adapt the Uniform Price auction to an electricity transmission system which takes into account

3

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources |  

Open Energy Info (EERE)

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Abstract Demonstrating the effectiveness of hyperspectral sensors to explore for geothermal resources will be critical to our nation's energy security plans. Discovering new geothermal resources will contribute to established renewable energy capacity and lower our dependence upon fuels that contribute to green house gas emissions. The use of hyperspectral data and derived imagery products is currently helping exploration managers gain greater efficiencies and drilling success. However, more work is needed as geologists continue to learn about hyperspectral imaging and, conversely,

4

Uniform criteria for US Hydropower Resource Assessment. Hydropower evaluation software status report  

SciTech Connect

The Department of Energy is estimating the hydropower development potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The Hydropower Evaluation Software estimates the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a DBASE, menu-driven software application. Hydropower Evaluation Software allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This status report details Hydropower Evaluation Software`s development, its data requirements, and its application to the 12 states assessed to date. This report does not discuss or present the various user-friendly menus of the Hydropower Evaluation Software. One is referred to the User`s Manual for specifics. This report focuses on data derivation, summarization of the 12 states (Arkansas, Colorado, Kansas, Louisiana, Missouri, Montana, North Dakota, Oklahoma, South Dakota, Texas, Utah, and Wyoming) extracted into the software to date, and plans for future assessments.

Francfort, J.E.; Rinehart, B.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States); Moore, K.M. [Morgantown Energy Technology Center, WV (United States)

1993-06-01T23:59:59.000Z

5

Uniform criteria for U.S. hydropower resource assessment: Hydropower Evaluation Software status report -- 2  

SciTech Connect

The US Department of Energy is estimating the undeveloped hydropower potential in the US. The Hydropower Evaluation software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The Hydropower Evaluation Software estimates the undeveloped hydropower resources available in the US, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software application. Hydropower Evaluation Software allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This status report describes Hydropower Evaluation Software`s development, its data requirements, and its application to the 20 states assessed to date. This report does not discuss or present the various user-friendly menus of the Hydropower Evaluation Software. The reader is referred to the User`s Manual for specifics. This report focuses on data derivation, summarization of the 20 states (Arkansas, Missouri, Montana, New Hampshire, North Dakota, Oklahoma, Rhode Island, South Dakota, Texas, Utah, Vermont, and Wyoming) assessed to date, and plans for future assessments.

Conner, A.M.; Francfort, J.E.; Rinehart, B.N.

1996-02-01T23:59:59.000Z

6

A spatial location-allocation GIS framework for managing water resources in a savanna nature reserve  

E-Print Network (OSTI)

dry season. Ryan & Getz: GIS framework for managing waterpolygons ver 2.6 for ArcView GIS. Avenue script available atspatial locationallocation GIS framework for managing water

Ryan, Sadie

2006-01-01T23:59:59.000Z

7

Tables of co-located geothermal-resource sites and BLM Wilderness Study Areas  

DOE Green Energy (OSTI)

Matched pairs of known geothermal wells and springs with BLM proposed Wilderness Study Areas (WSAs) were identified by inspection of WSA and Geothermal resource maps for the states of Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington and Wyoming. A total of 3952 matches, for geothermal sites within 25 miles of a WSA, were identified. Of these, only 71 (1.8%) of the geothermal sites are within one mile of a WSA, and only an additional 100 (2.5%) are within one to three miles. Approximately three-fourths of the matches are at distances greater than ten miles. Only 12 of the geothermal sites within one mile of a WSA have surface temperatures reported above 50/sup 0/C. It thus appears that the geothermal potential of WSAs overall is minimal, but that evaluation of geothermal resources should be considered in more detail for some areas prior to their designation as Wilderness.

Foley, D.; Dorscher, M.

1982-11-01T23:59:59.000Z

8

Cutting Costs by Locating High Production Wells: A Test of the Volcano seismic Approach to Finding ''Blind'' Resources  

DOE Green Energy (OSTI)

In the summer of 2000, Duke University and the Kenyan power generation company, KenGen, conducted a microearthquake monitoring experiment at Longonot volcano in Kenya. Longonot is one of several major late Quaternary trachyte volcanoes in the Kenya Rift. They study was aimed at developing seismic methods for locating buried hydrothermal areas in the Rift on the basis of their microearthquake activity and wave propagation effects. A comparison of microearthquake records from 4.5 Hz, 2 Hz, and broadband seismometers revealed strong high-frequency site and wave-propagation effects. The lower frequency seismometers were needed to detect and record individual phases. Two-dozen 3-component 2- Hz L22 seismographs and PASSCAL loggers were then distributed around Longonot. Recordings from this network located one seismically active area on Longonot's southwest flank. The events from this area were emergent, shallow (<3 km), small (M<1), and spatially restricted. Evidently, the hydrothermal system in this area is not currently very extensive or active. To establish the nature of the site effects, the data were analyzed using three spectral techniques that reduce source effects. The data were also compared to a simple forward model. The results show that, in certain frequency ranges, the technique of dividing the horizontal motion by the vertical motion (H/V) to remove the source fails because of non-uniform vertical amplification. Outside these frequencies, the three methods resolve the same, dominant, harmonic frequencies at a given site. In a few cases, the spectra can be fit with forward models containing low velocity surface layers. The analysis suggests that the emergent, low frequency character of the microearthquake signals is due to attenuation and scattering in the near surface ash deposits.

Eylon Shalev; Peter E. Malin; Wendy McCausland

2002-06-06T23:59:59.000Z

9

Station location map, and audio-magnetotelluric and telluric data for Wendel-Amedee Known Geothermal Resource Area, California  

DOE Green Energy (OSTI)

The audio-magnetotelluric data log for Breitenbush Known Geothermal Resource Area, Oregon is presented covering 12 different frequencies and several stations. (MHR)

O'Donnell, J.E.; Long, C.L.; Senterfit, R.M.; Brougham, G.W.; Martinez, R.; Christopherson, K.R.

1976-01-01T23:59:59.000Z

10

Audio-magnetotelluric data log and station location map for the Dixie Valley Known Geothermal Resource Area (KGRA) Nevada  

DOE Green Energy (OSTI)

The station locations are mapped and the observed apparent resistivity in ohm-meters is tabulated for each location over the frequency range of 7.5 to 18,600 cycles/sec. (WHK)

Senterfit, R.M.; Hoover, D.; Tippens, C.

1976-01-01T23:59:59.000Z

11

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources / Related Web Sites Resources / Related Web Sites Buildings-Related Resources Windows & Glazing Resources Energy-Related Resources International Resources Telephone Directories Buildings-Related Resources California Institute for Energy Efficiency (CIEE) Center for Building Science (CBS) at LBNL Department of Energy (DOE) DOE Energy Efficiency home page Energy Efficiency and Renewable Energy Clearinghouse Fact sheets in both HTML for standard web browsers and PDF format using Adobe Acrobat Reader (free). National Fenestration Rating Council home page Office of Energy Efficiency and Renewable Energy (EREN) back to top... Windows & Glazing Resources National Glass Association (NGA) LBNL Building Technologies Fenestration R&D news LBNL Center for Building Science (CBS) Newsletter

12

Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The DOE Information Center's current collection has more than 40,000 documents consisting of technical reports and historical materials that relate to DOE operations....

13

Uniform Laws and Regulations  

Science Conference Proceedings (OSTI)

Page 1. Page 2. Uniform Laws and Regulations in the areas of legal metrology and engine fuel quality as adopted by the ...

2011-09-13T23:59:59.000Z

14

Uniform Laws and Regulations  

Science Conference Proceedings (OSTI)

Page 1. Uniform Laws and Regulations in the areas of legal metrology and engine fuel quality as adopted by the 96th National Conference on ...

2012-07-12T23:59:59.000Z

15

Concentration with uniform flux  

SciTech Connect

A modification of a parabolic cylinder concentrator is developed to procedure uniform flux. The controlling surface equation is given. A three-dimensional ray-trace technique is used to obtain the shape of the image at the focal plane of a thin slice of the mirror. Also, the concentration distribution for uniform flux is given. 1 references, 7 figures.

Not Available

1986-01-01T23:59:59.000Z

16

Overview of all electronic resources offered by the UBO: Locate databases by looking up the database title, or browse the alphabetic lists or subject catego-  

E-Print Network (OSTI)

and enter your search term(s). 1 2 3 Search results in Quicksearch and Metasearch When searching multiple interface for searching. Several databases can also be searched via X-port. Locate e-journals by looking up" to link directly to a specific article. Search several databases at the same time, using pre-defined sets

Johansen, Tom Henning

17

Uniform Environmental Covenants Act (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uniform Environmental Covenants Act (Iowa) Uniform Environmental Covenants Act (Iowa) Uniform Environmental Covenants Act (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources This legislation adopts a version of the federal Uniform Environmental

18

Project Location  

E-Print Network (OSTI)

USGS quadrangle base-map. 2. Plot Plan with Exploration Data with Building Footprint: 1 boring or exploration shaft per 5000 ft 2, with minimum of 2 for any one building. Exploratory trench locations. 3. Site Coordinates: (Latitude & Longitude) Engineering Geology/Site Characterization 4. Regional Geology and Regional Fault Maps: Concise page-sized illustrations with site plotted. 5. Geologic Map of Site: Detailed (large-scale) geologic map with proper symbols and geologic legend. 6. Subsurface Geology: Engineering geology description summarized from boreholes or trench logs. Summarize ground water conditions. 7. Geologic Cross Sections: Two or more detailed geologic sections with pertinent foundations and site grading. 8. Active Faulting & Coseismic Deformation Across Site: Prepare page-sized extract map of Alquist-Priolo Earthquake Fault Zones and/or any potential fault rupture hazard identified from the Safety Element of the local agency (city or county); show location of fault investigation trenches; 50-foot setbacks perpendicular from fault plane and proposed

Date Reviewed __________________________

2007-01-01T23:59:59.000Z

19

Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV  

DOE Green Energy (OSTI)

This paper presents an overview of the work our collaboration is doing to increase the detailed mapped resource base for geothermal exploration in the Western US. We are imaging several large areas in the western US with high resolution airborne hyperspectral and satellite multispectral sensors. We have now entered the phase where the remote sensing techniques and tools we are developing are mature enough to be combined with other geothermal exploration techniques such as aeromagnetic, seismic, well logging and coring data. The imaging sensors and analysis techniques we have developed have the ability to map visible faults, surface effluents, altered minerals, subtle hidden faults. Large regions are being imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping hidden faults, high temperature altered mineralization, clays, hot and cold springs and CO2 effluents the Long Valley Caldera and Mammoth Mountain in California. The areas that have been imaged include Mammoth Mountain and the Long Valley Caldera, Dixie Meadows NV, Fish Lake Valley NV, and Brady Hot Springs. Areas that are being imaged in the summer of 2003 are the south moat of the Long Valley Caldera, Mammoth Mountain western Pickles, Nash, Kasameyer, Foxall, Martini, Cocks, Kennedy-Bowdoin, McKnight, Silver, Potts, flanks, Mono Inyo chain north of Mammoth Mountain in CA, and the Humboldt Block in NV. This paper focuses on presenting the overview of the high-resolution airborne hyperspectral image acquisition that was done at Dixie Meadows NV in August 2002. This new imagery is currently being analyzed and combined with other field data by all of the authors on this paper. Results of their work up until the time of the conference will be presented in papers in the remote sensing session.

Pickles, W. L.; Nash, G. D.; Calvin, W. M.; Martini, B. A.; Cocks, P. A.; Kenedy-Bowdoin, T.; Mac Knight, R. B.; Silver, E. A.; Potts, D. C.; Foxall, W.; Kasameyer, P.; Waibel, A. F.

2003-01-01T23:59:59.000Z

20

Resource Directory  

Science Conference Proceedings (OSTI)

Online search and networking tool that connects AOCS members with their peers who share a common technical interest, geographic location, or affinity. Resource Directory Membership Information achievement application award Awards distinguished div

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Executive Resources  

Energy.gov (U.S. Department of Energy (DOE))

The Executive Resources Division provides integrated executive policy and operational personnel support services in a centralized location to the Senior Executive Service (SES), Senior-Level (SL), Scientific and Professional (ST), Excepted Service and political appointees. Additional SES information can be found on the SES website which is located on the Office of Personnel Managements (OPM) website.

22

Power Resources Cooperative | Open Energy Information  

Open Energy Info (EERE)

Resources Cooperative Jump to: navigation, search Name Power Resources Cooperative Place Oregon Utility Id 40294 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes...

23

Building Technologies Office: Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources to someone by Resources to someone by E-mail Share Building Technologies Office: Resources on Facebook Tweet about Building Technologies Office: Resources on Twitter Bookmark Building Technologies Office: Resources on Google Bookmark Building Technologies Office: Resources on Delicious Rank Building Technologies Office: Resources on Digg Find More places to share Building Technologies Office: Resources on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Home Energy Score Home Performance with ENERGY STAR Better Buildings Neighborhood Program Challenge Home Partner Log In Become a Partner Criteria Partner Locator Resources Housing Innovation Awards Events Guidelines for Home Energy Professionals Technology Research, Standards, & Codes

24

Use of multiple 4$pi$ radiation sources for quasi-uniform irradiation of square surfaces  

SciTech Connect

The question of distance and location of multiple 4 pi radiation sources from square planar target surfaces is addressed, with the constraint that the surface be irradiated with 80% uniformity. Results of computer calculations are presented, giving source location coordinates for optimum use of the sources under the uniformity constraint. (auth)

Clark, R.W.; Freiwald, D.A.

1973-11-01T23:59:59.000Z

25

Uniform Methods Project Related Links | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Related Links Related Links Uniform Methods Project Related Links The websites and publications listed below provide supporting information for the Uniform Methods Project and for evaluation, measurement, and verification (EM&V) of energy efficiency programs. Glossaries of EM&V Terms Federal EM&V Resources International Resources Related Standards Glossaries of EM&V Terms The following glossaries provide definitions of technical language and EM&V terms. Appendix A: Glossary of Terms, Energy Efficiency Program Impact Evaluation Guide Appendix A has a glossary of EM&V terms; published by the EM&V SEE Action Working Group. Federal EM&V Resources SEE Action Evaluation, Measurement, and Verification Working Group The State and Local Energy Efficiency Action Network (SEE Action)

26

Uniform power plant identification system  

Science Conference Proceedings (OSTI)

In the seventies in the Federal Republic of Germany a uniform power plant identification system (Kraftwerks-Kennzeichen-System, KKS) was developed and introduced. It allows to keep the identification by all engineering disciplines from planning to waste management for any type of power plant. The paper explains the historical development, the structure and the application of this system.

Christiansen, W. (RWE Energie AG, Hauptverwaltung, Essen (DE)); Pannenbacker, K. (GABO mbH, Erlangen (DE)); Popp, H. (Siemens AG, Bereich Anlagentechnik, Erlangen (DE)); Seltmann, A. (ABB Kraftwerke AG, Mannheim (DE))

1990-01-01T23:59:59.000Z

27

Non-uniform interpolatory subdivision via splines  

Science Conference Proceedings (OSTI)

We present a framework for deriving non-uniform interpolatory subdivision algorithms closely related to non-uniform spline interpolants. Families of symmetric non-uniform interpolatory 2n-point schemes of smoothness C^n^-^1 are presented for n=2,3,4 ... Keywords: 6-point, Interpolatory, Non-uniform, Parameterized Catmull-Rom, Spline, Subdivision

Kestutis Kar?Iauskas; JRg Peters

2013-03-01T23:59:59.000Z

28

Method for uniformly bending conduits  

DOE Patents (OSTI)

The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

Dekanich, S.J.

1984-04-27T23:59:59.000Z

29

Deepwater Oil & Gas Resources  

Energy.gov (U.S. Department of Energy (DOE))

The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this challenge, the U.S. Department of Energys Office of Fossil Energy over the years has amassed wide ranging expertise in areas related to deepwater resource location, production, safety and environmental protection.

30

Alternative Fueling Station Locator | Open Energy Information  

Open Energy Info (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Fuels & Efficiency, Transportation Phase: Evaluate Options, Prepare a Plan Topics: Datasets Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/afdc/locator/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/stations/ Cost: Free OpenEI Keyword(s): Featured References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator The alternative fuel station locator uses an address based search to find

31

Computer resources Computer resources  

E-Print Network (OSTI)

Computer resources 1 Computer resources available to the LEAD group Cédric David 30 September 2009 #12;Ouline · UT computer resources and services · JSG computer resources and services · LEAD computers· LEAD computers 2 #12;UT Austin services UT EID and Password 3 https://utdirect.utexas.edu #12;UT Austin

Yang, Zong-Liang

32

CMS Energy Resource Management Corp | Open Energy Information  

Open Energy Info (EERE)

Energy Resource Management Corp Jump to: navigation, search Name CMS Energy Resource Management Corp Place Michigan Utility Id 3991 Utility Location Yes Ownership R NERC Location...

33

Science Accelerator Resource Descriptions, Office of Scientific...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Descriptions Below you will find descriptions of each of the scientific and technical resources searchable in the Science Accelerator. DOE Data Explorer Locate collections...

34

Location and Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Facts, Figures Location and Infrastructure Location and Infrastructure LANL's mission is to develop and apply science and technology to ensure the safety, security, and...

35

Sandia National Laboratories: Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located...

36

Location | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Assessment (OPA) OPA Home About OPA Director Staff & Responsibilities Location Project Management SC Projects Other Links SC Federal Project Directors (FPD) and FPD Resources...

37

Conservation Easements for Natural Resource Protection Laurie Fowler  

E-Print Network (OSTI)

Conservation Easements for Natural Resource Protection Laurie Fowler Georgia Environmental Policy ......................................................................................................... 1 What is a Conservation Easement................................................................................................... 11 Georgia Uniform Conservation Easement Act

Radcliffe, David

38

Uniform-burning matrix burner  

DOE Patents (OSTI)

Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.

Bohn, Mark S. (Golden, CO); Anselmo, Mark (Arvada, CO)

2001-01-01T23:59:59.000Z

39

Patent Harmonization: Creating Uniform Patent Laws  

Science Conference Proceedings (OSTI)

Patent Harmonization: Creating Uniform Patent Laws. David V. Radack. You may have seen or heard the phrase "patent harmonization" used when discussing...

40

Tools & Resources: Resource Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

that reduce air emissions. Emissions & Generation Resource Integrated Database (eGRID) A tool that provides data on the environmental characteristics of almost all electric...

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Publications & Resources, Human Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

or approved by Brookhaven National Laboratory or the Human Resources Division. Manuals Scientific Staff Manual Supervisors Personnel Manual SBMS Subject Areas Compensation...

42

Uniform insulation applied-B ion diode  

DOE Patents (OSTI)

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, and ions may be focused at a point on the z axis.

Seidel, D.B.; Slutz, S.A.

1986-04-11T23:59:59.000Z

43

Uniform insulation applied-B ion diode  

DOE Patents (OSTI)

An applied-B field extraction ion diode has uniform insulation over an anode surface for increased efficiency. When the uniform insulation is accomplished with anode coils, and a charge-exchange foil is properly placed, the ions may be focused at a point on the z axis.

Seidel, David B. (Albuquerque, NM); Slutz, Stephen A. (Albuquerque, NM)

1988-01-01T23:59:59.000Z

44

Brachistochrone of a Spherical Uniform Mass Distribution  

E-Print Network (OSTI)

We solve the brachistochrone problem for a particle travelling through a spherical mass distribution of uniform density. We examine the connection between this problem and the popular "gravity elevator" result. The solution is compared to the well known brachistochrone problem of a particle in a uniform gravitational field.

David R. Mitchell

2006-11-21T23:59:59.000Z

45

Alternative Fueling Station Locator - Mobile | Open Energy Information  

Open Energy Info (EERE)

Fueling Station Locator - Mobile Fueling Station Locator - Mobile Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Alternative Fueling Station Locator - Mobile Agency/Company /Organization: United States Department of Energy Partner: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options, Prepare a Plan Resource Type: Online calculator User Interface: Mobile Device Website: www.afdc.energy.gov/afdc/locator/m/stations/ Web Application Link: www.afdc.energy.gov/afdc/locator/m/stations/ Cost: Free References: National Renewable Energy Laboratory Advanced Vehicles and Fuels Research: Data and Resources[1] Logo: Alternative Fueling Station Locator - Mobile Find fueling stations for your alternative fuel vehicle on-the-go with the

46

ARM - Instrument Location Table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

47

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 Fiat 500 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer...

48

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Nissan Altima Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle...

49

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Focus Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input...

50

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Chrysler 300 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer...

51

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 i-Stop Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional- Start Stop...

52

Facility location: distributed approximation  

Science Conference Proceedings (OSTI)

In this paper, we initiate the study of the approximability of the facility location problem in a distributed setting. In particular, we explore a trade-off between the amount of communication and the resulting approximation ratio. We give a distributed ... Keywords: distributed approximation, facility location, linear programming, primal-dual algorithms

Thomas Moscibroda; Rogert Wattenhofer

2005-07-01T23:59:59.000Z

53

Career Resource GuideCareer Resource Guide forfor UniforUniformed Sermed Services Environmentalvices Environmental  

E-Print Network (OSTI)

.......................................................................................9 Structure.of.State.and.Local.Environmental.Health.Agencies.......... 10 Structure (combined or separate) of state health and environmental agencies.................................................................................10 Types of local public health agencies

54

Land Division: Uniform Environmental Covenants Program (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations These regulations apply to environmental covenants arising from environmental response projects conducted under any of the following Alabama Department of Environmental Management programs: Scrap tire remediation sites, Soil and groundwater remediation sites, Leaking storage tank remediation sites, Solid waste disposal sites, Hazardous waste

55

The LHCb Vertex Locator performance and Vertex Locator upgrade  

E-Print Network (OSTI)

LHCb is an experiment dedicated to the study of new physics in the decays of beauty and charm hadrons at the Large Hadron Collider (LHC) at CERN. The Vertex Locator (VELO) is the silicon detector surrounding the LHCb interaction point. The detector operates in a severe and highly non-uniform radiation environment. The small pitch and analogue readout result in a best single hit precision of 4 $\\rm \\mu$m. The upgrade of the LHCb experiment, planned for 2018, will transform the entire readout to a trigger-less system operating at 40 MHz event rate. The vertex detector will have to cope with radiation levels up to 10$^{16}$ 1 MeV$\\rm n_{eq}/cm^2$, more than an order of magnitude higher than those expected at the current experiment. A solution is under development with a pixel detector, based on the Timepix/Medipix family of chips with 55 x 55 $\\rm \\mu m$ pixels. In addition a micro-strip solution is also under development, with finer pitch, higher granularity and lower mass than the current detector. The current status of the VELO will be described together with recent testbeam results.

Pablo Rodrguez Prez; for the LHCb VELO Group; for the VELO Upgrade group

2012-09-21T23:59:59.000Z

56

Alternative Fuels Data Center: Hydrogen Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Hydrogen Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hydrogen Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Station Locations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations

57

Alternative Fuels Data Center: Propane Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane Propane Printable Version Share this resource Send a link to Alternative Fuels Data Center: Propane Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Station Locations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development

58

Reading Room Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

FOIA Offices and Reading Rooms FOIA Offices and Reading Rooms FOIA Office Locations Our FOIA Officers are located at various sites throughout the DOE complex, each with responsibility for records located at or under the jurisdiction of the site. We recommend that you send your request directly to that specific site. This will shorten the processing time. However, if you do not know which location has responsive records, you may either call the Headquarters FOIA office at (202) 586-5955 to determine the appropriate office, or mail the request to the Headquarters FOIA office. Other records are publicly available in the facilities listed below: Headquarters U.S. Department of Energy FOIA/Privacy Act Group 1000 Independence Avenue, SW Washington, D.C. 20585 Phone: 202-586-5955 Fax: 202-586-0575

59

Entrance Maze Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

Entrance Maze Locations Entrance Maze Locations for the Storage Ring Tunnel Martin Knott LS-83 2/17/87 The Purpose of this note is to document the locations and decision rationale of the entrance mazes for the APS storage ring. There are a total of seven entrance mazes, four on the infield side and three on the operating floor side of the ring. Three of the infield mazes are associated with infield buildings, one in the Extraction Building and one each in the two RF Buildings. These three were located to provide convenient passage between the technical buildings and the storage ring components associated with those buildings. The Extraction Building maze allows passage between the positron beam transfer area and the storage ring two sectors upstream of the injection

60

Magma Source Location Survey  

DOE Green Energy (OSTI)

A survey of Industry/University geophysicists was conducted to obtain their opinions on the existence of shallow (less than 10 km from surface) magma bodies in the western conterminous United States and methods for locating and defining them. Inputs from 35 individuals were received and are included. Responses were that shallow magma bodies exist and that existing geophysical sensing systems are adequate to locate them.

Hardee, H.C.; Dunn, J.C.; Colp, J.L.

1982-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES  

SciTech Connect

While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or â??clearing houseâ? for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

Buell, Carol Robin [Michigan State University; Childs, Kevin L [Michigan State University

2013-05-07T23:59:59.000Z

62

Pine Tree Growth Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

Pine Tree Growth Locations Pine Tree Growth Locations Name: Amielee Location: N/A Country: N/A Date: N/A Question: Why do pine trees not grow south of the equator? Replies: Dear Amielee, The natural distribution of the pines is the northern hemisphere: http://phylogeny.arizona.edu/tree/eukaryotes/green_plants/embryophytes/conif ers/pinaceae/pinus/pinus.html However, pines have become introduced into the southern hemisphere through cultivation: http://www.woodweb.com/~treetalk/Radiata_Pine/wowhome.html Sincerely, Anthony R. Brach, Ph.D. Hi Amielee Some pine trees do live south of the equator but we (I live in Australia) do not have the huge forests of native conifers that you have in the northern hemisphere. Even in the northern hemisphere conifers are only found in two forest types: 1. Tiaga

63

location | OpenEI  

Open Energy Info (EERE)

location location Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (5 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

64

Optimal fault location  

E-Print Network (OSTI)

Basic goal of power system is to continuously provide electrical energy to the users. Like with any other system, failures in power system can occur. In those situations it is critical that correct remedial actions are applied as soon as possible after the accurate fault condition and location are detected. This thesis has been focusing on automated fault location procedure. Different fault location algorithms, classified according to the spatial placement of physical measurements on single ended, multiple ended and sparse system-wide, are investigated. As outcome of this review, methods are listed as function of different parameters that influence their accuracy. This comparison is than used for generating procedure for optimal fault location algorithm selection. According to available data, and position of the fault with respect to the data, proposed procedure decides between different algorithms and selects an optimal one. A new approach is developed by utilizing different data structures such as binary tree and serialization in order to efficiently implement algorithm decision engine. After accuracy of algorithms is strongly influenced by available input data, different data sources are recommended in proposed architecture such as the digital fault recorders, circuit breaker monitoring, SCADA, power system model and etc. Algorithm for determining faulted section is proposed based on the data from circuit breaker monitoring devices. This algorithm works in real time by recognizing to which sequence of events newly obtained recording belongs. Software prototype of the proposed automated fault location analysis is developed using Java programming language. Fault location analysis is automatically triggered by appearance of new event files in a specific folder. The tests were carried out using the real life transmission system as an example.

Knezev, Maja

2007-12-01T23:59:59.000Z

65

Hospitality resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

66

Healthcare resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

67

Congregation resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

68

University Location Project Description  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Location Project Description Location Project Description Boise State University Boise, Idaho Boise State University has undertaken a study of the structural setting and geothermal potential at Neal Hot Springs that will integrate geology, geochemistry, and geophysics to analyze the site on the western Snake River plain. Boise State will determine if Neal Hot Springs sustains the necessary rock dilation and conduit pathways for hydrothermal fluid flow and successful geothermal development. The result will be new data acquisition, including a deep geophysical survey and fault surface data. Colorado School of Mines Golden, Colorado Colorado School of Mines will conduct an investigation near Homedale, Idaho, an area that straddles volcanic rock and unconsolidated sediments.

69

Teacher Resource Center: Curricular Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Curricular Resources Curricular Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides workshops and consultations on Mathematics and Science Curriculum development. Here are a list of resources for educators. See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Key Science Resources for Curriculum Planning Key Science Resources for Curriculum Planning

70

Location-based communication services  

Science Conference Proceedings (OSTI)

Our demo shows end-user-oriented location-based services based on application-layer, human understandable location descriptions. Keywords: internet telephony, location-based services

Xiaotao Wu; Ron Shacham; Matthew J. Mintz-Habib; Kundan Singh; Henning Schulzrinne

2004-10-01T23:59:59.000Z

71

Uniform Transboundary Pollution Reciprocal Access Act (Montana) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uniform Transboundary Pollution Reciprocal Access Act (Montana) Uniform Transboundary Pollution Reciprocal Access Act (Montana) Uniform Transboundary Pollution Reciprocal Access Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Institutional Fuel Distributor Transportation Program Info State Montana Program Type Environmental Regulations This Act allows any entity in a Reciprocating Jurisdiction harmed by pollution originating in the state of Montana to bring an action or other proceeding against the source of that pollution in the state of Montana. Such an entity has the same rights in the state of Montana as they would if

72

Electric current locator  

DOE Patents (OSTI)

The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

2012-02-07T23:59:59.000Z

73

UNIFORM PATENT POLICY FOR RIGHTS IN INVENTIONS MADE BY GOVERNMENT...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNIFORM PATENT POLICY FOR RIGHTS IN INVENTIONS MADE BY GOVERNMENT EMPLOYEES UNIFORM PATENT POLICY FOR RIGHTS IN INVENTIONS MADE BY GOVERNMENT EMPLOYEES The purpose of this part is...

74

Identifying location in indonesian documents for geographic information retrieval  

Science Conference Proceedings (OSTI)

Our research focuses on Geographic Information Retrieval for Indonesian documents. We constructed a Geographical Gazeeter for geographic locations based on information that we collected from the Geographic resources. We used the table to ... Keywords: geographic information retrieval

Mirna Adriani; Monica Lestari Paramita

2007-11-01T23:59:59.000Z

75

Uniform-distribution attribute noise learnability  

Science Conference Proceedings (OSTI)

We study the problem of PAC-learning Boolean functions with random attribute noise under the uniform distribution. We define a noisy distance measure for function classes and show that if this measure is small for a class C and an attribute ... Keywords: Fourier analysis, computational learning theory, learning with noise

Nader H. Bshouty; Jeffrey C. Jackson; Christino Tamon

2003-12-01T23:59:59.000Z

76

MODERATOR ELEMENTS FOR UNIFORM POWER NUCLEAR REACTOR  

DOE Patents (OSTI)

This patent describes a method of obtaining a flatter flux and more uniform power generation across the core of a nuclear reactor. The method comprises using moderator elements having differing moderating strength. The elements have an increasing amount of the better moderating material as a function of radial and/or axial distance from the reactor core center. (AEC)

Balent, R.

1963-03-12T23:59:59.000Z

77

Clean Cities: Coalition Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

Locations Locations Clean Cities coalitions are primarily located in major metropolitan areas throughout the United States. Select the dots on the map for information about individual coalitions. See also the list of coalitions by designation date. United States map showing Clean Cities Coalition locations. Philadelphia State of Delaware Capitol Clean Cities of Connecticut Connecticut Southwestern Area New Haven Norwich Red River Valley (Grand Forks, Winnipeg, Manitoba, Canada) Silicon Valley (San Jose) East Bay (Oakland) San Francisco Sacramento Granite State State of Vermont Northeast Ohio Clean Transportation (Cleveland) Detroit Clean Communities of Western New York (Buffalo) Central New York (Syracuse) Capital District (Albany) Empire Clean Cities State of Maryland Washington DC Metropolitan South Shore Western Riverside County Southern California Association of Governments (SCAG) Atlanta Alabama Denver Philadelphia State of Delaware Las Vegas Washington DC Metropolitan Massachusetts Clean Cities Lone Star Clean Fuels Alliance (Austin) Southeast Florida Chicago Land of Enchantment Wisconsin-Southeast Area Southern Colorado Clean Cities Coalition Long Beach Antelope Valley Utah Clean Cities State of Maryland Kentucky Clean Cities Partnership Coalition Rogue Valley State of West Virginia San Joaquin Valley San Francisco Columbia-Willamette St. Louis Central New York (Syracuse) Dallas/Ft. Worth Honolulu Central Arkansas Pittsburgh Southern California Association of Governments (SCAG) Los Angeles Coachella Valley Region Northern Colorado Central Oklahoma (Oklahoma City) Virginia Clean Cities Coalition San Diego Regional Clean Cities Coalition Greater Long Island Maine Clean Communities Tulsa Valley of the Sun (Phoenix) Western Riverside County New Jersey Genesee Region (Rochester) Western Washington Clean Cities (Seattle) Ocean State Connecticut Connecticut2 Kansas City Regional Coalition Greater Indiana Clean Cities Coalition Capital District (Albany) Tucson Central Florida Clean Cities Coalition Alamo Area (San Antonio) Greater Baton Rouge Clean Cities Coalition Triangle (Raleigh, Durham, Chapel Hill) Twin Cities Clean Fuels Ohio Yellowstone-Teton Clean Energy Coalition Greater Lansing Palmetto State Houston-Galveston Middle Tennessee East Tennessee Clean Fuels Coalition Centralina Clean Fuels Coalition State of Iowa Treasure Valley Central Coast Southeast Louisiana Clean Fuels Partnership Land of Sky Coalition

78

Clean Cities: Coalition Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Locations Locations Clean Cities coalitions are primarily located in major metropolitan areas throughout the United States. Select the dots on the map for information about individual coalitions. See also the list of coalitions by designation date. United States map showing Clean Cities Coalition locations. Philadelphia State of Delaware Capitol Clean Cities of Connecticut Connecticut Southwestern Area New Haven Norwich Red River Valley (Grand Forks, Winnipeg, Manitoba, Canada) Silicon Valley (San Jose) East Bay (Oakland) San Francisco Sacramento Granite State State of Vermont Northeast Ohio Clean Transportation (Cleveland) Detroit Clean Communities of Western New York (Buffalo) Central New York (Syracuse) Capital District (Albany) Empire Clean Cities State of Maryland Washington DC Metropolitan South Shore Western Riverside County Southern California Association of Governments (SCAG) Atlanta Alabama Denver Philadelphia State of Delaware Las Vegas Washington DC Metropolitan Massachusetts Clean Cities Lone Star Clean Fuels Alliance (Austin) Southeast Florida Chicago Land of Enchantment Wisconsin-Southeast Area Southern Colorado Clean Cities Coalition Long Beach Antelope Valley Utah Clean Cities State of Maryland Kentucky Clean Cities Partnership Coalition Rogue Valley State of West Virginia San Joaquin Valley San Francisco Columbia-Willamette St. Louis Central New York (Syracuse) Dallas/Ft. Worth Honolulu Central Arkansas Pittsburgh Southern California Association of Governments (SCAG) Los Angeles Coachella Valley Region Northern Colorado Central Oklahoma (Oklahoma City) Virginia Clean Cities Coalition San Diego Regional Clean Cities Coalition Greater Long Island Maine Clean Communities Tulsa Valley of the Sun (Phoenix) Western Riverside County New Jersey Genesee Region (Rochester) Western Washington Clean Cities (Seattle) Ocean State Connecticut Connecticut2 Kansas City Regional Coalition Greater Indiana Clean Cities Coalition Capital District (Albany) Tucson Central Florida Clean Cities Coalition Alamo Area (San Antonio) Greater Baton Rouge Clean Cities Coalition Triangle (Raleigh, Durham, Chapel Hill) Twin Cities Clean Fuels Ohio Yellowstone-Teton Clean Energy Coalition Greater Lansing Palmetto State Houston-Galveston Middle Tennessee East Tennessee Clean Fuels Coalition Centralina Clean Fuels Coalition State of Iowa Treasure Valley Central Coast Southeast Louisiana Clean Fuels Partnership Land of Sky Coalition

79

METHOD OF LOCATING GROUNDS  

DOE Patents (OSTI)

ABS>This patent presents a method for locating a ground in a d-c circult having a number of parallel branches connected across a d-c source or generator. The complete method comprises the steps of locating the ground with reference to the mildpoint of the parallel branches by connecting a potentiometer across the terminals of the circuit and connecting the slider of the potentiometer to ground through a current indicating instrument, adjusting the slider to right or left of the mildpoint so as to cause the instrument to indicate zero, connecting the terminal of the network which is farthest from the ground as thus indicated by the potentiometer to ground through a condenser, impressing a ripple voltage on the circuit, and then measuring the ripple voltage at the midpoint of each parallel branch to find the branch in which is the lowest value of ripple voltage, and then measuring the distribution of the ripple voltage along this branch to determine the point at which the ripple voltage drops off to zero or substantially zero due to the existence of a ground. The invention has particular application where a circuit ground is present which will disappear if the normal circuit voltage is removed.

Macleish, K.G.

1958-02-11T23:59:59.000Z

80

Suez Energy Resources North America | Open Energy Information  

Open Energy Info (EERE)

Resources North America Place Texas Utility Id 19107 Utility Location Yes Ownership R NERC Location TRE Activity Retail Marketing Yes References EIA Form EIA-861 Final Data...

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Mazda 3 i-Stop Mazda 3 i-Stop Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional- Start Stop Vehicle Dynamometer Input Document Date 11/20/2012 Advanced Powertrain Research Facility Test weight [lb] 3250 Vehicle Dynamometer Input Document Date 11/20/2012 Revision Number 1 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 3250 31.2 Target B [lb/mph] Target C [lb/mph^2] 0.462 0.014 Test Fuel Information - Vehicle equipped with with i-Stop package - Manual Transmission - All tests completed in ECO mode - EPA shift schedule modified based on vehicle shift light activity Revision Number 1 Notes: Fuel type EPA Tier II EEE Gasoline Test Fuel Information - Vehicle equipped with with i-Stop package

82

Climate VISION: Private Sector Initiatives: Mining: Resources...  

Office of Scientific and Technical Information (OSTI)

process on the most significant and timely issues that impact our ability to locate, permit, mine, process, transport, and utilize the nation's vast coal and mineral resources...

83

Figure 4.17 Geothermal Resources  

U.S. Energy Information Administration (EIA)

Figure 4.17 Geothermal Resources 124 U.S. Energy Information Administration / Annual Energy Review 2011 Notes: Data are for locations of identified hydrothermal ...

84

Energy Basics: Wind Energy Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resources Wind energy can be produced anywhere in the world where the wind blows with a strong and consistent force. Windier locations produce more energy, which lowers the cost of...

85

An approach to increase the scalability of location systems in WLAN networks  

Science Conference Proceedings (OSTI)

This paper presents a software layer designed to reduce the consumption of network resources and, at the same time, the amount of location traffic being carried by indoor location systems that are able to use a variety of location techniques. This new ... Keywords: A-GPS, WiFi fingerprinting, indoor location, location middleware

Israel Martin-Escalona; Francisco Barcelo-Arroyo

2008-02-01T23:59:59.000Z

86

Technical Resources  

Science Conference Proceedings (OSTI)

AOCS Resource Directory helps members maintain technical excellence in their professions. Technical Resources Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDifferential scanning calorimetry chemi

87

Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Chrysler 300 Chrysler 300 Test Cell Location 2WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional Vehicle Dynamometer Input Document Date 8/7/2013 Advanced Powertrain Research Facility Test weight [lb] Target A [lb] 4250 38.61 Target B [lb/mph] Target C [lb/mph^2] 0.8894 0.01105 3.6L VVT Port-injected V-6 8 speed Transmission Revision Number 3 Notes: Test Fuel Information 3.6L VVT Port-injected V-6 8 speed Transmission Fuel type Tier II EEE HF437 3.6L VVT Port-injected V-6 8 speed Transmission Fuel density [g/ml] Fuel Net HV [BTU/lbm] 0.743 18490 T e s t I D [ # ] C y c l e C o l d s t a r t ( C S t ) H o t s t a r t [ H S t ] D a t e T e s t C e l l T e m p [ C ] T e s t C e l l R H [ % ] T e s t C e l l B a r o [ i n / H g ] V e h i c l e c o o l i n g f a n s p e e d : S p e e d M a t c h [ S M ] o r c o n s t a n t s p e e d [ C S ] S

88

Building Technologies Office: DOE Challenge Home Partner Locator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Office Search Building Technologies Office Search Search Help Building Technologies Office HOME ABOUT EMERGING TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Office » Residential Buildings Share this resource Send a link to Building Technologies Office: DOE Challenge Home Partner Locator to someone by E-mail Share Building Technologies Office: DOE Challenge Home Partner Locator on Facebook Tweet about Building Technologies Office: DOE Challenge Home Partner Locator on Twitter Bookmark Building Technologies Office: DOE Challenge Home Partner Locator on Google Bookmark Building Technologies Office: DOE Challenge Home Partner Locator on Delicious Rank Building Technologies Office: DOE Challenge Home Partner

89

A new algorithm for sampling CSP solutions uniformly at random  

Science Conference Proceedings (OSTI)

The paper presents a method for generating solutions of a constraint satisfaction problem (CSP) uniformly at random. Our method relies on expressing the constraint network as a uniform probability distribution over its solutions and then sampling from ...

Vibhav Gogate; Rina Dechter

2006-09-01T23:59:59.000Z

90

Safety Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Print LBNLPub-3000: Health and Safety Manual Berkeley Lab safety guide, policies and procedures. Environment, Health, and Safety (EH&S) Staff Contact information for the...

91

Biomass Resources  

Energy.gov (U.S. Department of Energy (DOE))

Biomass resources include any plant-derived organic matter that is available on a renewable basis. These materials are commonly referred to as feedstocks.

92

Ad Hoc mobility management with uniform quorum systems  

Science Conference Proceedings (OSTI)

Keywords: Ad hoc network, balanced incomplete block design, data distribution, mobility management, quorum system, reconfigurable wireless network, uniform quorum system

Zygmunt J. Haas; Ben Liang

1999-04-01T23:59:59.000Z

93

Uniform, Shape-Specific Carriers for Vaccines, Biologics and ...  

Science Conference Proceedings (OSTI)

Uniform, Shape-Specific Carriers for Vaccines, Biologics and Small Molecule Drugs: Top-down Nano-fabrication Technologies. ...

2010-10-05T23:59:59.000Z

94

Handbook 130 (2013)- Uniform Laws and Regulations in the ...  

Science Conference Proceedings (OSTI)

Page 1. UNIFORM LAWS AND REGULATIONS IN THE AREAS OF LEGAL METROLOGY AND ENGINE FUEL QUALITY NIST Handbook 2013 130 ...

2012-11-02T23:59:59.000Z

95

Uniform System of Accounts for Gas Utilities (Maine)  

Energy.gov (U.S. Department of Energy (DOE))

This rule establishes a uniform system of accounts and annual report filing requirements for natural gas utilities operating in Maine.

96

Uniform Realization of the Unit of Torque in the US  

Science Conference Proceedings (OSTI)

Uniform Realization of the Unit of Torque in the US. Summary: ... Start Date: February 1, 2008. Lead Organizational Unit: pml. ...

2012-05-30T23:59:59.000Z

97

Wavelength routing of uniform instances in all-optical rings  

Science Conference Proceedings (OSTI)

We consider the problem of routing uniform communication instances in switched optical rings that use wavelength-division multiplexing technology. A communication instance is called uniform if it consists exactly of all pairs of nodes in the graph whose ... Keywords: Edge load, Optical ring, Routing, Uniform instance, WDM, Wavelength index

Lata Narayanan; Jaroslav Opatrny

2005-12-01T23:59:59.000Z

98

Uniformly accelerated observer in a thermal bath  

E-Print Network (OSTI)

We investigate the quantum field aspects in flat spacetime for an uniformly accelerated observer moving in a thermal bath. In particular, we obtain an exact closed expression of the reduced density matrix for an uniformly accelerated observer with acceleration $a = 2\\pi T$ when the state of the quantum field is a thermal bath at temperature $T^\\prime$. We find that the density matrix has a simple form with an effective partition function $Z$ being a product, $Z = Z_T Z_{T^\\prime}$, of two thermal partition functions corresponding to temperatures $T$ and $T^\\prime$ and hence is not thermal, even when $T = T^\\prime$. We show that, even though the partition function has a product structure, the two thermal baths are, in fact, interacting systems; although in the high frequency limit $\\omega_k \\gg T$ and $\\omega_k \\gg T^\\prime$, the interactions are found to become sub-dominant. We further demonstrate that the resulting spectrum of the Rindler particles can be interpreted in terms of spontaneous and stimulated emission due to the background thermal bath. The density matrix is also found to be symmetric in the acceleration temperature $T$ and the thermal bath temperature $T^\\prime$ indicating that thermodynamic experiments alone cannot distinguish between the thermal effects due to $T$ and those due to $T^\\prime$. The entanglement entropy associated with the reduced density matrix (with the background contribution of the Davies-Unruh bath removed) is shown to satisfy, in the $\\omega_k \\gg T^\\prime$ limit, a first law of thermodynamics relation of the form $T \\delta S = \\delta E$ where $\\delta E$ is the difference in the energies corresponding to the reduced density matrix and the background Davies-Unruh bath. The implications are discussed.

Sanved Kolekar

2013-09-12T23:59:59.000Z

99

Mobile Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobile Resources Mobile Resources Mobile Resources Have a mobile device? Find tips and information here. Questions? 505-667-5809 Email For information call the Service Desk at (505) 667-5809 or email mobilelibrary@lanl.gov The following resources are optimized for mobile devices or have mobile apps available for download. Resource Available App Mobile Website Available off Yellow Network with Pairing or Login Additional Information AACR Journals Apple Yes, the Journals are optimized for mobile viewing. Not the whole AACR site. Instructional pdf on pairing with voucher ACS Apple Android No American Institute of Physics Apple No American Mathematical Society No Yes Instructions for pairing mobile devices, tablets, laptops, etc. American Physical Society No Annual Reviews No Yes Instructions for pairing with mobile device available on website.

100

Overview of the Quality and Completeness of Resource Assessment Data for the APEC Region  

SciTech Connect

The availability of information and data on the renewable energy resources (solar, wind, biomass, geothermal, and hydro) for renewable energy technologies is a critical element in the successful implementation of these technologies. This paper presents a comprehensive summary of published information on these resources for each of 1 8 Asia-Pacific Economic Cooperation (APEC) economies. In the introductory sections, a discussion of the quality and completeness of this information is presented, along with recommendations on steps that need to be taken to facilitate the further development and deployment of renewable energy technologies throughout the APEC region. These sections are then followed by economy-specific reviews, and a complete bibliography and summary description for each citation. The major results of this survey are that a basis for understanding renewable energy resources is currently available for essentially all the economies, although there is a significant need to apply improved and updated resource assessment techniques in most. For example, most wind resource assessments rely on data collected at national weather stations, which often results in underestimates of the true potential wind resource within an economy. As a second example, solar resource assessments in most economies rely on an analysis of very simple sunshine record data, which results in large uncertainties in accurately quantifying the resource. National surveys of biomass, geothermal, and hydro resources are often lacking; in most cases, resources for these technologies were discussed for site-specific studies only. Thus, the major recommendations in this paper are to: ( 1 ) upgrade current or install new wind and solar measurement systems at key 'benchmark' locations to provide accurate, representative information on these resources; (2) apply advanced wind and solar resource assessment tools that rely on data quality assessment procedures, the use of satellite data, and models, and that can reliably interpolate the data collected at the benchmark sites; (3) conduct national surveys of biomass, geothermal, and hydro resources uniformly and consistently; and ( 4) establish a centralized data center that provides ready access to the most up-to-date and validated renewable resource data in all APEC economies.

Renne, D. S.; Pilasky, S.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Historical Resources | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Resources Historical Resources Historical Resources The Department of Energy maintains and makes accessible to the general public a wide variety of historical resources. These include published and online histories of the Department and its predecessor agencies and records, exhibits, museums, and tours available online and at various locations both within and outside the Department. The Department's Office of History and Heritage Resources (OHHR) serves as the institutional memory for the Department. Overviews of the Department produced by OHHR include the online only A Brief History of the Department of Energy and the more in-depth Department of Energy Timeline as well as the published Department of Energy, 1977-1994: A Summary History. The Department is the lineal descendent of several predecessor agencies,

102

Mobile Alternative Fueling Station Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Station Locator Alternative Fueling Station Locator Fuel Type Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) Location Enter a city, postal code, or address Include private stations Not all stations are open to the public. Choose this option to also search private fueling stations. Search Caution: The AFDC recommends that users verify that stations are open, available to the public, and have the fuel prior to making a trip to that location. Some stations in our database have addresses that could not be located by the Station Locator application. This may result in the station appearing in the center of the zip code area instead of the actual location. If you're having difficulty, please contact the technical response team at

103

Alternative Fuels Data Center: Natural Gas Fueling Station Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Fueling Station Locations to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Google Bookmark Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Delicious Rank Alternative Fuels Data Center: Natural Gas Fueling Station Locations on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Fueling Station Locations on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations

104

PILGRIM: a Location Broker and Mobility-Aware Recommendation System  

E-Print Network (OSTI)

Mobile computing adds a new, mostly unexplored dimension to data mining: the user's position is now a relevant information, and recommendation systems, i.e. services that select and rank a small number of links that are probably of interest to the user, have the opportunity to take location into account. The use of location discovery systems, that automatically detect the device location, relieve the user from the burden of explicitly inserting that information when formulating a query. In this paper, a mobility-aware recommendation system that uses the location of the user to filter recommended links is proposed. To avoid the potential problems and costs caused by systems where the bindings between locations and resources are inserted by hand, a new middleware layer, the location broker, collects a historic database where user locations and links explored in the past are mined to develop models relating resources to their spatial usage pattern. The models are used to calculate a preference metric when the current user is asking for resources of interest.

Mauro Brunato; Roberto Battiti

2002-01-01T23:59:59.000Z

105

Federal agency resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

106

Multifamily housing resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

107

Entertainment venue resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

108

Higher education resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

109

Data center resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

110

Senior care resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

111

Auto dealer resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

112

Contractor Human Resources | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Contractor Human Resources | National Nuclear Security Administration Contractor Human Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Contractor Human Resources Home > About Us > Our Operations > Acquisition and Project Management > Contractor Human Resources Contractor Human Resources Welcome The Contractor Human Resources mission is to provide expert advice and

113

Online Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Online Resources Online Resources       General Information Discovering New Physics - Fermilab: where physicists unravel the mysteries of the universe Electromagnetic Simulation: Charged Particle Motion in E/M Field (by Fu-Kwun Hwang, National Taiwan Normal University) Fermilabyrinth - Online versions of exhibits at the Lederman Science Center Fermilab Virtual Tour - Photos of accelerators and detectors with figure captions International Particle Physics Outreach Group (from CERN) Fermilab Homepage - Links to general information, experiments and projects (Fermilab at Work), particle physics (inquiring minds), resources for students (education) and more High-Energy Physics Acronyms - (from Fermilab) Particle Physics - a list of links from the American Physical Society)

114

Center Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources for Planning Center Activities Resources for Planning Center Activities       QuarkNet at Work - Resources Home QuarkNet is a teacher professional development effort funded by the National Science Foundation and the US Department of Energy. Teachers work on particle physics experiments during a summer and join a cadre of scientists and teachers working to introduce some aspects of their research into their classrooms. This allows tomorrow's particle physicists to peek over the shoulder of today's experimenters. These resources are available for lead teachers and mentors at Quartnet Centers as they design activities for associate teacher workshops and follow-on activities. Important Findings from Previous Years Mentor Tips Associate Teacher Institute Toolkit

115

Reading Comprehension - Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

the planet Earth. Food, water, and sunlight are all examples of a natural resource unnatural resource science resource . A natural resource is a material found in...

116

Energy Basics: Biomass Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Share this resource Biomass Biofuels Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biomass Resources Biomass resources include any...

117

Tools & Resources: Resource Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Directory Resource Directory The guidance documents and reports below have been used by Better Buildings Neighborhood Program partners to build their programs and guide them to early successes. The tools and calculators can be used by homeowners, business owners, and program designers to help determine energy savings and other benefits associated with energy efficiency upgrades. Guidance Documents and Reports Background Program Evaluation Program Updates and Lessons Learned Program Design Marketing and Driving Demand Financing and Incentives Workforce Development Partnering with Utilities Technical Resources Tools and Calculators For Homes For Commercial Buildings Emissions and Equivalency Calculators Guidance Documents and Reports Background Recovery Through Retrofit Report

118

Mobile Alternative Fueling Station Locator  

Science Conference Proceedings (OSTI)

The Department of Energy's Alternative Fueling Station Locator is available on-the-go via cell phones, BlackBerrys, or other personal handheld devices. The mobile locator allows users to find the five closest biodiesel, electricity, E85, hydrogen, natural gas, and propane fueling sites using Google technology.

Not Available

2009-04-01T23:59:59.000Z

119

Precision zero-home locator  

DOE Patents (OSTI)

A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

Stone, William J. (Kansas City, MO)

1986-01-01T23:59:59.000Z

120

Precision zero-home locator  

DOE Patents (OSTI)

A zero-home locator includes a fixed phototransistor switch and a moveable actuator including two symmetrical, opposed wedges, each wedge defining a point at which switching occurs. The zero-home location is the average of the positions of the points defined by the wedges.

Stone, W.J.

1983-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Wind Resource Assessment Overview | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Overview Wind Resource Assessment Overview Jump to: navigation, search Maps.jpg The first step in developing a wind project is to locate and quantify the wind resource. The magnitude of the wind and the characteristics of the resource are the largest factors in determining a potential site's economic and technical viability. There are three basic steps to identifying and characterizing the wind resource: prospecting, validating, and micrositing. The process of locating sites for wind energy development is similar to exploration for other resources, such as minerals and petroleum. Thus, the term prospecting is often used to describe the identification and preliminary evaluation of a wind resource area. Prospecting includes identifying potentially windy sites within a fairly large region - such

122

Uniform plasma oscillations in ellipsoid of conductive material  

E-Print Network (OSTI)

The influence of the shape of a sample on the type of uniform dipole collective electrons oscillations is discussed. In samples of a bulk shape uniform bulk dipole oscillation (Langmuir oscillation) cannot exist. It exists in samples of a thin slab shape only. As uniform bulk dipole oscillations cannot penetrate ellipsoidal samples of conductive material, they exist in the surface layer of a sample only (Mie oscillations). Frequencies of Mie oscillations are alculated for a sample of the shape of an arbitrary ellipsoid.

Kornyushin, Yuri

2007-01-01T23:59:59.000Z

123

Achieving uniform distribution and dispersion of high percentage ...  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2014 TMS Annual Meeting & Exhibition. Symposium , Light-metal Matrix (Nano)-composites. Presentation Title, Achieving uniform...

124

Bundle-type methods uniformly optimal for smooth and nonsmooth ...  

E-Print Network (OSTI)

Dec 7, 2010 ... present new bundle-type methods which possess the optimal rate of ... that uniformly optimal algorithms of this type have been presented in the...

125

2015 Resource Pool - Sierra Nevada Region - Western Area Power  

NLE Websites -- All DOE Office Websites (Extended Search)

2015 Resource Pool 2015 Resource Pool 2015 Resource Pool Updates 2015 Base Resource Percentages Including Resource Pool Allocations Federal Register Notices Final 2015 Resource Pool Allocations (PDF 147KB) Proposed Allocations FRN (PDF - 59KB) Notice of Extension (PDF - 49KB) Applicant Profile Data Form (WORD - 89KB) Call for 2015 Resource Pool Applications (PDF - 70KB) Final 2015 Resource Pool Size and Revised Eligibility Criteria (PDF - 57.4KB) Proposed 2015 Resource Pool Size and Revised Eligibility Criteria (PDF - 60.7KB) Public Meetings Comment Forum on the Proposed 2015 Resource Pool Size and Eligibility Criteria Date: Wednesday, May 21, 2008, at 1:00 p.m., PST Location: Lake Natoma Inn located at 702 Gold Lake Drive, Folsom, California Comments on 2015 Resource Pool Size and General Eligibility Criteria

126

Assessment of the 296-S-21 Stack Sampling Probe Location  

SciTech Connect

Tests were performed to assess the suitability of the location of the air sampling probe on the 296-S-21 stack according to the criteria of ANSI N13.1-1999, Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities. Pacific Northwest National Laboratory conducted most tests on a 3.67:1 scale model of the stack. CH2MHill also performed some limited confirmatory tests on the actual stack. The tests assessed the capability of the air-monitoring probe to extract a sample representative of the effluent stream. The tests were conducted for the practical combinations of operating fans and addressed: (1) Angular Flow--The purpose is to determine whether the velocity vector is aligned with the sampling nozzle. The average yaw angle relative to the nozzle axis should not be more than 20. The measured values ranged from 5 to 11 degrees on the scale model and 10 to 12 degrees on the actual stack. (2) Uniform Air Velocity--The gas momentum across the stack cross section where the sample is extracted should be well mixed or uniform. The uniformity is expressed as the variability of the measurements about the mean, the coefficient of variance (COV). The lower the COV value, the more uniform the velocity. The acceptance criterion is that the COV of the air velocity must be ?20% across the center two-thirds of the area of the stack. At the location simulating the sampling probe, the measured values ranged form 4 to 11%, which are within the criterion. To confirm the validity of the scale model results, air velocity uniformity measurements were made both on the actual stack and on the scale model at the test ports 1.5 stack diameters upstream of the sampling probe. The results ranged from 6 to 8% COV on the actual stack and 10 to 13% COV on the scale model. The average difference for the eight runs was 4.8% COV, which is within the validation criterion. The fact that the scale model results were slightly higher than the actual stack suggests that the other test results on the scale model are conservative relative to the actual stack. (3) Uniform Concentration of Tracer Gases--A uniform contaminant concentration in the sampling plane enables the extraction of samples that represent the true concentration. This was first tested using a tracer gas to represent gaseous effluents. The fan is a good mixer, so injecting the tracer downstream of the fans provides worst-case results. The acceptance criteria are that (1) the COV of the measured tracer gas concentration is ?20% across the center two-thirds of the sampling plane and (2) at no point in the sampling plane does the concentration vary from the mean by >30%. The results on the scale model at the point simulating the sampling probe ranged from 0.3 to 6 %COV, and the maximum single point deviation from the mean was -10%. (4) Uniform Concentration of Tracer Particles--Uniformity in contaminant concentration at the sampling probe was further demonstrated using tracer particles large enough to exhibit inertial effects. Particles of 10-?m aerodynamic diameter were used. The acceptance criterion is that the COV of particle concentration is ?20% across the center two-thirds of the sampling plane. The scale model results ranged form 2 to 9%. Based on these tests, the location of the air sampling probe on the 296-S-21 stack meets the requirements of the ANSI/HPS N13.1-1999 standard.

Glissmeyer, John A.

2006-09-08T23:59:59.000Z

127

Comparison of Bandwidth Usage: Service Location Protocol and Jini  

E-Print Network (OSTI)

Recently there has been an increase in the development of technologies for resource discovery, since for example, resources such as printers, mail boxes, memory space, and disk space are available in every network, ready to be used for any host. This has been caused, in part, by the growth in the popularity of portable devices such as laptops, PDAs, and cell phones which require configuration each time they attach to a new network segment. Since the configuration of such devices is tedious and sometimes complicated, there have been some attempts in past years to solve this problem, such as the DHCP approach. This paper focuses on the bandwidth analysis of two new approaches for dealing with resource discovery: the Service Location Protocol (SLP) and Jini. This work is particularly important since the communication among the devices is often wireless, whereas bandwidth is a limited resource. We present equations for characterizing the usage of bandwidth made by SLP and Jini, bas...

Javier Govea; Michel Barbeau

2000-01-01T23:59:59.000Z

128

A uniformly second order fast sweeping method for eikonal equations  

Science Conference Proceedings (OSTI)

A uniformly second order method with a local solver based on the piecewise linear discontinuous Galerkin formulation is introduced to solve the eikonal equation with Dirichlet boundary conditions. The method utilizes an interesting phenomenon, referred ... Keywords: Discontinuous Galerkin method, Eikonal equations, Fast sweeping method, Superconvergence, Uniformly second order

Songting Luo

2013-05-01T23:59:59.000Z

129

Constructing uniform designs: A heuristic integer programming method  

Science Conference Proceedings (OSTI)

In this paper, the wrap-around L"2-discrepancy (WD) of asymmetrical design is represented as a quadratic form, thus the problem of constructing a uniform design becomes a quadratic integer programming problem. By the theory of optimization, some theoretic ... Keywords: Quadratic integer programming, Simulated annealing, Uniform design, Wrap-around L2-discrepancy

Yong-Dao Zhou; Kai-Tai Fang; Jian-Hui Ning

2012-04-01T23:59:59.000Z

130

Method for preparing spherical thermoplastic particles of uniform size  

DOE Patents (OSTI)

Spherical particles of thermoplastic material of virtually uniform roundness and diameter are prepared by cutting monofilaments of a selected diameter into rod-like segments of a selected uniform length which are then heated in a viscous liquid to effect the formation of the spherical particles.

Day, J.R.

1975-11-17T23:59:59.000Z

131

Asset Locator - A Framework for Enterprise Software Asset Management  

E-Print Network (OSTI)

This paper introduces the Enterprise Software Asset Management (ESAM) paradigm, which defines an approach to doing automated software asset management. ESAM is a comprehensive integrated solution supporting search and reuse, collaboration, knowledge sharing, impact analysis, and other enterprise-centric services. We describe Asset Locator, a low-cost, scalable and extensible solution that realizes ESAM. Asset Locator uses a set of autonomous scheduled crawlers that scan enterprise repositories to discover development resources. A set of domain-specific analyzers process the discovered resources by identifying and extracting semantic features. Powerful search and navigation engines enable clients to explore the analyzed information. The design of Asset Locator as an extensible framework has enabled its easy integration into several IBM product offerings. 1

Avi Yaeli; Alex Akilov; Sara Porat; Iftach Ragoler; Shlomit Shachor-ifergan; Gabi Zodik

2002-01-01T23:59:59.000Z

132

External Resources | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

External Resources | National Nuclear Security Administration External Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog External Resources Home > content > External Resources External Resources National security is not achieved by one government agency alone, but through the joint effort of multiple agencies with extraordinarily talented

133

External Resources | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

External Resources | National Nuclear Security Administration External Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog External Resources Home > content > External Resources External Resources National security is not achieved by one government agency alone, but through the joint effort of multiple agencies with extraordinarily talented

134

Uniform Capacity Tax and Exemption for Solar (Vermont) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) Uniform Capacity Tax and Exemption for Solar (Vermont) < Back Eligibility Agricultural Commercial Industrial Low-Income Residential Residential Savings Category Solar Buying & Making Electricity Program Info State Vermont Program Type Property Tax Incentive Rebate Amount 100% property tax exemption for systems 10 kilowatts or less Uniform $4/kilowatt property tax payment Provider Vermont Department of Taxes During the 2012 legislative session, Vermont passed a 100% property tax exemption for solar photovoltaic (PV) systems up to and including 10 kilowatts (kW). For systems greater than 10 kW, the state assesses a uniform $4 per kilowatt (kW). This applies to the equipment, not to the land. The 100% exemption for small PV systems expires January 1, 2023, although a

135

OPM Briefing on Uniformed Services Employment and Reemployment Rights Act  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OPM Briefing on Uniformed Services Employment and Reemployment OPM Briefing on Uniformed Services Employment and Reemployment Rights Act Training OPM Briefing on Uniformed Services Employment and Reemployment Rights Act Training The Veterans' Benefits Improvement Act of 2008, Public Law (P.L.) 110-389, October 10, 2008, contains a key provision requiring all Federal agencies to provide Uniformed Services Employment and Reemployment Rights Act (USERRA) training. The USERRA training is to be provided to "any personnel of the agency who are authorized to recommend, take, or approve any personnel action that is subject to the requirements of this chapter with respect to employees of the agency." OPM Briefing on Uniformed Services Employment and Reemployment Rights Act Training Responsible Contacts Bruce Murray

136

Property:Geothermal/LocationOfProject | Open Energy Information  

Open Energy Info (EERE)

LocationOfProject LocationOfProject Jump to: navigation, search Property Name Geothermal/LocationOfProject Property Type Page Description Location of Project Pages using the property "Geothermal/LocationOfProject" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + Soda Lake, Nevada + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + Butte, Montana + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + Socorro, New Mexico +

137

Uranium Resources Inc URI | Open Energy Information  

Open Energy Info (EERE)

Uranium Resources Inc URI Uranium Resources Inc URI Jump to: navigation, search Name Uranium Resources, Inc. (URI) Place Lewisville, Texas Zip 75067 Product Uranium Resources, Inc. (URI) is primarily engaged in the business of acquiring, exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References Uranium Resources, Inc. (URI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Uranium Resources, Inc. (URI) is a company located in Lewisville, Texas . References ↑ "Uranium Resources, Inc. (URI)" Retrieved from "http://en.openei.org/w/index.php?title=Uranium_Resources_Inc_URI&oldid=352580" Categories: Clean Energy Organizations

138

Solar Energy Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar Energy Resource Basics Solar Energy Resource Basics Solar Energy Resource Basics August 21, 2013 - 11:40am Addthis Solar radiation, often called the solar resource, is a general term for the electromagnetic radiation emitted by the sun. Solar radiation can be captured and turned into useful forms of energy, such as heat and electricity, using a variety of technologies. However, the technical feasibility and economical operation of these technologies at a specific location depends on the available solar resource. Basic Principles Every location on Earth receives sunlight at least part of the year. The amount of solar radiation that reaches any one spot on the Earth's surface varies according to: Geographic location Time of day Season Local landscape Local weather. Because the Earth is round, the sun strikes the surface at different

139

NREL: Renewable Resources Maps and Data Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Search More Search Options Site Map Photo of solar measurement instruments. Because renewable resources vary considerably from one geographic location to another, optimal siting...

140

Tara Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Name Tara Energy Resources Place Texas Utility Id 56586 Utility Location Yes Ownership R NERC ERCOT Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File...

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Forecasting Resource Supply from Scarcity Rent Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Forecasting Resource Supply from Scarcity Rent Data Speaker(s): Larry Dale Date: December 18, 2000 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Diana Morris This talk...

142

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Project Locations Biofuels Project Locations BlueFire Ethanol Biochemical Municipal Solid Waste (Mecca, CA) Poet Biochemical Corn Cob/Corn Fiber (Emmetsburg, IA) Lignol Biochemical Woody Biomass- Ag Residues (Grand Junction, CO) ICM Biochemical Switchgrass, Forage Sorghum, Stover (St. Joseph, MO) Abengoa Biochemica Agricultural Residue (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage Thermochemical Woody Biomass - Mill Residues (Wisconsin Rapids, WI) Range Fuels Thermochemical Woody Waste (Soperton, GA) DSM Innovation Center Biochemical Various (Parsippany, NJ) Novozymes Biochemical Various (Davis, CA) Genencor Biochemical Various (Palo Alto, CA) Verenium Corp Biochemical Various (San Diego, CA)

143

Teacher Resource Center: Fermilab Web Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab Web Resources Fermilab Web Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The following materials are on the webserver. Fermilab Resources for Students - You might bookmark some of these resources to give your students easy access to information. Fermilab Resources for Students - You might bookmark some of these resources to give your students easy access to information. Photographs and video clips from Fermilab's Visual Media Services

144

Image Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Mosaic of earth and sky images Mosaic of earth and sky images Image Resources Free image resources covering energy, environment, and general science. Here are some links to energy- and environment-related photographic databases. Berkeley Lab Photo Archive Berkeley Lab's online digital image collection. National Science Digital Library (NSDL) NSDL is the Nation's online library for education and research in science, technology, engineering, and mathematics. The World Bank Group Photo Library A distinctive collection of over 11,000 images that illustrate development through topics such as Agriculture, Education, Environment, Health, Trade and more. Calisphere Compiles the digital collections of libraries, museums, and cultural heritage organizations across California, and organizes them by theme, such

145

Teacher Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources Resources Teacher Programs JLab Science Activities for Teachers - An afternoon science program for 5th, 6th and 8th grade teachers. [Program Dates: September 2013 - May 2014] Teacher Night at Jefferson Lab - Teacher Night will be held on April 2nd, 2014. Please sign-up by March 19th, 2014! Education Events Physics Fest - Cryogenics, electricity and more! Reserve your space today! Science Series - Science lectures for high school and middle school students! [Video Archive] Education Events Mailing List - An electronic mailing list to keep you informed of Jefferson Lab's public education events! Workshops and Local Groups The Virginia Section of the American Nuclear Society - Single and multi-day workshops on the science of nuclear energy and radiation.

146

Geothermal resources of Montana  

DOE Green Energy (OSTI)

The Montana Bureau of Mines and Geology has updated its inventory of low and moderate temperature resources for the state and has assisted the Oregon Institute of Technology - GeoHeat Center and the University of Utah Research Institute in prioritizing and collocating important geothermal resource areas. The database compiled for this assessment contains information on location, flow, water chemistry, and estimated reservoir temperatures for 267 geothermal well and springs in Montana. For this assessment, the minimum temperature for low-temperature resource is defined as 10{degree} C above the mean annual air temperature at the surface. The maximum temperature for a moderate-temperature resource is defined as greater than 50{degree} C. Approximately 12% of the wells and springs in the database have temperatures above 50{degree} C, 17% are between 30{degree} and 50{degree} C, 29% are between 20{degree} and 30{degree}C, and 42% are between 10{degree} and 20{degree} C. Low and moderate temperature wells and springs can be found in nearly all areas of Montana, but most are in the western third of the state. Information sources for the current database include the MBMG Ground Water Information Center, the USGS statewide database, the USGS GEOTHERM database, and new information collected as part of this program. Five areas of Montana were identified for consideration in future investigations of geothermal development. The areas identified are those near Bozeman, Ennis, Butte, Boulder, and Camas Prairie. These areas were chosen based on the potential of the resource and its proximity to population centers.

Metesh, J.

1994-06-01T23:59:59.000Z

147

Information about DOE Locations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information about DOE Locations Information about DOE Locations The following chart provides information about the FOIA program at each of the locations. You can link to the...

148

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects created with...

149

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects...

150

station locations | OpenEI  

Open Energy Info (EERE)

00 00 Varnish cache server Browse Upload data GDR 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 2142288500 Varnish cache server station locations Dataset Summary Description Alternative fueling stations are located throughout the United States and their availability continues to grow. The Alternative Fuels Data Center (AFDC) maintains a website where you can find alternative fuels stations near you or on a route, obtain counts of alternative fuels stations by state, Source Alternative Fuels Data Center Date Released December 13th, 2010 (4 years ago) Date Updated December 13th, 2010 (4 years ago) Keywords alt fuel alternative fuels alternative fuels stations biodiesel CNG compressed natural gas E85 Electricity ethanol

151

Uniform Methods for Determining Energy Efficiency Savings and Increasing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uniform Methods for Determining Energy Efficiency Savings and Uniform Methods for Determining Energy Efficiency Savings and Increasing Electric Utility Confidence in Reported Savings Now Available Uniform Methods for Determining Energy Efficiency Savings and Increasing Electric Utility Confidence in Reported Savings Now Available May 23, 2013 - 4:01pm Addthis The National Renewable Energy Laboratory (NREL) has published protocols for estimating energy savings for residential and commercial energy efficiency programs and measures through the recently released "The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures." Funded by the Office of Electricity Delivery and Energy Reliability and the Office of Energy Efficiency and Renewable Energy, the developed protocols provide a straightforward method for evaluating gross

152

Uniform-Distribution Attribute Noise Learnability Nader H. Bshouty  

E-Print Network (OSTI)

by Shackelford and Volper [10] for the case of k-DNF expressions. Their uniform attribute noise model consists] that is the same for every attribute. While Shackelford and Volper assumed that the learner knows the noise rate p

Jackson, Jeffrey

153

About the Uniform Methods Project | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

About the Uniform Methods Project About the Uniform Methods Project About the Uniform Methods Project The Uniform Methods Project is developing Methods for Determining Energy Efficiency Savings for Specific Measures through collaboration with energy efficiency program administrators, stakeholders, and EM&V consultants-including the firms that perform up to 70% of the energy efficiency evaluations in the United States. The goal is to strengthen the credibility of energy efficiency programs by improving EM&V, increasing the consistency and transparency of how energy savings are determined. On this page you will find information about the purpose of the project, a description of what is included in the protocols, a list of benefits this project will bring to the stakeholders of U.S. energy efficiency programs,

154

Transportation cost inequalities for diffusions under uniform distance  

E-Print Network (OSTI)

We prove the transportation inequality with the uniform norm for the laws of diffusion processes with Lipschitz and/or dissipative coefficients and apply them to some singular stochastic differential equations of interest.

Ali Suleyman Ustunel

2010-09-27T23:59:59.000Z

155

The Response of a Uniform Horizontal Temperature Gradient to Heating  

Science Conference Proceedings (OSTI)

The response of a uniform horizontal temperature gradient to prescribed fixed heating is calculated in the context of an extended version of surface quasigeostrophic dynamics. It is found that for zero mean surface flow and weak cross-gradient ...

Maarten H. P. Ambaum; Panos J. Athanasiadis

2007-10-01T23:59:59.000Z

156

Non-uniform emission studies of a magnetron injection gun  

E-Print Network (OSTI)

This thesis investigates the experimental measurement and theoretical simulation of the effects of azimuthal emission non-uniformity of a 96 kV, 40 amp magnetron injection gun (MIG) used in a gyrotron. The accomplishments ...

Marchewka, Chad D. (Chad Daniel)

2006-01-01T23:59:59.000Z

157

Currents of non-uniformities in solar atmosphere  

E-Print Network (OSTI)

Non-uniformities of plasma and magnetic field are known to cause electric currents in plasma. Electron density gradient causes diffusion current, electron temperature gradient - thermocurrent, gradient of magnetic field module - gradient current, curvature of magnetic field lines - centrifugal current. Being independent of electric field, the currents of non-uniformities may act as extraneous to cause charge separation and electric field in plasma. In cosmos, the currents of non-uniformities were observed; in particular, gradient and centrifugal currents - in magnetosphere, diffusion one - in a comet coma and in artificial plasma cloud. On present work, the gradient current was investigated more fully than earlier. Two unknown components, parallel and perpendicular to magnetic field were found. The equation for gradient current density was obtained. We compared the theoretical densities of currents of non-uniformities (with usage of electron pressure and corresponding gradients) with measured current densitie...

Stepanov, S I

2006-01-01T23:59:59.000Z

158

Independent Natural Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Natural Resources Inc Natural Resources Inc Jump to: navigation, search Name Independent Natural Resources Inc Place Eden Prairie, Minnesota Zip 55344 Product Designer of a wave converter system. Has patented the SEADOG Pump which uses buoyancy to convert ave energy to mechanical energy. References Independent Natural Resources Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This company is listed in the Marine and Hydrokinetic Technology Database. This article is a stub. You can help OpenEI by expanding it. Independent Natural Resources Inc is a company located in Eden Prairie, Minnesota . References ↑ "Independent Natural Resources Inc" Retrieved from "http://en.openei.org/w/index.php?title=Independent_Natural_Resources_Inc&oldid=678906"

159

Colorado Renewable Resource Cooperative | Open Energy Information  

Open Energy Info (EERE)

Colorado Renewable Resource Cooperative Colorado Renewable Resource Cooperative Jump to: navigation, search Name Colorado Renewable Resource Cooperative Place Colorado Sector Biomass Product Colorado-based cooperative and forestry producer, that targets the use of woody biomass to generate heat or electricity. References Colorado Renewable Resource Cooperative[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Colorado Renewable Resource Cooperative is a company located in Colorado . References ↑ "Colorado Renewable Resource Cooperative" Retrieved from "http://en.openei.org/w/index.php?title=Colorado_Renewable_Resource_Cooperative&oldid=343780" Categories: Clean Energy Organizations

160

Geothermal Resource Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Basics Resource Basics Geothermal Resource Basics August 14, 2013 - 1:58pm Addthis Although geothermal heat pumps can be used almost anywhere, most direct-use and electrical production facilities in the United States are located in the west, where the geothermal resource base is concentrated. Current drilling technology limits the development of geothermal resources to relatively shallow water- or steam-filled reservoirs, most of which are found in the western part of the United States. But researchers are developing new technologies for capturing the heat in deeper, "dry" rocks, which would support drilling almost anywhere. Geothermal Resources Map This map shows the distribution of geothermal resources across the United States. If you have trouble accessing this information because of a

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Catamount Resources Corporation CRC | Open Energy Information  

Open Energy Info (EERE)

Resources Corporation CRC Resources Corporation CRC Jump to: navigation, search Name Catamount Resources Corporation (CRC) Place Rutland, Vermont Sector Wind energy Product CRC was formed for the purpose of holding CVPS's subsidiaries that invest in unregulated business opportunities, and has focused exclusively on wind projects since 2001. References Catamount Resources Corporation (CRC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Catamount Resources Corporation (CRC) is a company located in Rutland, Vermont . References ↑ "Catamount Resources Corporation (CRC)" Retrieved from "http://en.openei.org/w/index.php?title=Catamount_Resources_Corporation_CRC&oldid=343289

162

US hydropower resource assessment for Hawaii  

DOE Green Energy (OSTI)

US DOE is developing an estimate of the undeveloped hydropower potential in US. The Hydropower Evaluation Software (HES) is a computer model developed by INEL for this purpose. HES measures the undeveloped hydropower resources available in US, using uniform criteria for measurement. The software was tested using hydropower information and data provided by Southwestern Power Administration. It is a menu-driven program that allows the PC user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes, and generate reports. This report describes the resource assessment results for the State of Hawaii.

Francfort, J.E.

1996-09-01T23:59:59.000Z

163

Updating the Classification of Geothermal Resources | Open Energy  

Open Energy Info (EERE)

Updating the Classification of Geothermal Resources Updating the Classification of Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Updating the Classification of Geothermal Resources Abstract Resource classification is a key element in the characterization, assessment and development of energy resources, including geothermal energy. Stakeholders at all levels of government, within the geothermal industry, and among the general public need to be able to use and understand consistent terminology when addressing geothermal resource issues such as location, quality, feasibility of development, and potential impacts. This terminology must encompass both the fundamentally geological nature of geothermal resources and the practical technological and economic

164

Energy Basics: Geothermal Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Direct Use Electricity Production Geothermal Resources Hydrogen Hydropower Ocean...

165

Energy Basics: Hydropower Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Large-Scale Hydropower Microhydropower Hydropower Resources...

166

The Fundamentals of Locational Marginal Pricing (LMP): Examples of Pricing Outcomes on the PJM System  

Science Conference Proceedings (OSTI)

As power industry restructuring continues, more and more industry participants will be exposed to financial uncertainties created by locational marginal pricing. These uncertainties differ from those experienced under traditional regulation as well as from the resource adequacy-related price spikes experienced in the Midwest in 1998 and in the West during 2000-2001. Instead, locational marginal pricing systems create uncertainty in the cost of transporting power from resources to loads. This report will ...

2003-12-15T23:59:59.000Z

167

Vacuum State/Refiner/Location  

U.S. Energy Information Administration (EIA) Indexed Site

Vacuum Vacuum State/Refiner/Location Barrels per Atmospheric Crude Oil Distillation Capacity Barrels per Operating Idle Operating Idle Downstream Charge Capacity Thermal Cracking Delayed Fluid Coking Visbreaking Other/Gas Calendar Day Stream Day Distillation Coking Oil Table 3. Capacity of Operable Petroleum Refineries by State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) ......................................................... Alabama 120,100 0 130,000 0 48,000 32,000 0 0 0 Goodway Refining LLC 4,100 0 5,000 0 0 0 0 0 0 ....................................................................................................................................................................................................

168

Calwind Resources Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Resources Wind Farm Resources Wind Farm Jump to: navigation, search Name Calwind Resources Wind Farm Facility Calwind Resources Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer CalWind Resources Energy Purchaser Southern California Edison Co Location Tehachapi CA Coordinates 35.07665°, -118.25529° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.07665,"lon":-118.25529,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

169

Exploration Criteria for Low Permeability Geothermal Resources  

DOE Green Energy (OSTI)

The decision to drill deep holes in a prospective geothermal system implies that geothermal energy resources exist at depth. The drill hole location and budget result from hypothesis regarding the location and depth of the resource within the overall system. Although operational decisions normally dictate the practicality of drilling, the characteristics, we must first understand how unique various surface or shallow subsurface data are in assessing the nature of the resource. The following progress report summarizes the results of numerical simulations of heat and mass transport around igneous plutons and the synthesis of geologic data. To date, the results of the study describe the transient nature of thermal resources and the ambiguities which must be accounted for in using current technology to assess the nation's geothermal resources. [DJE-2005

Norton, D.

1977-03-01T23:59:59.000Z

170

Measurements of neutron dose equivalent for a proton therapy center using uniform scanning proton beams  

SciTech Connect

Purpose: Neutron exposure is of concern in proton therapy, and varies with beam delivery technique, nozzle design, and treatment conditions. Uniform scanning is an emerging treatment technique in proton therapy, but neutron exposure for this technique has not been fully studied. The purpose of this study is to investigate the neutron dose equivalent per therapeutic dose, H/D, under various treatment conditions for uniform scanning beams employed at our proton therapy center. Methods: Using a wide energy neutron dose equivalent detector (SWENDI-II, ThermoScientific, MA), the authors measured H/D at 50 cm lateral to the isocenter as a function of proton range, modulation width, beam scanning area, collimated field size, and snout position. They also studied the influence of other factors on neutron dose equivalent, such as aperture material, the presence of a compensator, and measurement locations. They measured H/D for various treatment sites using patient-specific treatment parameters. Finally, they compared H/D values for various beam delivery techniques at various facilities under similar conditions. Results: H/D increased rapidly with proton range and modulation width, varying from about 0.2 mSv/Gy for a 5 cm range and 2 cm modulation width beam to 2.7 mSv/Gy for a 30 cm range and 30 cm modulation width beam when 18 Multiplication-Sign 18 cm{sup 2} uniform scanning beams were used. H/D increased linearly with the beam scanning area, and decreased slowly with aperture size and snout retraction. The presence of a compensator reduced the H/D slightly compared with that without a compensator present. Aperture material and compensator material also have an influence on neutron dose equivalent, but the influence is relatively small. H/D varied from about 0.5 mSv/Gy for a brain tumor treatment to about 3.5 mSv/Gy for a pelvic case. Conclusions: This study presents H/D as a function of various treatment parameters for uniform scanning proton beams. For similar treatment conditions, the H/D value per uncollimated beam size for uniform scanning beams was slightly lower than that from a passive scattering beam and higher than that from a pencil beam scanning beam, within a factor of 2. Minimizing beam scanning area could effectively reduce neutron dose equivalent for uniform scanning beams, down to the level close to pencil beam scanning.

Zheng Yuanshui; Liu Yaxi; Zeidan, Omar; Schreuder, Andries Niek; Keole, Sameer [ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); INTEGRIS Cancer Insititute, 5911 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States); ProCure Treatment Centers, 420 North Walnut Street, Bloomington, Indiana 47404 (United States); ProCure Proton Therapy Center, 5901 West Memorial Road, Oklahoma City, Oklahoma 73142 (United States)

2012-06-15T23:59:59.000Z

171

Currents of non-uniformities in solar atmosphere  

E-Print Network (OSTI)

Non-uniformities of plasma and magnetic field are known to cause electric currents in plasma. Electron density gradient causes diffusion current, electron temperature gradient - thermocurrent, gradient of magnetic field module - gradient current, curvature of magnetic field lines - centrifugal current. Being independent of electric field, the currents of non-uniformities may act as extraneous to cause charge separation and electric field in plasma. In cosmos, the currents of non-uniformities were observed; in particular, gradient and centrifugal currents - in magnetosphere, diffusion one - in a comet coma and in artificial plasma cloud. On present work, the gradient current was investigated more fully than earlier. Two unknown components, parallel and perpendicular to magnetic field were found. The equation for gradient current density was obtained. We compared the theoretical densities of currents of non-uniformities (with usage of electron pressure and corresponding gradients) with measured current densities (calculated as rotor of magnetic field) for sun photosphere. It follows from the comparison that the currents of non-uniformities play important, may be main, role in measured local current in photosphere. It is necessary to consider in electromagnetic models.

S. I. Stepanov

2006-10-30T23:59:59.000Z

172

Major DOE Biofuels Project Locations  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuels Biofuels Project Locations Pacific Ethanol (Boardman, OR) BlueFire Ethanol (Corona, CA) POET (Emmetsburg, IA) Lignol Innovations (Commerce City, CO) ICM (St. Joseph, MO) Abengoa (Hugoton, KS) DOE Joint Bioenergy Institute (Berkeley, CA) DOE Great Lakes Bioenergy Research Center (Madison, WI) DOE Bioenergy Science Center (Oak Ridge, TN) NewPage (Wisconsin Rapids, WI) Range Fuels (Soperton, GA) DSM Innovation Center (Parsippany, NJ) Novozymes (Davis, CA) Genencor (Palo Alto, CA) Verenium Corp (San Diego, CA) Dupont (Wilmington, DE) Mascoma (Lebanon, NH) Cargill Inc (Minneapolis, MN) Regional Partnerships South Dakota State University, Brookings, SD Cornell University, Ithaca, NY University of Tennessee, Knoxville, TN Oklahoma State University, Stillwater, OK Oregon State University, Corvallis, OR

173

The Uniform Methods Project: Methods for Determining Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Uniform Methods Project: Methods for Determining Energy The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures (April 2013) The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures (April 2013) In April 2013 the National Renewable Energy Laboratory (NREL) published the first set of protocols for determining energy savings from energy efficiency measures and programs. Funded by the Office of Electricity Delivery and Energy Reliability and the Office of Energy Efficiency and Renewable Energy, the developed protocols provide a straightforward method for evaluating gross energy savings for each of the most common residential and commercial measures and programs offered by ratepayer-funded energy efficiency programs in the US. Using a single measurement and verification

174

Federal Energy Management Program: Renewable Energy Resource Maps and  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Maps and Screening Tools Resource Maps and Screening Tools Renewable energy resources are available across the U.S., but vary greatly depending on exact location and micro-climate. This page outlines renewable energy resource maps and screening tools to help Federal agencies assess the viability of on-site renewable energy projects. Before initiating a project, resources in your area must be measured and verified. Resource maps and screening tools are a good start, but it is important to consult an expert for a professional evaluation before implementing renewable energy projects. Resource Maps The Department of Energy (DOE) and its National Renewable Energy Laboratory (NREL) compiled the following renewable energy resource maps: FEMP Renewable Energy Resource Maps: Various maps of availability and other data, such as savings to investment ratio (SIR) analysis, for renewable resources across the U.S.

175

Magnetic properties of the nucleon in a uniform background field  

E-Print Network (OSTI)

We present results for the magnetic moment and magnetic polarisability of the neutron and the magnetic moment of the proton. These results are calculated using the uniform background field method on 32^3 x 64 dynamical QCD lattices provided by the PACS-CS collaboration as part of the ILDG. We use a uniform background magnetic field quantised by the periodic spatial volume. We investigate ways to improve the effective energy plots used to calculate magnetic polarisabilities, including the use of correlation matrix techniques with various source smearings.

Thomas Primer; Waseem Kamleh; Derek Leinweber; Matthias Burkardt

2013-07-05T23:59:59.000Z

176

Kolkata Paise Restaurant Problem in Some Uniform Learning Strategy Limits  

E-Print Network (OSTI)

We study the dynamics of some uniform learning strategy limits or a probabilistic version of the "Kolkata Paise Restaurant" problem, where N agents choose among N equally priced but differently ranked restaurants every evening such that each agent can get dinner in the best possible ranked restaurant (each serving only one customer and the rest arriving there going without dinner that evening). We consider the learning to be uniform among the agents and assume that each follow the same probabilistic strategy dependent on the information of the past successes in the game. The numerical results for utilization of the restaurants in some limiting cases are analytically examined.

Ghosh, Asim; Chakrabarti, Bikas K

2009-01-01T23:59:59.000Z

177

Human Resources | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Human Resources | National Nuclear Security Administration Human Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Human Resources Home > About Us > Our Operations > Management and Budget > Human Resources Human Resources The Human Resources function in NNSA is a vital partnership between all levels of NNSA management. It requires effective collaboration with the

178

Human Resources | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Human Resources | National Nuclear Security Administration Human Resources | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Human Resources Home > About Us > Our Operations > Management and Budget > Human Resources Human Resources The Human Resources function in NNSA is a vital partnership between all levels of NNSA management. It requires effective collaboration with the

179

NREL: Renewable Resource Data Center Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

Photo of a man and a woman checking solar measurement instruments. Photo of a man and a woman checking solar measurement instruments. The Renewable Resource Data Center (RReDC) provides access to an extensive collection of renewable energy resource data, maps, and tools. Biomass, geothermal, solar, and wind resource data for locations throughout the United States can be found through the RReDC. Almost every area of the country can take advantage of renewable energy technologies, but some technologies are better suited for particular areas than others. Knowing the resources of a region, state, city, or neighborhood is therefore critical to renewable energy planning and siting. RReDC provides detailed resource information through tools, reports, maps, and data collections. Additional resource data can be found on the NREL

180

Resource Energy Systems LLC | Open Energy Information  

Open Energy Info (EERE)

Energy Systems LLC Energy Systems LLC Jump to: navigation, search Name Resource Energy Systems, LLC Place Rochelle Park, New Jersey Zip 7662 Sector Services, Solar Product Resource Energy Systems (RES) provides property owners with turn-key solar energy services. RES completes all phases of solar design, installation, and completion. References Resource Energy Systems, LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Resource Energy Systems, LLC is a company located in Rochelle Park, New Jersey . References ↑ "Resource Energy Systems, LLC" Retrieved from "http://en.openei.org/w/index.php?title=Resource_Energy_Systems_LLC&oldid=350391" Categories: Clean Energy Organizations

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Renewable Energy Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Renewable Energy Resources, Inc. Renewable Energy Resources, Inc. Place Las Vegas, Nevada Sector Hydro, Renewable Energy, Solar, Wind energy Product Renewable Energy is a privately-held consultancy with proprietary technology in the solar, wind and hydro fields. References Renewable Energy Resources, Inc.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Resources, Inc. is a company located in Las Vegas, Nevada . References ↑ "Renewable Energy Resources, Inc." rated format, with renewable energy as its base, insuring a successful project throughout construction and commissioning. |Number of employees= |Coordinates= |References=Renewable Energy Resources, Inc.[1] }}

182

Amp Resources | Open Energy Information  

Open Energy Info (EERE)

Amp Resources Amp Resources Jump to: navigation, search Name Amp Resources Place Draper, Utah Zip 84020 Sector Geothermal energy Product Geothermal project developer. Coordinates 37.005709°, -80.748916° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.005709,"lon":-80.748916,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

PNM Resources | Open Energy Information  

Open Energy Info (EERE)

PNM Resources PNM Resources Jump to: navigation, search Name PNM Resources Place Albuquerque, New Mexico Coordinates 35.079530580491°, -106.66025161743° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.079530580491,"lon":-106.66025161743,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

184

Greenwood Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Jump to: navigation, search Name Greenwood Resources Address 1500 SW First Avenue Place Portland, Oregon Zip 97201 Sector Biofuels Product Aims to grow poplar trees for cellulosic ethanol Website http://www.greenwoodresources. Coordinates 45.5123956°, -122.6763911° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5123956,"lon":-122.6763911,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

185

Locating Climate Insecurity: Where Are the Most Vulnerable Places in  

Open Energy Info (EERE)

Locating Climate Insecurity: Where Are the Most Vulnerable Places in Locating Climate Insecurity: Where Are the Most Vulnerable Places in Africa? Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Locating Climate Insecurity: Where Are the Most Vulnerable Places in Africa? Agency/Company /Organization: The Robert Strauss Center Topics: Co-benefits assessment, Background analysis Resource Type: Publications Website: ccaps.strausscenter.org/system/research_items/pdfs/19/original.pdf?128 UN Region: "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

186

Computationally efficient algorithms for location area planning in future cellular systems  

Science Conference Proceedings (OSTI)

Efficient resource utilisation in future cellular systems is related to the control of the signalling load imposed by the location update and paging operations. Important means for controlling this load is the ''proper'' planning of location areas. In ... Keywords: Genetic algorithm paradigm, Simulated annealing, Taboo search

P. Demestichas; N. Georgantas; E. Tzifa; V. Demesticha; M. Striki; M. Kilanioti; M. Theologou

2000-07-01T23:59:59.000Z

187

Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes  

SciTech Connect

Recent studies disagree on how rainfall extremes over India have changed in space and time over the past half century, as well as on whether the changes observed are due to global warming or regional urbanization. Although a uniform and consistent decrease in moderate rainfall has been reported, a lack of agreement about trends in heavy rainfall may be due in part to differences in the characterization and spatial averaging of extremes. Here we use extreme value theory to examine trends in Indian rainfall over the past half century in the context of long-term, low-frequency variability.We show that when generalized extreme value theory is applied to annual maximum rainfall over India, no statistically significant spatially uniform trends are observed, in agreement with previous studies using different approaches. Furthermore, our space time regression analysis of the return levels points to increasing spatial variability of rainfall extremes over India. Our findings highlight the need for systematic examination of global versus regional drivers of trends in Indian rainfall extremes, and may help to inform flood hazard preparedness and water resource management in the region.

Ghosh, Subimal [ORNL; Das, Debasish [ORNL; Kao, Shih-Chieh [ORNL; Ganguly, Auroop R [ORNL

2012-01-01T23:59:59.000Z

188

K-12 school resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

189

Sector-specific resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

190

Grocery & convenience stores resources | ENERGY STAR  

NLE Websites -- All DOE Office Websites (Extended Search)

manufacturing resources K-12 school resources Multifamily housing resources Restaurant resources Retail resources Senior care resources Small business resources State and...

191

China Association of Resource Comprehensive Utilisation CARCU | Open Energy  

Open Energy Info (EERE)

China Association of Resource Comprehensive Utilisation CARCU China Association of Resource Comprehensive Utilisation CARCU Jump to: navigation, search Name China Association of Resource Comprehensive Utilisation (CARCU) Place Beijing Municipality, China Zip 100082 Sector Efficiency, Services Product National industrial association dedicated to resource utilisation efficiency, and envirionmental protection. It also delivers services on policy research and technical consulting. References China Association of Resource Comprehensive Utilisation (CARCU)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Association of Resource Comprehensive Utilisation (CARCU) is a company located in Beijing Municipality, China . References

192

Spin flip probability of electron in a uniform magnetic field  

SciTech Connect

The probability that an electromagnetic wave can flip the spin of an electron is calculated. It is assumed that the electron resides in a uniform magnetic field and interacts with an incoming electromagnetic pulse. The scattering matrix is constructed and the time needed to flip the spin is calculated.

Hammond, Richard T. [Department of Physics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina and Army Research Office, Research Triangle Park, North Carolina 27703 (United States)

2012-03-19T23:59:59.000Z

193

BACKSCATTER GUAGE DESCRIPTION FOR INSPECTION OF NEUTRON ABSORBER AND UNIFORMITY  

SciTech Connect

This paper describes design, calibration, and testing of a dual He-3 detector neutron backscatter gauge for use in the Savannah River Site Mixed Oxide Fuel project. The gauge is demonstrated to measure boron content and uniformity in concrete slabs used in the facility construction.

Dewberry, R.; Gibbs, K.; Couture, A.

2012-05-23T23:59:59.000Z

194

Optimal properties of the uniform algebraic trigonometric B-splines  

E-Print Network (OSTI)

In this paper, we construct a matrix, which transforms a generalized C-Bzier basis into a generalized uniform algebraic-trigonometric B-spline (C-B-spline or UAT B-spline) basis. We also show that it is a totally positive matrix and give a normalized B-basis of the generalized UAT B-splines.

Guozhao Wang; Yajuan Li

2006-01-01T23:59:59.000Z

195

Uniform CLT for Markov chains with a countable state  

E-Print Network (OSTI)

.1) then the uniform CLT holds over F. 1 #12;In the discrete space case, the Borisov-Durst theorem [5, p47] says = j} | X0 = i) . Levental (1990) [12] generalized Durst and Dudley's result (1981) [7] that (a) and (b

Tsai, Tsung-Hsi

196

Design of thermal imprinting system with uniform residual thickness  

Science Conference Proceedings (OSTI)

A new thermal imprinting system for the printed circuit boards (PCBs) with both large areas and fine conducting lines was developed adopting hot airs with a high pressure. Several small nickel stamps were used to cover the large area, and the stamps ... Keywords: Patterned circuit boards, Thermal imprinting system, Uniformity of residual thickness

Won-Ho Shin

2009-11-01T23:59:59.000Z

197

Uniform Dispersion of Nanoparticles in Metal Matrix Nanocomposites  

Science Conference Proceedings (OSTI)

Conference Tools for 2012 TMS Annual Meeting & Exhibition ... Two examples are presented in this report: (1) uniform dispersion of Al2O3 nanoparticles in A206 ... Aluminum Metal Matrix Composite via Direct Metal Laser Deposition: Processing And Mechanical Characterization ... Contact programming@

198

NREL: Renewable Resource Data Center - Solar Resource Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Resource Data The following solar resource data collections can be found in the Renewable Resource Data Center (RReDC). Cooperative Networks for Renewable Resource...

199

Preliminary definition of the geothermal resources potential of West Virginia  

DOE Green Energy (OSTI)

Most of West Virginia is underlain by Paleozoic sedimentary rocks. Crystalline rocks are limited to two areas: a small area in the Harpers Ferry region and some basic intrusives and extrusives in Pendleton County. In the Valley and Ridge province the rocks are folded and faulted. The deformation appears to be confined to the sediments overlying the crystalline basement. The Appalachian Basin is characterized by moderately dipping sediments which may reach ticknesses of 7600 meters (25,000 feet) in eastern West Virginia. The 38th parallel fracture zone may extend through West Virginia and serve to localize geothermal resources. Heat flow in West Virginia appears to be rather uniform and in the range of 1.12 to 1.26 heat flow units. Bottomhole temperatures from oil and gas tests show no abnormally hot spots. Warm springs are limited to the eastern portion of West Virginia in the folded Appalachians and appear to be located on the flanks of anticlines at topographic lows. Geothermometry suggests subsurface temperatures in the 45 to 65{sup 0}C (113 to 149{sup 0}F) range. The Appalachian Basin provides a thick sequence of rocks with normal geothermal gradient (18.2{sup 0}C/kilometer, 1{sup 0}F/100 feet). High temperatures are expected at great depths, but production rates are likely to be low. Several oil and gas tests in West Virginia have encountered pressures about twice the normal pressure expected at the depth. However, the overpressured zones appear to be of small extent.

Renner, J.L.; Vaught, T.L.

1979-01-01T23:59:59.000Z

200

Clean Cities: Information Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Resources Information Resources Printable Version Share this resource Send a link to Clean Cities: Information Resources to someone by E-mail Share Clean Cities: Information Resources on Facebook Tweet about Clean Cities: Information Resources on Twitter Bookmark Clean Cities: Information Resources on Google Bookmark Clean Cities: Information Resources on Delicious Rank Clean Cities: Information Resources on Digg Find More places to share Clean Cities: Information Resources on AddThis.com... Publications Technical Assistance Information Resources Learn about Clean Cities by exploring these information resources. Publications View Clean Cities-branded publications or search for publications about alternative fuels and vehicles. Technical Assistance Learn about technical assistance available to help organizations overcome

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Industrial Applications of Renewable Resources  

Science Conference Proceedings (OSTI)

Archive of Industrial Applications of Renewable Resources Industrial Applications of Renewable Resources Cincinnati, Ohio, USA Industrial Applications of Renewable Resources ...

202

Solar radiation resource assessment  

DOE Green Energy (OSTI)

The bulletin discusses the following: introduction; Why is solar radiation resource assessment important Understanding the basics; the solar radiation resource assessment project; and future activities.

Not Available

1990-11-01T23:59:59.000Z

203

Cultural resources GIS.  

E-Print Network (OSTI)

??Cultural resources are inherently spatial entities, and the paper based inventory systems that have prevailed for cultural resources have been relatively effective at recording and (more)

Clark, Kinney E.

2006-01-01T23:59:59.000Z

204

Energy Basics: Ocean Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Resources Although the potential for ocean energy technologies is believed to be very large, no comprehensive studies have been conducted to date to determine an accurate resource...

205

Drivers and Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Drivers and Resources Regulatory Drivers National Laws Executive Orders DOE Orders and Directives Information Resources DOE P2 Web Sites Other P2 Web Sites Environmental...

206

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2010  

SciTech Connect

This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2010 (FY 2010). Throughout the year, thirty-three cultural resource localities were revisited, including somethat were visited more than once, including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-six prehistoric archaeological sites, two historic stage stations, and Experimental Breeder Reactor-I, which is a designated National Historic Landmark. The resources that were monitored included seventeen that are routinely visited and sixteen that are located in INL project areas. Although impacts were documented at a few locations and one trespassing incident (albeit sans formal charges) was discovered, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

INL Cultural Resource Management Office

2010-10-01T23:59:59.000Z

207

Review of water resource potential for developing geothermal resource sites in the western United States  

DOE Green Energy (OSTI)

Water resources at 28 known geothermal resource areas (KGRAs) in the western United States are reviewed. Primary emphasis is placed upon examination of the waer resources, both surface and ground, that exist in the vicinity of the KGRAs located in the southwestern states of California, Arizona, Utah, Nevada, and New Mexico. In most of these regions water has been in short supply for many years and consequently a discussion of competing demands is included to provide an appropriate perspective on overall usage. A discussion of the water resources in the vicinity of KGRAs in the States of Montana, Idaho, Oregon, and Washington are also included.

Sonnichsen, J.C. Jr.

1980-07-01T23:59:59.000Z

208

Renewable Energy Resource Maps and Screening Tools | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resource Maps Resource Maps and Screening Tools Renewable Energy Resource Maps and Screening Tools October 7, 2013 - 9:42am Addthis Renewable energy resources are available across the United States but vary greatly depending on exact location and micro-climate. This page outlines renewable energy resource maps and screening tools to help Federal agencies assess the viability of on-site renewable energy projects. Before initiating a project, resources in your area must be measured and verified. Resource maps and screening tools are a good start, but it is important to consult an expert for a professional evaluation before implementing renewable energy projects. Resource Maps The U.S. Department of Energy (DOE) and its National Renewable Energy Laboratory compiled the following renewable energy resource maps.

209

Center For Resource Solutions CRS | Open Energy Information  

Open Energy Info (EERE)

For Resource Solutions CRS For Resource Solutions CRS Jump to: navigation, search Name Center For Resource Solutions (CRS) Place San Francisco, California Zip 94129 Sector Renewable Energy Product The Center for Resource Solutions (CRS) is a national nonprofit working to build a robust renewable energy market by increasing demand and supply of renewable resources. References Center For Resource Solutions (CRS)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Center For Resource Solutions (CRS) is a company located in San Francisco, California . References ↑ "Center For Resource Solutions (CRS)" Retrieved from "http://en.openei.org/w/index.php?title=Center_For_Resource_Solutions_CRS&oldid=343360"

210

Solar and Wind Energy Resource Assessment Programme's Renewable Energy  

Open Energy Info (EERE)

Solar and Wind Energy Resource Assessment Programme's Renewable Energy Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar and Wind Energy Resource Assessment Programme's Renewable Energy Resource Explorer Focus Area: Solar Topics: Opportunity Assessment & Screening Website: en.openei.org/apps/SWERA/ Equivalent URI: cleanenergysolutions.org/content/solar-and-wind-energy-resource-assess Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The Solar and Wind Energy Resource Assessment (SWERA) programme's Renewable Energy Resource Explorer (RREX) is a Web-based map viewer that displays data from SWERA, the United Nations Environment Programme (UNEP) renewable resource assessment program. The viewer allows users to select any location

211

Cleantech Professional Resource Global Limited CPR Global | Open Energy  

Open Energy Info (EERE)

Professional Resource Global Limited CPR Global Professional Resource Global Limited CPR Global Jump to: navigation, search Name Cleantech Professional Resource Global Limited (CPR Global) Place London, United Kingdom Zip EC4M 9DN Product Cleantech Professional Resource is a resource management consultancy focusing on the cleantech sector in the UK and Europe. References Cleantech Professional Resource Global Limited (CPR Global)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Cleantech Professional Resource Global Limited (CPR Global) is a company located in London, United Kingdom . References ↑ "Cleantech Professional Resource Global Limited (CPR Global)" Retrieved from "http://en.openei.org/w/index.php?title=Cleantech_Professional_Resource_Global_Limited_CPR_Global&oldid=343687

212

Description Logic in a nutshell Seminar ,,Resources for Computational Linguists"  

E-Print Network (OSTI)

person city location located_in.location ... 8 #12;Resources for Comp` Linguists 07 Description Logics - Michaela Regneri & Magdalena Wolska Description Logic - Terms · (atomic) concepts C denoting sets of individuals (person) unary predicates in FOL · (atomic) roles R: (loves) binary predicates in FOL · complex

Prasad, Sanjiva

213

Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conserve Fuel Conserve Fuel Printable Version Share this resource Send a link to Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations to someone by E-mail Share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Facebook Tweet about Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Twitter Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Google Bookmark Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Delicious Rank Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on Digg Find More places to share Alternative Fuels Data Center: U.S. Truck Stop Electrification Locations on AddThis.com... U.S. Truck Stop Electrification Locations

214

Experimental Generation and Characterization of Uniformly Filled Ellipsoidal Electron Beam Distributions  

E-Print Network (OSTI)

Experimental Generation and Characterization of Uniformly Filled Ellipsoidal Electron Beam Distributions

Musumeci, P; Rosenzweig, J B; Scoby, C M

2008-01-01T23:59:59.000Z

215

Template:GeothermalResourceArea | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon » Template:GeothermalResourceArea Jump to: navigation, search This is the GeothermalResourceArea template. To define a new Geothermal Resource Area, please use the Geothermal Resource Area form. Contents 1 Parameters 2 Dependencies 3 Usage 4 Example Parameters Map - The map of the resource area. Place - The city or state in which the resource area is located. GeothermalRegion - The geothermal exploration region in which the resource area is located. GEADevelopmentPhase - The phase of plant construction, as defined by GEA (can have more than one phase if more than one project)

216

Idaho National Laboratory Cultural Resource Monitoring Report for FY 2009  

SciTech Connect

This report describes the cultural resource monitoring activities of the Idaho National Laboratorys (INL) Cultural Resource Management (CRM) Office during fiscal year 2009 (FY 2009). Throughout the year, thirty-eight cultural resource localities were revisited including: two locations with Native American human remains, one of which is a cave, two additional caves, twenty-two prehistoric archaeological sites, six historic homesteads, two historic stage stations, two historic trails, and two nuclear resources, including Experimental Breeder Reactor-I, which is a designated National Historic Landmark. Several INL project areas were also monitored in FY 2009 to assess project compliance with cultural resource recommendations and monitor the effects of ongoing project activities. Although impacts were documented at a few locations and trespassing citations were issued in one instance, no significant adverse effects that would threaten the National Register eligibility of any resources were observed. Monitoring also demonstrated that several INL projects generally remain in compliance with recommendations to protect cultural resources.

Brenda R. Pace; Julie B. Braun

2009-10-01T23:59:59.000Z

217

Uniform Methods Project for Determining Energy Efficiency Program Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Determining Energy Efficiency Program for Determining Energy Efficiency Program Savings Uniform Methods Project for Determining Energy Efficiency Program Savings Under the Uniform Methods Project, DOE is developing a framework and a set of protocols for determining the energy savings from specific energy efficiency measures and programs. The protocols provide a straightforward method for evaluating gross energy savings for common residential and commercial measures offered in ratepayer-funded initiatives in the United Sates. They represent a refinement of the body of knowledge supporting energy efficiency evaluation, measurement, and verification (EM&V) activities. They have been written by technical experts within the field and reviewed by industry experts. Read the first set of protocols published April 2013.

218

The Uniform Methods Project: Methods for Determining Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Policy Coordination and Implementation » Electricity Policy Coordination and Implementation » State and Regional Policy Assistance » The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures In April 2013 the National Renewable Energy Laboratory (NREL) published the first set of protocols for determining energy savings from energy efficiency measures and programs. Funded by the Office of Electricity Delivery and Energy Reliability and the Office of Energy Efficiency and Renewable Energy, the developed protocols provide a straightforward method for evaluating gross energy savings for each of the most common residential and commercial measures and programs offered by ratepayer-funded energy

219

Electrostatic lens to focus an ion beam to uniform density  

SciTech Connect

A focusing lens for an ion beam having a gaussian or similar density profile is provided. The lens is constructed to provide an inner zero electrostatic field, and an outer electrostatic field such that ions entering this outer field are deflected by an amount that is a function of their distance from the edge of the inner field. The result is a beam that focuses to a uniform density in a manner analogous to that of an optical ring lens. In one embodiment, a conically-shaped network of fine wires is enclosed within a cylindrical anode. The wire net together with the anode produces a voltage field that re-directs the outer particles of the beam while the axial particles pass undeflected through a zero field inside the wire net. The result is a focused beam having a uniform intensity over a given target area and at a given distance from the lens.

Johnson, Cleland H. (Oak Ridge, TN)

1977-01-11T23:59:59.000Z

220

A Thermal Field Theory with Non-uniform Chemical Potential  

E-Print Network (OSTI)

We investigate thermal one-loop effective potentials in multi-flavor models with chemical potentials. We study four-dimensional models in which each flavor have different global U(1) charges. Accordingly they have different chemical potentials. We call these "non-uniform chemical potentials," which are organized into a diagonal matrix \\mu. The mass matrix at a vacuum does not commute with \\mu. We find that the effective potential is divided into three parts. The first part is the Coleman-Weinberg potential. The UV divergence resides only in this part. The second is the correction to the Coleman-Weinberg potential that is independent of temperature, and the third depends on both temperature and \\mu. Our result is a generalization of the thermal potentials in previous studies for models with single and multi-flavors with (uniform) chemical potentials and reproduces all the known results correctly.

Masato Arai; Yoshishige Kobayashi; Shin Sasaki

2013-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Average waiting time profiles of uniform DQDB model  

SciTech Connect

The Distributed Queue Dual Bus (DQDB) system consists of a linear arrangement of N nodes that communicate with each other using two contra-flowing buses; the nodes use an extremely simple protocol to send messages on these buses. This simple, but elegant, system has been found to be very challenging to analyze. We consider a simple and uniform abstraction of this model to highlight the fairness issues in terms of average waiting time. We introduce a new approximation method to analyze the performance of DQDB system in terms of the average waiting time of a node expressed as a function of its position. Our approach abstracts the intimate relationship between the load of the system and its fairness characteristics, and explains all basic behavior profiles of DQDB observed in previous simulation. For the uniform DQDB with equal distance between adjacent nodes, we show that the system operates under three basic behavior profiles and a finite number of their combinations that depend on the load of the network. Consequently, the system is not fair at any load in terms of the average waiting times. In the vicinity of a critical load of 1 {minus} 4/N, the uniform network runs into a state akin to chaos, where its behavior fluctuates from one extreme to the other with a load variation of 2/N. Our analysis is supported by simulation results. We also show that the main theme of the analysis carries over to the general (non-uniform) DQDB; by suitably choosing the inter-node distances, the DQDB can be made fair around some loads, but such system will become unfair as the load changes.

Rao, N.S.V. [Oak Ridge National Lab., TN (United States); Maly, K.; Olariu, S.; Dharanikota, S.; Zhang, L.; Game, D. [Old Dominion Univ., Norfolk, VA (United States). Dept. of Computer Science

1993-09-07T23:59:59.000Z

222

Wave modeling in a cylindrical non-uniform helicon discharge  

Science Conference Proceedings (OSTI)

A radio frequency field solver based on Maxwell's equations and a cold plasma dielectric tensor is employed to describe wave phenomena observed in a cylindrical non-uniform helicon discharge. The experiment is carried out on a recently built linear plasma-material interaction machine: The magnetized plasma interaction experiment [Blackwell et al., Plasma Sources Sci. Technol. (submitted)], in which both plasma density and static magnetic field are functions of axial position. The field strength increases by a factor of 15 from source to target plate, and the plasma density and electron temperature are radially non-uniform. With an enhancement factor of 9.5 to the electron-ion Coulomb collision frequency, a 12% reduction in the antenna radius, and the same other conditions as employed in the experiment, the solver produces axial and radial profiles of wave amplitude and phase that are consistent with measurements. A numerical study on the effects of axial gradient in plasma density and static magnetic field on wave propagations is performed, revealing that the helicon wave has weaker attenuation away from the antenna in a focused field compared to a uniform field. This may be consistent with observations of increased ionization efficiency and plasma production in a non-uniform field. We find that the relationship between plasma density, static magnetic field strength, and axial wavelength agrees well with a simple theory developed previously. A numerical scan of the enhancement factor to the electron-ion Coulomb collision frequency from 1 to 15 shows that the wave amplitude is lowered and the power deposited into the core plasma decreases as the enhancement factor increases, possibly due to the stronger edge heating for higher collision frequencies.

Chang, L.; Hole, M. J.; Caneses, J. F.; Blackwell, B. D.; Corr, C. S. [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia); Chen, G. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2012-08-15T23:59:59.000Z

223

World Resources Institute (WRI) | Open Energy Information  

Open Energy Info (EERE)

Resources Institute (WRI) Resources Institute (WRI) (Redirected from World Resources Institute) Jump to: navigation, search Logo: World Resources Institute Name World Resources Institute Address 10 G Street, NE (Suite 800) Place Washington, District of Columbia Zip 20002 Year founded 1982 Phone number (202) 729-7600 Coordinates 38.8989821°, -77.0081139° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8989821,"lon":-77.0081139,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

224

DOE Challenge Home Resources | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Resources Resources DOE Challenge Home Resources DOE Challenge Home provides resources for successfully building and selling net zero-energy ready homes in today's market. DOE Challenge Home Training & Events DOE Challenge Home Technical Resources DOE Challenge Home Training Orientation Webinar (video, text version, presentation slides) Gaining Recognition as a Leader webinar (text version) Zero Net-Energy Ready Homes Design Options for Locating Ducts within Conditioned Space DOE Challenge Home Builder Profiles Learn more about DOE Challenge Home Builders on their individual profiles, look up their case studies in the Building America Program Publication and Product Library, or search the Building America Solution Center. DOE Challenge Home Sales and Marketing A Symbol of Excellence Consumer Brochure

225

Business and Technical Resources  

Science Conference Proceedings (OSTI)

Business and Technical Resources. Small Business Administration. The SBA provides information on programs for starting ...

2012-06-19T23:59:59.000Z

226

Gravitational lensing in a non-uniform plasma  

E-Print Network (OSTI)

We develop a model of gravitational lensing in a non-uniform plasma. When a gravitating body is surrounded by a plasma, the lensing angle depends on the frequency of the electromagnetic wave, due to dispersion properties of plasma, in presence of a plasma inhomogeneity, and of a gravity. The second effect leads, even in a uniform plasma, to a difference of the gravitational photon deflection angle from the vacuum case, and to its dependence on the photon frequency. We take into account both effects, and derive the expression for the lensing angle in the case of a strongly nonuniform plasma in presence of the gravitation. Dependence of the lensing angle on the photon frequency in a homogeneous plasma resembles the properties of a refractive prism spectrometer, which strongest action is for very long radiowaves. We discuss the observational appearances of this effect for the gravitational lens with a Schwarzschild metric, surrounded by a uniform plasma. We obtain formulae for the lensing angle and the magnification factors in this case and discuss a possibility of observation of this effect by the planned VLBI space project Radioastron. We also consider models with a nonuniform plasma distribution. For different gravitational lens models we compare the corrections to the vacuum lensing due to the gravitational effect in plasma, and due to the plasma inhomogeneity. We have shown that the gravitational effect could be detected in the case of a hot gas in the gravitational field of a galaxy cluster.

G. S. Bisnovatyi-Kogan; O. Yu. Tsupko

2010-06-11T23:59:59.000Z

227

Maps & Directions | Custom Map Location | Brookhaven National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Want to share a specific location with others? Drag the marker pin to a new location and then share the following URL: http:www.bnl.govmapspoint.php?Lat40.86827&Lng-72.88113...

228

Mobile Truck Stop Electrification Site Locator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Truck Stop Electrification Site Locator Location Enter a city, postal code, or address Search Caution: The AFDC recommends that users verify that sites are open prior to making a...

229

Teacher Resource Center: Science Fair Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Science Fair Resources Science Fair Resources TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center collection is available for use onsite. The TRC is a member of the DuPage Library System. This list was prepared for a presentation to several regional library systems. The Science Fair and Beyond, was presented by Susan Dahl, sdahl@fnal.gov, 630-840-3094. (links checked October 27, 2009) See the 'Customized Workshops" link in the "Teacher's Lounge" for information about more workshops available through the TRC. Explore the Education Office website for other opportunities and services.

230

Fault Locating, Prediction and Protection (FLPPS)  

Science Conference Proceedings (OSTI)

One of the main objectives of this DOE-sponsored project was to reduce customer outage time. Fault location, prediction, and protection are the most important aspects of fault management for the reduction of outage time. In the past most of the research and development on power system faults in these areas has focused on transmission systems, and it is not until recently with deregulation and competition that research on power system faults has begun to focus on the unique aspects of distribution systems. This project was planned with three Phases, approximately one year per phase. The first phase of the project involved an assessment of the state-of-the-art in fault location, prediction, and detection as well as the design, lab testing, and field installation of the advanced protection system on the SCE Circuit of the Future located north of San Bernardino, CA. The new feeder automation scheme, with vacuum fault interrupters, will limit the number of customers affected by the fault. Depending on the fault location, the substation breaker might not even trip. Through the use of fast communications (fiber) the fault locations can be determined and the proper fault interrupting switches opened automatically. With knowledge of circuit loadings at the time of the fault, ties to other circuits can be closed automatically to restore all customers except the faulted section. This new automation scheme limits outage time and increases reliability for customers. The second phase of the project involved the selection, modeling, testing and installation of a fault current limiter on the Circuit of the Future. While this project did not pay for the installation and testing of the fault current limiter, it did perform the evaluation of the fault current limiter and its impacts on the protection system of the Circuit of the Future. After investigation of several fault current limiters, the Zenergy superconducting, saturable core fault current limiter was selected for installation. Because of some testing problems with the Zenergy fault current limiter, installation was delayed until early 2009 with it being put into operation on March 6, 2009. A malfunction of the FCL controller caused the DC power supply to the superconducting magnet to be turned off. This inserted the FCL impedance into the circuit while it was in normal operation causing a voltage resonance condition. While these voltages never reached a point where damage would occur on customer equipment, steps were taken to insure this would not happen again. The FCL was reenergized with load on December 18, 2009. A fault was experienced on the circuit with the FCL in operation on January 14, 2010. The FCL operated properly and reduced the fault current by about 8%, what was expected from tests and modeling. As of the end of the project, the FCL was still in operation on the circuit. The third phase of the project involved the exploration of several advanced protection ideas that might be at a state where they could be applied to the Circuit of the Future and elsewhere in the SCE electrical system. Based on the work done as part of the literature review and survey, as well as a number of internal meetings with engineering staff at SCE, a number of ideas were compiled. These ideas were then evaluated for applicability and ability to be applied on the Circuit of the Future in the time remaining for the project. Some of these basic ideas were implemented on the circuit including measurement of power quality before and after the FCL. It was also decided that we would take what was learned as part of the Circuit of the Future work and extend it to the next generation circuit protection for SCE. Also at this time, SCE put in a proposal to the DOE for the Irvine Smart Grid Demonstration using ARRA funding. SCE was successful in obtaining funding for this proposal, so it was felt that exploration of new protection schemes for this Irvine Smart Grid Demonstration would be a good use of the project resources. With this in mind, a protection system that uses fault interrupting switches, hi

Yinger, Robert, J.; Venkata, S., S.; Centeno, Virgilio

2010-09-30T23:59:59.000Z

231

Factors of characteristic words: Location and decompositions  

Science Conference Proceedings (OSTI)

Let @a be an irrational number with 0Keywords: Characteristic word, Decomposition, Location, Overlap factor, Return words, Separate factor

Wai-Fong Chuan; Hui-Ling Ho

2010-06-01T23:59:59.000Z

232

Optimal Location of Vertical Wells: Decomposition Approach  

E-Print Network (OSTI)

Optimal Location of Vertical Wells: Decomposition Approach M. G. Ierapetritou and C. A. Floudas®elopment plan with well locations, gi®en a reser®oir property map and a set of infrastructure constraints, represents a ®ery challenging prob- lem. The problem of selecting the optimal ®ertical well locations

233

Location tracking via social networking sites  

Science Conference Proceedings (OSTI)

The use of social media has steadily grown in recent years, and now more than ever, people are logging on to websites like Facebook, Twitter, Foursquare, and Google Latitude with the aim of broadcasting their location information. The ability to 'check ... Keywords: disclosure, intention, location-based services, location-tracking, social networking, trust

Lisa Thomas; Pam Briggs; Linda Little

2013-05-01T23:59:59.000Z

234

Location, Decentralization, and Knowledge Sources for Innovation  

Science Conference Proceedings (OSTI)

When firms seek to innovate, they must decide where to locate their innovation activity. This location choice requires firms to make a simultaneous choice about the organizational structure of innovation activity: almost by definition, multiple locations ... Keywords: decentralization, imitative innovation, new-to-the-market innovation, research and development

Aija Leiponen; Constance E. Helfat

2011-05-01T23:59:59.000Z

235

Open neighborhood locating-dominating in trees  

Science Conference Proceedings (OSTI)

For a graph G that models a facility or a multiprocessor network, detection devices can be placed at the vertices so as to identify the location of an intruder such as a thief or saboteur or a faulty processor. Open neighborhood locating-dominating sets ... Keywords: Domination, Open neighborhood locating-dominating set

Suk J. Seo; Peter J. Slater

2011-03-01T23:59:59.000Z

236

Education: Digital Resource Center -- Ceramics: Web resources  

Science Conference Proceedings (OSTI)

Glossary of cement/ceramic terminology plus high school lesson plans and resources, 0 ... WEB: Ceramic Glossary Ceramic Terminology and Abbreviations...

237

Resource assessment methodologies and applications  

Science Conference Proceedings (OSTI)

Resource assessment refers to the estimation and evaluation of mineral materials in the ground, both discovered and undiscovered. In such as an assessment, attention is centered on materials in such form, concentration, and location that they might be extractable under foreseeable economic and technological conditions. In practical terms, there is no such thing as an all-purpose resource assessment. Diverse groups of people interested in such assessments, be they mineral exploration planners, economic analysts, land use planners, or policymakers, will look for aspects that are most pertinent to their own field and time frame of interest. For example, exploration analysts would be most interested in the geological potential for discovering certain types of deposits in a region; mining engineers in the physical and chemical characteristics of deposits already discovered; and economists in the possible mineral-supply stream that might be generated in the future. No single assessment can throw light on all aspects of conceivable interest, and every type of assessment will have its conceptual and analytical limitations. Six major resource assessment methodologies are presented: areal value, crustal abundance, volumetric, deposit modeling, Delphi, and intergrated synthesis. Each methodology has certain strengths and weaknesses and type of resource estimate, factos which must be considered before application of any one technique. Each of these methods is discussed.

Dorian, J.P.; Zwartendyk, J.

1984-01-01T23:59:59.000Z

238

Final Report One-Twelfth-Scale Mixing Experiments to Characterize Double-Shell Tank Slurry Uniformity  

Science Conference Proceedings (OSTI)

The objectives of these 1/12-scale scoping experiments were to ? Determine which of the dimensionless parameters discussed in Bamberger and Liljegren (1994) affect the maximum concentration that can be suspended during jet mixer pump operation in the full-scale double-shell tanks ? Develop empirical correlations to predict the nozzle velocity required for jet mixer pumps to suspend the contents of full-scale double-shell tanks ? Apply the models to predict the nozzle velocity required to suspend the contents of Tank 241 AZ-101 ? Obtain experimental concentration data to compare with the TEMPEST( )(Trent and Eyler 1989) computational modeling predictions to guide further code development ? Analyze the effects of changing nozzle diameter on exit velocity (U0) and U0D0 (the product of the exit velocity and nozzle diameter) required to suspend the contents of a tank. The scoping study experimentally evaluated uniformity in a 1/12-scale experiment varying the Reynolds number, Froude number, and gravitational settling parameter space. The initial matrix specified only tests at 100% U0D0 and 25% U0D0. After initial tests were conducted with small diameter, low viscosity simulant this matrix was revised to allow evaluation of a broader range of U0D0s. The revised matrix included full factorial test between 100% and 50% U0D0 and two half-factorial tests at 75% and 25% U0D0. Adding points at 75% U0D0 and 50% U0D0 allowed evaluation curvature. Eliminating points at 25% U0D0 decreased the testing time by several weeks. Test conditions were achieved by varying the simulant viscosity, the mean particle size, and the jet nozzle exit velocity. Concentration measurements at sampling locations throughout the tank were used to assess the degree of uniformity achieved during each test. Concentration data was obtained using a real time ultrasonic attenuation probe and discrete batch samples. The undissolved solids concentration at these locations was analyzed to determine whether the tank contents were uniform ( 10% variation about mean) in concentration. Concentration inhomogeneity was modeled as a function of dimensionless groups. The two parameters that best describe the maximum solids volume fraction that can be suspended in a double-shell tank were found to be 1) the Froude number (Fr) based on nozzle velocity (U0) and tank contents level (H) and 2) the dimensionless particle size (dp/D0). The dependence on the Reynolds number (Re) does not appear to be statistically significant.

Bamberger, Judith A.; Liljegren, Lucia M.; Enderlin, Carl W.; Meyer, Perry A.; Greenwood, Margaret S.; Titzler, Pamela A.; Terrones, Guillermo

2007-09-01T23:59:59.000Z

239

Locational analysis for the aluminum industry  

SciTech Connect

A locational analysis for the aluminum industry suggests that its locational pattern is probably even more clear-cut than that of the steel industry. Because the smelting of alumina into aluminum requires a very large amount of electric power, aluminum has become an industry highly oriented to cheap-power locations. A quick analysis, taking into account present technological and economic conditions, reveals that the potential advantages of the minimum-transport-cost location for an aluminum plant are clearly outweighed by the large power cost savings accruing from locating the plant at a cheap-power location. This holds true even with a fairly small differential in power rates between the two locations.

Isard, W.; Parcels, L.

1977-12-01T23:59:59.000Z

240

Transportation Resources | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Resources Transportation Resources The following means of transportation are available for getting to Argonne. Airports Argonne is located within 25 miles of two major Chicago airports: O'Hare International and Midway. Car Rental Agencies There are various car rentals available from the airports. Alamo 800-327-9633 Avis 800-331-1212 (O'Hare) 800-831-2847 (Midway) Budget 800-527-0700 Dollar 800-800-4000 Enterprise 800-566-9249 (Midway) Hertz 800-654-3131 National 800-328-4567 (O'Hare) 800-227-7368 (Midway) Thrifty 800-847-4389 (Midway) Limousines In general, limousine transportation to Argonne from the aiports is less expensive than a taxi or car rental. A-1 Limousine 630-833-3788 Hinsdale United Limousine Service 630-455-7003 888-483-6129 My Chauffeur (Formerly American Limousine) 800-244-6200

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sage Resources | Open Energy Information  

Open Energy Info (EERE)

Sage Resources Sage Resources Place Missoula, Montana Zip 59803 Sector Geothermal energy, Solar Product A company specializing in geothermal and solar-thermal project development in the western United States; works with private firms, government, and the DOE. Coordinates 46.87278°, -113.996234° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.87278,"lon":-113.996234,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

242

Competitive Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Address 60 Church St Place Yalesville, Connecticut Zip 06492 Sector Efficiency Product Demand side management programs Website http://www.competitiveresource Coordinates 41.489499°, -72.811062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.489499,"lon":-72.811062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

243

SWERA/Solar Resource Information | Open Energy Information  

Open Energy Info (EERE)

Resource Information Resource Information < SWERA Jump to: navigation, search SWERA logo.png Solar and Wind Energy Resource Assessment (SWERA) Interactive Web PortalPowered by OpenEI Getting Started Data Sets Analysis Tools About SWERA Solar Resource Information SWERA solar products provide information on the solar resource at a specific location that is available for use by solar technologies. These products include maps and data of available solar resource, as well as documentation on the methodology employed to generate these solar resource estimates. The data products and resource maps are derived from models and satellite and global weather observations and do not contain site-specific measurement information. SWERA solar products are classified by the radiation components they describe. Applicability of the different

244

CEZ Obnovitelne zdroje sro Renewable Resources | Open Energy Information  

Open Energy Info (EERE)

CEZ Obnovitelne zdroje sro Renewable Resources CEZ Obnovitelne zdroje sro Renewable Resources Jump to: navigation, search Name CEZ Obnovitelne zdroje sro (Renewable Resources) Place Prague 4, Czech Republic Zip 140 53 Sector Biomass, Renewable Energy Product Subsidiary of CEZ Group that is focused on energy generation from renewable resources, except for combustion of biomass with coal. References CEZ Obnovitelne zdroje sro (Renewable Resources)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. CEZ Obnovitelne zdroje sro (Renewable Resources) is a company located in Prague 4, Czech Republic . References ↑ "[ CEZ Obnovitelne zdroje sro (Renewable Resources)]" Retrieved from "http://en.openei.org/w/index.php?title=CEZ_Obnovitelne_zdroje_sro_Renewable_Resources&oldid=343432"

245

Binary fish passage models for uniform and nonuniform flows  

Science Conference Proceedings (OSTI)

Binary fish passage models are considered by many fisheries managers to be the best 21 available practice for culvert inventory assessments and for fishway and barrier design. 22 Misunderstandings between different binary passage modeling approaches often arise, 23 however, due to differences in terminology, application and presentation. In this paper 24 one-dimensional binary fish passage models are reviewed and refined to clarify their 25 origins and applications. For uniform flow, a simple exhaustion-threshold (ET) model 26 equation is derived that predicts the flow speed threshold in a fishway or velocity barrier 27 that causes exhaustion at a given maximum distance of ascent. Flow speeds at or above 28 the threshold predict failure to pass (exclusion). Flow speeds below the threshold predict 29 passage. The binary ET model is therefore intuitive and easily applied to predict passage 30 or exclusion. It is also shown to be consistent with the distance-maximizing model. The 31 ET model s limitation to uniform flow is addressed by deriving a passage model that 32 accounts for nonuniform flow conditions more commonly found in the field, including 33 backwater profiles and drawdown curves. Comparison of these models with 34 experimental observations of volitional passage for Gambusia affinis in uniform and 35 nonuniform flows indicates reasonable prediction of binary outcomes (passage or 36 exclusion) if the flow speed is not near the threshold flow velocity. More research is 37 needed on fish behavior, passage strategies under nonuniform flow regimes and 38 stochastic methods that account for individual differences in swimming performance at or 39 near the threshold flow speed. Future experiments should track and measure ground 40 speeds of ascending fish to test nonuniform flow passage strategies and to improve model 41 predictions. Stochastic models, such as Monte-Carlo techniques, that account for 42 different passage performance among individuals and allow prediction of the percentage 43 of fish passing would be particularly useful near flow speed thresholds where binary 44 passage models are clearly limited.

Neary, Vincent S [ORNL

2011-01-01T23:59:59.000Z

246

Teacher Resource Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Teacher Resource Center: Putting It All Together Teacher Resource Center: Putting It All Together TRC Home TRC Fact Sheet Library Curricular Resources Science Fair Resources Bibliographies sciencelines The Best of sciencelines Archives Annotated List of URLs Catalog Teacher's Lounge Full Workshop Catalog Customized Workshops Scheduled Workshops Special Opportunities Teacher Networks Science Lab Fermilab Science Materials Samplers Order Form Science Safety Issues Tech Room Fermilab Web Resources The Teacher Resource Center provides a preview collection of K-12 instructional materials. TRC services include professional development workshops, consultation assistance, bibliographies and reference assistance. Educators have access to curriculum materials, books, multimedia, educational supply catalogs, periodicals and newsletters. The collection

247

Transformation of quantum states using uniformly controlled rotations  

E-Print Network (OSTI)

We consider a unitary transformation which maps any given state of an $n$-qubit quantum register into another one. This transformation has applications in the initialization of a quantum computer, and also in some quantum algorithms. Employing uniformly controlled rotations, we present a quantum circuit of $2^{n+2}-4n-4$ CNOT gates and $2^{n+2}-5$ one-qubit elementary rotations that effects the state transformation. The complexity of the circuit is noticeably lower than the previously published results. Moreover, we present an analytic expression for the rotation angles needed for the transformation.

Mikko Mottonen; Juha J. Vartiainen; Ville Bergholm; Martti M. Salomaa

2004-07-01T23:59:59.000Z

248

Uniformly accelerating black holes in a de Sitter universe  

E-Print Network (OSTI)

A class of exact solutions of Einstein's equations is analysed which describes uniformly accelerating charged black holes in an asymptotically de Sitter universe. This is a generalisation of the C-metric which includes a cosmological constant. The physical interpretation of the solutions is facilitated by the introduction of a new coordinate system for de Sitter space which is adapted to accelerating observers in this background. The solutions considered reduce to this form of the de Sitter metric when the mass and charge of the black holes vanish.

J. Podolsky; J. B. Griffiths

2000-10-30T23:59:59.000Z

249

Illustrating an error in "An equivalent condition for a uniform space to be coverable"  

E-Print Network (OSTI)

Berestovskii and Plaut introduced the concept of a coverable space when developing their theory of generalized universal covering maps for uniform spaces. If a space is coverable and chain connected then it has a generalized universal covering map. Brodskiy, Dydak, LaBuz, and Mitra introduced the concept of a uniformly joinable space when developing a theory of generalized uniform covering maps. It is easy to see that a chain connected coverable space is uniformly joinable. This paper discusses the attempt in Plaut's "An equivalent condition for a uniform space to be coverable" to prove that a uniformly joinable chain connected space is coverable.

Labuz, B

2009-01-01T23:59:59.000Z

250

Modeling, Analysis, and Control of Demand Response Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling, Analysis, and Control of Demand Response Resources Speaker(s): Johanna Mathieu Date: April 27, 2012 - 12:00pm Location: 90-3122 Seminar HostPoint of Contact: Sila...

251

NREL: Wind Research - Shedding Light on Offshore Wind Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Shedding Light on Offshore Wind Resources March 22, 2013 View of the Chesapeake Bay light tower in the water. The Chesapeake Bay light tower is located approximately 13 miles from...

252

Geothermal resource requirements for an energy self-sufficient spaceport  

DOE Green Energy (OSTI)

Geothermal resources in the southwestern United States provide an opportunity for development of isolated spaceports with local energy self-sufficiency. Geothermal resources can provide both thermal energy and electrical energy for the spaceport facility infrastructure and production of hydrogen fuel for the space vehicles. In contrast to hydrothermal resources by which electric power is generated for sale to utilities, hot dry rock (HDR) geothermal resources are more wide-spread and can be more readily developed at desired spaceport locations. This paper reviews a dynamic model used to quantify the HDR resources requirements for a generic spaceport and estimate the necessary reservoir size and heat extraction rate. The paper reviews the distribution of HDR resources in southern California and southern New Mexico, two regions where a first developmental spaceport is likely to be located. Finally, the paper discusses the design of a HDR facility for the generic spaceport and estimates the cost of the locally produced power.

Kruger, P.; Fioravanti, M. [Stanford Univ., CA (United States). Civil Engineering Dept.; Duchane, D.; Vaughan, A. [Los Alamos National Lab., NM (United States). Earth and Environmental Sciences Div.

1997-01-01T23:59:59.000Z

253

US hydropower resource assessment for New Jersey  

Science Conference Proceedings (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

Connor, A.M.; Francfort, J.E.

1996-03-01T23:59:59.000Z

254

US Hydropower Resource Assessment for Massachusetts  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the Commonwealth of Massachusetts.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

255

US hydropower resource assessment for New Hampshire  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Hampshire.

Francfort, J.E.

1995-07-01T23:59:59.000Z

256

US hydropower resource assessment for Texas  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Texas.

Francfort, J.E.

1993-12-01T23:59:59.000Z

257

US hydropower resource assessment for Kansas  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Kansas.

Francfort, J.E.

1993-12-01T23:59:59.000Z

258

US hydropower resource assessment for Rhode Island  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Rhode Island.

Francfort, J.E.; Rinehart, B.N.

1995-07-01T23:59:59.000Z

259

US hydropower resource assessment for Vermont  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Vermont.

Conner, A.M.; Francfort, J.E.

1996-02-01T23:59:59.000Z

260

US hydropower resource assessment for Wyoming  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Wyoming.

Francfort, J.E.

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

US hydropower resource assessment for Montana  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

Francfort, J.E.

1993-12-01T23:59:59.000Z

262

US hydropower resource assessment for Indiana  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Indiana.

Francfort, J.E.

1995-12-01T23:59:59.000Z

263

US hydropower resource assessment for Iowa  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Iowa.

Francfort, J.E.

1995-12-01T23:59:59.000Z

264

US hydropower resource assessment for Arkansas  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Arkansas.

Francfort, J.E.

1993-12-01T23:59:59.000Z

265

US hydropower resource assessment for North Dakota  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of North Dakota.

Francfort, J.E.

1993-12-01T23:59:59.000Z

266

US hydropower resource assessment for Colorado  

DOE Green Energy (OSTI)

The US Department of Energy is developing an estimate of the hydropower development potential in this country. Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE, menu-driven software application. HES allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Colorado.

Francfort, J.E.

1994-05-01T23:59:59.000Z

267

U.S. Hydropower Resource Assessment - California  

DOE Green Energy (OSTI)

The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01T23:59:59.000Z

268

US hydropower resource assessment for Wisconsin  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Wisconsin.

Conner, A.M.; Francfort, J.E.

1996-05-01T23:59:59.000Z

269

US hydropower resource assessment for Utah  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Utah.

Francfort, J.E.

1993-12-01T23:59:59.000Z

270

US hydropower resource assessment for Oklahoma  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose, The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Oklahoma.

Francfort, J.E.

1993-12-01T23:59:59.000Z

271

US hydropower resource assessment for Louisiana  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Louisiana.

Francfort, J.E.

1993-12-01T23:59:59.000Z

272

US hydropower resource assessment for Missouri  

DOE Green Energy (OSTI)

The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Missouri.

Francfort, J.E.

1993-12-01T23:59:59.000Z

273

US hydropower resource assessment for Washington  

DOE Green Energy (OSTI)

The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Washington.

Conner, A.M.; Francfort, J.E.

1997-07-01T23:59:59.000Z

274

U.S. Hydropower Resource Assessment - Georgia  

DOE Green Energy (OSTI)

The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Georgia.

A. M. Conner; B. N. Rinehart; J. E. Francfort

1998-10-01T23:59:59.000Z

275

Our Locations | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Locations | National Nuclear Security Administration Locations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Locations Home > About Us > Our Locations Our Locations The NNSA's nuclear security enterprise spans eight sites, including three national laboratories, with more than six decades of cutting-edge nuclear security experience. That history and technical expertise enables NNSA to

276

Our Locations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Locations | National Nuclear Security Administration Locations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Our Locations Home > About Us > Our Locations Our Locations The NNSA's nuclear security enterprise spans eight sites, including three national laboratories, with more than six decades of cutting-edge nuclear security experience. That history and technical expertise enables NNSA to

277

Helicopter magnetic survey conducted to locate wells  

Science Conference Proceedings (OSTI)

A helicopter magnetic survey was conducted in August 2007 over 15.6 sq mi at the Naval Petroleum Reserve No. 3s (NPR-3) Teapot Dome Field near Casper, Wyoming. The surveys purpose was to accurately locate wells drilled there during more than 90 years of continuous oilfield operation. The survey was conducted at low altitude and with closely spaced flight lines to improve the detection of wells with weak magnetic response and to increase the resolution of closely spaced wells. The survey was in preparation for a planned CO2 flood for EOR, which requires a complete well inventory with accurate locations for all existing wells. The magnetic survey was intended to locate wells missing from the well database and to provide accurate locations for all wells. The ability of the helicopter magnetic survey to accurately locate wells was accomplished by comparing airborne well picks with well locations from an intense ground search of a small test area.

Veloski, G.A.; Hammack, R.W.; Stamp, V. (Rocky Mountain Oilfield Testing Center); Hall, R. (Rocky Mountain Oilfield Testing Center); Colina, K. (Rocky Mountain Oilfield Testing Center)

2008-07-01T23:59:59.000Z

278

Transmission/Resource Library/Enviromental Resources and Mitigation...  

Open Energy Info (EERE)

Resources and Mitigation < Transmission | Resource Library(Redirected from TransmissionResource LibraryMitigation) Redirect page Jump to: navigation, search REDIRECT...

279

Uniform bulk Material Processing using Multimode Microwave Radiation  

DOE Patents (OSTI)

An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE{sub 10}-mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE{sub 11}-, TE{sub 01}- and TM{sub 01}-cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

Varma, Ravi; Vaughan, Worth E.

1999-06-18T23:59:59.000Z

280

Uniform bulk material processing using multimode microwave radiation  

DOE Patents (OSTI)

An apparatus for generating uniform heating in material contained in a cylindrical vessel is described. TE.sub.10 -mode microwave radiation is coupled into a cylindrical microwave transition such that microwave radiation having TE.sub.11 -, TE.sub.01 - and TM.sub.01 -cylindrical modes is excited therein. By adjusting the intensities of these modes, substantially uniform heating of materials contained in a cylindrical drum which is coupled to the microwave transition through a rotatable choke can be achieved. The use of a poor microwave absorbing insulating cylindrical insert, such as aluminum oxide, for separating the material in the container from the container walls and for providing a volume through which air is circulated is expected to maintain the container walls at room temperature. The use of layer of highly microwave absorbing material, such as SiC, inside of the insulating insert and facing the material to be heated is calculated to improve the heating pattern of the present apparatus.

Varma, Ravi (Los Alamos, NM); Vaughn, Worth E. (Madison, WI)

2000-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Distribution Fault Location and Waveform Characterization  

Science Conference Proceedings (OSTI)

Automated fault location algorithms for distribution systems require monitoring equipment to record voltage and current waveforms during an event. In addition, most of these algorithms require circuit-impedance parameters to evaluate the fault location. Locating incipient faults and fault waveform characterization is the main aim of this project. This project builds on work done in 2008 towards sub-cycle blip identification using an algorithm based on arc voltage.

2009-12-11T23:59:59.000Z

282

Benchmarking of Fault-Location Technologies  

Science Conference Proceedings (OSTI)

This report resumes the studies on fault-location technologies that were conducted in 2009. These studies were undertaken in a joint project done with the collaboration of Hydro-Qubec, Long Island Power Authority, and the Electric Power Research Institute (EPRI). Two fault-location technologies were tested, the Reactance to Fault (RTF) implemented in the PQView application and the Voltage Drop Fault Location (VDFL) implemented in the MILE application. The RTF is based on substation voltage and current me...

2011-03-31T23:59:59.000Z

283

Solar Resource Assessment  

DOE Green Energy (OSTI)

This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

2008-02-01T23:59:59.000Z

284

Energy Resource Library  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Indian Energy resource library provides links to helpful resources for Tribes on energy project development and financing in Indian Country. The library includes links to more than 85...

285

Russian Locations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Russian Locations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing Institutional Research...

286

Locating Restricted Facilities on Binary Maps  

E-Print Network (OSTI)

The encoding could represent clean and polluted areas or desirable and undesirable zones. For this encoding, we consider several facility location problems to...

287

The Facility Location Problem with Bernoulli Demands  

E-Print Network (OSTI)

Abstract. In this paper we address a discrete capacitated facility location problem in which ...... The type of instance for FLPBD (1, 2, 3, or 4) as described above.

288

2010 Hyundai LPI Hybrid Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Hyundai LPI Hybrid Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Alternative Fuel Hybrid...

289

2010 Volkswagen Golf TDI Test Cell Location  

NLE Websites -- All DOE Office Websites (Extended Search)

Golf TDI Test Cell Location APRF- 4WD Vehicle Setup Information Downloadable Dynamometer Database (D 3 )- Test Summary Sheet Vehicle Architecture Conventional- Start Stop Vehicle...

290

Procurement Information by Location | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Procurement Information by Location Procurement Information by Location Procurement Information by Location As part of our Small Business Opportunity Tool, we are offering information about historical procurement by location. Find historical procurement data by state - check out the list of states below, and click on the state's name to learn more about their current programs and past procurement needs. Click on the state to learn more about our current procurement activity: California Colorado District of Columbia Georgia Idaho Illinois Iowa Louisana Maryland Missouri Nevada New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania South Carolina Tennessee Texas Virginia West Virginia Washington Wyoming

291

Sandia National Laboratories: Locations: Albuquerque, New Mexico...  

NLE Websites -- All DOE Office Websites (Extended Search)

Albuquerque Housing Education Recreation Locations Life in Albuquerque Photo of New Mexico landscape Albuquerque is New Mexico's largest city, with a population of more than...

292

Enabling Materials Resource Sustainability  

Science Conference Proceedings (OSTI)

Mar 6, 2013 ... REWAS 2013: Enabling Materials Resource Sustainability: Enabling Sustainability through Education and Consumer Awareness Sponsored...

293

Web Resources - TMS  

Science Conference Proceedings (OSTI)

New Messages, Rating, WEB RESOURCE: Research on Nuclear Wastes French Atomic Energy Commission. Strategies for radioactive waste management, 0...

294

Electronic Materials: Web resources  

Science Conference Proceedings (OSTI)

Jan 11, 2008 ... WEB: NETWORKS MATEC, Maricopa Community Colleges. NSF resource center focused on semiconductor and electronics education, 0, 811...

295

Live Working Resource Center  

Science Conference Proceedings (OSTI)

This report is a summary of work performed in 2008 on the EPRI Live Working Resource Center (LWRC) web site.

2008-12-16T23:59:59.000Z

296

Geothermal Energy Resources (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

Louisiana developed policies regarding geothermal stating that the state should pursue the rapid and orderly development of geothermal resources.

297

Wind Power Resource Assessment in Ohio and Puerto Rico  

E-Print Network (OSTI)

Wind Power Resource Assessment in Ohio and Puerto Rico: A Motivational and Educational Tool Juan University, Athens, Ohio Abstract This paper presents an educational guide and example of a wind resource calculations. New data representing wind speed and direction for locations in Ohio and Puerto Rico

Womeldorf, Carole

298

A note on uniform interpolation proofs in modal deep inference calculi  

Science Conference Proceedings (OSTI)

This paper answers one rather particular question: how to perform a proof of uniform interpolation property in deep inference calculi for modal logics. We show how to perform a proof of uniform interpolation property in deep inference calculus for the ...

Marta Blkov

2009-09-01T23:59:59.000Z

299

A two-phase spherical electric machine for generating rotating uniform magnetic fields  

E-Print Network (OSTI)

This thesis describes the design and construction of a novel two-phase spherical electric machine that generates rotating uniform magnetic fields, known as a fluxball machine. Alternative methods for producing uniform ...

Lawler, Clinton T. (Clinton Thomas)

2007-01-01T23:59:59.000Z

300

Wildlife Resources | Open Energy Information  

Open Energy Info (EERE)

Wildlife Resources Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWildlifeResources&oldid612286" Category: NEPA Resources What links here...

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Agency of Renewable Resources | Open Energy Information  

Open Energy Info (EERE)

Resources Resources Jump to: navigation, search Name Agency of Renewable Resources Place Gulzow, Germany Zip 18276 Sector Renewable Energy Product In 1993 the FNR was initiated by the Federal Ministry of Nourishment, Agriculture and Forestry in order to support research and development in the subject area of renewable resources. Coordinates 54.033298°, 13.1167° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.033298,"lon":13.1167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

DPL Energy Resources | Open Energy Information  

Open Energy Info (EERE)

DPL Energy Resources DPL Energy Resources Jump to: navigation, search Name DPL Energy Resources Place Ohio Utility Id 50062 Utility Location Yes Ownership R Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0694/kWh Commercial: $0.0639/kWh Industrial: $0.0570/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=DPL_Energy_Resources&oldid=410555" Categories: EIA Utility Companies and Aliases Utility Companies

303

Wood3 Resources | Open Energy Information  

Open Energy Info (EERE)

Wood3 Resources Wood3 Resources Jump to: navigation, search Name Wood3 Resources Place Houston, Texas Zip 77056-2409 Product Wood3 Resources is an energy project development firm run by former Federal Energy Regulatory Commission Chairman Pat Wood. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

304

Magellan Resources Group LLC | Open Energy Information  

Open Energy Info (EERE)

Magellan Resources Group LLC Magellan Resources Group LLC Jump to: navigation, search Name Magellan Resources Group LLC Place Chantilly, Virginia Zip 20151 Product Magellan Resources is an energy development and investment company primarily focused on alternative energy projects. Coordinates 38.883607°, -77.439755° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.883607,"lon":-77.439755,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

305

Oregon Water Resources Department | Open Energy Information  

Open Energy Info (EERE)

Oregon Water Resources Department Oregon Water Resources Department Jump to: navigation, search Logo: Oregon Water Resources Department Name Oregon Water Resources Department Address 725 Summer Street NE, Suite A Place Salem, Oregon Zip 97301 Phone number 503-986-0900 Website http://www.oregon.gov/owrd/Pag Coordinates 44.945748°, -123.028013° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.945748,"lon":-123.028013,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

306

SERI Solar Radiation Resource Assessment Project  

DOE Green Energy (OSTI)

The purpose of the Solar Radiation Resource Project is to help meet the needs of the public, government, industry, and utilities for solar radiation data, models, and assessments as required to develop, design, deploy, and operate solar energy conversion systems. The project scientists produce information on the spatial (geographic), temporal (hourly, daily, and seasonal), and spectral (wavelength distribution) variability of solar radiation at different locations in the United States. Resources committed to the project in FY 1990 supported about four staff members, including part-time administrative support. With these resources, the staff must concentrate on solar radiation resource assessment in the United States; funds do not allow for significant efforts to respond to a common need for improved worldwide data. 34 refs., 21 figs., 6 tabs.

Riordan, C.; Maxwell, E.; Stoffel, T.; Rymes, M.; Wilcox, S.

1991-07-01T23:59:59.000Z

307

NREL: International Activities - India Solar Resource Maps  

NLE Websites -- All DOE Office Websites (Extended Search)

International Activities International Activities Search More Search Options Site Map Printable Version UPDATED India Solar Resource Maps This page provides 10-kilometer (km) solar resource maps and data for India. The 10-km hourly solar resource data were developed using weather satellite (METEOSAT) measurements incorporated into a site-time specific solar modeling approach developed at the U.S. State University of New York at Albany. The data is made publicly available in geographic information system (GIS) format and as static maps below. The hourly data can also be downloaded for specific locations from NREL's Renewable Resource Data Center. The new maps and data were released in June 2013. The new data expands the time period of analysis from 2002-2007 to 2002-2011 and incorporates

308

Davenport Resources LLC | Open Energy Information  

Open Energy Info (EERE)

Davenport Resources LLC Davenport Resources LLC Jump to: navigation, search Name Davenport Resources LLC Place Greenwich, Connecticut Zip CT 06830 Product Davenport Resources is a private equity firm to operate private funds and support companies with progressive technology and energy. It focuses on sustainable electric power projects. Coordinates 38.433183°, -111.922498° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.433183,"lon":-111.922498,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

309

Uniform-type structures on lattice-valued spaces and frames  

Science Conference Proceedings (OSTI)

By introducing lattice-valued covers of a set, we present a general framework for uniform structures on very general L-valued spaces (for L an integral commutative quantale). By showing, via an intermediate L-valued structure of uniformity, how filters ... Keywords: L-valued space, Axiality, Cover, Entourage, Frame, Galois connection, Girard quantale, Integral commutative quantale, L-valued frame, Locale, Polarity, Quantale, Uniform operator, Uniformity

Javier Gutirrez Garca; Iraide Mardones-Prez; Jorge Picado; Mara Angeles de Prada Vicente

2008-10-01T23:59:59.000Z

310

Robotic location of underground chemical sources  

Science Conference Proceedings (OSTI)

This paper describes current progress in a project to develop robotic systems for locating underground chemical sources. There are a number of economic and humanitarian applications for this technology. Finding unexploded ordinance, land mines, and sources ... Keywords: Chemical diffusion, Chemical source location, De-mining, Robotics

R. Andrew Russell

2004-01-01T23:59:59.000Z

311

Adding Speech to Location-based Services  

Science Conference Proceedings (OSTI)

The first generation of Location-based Services (LBSs) did not succeed on the market. In order to prepare LBSs of the next generation for the challenges of pervasive service execution in different situations (e.g. while walking on the street or while ... Keywords: Human Computer Interaction (HCI), Location-based Services, Multimodality, Spoken Dialogue Systems

Patrick Nepper; Georg Treu; Axel Kpper

2008-02-01T23:59:59.000Z

312

Proxying location update for idle mode interfaces  

Science Conference Proceedings (OSTI)

In cellular networks it is the mobile node's responsibility to update the network about its location change, especially when this one enters idle mode. We developed a new framework [8] where the idle interface is powered-off to save energy and thus could ... Keywords: MIH services, idle/active mode, location-update, proxied interface, proxied multi-radio interface, proxy entity

Hicham Mahkoum; Abdelhakim S. Hafid; Behcet Sarikaya

2010-06-01T23:59:59.000Z

313

180 x 120: designing alternate location systems  

Science Conference Proceedings (OSTI)

Using 180 RFID tags to track and plot locations over time, guests to an event at the San Francisco Museum of Modern Art (SFMOMA) collectively constructed a public visualization of the individual and group activities by building a history of movement ... Keywords: RFID, crowds, design, location tracking, tessellation

Eric Paulos; Anthony Burke; Tom Jenkins; Karen Marcelo

2007-11-01T23:59:59.000Z

314

Location-Based sponsored search advertising  

Science Conference Proceedings (OSTI)

The proliferation of powerful mobile devices with built-in navigational capabilities and the adoption in most metropolitan areas of fast wireless communication protocols have recently created unprecedented opportunities for location-based advertising. ... Keywords: game theory, location-based advertising, nash equilibrium

George Trimponias, Ilaria Bartolini, Dimitris Papadias

2013-08-01T23:59:59.000Z

315

Major DOE Biofuels Project Locations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major DOE Biofuels Project Locations More Documents & Publications Major DOE Biofuels Project Locations Slide 1 Major DOE Biofuels Project Locations...

316

Property:Event/Location | Open Energy Information  

Open Energy Info (EERE)

Location Location Jump to: navigation, search Property Name Event/Location Property Type String Description The location in which an event will occur. Examples: 'Golden, Colorado' or 'Prestigious Hotel: 11 Rue Leroy, Paris, France'. Pages using the property "Event/Location" Showing 25 pages using this property. (previous 25) (next 25) 1 11th Annual Workshop on Greenhouse Gas Emission Trading + Paris, France + 11th Annual Workshop on Greenhouse Gas Emission Trading Day 2 + Paris, France + 15th International Business Forum: Low Carbon High Growth - Business Models for a Changing Climate + Pretoria, South Africa + 18th Africa Partnership Forum + Paris, France + 2 2012 Bonn Climate Change Conference + Bonn, Germany + 7 7th Asia Clean Energy Forum + Manila, Philippines +

317

Property:UtilityLocation | Open Energy Information  

Open Energy Info (EERE)

UtilityLocation UtilityLocation Jump to: navigation, search Property Name UtilityLocation Property Type Boolean Description Indicates this is the "mailing" location of the Utility. Usually is Yes if the information from EIA Form 861 File1_a is on the page. Pages using the property "UtilityLocation" Showing 25 pages using this property. (previous 25) (next 25) 3 3 Phases Energy Services + true + 4 4-County Electric Power Assn + true + A A & N Electric Coop (Virginia) + true + AEP Generating Company + true + AEP Texas Central Company + true + AEP Texas North Company + true + AES Eastern Energy LP + true + AGC Division of APG Inc + true + AP Holdings LLC + true + APN Starfirst, L.P. + true + APNA Energy + true + Accent Energy Holdings, LLC + true +

318

IIR digital filtering of non-uniformly sampled signals via state representation  

Science Conference Proceedings (OSTI)

This article describes a new kind of processing chain based on a non-uniform sampling scheme provided by a level-crossing ADC. The chain implements IIR filters which process directly the non-uniform samples without resampling in a regular scheme. The ... Keywords: IIR filter, Non-uniform sampling, Numerical schemes for ODEs, Stability

L. Fesquet; B. Bidgaray-Fesquet

2010-10-01T23:59:59.000Z

319

Nonequilibrium molecular dynamics simulation of shear viscosity by a uniform momentum source-and-sink scheme  

Science Conference Proceedings (OSTI)

A uniform momentum source-and-sink scheme of nonequilibrium molecular dynamics (NEMD) is developed to calculate the shear viscosity of fluids in this paper. The uniform momentum source and sink are realized by momentum exchanges of individual atoms in ... Keywords: Molecular fluid, Nonequilibrium molecular dynamics, Shear viscosity, Uniform source-and-sink scheme

Bing-Yang Cao; Ruo-Yu Dong

2012-06-01T23:59:59.000Z

320

Particle Swarm Optimization of Ceramic Roller Kiln Temperature Field Uniformity Using Computational Fluid Dynamics Tools  

Science Conference Proceedings (OSTI)

In this paper ceramic roller kiln temperature field uniformity is mainly researched using computational fluid dynamics tools and particle swarm optimization (PSO). In consideration of burning and burning temperature control is key technique of burning ... Keywords: PSO, temperature field uniformity, multiple liner regression, uniform design, ceramic roller kiln design

Wenbi Rao; Peng Li

2009-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Automated Fault Location In Smart Distribution Systems  

E-Print Network (OSTI)

Fault location in distribution systems is a critical component of outage management and service restoration, which directly impacts feeder reliability and quality of the electricity supply. Improving fault location methods supports the Department of Energy (DOE) Grid 2030 initiatives for grid modernization by improving reliability indices of the network. Improving customer average interruption duration index (CAIDI) and system average interruption duration index (SAIDI) are direct advantages of utilizing a suitable fault location method. As distribution systems are gradually evolving into smart distribution systems, application of more accurate fault location methods based on gathered data from various Intelligent Electronic Devices (IEDs) installed along the feeders is quite feasible. How this may be done and what is the needed methodology to come to such solution is raised and then systematically answered. To reach this goal, the following tasks are carried out: 1) Existing fault location methods in distribution systems are surveyed and their strength and caveats are studied. 2) Characteristics of IEDs in distribution systems are studied and their impacts on fault location method selection and implementation are detailed. 3) A systematic approach for selecting optimal fault location method is proposed and implemented to pinpoint the most promising algorithms for a given set of application requirements. 4) An enhanced fault location method based on voltage sag data gathered from IEDs along the feeder is developed. The method solves the problem of multiple fault location estimations and produces more robust results. 5) An optimal IED placement approach for the enhanced fault location method is developed and practical considerations for its implementation are detailed.

Lotfifard, Saeed

2011-08-01T23:59:59.000Z

322

Bureau of Construction Codes - 2009 Michigan Uniform Energy Code - Commercial  

NLE Websites -- All DOE Office Websites (Extended Search)

These rules take effect March 9, 2011 (By authority conferred on the director of the department of energy, labor, and economic growth by section 4 of 1972 PA 230, MCL 125.1504, and Executive Reorganization Order Nos. 2003-1 and 2008-20, MCL 445.2011 and MCL 445.2025) R 408.31087, R 408.31088, R 408.31089, and R 408.31090 of the Michigan Administrative Code are amended and R 408.31087a is added to the code as follows: PART 10a MICHIGAN UNIFORM ENERGY CODE R 408.31087 Applicable code. Rule 1087. Rules governing the energy efficiency for the design and construction of buildings and structures, not including residential buildings, shall be those contained in the international energy conservation code, 2009 edition, section 501.1 and the ASHRAE

323

Uniformity of wastewater dispersal using subsurface drip emitters  

E-Print Network (OSTI)

An on-site wastewater treatment project site with two separate drip fields produced data on emitter flow rates and uniformity after 6 years of operation. The site served a two-bedroom residence in Weslaco, Texas, with treatment through a septic tank and subsurface flow constructed wetland. Filtration was accomplished with a small sand filter and screen filter. Results represent a worst-case scenario because the air relief valves were improperly installed and maintenance on the system was lacking. A pressure compensating (PC) emitter (Netafim Bioline 2.30 L/hr) and a pressure dependent (PD) emitter (Aqua-Drip 3.79 L/hr) were evaluated. When new, the PC emitters produced a mean discharge of 2.33 L/hr with a manufacturing coefficient of 0.043. The PD emitters, when new, produced a mean discharge of 4.30 L/hr and a manufacturing coefficient of variation of 0.016. The testing protocol was verified with the collection of data on new emitters. Two individual drip fields contained PC emitters (Netafim Bioline 3.50 L/hr) and PD emitters (Aqua-Drip 2.35 L/hr). The PC emitters were installed in a 200 m continuous length of tubing and the PD emitters were installed with ten individual lines of 15.24 m connected with a supply and return header. Wastewater with an average BOD? of 23 mg/L was applied to two drip fields for 6 years. Emitter flow rates for 313 PC emitters were reduced to a mean discharge of 0.95 L/hr with a coefficient of variation of 0.74 and the 251 PD emitters were reduced to a mean discharge of 1.52 L/hr with a coefficient of variation of 0.35. Two shock chlorination treatments with chlorine concentrations of 500 mg/L and 1000 mg/L were used to increase the emitter's flow rate. Sixty PC and 61 PD emitters were evaluated. The initial average flow rate of the PC emitters was 0.818 L/hr. Average flow rates for the PC emitters increased significantly to 0.859 L/hr and 0.954 L/hr following the 500 mg/L and 1000 mg/L shock chlorination treatments, respectively. The initial flow rate of the PD emitters was 1.54 L/hr. The field flushing cycle represented an increase in flow rate to 1.60 L/hr. The shock chlorination treatments increased the average flow rate to 1.71 L/hr and 1.77 L/hr following the 500 mg/L and 1000 mg/L treatments respectively. All increases in mean discharge were statistically significant. Uniformity and over-application of wastewater were evaluated by analyzing the soil profile on a 1.22 m grid over the entire drain field. Statistical uniformity was 48.1 percent and 71.4 percent for the PC and PD emitters, respectively. The uniformity coefficient resulted in similar results with 70.1 percent for the PC emitters and 85.6 percent for the PD emitters. PC and PD fields caused an over-application of 55.3 percent and 58.5 percent of the field area, respectively.

Persyn, Russell Alan

2000-01-01T23:59:59.000Z

324

Uniformly wound superconducting coil and method of making same  

DOE Patents (OSTI)

A coil of superconducting wire for a superconducting magnet having a relaely dense and uniformly spaced winding to enhance the homogeneity and strength of the magnetic field surrounding the coil and a method of winding the same wherein the mandrel used to wind said coil comprises removable spacers and retainers forming a plurality of outwardly opening slots, each of said slots extending generally about the periphery of the mandrel and being sized to receive and outwardly align and retain successive turns of the superconducting wire within each slot as the wire is wound around and laterally across the mandrel to form a plurality of wire ribbons of a predetermined thickness laterally across the mandrel.

Mookerjee, Sumit (Cedar Hill, TX); Weijun, Shen (Beijun, CN); Yager, Billy (Waxahachie, TX)

1994-01-01T23:59:59.000Z

325

Method and apparatus for making uniform pellets for fusion reactors  

DOE Patents (OSTI)

A method and apparatus for making uniform pellets for laser driven fusion reactors which comprises selection of a quantity of glass frit which has been accurately classified as to size within a few micrometers and contains an occluded material, such as urea, which gasifies and expands when heated. The sized particles are introduced into an apparatus which includes a heated vertical tube with temperatures ranging from 800.degree. C to 1300.degree. C. The particles are heated during the drop through the tube to molten condition wherein the occluded material gasifies to form hollow microspheres which stabilize in shape and plunge into a collecting liquid at the bottom of the tube. The apparatus includes the vertical heat resistant tube, heaters for the various zones of the tube and means for introducing the frit and collecting the formed microspheres.

Budrick, Ronald G. (Ann Arbor, MI); King, Frank T. (Hillsboro, OR); Martin, Alfred J. (Ann Arbor, MI); Nolen, Jr., Robert L. (Ann Arbor, MI); Solomon, David E. (Ann Arbor, MI)

1977-01-01T23:59:59.000Z

326

Uniformly wound superconducting coil and method of making same  

DOE Patents (OSTI)

A coil of superconducting wire for a superconducting magnet is described having a relatively dense and uniformly spaced winding to enhance the homogeneity and strength of the magnetic field surrounding the coil and a method of winding the same wherein the mandrel used to wind said coil comprises removable spacers and retainers forming a plurality of outwardly opening slots, each of said slots extending generally about the periphery of the mandrel and being sized to receive and outwardly align and retain successive turns of the superconducting wire within each slot as the wire is wound around and laterally across the mandrel to form a plurality of wire ribbons of a predetermined thickness laterally across the mandrel. 8 figures.

Mookerjee, S.; Weijun, S.; Yager, B.

1994-03-08T23:59:59.000Z

327

Specialized Technology Resources Inc STR Holding Inc | Open Energy  

Open Energy Info (EERE)

Technology Resources Inc STR Holding Inc Technology Resources Inc STR Holding Inc Jump to: navigation, search Name Specialized Technology Resources Inc (STR Holding Inc) Place Enfield, Connecticut Zip 6082 Product US-based manufacturer of EVA encapsulants for PV cells. References Specialized Technology Resources Inc (STR Holding Inc)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Specialized Technology Resources Inc (STR Holding Inc) is a company located in Enfield, Connecticut . References ↑ "Specialized Technology Resources Inc (STR Holding Inc)" Retrieved from "http://en.openei.org/w/index.php?title=Specialized_Technology_Resources_Inc_STR_Holding_Inc&oldid=351609" Categories:

328

Intrepid Technology and Resources Inc | Open Energy Information  

Open Energy Info (EERE)

Intrepid Technology and Resources Inc Intrepid Technology and Resources Inc Jump to: navigation, search Name Intrepid Technology and Resources Inc Place Idaho Falls, Idaho Zip 83402 Sector Biomass Product The company specialises in development of biomass/biofuel plants, primarily biogas projects(methane from processing animal waste). References Intrepid Technology and Resources Inc[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Intrepid Technology and Resources Inc is a company located in Idaho Falls, Idaho . References ↑ "Intrepid Technology and Resources Inc" Retrieved from "http://en.openei.org/w/index.php?title=Intrepid_Technology_and_Resources_Inc&oldid=347071" Categories:

329

Hot Dry Rock resources of the Clear Lake area, California  

DOE Green Energy (OSTI)

The Hot Dry Rock resources of the Clear Lake area of northern California are hot, large and areally uniform. The geological situation is special, probably overlying a slabless window caused by interaction between tectonic plates. Consequent magmatic processes have created a high-grade resource, in which the 300{degree}C isotherm is continuous, subhorizontal, and available at the shallow depth of 2.4 to 4.7 km over an area of 800 km{sup 2}. The region is very favorable for HDR development.

Burns, K.L.; Potter, R.M. [Los Alamos National Lab., NM (United States); Peake, R.A. [California Energy Commission, CA (United States)

1995-01-01T23:59:59.000Z

330

Detection and Location of Damage on Pipelines  

SciTech Connect

The INEEL has developed and successfully tested a real-time pipeline damage detection and location system. This system uses porous metal resistive traces applied to the pipe to detect and locate damage. The porous metal resistive traces are sprayed along the length of a pipeline. The unique nature and arrangement of the traces allows locating the damage in real time along miles of pipe. This system allows pipeline operators to detect damage when and where it is occurring, and the decision to shut down a transmission pipeline can be made with actual real-time data, instead of conservative estimates from visual inspection above the area.

Karen A. Moore; Robert Carrington; John Richardson

2003-11-01T23:59:59.000Z

331

Method of locating underground mines fires  

DOE Patents (OSTI)

An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

1992-01-01T23:59:59.000Z

332

An Optimization Model for Locating and Sizing Emergency Medical Service Stations  

Science Conference Proceedings (OSTI)

Emergency medical services (EMS) play a crucial role in the overall quality and performance of health services. The performance of these systems heavily depends on operational success of emergency services in which emergency vehicles, medical personnel ... Keywords: Emergency medical services, Location problems, Optimization, Resource allocation

Nusin Coskun; Rizvan Erol

2010-02-01T23:59:59.000Z

333

Renewable Energy 29 (2004) 21952216 www.elsevier.com/locate/renene  

E-Print Network (OSTI)

Renewable Energy 29 (2004) 2195­2216 www.elsevier.com/locate/renene Modeling anti for renewable energy resources. Such systems are utility interactive and one of the major difficulties-connected photovoltaic systems; Renewable energy technologies; Islanding; Modeling; Non-detection zone ? Corresponding

Melnik, Roderick

334

Information Resources - EERE Commercialization Office  

Information Resources. Here you will find various informational resources related to the commercialization of clean energy technologies. Hawaiian ...

335

Information Resources - EERE Commercialization Office  

Information Resources. Here you will find various informational resources related to the commercialization of clean energy technologies. Hawaiian Renewable Energy ...

336

Resource Adequacy Capacity - Power Marketing - Sierra Nevada...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Adequacy Capacity Resource Adequacy Capacity Resource Adequacy Plan - Current Local Resource Adequacy Plan (Word - 175K) - Notice of Proposed Final Resource Adequacy Plan...

337

CiteSeer-API:Towards Seamless Resource Location and Interlinking for Digital Libraries  

E-Print Network (OSTI)

functionalities offered by CiteSeer services, including full text search of documents and citations and citation-PMH, including full text document and citation search and citation-based document discovery. Our motivations both document and citation full text search, each method returning respectively a list of matching

Giles, C. Lee

338

Resources Policy 25 (1999) 179188 www.elsevier.com/locate/resourpol  

E-Print Network (OSTI)

(% Total Energy Material Process and feedstock SBR (MJ/kg of Usage (MJ) (MJ/kg of product) (MJ) feedstock­188 Table 7 Energy usage for the production of 1 kg of rubber tires Material usage (kg/kg of Energy usage (MJ/kg of Total Energy Usage Tire production) product) (MJ/kg) 1. SBR 0.59 55.79 32.92 2. Carbon Black

Columbia University

339

Audio-magnetotelluric station location map Breitenbush Known Geothermal Resource Area, Oregon  

DOE Green Energy (OSTI)

Telluric profiles and audio-magnetotelluric data logs are presented for various frequencies and stations. (MHR)

Senterfit, R.M.; Long, C.L.

1976-01-01T23:59:59.000Z

340

Export.gov - Export.gov - Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

Locations Locations Print | E-mail Page Locations 800.872.8723 Domestic Offices International Offices Locations 800.872.8723 Call: 800.872.8723 (1-800-USA-TRAD(E)) Email: tic@trade.gov between 8:30 AM and 6 PM EST to receive immediate answers to your exporting questions on: Tariff and Tax Information Country-specific General Export Information Region-specific Export Information (Middle East, China, Latin America, EU, etc.) International Documentation, Regulations and Standards Logistics and Finance (HS/Schedule B numbers, Freight Forwarders, partners) Free Trade Agreements (qualifying products for FTA benefits, Certificates of origin.) Trade Data Export-related information offered by federal, state and local entities Export-related information related to other USG agencies Note for Importers: Please contact U.S. Customs at 877.227.5511

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fault Detection, Location, Isolation and Reconnection in ...  

A University of Colorado research team led by Jae-Do Park has developed a fault detection, location and isolation scheme for a low-voltage DC-bus microgrid system, ...

342

Developing a theory of nightclub location choice  

E-Print Network (OSTI)

This work is an investigation of the factors that influence where nightclubs locate within a city. Nightclubs, like other social spaces, provide important social and economic benefits in the urban environment. As amenities, ...

Crim, Stephen J. (Stephen Johnson)

2008-01-01T23:59:59.000Z

343

Federating location-based data services  

Science Conference Proceedings (OSTI)

With the emerging availability of small and portable devices which are able to determine their position and to communicate wirelessly, mobile and spatially-aware applications become feasible. These applications rely on information that is bound to locations ...

Bernhard Mitschang; Daniela Nicklas; Matthias Grossmann; Thomas Schwarz; Nicola Hnle

2005-01-01T23:59:59.000Z

344

Adaptive learning of semantic locations and routes  

Science Conference Proceedings (OSTI)

Adaptation of devices and applications based on contextual information has a great potential to enhance usability and mitigate the increasing complexity of mobile devices. An important topic in context-aware computing is to learn semantic locations and ...

Keshu Zhang; Haifeng Li; Kari Torkkola; Mike Gardner

2007-09-01T23:59:59.000Z

345

Adaptive learning of semantic locations and routes  

Science Conference Proceedings (OSTI)

Adaptation of devices and applications based on contextual information has a great potential to enhance usability and mitigate the increasing complexity of mobile devices. An important topic in context-aware computing is to learn semantic locations and ...

Keshu Zhang; Haifeng Li; Kari Torkkola; Mike Gardner

2007-10-01T23:59:59.000Z

346

Addressing endogeneity in residential location models  

E-Print Network (OSTI)

Some empirical residential location choice models have reported dwelling-unit price estimated parameters that are small, not statistically significant, or even positive. This would imply that households are non-sensitive ...

Guevara-Cue, Cristin Angelo

2005-01-01T23:59:59.000Z

347

Russian Locations | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Locations | National Nuclear Security Administration Locations | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The National Nuclear Security Administration Russian Locations Home > About Us > Our Programs > Defense Programs > Future Science & Technology Programs > Office of Advanced Simulation and Computing and Institutional R&D Programs > Russia Tri-Lab S&T Collaborations > Travel

348

Alternative Fueling Station Locator | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternative Fueling Station Locator Alternative Fueling Station Locator Alternative Fueling Station Locator Find Stations Plan a Route Location: Go Start: End: Go Fuel: All Fuels Biodiesel (B20 and above) Compressed Natural Gas Electric Ethanol (E85) Hydrogen Liquefied Natural Gas (LNG) Liquefied Petroleum Gas (Propane) more search options close × More Search Options Include private stations Include planned stations Owner All Private Federal State Local Utility Payment All American Express Discover MasterCard VISA Cash Checks CFN Clean Energy Fuel Man Gas Card PHH Services Voyager WEX Electric charger types Include level 1 Include level 2 Include DC fast Include legacy chargers Limit results to within 5 miles Limit results to within 5 miles 12,782 alternative fuel stations in the United States Excluding private stations

349

GEM Resources III Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEM Resources III Geothermal Facility GEM Resources III Geothermal Facility General Information Name GEM Resources III Geothermal Facility Facility GEM Resources III Sector Geothermal energy Location Information Address 3300 East Evan Hewes Highway Location Holtville, California Zip 92250 Coordinates 32.776035405529°, -115.26321172714° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.776035405529,"lon":-115.26321172714,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

350

GEM Resources II Geothermal Facility | Open Energy Information  

Open Energy Info (EERE)

GEM Resources II Geothermal Facility GEM Resources II Geothermal Facility General Information Name GEM Resources II Geothermal Facility Facility GEM Resources II Sector Geothermal energy Location Information Address 3300 East Evan Hewes Highway Location Holtville, California Zip 92250 Coordinates 32.77605344699°, -115.26323318481° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.77605344699,"lon":-115.26323318481,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

351

Idaho National Laboratory Cultural Resource Management Plan  

SciTech Connect

As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

Lowrey, Diana Lee

2011-02-01T23:59:59.000Z

352

Idaho National Laboratory Cultural Resource Management Plan  

SciTech Connect

As a federal agency, the U.S. Department of Energy has been directed by Congress, the U.S. president, and the American public to provide leadership in the preservation of prehistoric, historic, and other cultural resources on the lands it administers. This mandate to preserve cultural resources in a spirit of stewardship for the future is outlined in various federal preservation laws, regulations, and guidelines such as the National Historic Preservation Act, the Archaeological Resources Protection Act, and the National Environmental Policy Act. The purpose of this Cultural Resource Management Plan is to describe how the Department of Energy, Idaho Operations Office will meet these responsibilities at the Idaho National Laboratory. This Laboratory, which is located in southeastern Idaho, is home to a wide variety of important cultural resources representing at least 13,500 years of human occupation in the southeastern Idaho area. These resources are nonrenewable; bear valuable physical and intangible legacies; and yield important information about the past, present, and perhaps the future. There are special challenges associated with balancing the preservation of these sites with the management and ongoing operation of an active scientific laboratory. The Department of Energy, Idaho Operations Office is committed to a cultural resource management program that accepts these challenges in a manner reflecting both the spirit and intent of the legislative mandates. This document is designed for multiple uses and is intended to be flexible and responsive to future changes in law or mission. Document flexibility and responsiveness will be assured through annual reviews and as-needed updates. Document content includes summaries of Laboratory cultural resource philosophy and overall Department of Energy policy; brief contextual overviews of Laboratory missions, environment, and cultural history; and an overview of cultural resource management practices. A series of appendices provides important details that support the main text.

Lowrey, Diana Lee

2009-02-01T23:59:59.000Z

353

Final_Tech_Session_Schedule_and_Location.xls  

NLE Websites -- All DOE Office Websites (Extended Search)

Managing Climate Change and Securing a Managing Climate Change and Securing a Future for the Midwest's Industrial Base" David Ball, MRCSP Project Manager Battelle (614) 424-4901 balld@battelle.org Presentation to: DOE/NETL Fourth Annual Conference on Carbon Sequestration Alexandria, Virginia May 2-5, 2005 DOE Cooperative Agreement No. DE-FC26-03NT41981 MRCSP Mission be the premier resource in its Region for identifying the technical, economic, and social considerations associated with CO 2 sequestration and creating viable pathways for its deployment. The MRCSP Region: The Nation's Engine Room * One in six Americans * 1/6 of U.S. Economy * 1/5 of U.S. Electricity Generated * ¾ From Coal * One in six Americans * 1/6 of U.S. Economy * 1/5 of U.S. Electricity Generated * ¾ From Coal * 274 Large Point Source Locations

354

Office of Resource Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Management Resource Management Home Sub Offices › Business Operations › Information Management › Human Resources and Administration Mission and Functions HSS Standard Operating Practices (For Internal Users Only) HSS Subject Matter Experts and Functional Points of Contacts Contact Us HSS Logo Office of Resource Management Direct Report to the Chief Health, Safety and Security Officer Mission and Functions Mission The Office of Resource Management supports the infrastructure of the Office of Health, Safety and Security (HSS) by providing balanced, unbiased, technically competent, and customer focused services in the areas of: (1) Financial Management, including budget formulation and execution; (2) Procurement Management, including contract and credit card programs; (3) Information Management, including technology-based solutions and programs; (4) Quality Assurance; (5) Human Resources, including recruitment and retention programs; (6) Administrative Services, including property management, travel, and work space management; and; (7) Strategic and Program Planning including performance and efficiency measures.

355

Contact List, Human Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Human Resources & Occupational Medicine Division Human Resources & Occupational Medicine Division Contact List Human Resources Guest, User, Visitor (GUV) Center Occupational Medicine Training and Qualifications Office Note: All listed phone extensions are in the format of (631) 344-xxxx. Human Resources Robert Lincoln, Chief Human Resources Officer x7435 rlincoln@bnl.gov Margaret Hughes x2108 hughes@bnl.gov Elizabeth Gilbert x2315 gilbert@bnl.gov Human Resources Generalists Christel Colon, HR Manager - BES, GARS & ELS x8469 ccolon@bnl.gov Joann Williams, HR Manager - Support Operations x8356 williamsj@bnl.gov Joanna Hall, HR Manager - Photon Sciences x4410 jhall@bnl.gov Donna Dowling, HR Manager - Nuclear & Particle Physics x2754 dowling@bnl.gov Terrence Buck x8715 tbuck@bnl.gov

356

California: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

California: Energy Resources California: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.778261,"lon":-119.4179324,"alt":0,"address":"California","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Florida: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Florida: Energy Resources Florida: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.6648274,"lon":-81.5157535,"alt":0,"address":"Florida","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

358

Iceland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Iceland: Energy Resources Iceland: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":65,"lon":-18,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Indiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Indiana: Energy Resources Indiana: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

360

Cape Verde: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cape Verde: Energy Resources Cape Verde: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16,"lon":-24,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Gabon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gabon: Energy Resources Gabon: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-1,"lon":11.75,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

362

Malta: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Malta: Energy Resources Malta: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.9166667,"lon":14.4333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

Tennessee: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tennessee: Energy Resources Tennessee: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.5174913,"lon":-86.5804473,"alt":0,"address":"Tennessee","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Sudan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sudan: Energy Resources Sudan: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":15,"lon":30,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

365

Japan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Japan: Energy Resources Japan: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.68536,"lon":139.75309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

366

Saudi Arabia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Saudi Arabia: Energy Resources Saudi Arabia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":25,"lon":45,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

367

Laos: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Laos: Energy Resources Laos: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":18,"lon":105,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

368

Romania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Romania: Energy Resources Romania: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46,"lon":25,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

369

Angola: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Angola: Energy Resources Angola: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-12.5,"lon":18.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

370

Ukraine: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ukraine: Energy Resources Ukraine: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49,"lon":32,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

371

Burundi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Burundi: Energy Resources Burundi: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-3.5,"lon":30,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

New Hampshire: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

New Hampshire: Energy Resources New Hampshire: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1938516,"lon":-71.5723953,"alt":0,"address":"New

373

Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia: Energy Resources Georgia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1574351,"lon":-82.907123,"alt":0,"address":"Georgia","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

Swaziland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Swaziland: Energy Resources Swaziland: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-26.5,"lon":31.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

Uruguay: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Uruguay: Energy Resources Uruguay: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-33,"lon":-56,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

376

Bahamas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bahamas: Energy Resources Bahamas: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24,"lon":-76,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

377

Norway: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Norway: Energy Resources Norway: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":62,"lon":10,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

378

Eritrea: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Eritrea: Energy Resources Eritrea: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":15,"lon":39,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

379

Finland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Finland: Energy Resources Finland: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64,"lon":26,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Comoros: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Comoros: Energy Resources Comoros: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-12.16667,"lon":44.25,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Montserrat: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Montserrat: Energy Resources Montserrat: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16.75,"lon":-62.2,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

382

Guyana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Guyana: Energy Resources Guyana: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":5,"lon":-59,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Vietnam: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vietnam: Energy Resources Vietnam: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16.1666667,"lon":107.8333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Gibraltar: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gibraltar: Energy Resources Gibraltar: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.13333,"lon":-5.35,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Idaho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Idaho: Energy Resources Idaho: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.0682019,"lon":-114.7420408,"alt":0,"address":"Idaho","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

France: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

France: Energy Resources France: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46,"lon":2,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Morocco: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Morocco: Energy Resources Morocco: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32,"lon":-5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Mexico: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mexico: Energy Resources Mexico: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":23,"lon":-102,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Zambia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Zambia: Energy Resources Zambia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-15,"lon":30,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Thailand: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Thailand: Energy Resources Thailand: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":15,"lon":100,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Louisiana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Louisiana: Energy Resources Louisiana: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2448234,"lon":-92.1450245,"alt":0,"address":"Louisiana","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Yemen: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Yemen: Energy Resources Yemen: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":15.5,"lon":47.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

Bermuda: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bermuda: Energy Resources Bermuda: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.33333,"lon":-64.75,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Chad: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chad: Energy Resources Chad: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":15,"lon":19,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

South Korea: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Korea: Energy Resources Korea: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37,"lon":127.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Tuvalu: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tuvalu: Energy Resources Tuvalu: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-8,"lon":178,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Jordan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jordan: Energy Resources Jordan: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31,"lon":36,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Albania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Albania: Energy Resources Albania: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41,"lon":20,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Madagascar: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Madagascar: Energy Resources Madagascar: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-20,"lon":47,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Slovenia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Slovenia: Energy Resources Slovenia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.25,"lon":15.1666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Iraq: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Iraq: Energy Resources Iraq: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33,"lon":44,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Panama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Panama: Energy Resources Panama: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":9,"lon":-80,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Taiwan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Taiwan: Energy Resources Taiwan: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24,"lon":121,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Benin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Benin: Energy Resources Benin: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":9.5,"lon":2.25,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Missouri: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Missouri: Energy Resources Missouri: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.9642529,"lon":-91.8318334,"alt":0,"address":"Missouri","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Saint Helena: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Helena: Energy Resources Helena: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-15.95,"lon":-5.7,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Martinique: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Martinique: Energy Resources Martinique: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":14.66667,"lon":-61,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Syria: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Syria: Energy Resources Syria: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35,"lon":38,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Philippines: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Philippines: Energy Resources Philippines: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13,"lon":122,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

410

Guadeloupe: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Guadeloupe: Energy Resources Guadeloupe: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16.25,"lon":-61.58333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Brazil: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brazil: Energy Resources Brazil: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-10,"lon":-55.001388888889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Bhutan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bhutan: Energy Resources Bhutan: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27.5,"lon":90.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Liberia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Liberia: Energy Resources Liberia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":6.428055,"lon":-9.429499,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Bangladesh: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bangladesh: Energy Resources Bangladesh: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24,"lon":90,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Kenya: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kenya: Energy Resources Kenya: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":1,"lon":38,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

New Jersey: Energy Resources New Jersey: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.0583238,"lon":-74.4056612,"alt":0,"address":"New

417

Egypt: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Egypt: Energy Resources Egypt: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":27,"lon":30,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Tanzania: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tanzania: Energy Resources Tanzania: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-6,"lon":35,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Belarus: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Belarus: Energy Resources Belarus: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":53,"lon":28,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Australia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Australia: Energy Resources Australia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-25,"lon":135,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Sri Lanka: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sri Lanka: Energy Resources Sri Lanka: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":7,"lon":81,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Massachusetts: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Massachusetts: Energy Resources Massachusetts: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.4072107,"lon":-71.3824374,"alt":0,"address":"Massachusetts","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Bolivia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bolivia: Energy Resources Bolivia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-17,"lon":-65,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Equatorial Guinea: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Equatorial Guinea: Energy Resources Equatorial Guinea: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":2,"lon":10,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Lebanon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lebanon: Energy Resources Lebanon: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8333333,"lon":35.8333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Mali: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mali: Energy Resources Mali: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17,"lon":-4,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

Mozambique: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Mozambique: Energy Resources Mozambique: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-18.25,"lon":35,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

428

Washington: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Washington: Energy Resources Washington: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.7510741,"lon":-120.7401386,"alt":0,"address":"Washington

429

Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kansas: Energy Resources Kansas: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.011902,"lon":-98.4842465,"alt":0,"address":"Kansas","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

China: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

China: Energy Resources China: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35,"lon":105,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Luxembourg: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Luxembourg: Energy Resources Luxembourg: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.75,"lon":6.1666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Myanmar: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Myanmar: Energy Resources Myanmar: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22,"lon":98,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Alaska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alaska: Energy Resources Alaska: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.2008413,"lon":-149.4936733,"alt":0,"address":"Alaska","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Montenegro: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Montenegro: Energy Resources Montenegro: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5,"lon":19.3,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Palau: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Palau: Energy Resources Palau: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":6,"lon":134,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Grenada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Grenada: Energy Resources Grenada: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.11667,"lon":-61.66667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Michigan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Michigan: Energy Resources Michigan: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3148443,"lon":-85.6023643,"alt":0,"address":"Michigan","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

Dominica: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dominica: Energy Resources Dominica: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":15.5,"lon":-61.33333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

439

Samoa: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Samoa: Energy Resources Samoa: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-13.5833333,"lon":-172.3333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

Armenia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Armenia: Energy Resources Armenia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40,"lon":45,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Lesotho: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lesotho: Energy Resources Lesotho: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-29.5,"lon":28.25,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ohio: Energy Resources Ohio: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4172871,"lon":-82.907123,"alt":0,"address":"Ohio","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Paraguay: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Paraguay: Energy Resources Paraguay: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-22.9933333,"lon":-57.9963889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

Nebraska: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nebraska: Energy Resources Nebraska: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4925374,"lon":-99.9018131,"alt":0,"address":"Nebraska","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Botswana: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Botswana: Energy Resources Botswana: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-22,"lon":24,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Gambia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gambia: Energy Resources Gambia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.5,"lon":-15.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

New York: Energy Resources New York: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7143528,"lon":-74.0059731,"alt":0,"address":"New

448

Italy: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Italy: Energy Resources Italy: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.83333,"lon":12.83333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Anguilla: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Anguilla: Energy Resources Anguilla: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":18.21667,"lon":-63.05,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

450

South Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dakota: Energy Resources Dakota: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.9695148,"lon":-99.9018131,"alt":0,"address":"South

451

South Carolina: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Carolina: Energy Resources Carolina: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.836081,"lon":-81.1637245,"alt":0,"address":"South

452

Maldives: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maldives: Energy Resources Maldives: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":3.2,"lon":73,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Hungary: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hungary: Energy Resources Hungary: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47,"lon":20,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

Oman: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oman: Energy Resources Oman: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21,"lon":57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Texas: Energy Resources Texas: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.9685988,"lon":-99.9018131,"alt":0,"address":"Texas","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

North Dakota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

North Dakota: Energy Resources North Dakota: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.5514926,"lon":-101.0020119,"alt":0,"address":"North

457

Cuba: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cuba: Energy Resources Cuba: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":22,"lon":-79.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Malawi: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Malawi: Energy Resources Malawi: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-13.5,"lon":34,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

Netherlands Antilles: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Netherlands Antilles: Energy Resources Netherlands Antilles: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":12.1666667,"lon":-69,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

460

Pakistan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pakistan: Energy Resources Pakistan: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30,"lon":70,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Vanuatu: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Vanuatu: Energy Resources Vanuatu: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-16,"lon":167,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

462

Canada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Canada: Energy Resources Canada: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":58.813741715708,"lon":-106.875,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

463

Nauru: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nauru: Energy Resources Nauru: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-0.5333333,"lon":166.9166667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

464

Sweden: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Sweden: Energy Resources Sweden: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":62,"lon":15,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

465

Haiti: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Haiti: Energy Resources Haiti: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19,"lon":-72.41667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

466

Saint Lucia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Saint Lucia: Energy Resources Saint Lucia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.8833333,"lon":-60.9666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

467

Cyprus: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cyprus: Energy Resources Cyprus: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35,"lon":33,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

468

North Korea: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

North Korea: Energy Resources North Korea: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40,"lon":127,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

469

Georgia (country): Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia (country): Energy Resources Georgia (country): Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42,"lon":43.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

470

Hawaii: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hawaii: Energy Resources Hawaii: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.8967662,"lon":-155.5827818,"alt":0,"address":"Hawaii","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

471

Russia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Russia: Energy Resources Russia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60,"lon":100,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

472

Zimbabwe: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Zimbabwe: Energy Resources Zimbabwe: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-19,"lon":29,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

473

West Virginia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

West Virginia: Energy Resources West Virginia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.5976262,"lon":-80.4549026,"alt":0,"address":"West

474

Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Maryland: Energy Resources Maryland: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.0457549,"lon":-76.6412712,"alt":0,"address":"Maryland","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

Connecticut: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Connecticut: Energy Resources Connecticut: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6032207,"lon":-73.087749,"alt":0,"address":"Connecticut","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

476

Suriname: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Suriname: Energy Resources Suriname: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":4,"lon":-56,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Colombia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Colombia: Energy Resources Colombia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":4,"lon":-72,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

478

Barbados: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Barbados: Energy Resources Barbados: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":13.16667,"lon":-59.53333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

479

Niger: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Niger: Energy Resources Niger: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":16,"lon":8,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Nevada: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Nevada: Energy Resources Nevada: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8026097,"lon":-116.419389,"alt":0,"address":"Nevada","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "uniform resource locator" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Belize: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Belize: Energy Resources Belize: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":17.25,"lon":-88.75,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

482

Azerbaijan: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Azerbaijan: Energy Resources Azerbaijan: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.5,"lon":47.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alabama: Energy Resources Alabama: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.3182314,"lon":-86.902298,"alt":0,"address":"Alabama","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

Brunei: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brunei: Energy Resources Brunei: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":4.5,"lon":114.66667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}