Powered by Deep Web Technologies
Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Unfunded Mandates Reform Act; Intergovernmental Consultation | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an intergovernmental consultation process with regard to significant intergovernmental mandates contained in a notice of proposed rulemaking. Unfunded Mandates Reform Act; Intergovernmental Consultation More Documents & Publications TEC Working Group Topic Groups Tribal Key Documents

2

Unfunded Mandates Reform Act; Intergovernmental Consultation | Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation Unfunded Mandates Reform Act; Intergovernmental Consultation The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an intergovernmental consultation process with regard to significant intergovernmental mandates contained in a notice of proposed rulemaking. Unfunded Mandates Reform Act; Intergovernmental Consultation More Documents & Publications TEC Working Group Topic Groups Tribal Key Documents

3

Alternative Fuels Data Center: Biofuel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biofuel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biofuel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biofuel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biofuel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biofuel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Blend Mandate All Gasoline sold or offered for sale in Minnesota must contain at least: 10% corn-based ethanol by volume or the maximum percent by volume of corn-based ethanol authorized in a waiver issued by the U.S. Environmental

4

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Mandate Ethanol Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate All gasoline offered for sale at retail stations within the state must contain 10% ethanol (E10). This requirement is waived only if a distributor is unable to purchase ethanol or ethanol-blended gasoline at the same or

5

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

6

Alternative Fuels Data Center: Ethanol Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Blend Mandate Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Ethanol Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Ethanol Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Google Bookmark Alternative Fuels Data Center: Ethanol Blend Mandate on Delicious Rank Alternative Fuels Data Center: Ethanol Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Ethanol Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Blend Mandate Within one year after the Montana Department of Transportation has certified that ethanol producers in the state have produced a total of 40 million gallons of denatured ethanol and have maintained that level of

7

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

8

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate All diesel fuel sold to state agencies, political subdivisions of the state, and public schools for use in on-road motor vehicles must contain at

9

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate In September 2013, the commissioners of the Minnesota Department of Agriculture, Department of Commerce, and Pollution Control Agency determined that all conditions had been satisfied to implement a 10%

10

Alternative Fuels Data Center: Biodiesel Blend Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Mandate Pursuant to state law, all diesel motor vehicle fuel and all other liquid fuel used to operate motor vehicle diesel engines in Massachusetts must

11

GAO-04-539 Department of Energy: Certain Postretirement Benefits for Contractor Employees Are Unfunded and Program Oversight Could Be Improved  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chairman, Subcommittee Chairman, Subcommittee on Energy and Water Development, Committee on Appropriations, House of Representatives April 2004 DEPARTMENT OF ENERGY Certain Postretirement Benefits for Contractor Employees Are Unfunded and Program Oversight Could Be Improved GAO-04-539 www.gao.gov/cgi-bin/getrpt?GAO-04-539. To view the full product, including the scope and methodology, click on the link above. For more information, contact Robert Martin at (202) 512-6131 or martinr@gao.gov. Highlights of GAO-04-539, a report to the Chairman, Subcommittee on Energy and Water Development, Committee on Appropriations, House of Representatives April 2004 DEPARTMENT OF ENERGY Certain Postretirement Benefits for Contractor Employees Are Unfunded and Program Oversight Could Be Improved

12

Perceptions Regarding the Michigan Merit Curriculum Reform Policy and Its Impact on CTE and Dual Enrollment in a Southeastern Michigan High School.  

E-Print Network (OSTI)

??Michigan joined Arkansas, Indiana, Massachusetts, Oregon, and Rhode Island in the high school reform effort. The Michigan Merit Curriculum (MMC), mandated in 2006, contained a… (more)

Green, Winifred L.

2012-01-01T23:59:59.000Z

13

Texas Mandate Landfill Gas Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon Texas Mandate Landfill Gas Biomass Facility Jump to: navigation, search Name Texas Mandate...

14

Catalytic Reforming  

Science Conference Proceedings (OSTI)

Don Little's Catalytic Reforming deals exclusively with reforming. With the increasing need for unleaded gasoline, the importance of this volume has escalated since it combines various related aspects of reforming technology into a single publication. For those with no practical knowledge of catalytic reforming, the chemical reactions, flow schemes and how the cat reformer fits into the overall refinery process will be of interest. Contents include: Catalytic reforming in refinery processing: How catalytic reformers work - chemical reactions; Process design; The catalyst, process variables and unit operation; Commercial processes; BTX operation; Feed preparation; naphtha hydrotreating and catalytic reforming; Index.

Little, D.M.

1985-01-01T23:59:59.000Z

15

Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blend Biodiesel Blend Distribution Mandate to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Google Bookmark Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Delicious Rank Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Blend Distribution Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Blend Distribution Mandate All state-owned diesel fueling facilities must provide fuel containing at

16

EPA and RFS2: Market Impacts of Biofuel Mandate  

E-Print Network (OSTI)

July 2012 EPA and RFS2: Market Impacts of Biofuel Mandate Waiver Options The EPA is required by law to implement biofuel use mandates and it has proposed to waive the cellulosic biofuels other than cellulosic biofuels. If other mandates are decreased, then that imperative to replace

Noble, James S.

17

The impact of biofuel mandates on land use.  

E-Print Network (OSTI)

??The use of biofuels in domestic transportation sector in the United States and European Union is attributed mainly to the binding mandates, Renewable Fuel Standard… (more)

Ahmad, Suhail, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

18

Catalytic reforming  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of a feedstock which contains at least one reformable organic compound. The process consists of contacting the feedstock under suitable reforming conditions with a catalyst composition selected from the group consisting of a catalyst. The catalyst essentially consists of zinc oxide and a spinel structure alumina. Another catalyst consists essentially of a physical mixture of zinc titanate and a spinel structure alumina in the presence of sufficient added hydrogen to substantially prevent the formation of coke. Insufficient zinc is present in the catalyst composition for the formation of a bulk zinc aluminate.

Aldag, A.W. Jr.

1986-01-28T23:59:59.000Z

19

The Impact of Biofuel Mandates on Land Use Suhail Ahmad  

E-Print Network (OSTI)

short of the expected targets as laid forward by biofuel mandates. Cellulosic crops tend to be heavy of cellulosic biofuels yet exists. Such an ambitious target relies on the assumption from the DepartmentThe Impact of Biofuel Mandates on Land Use by Suhail Ahmad B.E., Avionics Engineering National

20

Chronological History of Federal Fleet Actions and Mandates (Brochure)  

SciTech Connect

This chronological history of Federal fleet actions and mandates provides a year-by-year timeline of the acts, amendments, executive orders, and other regulations that affect Federal fleets. The fleet actions and mandates included in the timeline span from 1988 to 2009.

Not Available

2011-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

The origin of California’s zero emission vehicle mandate  

E-Print Network (OSTI)

industry in California, combined to make the idea of mandating (electric) zero emission vehiclesIndustry felt that CARB had not seriously addressed the question of the commercial viability of electric vehicles.

Sperling, Dan; Collantes, Gustavo O

2008-01-01T23:59:59.000Z

22

The impact of biofuel mandates on land use  

E-Print Network (OSTI)

The use of biofuels in domestic transportation sector in the United States and European Union is attributed mainly to the binding mandates, Renewable Fuel Standard in the US and European Directive on the Promotion of ...

Ahmad, Suhail, S.M. Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

23

Overview of Federal Energy Management Policy and Mandates  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Federal Energy Management Policy and Mandates Overview of Federal Energy Management Policy and Mandates Energy Intensity Reduction Goal The National Energy Conservation Policy Act (NECPA), as amended, requires Federal agencies to improve energy management in their facilities and operations. (42 U.S.C. 8253) Amendments to NECPA made by the Federal Energy Management Improvement Act of 1988 (P.L. 100-615), required each agency to achieve a 10 percent reduction in energy consumption in its Federal buildings by FY 1995, when measured against a FY 1985 baseline on a Btu-per-gross-square-foot (Btu/GSF) basis. It also directed DOE to establish life-cycle costing methods and coordinate Federal conservation activities through the Interagency Energy Management Task Force. Section 543 of NECPA contained provisions requiring a reduction in Btu/GSF of 20 percent by 2000,

24

Overview of Federal Energy Management Policy and Mandates  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Federal Energy Management Policy and Mandates Overview of Federal Energy Management Policy and Mandates Energy Intensity Reduction Goal The National Energy Conservation Policy Act (NECPA), as amended, requires Federal agencies to improve energy management in their facilities and operations. (42 U.S.C. 8253) Amendments to NECPA made by the Federal Energy Management Improvement Act of 1988 (P.L. 100-615), required each agency to achieve a 10 percent reduction in energy consumption in its Federal buildings by FY 1995, when measured against a FY 1985 baseline on a Btu-per-gross-square-foot (Btu/GSF) basis. It also directed DOE to establish life-cycle costing methods and coordinate Federal conservation activities through the Interagency Energy Management Task Force. Section 543 of NECPA contained provisions requiring a reduction in Btu/GSF of 20 percent by 2000,

25

Xcel Energy Wind and Biomass Generation Mandate | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Xcel Energy Wind and Biomass Generation Mandate Xcel Energy Wind and Biomass Generation Mandate < Back Eligibility Investor-Owned Utility Savings Category Bioenergy Wind Buying & Making Electricity Program Info State Minnesota Program Type Renewables Portfolio Standard Provider Minnesota Department of Commerce Minnesota law (Minn. Stat. § 216B.2423) requires Xcel Energy to build or contract for 225 megawatts (MW) of installed wind-energy capacity in the state by December 31, 1998, and to build or contract for an additional 200 MW of installed capacity by December 31, 2002. The same statute also directed the Minnesota Public Utilities Commission (PUC) to require Xcel Energy to construct and operate, purchase or contract to purchase an

26

Document  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

820 820 Federal Register / Vol. 62, No. 52 / Tuesday, March 18, 1997 / Notices Issued in Washington, DC on March 12, 1997. Dan W. Reicher, Chief of Staff, Department of Energy. [FR Doc. 97-6780 Filed 3-17-97; 8:45 am] BILLING CODE 6450-01-P Office of General Counsel Unfunded Mandates Reform Act; Intergovernmental Consultation AGENCY: Office of the General Counsel, Department of Energy. ACTION: Notice of final statement of policy. SUMMARY: The Department of Energy (DOE) today publishes a final statement of policy on intergovernmental consultation under the Unfunded Mandates Reform Act of 1995. The policy reflects the guidelines and instructions that the Director of the Office of Management and Budget (OMB) provided to each agency to develop, with input from State, local, and tribal officials, an

27

Loss of benefits resulting from mandated nuclear plant shutdowns  

SciTech Connect

This paper identifies and discusses some of the important consequences of nuclear power plant unavailability, and quantifies a number of technical measures of loss of benefits that result from regulatory actions such as licensing delays and mandated nuclear plant outages. The loss of benefits that accompany such regulatory actions include increased costs of systems generation, increased demand for nonnuclear and often scarce fuels, and reduced system reliability. This paper is based on a series of case studies, supplemented by sensitivity studies, on hypothetical nuclear plant shutdowns. These studies were developed by Argonne in cooperation with four electric utilities.

Peerenboom, J.P.; Buehring, W.A.

1982-01-01T23:59:59.000Z

28

Multi-criteria comparison of fuel policies: Renewable fuel mandate, fuel emission-standards, and fuel carbon tax  

E-Print Network (OSTI)

comparison of fuel policies: Renewable fuel mandate, fuelcomparison of fuel policies: Renewable fuel mandate, fuel121, 2011. C. Fischer. Renewable Portfolio Standards: When

Rajagopal, Deepak; Hochman, G.; Zilberman, D.

2012-01-01T23:59:59.000Z

29

Process for catalytic reforming  

Science Conference Proceedings (OSTI)

An improved catalytic reforming process is disclosed wherein hydrogen and light hydrocarbons generated in the catalytic reaction zone are passed to a hydrogen production/purification zone and and reacted and processed therein to produce substantially pure hydrogen. A portion of the hydrogen is then admixed with the charge stock to the catalytic reforming zone to provide the hydrogen requirements of the catalytic reforming reaction zone.

James, R. B. Jr.

1984-11-20T23:59:59.000Z

30

Systemic Reform Bibliography  

NLE Websites -- All DOE Office Websites (Extended Search)

(5) support local initiatives and model sites; (6) align state policy; (7) reform higher education and teacher preparation; and (8) mobilize public and professional...

31

Plasma—Methane Reformation  

INL thermal plasma methane reformation process produces hydrogen and elemental carbon from natural gas and other hydrocarbons, such as natural gas or ...

32

Catalytic reforming process  

Science Conference Proceedings (OSTI)

A catalytic reforming process is disclosed in which substantially all of the heat requirements of the product stabilizer column is supplied by multiple indirect heat exchange.

Peters, K.D.

1983-10-11T23:59:59.000Z

33

Security and Suitability Process Reform  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Security and Suitability Process Reform December 2008 Provided by the Joint Security and Suitability Reform Team EXECUTIVE OFFICE OF THE PRESIDENT OFFICE OF MANAGEMENT AND BUDGET...

34

Copyright reform step zero  

Science Conference Proceedings (OSTI)

'A reasonable person might well think it's a fool's errand to contemplate a [copyright] reform project of any sort.' The US Copyright Act of 1976 and its subsequent amendments is contained in over 200 pages of incomprehensible, sometimes inconsistent, ... Keywords: US copyright law, administrative law, copyright reform, institutional frameworks

Terry Hart

2010-06-01T23:59:59.000Z

35

Catalytic reforming process  

Science Conference Proceedings (OSTI)

A catalytic reforming process is disclosed wherein the reboiler heat requirements of the stabilizer column are supplied by means of indirect heat exchange with hot combustion gases in the reforming reactants fired heater convection heating section. Heat in excess of the reboiler requirements is passed to the stabilizer column with control being effected by removal of excess heat from the column.

James, R.B. Jr.

1984-02-14T23:59:59.000Z

36

Catalytic reforming methods  

DOE Patents (OSTI)

A catalytic reforming method is disclosed herein. The method includes sequentially supplying a plurality of feedstocks of variable compositions to a reformer. The method further includes adding a respective predetermined co-reactant to each of the plurality of feedstocks to obtain a substantially constant output from the reformer for the plurality of feedstocks. The respective predetermined co-reactant is based on a C/H/O atomic composition for a respective one of the plurality of feedstocks and a predetermined C/H/O atomic composition for the substantially constant output.

Tadd, Andrew R; Schwank, Johannes

2013-05-14T23:59:59.000Z

37

Multizone naphtha reforming process  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process for conversion of a naphtha hydrocarbon at reforming conditions having at least two segregated catalyst zones. The improvement comprises contacting the hydrocarbon in a first zone with a first catalyst comprising tin and at least one platinum group metal deposited on a solid catalyst support followed by contacting in a second zone with a second catalyst comprising at least one metal selected from the group consisting of platinum group metals deposited on a solid catalyst support.

Fleming, B.

1987-05-05T23:59:59.000Z

38

Federal Reserve Bank of of Kansas City Markets, Not Mandates, Shape Ethanol Production  

E-Print Network (OSTI)

The 2012 drought has reignited the food versus fuel debate. After cutting U.S. corn production below recent years ’ consumption, the drought sparked a U.S. grain shortage and sent global food prices soaring. As the grain shortage intensified, pressure to relieve the shortage by easing ethanol mandates mounted. Escalating ethanol mandates under the Renewable Fuel Standard (RFS), which fueled the expansion of the U.S. ethanol industry, will soon exceed the amount of ethanol than can be used in current U.S. gasoline blends. Some industry participants believe that a waiver of the mandate has the potential to reduce ethanol production and relieve high corn prices. However, ethanol production may not decline significantly, even if the mandates are waived temporarily,

Main Street; Nathan Kauffman

2012-01-01T23:59:59.000Z

39

Catalytic reforming process  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process which comprises contacting a naphtha range feed with a low acidity extrudate comprising an intermediate and/or a large pore acidic zeolite bound with a low acidity refractory oxide under reforming conditions to provide a reaction product of increased aromatic content, the extrudate having been prepared with at least an extrusion-facilitating amount of a low acidity refractory oxide in colloidal form and containing at least one metal species selected from the platinum group metals.

Absil, R.P.; Huss, A. Jr.; McHale, W.D.; Partridge, R.D.

1989-06-13T23:59:59.000Z

40

The EC bioethanol blend mandate policy: its effect on ACP sugar trade and potential interaction with EPA policies.  

E-Print Network (OSTI)

??The study aim was to determine effects of the EC bioethanol blend mandate policy and its potential interaction with the EPA policies on EU/ACP countries.… (more)

Sukati, M.A.

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A Matter of Due Process: An Examination of How State Mandated Accreditation has Impacted Texas Crime Laboratories.  

E-Print Network (OSTI)

??Mandated accreditation of crime laboratories is a fairly new phenomenon. The state of Texas was the first to require that crime laboratories be accredited in… (more)

DeLillo, Sandy Dawn

2008-01-01T23:59:59.000Z

42

Multifuel reformer R D  

DOE Green Energy (OSTI)

The on-board fuel for fuel cell powered vehicles may be one or more of hydrogen, methanol, ethanol, natural gas, propane, or other liquified petroleum gases. To use hydrogen as the fuel, suitable means of storing, and subsequently delivering, adequate quantities of the gas must be developed. For all other fuels suitable reformers must be developed to convert the fuel to hydrogen or a hydrogen-rich gas mixture at rates corresponding to the varying power demand rates of the automotive system; this is especially true for the lower temperature fuel cells, such as the polymer electrolyte fuel cell which operates at 80{degrees}C and the phosphoric acid fuel cell which operates at 190{degrees}C. This paper discusses the key design and performance characteristics of such hydrogen storage and fuel reformer systems for use in stand-alone fuel cell automotive applications.

Kumar, R.; Ahmed, S.

1991-01-01T23:59:59.000Z

43

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-24T23:59:59.000Z

44

Methanol partial oxidation reformer  

DOE Patents (OSTI)

A partial oxidation reformer is described comprising a longitudinally extending chamber having a methanol, water and an air inlet and an outlet. An igniter mechanism is near the inlets for igniting a mixture of methanol and air, while a partial oxidation catalyst in the chamber is spaced from the inlets and converts methanol and oxygen to carbon dioxide and hydrogen. Controlling the oxygen to methanol mole ratio provides continuous slightly exothermic partial oxidation reactions of methanol and air producing hydrogen gas. The liquid is preferably injected in droplets having diameters less than 100 micrometers. The reformer is useful in a propulsion system for a vehicle which supplies a hydrogen-containing gas to the negative electrode of a fuel cell. 7 figs.

Ahmed, S.; Kumar, R.; Krumpelt, M.

1999-08-17T23:59:59.000Z

45

Catalytic reforming catalyst  

Science Conference Proceedings (OSTI)

An improved catalyst, having a reduced fouling rate when used in a catalytic reforming process, said catalyst comprising platinum disposed on an alumina support wherein the alumina support is obtained by removing water from aluminum hydroxide produced as a by-product from a ziegler higher alcohol synthesis reaction, and wherein the alumina is calcined at a temperature of 1100-1400/sup 0/F so as to have a surface area of 165 to 215 square meters per gram.

Buss, W.C.; Kluksdahl, H.E.

1980-12-09T23:59:59.000Z

46

Sustainable Future for Bioenergy To meet the mandated national bioenergy goals, the evolving  

E-Print Network (OSTI)

Sustainable Future for Bioenergy To meet the mandated national bioenergy goals, the evolving region. While bioenergy demand and end use may be FRQFHQWUDWHG LQ KLJKO\\ SRSXODWHG DUHDV LWV SURGXFWLRQ Mapping the future of bioenergy with Geographic Information Systems (GIS) and other cutting edge data

47

Steam reformer with catalytic combustor  

DOE Patents (OSTI)

A steam reformer is disclosed having an annular steam reforming catalyst bed formed by concentric cylinders and having a catalytic combustor located at the center of the innermost cylinder. Fuel is fed into the interior of the catalytic combustor and air is directed at the top of the combustor, creating a catalytic reaction which provides sufficient heat so as to maintain the catalytic reaction in the steam reforming catalyst bed. Alternatively, air is fed into the interior of the catalytic combustor and a fuel mixture is directed at the top. The catalytic combustor provides enhanced radiant and convective heat transfer to the reformer catalyst bed.

Voecks, Gerald E. (La Crescenta, CA)

1990-03-20T23:59:59.000Z

48

Novel Reforming Catalysts  

Science Conference Proceedings (OSTI)

Aqueous phase reforming is useful for processing oxygenated hydrocarbons to hydrogen and other more useful products. Current processing is hampered by the fact that oxide based catalysts are not stable under high temperature hydrothermal conditions. Silica in the form of structured MCM-41 is thermally a more stable support for Co and Ni than conventional high surface area amorphous silica but hydrothermal stability is not demonstrated. Carbon nanotube supports, in contrast, are highly stable under hydrothermal reaction conditions. In this project we show that carbon nanotubes are stable high activity/selectivity supports for the conversion of ethylene glycol to hydrogen.

Pfefferle, Lisa D; Haller, Gary L

2012-10-16T23:59:59.000Z

49

NEPA Contracting Reform Guidance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

defining early what contractors should accomplish < establishing contracts ahead of time < minimizing cost while maintaining quality by * maximizing competition and use of incentives * using past performance information in awarding work * managing the NEPA process as a project This guidance provides: < model statements of work < information on contract types and incentives < direction on effective NEPA contract management by the NEPA Document Manager < a system for measuring NEPA process costs < NEPA contractor evaluation procedures < details on the DOE NEPA Web site U.S. Department of Energy, Office of NEPA Policy and Assistance, December 1996 NEPA CONTRACTING REFORM GUIDANCE Table of Contents 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

50

Multizone catalytic reforming process  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of hydrocarbons comprising contacting the hydrocarbon feed in two sequential catalyst zones. It comprises: a first catalyst zone contains a first catalytic composite consisting essentially of a platinum component, a germanium component, a refractory inorganic oxide, and a halogen component; and a second catalyst zone contains a second catalytic composite comprising a platinum component, a germanium component, a refractory inorganic oxide, a halogen component, and catalytically effective amounts of a metal promoter selected from rhenium, rhodium, ruthenium, cobalt, nickel, and iridium, and mixtures thereof.

Moser, M.C.; Lawson, R.J.; Antos, G.J.; Wang, L.; Parulekar, V.N.

1990-05-29T23:59:59.000Z

51

Patent Counsel - Patent Reform | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patent Counsel - Patent Reform Patent Counsel - Patent Reform America invents Act 20112.pdf More Documents & Publications PETITION FOR ADVANCE WAIVER OF PATENT RIGHTS Office of...

52

Attrition resistant fluidizable reforming catalyst - Energy ...  

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and ...

53

Catalytic reforming optimization  

Science Conference Proceedings (OSTI)

The authors have previously examined correlations between catalytic reforming parameters for an L-35-6 unit at the Gor'knefteorgsintez Industrial Association. Experimental design was used to derive polynomial equations describing the correlations for each reactor. Further research on optimizing the reforming has been based on these results. They adopted the following strategy to define the best working parameters: they define a temperature that would provide the maximum target-product yield while maintaining a given working life. Most of the aromatic hydrocarbons are formed by the naphthene dehydrogenation, which is endothermic, so the greater the temperature drop over the height, the more rapid the process. The temperature difference thus indicates the current catalyst activity. To increase the target-product yield, one must raise the inlet temperature and ensure the largest drop across the catalyst. They examined an algorithm with fixed inlet conditions as regards flow rate and raw material composition. This algorithm provides the basis of software for the automatic control of the L-35-6 reactor unit at the Gor'knefteorgsintez Industrial Association. The system has been checked out and put into experimental operation.

Mazina, S.G.; Rybtsov, V.V.; Priss-Titarenko, T.A.

1988-11-10T23:59:59.000Z

54

1 BIOFUELS FOR ALL? UNDERSTANDING THE GLOBAL IMPACTS OF MULTINATIONAL MANDATES  

E-Print Network (OSTI)

The recent rise in world oil prices, coupled with heightened interest in the abatement of greenhouse gas emissions, led to a sharp increase in biofuels production around the world. Previous authors have devoted considerable attention to the impacts of these policies on a country-by-country basis. However, there are also strong interactions among these programs, as they compete in world markets for feedstocks and ultimately for a limited supply of global land. In this paper, we offer the first global assessment of these multinational biofuel programs – focusing particularly on the EU and US. We begin with an historical analysis of the period 2001-2006, which also permits us to validate the model. We then conduct an ex ante analysis of mandates in the year 2015 We find that, if these mandates are indeed fulfilled, the impact on global land use would be substantial, with potentially significant implications

Thomas W. Hertel; Wallace E. Tyner; Dileep K. Birur; Thomas W. Hertel; Wallace E. Tyner; Dileep K. Birur

2008-01-01T23:59:59.000Z

55

Hiring Reform Memoranda and Action Plan  

Energy.gov (U.S. Department of Energy (DOE))

Memoranda and Action Plan to support the President’s mandate directing the improvement of the Federal recruitment and hiring process throughout the Federal government.

56

High severity catalytic reforming process  

Science Conference Proceedings (OSTI)

A high-severity catalytic reforming process is described comprising: (a) passing a mixture comprising a catalytic reforming feed stream and a recycle stream into a catalytic reforming reaction zone which is maintained at high-severity reforming conditions; (b) cooling an effluent stream comprising hydrogen and hydrocarbonaceous catalytic reforming reaction products which is withdrawn from the reaction zone; (c) passing the cooled effluent stream into a vapor-liquid separation zone and recovering therefrom a liquid stream comprising hydrocarbons and a hydrogen-rich gas stream; (d) passing the hydrogen-rich gas stream through an adsorption zone wherein the gas is contacted with a treating material which removes polycyclic aromatic compounds from the gas stream, the compounds remaining in the adsorption zone; (e) mixing a portion of the hydrogen-rich gas stream, which is the recycle stream, with the feed stream to form the charge stock mixture and withdrawing the balance of the hydrogen-rich gas stream, which is denoted as net hydrogen, from the catalytic reforming area, all of the hydrogen-rich gas stream being substantially free of polycyclic aromatic compounds; and (f) fractionating the liquid stream and recovering an overhead product comprising light hydrocarbons and a bottoms product comprising reformate.

Bennett, R.W.; Cottrell, P.R.; Gilsdorf, N.L.; Winfield, M.D.

1988-03-22T23:59:59.000Z

57

Puerto Rico Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Puerto Rico Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

58

Mississippi Refinery Catalytic Reforming Downstream Charge ...  

U.S. Energy Information Administration (EIA)

Mississippi Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

59

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

60

Liquid fuel reformer development.  

DOE Green Energy (OSTI)

At Argonne National Laboratory we are developing a process to convert hydrocarbon fuels to a clean hydrogen feed for a fuel cell. The process incorporates a partial oxidation/steam reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. We have tested the catalyst with three diesel-type fuels: hexadecane, low-sulfur diesel fuel, and a regular diesel fuel. We achieved complete conversion of the feed to products. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 800 C. For the two diesel fuels, higher temperatures, >850 C, were required to approach similar levels of hydrogen in the product stream. At 800 C, hydrogen yield of the low sulfur diesel was 32%, while that of the regular diesel was 52%. Residual products in both cases included CO, CO{sub 2}, ethane, ethylene, and methane.

Ahmed, S.; Krumpelt, M.; Pereira, C.; Wilkenhoener, R.

1999-07-30T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Multizone catalytic reforming process  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of hydrocarbons comprising contacting the hydrocarbon feed in two sequential catalyst zones. It comprises: an initial catalyst zone which is a fixed-bed system and contains an initial catalytic composite comprising a platinum component, a germanium component, a refractory inorganic oxide, and a halogen component; and a terminal catalyst zone which is a moving-bed system with associated continuous catalyst regeneration and contains a terminal catalytic composite having the essential absence of germanium and comprising a platinum component, a refractory inorganic oxide, a halogen component, and catalytically effective amounts of a metal promoter selected from one or more of the rhenium, tin, indium, rhodium, ruthenium, cobalt, nickel, and iridium.

Moser, M.; Lawson, R.J.; Wang, L.; Parulekar, V.; Peer, R.L.; Hamlin, C.R.

1991-01-15T23:59:59.000Z

62

Hiring Reform | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hiring Reform Hiring Reform Hiring Reform President Obama's Memorandum dated May 11, 2010, Improving the Federal Recruitment and Hiring Process, is Phase I of the Administration's comprehensive initiative to address major, long-standing impediments to recruiting and hiring the best and the brightest into the Federal civilian workforce. The Memorandum is based on issues that DOE and others brought to the attention of OPM, and it is designed to help Agencies build the workforce you need to achieve your goals. The Presidential Memorandum launches the Obama Administration's flagship personnel policy reform initiative. It builds on a nearly year-long collaboration between OPM and Agencies aimed at streamlining the hiring process and recruiting top talent, especially for mission-critical jobs.

63

Applications of solar reforming technology  

DOE Green Energy (OSTI)

Research in recent years has demonstrated the efficient use of solar thermal energy for driving endothermic chemical reforming reactions in which hydrocarbons are reacted to form synthesis gas (syngas). Closed-loop reforming/methanation systems can be used for storage and transport of process heat and for short-term storage for peaking power generation. Open-loop systems can be used for direct fuel production; for production of syngas feedstock for further processing to specialty chemicals and plastics and bulk ammonia, hydrogen, and liquid fuels; and directly for industrial processes such as iron ore reduction. In addition, reforming of organic chemical wastes and hazardous materials can be accomplished using the high-efficiency destruction capabilities of steam reforming. To help identify the most promising areas for future development of this technology, we discuss in this paper the economics and market potential of these applications.

Spiewak, I. [Weizmann Inst. of Science, Rehovoth (Israel); Tyner, C.E. [Sandia National Labs., Albuquerque, NM (United States); Langnickel, U. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Koeln (Germany)

1993-11-01T23:59:59.000Z

64

Before House Committee on Oversight and Government Reform | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

House Committee on Oversight and Government Reform Before House Committee on Oversight and Government Reform Before House Committee on Oversight and Government Reform By: Secretary...

65

Before the House Committee on Oversight and Government Reform...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight and Government Reform Before the House Committee on Oversight and Government Reform Before the Committee on Oversight and Government Reform, U.S. House of Representatives...

66

Partial oxidation reforming of methanol  

DOE Green Energy (OSTI)

Methanol is an attractive fuel for fuel cell-powered vehicles because it has a fairly high energy density, can be pumped into the tank of a vehicle mush like gasoline, and is relatively easy to reform. For on-board reforming, the reformer must be compact and lightweight, and have rapid start-up and good dynamic response. Steam reforming reactors with the tube-and-shell geometry that was used on the prototype fuel cell-powered buses are heat transfer limited. To reach their normal operating temperature, these types of reactors need 45 minutes from ambient temperature start-up. The dynamic response is poor due to temperature control problems. To overcome the limitations of steam reforming, ANL explored the partial oxidation concept used in the petroleum industry to process crude oils. In contrast to the endothermic steam reforming reaction, partial oxidations is exothermic. Fuel and air are passed together over a catalyst or reacted thermally, yielding a hydrogen-rich gas. Since the operating temperature of such a reactor can be controlled by the oxygen-to- methanol ratio, the rates of reaction are not heat transfer limited. Start-up and transient response should be rapid, and the mass and volume are expected to be small by comparison.

Krumpelt, M.; Ahmed, S.; Kumar, R.

1996-04-01T23:59:59.000Z

67

Before the House Oversight and Government Reform Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Policy, Intergovernmental Relations, and Procurement Reform Before the House Oversight and Government Reform Subcommittee on Technology, Information Policy,...

68

Safety and Security Directives Reform  

NLE Websites -- All DOE Office Websites (Extended Search)

Reforming a "Mountain" of Policy Reforming a "Mountain" of Policy Beginning with his confirmation hearings in January 2009, Energy Secretary Steven Chu challenged the Department of Energy to take a fresh look at how we conduct business. This challenge provided the opportunity for DOE to put in place the most effective and efficient strategies to accomplish the Department's missions safely and securely. In response to the Secretary's challenge and building on the results of Deputy Secretary Poneman's Safety and Security Reform studies, the Office of Health, Safety and Security (HSS) broadened its directives review activities during 2009. By November 2009 HSS had initiated a disciplined review of all health, safety, and security directives, which included a systematic review of the Department's safety and security regulatory model.

69

Evaluate reformer performance at a glance  

Science Conference Proceedings (OSTI)

Catalytic reforming is becoming increasingly important in replacing octane lost as the removal of lead from worldwide gasoline pools continues. A method has been developed that can quickly evaluate the performance of any catalytic reformer. The catalytic naphtha reforming process primarily involves three well-known reactions. These are aromatization of naphthenes, cyclization of paraffins and hydrocracking of paraffins. Hydrogen is produced in the process of aromatization and dehydrocyclization of paraffins. Reformer performance is normally evaluated with a reformate analysis (PONA) and yield of C{sub 5{sup +}} reformate. This method of quick evaluation of reformer performance is based upon the main assumption that the increase in hydrocarbon moles in the process is equal to the number of C{single_bond}C bond ruptures and one mole of hydrogen is absorbed to saturate the same. This new method calculates aromatization efficiency, paraffin conversion, aromatic selectivity and finally the paraffin, naphthene and aromatic content of C{sub 5{sup +}} reformate.

Nag, A. [Indian Oil Corporation Ltd., Gujarat (India)

1996-02-01T23:59:59.000Z

70

Bringing electricity reform to the Philippines  

SciTech Connect

Electricity reforms will not translate to competition overnight. But reforms are inching their way forward in institutions and stakeholders of the Philippine electricity industry, through regulatory and competition frameworks, processes, and systems promulgated and implemented. (author)

Fe Villamejor-Mendoza, Maria

2008-12-15T23:59:59.000Z

71

Fluidized Bed Steam Reforming Technology Overview  

Coal added as reductant and for energy • What happens inside the reformer? Water evaporates Nitrates reduced to nitrogen gas

72

Method of steam reforming methanol to hydrogen  

DOE Patents (OSTI)

The production of hydrogen by the catalyzed steam reforming of methanol is accomplished using a reformer of greatly reduced size and cost wherein a mixture of water and methanol is superheated to the gaseous state at temperatures of about 800.degree. to about 1,100.degree. F. and then fed to a reformer in direct contact with the catalyst bed contained therein, whereby the heat for the endothermic steam reforming reaction is derived directly from the superheated steam/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA)

1990-01-01T23:59:59.000Z

73

Olefins from High Yield Autothermal Reforming Process ...  

Isobutylene is used to produce fuel additives. The autothermal reforming process can produce isobutylene and requires no external energy input ...

74

Accelerated Weathering of Fluidized Bed Steam Reformation ...  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Accelerated Weathering of Fluidized Bed Steam Reformation Material Under Hydraulically Unsaturated Conditions by E.M. Pierce ...

75

Continuing Management Reform | National Nuclear Security Administratio...  

National Nuclear Security Administration (NNSA)

Continuing Management Reform | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

76

Attrition resistant fluidizable reforming catalyst  

DOE Patents (OSTI)

A method of preparing a steam reforming catalyst characterized by improved resistance to attrition loss when used for cracking, reforming, water gas shift and gasification reactions on feedstock in a fluidized bed reactor, comprising: fabricating the ceramic support particle, coating a ceramic support by adding an aqueous solution of a precursor salt of a metal selected from the group consisting of Ni, Pt, Pd, Ru, Rh, Cr, Co, Mn, Mg, K, La and Fe and mixtures thereof to the ceramic support and calcining the coated ceramic in air to convert the metal salts to metal oxides.

Parent, Yves O. (Golden, CO); Magrini, Kim (Golden, CO); Landin, Steven M. (Conifer, CO); Ritland, Marcus A. (Palm Beach Shores, FL)

2011-03-29T23:59:59.000Z

77

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING  

E-Print Network (OSTI)

INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE Prepared For: California Energy REPORT (FAR) INTEGRAL CATALYTIC COMBUSTION/FUEL REFORMING FOR GAS TURBINE CYCLES EISG AWARDEE University://www.energy.ca.gov/research/index.html. #12;Page 1 Integral Catalytic Combustion/Fuel Reforming for Gas Turbine Cycles EISG Grant # 99

78

NEPA Contracting Reform Guidance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Contracting Reform Guidance Contracting Reform Guidance NEPA Contracting Reform Guidance This documents provides guidance on NEPA contracting strategy, including: defining the work of the contractor; establishing contracts ahead of time; minimizing cost while maintaining quality. Guidance also provides: model statements of work, direction on NEPA contract management by NEPA Document Manager; a system for measuring NEPA costs and for evaluating contractor procedures; details on the DOE NEPA website. NEPA Contracting Reform Guidance More Documents & Publications NEPA Contracting Reform Guidance (December 1996) Statement of Work-National Environmental Policy Act (NEPA) Support Services Acquisition: Preparation and Review of Environmental Impact Statements, Environmental Assessments, Environmental Reports, and other Environmental

79

Sustainability at UC San Diego FOR CALIFORNIA  

E-Print Network (OSTI)

Exchange.! 5 #12;Campus Quick Facts Campus Quick Facts 6 ! ! UCSD uses natural gas to fuel its power plant May Inhibit UCSD's Growth Energy Intensive Research University Campus Growth Unfunded Mandates and New

Wang, Deli

80

Plasma-catalyzed fuel reformer  

DOE Patents (OSTI)

A reformer is disclosed that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding method and system are also disclosed and claimed herein.

Hartvigsen, Joseph J.; Elangovan, S.; Czernichowski, Piotr; Hollist, Michele

2013-06-11T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Fuel Reformation: Microchannel Reactor Design  

DOE Green Energy (OSTI)

Fuel processing is used to extract hydrogen from conventional vehicle fuel and allow fuel cell powered vehicles to use the existing petroleum fuel infrastructure. Kilowatt scale micro-channel steam reforming, water-gas shift and preferential oxida-tion reactors have been developed capable of achieving DOE required system performance metrics. Use of a microchannel design effectively supplies heat to the highly endothermic steam reforming reactor to maintain high conversions, controls the temperature profile for the exothermic water gas shift reactor, which optimizes the overall reaction conversion, and removes heat to prevent the unwanted hydrogen oxidation in the prefer-ential oxidation reactor. The reactors combined with micro-channel heat exchangers, when scaled to a full sized 50 kWe automotive system, will be less than 21 L in volume and 52 kg in weight.

Brooks, Kriston P.; Davis, James M.; Fischer, Christopher M.; King, David L.; Pederson, Larry R.; Rawlings, Gregg C.; Stenkamp, Victoria S.; TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.

2005-09-01T23:59:59.000Z

82

Thermochemical Fuel Reformer Development Project  

Science Conference Proceedings (OSTI)

Thermochemical Fuel Reforming (TCFR) is the recovery of internal combustion engine exhaust heat to chemically convert natural gas into a higher calorific flow fuel stream containing a significant concentration of hydrogen. This technique of recycling the engine exhaust heat can reduce fuel use (heat rate). In addition, the hydrogen enhanced combustion also allows stable engine operation at a higher air-fuel ratio (leaner combustion) which results in very low NOx production. This interim report covers two...

2006-12-11T23:59:59.000Z

83

Environmental fiscal reform (EFR) | Open Energy Information  

Open Energy Info (EERE)

Environmental fiscal reform (EFR) Environmental fiscal reform (EFR) Jump to: navigation, search Tool Summary Name: Environmental fiscal reform (EFR) Agency/Company /Organization: Global Subsidies Initiative (GSI), International Institute for Sustainable Development (IISD), World Bank Phase: Develop Goals, Prepare a Plan, Develop Finance and Implement Projects Topics: Co-benefits assessment, Finance, Market analysis, Policies/deployment programs References: Environmental fiscal reform - What should be done and how to achieve it[1] Reforming fiscal policies to close the gap between economic and ecological efficiencies[2] Overview "The term environmental fiscal reform (EFR) refers to: a range of taxation or pricing instruments that can raise revenue, while simultaneously furthering environmental goals. This is achieved by providing economic

84

Effect of reformer conditions on catalytic reforming of biomass-gasification tars  

Science Conference Proceedings (OSTI)

Parametric tests on catalytic reforming of tars produced in biomass gasification are performed using a bench-scale, fluid-bed catalytic reformer containing a commercial nickel-based catalyst. The product gas composition and yield vary with reformer temperature, space time, and steam: biomass ratio. Under certain catalytic tar reforming conditions, the gas yield increases by 70%; 97% of the tars are cracked into gases; and benzene and naphthalene, the predominant tar species, are virtually eliminated from the product gas.

Kinoshita, C.M.; Wang, Y.; Zhou, J. [Univ. of Hawaii, Honolulu, HI (United States)

1995-09-01T23:59:59.000Z

85

Distributed Bio-Oil Reforming (Presentation)  

DOE Green Energy (OSTI)

This presentation by Bob Evans at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's distributed bio-oil reforming efforts.

Evans, R. J.; Czernik, S.; French, R.; Ratcliff, M.; Marda, J.; Dean, A. M.

2007-05-15T23:59:59.000Z

86

TransForum v4n2 - Diesel Reformer  

NLE Websites -- All DOE Office Websites (Extended Search)

1 ARGONNE SCIENTISTS TEAM UP TO DEVELOP NEW DIESEL REFORMER Liu tests diesel reformer Argonne's Di-Jia Liu conducted extensive testing of the diesel reformer; his experiments are...

87

An update on catalytic reforming  

Science Conference Proceedings (OSTI)

The UOP Platforming process is a catalytic reforming process in widespread use throughout the petroleum and petrochemical industries. Since the first unit went onstream in 1949, the process has become a standard feature in refineries worldwide. Over the years, significant improvements have been made in process catalysts and process design. The most recent improvement is the combination of a catalyst called R-72 with a new patented flow scheme, R-72 staged loading, which gives significantly higher yields and provides increased catalyst stability. In this article, the authors describe two types of Platforming processes and the new R-72 staged loading scheme.

Wei, D.H.; Moser, M.D.; Haizmann, R.S.

1996-10-01T23:59:59.000Z

88

Before House Committee on Oversight and Government Reform | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oversight and Government Reform Before House Committee on Oversight and Government Reform Testimony of Daniel Poneman, Deputy Secretary of Energy Before House Committee on...

89

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets...  

NLE Websites -- All DOE Office Websites (Extended Search)

Group includes individuals from DOE, the national laboratories, industry, and academia. Corn Stover Harvest Bio-Derived Liquids Reforming Distributed reforming of biomass derived...

90

Regulatory and Financial Reform of Federal Research Policy: Recommenda...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities Regulatory and Financial Reform of Federal Research Policy:...

91

Guidance_Application_Federal_Vacancies_Reform_Act_1998.pdf |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

nceApplicationFederalVacanciesReformAct1998.pdf More Documents & Publications Intelligence Reform and Terroroism Prevention Act - December 17, 2004 Bond Amendment, Security...

92

Diesel Reforming for Fuel Cell Auxiliary Power Units  

DOE Green Energy (OSTI)

This objective of this project was to develop technology suitable for onboard reforming of diesel. The approach was to examine catalytic partial oxidation and steam reforming.

Borup, R.; Parkinson, W. J.; Inbody, M.; Brosha, E.L.; Guidry, D.R.

2005-01-27T23:59:59.000Z

93

Fuel cell integrated with steam reformer  

DOE Patents (OSTI)

A H.sub.2 -air fuel cell integrated with a steam reformer is disclosed wherein a superheated water/methanol mixture is fed to a catalytic reformer to provide a continuous supply of hydrogen to the fuel cell, the gases exhausted from the anode of the fuel cell providing the thermal energy, via combustion, for superheating the water/methanol mixture.

Beshty, Bahjat S. (Lower Makefield, PA); Whelan, James A. (Bricktown, NJ)

1987-01-01T23:59:59.000Z

94

School Finance Reform: Assessing General Equilibrium Effects  

E-Print Network (OSTI)

In 1994 the state of Michigan implemented one of the most comprehensive school finance reforms undertaken to date in any of the states. Understanding the effects of the reform is thus of value in informing other potential reform initiatives. In addition, the reform and associated changes in the economic environment provide an opportunity to assess whether a simple general equilibrium model can be of value in framing the study of such reform initiatives. In this paper, we present and use such a model to derive predictions about the effects of the reform on housing prices and neighborhood demographic compositions. Broadly, our analysis implies that the effects of the reform and changes in the economic environment are likely to have been reflected primarily in housing prices and only modestly on neighborhood demographics. We find that evidence for the Detroit metropolitan area from the decade encompassing the reform is largely consistent with the predictions of the model (JEL codes: H42, H71, H73, I22).

Maria Marta Ferreyra

2007-01-01T23:59:59.000Z

95

Octane Number Prediction in a Reforming Plant  

Science Conference Proceedings (OSTI)

In this work a neural network for the prediction of the complex and non-linear behavior of a Catalytic Reforming of a refinery has been developed. In a fuel, refinery reforming is a conversion process to increase octane number (RON) of the desulphurated ...

E. Chibaro

2000-07-01T23:59:59.000Z

96

Methanol Steam Reformer on a Silicon Wafer  

DOE Green Energy (OSTI)

A study of the reforming rates, heat transfer and flow through a methanol reforming catalytic microreactor fabricated on a silicon wafer are presented. Comparison of computed and measured conversion efficiencies are shown to be favorable. Concepts for insulating the reactor while maintaining small overall size and starting operation from ambient temperature are analyzed.

Park, H; Malen, J; Piggott, T; Morse, J; Sopchak, D; Greif, R; Grigoropoulos, C; Havstad, M; Upadhye, R

2004-04-15T23:59:59.000Z

97

New model accurately predicts reformate composition  

Science Conference Proceedings (OSTI)

Although naphtha reforming is a well-known process, the evolution of catalyst formulation, as well as new trends in gasoline specifications, have led to rapid evolution of the process, including: reactor design, regeneration mode, and operating conditions. Mathematical modeling of the reforming process is an increasingly important tool. It is fundamental to the proper design of new reactors and revamp of existing ones. Modeling can be used to optimize operating conditions, analyze the effects of process variables, and enhance unit performance. Instituto Mexicano del Petroleo has developed a model of the catalytic reforming process that accurately predicts reformate composition at the higher-severity conditions at which new reformers are being designed. The new AA model is more accurate than previous proposals because it takes into account the effects of temperature and pressure on the rate constants of each chemical reaction.

Ancheyta-Juarez, J.; Aguilar-Rodriguez, E. (Inst. Mexicano del Petroleo, Mexico City (Mexico))

1994-01-31T23:59:59.000Z

98

Autothermal Cyclic Reforming Based H2 Generating & Dispensing System  

E-Print Network (OSTI)

Pressure Reforming Comp- ressor 100 psig 100 psig Reformer H2 PSA SyngasNatural Gas Low Pressure Reforming CMP Syngas 5 psig5 psig Reformer CMP 100 psig H2 PSA Natural Gas Syngas CMP HX CMP HX Thermal Reliability (Eliminates Syngas Compressor) Advantages 70-80%70-80%Thermal Efficiency (Excludes Electricity

99

Electricity reform in developing and transition countries: A reappraisal  

E-Print Network (OSTI)

Electricity reform in developing and transition countries: A reappraisal J.H. Williams, R. Ghanadan-oriented reforms in their electric power sectors. Despite the widespread adoption of a standard policy model features of non-OECD electricity reform and reappraises reform policies and underlying assumptions

Kammen, Daniel M.

100

Diesel Reforming for Solid Oxide Fuel Cell Application  

DOE Green Energy (OSTI)

This presentation discusses the development of a diesel reforming catalyst and catalytic system development.

Liu, D-J.; Sheen, S-H.; Krumpelt, M.

2005-01-27T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Before the House Oversight and Government Reform Subcommittee on  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oversight and Government Reform Subcommittee on Oversight and Government Reform Subcommittee on Technology, Information Policy, Intergovernmental Relations, and Procurement Reform Before the House Oversight and Government Reform Subcommittee on Technology, Information Policy, Intergovernmental Relations, and Procurement Reform Before the Subcommittee on Technology, Information Policy, Intergovernmental Relations and Procurement Reform, Committee on Oversight and Government Reform, United States House of Representatives Written Statement By: Owen Barwell, Acting Chief Financial Officer, United States Department of Energy Subject: DOE Financial Information Systems Final_Testimony_for_Owen_Barwell.pdf More Documents & Publications AL2010-03.pdf Request for Information - Operations and Maintenance (O & M) Support

102

Internal reforming fuel cell assembly with simplified fuel feed  

DOE Patents (OSTI)

A fuel cell assembly in which fuel cells adapted to internally reform fuel and fuel reformers for reforming fuel are arranged in a fuel cell stack. The fuel inlet ports of the fuel cells and the fuel inlet ports and reformed fuel outlet ports of the fuel reformers are arranged on one face of the fuel cell stack. A manifold sealing encloses this face of the stack and a reformer fuel delivery system is arranged entirely within the region between the manifold and the one face of the stack. The fuel reformer has a foil wrapping and a cover member forming with the foil wrapping an enclosed structure.

Farooque, Mohammad (Huntington, CT); Novacco, Lawrence J. (Brookfield, CT); Allen, Jeffrey P. (Naugatuck, CT)

2001-01-01T23:59:59.000Z

103

Computational Fluid Dynamics Simulation of Steam Reforming and Autothermal Reforming for Fuel Cell Applications.  

E-Print Network (OSTI)

??With the increasing demand for fuel cell applications in transportation, the performance of reformers using gasoline or diesel as the fuel needs to be optimized.… (more)

Shi, Liming

2009-01-01T23:59:59.000Z

104

Bank Regulation and Mortgage Market Reform  

E-Print Network (OSTI)

America’s Housing Finance Market: A Report To Congress”,Subordinated Debt: A Capital Markets Approach to BankBank Regulation and Mortgage Market Reform Dwight M. Jaffee

Jaffee, Dwight M.

2011-01-01T23:59:59.000Z

105

Electricity reform abroad and US investment  

SciTech Connect

This report reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom (UK) to illustrate how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries in these countries, which have become the largest targets of U.S. foreign investment in electricity. Two calculations of foreign investment are used. One is the foreign direct investment series produced by the U.S. Department of Commerce. The other is based on transactions in electric utilities of the three countries. The electricity reform and privatization experiences reviewed may offer some insight as to how the U.S. electricity industry might develop as a result of recent domestic reform efforts and deregulation at the state and national levels. 126 refs., 23 figs., 27 tabs.

1997-10-01T23:59:59.000Z

106

Distributed Reforming of Biomass Pyrolysis Oils (Presentation...  

NLE Websites -- All DOE Office Websites (Extended Search)

gas (0.5% H 2 ) System Definition (1500 kgday station used for H2A analysis) Capital Costs Bio-Oil Reforming H2A Analysis Bio-Oil Case (Ethanol Case) Bio-oil Storage Tank...

107

Device for cooling and humidifying reformate  

Science Conference Proceedings (OSTI)

Devices for cooling and humidifying a reformate stream from a reforming reactor as well as related methods, modules and systems includes a heat exchanger and a sprayer. The heat exchanger has an inlet, an outlet, and a conduit between the inlet and the outlet. The heat exchanger is adapted to allow a flow of a first fluid (e.g. water) inside the conduit and to establish a heat exchange relationship between the first fluid and a second fluid (e.g. reformate from a reforming reactor) flowing outside the conduit. The sprayer is coupled to the outlet of the heat exchanger for spraying the first fluid exiting the heat exchanger into the second fluid.

Zhao, Jian Lian (Belmont, MA); Northrop, William F. (Ann Arbor, MI)

2008-04-08T23:59:59.000Z

108

Liquid fuel reformer development: Autothermal reforming of Diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a process to convert hydrocarbon fuels to clean hydrogen feeds for a polymer electrolyte fuel cell. The process incorporates an autothermal reforming catalyst that can process hydrocarbon feeds at lower temperatures than existing commercial catalysts. The authors have tested the catalyst with three diesel-type fuels: hexadecane, certified low-sulfur grade 1 diesel, and a standard grade 2 diesel. Hexadecane yielded products containing 60% hydrogen on a dry, nitrogen-free basis at 850 C, while maximum hydrogen product yields for the two diesel fuels were near 50%. Residual products in all cases included CO, CO{sub 2}, ethane, and methane. Further studies with grade 1 diesel showed improved conversion as the water:fuel ratio was increased from 1 to 2 at 850 C. Soot formation was reduced when the oxygen:carbon ratio was maintained at 1 at 850 C. There were no significant changes in hydrogen yield as the space velocity and the oxygen:fuel ratio were varied. Tests with a microchannel monolithic catalyst yielded similar or improved hydrogen levels at higher space velocities than with extruded pellets in a packed bed.

Pereira, C.; Bae, J-M.; Ahmed, S.; Krumpelt, M.

2000-07-24T23:59:59.000Z

109

Heat Transfer Limitations in Hydrogen Production Via Steam Reformation: The Effect of Reactor Geometry  

E-Print Network (OSTI)

Ratio Parameters in Steam-Reforming Hydrogen productionan Insufficient Parameter in the Steam-Reforming Process,”Impurities on the Methanol Steam-Reforming Process for Fuel

Vernon, David R.; Davieau, David D.; Dudgeon, Bryce A.; Erickson, Paul A.

2006-01-01T23:59:59.000Z

110

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream 1 and spent fuel stream 2. Spent fuel stream 1 is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream 1 and exhaust stream 2, and exhaust stream 1 is vented. Exhaust stream 2 is mixed with spent fuel stream 2 to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells. 1 fig.

Grimble, R.E.

1988-03-08T23:59:59.000Z

111

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

112

Hydrogen generation utilizing integrated CO2 removal with steam reforming  

DOE Patents (OSTI)

A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

Duraiswamy, Kandaswamy; Chellappa, Anand S

2013-07-23T23:59:59.000Z

113

Thermally integrated staged methanol reformer and method  

DOE Green Energy (OSTI)

A thermally integrated two-stage methanol reformer including a heat exchanger and first and second reactors colocated in a common housing in which a gaseous heat transfer medium circulates to carry heat from the heat exchanger into the reactors. The heat transfer medium comprises principally hydrogen, carbon dioxide, methanol vapor and water vapor formed in a first stage reforming reaction. A small portion of the circulating heat transfer medium is drawn off and reacted in a second stage reforming reaction which substantially completes the reaction of the methanol and water remaining in the drawn-off portion. Preferably, a PrOx reactor will be included in the housing upstream of the heat exchanger to supplement the heat provided by the heat exchanger.

Skala, Glenn William (Churchville, NY); Hart-Predmore, David James (Rochester, NY); Pettit, William Henry (Rochester, NY); Borup, Rodney Lynn (East Rochester, NY)

2001-01-01T23:59:59.000Z

114

Fundamental kinetic modeling of the catalytic reforming process  

Science Conference Proceedings (OSTI)

In this work, a fundamental kinetic model for the catalytic reforming process has been developed. The complex network of elementary steps and molecular reactions occurring in catalytic reforming has been generated through a computer algorithm characterizing ...

Rogelio Sotelo-Boyas / Gilbert F. Froment; Rayford G. Anthony

2005-01-01T23:59:59.000Z

115

Electricity reform in Chile : lessons for developing countries  

E-Print Network (OSTI)

Chile was the first country in the world to implement a comprehensive reform of its electricity sector in the recent period. Among developing countries only Argentina has had a comparably comprehensive and successful reform. ...

Pollitt, Michael G.

2004-01-01T23:59:59.000Z

116

REFORMING PROCESSES FOR MICRO COMBINED HEAT AND POWER SYSTEM BASED ON SOLID OXIDE FUEL CELL  

E-Print Network (OSTI)

and energy balance, different types of fuel reforming including steam reforming, autothermal reforming technologies. Steam reforming, partial oxidation and autothermal reforming are the three major fuel of an activated carbon bed. Prior to enter the SOFC stack, the fuel is pre-reformed (methane is partially

Liso, Vincenzo

117

Before the House Oversight and Government Reform Subcommittee...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Government Management, Organization, and Procurement Before the House Oversight and Government Reform Subcommittee on Government Management, Organization, and Procurement Before...

118

Cost Analysis of Bio-Derived Liquids Reforming  

E-Print Network (OSTI)

) steam reforming C2H5OH + H2O Ã? 2CO + 4H2 6) Water gas shift 7) Methanation 8) Coking from CH4 (methane Ethanol Reforming Options Gas Phase Liquid Phase Virent Steam Partial Oxidation Reforming GE (SCPO) decomposition C2H5OH Ã? CH4 + CO + H2 steam reforming CH4 + 2H2O Ã? 4H2 + CO2 3) C2H5OH dehydrogenation

119

New Jersey Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

New Jersey Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

120

Arkansas Refinery Catalytic Reforming/High Pressure Downstream ...  

U.S. Energy Information Administration (EIA)

Arkansas Refinery Catalytic Reforming/High Pressure Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Simulation of terrace wall methane-steam reforming reactors  

Science Conference Proceedings (OSTI)

Terrace wall arrangement is one of the most common arrangements for methane-steam reforming reactor furnaces. In this work, a mathematical model of heat transfer in terrace wall furnaces has been developed. The model has been coupled with a reliable ... Keywords: heat transfer modeling, methane-steam reforming, reformer simulation, terrace wall furnace

J. S. Soltan Mohammadzadeh; A. Zamaniyan

2002-08-01T23:59:59.000Z

122

Integrated autothermal reactor concepts for oxidative coupling and reforming of  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Oxidative coupling and steam reforming of methane . . . . . . . . . . 5 1.4 This thesis of methane . . . . . . . . . . . . . . . . . . . 23 2.4 Only steam reforming of methane#12;Integrated autothermal reactor concepts for oxidative coupling and reforming of methane #12

Twente, Universiteit

123

Legal aspects of Internet governance reform  

Science Conference Proceedings (OSTI)

The Internet has moved on from its early almost lawless nature. There are now multiple organisations and legal aspects associated with Internet governance. Whether the issue on the Internet is network security, intellectual property rights (IPRs), e-commerce, ... Keywords: ICANN, WGIG, WSIS, cybercrime, framework, governance, internet, law, reform, treaty

David Satola

2007-01-01T23:59:59.000Z

124

Catalytic partial oxidation reforming of hydrocarbon fuels.  

DOE Green Energy (OSTI)

The polymer electrolyte fuel cell (PEFC) is the primary candidate as the power source for light-duty transportation systems. On-board conversion of fuels (reforming) to supply the required hydrogen has the potential to provide the driving range that is typical of today's automobiles. Petroleum-derived fuels, gasoline or some distillate similar to it, are attractive because of their existing production, distribution, and retailing infrastructure. The fuel may be either petroleum-derived or other alternative fuels such as methanol, ethanol, natural gas, etc. [1]. The ability to use a variety of fuels is also attractive for stationary distributed power generation [2], such as in buildings, or for portable power in remote locations. Argonne National Laboratory has developed a catalytic reactor based on partial oxidation reforming that is suitable for use in light-duty vehicles powered by fuel cells. The reactor has shown the ability to convert a wide variety of fuels to a hydrogen-rich gas at less than 800 C, temperatures that are several hundreds of degrees lower than alternative noncatalytic processes. The fuel may be methanol, ethanol, natural gas, or petroleum-derived fuels that are blends of various hydrocarbons such as paraffins, olefins, aromatics, etc., as in gasoline. This paper will discuss the results obtained from a bench-scale (3-kWe) reactor., where the reforming of gasoline and natural gas generated a product gas that contained 38% and 42% hydrogen on a dry basis at the reformer exit, respectively.

Ahmed, S.

1998-09-21T23:59:59.000Z

125

March 16, 2010, Safety and Security Reform Roundtable - Agenda  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safety and Security Reform Roundtable Safety and Security Reform Roundtable Forrestal Building, Washington, DC March 16 th , 2010 1:00 PM (EST) AGENDA * Introduction of Union Leaders Glenn Podonsky, Chief Health, Safety and Security Officer * Welcome/Introductory Remarks on Reform Goals Dan Poneman, Deputy Secretary * Reform Status and Approach - Oversight, Directives, Mission Support Glenn Podonsky, Chief Health, Safety and Security Officer * Discussion Forum - Union Feedback - Feedback on oversight reform initiatives - Priority safety issues - Experience in collaborative focus group efforts - Recommendations for a path forward * Operating Organization Perspectives 1. Tom D'Agostino Administrator, National Nuclear Security Administration 2. Steven Koonin Under Secretary for Science

126

Bio-Derived Liquids to Hydrogen Distributed Reforming Targets (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Reforming Targets Arlene F. Anderson Technology Development Manager, U.S. DOE Office of Energy Efficiency and Renewable Energy Hydrogen, Fuel Cells and Infrastructure Technologies Program Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group and Hydrogen Production Technical Team Review November 6, 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) The Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG), launched in October 2006, provides a forum for effective communication and collaboration among participants in DOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program (HFCIT) cost-shared research directed at distributed bio-liquid reforming. The Working Group includes

127

Synergize fuel and petrochemical processing plans with catalytic reforming  

Science Conference Proceedings (OSTI)

Depending on the market, refiner`s plans to produce clean fuels and higher value petrochemicals will weigh heavily on the catalytic reformer`s flexibility. It seems that as soon as a timely article related to catalytic reforming operations is published, a new {open_quotes}boutique{close_quotes} gasoline fuel specification is slapped on to existing fuel standards, affecting reformer operations and processing objectives. Just as importantly, the petrochemical market (such as aromatics) that refiners are targeting, can be very fickle. That`s why process engineers have endeavored to maintain an awareness of the flexibility that technology suppliers are building into modern catalytic reformers.

NONE

1997-03-01T23:59:59.000Z

128

Effect of reaction pressure on octane number and reformate and hydrogen yields in catalytic reforming  

Science Conference Proceedings (OSTI)

The effect of reaction pressure in catalytic reforming was studied in a pilot reactor with a commercial Pt-Re/Al{sub 2}O{sub 3} reforming catalyst and a hydrotreated naphtha from a North Sea crude. Reformate and hydrogen yields, research octane numbers (RON), and reformate composition at reactor pressures in the range of 12--25 bar were measured as a function of temperature in the range of 95--105 RON. Reformate and hydrogen yields increased as the pressure range. For the lower reaction pressures the hydrogen yields increased with increasing severity, but for the higher pressures the hydrogen yields started to decline above certain severities. RON was linearly dependent on the concentration of aromatics in the reformate, although the selectivity toward aromatics depends on both pressure and temperature. Less hydro dealkylation of C{sub 8} and heavier aromatics to benzene and toluene resulted in a shift toward xylenes and heavier aromatic components when pressure was lowered. Variations in the degree of paraffin isomerization did not influence RON significantly at those severities.

Moljord, K.; Hellenes, H.G.; Hoff, A.; Tanem, I. [SINTEF Applied Chemistry, Trondheim (Norway); Grande, K. [Statoil Research Centre, Trondheim (Norway); Holmen, A. [Univ. of Trondheim (Norway). Dept. Industrial Chemistry

1996-01-01T23:59:59.000Z

129

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall. 5 figs.

Singh, P.; Shockling, L.A.; George, R.A.; Basel, R.A.

1996-06-18T23:59:59.000Z

130

Hydrocarbon reforming catalyst material and configuration of the same  

DOE Patents (OSTI)

A hydrocarbon reforming catalyst material comprising a catalyst support impregnated with catalyst is provided for reforming hydrocarbon fuel gases in an electrochemical generator. Elongated electrochemical cells convert the fuel to electrical power in the presence of an oxidant, after which the spent fuel is recirculated and combined with a fresh hydrocarbon feed fuel forming the reformable gas mixture which is fed to a reforming chamber containing a reforming catalyst material, where the reforming catalyst material includes discrete passageways integrally formed along the length of the catalyst support in the direction of reformable gas flow. The spent fuel and/or combusted exhaust gases discharged from the generator chamber transfer heat to the catalyst support, which in turn transfers heat to the reformable gas and to the catalyst, preferably via a number of discrete passageways disposed adjacent one another in the reforming catalyst support. The passageways can be slots extending inwardly from an outer surface of the support body, which slots are partly defined by an exterior confining wall. According to a preferred embodiment, the catalyst support is non-rigid, porous, fibrous alumina, wherein the fibers are substantially unsintered and compressible, and the reforming catalyst support is impregnated, at least in the discrete passageways with Ni and MgO, and has a number of internal slot passageways for reformable gas, the slot passageways being partly closed by a containing outer wall.

Singh, Prabhakar (Export, PA); Shockling, Larry A. (Plum Borough, PA); George, Raymond A. (Pittsburgh, PA); Basel, Richard A. (Plub Borough, PA)

1996-01-01T23:59:59.000Z

131

Autothermal reforming catalyst having perovskite structure  

DOE Patents (OSTI)

The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.

Krumpel, Michael (Naperville, IL); Liu, Di-Jia (Naperville, IL)

2009-03-24T23:59:59.000Z

132

Hydrocarbon Reformers for Fuel Cell Systems  

Science Conference Proceedings (OSTI)

Several new or emerging technologies are vying to compete in the distributed resources market; notably, fuel cells and microturbines. Fuel cells represent an idealized power generation technology with tremendous long-term promise. As a hydrogen-fueled system, however, fuel cells need either a hydrogen fuel supply infrastructure or fuel processing (reforming and clean-up) technology to convert conventional fossil fuels to a hydrogen-rich energy source. This report provides an overview of fuel processing t...

2000-11-30T23:59:59.000Z

133

Purification of reformer streams by catalytic hydrogenation  

Science Conference Proceedings (OSTI)

Catalytic Reforming is one of the most important processes to produce high grade motor gasolines. Feedstocks are mainly gasoline and naphtha streams from the crude oil distillation boiling in the range of 212 F to 350 F. By catalytic reforming the octane number of these gasoline components is increased from 40--60 RON to 95--100 RON. Besides isomerization and dehydrocyclization reactions mainly formation of aromatics by dehydrogenation of naphthenes occur. Thus, catalytic reformers within refineries are an important source of BTX--aromatics (benzene, toluene, xylenes). Frequently, high purity aromatics are recovered from these streams using modern extractive distillation or liquid extraction processes, e.g. the Krupp-Koppers MORPHYLANE{reg_sign} process. Aromatics product specifications, notably bromine index and acid wash color, have obligated producers to utilize clay treatment to remove trace impurities of diolefins and/or olefins. The conventional clay treatment is a multiple vessel batch process which periodically requires disposal of the spent clay in a suitable environmental manner. BASF, in close cooperation with Krupp-Koppers, has developed a continuous Selective Catalytic Hydrogenation Process (SCHP) as an alternative to clay treatment which is very efficient, cost effective and environmentally compatible. In the following the main process aspects including the process scheme catalyst and operating conditions is described.

Polanek, P.J. [BASF Corp., Geismar, LA (United States); Hooper, H.M. [Krupp Wilputte Corp., Bridgeville, PA (United States); Mueller, J.; Walter, M. [BASF AG, Ludwigshafen (Germany); Emmrich, G. [Krupp Koppers GmbH, Essen (Germany)

1996-12-01T23:59:59.000Z

134

IFP solutions for revamping catalytic reforming units  

Science Conference Proceedings (OSTI)

The decision-making process for the refiner considering a revamp of a catalytic reforming unit comprises many factors. These may be grouped in two broad areas: technical and economic. This paper presents the results of a study performed by IFP that illustrates catalytic reforming unit revamp options. Three IFP processes are described and operating conditions, expected yields, and economic data are presented. The following options are discussed: base case Conventional, fixed-bed, semi-regenerative catalytic reformer; Case 1--revamp using IFP Dualforming technology; Case 2--revamp using IFP Dualforming Plus technology; and Case 3--revamp to IFP Octanizing technology. The study illustrates various options for the refiner to balance unit performance improvements with equipment, site, and economic constraints. The study was performed assuming design feedrate of 98.2 tons/hour (20,000 BPSD) in all cases. Because of the increased need for octane in many refineries, the study assumed that operating severity was set at a design value of 100 research octane number clear (RON). In all of the cases in this study, it was assumed that the existing recycle compressor was reused. Operating pressure differences between the cases is discussed separately. Also, in all cases, a booster compressor was included in order to return export hydrogen pressure to that of the conventional unit.

Gendler, J.L. [HRI, Inc., Princeton, NJ (United States); Domergue, B.; Mank, L. [Inst. Francais du Petrole, Rueil Malmaison (France)

1996-12-01T23:59:59.000Z

135

Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

of Reforming Hydrocarbon Fuels Using of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts Contact NETL Technology Transfer Group techtransfer@netl.doe.gov May 2012 Opportunity Research is currently active on the technology "Methods of Reforming Hydrocarbon Fuels Using Hexaaluminate Catalysts." The technology is available for licensing and/or further collaborative research from the U.S. Department of Energy's National Energy Technology Laboratory. Overview This invention discloses a method to reform hydrocarbon fuels using hexa- aluminate catalysts. In general, the method successfully disrupts the forma- tion of carbon that leads to the deactivation of the catalyst, a key element in the reforming of hydrocarbon fuels. When researchers are designing catalysts to reform hydrocarbon fuels, one

136

Partial oxidation fuel reforming for automotive power systems.  

DOE Green Energy (OSTI)

For widespread use of fuel cells to power automobiles in the near future, it is necessary to convert gasoline or other transportation fuels to hydrogen on-board the vehicle. Partial oxidation reforming is particularly suited to this application as it eliminates the need for heat exchange at high temperatures. Such reformers offer rapid start and good dynamic performance. Lowering the temperature of the partial oxidation process, which requires the development of a suitable catalyst, can increase the reforming efficiency. Catalytic partial oxidation (or autothermal) reformers and non-catalytic partial oxidation reformers developed by various organizations are presently undergoing testing and demonstration. This paper summarizes the process chemistries as well as recent test data from several different reformers operating on gasoline, methanol, and other fuels.

Ahmed, S.; Chalk, S.; Krumpelt, M.; Kumar, R.; Milliken, J.

1999-09-07T23:59:59.000Z

137

Will electricity market reform likely reduce retail rates?  

Science Conference Proceedings (OSTI)

To win public support, proponents for electricity market reform to introduce competition often promise that the post-reform retail rates will be lower than the average embedded cost rates that would have prevailed under the status quo of a regulated monopoly. A simple economic analysis shows that such a promise is unlikely to occur without the critical assumption that the post-reform market has marginal costs below average costs. (author)

Woo, C.K.; Zarnikau, Jay

2009-03-15T23:59:59.000Z

138

Microsoft Word - Poster Abstract_2010_NETL_ Oxide-Based Reforming...  

NLE Websites -- All DOE Office Websites (Extended Search)

Structured Oxide - Based Reforming Catalyst Development U.S. Dept of Energy, National Energy Technology Laboratory, Morgantown, WV 26507 Dushyant Shekhawat Dushyant.Shekhawat@NETL....

139

Compatibility of selected ceramics with steam-methane reformer environments  

DOE Green Energy (OSTI)

Conventional steam reforming of methane to synthesis gas (CO and H{sub 2}) hasa conversion efficiency of about 85%. Replacement of metal tubes in the reformer with ceramic tubes offers the potential for operation at temperatures high enough to increase the efficiency to 98-99%. However, the two candidate ceramic materials being given strongest consideration, sintered alpha Si carbide and Si carbide particulate-strengthened alumina, have been shown to react with components of the reformer environment. Extent of degradation as a function of steam partial pressure and exposure time has been studied, and results suggest limits under which these structural ceramics can be used in advanced steam-methane reformers.

Keiser, J.R.; Howell, M. [Oak Ridge National Lab., TN (United States); Williams, J.J.; Rosenberg, R.A. [Stone and Webster Engineering Corp., Boston, MA (United States)

1996-04-01T23:59:59.000Z

140

Thermodynamic and Experimental Study on the Steam Reforming ...  

Science Conference Proceedings (OSTI)

For improving hydrogen yield, a new system for steam reforming of bio-oil with site ... Kinetic Modeling Study of Oxy-methane Combustion at Ordinary Pressure.

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Women and the reform of the welfare system: An introduction  

Science Conference Proceedings (OSTI)

This special issue of Gender Issues, one of a three-part series, examines the welfare reform measures initiated a decade ago and their consequences for ...

142

Kinetics of Supercritical Water Reformation of Ethanol to H  

Science Conference Proceedings (OSTI)

Sep 16, 2007 ... Description Kinetics of the supercritical water reformation of ethanol was experimentally studied in a tubular reactor made of Inconel 625 alloy.

143

Catalytic reforming boosts octane for gasoline blending - Today in ...  

U.S. Energy Information Administration (EIA)

Because reformate contains significant amounts of benzene, toluene, and xylene, it also is an important source of feedstock for the petrochemical industry.

144

New process model proves accurate in tests on catalytic reformer  

Science Conference Proceedings (OSTI)

A mathematical model has been devised to represent the process that takes place in a fixed-bed, tubular, adiabatic catalytic reforming reactor. Since its development, the model has been applied to the simulation of a commercial semiregenerative reformer. The development of mass and energy balances for this reformer led to a model that predicts both concentration and temperature profiles along the reactor. A comparison of the model's results with experimental data illustrates its accuracy at predicting product profiles. Simple steps show how the model can be applied to simulate any fixed-bed catalytic reformer.

Aguilar-Rodriguez, E.; Ancheyta-Juarez, J. (Inst. Mexicano del Petroleo, Mexico City (Mexico))

1994-07-25T23:59:59.000Z

145

Analysis of Chemically Reacting Gas Flow and Heat Transfer in Methane Reforming Processes  

Science Conference Proceedings (OSTI)

This paper presents simulation and analysis of gas flow and heat transfer affected by chemical reactions relating to steam reforming of methane in a compact reformer. The reformer conditions such as the combined thermal boundary conditions on solid walls, ...

Guogang Yang; Danting Yue; Xinrong Lv; Jinliang Yuan

2009-10-01T23:59:59.000Z

146

Process for removal of polynuclear aromatics from a hydrocarbon in an endothermic reformer reaction system  

Science Conference Proceedings (OSTI)

A process is described for reforming a hydrocarbon in a multi-stage endothermic reforming series of catalytic reforming reactors where the hydrocarbon is passed through the series of catalytic reforming reactors to form a reformate. The hydrocarbon is heated prior to entry to the next catalytic reforming reactor in the series, which process comprises contact of the hydrocarbon intermediate from the series of catalytic reforming reactors containing reforming catalyst with a polynuclear aromatic adsorbent to adsorb at least a portion of the polynuclear aromatic content from the hydrocarbon prior to entry to each of the next catalytic reforming reactor in the series and recovering a reformate from the last catalytic reforming reactor in the series, the recovered reformate having a reduced content of polynuclear aromatics.

Ngan, D.Y.

1989-02-14T23:59:59.000Z

147

NEPA Contracting Reform Guidance (December 1996)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

defining early what contractors should accomplish defining early what contractors should accomplish < establishing contracts ahead of time < minimizing cost while maintaining quality by * maximizing competition and use of incentives * using past performance information in awarding work * managing the NEPA process as a project This guidance provides: < model statements of work < information on contract types and incentives < direction on effective NEPA contract management by the NEPA Document Manager < a system for measuring NEPA process costs < NEPA contractor evaluation procedures < details on the DOE NEPA Web site U.S. Department of Energy, Office of NEPA Policy and Assistance, December 1996 NEPA CONTRACTING REFORM GUIDANCE Table of Contents 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . .

148

Noble metal alkaline zeolites for catalytic reforming  

Science Conference Proceedings (OSTI)

This patent describes a method for producing a noble-metal containing zeolite suitable for catalytic reforming contacting a zeolite selected from alkaline faujasites and L zeolites and zeolites and zeolites isostructural thereto, with a noble-metal compound selected from Pt(acetylacetonate){sub 2} and Pd(acetylacetonate){sub 2} for a effective amount of time to incorporate Pt and/or Pd into the pore surface regions of the zeolite, but not to disperse the Pt and/or Pd throughout the entire zeolite; and calcining the so treated zeolite at a temperature from about 250 {degrees} C, to about 600 {degrees} C for an effective amount of time.

Schweizer, A.E.

1991-02-12T23:59:59.000Z

149

Computational Model For Transient And Steady State Analysis Of A 1-dimensional Auto-thermal Reformer.  

E-Print Network (OSTI)

??Kim, Daejong This study presents a 1-dimensional mathematical model of steam reformer to be used with high temperature solid oxide fuel cell (SOFC). Steam reforming… (more)

Honavara-Prasad, Srikanth

2011-01-01T23:59:59.000Z

150

Sequencing in telecommunications reform: A review of the Turkish case  

Science Conference Proceedings (OSTI)

This paper reviews the Turkish case of telecommunications reform with reference to the evidence from the sequencing literature. Turkey's progress is in line with the proper sequencing of reform suggested by the literature. Accordingly, Turkey has pursued ... Keywords: Industrial policy, Privatisation, Regulation, Telecommunications

Necmiddin Bagdadioglu; Murat Cetinkaya

2010-12-01T23:59:59.000Z

151

Steam reforming of fuel to hydrogen in fuel cells  

DOE Patents (OSTI)

A fuel cell capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Fraioli, Anthony V. (Hawthorne Woods, IL); Young, John E. (Woodridge, IL)

1984-01-01T23:59:59.000Z

152

Steam reforming of fuel to hydrogen in fuel cell  

DOE Patents (OSTI)

A fuel cell is described capable of utilizing a hydrocarbon such as methane as fuel and having an internal dual catalyst system within the anode zone, the dual catalyst system including an anode catalyst supporting and in heat conducting relationship with a reforming catalyst with heat for the reforming reaction being supplied by the reaction at the anode catalyst.

Young, J.E.; Fraioli, A.V.

1983-07-13T23:59:59.000Z

153

Electricity Reform Abroad and U.S. Investment  

Reports and Publications (EIA)

Reviews and analyzes the recent electricity reforms in Argentina, Australia, and the United Kingdom in an attempt to better understand how different models of privatization and reform have worked in practice. This report also analyzes the motivations of the U.S. companies who have invested in the electricity industries of Argentina, Australia, and the UK.

Kevin Lillis

1997-09-01T23:59:59.000Z

154

Reforming naphtha with boron-containing large-pore zeolites  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process. It comprises contacting a hydrocarbonaceous feedstream under catalytic reforming conditions with a composition comprising larger-pore borosilicate zeolites having a pore size greater than 6 and less than 8 angstroms containing less that 1000 parts per million aluminum.

Zones, S.I.; Holtermann, D.L.; Rainis, A.

1992-05-19T23:59:59.000Z

155

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Maturation Plan (TMP) Fluidized Bed Steam Reforming Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) This assessment determines the technology maturity level of the candidate Tank 48H treatment technologies that are being considered for implementation at DOE's SRS - specifically Fluidized Bed Steam Reformer System. Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) More Documents & Publications Technology Maturation Plan (TMP) Wet Air Oxidation (WAO) Technology for Tank 48H Treatment Project (TTP) SRS Tank 48H Waste Treatment Project Technology Readiness Assessment

156

Regulatory and Financial Reform of Federal Research Policy: Recommendations  

NLE Websites -- All DOE Office Websites (Extended Search)

and Financial Reform of Federal Research Policy: and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities Regulatory and Financial Reform of Federal Research Policy: Recommendations to the NRC Committee on Research Universities At the request of the National Research Council (NRC) Committee on Research Universities, the Council on Governmental Relations (COGR), the Association of American Universities (AAU), and the Association of Public and Land-grant Universities (APLU) have assembled a set of ten recommendations for regulatory reform that would improve research universities' ability to carry out their missions without requiring a significant financial investment by the Federal government. Regulatory and Financial Reform of Federal Research Policy: Recommendations

157

Process Reform, Security and Suitability - December 17, 2008 | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Process Reform, Security and Suitability - December 17, 2008 Process Reform, Security and Suitability - December 17, 2008 Process Reform, Security and Suitability - December 17, 2008 December 17, 2008 This is to report on the progress made to improve the timeliness and effectiveness of our hiring and clearing decisions and the specific plan to reform the process further, in accordance with our initial proposals made in April ofthis year. In response to significant, continuing security clearance timeliness concerns, Congress called for improvements and established specific timeliness goals as part of the Intelligence Reform and Terrorism Prevention Act of 2004 (IRTPA). Since the enactment of IRTPA, average timeliness for 90 percent of all clearance determinations reported has been substantially improved, from 265 days (in 2005) to 82 days (4th Quarter,

158

Reforming Power Markets in Developing Countries | Open Energy Information  

Open Energy Info (EERE)

Reforming Power Markets in Developing Countries Reforming Power Markets in Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reforming Power Markets in Developing Countries Agency/Company /Organization: World Bank Sector: Energy Focus Area: Conventional Energy, Renewable Energy Topics: Policies/deployment programs Resource Type: Publications, Lessons learned/best practices Website: siteresources.worldbank.org/INTENERGY/Resources/Energy19.pdf References: Reforming Power Markets in Developing Countries [1] Summary "This paper complements the World Bank's Operational Guidance Note by compiling lessons of this experience that help in applying the Note's guidance. These lessons are taken from the rapidly growing literature on power market reform in developing countries. They cover the range of issues

159

Electricity Reform in Chile. Lessons for Developing Countries  

E-Print Network (OSTI)

Chile was the first country in the world to implement a comprehensive reform of its electricity sector in the recent period. Among developing countries only Argentina has had a comparably comprehensive and successful reform. This paper traces the history of the Chilean reform, which began in 1982, and assesses its progress and its lessons. We conclude that the reform has been very successful. We suggest lessons for the generation, transmission and distribution sectors, as well as the economic regulation of electricity and the general institutional environment favourable to reform. We note that while the initial market structure and regulatory arrangements did give rise to certain problems, the overall experience argues strongly for the private ownership and operation of the electricity industry.

Michael Pollitt

2004-01-01T23:59:59.000Z

160

Removal of sulfur from recycle gas streams in catalytic reforming  

Science Conference Proceedings (OSTI)

This patent describes improvement in a process for catalytically reforming a hydrocarbonaceous feedstock boiling in the gasoline range, wherein the reforming is conducted in the presence of hydrogen in a reforming process unit under reforming conditions, the process unit comprised of serially connected reactors, each of the reactors containing a reforming catalyst, and which process unit also includes a regeneration circuit for regenerating the catalyst after it becomes coked, the regeneration comprising treatment with a sulfur containing gas, and which process unit also includes a gas/liquid separator wherein a portion of the gas is recycled and the remaining portion is collected as make-gas. The improvement comprises using a sulfur trap, containing a catalyst comprised of about 10 to about 70 wt. % nickel dispersed on a support, between the gas/liquid separator and the first reactor.

Boyle, J.P.

1991-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Advances in the chemistry of catalytic reforming of naphtha  

Science Conference Proceedings (OSTI)

Catalytic reforming of naphtha remains the key process for production of high octane gasoline and aromatics (BTX) which are used as petrochemicals feedstocks. The increased demand for these products has led refiners to investigate ways for improving the performance of the reforming process and its catalysts. Moreover, in order to comply with environmental restrictions, the reduction in lead content would require further increase in the reformate octane number. In response to these requirements, refiners and catalyst manufacturers are examining the role of the catalysts in improving the selectivity to aromatics and in octane enhancement. By understanding the chemistry and the mechanism of the reforming process, higher performance catalysts with longer life on stream and lower cost can be developed. This review covers recent developments in reforming catalysts, process reaction chemistry and mechanism. It also highlights prospective areas of research.

Anabtawi, J.A.; Redwan, D.S.; Al-Jarallah, A.M.; Aitani, A.M. (Petroleum and Gas Technology Div., Research Inst., King Fahd Univ. of Petroleum and Minerals, Dhahran (SA))

1991-01-01T23:59:59.000Z

162

TWR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

Marshall, D.W.; Soelberg, N.R.

2003-05-21T23:59:59.000Z

163

TWR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by ThermoChem Waste Remediation, LLC, (TWR) for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). TWR is the licensee of Manufacturing Technology Conservation International (MTCI) steam-reforming technology in the field of radioactive waste treatment. A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrate residues were about 400 ppm in the product and NOx destruction exceeded 86%. The demonstration was successful.

D. W. Marshall; N. R. Soelberg

2003-05-01T23:59:59.000Z

164

Home Production and Social Security Reform ?  

E-Print Network (OSTI)

This paper incorporates home production into a dynamic general equilibrium model of overlapping generations with endogenous retirement to study Social Security reforms. As such, the model differentiates both consumption goods and labor effort according to their respective roles in home production and market activities. Using a calibrated model, we conduct a policy experiment where we eliminate the current pay-as-you-go Social Security System and study the steady state impact. We find that the experiment has important implications for labor supply as well as consumption decisions and that these decisions are influenced by the presence of a home production technology. Comparing our economy to a onegood economy without home production, the welfare gains of eliminating Social Security are magnified significantly. We further demonstrate that the qualitative results hold with the less extreme policy reform where we delay the eligible Social Security benefits claimant age by four years. These policy analyses suggest the importance of modeling home production and distinguishing between both time

Michael Dotsey; Wenli Li; Fang Yang

2012-01-01T23:59:59.000Z

165

SOLAR UPGRADE OF METHANE USING DRY REFORMING IN DIRECT CONTACT BUBBLE REACTOR  

E-Print Network (OSTI)

SOLAR UPGRADE OF METHANE USING DRY REFORMING IN DIRECT CONTACT BUBBLE REACTOR Khalid Al-Ali 1 process of a solar reformer of dry methane reforming was proposed to operate in a temperature range of 600:2:2 fulfills our requirements for the direct contact bubble reactor of the solar reformer, in which a CO2-rich

Recanati, Catherine

166

Hiring Reform Memoranda and Action Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0585 0585 October 7, 2010 MEMORANDUM FOR HEADS OF ALL DEPARTMENTAL ELEMEI\lTS HUMAI\l RESOURCES DIRECTORS FROM: MICHAELC. KANE~~~ CHIEF HUMAN CAPITAL ~ c· SUBJECT: IMPROVING DOE RECRUITMENT AND HIRING PROCESSES This is a follow-up to the Deputy Secretary's Memorandum dated October 6, 2010 where he communicated the need to implement the Action Plan developed to improve the recruitment and hiring processes throughout the Department. One of the central tenets of the President's reform efforts and the Department's Action Plan is management's commitment and attention to an efficient and effective hiring process that yields quality employees. This was clearly articulated in the President's Memorandum dated May 11, 2010 where he directed that management be held accountable through the performance evaluation system for their role

167

Evaluation of Partial Oxidation Reformer Emissions  

DOE Green Energy (OSTI)

In this study, a gasoline fuel processor and an ethanol fuel processor were operated under conditions simulating both startup and normal operation. Emissions were measured before and after the AGB in order to quantify the effectiveness of the burner catalyst in controlling emissions. The emissions sampling system includes CEM for O2, CO2, CO, NOx, and THC. Also, integrated gas samples are collected in evacuated canisters for hydrocarbon speciation analysis via GC. This analysis yields the concentrations of the hydrocarbon species required for the California NMOG calculation. The PM concentration in the anode burner exhaust was measured through the placement of a filter in the exhaust stream. The emissions from vehicles with fully developed on board reformer systems were estimated.

Unnasch, Stefan; Fable, Scott; Waterland, Larry

2006-01-06T23:59:59.000Z

168

Clean gasoline reforming with superacid catalysts  

DOE Green Energy (OSTI)

The objectives of this project are to: (a) determine if a coal-derived naphtha can be hydrotreated to produce a product with a sufficiently low heteroatom content that can be used for reforming, (b) identify hydrocarbon compounds in the naphtha with concentrations greater than 0.5 wt %, (c) develop a Pt/Al[sub 2]O[sub 3] heavily chlorided catalyst and determine the activity, selectivity and deactivation of this catalyst using model compounds and the hydrotreated naphtha, and (d) develop both a sulfated Pt/ZrO[sub 2] and Fe/Mn/ZrO[sub 2] catalyst formulations and determine the activity, selectivity and deactivation of these catalysts using model compounds and d warranted, the hydrotreated naphtha.

Davis, B.H.

1992-01-01T23:59:59.000Z

169

Thermally efficient melting and fuel reforming for glass making  

DOE Patents (OSTI)

An integrated process is described for utilizing waste heat from a glass making furnace. The hot off-gas from the furnace is initially partially cooled, then fed to a reformer. In the reformer, the partially cooled off-gas is further cooled against a hydrocarbon which is thus reformed into a synthesis gas, which is then fed into the glass making furnace as a fuel. The further cooled off-gas is then recycled back to absorb the heat from the hot off-gas to perform the initial cooling. 2 figures.

Chen, M.S.; Painter, C.F.; Pastore, S.P.; Roth, G.S.; Winchester, D.C.

1991-10-15T23:59:59.000Z

170

Multi-fuel reformers for fuel cells used in transportation. Multi-fuel reformers: Phase 1 -- Final report  

DOE Green Energy (OSTI)

DOE has established the goal, through the Fuel Cells in Transportation Program, of fostering the rapid development and commercialization of fuel cells as economic competitors for the internal combustion engine. Central to this goal is a safe feasible means of supplying hydrogen of the required purity to the vehicular fuel cell system. Two basic strategies are being considered: (1) on-board fuel processing whereby alternative fuels such as methanol, ethanol or natural gas stored on the vehicle undergo reformation and subsequent processing to produce hydrogen, and (2) on-board storage of pure hydrogen provided by stationary fuel processing plants. This report analyzes fuel processor technologies, types of fuel and fuel cell options for on-board reformation. As the Phase 1 of a multi-phased program to develop a prototype multi-fuel reformer system for a fuel cell powered vehicle, the objective of this program was to evaluate the feasibility of a multi-fuel reformer concept and to select a reforming technology for further development in the Phase 2 program, with the ultimate goal of integration with a DOE-designated fuel cell and vehicle configuration. The basic reformer processes examined in this study included catalytic steam reforming (SR), non-catalytic partial oxidation (POX) and catalytic partial oxidation (also known as Autothermal Reforming, or ATR). Fuels under consideration in this study included methanol, ethanol, and natural gas. A systematic evaluation of reforming technologies, fuels, and transportation fuel cell applications was conducted for the purpose of selecting a suitable multi-fuel processor for further development and demonstration in a transportation application.

Not Available

1994-05-01T23:59:59.000Z

171

Page iManaging Investment Climate Reforms: Viet Nam Case Study Table of Contents  

E-Print Network (OSTI)

The primary objective of this study is to learn about Viet Nam’s experience with reforms aimed at facilitating private entry into businesses, and in particular to understand how the reform process itself was managed, what have been the results or outcomes of the reforms, and what lessons have been learned. The focus of the analysis is the Enterprise Law reform episode and related reforms to promote domestic private sector development in Viet Nam.

Viet Nam; Raymond Mallon; Economic Consultant

2004-01-01T23:59:59.000Z

172

Hydrogen & Fuel Cells - Hydrogen - Distributed Ethanol Reforming  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen from Bio-Derived Liquids Hydrogen from Bio-Derived Liquids Bio-derived liquid fuels can be produced from renewable agricultural products, such as wood chips. Background Bio-derived renewable fuels are attractive for their high energy density and ease of transport. One scenario for a sustainable hydrogen economy considers that these bio-derived liquid fuels will be produced at plants close to the biomass resource, and then transported to distributed hydrogen production centers (e.g., hydrogen refueling stations), where the fuels will be reformed via the steam reforming process, similar to the current centralized production of hydrogen by the steam reforming of natural gas. Hydrogen produced by reforming these fuels must first be purified and compressed to appropriate storage and dispensing pressures. Compressing

173

Electrical Generation Tax Reform Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Tax Reform Act (Montana) Generation Tax Reform Act (Montana) Electrical Generation Tax Reform Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Institutional Multi-Family Residential Systems Integrator Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Fees Provider Montana Department of Revenue This Act reforms taxes paid by electricity generators to reduce tax rates and imposes replacement taxes in response to the 1997 restructuring of the

174

Reforming The Government Hiring Process | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reforming The Government Hiring Process Reforming The Government Hiring Process Reforming The Government Hiring Process November 19, 2010 - 10:10am Addthis Rita Franklin Rita Franklin Deputy Chief Human Capital Officer What does this mean for me? In the video, Deputy Secretary Daniel Poneman highlights the Department's "Time-to-Hire Tracking and Reporting System." The Department reduced the end-to-end time-to-hire from 174 calendar days for Fiscal Year FY 2009 to 100 days for FY 2010. Wednesday, Deputy Secretary Daniel Poneman and I met with leaders from across the Federal government to share our progress in the our Department's hiring reform efforts. Six months ago, President Obama called on all executive departments and federal agencies to overhaul the way we recruit and hire. As the President

175

Intelligence Reform and Terroroism Prevention Act - December 17, 2004 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Intelligence Reform and Terroroism Prevention Act - December 17, Intelligence Reform and Terroroism Prevention Act - December 17, 2004 Intelligence Reform and Terroroism Prevention Act - December 17, 2004 December 17, 2004 To reform the intelligence community and the intelligence and intelligence-related activities of the United States Government, and for other purposes. SEC. 102. (a) DIRECTOR OF NATIONAL INTELLIGENCE.-(1) There is a Director of National Intelligence who shall be appointed by the President, by and with the advice and consent of the Senate. Any individual nominated for appointment as Director of National Intelligence shall have extensive national security expertise. ''(2) The Director of National Intelligence shall not be located within the Executive Office of the President. ''(b) PRINCIPAL RESPONSIBILITY.-Subject to the authority, direction,

176

Reforming The Government Hiring Process | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reforming The Government Hiring Process Reforming The Government Hiring Process Reforming The Government Hiring Process November 19, 2010 - 10:10am Addthis Rita Franklin Rita Franklin Deputy Chief Human Capital Officer What does this mean for me? In the video, Deputy Secretary Daniel Poneman highlights the Department's "Time-to-Hire Tracking and Reporting System." The Department reduced the end-to-end time-to-hire from 174 calendar days for Fiscal Year FY 2009 to 100 days for FY 2010. Wednesday, Deputy Secretary Daniel Poneman and I met with leaders from across the Federal government to share our progress in the our Department's hiring reform efforts. Six months ago, President Obama called on all executive departments and federal agencies to overhaul the way we recruit and hire. As the President

177

Chemical simulation of hydrogen generation in a plasma fuel reformer  

E-Print Network (OSTI)

A model for a plasma fuel reformer or plasmatron has been developed. The model was based in a series of experiments realized at the Plasma Science and Fusion Center with such a plasmatron. The device is set up to produce ...

Margarit Bel, Nuria, 1977-

2004-01-01T23:59:59.000Z

178

The stability of coerced economic reform : the case of IPR  

E-Print Network (OSTI)

Theories in international relations posit, and empirical evidence has verified, that unwilling states can be compelled by another state or by an international institution to enact domestic policy reform. However, these ...

Wilcox, Trudy

2005-01-01T23:59:59.000Z

179

Study on Hydrogen-Enriching Gas Reforming in Smelting ... - TMS  

Science Conference Proceedings (OSTI)

May 1, 2007 ... For the two-step smelting reduction iron-making process, the advantages of hydrogen-enriching gas reforming are not only to lower the export ...

180

Separation of hydrogen from a catalytic reforming zone effluent stream  

Science Conference Proceedings (OSTI)

A process for the catalytic reforming of a hydrocarbonaceous feedstock at reforming conditions including a pressure of from about 50 to about 250 psig. Is disclosed. A portion of the hydrogen-rich vapor phase recovered from the reforming zone effluent at a relatively low pressure is compressed and recycled to the reforming zone without further purification. The balance of said hydrogen-rich vapor phase, or the net hydrogen, is compressed to a relatively high pressure and recontacted with at least a portion of the liquid hydrocarbon phase recovered from said low pressure separation to effect a further purification of said net hydrogen and to maximize the recovery of C/sub 3/-C/sub 6/+ the liquid phase.

Schmelzer, E.; Tagamolila, C.P.

1983-02-22T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hanford Low Activity Waste (LAW) Fluidized Bed Steam Reformer (FBSR) Na-Al-Si (NAS) Waste Form Qualification C.M. Jantzen and E.M. Pierce November 18, 2010 2 Participating...

182

Reforming the Power Sector in Transition: Do Institutions Matter?  

E-Print Network (OSTI)

  tempted  to  add  additional generation capacity through meaningful power sector reforms in the lurch  towards reducing energy dependency.    As  of  1989,  numerous  nuclear  reactors  in  Armenia,  Bulgaria,  Lithuania,  Russia,  Slovakia...  relationship between country level institutions and power sector reforms    Although  the  neoclassical  economic  theory  considers  both  competition  and  privatization  as  the  core  aspects  of  a market  economy;  the  outcomes  cannot  be  guaranteed  to  be  Pareto  efficient  in  the  absence  of  proper  institutional...

Nepal, Rabindra; Jamasb, Tooraj

183

Quick-start catalyzed methanol partial oxidation reformer  

DOE Green Energy (OSTI)

The catalytic methanol partial oxidation reformer described in this paper offers all the necessary attributes for use in transportation fuel cell systems. The bench-scale prototype methanol reformer developed at Argonne is a cylindrical reactor loaded with copper zinc oxide catalyst. Liquid methanol, along with a small amount of water, is injected as a fine spray into a flowing air stream, past an igniter onto the catalyst bed where the partial oxidation reaction takes place.

Ahmed, S.; Kumar, R.

1995-12-01T23:59:59.000Z

184

Catalytic autothermal reforming of hydrocarbon fuels for fuel cells.  

DOE Green Energy (OSTI)

Fuel cell development has seen remarkable progress in the past decade because of an increasing need to improve energy efficiency as well as to address concerns about the environmental consequences of using fossil fuel for producing electricity and for propulsion of vehicles [1]. The lack of an infrastructure for producing and distributing H{sub 2} has led to a research effort to develop on-board fuel processing technology for reforming hydrocarbon fuels to generate H{sub 2} [2]. The primary focus is on reforming gasoline, because a production and distribution infrastructure for gasoline already exists to supply internal combustion engines [3]. Existing reforming technology for the production of H{sub 2} from hydrocarbon feedstocks used in large-scale manufacturing processes, such as ammonia synthesis, is cost prohibitive when scaled down to the size of the fuel processor required for transportation applications (50-80 kWe) nor is it designed to meet the varying power demands and frequent shutoffs and restarts that will be experienced during normal drive cycles. To meet the performance targets required of a fuel processor for transportation applications will require new reforming reactor technology developed to meet the volume, weight, cost, and operational characteristics for transportation applications and the development of new reforming catalysts that exhibit a higher activity and better thermal and mechanical stability than reforming catalysts currently used in the production of H{sub 2} for large-scale manufacturing processes.

Krumpelt, M.; Krause, T.; Kopasz, J.; Carter, D.; Ahmed, S.

2002-01-11T23:59:59.000Z

185

Fractionation of reformate: A new variant of gasoline production technology  

Science Conference Proceedings (OSTI)

The Novo-Ufa Petroleum Refinery is the largest domestic producer of the unique high-octane unleaded automotive gasolines AI-93 and AI-95 and the aviation gasolines B-91/115 and B-92. The base component for these gasolines is obtained by catalytic reforming of wide-cut naphtha; this basic component is usually blended with certain other components that are expensive and in short supply: toluene, xylenes, and alkylate. For example, the unleaded gasoline AI-93 has been prepared by blending reformate, alkylate, and toluene in a 65:20:15 weight ratio; AI-95 gasoline by blending alkylate and xylenes in an 80:20 weight ratio; and B-91/115 gasoline by compounding a reformate obtained with light straight-run feed, plus alkylate and toluene, in a 55:35:10 weight ratio. Toluene and xylenes have been obtained by process schemes that include the following consecutive processes: redistillation of straight-run naphtha cuts to segregate the required narrow fraction; catalytic reforming (Platforming) of the narrow toluene-xylene straight-run fraction; azeotropic distillation of the reformate to recover toluene and xylenes. A new technology based on the use of reformate fractions is proposed.

Karakuts, V.N.; Tanatarov, M.A.; Telyashev, G.G. [and others

1995-07-01T23:59:59.000Z

186

Performance comparison between partial oxidation and methane steam reforming processes for solid oxide fuel cell (SOFC) micro combined heat and  

E-Print Network (OSTI)

Performance comparison between partial oxidation and methane steam reforming processes for solid recirculation are used along with steam methane reforming. Further Steam Methane Reforming process produces Cell fueled by natural gas with two different types of pre-reforming systems, namely Steam Reforming

Liso, Vincenzo

187

THOR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a ''road ready'' waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

Marshall, D.W.; Soelberg, N.R.; Shaber, K.M.

2003-05-21T23:59:59.000Z

188

THOR Bench-Scale Steam Reforming Demonstration  

SciTech Connect

The Idaho Nuclear Technology and Engineering Center (INTEC) was home to nuclear fuel reprocessing activities for decades at the Idaho National Engineering and Environmental Laboratory. As a result of the reprocessing activities, INTEC has accumulated approximately one million gallons of acidic, radioactive, sodium-bearing waste (SBW). The purpose of this demonstration was to investigate a reforming technology, offered by THORsm Treatment Technologies, LLC, for treatment of SBW into a "road ready" waste form that would meet the waste acceptance criteria for the Waste Isolation Pilot Plant (WIPP). A non-radioactive simulated SBW was used based on the known composition of waste tank WM-180 at INTEC. Rhenium was included as a non-radioactive surrogate for technetium. Data was collected to determine the nature and characteristics of the product, the operability of the technology, the composition of the off-gases, and the fate of key radionuclides (cesium and technetium) and volatile mercury compounds. The product contained a low fraction of elemental carbon residues in the cyclone and filter vessel catches. Mercury was quantitatively stripped from the product but cesium, rhenium (Tc surrogate), and the heavy metals were retained. Nitrates were not detected in the product and NOx destruction exceeded 98%. The demonstration was successful.

D. W. Marshall; N. R. Soelberg; K. M. Shaber

2003-05-01T23:59:59.000Z

189

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

DOE Green Energy (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

190

Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles  

DOE Green Energy (OSTI)

The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1992-08-01T23:59:59.000Z

191

Microchannel Process Technology for Compact Methane Steam Reforming  

Science Conference Proceedings (OSTI)

The study of microchannel reaction engineering and applications to compact chemical reactors has expanded rapidly both academically and industrially in recent years. Velocys{reg_sign}, a spin-out company from Battelle Memorial Institute, is commercializing microchannel process technology for large-scale chemical processing. Hydrogen production at industrial rates in compact Velocys hardware is made possible through increases in both heat and mass transfer rates for highly active and novel catalysts. In one example, a microchannel methane steam reforming reactor is presented with integrated catalytic partial oxidation of methane prior to catalytic combustion with low excess air (25%) to generate the required energy for undothermic methane steam reforming in adjacent channels. Heat transfer rates from the exothermic reactions exceed 18 W/cm{sup 2} of interplanar heat transfer surface area and exceed 65 W/cm{sup 3} of total reaction volume for a methane steam reforming contact time near 4 milliseconds. The process intensity of the Velocys methane steam reformer well exceeds that of conventional steam reformers, which have a typical volumetric heat flux below 1 W/cm{sup 3}. The integration of multiple unit operations and improvements in process intensification result in significant capital and operating cost savings for commercial applications.

Tonkovich, A L.; Perry, Steve; Wang, Yong; Qiu, Dongming; LaPlante, Timothy J.; Rogers, William A.

2004-12-01T23:59:59.000Z

192

Methanol reformers for fuel cell powered vehicles: Some design considerations  

DOE Green Energy (OSTI)

Fuel cells are being developed for use in automotive propulsion systems as alternatives for the internal combustion engine in buses, vans, passenger cars. The two most important operational requirements for a stand-alone fuel cell power system for a vehicle are the ability to start up quickly and the ability to supply the necessary power on demand for the dynamically fluctuating load. Methanol is a likely fuel for use in fuel cells for transportation applications. It is a commodity chemical that is manufactured from coal, natural gas, and other feedstocks. For use in a fuel cell, however, the methanol must first be converted (reformed) to a hydrogen-rich gas mixture. The desired features for a methanol reformer include rapid start-up, good dynamic response, high fuel conversion, small size and weight, simple construction and operation, and low cost. In this paper the present the design considerations that are important for developing such a reformer, namely: (1) a small catalyst bed for quick starting, small size, and low weight; (2) multiple catalysts for optimum operation of the dissociation and reforming reactions; (3) reforming by direct heat transfer partial oxidation for rapid response to fluctuating loads; and (4) thermal independence from the rest of the fuel cell system. 10 refs., 1 fig.

Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

1990-01-01T23:59:59.000Z

193

Forest Tenure Reform in Vietnam | Open Energy Information  

Open Energy Info (EERE)

in Vietnam in Vietnam Jump to: navigation, search Name Forest Tenure Reform in Vietnam Agency/Company /Organization Regional Community Forestry Training Center for Asia and the Pacific Sector Land Focus Area Forestry Topics Resource assessment, Background analysis Resource Type Lessons learned/best practices Website http://recoftc.org/site/filead Country Vietnam UN Region South-Eastern Asia References Forest Tenure Reform in Vietnam[1] Forest Tenure Reform in Vietnam Screenshot Summary "This report presents a synthesis of findings from the two surveys undertaken in Dak Lak (by Dak Lak Department of Agriculture and Rural Development (DARD)) and Hoa Binh by VFU (See Annex A. for a list of members in the two research teams). It was prepared by Nguyen Quang Tan, Nguyen Ba

194

Ghana-REDD Readiness Requires Radical Reform | Open Energy Information  

Open Energy Info (EERE)

Readiness Requires Radical Reform Readiness Requires Radical Reform Jump to: navigation, search Name Ghana-REDD Readiness Requires Radical Reform Agency/Company /Organization UN-REDD Programme Sector Land Focus Area Forestry, Agriculture Topics Implementation, GHG inventory, Policies/deployment programs, Resource assessment, Pathways analysis, Background analysis Resource Type Maps, Guide/manual, Training materials Website http://environment.yale.edu/tf Country Ghana UN Region Western Africa References Ghana-REDD Readiness[1] Summary "The fundamental changes needed for sustainable forest management in Ghana have been known for years, and many large projects have been instigated accordingly. Yet real change has proved elusive. The key challenge now is to get REDD-plus right so that it makes a difference. Dialogue participants

195

Regulatory and Financial Reform of Federal Research Policy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory and Financial Reform of Federal Research Policy Regulatory and Financial Reform of Federal Research Policy Recommendations to the NRC Committee on Research Universities January 21, 2011 Introduction At the request of the National Research Council (NRC) Committee on Research Universities, the Council on Governmental Relations (COGR), the Association of American Universities (AAU), and the Association of Public and Land-grant Universities (APLU) have assembled a set of ten recommendations for regulatory reform that would improve research universities' ability to carry out their missions without requiring a significant financial investment by the Federal government. We firmly believe that compliance and regulatory oversight are essential to the conduct of federally-supported research. Rationalizing the Federal regulatory infrastructure is essential to

196

Comments on Request For Information regarding Reducing Regulatory Reform  

NLE Websites -- All DOE Office Websites (Extended Search)

Comments on Request For Information regarding Reducing Regulatory Comments on Request For Information regarding Reducing Regulatory Reform issued February 3, 2011 (Federal Register /Vol. 76, No. 23 /Thursday, February 3, 2011 /Notices). Comments on Request For Information regarding Reducing Regulatory Reform issued February 3, 2011 (Federal Register /Vol. 76, No. 23 /Thursday, February 3, 2011 /Notices). I have reviewed the Request For Information regarding Reducing Regulatory Reform issued February 3, 2011 (Federal Register /Vol. 76, No. 23 /Thursday, February 3, 2011 /Notices). In the Department of Energy"s (DOE) attempt to meet its obligation to implement Executive Order 13563, ""Improving Regulation and Regulatory Review,"" issued by the President on January 18, 2011, I recommend DOE make a bold move to change

197

Pyrochlore-type catalysts for the reforming of hydrocarbon fuels  

DOE Patents (OSTI)

A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

2012-03-13T23:59:59.000Z

198

Pyrochlore-type catalysts for the reforming of hydrocarbon fuels  

Science Conference Proceedings (OSTI)

A method of catalytically reforming a reactant gas mixture using a pyrochlore catalyst material comprised of one or more pyrochlores having the composition A.sub.2-w-xA'.sub.wA''.sub.xB.sub.2-y-zB'.sub.yB''.sub.zO.sub.7-.DELTA.. Distribution of catalytically active metals throughout the structure at the B site creates an active and well dispersed metal locked into place in the crystal structure. This greatly reduces the metal sintering that typically occurs on supported catalysts used in reforming reactions, and reduces deactivation by sulfur and carbon. Further, oxygen mobility may also be enhanced by elemental exchange of promoters at sites in the pyrochlore. The pyrochlore catalyst material may be utilized in catalytic reforming reactions for the conversion of hydrocarbon fuels into synthesis gas (H.sub.2+CO) for fuel cells, among other uses.

Berry, David A. (Morgantown, WV); Shekhawat, Dushyant (Morgantown, WV); Haynes, Daniel (Morgantown, WV); Smith, Mark (Morgantown, WV); Spivey, James J. (Baton Rouge, LA)

2012-03-13T23:59:59.000Z

199

Producing Clean Syngas via Catalytic Reforming for Fuels Production  

Science Conference Proceedings (OSTI)

Thermochemical biomass conversion to fuels and chemicals can be achieved through gasification to syngas. The biomass derived raw syngas contains the building blocks of carbon monoxide and hydrogen as well as impurities such as tars, light hydrocarbons, and hydrogen sulfide. These impurities must be removed prior to fuel synthesis. We used catalytic reforming to convert tars and hydrocarbons to additional syngas, which increases biomass carbon utilization. In this work, nickel based, fluidizable tar reforming catalysts were synthesized and evaluated for tar and methane reforming performance with oak and model syngas in two types of pilot scale fluidized reactors (recirculating and recirculating regenerating). Because hydrogen sulfide (present in raw syngas and added to model syngas) reacts with the active nickel surface, regeneration with steam and hydrogen was required. Pre and post catalyst characterization showed changes specific to the syngas type used. Results of this work will be discussed in the context of selecting the best process for pilot scale demonstration.

Magrini, K. A.; Parent, Y.; Jablonski, W.; Yung, M.

2012-01-01T23:59:59.000Z

200

High performance internal reforming unit for high temperature fuel cells  

DOE Patents (OSTI)

A fuel reformer having an enclosure with first and second opposing surfaces, a sidewall connecting the first and second opposing surfaces and an inlet port and an outlet port in the sidewall. A plate assembly supporting a catalyst and baffles are also disposed in the enclosure. A main baffle extends into the enclosure from a point of the sidewall between the inlet and outlet ports. The main baffle cooperates with the enclosure and the plate assembly to establish a path for the flow of fuel gas through the reformer from the inlet port to the outlet port. At least a first directing baffle extends in the enclosure from one of the sidewall and the main baffle and cooperates with the plate assembly and the enclosure to alter the gas flow path. Desired graded catalyst loading pattern has been defined for optimized thermal management for the internal reforming high temperature fuel cells so as to achieve high cell performance.

Ma, Zhiwen (Sandy Hook, CT); Venkataraman, Ramakrishnan (New Milford, CT); Novacco, Lawrence J. (Brookfield, CT)

2008-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

GUIDANCE ON APPLICATION OF FEDERAL VACANCIES REFORM ACT OF 1998 Page 1 of 13  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

APPLICATION OF FEDERAL VACANCIES REFORM ACT OF 1998 Page 1 of 13 APPLICATION OF FEDERAL VACANCIES REFORM ACT OF 1998 Page 1 of 13 GUIDANCE ON APPLICATION OF FEDERAL VACANCIES REFORM ACT OF 1998 This memorandum provides guidance on the application of the Federal Vacancies Reform Act of1998 to vacancies in Senate-confirmed offices within the executive branch. March 22, 1999 MEMORANDUM FOR AGENCY GENERAL COUNSELS On October 21, 1998, the Federal Vacancies Reform Act of 1998 ("Vacancies Reform Act" or "Act") was signed into law. ( ) The Vacancies Reform Act replaces the old Vacancies Act and alters the way in which vacancies in presidentially appointed, Senate- confirmed offices within the executive branch may be filled on a temporary basis. The following Q&As are intended to provide general guidance on the Vacancies Reform Act. If

202

Controlling Activity and Stability of Ni-YSZ Catalysts for On-Anode Reforming  

DOE Green Energy (OSTI)

The purposes of the project are to develop an effective Ni-YSZ-based anode for on-anode reforming of methane and natural gas and develop methods to control endothermic steam reforming activity.

King, D.L.; Wang, Y.; Chin, Y-H.; Lin, Y.; Roh, H-S.; Rozmiarek, B.

2005-01-27T23:59:59.000Z

203

www.elsevier.com/locate/econbase School finance reform: Assessing general equilibrium effects  

E-Print Network (OSTI)

In 1994 the state of Michigan implemented one of the most comprehensive school finance reforms undertaken to date in any of the states. Understanding the effects of the reform is thus of value in informing other potential reform initiatives. In addition, the reform and associated changes in the economic environment provide an opportunity to assess whether a simple general equilibrium model can be of value in framing the study of such reform initiatives. In this paper, we present and use such a model to derive predictions about the effects of the reform on housing prices and neighborhood demographic compositions. Broadly, our analysis implies that the effects of the reform and changes in the economic environment are likely to have been reflected primarily in housing prices and only modestly on neighborhood demographics. We find that evidence for the Detroit metropolitan area from the decade encompassing the reform is largely consistent with the predictions of the model.

Maria Marta Ferreyra A

2007-01-01T23:59:59.000Z

204

The Lessons of Practice: Domestic Policy Reform as a Way to Address...  

Open Energy Info (EERE)

The Lessons of Practice: Domestic Policy Reform as a Way to Address Climate Change Jump to: navigation, search Tool Summary Name: The Lessons of Practice: Domestic Policy Reform as...

205

From negotiation to auction : Land-Conveyance Reform in China and its institutional and social impacts  

E-Print Network (OSTI)

The land market and the associated land-development-control mechanism in China have been experiencing a series of reforms since the 1990s, of which Land Conveyance Reform (LCR) in 2004 is a very recent and an important ...

Chen, Zhiyu (Zhiyu Jerry)

2007-01-01T23:59:59.000Z

206

ECONOMIC REFORM AND COMMUNIST REGIME SURVIVABILTY: PAST, PRESENT, AND FUTURE  

E-Print Network (OSTI)

While the collapse of communist rule and process of transitioning to democracy in the former-Soviet Union and its numerous satellite states certainly warrants the wealth of attention received, by no means does this signal that the history of communist state rule is ended. Contrary to popular belief—and even belief in academe it sometimes seems—Communism still survives. In fact, a number of Asian states still claim to follow the path to a promised societal utopia under the guidance of their respective Politburos and may be described as not only ‘surviving’ but thriving, experiencing economic stability and enjoying high rates of growth. This study examines the ramifications of economic and political reform policies implemented by four collapsed communist regimes which have transitioned to democratic governance—the former-Soviet Union, Poland, Hungary, and Czechoslovakia—as well as two surviving Asian communist regimes—Vietnam and China—in identifying characteristic patterns of reform that are conducive to regime survival and/or collapse. The end objective herein is to provide projections for the future of the Castro regime in Cuba, which faces a critical juncture in the future with the impending death of its charismatic leader. I hypothesize that economic reform, through consistent implementation, generates credibility for both Communist Party elites and their future reform endeavors. Additionally, reform packages that manage to successfully stabilize the economy bestow an increased measure of legitimacy to the political elite, allowing the Communist Party to maintain political control, thereby avoiding collapse and the transition to democracy. The third and final section contains general discussion and what conclusions can be drawn from the results, as well as analysis of the history of reform efforts to present in the Caribbean island state of Cuba.

Nelson, John

2006-08-16T23:59:59.000Z

207

Why are land reforms granting complete property rights politically risky? Electoral outcomes of Mexico's certification program  

E-Print Network (OSTI)

identified adverse political fallouts as the main reason whygains but fear the political fallout of the reform. It helps

de Janvry, Alain; Gonzalez-Navarro, Marco; Sadoulet, Elisabeth

2012-01-01T23:59:59.000Z

208

Tailored Macroporous SiCN and SiC Structures for High-Temperature Fuel Reforming**  

E-Print Network (OSTI)

. The catalytic reforming of hydrocarbons in a microreformer is an attractive approach to supply hydrogen to fuel

Kenis, Paul J. A.

209

Heat exchanger for fuel cell power plant reformer  

DOE Patents (OSTI)

A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

Misage, Robert (Manchester, CT); Scheffler, Glenn W. (Tolland, CT); Setzer, Herbert J. (Ellington, CT); Margiott, Paul R. (Manchester, CT); Parenti, Jr., Edmund K. (Manchester, CT)

1988-01-01T23:59:59.000Z

210

Catalytic reforming of liquid fuels: Deactivation of catalysts  

Science Conference Proceedings (OSTI)

The catalytic reforming of logistic fuels (e.g., diesel) to provide hydrogen-rich gas for various fuel cells is inevitably accompanied by deactivation. This deactivation can be caused by various mechanisms, such as carbon deposition, sintering, and sulfur poisoning. In general, these mechanisms are, not independent—e.g., carbon deposition may affect sulfur poisoning. However, they are typically studied in separate experiments, with relatively little work reported on their interaction at conditions typical of liquid fuel reforming. Recent work at the U.S. Dept. of Energy/NETL and Louisiana State University has shown progress in understanding the interaction of these deactivation processes, and catalysts designed to minimize them.

Spivey, J.J.; Haynes, D.J.; Berry, D.A.; Shekhawat, Dushyant; Gardner, T.H.

2007-10-01T23:59:59.000Z

211

EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY  

E-Print Network (OSTI)

1 EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY O. Le Corre1 , C@emn.fr ABSTRACT In-situ hydrogen production is carried out by a catalytic reformer kit set up into exhaust gases-thermal reforming process is achieved. Hydrogen production is mainly dependent on O2 content in exhaust gases

212

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical Discharge  

E-Print Network (OSTI)

Combined Steam Reforming and Partial Oxidation of Methane to Synthesis Gas under Electrical production from simultaneous steam reforming and partial oxidation of methane using an ac corona discharge and steam reforming has a benefit in terms of balancing the heat load. Methane conversions can be achieved

Mallinson, Richard

213

Catalysts for hydrogen production by steam reforming of dimethyl ether (DME)  

Science Conference Proceedings (OSTI)

Dimethyl ether (DME) is expected as one of clean fuels. We have been studying on DME steam reforming for hydrogen production. Copper alumina catalysts prepared by a sol-gel method produced large quantities of H2 with DME steam reforming. The reason was ... Keywords: DME, alumina, catalyst, clean fuel, copper, dimethyl ether, hydrogen, sol-gel method, steam reforming

Kaoru Takeishi

2010-02-01T23:59:59.000Z

214

Solar Reforming of Carbon Dioxide to Produce Diesel Fuel  

SciTech Connect

This project focused on the demonstration of an innovative technology, referred to as the Sunexus CO2 Solar Reformer, which utilizes waste CO2 as a feedstock for the efficient and economical production of synthetic diesel fuel using solar thermal energy as the primary energy input. The Sunexus technology employs a two stage process for the conversion of CO2 to diesel fuel. A solar reforming system, including a specially designed reactor and proprietary CO2 reforming catalyst, was developed and used to convert captured CO2 rich gas streams into syngas (primarily hydrogen and carbon monoxide) using concentrated solar energy at high conversion efficiencies. The second stage of the system (which has been demonstrated under other funding) involves the direct conversion of the syngas into synthetic diesel fuel using a proprietary catalyst (Terra) previously developed and validated by Pacific Renewable Fuels and Chemicals (PRFC). The overall system energy efficiency for conversion of CO2 to diesel fuel is 74%, due to the use of solar energy. The results herein describe modeling, design, construction, and testing of the Sunexus CO2 Solar Reformer. Extensive parametric testing of the solar reformer and candidate catalysts was conducted and chemical kinetic models were developed. Laboratory testing of the Solar Reformer was successfully completed using various gas mixtures, temperatures, and gas flow rates/space velocities to establish performance metrics which can be employed for the design of commercial plants. A variety of laboratory tests were conducted including dry reforming (CO2 and CH{sub 4}), combination dry/steam reforming (CO2, CH{sub 4} & H{sub 2}O), and tri-reforming (CO2, CH{sub 4}, H{sub 2}O & O{sub 2}). CH{sub 4} and CO2 conversions averaged 95-100% and 50-90% per reformer cycle, respectively, depending upon the temperatures and gas space velocities. No formation of carbon deposits (coking) on the catalyst was observed in any of these tests. A 16 ft. diameter, concentrating solar dish was modified to accommodate the Sunexus CO2 Solar Reformer and the integrated system was installed at the Pacific Renewable Fuels and Chemicals test site at McClellan, CA. Several test runs were conducted without catalyst during which the ceramic heat exchanger in the Sunexus Solar Reformer reached temperatures between 1,050 F (566 C) and 2,200 F (1,204 C) during the test period. A dry reforming mixture of CO2/CH{sub 4} (2.0/1.0 molar ratio) was chosen for all of the tests on the integrated solar dish/catalytic reformer during December 2010. Initial tests were carried out to determine heat transfer from the collimated solar beam to the catalytic reactor. The catalyst was operated successfully at a steady-state temperature of 1,125 F (607 C), which was sufficient to convert 35% of the 2/1 CO2/CH{sub 4} mixture to syngas. This conversion efficiency confirmed the results from laboratory testing of this catalyst which provided comparable syngas production efficiencies (40% at 1,200 F [650 C]) with a resulting syngas composition of 20% CO, 16% H{sub 2}, 39% CO2 and 25% CH{sub 4}. As based upon the laboratory results, it is predicted that 90% of the CO2 will be converted to syngas in the solar reformer at 1,440 F (782 C) resulting in a syngas composition of 50% CO: 43% H{sub 2}: 7% CO2: 0% CH{sub 4}. Laboratory tests show that the higher catalyst operating temperature of 1,440 F (782 C) for efficient conversion of CO2 can certainly be achieved by optimizing solar reactor heat transfer, which would result in the projected 90% CO2-to-syngas conversion efficiencies. Further testing will be carried out during 2011, through other funding support, to further optimize the solar dish CO2 reformer. Additional studies carried out in support of this project and described in this report include: (1) An Assessment of Potential Contaminants in Captured CO2 from Various Industrial Processes and Their Possible Effect on Sunexus CO2 Reforming Catalysts; (2) Recommended Measurement Methods for Assessing Contaminant Levels in Captured CO2 Streams; (3) An Asse

Dennis Schuetzle; Robert Schuetzle

2010-12-31T23:59:59.000Z

215

Changing the Rules of the 'ROE': A Reform in Waiting  

SciTech Connect

Congress and FERC recognize the need to attract more investment in transmission. FERC promised to increase cash flow for companies investing in transmission and introduced incremental changes in rates of return. But the agency can do better. FERC should enact comprehensive reform of its return-on-equity calculus to conform policy to market reality. (author)

Rokach, Joshua Z.

2006-05-15T23:59:59.000Z

216

Reform and Regulation of the Electricity Sectors in Developing Countries  

E-Print Network (OSTI)

in investment patterns reflect the differences in the reform strategies adopted by the countries in these regions during the 1990s. By and large, the EAP and SA countries opted for power purchase agreements (PPAs) with independent power producers (IPPs) while...

Jamasb, Tooraj; Littlechild, Stephen C

2004-06-16T23:59:59.000Z

217

Understanding electricity market reforms and the case of Philippine deregulation  

Science Conference Proceedings (OSTI)

The experience of the Philippines offers lessons that should be relevant to any country seeking to deregulate its power industry. Regardless of structure, consumers must face the real price of electricity production and delivery that is closer to marginal cost. Politically motivated prices merely shift the burden from ratepayers to taxpayers. And any reform should work within a reasonable timetable. (author)

Santiago, Andrea; Roxas, Fernando

2010-03-15T23:59:59.000Z

218

Electricity reform and Gains from the reallocation of resources  

SciTech Connect

Perhaps the greatest beneficiary of electricity reform in Australia was the state government of Victoria itself, which was able to reduce debt levels and post budget surpluses even while increasing expenditure and employment levels in education, health care, and law and order. (author)

Abbott, Malcolm

2007-08-15T23:59:59.000Z

219

Communications Technology and Urban Governance Reform: Project Highlights  

E-Print Network (OSTI)

In this paper, we describe highlights of a research project funded by the NSF Digital Government program. The study has examined the impacts of advanced communication technologies in the implementation of a system of neighborhood councils in Los Angeles. It employs social network analysis to chart the development of political networks engendered by the reform and the role of email in shaping these networks.

Christopher Weare

2005-01-01T23:59:59.000Z

220

Financial and ratepayer impacts of nuclear power plant regulatory reform  

SciTech Connect

Three reports - ''The Future Market for Electric Generating Capacity,'' ''Quantitative Analysis of Nuclear Power Plant Licensing Reform,'' and ''Nuclear Rate Increase Study'' are recent studies performed by the Los Alamos National Laboratory that deal with nuclear power. This presents a short summary of these three studies. More detail is given in the reports.

Turpin, A.G.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Steam Reforming of Low-Level Mixed Waste  

Science Conference Proceedings (OSTI)

Under DOE Contract No. DE-AR21-95MC32091, Steam Reforming of Low-Level Mixed Waste, ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design construction, and testing of the PDU as well as performance and economic projections for a 500- lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area published April 1997.1 The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfidly tested including a 750-hour test on material simulating a PCB- and Uranium- contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (>99.9999oA) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radlonuclides in the volume-reduced solids. Cost studies have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

None

1998-01-01T23:59:59.000Z

222

Fixed-bed reforming with mid-cycle catalyst addition  

Science Conference Proceedings (OSTI)

A fixed-bed catalytic reforming process is described in which on-stream operation is begun with the catalyst retention volume in the first reactor less than 99% full and additional catalyst is added to said reactor while on-stream.

Houston, R.J.; McCoy, C.S.

1981-02-17T23:59:59.000Z

223

Commercialization of a high-performance continuous reforming catalyst  

Science Conference Proceedings (OSTI)

In 1971, the first CCR Platforming process was started up in the US on the Gulf Coast. Twenty-two years later, more than 108 continuous reforming units are operating worldwide. Another 50 CCR Platforming units are in various stages of design, construction, or start-up. Continuous catalytic reforming now represents more than 25% of the world's reforming capacity. Throughout these three decades, the UOP CCR Platforming technology continuously improved in terms of catalyst and process in response to changing industry requirements. Processing conditions in 1993 place tremendous demands on the catalyst in the reforming unit. This paper reviews the challenges and needs of the changing refining industry and the development of a new generation of CCR Platforming catalyst, R-132, and focuses on the first commercial operation of this high-activity, surface-stable catalyst. Case studies show how a refiner can improve margins by using the high activity, yield stability, longer life, and improved chloride retention benefits of this new R-132 Platforming catalyst.

Gilsdorf, N.L.; Doornbos, A.E.; Gevelinger, T.J. (UOP, Des Plaines, IL (United States)); Angelo, C.M.D. (Petrogal Refinaria de Sines (Portugal))

1993-01-01T23:59:59.000Z

224

Tube skin temperature prediction of catalytic reforming unit (CRU) heaters  

Science Conference Proceedings (OSTI)

The maximum duty of reformer heaters is governed by the occurance of maximum tube skin temperature of the heaters. The value of maximum tube skin temperatures of the heaters must not exceed theirs' maximum allowable design temperature. The paper highlights ... Keywords: coke formation, finite element, simulations, tube furnance

Suzana Yusup; Nguyen Duy Vinh; Nurhayati Mellon; Abdullah Hassan

2006-10-01T23:59:59.000Z

225

Separation of normally gaseous hydrocarbons from a catalytic reforming effluent and recovery of purified hydrogen  

Science Conference Proceedings (OSTI)

A process for the catalytic reforming of a hydrocarbonaceous feedstock, preferably to produce high quality gasoline boiling range products, is disclosed. Relatively impure hydrogen is separated from the reforming zone effluent, compressed, and recontacted with at least a portion of the liquid reformate product to provide relatively pure hydrogen, a portion of which is recycled to the reforming zone. The balance is further compressed and recontacted with at least a portion of the liquid reformate product to provide an improved recovery of normally gaseous hydrocarbons as well as an improved recovery of purified hydrogen at a pressure suitable for use in the relatively high pressure hydrotreating of sulfur-containing feedstocks.

Coste, A.C.

1982-06-08T23:59:59.000Z

226

BILIWG Meeting: High Pressure Steam Reforming of Bio-Derived Liquids (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

High Pressure Steam Reforming of High Pressure Steam Reforming of Bio-Derived Liquids S. Ahmed, S. Lee, D. Papadias, and R. Kumar November 6, 2007 Laurel, MD Research sponsored by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Rationale and objective Rationale „ Steam reforming of liquid fuels at high pressures can reduce hydrogen compression costs - Much less energy is needed to pressurize liquids (fuel and water) than compressing gases (reformate or H 2 ) „ High pressure reforming is advantageous for subsequent separations and hydrogen purification Objective „ Develop a reformer design that takes advantage of the savings in compression cost in the steam reforming bio-derived liquid fuels - Metric:

227

Reforming petroleum-based fuels for fuel cell vehicles : composition-performance relationships.  

DOE Green Energy (OSTI)

Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior. Components which may be beneficial for ICEs for their octane enhancing value were detrimental to reforming. Fuels with high aromatic and naphthenic content were more difficult to reform. Aromatics were also found to have an impact on the kinetics for reforming of paraffins. The effects of sulfur impurities were dependent on the catalyst. Sulfur was detrimental for Ni, Co, and Ru catalysts. Sulfur was beneficial for reforming with Pt catalysts, however, the effect was dependent on the sulfur concentration.

Kopasz, J. P.; Miller, L. E.; Ahmed, S.; Devlin, P. R.; Pacheco, M.

2001-12-04T23:59:59.000Z

228

In situ Gas Conditioning in Fuel Reforming for Hydrogen Generation  

DOE Green Energy (OSTI)

The production of hydrogen for fuel cell applications requires cost and energy efficient technologies. The Absorption Enhanced Reforming (AER), developed at ZSW with industrial partners, is aimed to simplify the process by using a high temperature in situ CO2 absorption. The in situ CO2 removal results in shifting the steam reforming reaction equilibrium towards increased hydrogen concentration (up to 95 vol%). The key part of the process is the high temperature CO2 absorbent. In this contribution results of Thermal Gravimetric Analysis (TGA) investigations on natural minerals, dolomites, silicates and synthetic absorbent materials in regard of their CO2 absorption capacity and absorption/desorption cyclic stability are presented and discussed. It has been found that the inert parts of the absorbent materials have a structure stabilizing effect, leading to an improved cyclic stability of the materials.

Bandi, A.; Specht, M.; Sichler, P.; Nicoloso, N.

2002-09-20T23:59:59.000Z

229

Contract reform: It`s working at Fernald  

SciTech Connect

DOE`s contract reform initiatives at Fernald and the performance-based system DOE is now using to evaluate FERMCO are key elements to the current and future success of DOE and FERMCO at Fernald. Final cleanup of the Fernald site is planned for completion by 2005 per an accelerated 10-year remediation plan which has been approved by DOE and endorsed by the US EPA, Ohio EPA, and the Fernald Citizens Task Force. Required funding of approximately $276 million plus inflation annually for 10 years to accomplish final cleanup is now being considered by US Congress. Contract reform initiatives and modified performance measurement systems, along with best business practices, are clearing the path for the expedited cleanup of Fernald.

Craig, J. [USDOE Fernald Area Office, Cincinnati, OH (United States); Hunt, A. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States)

1996-01-25T23:59:59.000Z

230

Corrosion protection of reforming equipment during regeneration of the catalyst  

Science Conference Proceedings (OSTI)

The authors discuss the important process of catalytic reforming to produce the basic components of high-octane gasolines and aromatic hydrocarbons in petroleum chemistry. Wide use is made of two-stage oxidative regeneration--coke burning and oxychlorination. This increases the activity of the catalysts. The authors developed a two-stage industrial method of corrosion protection for the low-temperature equipment of catalytic reforming plants during catalyst regeneration. The system is washed, before catalyst regeneration, with an aqueous solution of KLOE-15 in order to remove corrosion products already present. During catalyst regeneration, KLOE-15 and a neutralizing additive are fed in. The method is technically simple and economically effective, and has been introduced in a number of petroleum refineries.

Altsybeeva, A.I.; Andreeva, G.A.; Prasolova, O.N.; Ratner, E.M.; Reshetnikov, S.M.; Teslya, B.M.

1986-01-01T23:59:59.000Z

231

Reforming with an improved platinum-containing catalyst  

Science Conference Proceedings (OSTI)

A catalyst is disclosed which comprises a physical particle-form mixture of a Component A and a Component B. Said Component A comprises one or more Group VIII noble metals and combined halogen deposed on a refractory inorganic oxide and said Component B comprising a metal from Group IVB or Group VB of the Periodic Table of Elements and a combined halogen deposed on a refrac inorganic oxide. Such catalyst is suitable for use in a hydrocarbon conversion reaction zone. The catalyst can be employed in a process for the reforming of a hydrocarbon stream, which process comprises contacting said stream in a reaction zone under reforming conditions and in the presence hydrogen with said catalyst. The catalyst is not presulfided. A preferred process comprises contacting a hydrocarbon stream that contains a substantial amount of sulfur.

Pellet, R.J.; Bertolacini, R.J.; Lysholm, D.L.

1983-08-30T23:59:59.000Z

232

Reforming with an improved platinum-containing catalyst  

Science Conference Proceedings (OSTI)

There is disclosed a catalyst, which catalyst comprises a physical particle-form mixture of a component A and a component B , said component A comprising one or more group VIII noble metals and a combined halogen deposed on a refractory inorganic oxide and said component B comprising a metal from group IVB or group VB of the periodic table of elements and a combined halogen deposed on a refractory inorganic oxide. Such catalyst is suitable for use in a hydrocarbon conversion reaction zone. The catalyst can be employed in a process for the reforming of a hydrocarbon stream, which process comprises contacting said stream in a reaction zone under reforming conditions and in the presence of hydrogen with said catalyst. The catalyst is not presulfided. A preferred process comprises contacting a hydrocarbon stream that contains a substantial amount of sulfur.

Bertolacini, R.J.; Lysholm, D.L.; Pellet, R.J.

1982-10-12T23:59:59.000Z

233

Making sense of doctoral training reforms in the social sciences:  

E-Print Network (OSTI)

process, occurring through collective reflection and action, whether at the level of the department, institution or the discipline (eg McAlpine et al 2005). Within the UK, this recognition has led the higher education funding council to support a... of this emerging field of academic practice and point to some of the challenges ahead. Within the field of doctoral education, I suggest that these curriculum reforms are often led by senior academic administrators who put their own policy knowledge to good use...

Mills, David

2009-01-01T23:59:59.000Z

234

Fuel cell system with combustor-heated reformer  

DOE Patents (OSTI)

A fuel cell system including a fuel reformer heated by a catalytic combustor fired by anode effluent and/or fuel from a liquid fuel supply providing fuel for the fuel cell. The combustor includes a vaporizer section heated by the combustor exhaust gases for vaporizing the fuel before feeding it into the combustor. Cathode effluent is used as the principle oxidant for the combustor.

Pettit, William Henry (Rochester, NY)

2000-01-01T23:59:59.000Z

235

Power sector reform, private investment and regional co-operation  

E-Print Network (OSTI)

Europe and stimulated FDI in the power sector, and might have similarly stimulative effects in South Asia, quite apart from creating profitable trade opportunities and increasing regional security of supply and greater resilience against external oil... of the Electricity Reforms Act in 1997 setting up the Regulatory Commission. “The state government has directed district administrators and police officials to support the distribution companies for curtailing frauds, theft, etc., but the actual implementation...

Newbery, David

236

Steam reforming of low-level mixed waste. Final report  

Science Conference Proceedings (OSTI)

ThermoChem has successfully designed, fabricated and operated a nominal 90 pound per hour Process Development Unit (PDU) on various low-level mixed waste surrogates. The design, construction, and testing of the PDU as well as performance and economic projections for a 300-lb/hr demonstration and commercial system are described. The overall system offers an environmentally safe, non-incinerating, cost-effective, and publicly acceptable method of processing LLMW. The steam-reforming technology was ranked the No. 1 non-incineration technology for destruction of hazardous organic wastes in a study commissioned by the Mixed Waste Focus Area and published in April 1997. The ThermoChem steam-reforming system has been developed over the last 13 years culminating in this successful test campaign on LLMW surrogates. Six surrogates were successfully tested including a 750-hour test on material simulating a PCB- and Uranium-contaminated solid waste found at the Portsmouth Gaseous Diffusion Plant. The test results indicated essentially total (> 99.9999%) destruction of RCRA and TSCA hazardous halogenated organics, significant levels of volume reduction (> 400 to 1), and retention of radionuclides in the volume-reduced solids. Economic evaluations have shown the steam-reforming system to be very cost competitive with more conventional and other emerging technologies.

NONE

1998-06-01T23:59:59.000Z

237

The Effect of Oxygen to Methane Ratio on the Methane-wet Air Autothermal Reforming and Carbon Deposition in the Micro-chamber  

Science Conference Proceedings (OSTI)

Considering the problems of catalyst carbon deposition and reforming endothermic reaction in micro-reforming chamber, coupled methane catalyst partial oxidation and steam methane reforming can make the micro-reforming system auto-supply heat and inhibit ... Keywords: micro-chamber, autothermal reforming, carbon deposition, oxygen to methane ratio

Ran Jingyu; Tu Weifeng

2011-01-01T23:59:59.000Z

238

WHEC 16 / 13-16 June 2006 Lyon France Plasma assisted fuel reforming for on-board hydrogen rich gas production  

E-Print Network (OSTI)

through hydrogen on-board storage. The main reforming technology is catalytic reforming, which has been points are challenges for automotive applications. In parallel with research on catalytic reforming assisted reforming could be used complementary to catalytic reforming to ensure dynamics performance (start

Paris-Sud XI, Université de

239

Who Will Be Affected by Welfare Reform in California?  

E-Print Network (OSTI)

sections of text, not to exceed three paragraphs, to be quoted without written permission, provided that full attribution is given to the source and the above copyright notice is included. Foreword California is about to experience the most sweeping changes in its welfare system since the 1960s. The federal government has already mandated some of the parameters of the system in the Personal Responsibility and Work Opportunity Reconciliation Act of 1996. This legislation affects more than a dozen programs. Most significantly, it eliminates Aid to Families with Dependent Children (AFDC), creating a new program known as Temporary Assistance for Needy Families (TANF). Funding for AFDC was divided equally between the state and federal governments, but federal support for TANF will come through block grants, essentially putting a cap on the federal share. TANF also includes time limits and work requirements. In spite of these restrictions, California should be able to create virtually any welfare system it wants. For example, unless the Clinton

Thomas Macurdy

1997-01-01T23:59:59.000Z

240

Electrochemical cell apparatus having an integrated reformer-mixer nozzle-mixer diffuser  

DOE Patents (OSTI)

An electrochemical apparatus is made having a generator section containing electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one hot gaseous spent fuel recirculation channel, where the spent fuel recirculation channel, passes from the generator chamber to combine with the fresh feed fuel inlet to form a reformable mixture, where a reforming chamber contains an outer portion containing reforming material, an inner portion preferably containing a mixer nozzle and a mixer-diffuser, and a middle portion for receiving spent fuel, where the mixer nozzle and mixer-diffuser are preferably both within the reforming chamber and substantially exterior to the main portion of the apparatus, where the reformable mixture flows up and then backward before contacting the reforming material, and the mixer nozzle can operate below 400 C. 1 figure.

Shockling, L.A.

1991-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents (OSTI)

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

Dederer, J.T.; Hager, C.A.

1998-03-31T23:59:59.000Z

242

Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer  

DOE Patents (OSTI)

An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

Dederer, Jeffrey T. (Valencia, PA); Hager, Charles A. (Mars, PA)

1998-01-01T23:59:59.000Z

243

Beyond National Uniformity: Diverging Local Economic Governance Under Japan's Decentralization Reforms  

E-Print Network (OSTI)

a Research Agenda for Public-Private Partnerships in thesectors in reforms for public-private partnership. Theunder the banner of public-private partnership. New

Lee, Jung Hwan

2010-01-01T23:59:59.000Z

244

Methodology and Estimation of the Welfare Impact of Energy Reforms on Households in Azerbaijan.  

E-Print Network (OSTI)

??ABSTRACT Title of Dissertation: METHODOLOGY AND ESTIMATION OF THE WELFARE IMPACT OF ENERGY REFORMS ON HOUSEHOLDS IN AZERBAIJAN Irina Klytchnikova, Doctor of Philosophy, 2006 Dissertation… (more)

Klytchnikova, Irina

2006-01-01T23:59:59.000Z

245

Regulatory Reform in the Wake of the Financial Crisis of 2007—2008  

E-Print Network (OSTI)

Purpose – The purpose of this paper is to analyse regulatory reform in the wake of the financial crisis of 2007-2008.

Lo, Andrew W.

246

Microchannel steam-methane reforming under constant and variable surface temperature distributions.  

E-Print Network (OSTI)

??Steam-methane reforming is a well understood industrial process used for generating hydrogen and synthesis gas. The reaction is generally carried out with residence times on… (more)

[No author

2010-01-01T23:59:59.000Z

247

A Mixed-Dimensionality Modeling Approach for Interaction of Heterogeneous Steam Reforming Reactions and Heat Transfer.  

E-Print Network (OSTI)

??Hydrogen is most often produced on an industrial scale by catalytic steam methane reforming, an equilibrium-limited, highly endothermic process requiring the substantial addition of heat… (more)

Valensa, Jeroen

2009-01-01T23:59:59.000Z

248

Fuel-flexible partial oxidation reforming of hydrocarbons for automotive applications.  

DOE Green Energy (OSTI)

Micro-reactor tests indicate that our partial oxidation catalyst is fuel-flexible and can reform conventional (gasoline and diesel) and alternative (ethanol, methanol, natural gas) fuels to hydrogen rich product gases with high hydrogen selectivity. Alcohols are reformed at lower temperatures (< 600 C) while alkanes and unsaturated hydrocarbons require slightly higher temperatures. Cyclic hydrocarbons and aromatics have also been reformed at relatively low temperatures, however, a different mechanism appears to be responsible for their reforming. Complex fuels like gasoline and diesel, which are mixtures of a broad range of hydrocarbons, require temperatures of > 700 C for maximum hydrogen production.

Ahmed, S.; Carter, J. D.; Kopasz, J. P.; Krumpelt, M.; Wilkenhoener, R.

1999-06-07T23:59:59.000Z

249

The Politics of Revenue-Raising Tax Reform in Latin America  

E-Print Network (OSTI)

in the region. These rate increases, along with reforms toby the marginal tax rate increase of 1992. Other causallow despite a small rate increase in 2001—interviews with

Fairfield, Tasha

2010-01-01T23:59:59.000Z

250

Hard or Soft? Institutional Reforms and Infrastructure Spending as Determinants of Foreign Direct Investment in China  

E-Print Network (OSTI)

Soft? Institutional Reforms and Infrastructure Spending aswe examine whether hard infrastructure in the form of moreand railroads or soft infrastructure in the form of more

Fung, K. C.; Garcia-Herrero, Alicia; Iizaka, Hitomi; Siu, Alan

2005-01-01T23:59:59.000Z

251

The Ambiguous Transition: Building State Capacity and Expanding Popular Participation in Venezuela's Agrarian Reform  

E-Print Network (OSTI)

El Universal, Caracas, Venezuela. Bengelsdorf, Carollee.Crisis and Reform in Venezuela. ” Journal of Interamerican2):27-61. Datamonitor. (2004). “Venezuela Country Profile. ”

Page, Tiffany Linton

2011-01-01T23:59:59.000Z

252

Heat Transfer Limitations in Hydrogen Production Via Steam Reformation: The Effect of Reactor Geometry  

E-Print Network (OSTI)

Hydrogen production Reactors, M.S. Thesis, University ofREFORMATION: THE EFFECT OF REACTOR GEOMETRY David, R. ,have been manifest with reactors of different geometries. In

Vernon, David R.; Davieau, David D.; Dudgeon, Bryce A.; Erickson, Paul A.

2006-01-01T23:59:59.000Z

253

Sulfur-tolerant natural gas reforming for fuel-cell applications.  

E-Print Network (OSTI)

??An attractive simplification of PEM-FC systems operated with natural gas would be the use of a sulfur tolerant reforming catalyst, but such a catalyst has… (more)

Hennings, Ulrich

2010-01-01T23:59:59.000Z

254

Autothermal and partial oxidation reformer-based fuel processor, method for improving catalyst function in autothermal and partial oxidation reformer-based processors  

DOE Patents (OSTI)

The invention provides a fuel processor comprising a linear flow structure having an upstream portion and a downstream portion; a first catalyst supported at the upstream portion; and a second catalyst supported at the downstream portion, wherein the first catalyst is in fluid communication with the second catalyst. Also provided is a method for reforming fuel, the method comprising contacting the fuel to an oxidation catalyst so as to partially oxidize the fuel and generate heat; warming incoming fuel with the heat while simultaneously warming a reforming catalyst with the heat; and reacting the partially oxidized fuel with steam using the reforming catalyst.

Ahmed, Shabbir; Papadias, Dionissios D.; Lee, Sheldon H. D.; Ahluwalia, Rajesh K.

2013-01-08T23:59:59.000Z

255

Columbia River Hatchery Reform System-Wide Report.  

SciTech Connect

The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations. With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to better meet both conservation and harvest goals. For each Columbia River Basin Environmentally Si

Warren, Dan [Hatchery Scientific Review Group

2009-04-16T23:59:59.000Z

256

Columbia River Hatchery Reform System-Wide Report.  

DOE Green Energy (OSTI)

The US Congress funded the Puget Sound and Coastal Washington Hatchery Reform Project via annual appropriations to the US Fish and Wildlife Service (USFWS) beginning in fiscal year 2000. Congress established the project because it recognized that while hatcheries have a necessary role to play in meeting harvest and conservation goals for Pacific Northwest salmonids, the hatchery system was in need of comprehensive reform. Most hatcheries were producing fish for harvest primarily to mitigate for past habitat loss (rather than for conservation of at-risk populations) and were not taking into account the effects of their programs on naturally spawning populations. With numerous species listed as threatened or endangered under the Endangered Species Act (ESA), conservation of salmon in the Puget Sound area was a high priority. Genetic resources in the region were at risk and many hatchery programs as currently operated were contributing to those risks. Central to the project was the creation of a nine-member independent scientific review panel called the Hatchery Scientific Review Group (HSRG). The HSRG was charged by Congress with reviewing all state, tribal and federal hatchery programs in Puget Sound and Coastal Washington as part of a comprehensive hatchery reform effort to: conserve indigenous salmonid genetic resources; assist with the recovery of naturally spawning salmonid populations; provide sustainable fisheries; and improve the quality and cost-effectiveness of hatchery programs. The HSRG worked closely with the state, tribal and federal managers of the hatchery system, with facilitation provided by the non-profit organization Long Live the Kings and the law firm Gordon, Thomas, Honeywell, to successfully complete reviews of over 200 hatchery programs at more than 100 hatcheries across western Washington. That phase of the project culminated in 2004 with the publication of reports containing the HSRG's principles for hatchery reform and recommendations for Puget Sound/Coastal Washington hatchery programs, followed by the development in 2005 of a suite of analytical tools to support application of the principles (all reports and tools are available at www.hatcheryreform.us). In 2005, Congress directed the National Oceanic and Atmospheric Administration-Fisheries (NOAA Fisheries) to replicate the Puget Sound and Coastal Washington Hatchery Reform Project in the Columbia River Basin. The HSRG was expanded to 14 members to include individuals with specific knowledge about the Columbia River salmon and steelhead populations. This second phase was initially envisioned as a one-year review, with emphasis on the Lower Columbia River hatchery programs. It became clear however, that the Columbia River Basin needed to be viewed as an inter-connected ecosystem in order for the review to be useful. The project scope was subsequently expanded to include the entire Basin, with funding for a second year provided by the Bonneville Power Administration (BPA) under the auspices of the Northwest Power and Conservation Council's (NPCC) Fish and Wildlife Program. The objective of the HSRG's Columbia River Basin review was to change the focus of the Columbia River hatchery system. In the past, these hatchery programs have been aimed at supplying adequate numbers of fish for harvest as mitigation primarily for hydropower development in the Basin. A new, ecosystem-based approach is founded on the idea that harvest goals are sustainable only if they are compatible with conservation goals. The challenge before the HSRG was to determine whether or not conservation and harvest goals could be met by fishery managers and, if so, how. The HSRG determined that in order to address these twin goals, both hatchery and harvest reforms are necessary. The HSRG approach represents an important change of direction in managing hatcheries in the region. It provides a clear demonstration that current hatchery programs can indeed be redirected to better meet both conservation and harvest goals. For each Columbia River Basin Environmentally Significant Unit

Warren, Dan [Hatchery Scientific Review Group

2009-04-16T23:59:59.000Z

257

Cost Analysis of Bio-Derived Liquids Reforming (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Analysis of Analysis of Bio-Derived Liquids Reforming Brian James Directed Technologies, Inc. 6 November 2007 This presentation does not contain any proprietary, confidential, or otherwise restricted information Objective * Assess cost of H 2 from bio-derived liquids * Looking at forecourt scale systems: 100-1500kg/day * Emphasis on Ethanol * Looking at both "conventional" and "advanced" systems * Interaction with the Researchers is bi-directional * Researchers help me with catalysts, performance, configurations * I can assist Researchers with system studies, configurations, and system performance estimates * Output of my work will be: * System/Configuration Definition * Performance specification & optimization * Capital cost estimation

258

Regulatory Reform and License Termination Planning in Decommissioning  

SciTech Connect

Decommissioning of commercial nuclear power plants (NPPs) must be safe and cost-effective and consider the needs of a wide range of stakeholders. The creative tension among these objectives has provided opportunities to reform the way these plants are regulated and managed in decommissioning. Enlightened and visionary leaders from the U.S. Nuclear Regulatory Commission (NRC) and industry are seizing these opportunities to create new paradigms for risk-informed regulation; creative stakeholder involvement; and effective, end-state focused, license termination planning.

Michael J. Meisner

2000-06-04T23:59:59.000Z

259

Electricity Reform in Chile: Lessons for Developing Countries  

E-Print Network (OSTI)

% for the country as a whole, but 58% in the central system)7 but as demand increases fossil fuels have become more important (in this it is comparable to Columbia and the south west of Brazil). However Chile is perhaps unusual among developing countries because... of the strength of protection for private property and the stability engendered by the long period of economically disciplined military rule. 2. Chile’s Electricity Reform In 1974 Chile’s electricity utilities were in a mess.8 Inflation, high fuel prices...

Pollitt, Michael G.

2006-03-14T23:59:59.000Z

260

SMALL SCALE FUEL CELL AND REFORMER SYSTEMS FOR REMOTE POWER  

DOE Green Energy (OSTI)

New developments in fuel cell technologies offer the promise of clean, reliable affordable power, resulting in reduced environmental impacts and reduced dependence on foreign oil. These developments are of particular interest to the people of Alaska, where many residents live in remote villages, with no roads or electrical grids and a very high cost of energy, where small residential power systems could replace diesel generators. Fuel cells require hydrogen for efficient electrical production, however. Hydrogen purchased through conventional compressed gas suppliers is very expensive and not a viable option for use in remote villages, so hydrogen production is a critical piece of making fuel cells work in these areas. While some have proposed generating hydrogen from renewable resources such as wind, this does not appear to be an economically viable alternative at this time. Hydrogen can also be produced from hydrocarbon feed stocks, in a process known as reforming. This program is interested in testing and evaluating currently available reformers using transportable fuels: methanol, propane, gasoline, and diesel fuels. Of these, diesel fuels are of most interest, since the existing energy infrastructure of rural Alaska is based primarily on diesel fuels, but this is also the most difficult fuel to reform, due to the propensity for coke formation, due to both the high vaporization temperature and to the high sulfur content in these fuels. There are several competing fuel cell technologies being developed in industry today. Prior work at UAF focused on the use of PEM fuel cells and diesel reformers, with significant barriers identified to their use for power in remote areas, including stack lifetime, system efficiency, and cost. Solid Oxide Fuel Cells have demonstrated better stack lifetime and efficiency in demonstrations elsewhere (though cost still remains an issue), and procuring a system for testing was pursued. The primary function of UAF in the fuel cell industry is in the role of third party independent testing. In order for tests to be conducted, hardware must be purchased and delivered. The fuel cell industry is still in a pre-commercial state, however. Commercial products are defined as having a fixed set of specifications, fixed price, fixed delivery date, and a warrantee. Negotiations with fuel cell companies over these issues are often complex, and the results of these discussions often reveal much about the state of development of the technology. This work includes some of the results of these procurement experiments. Fuel cells may one day replace heat engines as the source of electrical power in remote areas. However, the results of this program to date indicate that currently available hardware is not developed sufficiently for these environments, and that significant time and resources will need to be committed for this to occur.

Dennis Witmer

2003-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DEVELOPMENT OF A CATALYST/SORBENT FOR METHANE REFORMING  

DOE Green Energy (OSTI)

This work has led to the initial development of a very promising material that has the potential to greatly simplify hydrocarbon reforming for the production of hydrogen and to improve the overall efficiency and economics of the process. This material, which was derived from an advanced calcium-based sorbent, was composed of core-in-shell pellets such that each pellet consisted of a CaO core and an alumina-based shell. By incorporating a nickel catalyst in the shell, a combined catalyst and sorbent was prepared to facilitate the reaction of hydrocarbons with steam. It was shown that this material not only catalyzes the reactions of methane and propane with steam, it also absorbs CO{sub 2} simultaneously, and thereby separates the principal reaction products, H{sub 2} and CO{sub 2}. Furthermore, the absorption of CO{sub 2} permits the water gas shift reaction to proceed much further towards completion at temperatures where otherwise it would be limited severely by thermodynamic equilibrium. Therefore, an additional water gas shift reaction step would not be required to achieve low concentrations of CO. In a laboratory test of methane reforming at 600 C and 1 atm it was possible to produce a gaseous product containing 96 mole% H{sub 2} (dry basis) while also achieving a H{sub 2} yield of 95%. Methane reforming under these conditions without CO{sub 2} absorption provided a H{sub 2} concentration of 75 mole% and yield of 82%. Similar results were achieved in a test of propane reforming at 560 C and 1 atm which produced a product containing 96 mole% H{sub 2} while CO{sub 2} was being absorbed but which contained only 69 mole% H{sub 2} while CO{sub 2} was not being absorbed. These results were achieved with an improved catalyst support that was developed by replacing a portion of the {alpha}-alumina in the original shell material with {gamma}-alumina having a much greater surface area. This replacement had the unfortunate consequence of reducing the overall compressive strength of the core-in-shell pellets. Therefore, a preliminary study of the factors that control the surface area and compressive strength of the shell material was conducted. The important factors were identified as the relative concentrations and particle size distributions of the {alpha}-alumina, {gamma}-alumina, and limestone particles plus the calcination temperature and time used for sintering the shell material. An optimization of these factors in the future could lead to the development of a material that has both the necessary mechanical strength and catalytic activity.

B.H. Shanks; T.D. Wheelock; Justinus A. Satrio; Timothy Diehl; Brigitte Vollmer

2004-09-27T23:59:59.000Z

262

A flexible computer software package for industrial steam reformers and methanators based on rigorous heterogeneous mathematical models  

Science Conference Proceedings (OSTI)

An advanced software package for industrial steam reformers based upon heterogeneous models for the catalyst tube is developed and successfully checked against a number of top-fired and side-fired industrial reformers. The package is further developed ...

F. M. Alhabdan; M. A. Abashar; S. S. E. Elnashaie

1992-11-01T23:59:59.000Z

263

Novel Catalytic Fuel Reforming Using Micro-Technology with Advanced Separations Technology  

E-Print Network (OSTI)

by the combustion of membrane raffinate for the production of clean hydrogen by steam reforming natural gas primary fuel sources from existing production and distribution networks ­ i.e. natural gas, gasoline gas -- optimize catalyst composition and evaluate reforming conditions. · Hydrogen purification using

264

Evaluation of dissociated and steam-reformed methanol as automotive engine fuels  

SciTech Connect

Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state are discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H/sub 2/ + CO and 3H/sub 2/ + CO/sub 2/ respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed methanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol. 36 references, 27 figures, 3 tables.

Lalk, T.R.; McCall, D.M.; McCanlies, J.M.

1984-05-01T23:59:59.000Z

265

Performance of Sulfur Tolerant Reforming Catalysts for Production of Hydrogen from Jet Fuel Simulants  

E-Print Network (OSTI)

ReceiVed August 2, 2007 The development of robust desulfurizers and new reforming catalysts for fuel cells: the desulfurization of jet fuel and the development of sulfur-tolerant reforming catalysts/C) ratios. The water gas shift reaction is then used to convert additional CO into CO2. Nickel has been

Azad, Abdul-Majeed

266

Simulation and Optimization of the Stabilizer Tower Operation at Catalytic Reforming of Esfahan Oil Refining Company  

Science Conference Proceedings (OSTI)

Production of gasoline with low RVP specifications have made the operators of the catalytic reforming unit of Esfahan Oil refining company in Iran to apply new operating conditions. RVP is an abbreviation for Reid Vapor Pressure which is the vapor pressure ... Keywords: RVP, platformate, initial boiling point, catalytic reforming, distillation curve

Ali Izadyar; Bahram Hashemi Shahraki; Ahmad Shariati

2010-01-01T23:59:59.000Z

267

Achieving Universal Coverage through Comprehensive Health Reform: The Vermont Experience – Evaluation Results  

E-Print Network (OSTI)

Vermont’s comprehensive health reform law, the Health Care Affordability Acts (HCAA) for Vermonters, was passed in 2006 with the following three goals in mind: 1. To achieve universal access to affordable health insurance for all Vermonters 2. To improve quality of care and contain costs through health system reform

Ronald Deprez; Sherry Glied; Kira Rodriguez; Bill Perry; Brian Robertson; Nina Schwabe

2011-01-01T23:59:59.000Z

268

Catalytic reforming and hydrocracking of organic compounds employing promoted zinc titanate as the catalytic agent  

Science Conference Proceedings (OSTI)

The catalytic reforming of a feedstock which contains at least one reformable organic compound or the hydrocracking of a feedstock which contains at least one hydrocrackable organic compound is carried out in the presence of a catalyst composition comprising zinc, titanium and rhenium.

Drehman, L.E.; Farha, F.E.

1981-04-21T23:59:59.000Z

269

Catalytic reforming and hydrocracking of organic compounds employing zinc titanate as the catalytic agent  

Science Conference Proceedings (OSTI)

The catalytic reforming of a feedstock which contains at least one reformable organic compound or the hydrocracking of a feedstock which contains at least one hydrocrackable organic compound is carried out in the presence of a catalyst composition comprising zinc and titanium.

Drehman, L.E.; Farha, F.E.; Walker, D.W.

1981-04-21T23:59:59.000Z

270

Electricity Markets: Should the Rest of the World Adopt the UK Reforms?  

E-Print Network (OSTI)

PWP-069 Electricity Markets: Should the Rest of the World Adopt the UK Reforms? Catherine D;1 Electricity Markets: Should the Rest of the World Adopt the UK Reforms?1 By Catherine D. Wolfram2 Britain was one of the first countries to liberalize its electricity industry when it restructured and privatized

California at Berkeley. University of

271

The Effect of Congress' Mandate to Create Greater Efficiencies in the Characterization of Transuranic Waste through the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit  

Science Conference Proceedings (OSTI)

Effective December 1, 2003, the U.S. Congress directed the Department of Energy (DOE) to file a permit modification request with the New Mexico Environment Department (NMED) to amend the Hazardous Waste Facility Permit (hereinafter 'the Permit') at the Waste Isolation Pilot Plant (WIPP). This legislation, Section 311 of the 2004 Energy and Water Development Appropriations Act, was designed to increase efficiencies in Transuranic (TRU) waste characterization processes by focusing on only those activities necessary to characterize waste streams, while continuing to protect human health and the environment. Congressionally prescribed changes would impact DOE generator site waste characterization programs and waste disposal operations at WIPP. With this legislative impetus, in early 2004 the DOE and Washington TRU Solutions (WTS), co-permittee under the Permit, submitted a permit modification request to the NMED pursuant to Section 311. After a lengthy process, including extensive public and other stakeholder input, the NMED granted the Permittees' request in October 2006, as part of a modification authorizing disposal of Remote-Handled (RH) TRU waste at WIPP. In conclusion: Implementation of the Permit under the revised Section 311 provisions is still in its early stages. Data are limited, as noted above. In view of these limited data and fluctuations in waste feed due to varying factors, at the current time it is difficult to determine with accuracy the impacts of Section 311 on the costs of characterizing TRU waste. It is safe to say, however, that the there have been many positive impacts flowing from Section 311. The generator sites now have more flexibility in characterizing waste. Also, RH TRU waste is now being disposed at WIPP - which was not possible before the 2006 Permit modification. As previously noted, the RH modification was approved at the same time as the Section 311 modification. Had the Section 311 changes not been implemented, RH TRU waste may not have been successfully permitted for disposal at WIPP. Changes made pursuant to Section 311 helped to facilitate approval of the proposed RH TRU modifications. For example, the three scenarios for use in AK Sufficiency Determination Requests, described herein, are essential to securing approval of some RH TRU waste streams for eventual disposal at WIPP. Thus, even if characterization rates do not increase significantly, options for disposal of RH TRU waste, which may not have been possible without Section 311, are now available and the TRU waste disposal mission is being accomplished as mandated by Congress in the LWA. Also, with the Section 311 modification, the Permittees commenced room-based VOC monitoring in the WIPP repository, which is also a positive impact of Section 311. Permit changes pursuant to Section 311 were a good beginning, but much more is need to encourage more efficient methodologies in waste characterization activities for TRU mixed waste destined for WIPP. Although the Permittees now have more flexibility in characterizing waste for disposal at WIPP, the processes are still lengthy, cumbersome, and paper-intensive. As the generator sites continue to characterize waste under Section 311, more data will likely be compiled and evaluated to assess the longer term cost and technical impacts of Section 311. Also, further refinements in TRU waste characterization requirements through Permit modifications are likely in future years to eliminate, improve, and clarify remaining unnecessary and redundant Permit provisions. Continuous improvements to the TRU waste characterization program are bound to occur, resulting in even greater efficiencies in the characterization and ultimate disposal of TRU waste. (authors)

Johnson, G.J. [Washington TRU Solutions, LLC, Waste Isolation Pilot Plant, Carlsbad, New Mexico (United States); Kehrman, R.F. [Washington Regulatory and Environmental Services, Waste Isolation Pilot Plant, Carlsbad, New Mexico (United States)

2008-07-01T23:59:59.000Z

272

Gregory H. Friedman: Provided for The Committee on Oversight and Government Reform U.S. House of Representatives  

Energy.gov (U.S. Department of Energy (DOE))

Gregory H. Friedman: Provided for The Committee on Oversight and Government Reform U.S. House of Representatives

273

Agenda Setting And The Role Of Leadership In National Health Care Reform During The Early 1990s  

E-Print Network (OSTI)

Health care reform was the dominant issue on the political agenda during the early 1990s. Few issues

Kang, Michael S,

2006-01-05T23:59:59.000Z

274

The Lessons of Practice: Domestic Policy Reform as a Way to Address Climate  

Open Energy Info (EERE)

The Lessons of Practice: Domestic Policy Reform as a Way to Address Climate The Lessons of Practice: Domestic Policy Reform as a Way to Address Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Lessons of Practice: Domestic Policy Reform as a Way to Address Climate Change Agency/Company /Organization: International Institute for Sustainable Development (IISD) Topics: Policies/deployment programs Resource Type: Lessons learned/best practices Website: www.iisd.org/pdf/2009/bali_2_copenhagen_dom_policy_lessons.pdf The Lessons of Practice: Domestic Policy Reform as a Way to Address Climate Change Screenshot References: The Lessons of Practice[1] Summary "The objectives of this paper are threefold: to review experience to date with policy reforms that can help mitigate climate change, to review work

275

Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) | Open  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Jump to: navigation, search Statute Name Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) Year 1987 Url FederalOnshore1987.jpg Description Another amendment to the Mineral Leasing Act, The Federal Onshore Oil and Gas Leasing Reform Act of 1987 granted the USDA Forest Service the authority to make decisions and implement regulations concerning the leasing of public domain minerals on National Forest System lands containing oil and gas. References Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA)[1] Federal Onshore Oil and Gas Leasing Reform Act of 1987 (FOOGLRA) (30 U.S.C. § 181 et seq.) - Another amendment to the Mineral Leasing Act, The Federal

276

Update on IT Reform at the Department of Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update on IT Reform at the Department of Energy Update on IT Reform at the Department of Energy Update on IT Reform at the Department of Energy June 4, 2012 - 2:14pm Addthis The last 18 months have seen great improvements in the Department of Energy's (DOE) information technology and cybersecurity. A major factor in our success is our alignment with the 25 Point Implementation Plan To Reform Federal Information Technology Management to move to a "Cloud First" environment and maximize the use of shared services to reduce costs and improve IT delivery. Cloud-First/Shared Services: In August 2011, we revamped our online presence by launching Energy.gov and delivering a single platform solution through an open-source content management system and cloud hosting environment. Ultimately, the website reform effort aims to save taxpayers more than $10 million per

277

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

DOE Green Energy (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the tenth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2006. This quarter saw progress in six areas. These areas are: (1) The effect of catalyst dimension on steam reforming, (2) Transient characteristics of autothermal reforming, (3) Rich and lean autothermal reformation startup, (4) Autothermal reformation degradation with coal derived methanol, (5) Reformate purification system, and (6) Fuel cell system integration. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2006-04-01T23:59:59.000Z

278

Separation of normally gaseous hydrocarbons from a catalytic reforming effluent and recovery of purified hydrogen  

Science Conference Proceedings (OSTI)

A process for the catalytic reforming of a hydrocarbonaceous feedstock, preferably to produce high quality gasoline boiling range products, is disclosed. Relatively impure hydrogen is separated from the reforming zone effluent, compressed, and recontacted with at least a portion of the liquid reformate product to provide relatively pure hydrogen, a portion of which is recycled to the reforming zone. The balance is further compressed and recontacted with at least a portion of the liquid reformate product in a plural stage absorption zone to provide an improved recovery of normally gaseous hydrocarbons as well as an improved recovery of purified hydrogen at a pressure suitable, for example, the relatively high pressure hydrotreating of sulfur-containing feedstocks.

O'brien, D.E.

1982-06-08T23:59:59.000Z

279

Catalytic Reforming Downstream Processing of Fresh Feed Input  

U.S. Energy Information Administration (EIA) Indexed Site

Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Process: Catalytic Reforming Catalytic Cracking Catalytic Hydrocracking Delayed and Fluid Coking Period-Unit: Monthly-Thousand Barrels per Day Annual-Thousand Barrels per Day Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Process Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 2,563 2,667 2,739 2,807 2,705 2,609 2010-2013 PADD 1 176 178 180 173 156 167 2010-2013 East Coast 166 164 163 161 140 153 2010-2013 Appalachian No. 1 9 14 16 12 15 14 2010-2013 PADD 2 642 638 668 695 677 615 2010-2013 Ind., Ill. and Ky. 426 411 426 460 450 399 2010-2013 Minn., Wis., N. Dak., S. Dak. 67 62 70 72 72 57 2010-2013 Okla., Kans., Mo.

280

Catalytic reforming process using noble metal alkaline zeolites  

Science Conference Proceedings (OSTI)

This patent describes improvement in a process wherein a gasoline boiling range hydrocarbonaceous feedstock is catalytically reformed in the presence of hydrogen in a reforming process unit comprised of serially connected reactors wherein each of the reactors contains a supported noble metal-containing catalyst. The improvement comprises the noble-metal catalyst of at least one reactor being selected from the group consisting of alkaline faujasite zeolite, L zeolite and zeolites isostructural thereto, which catalysts are prepared by a: contacting an alkaline faujasite zeolite, L zeolite, or zeolite isostructural thereto, with a noble metal composition selected from Pt(acetylacetonate){sub 2} or Pd(acetylacetonate){sub 2} for an effective amount of time to form a substantially homogeneous mixture and to incorporate the platinum and/or palladium into the near surface regions of the zeolite, but not to disperse the platinum and/or palladium throughout the entire zeolite; and calcining the so treated zeolite at a temperature from about 250 {degrees} C to about 600 {degrees} C for an effective amount of time.

Schweizer, A.E.

1991-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

[98e]-Catalytic reforming of gasoline and diesel fuel  

DOE Green Energy (OSTI)

Argonne National Laboratory is developing a fuel processor for converting liquid hydrocarbon fuels to a hydrogen-rich product suitable for a polymer electrolyte fuel cell stack. The processor uses an autothermal reformer to convert the feed to a mixture of hydrogen, carbon dioxide, carbon monoxide and water with trace quantities of other components. The carbon monoxide in the product gas is then converted to carbon dioxide in water-gas shift and preferential oxidation reactors. Fuels that have been tested include standard and low-sulfur gasoline and diesel fuel, and Fischer-Tropsch fuels. Iso-octane and n-hexadecane were also examined as surrogates for gasoline and diesel, respectively. Complete conversion of gasoline was achieved at 750 C in a microreactor over a novel catalyst developed at Argonne. Diesel fuel was completely converted at 850 C over this same catalyst. Product streams contained greater than 60% hydrogen on a dry, nitrogen-free basis with iso-octane, gasoline, and n-hexadecane. For a diesel fuel, product streams contained >50% hydrogen on a dry, nitrogen-free basis. The catalyst activity did not significantly decrease over >16 hours operation with the diesel fuel feed. Coke formation was not observed. The carbon monoxide fraction of the product gas could be reduced to as low as 1% on a dry, nitrogen-free basis when the water-gas shift reactors were used in tandem with the reformer.

Pereira, C.; Wilkenhoener, R.; Ahmed, S.; Krumpelt, M.

2000-02-29T23:59:59.000Z

282

Catalysis Letters 59 (1999) 9394 93 Stepwise methane steam reforming: a route to CO-free hydrogen  

E-Print Network (OSTI)

Catalysis Letters 59 (1999) 93­94 93 Stepwise methane steam reforming: a route to CO-free hydrogen-free hydrogen. Keywords: methane decomposition, Ni/zirconia, steam gasification In order to utilize hydrogen of impurities, particularly carbon monoxide. Steam reforming, partial oxidation and au- tothermal reforming [1

Goodman, Wayne

283

Fundamental kinetic modeling of the catalytic reforming process  

E-Print Network (OSTI)

In this work, a fundamental kinetic model for the catalytic reforming process has been developed. The complex network of elementary steps and molecular reactions occurring in catalytic reforming has been generated through a computer algorithm characterizing the various species by vectors and Boolean relation matrices. The algorithm is based on the fundamental chemistry occurring on both acid and metal sites of the catalyst. Rates are expressed for each of the elementary steps involved in the transformation of the intermediates. The Hougen-Watson approach is used to express the rates of the molecular reactions occurring on the metal sites of the catalyst. The single event approach is used to account for the effect of structure of reactant and activated complex on the rate coefficients of the elementary steps occurring on the acid sites. This approach recognizes that even if the number of elementary steps is very large they belong to a very limited number of types, and therefore it is possible to express the kinetics of elementary steps by a reduced number of parameters. In addition, the single event approach leads to rate coefficients that are independent of the feedstock, due to their fundamental chemical nature. The total number of parameters at isothermal conditions is 45. To estimate these parameters, an objective function based upon the sum of squares of the residuals was minimized through the Marquardt algorithm. Intraparticle mass transport limitations and deactivation of the catalyst by coke formation are considered in the model. Both the Wilke and the Stefan-Maxwell approaches were used to calculate the concentration gradients inside of the particle. The heterogeneous kinetic model was applied in the simulation of the process for typical industrial conditions for both axial and radial flow fixed bed reactors. The influence of the main process variables on the octane number and reformate volume was investigated and optimal conditions were obtained. Additional aspects studied with the kinetic model are the reduction of aromatics, mainly benzene. The results from the simulations agree with the typical performance found in the industrial process.

Sotelo-Boyas, Rogelio

2005-12-01T23:59:59.000Z

284

ELECTROCHEMISTRY AND ON-CELL REFORMATION MODELING FOR SOLID OXIDE FUEL CELL STACKS  

SciTech Connect

ABSTRACT Providing adequate and efficient cooling schemes for solid-oxide-fuel-cell (SOFC) stacks continues to be a challenge coincident with the development of larger, more powerful stacks. The endothermic steam-methane reformation reaction can provide cooling and improved system efficiency when performed directly on the electrochemically active anode. Rapid kinetics of the endothermic reaction typically causes a localized temperature depression on the anode near the fuel inlet. It is desirable to extend the endothermic effect over more of the cell area and mitigate the associated differences in temperature on the cell to alleviate subsequent thermal stresses. In this study, modeling tools validated for the prediction of fuel use, on-cell methane reforming, and the distribution of temperature within SOFC stacks, are employed to provide direction for modifying the catalytic activity of anode materials to control the methane conversion rate. Improvements in thermal management that can be achieved through on-cell reforming is predicted and discussed. Two operating scenarios are considered: one in which the methane fuel is fully pre-reformed, and another in which a substantial percentage of the methane is reformed on-cell. For the latter, a range of catalytic activity is considered and the predicted thermal effects on the cell are presented. Simulations of the cell electrochemical and thermal performance with and without on-cell reforming, including structural analyses, show a substantial decrease in thermal stresses for an on-cell reforming case with slowed methane conversion.

Recknagle, Kurtis P.; Jarboe, Daniel T.; Johnson, Kenneth I.; Korolev, Alexander; Khaleel, Mohammad A.; Singh, Prabhakar

2007-01-16T23:59:59.000Z

285

Membrane reactor advantages for methanol reforming and similar reactions  

Science Conference Proceedings (OSTI)

Membrane reactors achieve efficiencies by combining in one unit a reactor that generates a product with a semipermeable membrane that extracts it. One well-known benefit of this is greater conversion, as removal of a product drives reactions toward completion, but there are several potentially larger advantages that have been largely ignored. Because a membrane reactor tends to limit the partial pressure of the extracted product, it fundamentally changes the way that total pressure in the reactor affects equilibrium conversion. Thus, many gas-phase reactions that are preferentially performed at low pressures in a conventional reactor are found to have maximum conversion at high pressures in a membrane reactor. These higher pressures and reaction conversions allow greatly enhanced product extraction as well. Further, membrane reactors provide unique opportunities for temperature management which have not been discussed previously. These benefits are illustrated for methanol reforming to hydrogen for use with PEM (polymer electrolyte membrane) fuel cells.

Buxbaum, R.E. [REB Research and Consulting Co., Ferndale, MI (United States)

1999-07-01T23:59:59.000Z

286

Petroleum Refinery Catalytic Reforming -- Cutting High Energy Costs  

E-Print Network (OSTI)

Hydrocarbon reforming involves a variety of chemical reactions at high temperatures and pressures in the presence of suitable catalysts. The conversion of naptha to high octane aromatics requires high energy to initiate and sustain the reaction at temperatures of 850-950oF. Hydrogen - rich off - gases are fired in combinations of process furnaces. Heat is transferred to hydrocarbon fluids by radiation, principally. Feed or return stream temperatures determine the need for convection sections. It is essential that the operation and maintenance of these furnaces be optimized to minimize production costs. This paper describes the performance testing and evaluation of a set of ten refinery furnaces used to thermally drive several reforming reactors and to regenerate catalysts. Firing rates provide an input of 216.2 x 106 Btu/hr. to the furnaces, at $1.90 per 106 Btu. The units are fitted with multiple natural draft burners. There is insufficient turbulence and swirl in the burners. Operators manually set up the burners with excessive airflows for normal, full-load firing. These furnaces represent production limits. Products of combustion exhaust at high thermal levels - the range is from 985-1700oF. The mixed gases flow through a "waste heat" boiler, or they bypass the boiler and enter a single stack. Steam generation at 150 psig averages 38,200 lb/hr. Heat is wasted via the bypass at a rate of 41.1x106 Btu /hr. at 1240oF. When airflows are reduced (to 15% excess air) the loss will be 18.7x106 Btu/hr. at 1180oF. Installation of a second, parallel waste heat boiler will result in a saving of l3.4x106 Btu/hr. Energy savings at this furnace complex will be equivalent to $628,700 per year. Investment costs were estimated to be less than $250,000 for the proposed heat trap addition.

Viar, W. L.

1979-01-01T23:59:59.000Z

287

Five Kilowatt Solid Oxide Fuel Cell/Diesel Reformer  

DOE Green Energy (OSTI)

Reducing fossil fuel consumption both for energy security and for reduction in global greenhouse emissions has been a major goal of energy research in the US for many years. Fuel cells have been proposed as a technology that can address both these issues--as devices that convert the energy of a fuel directly into electrical energy, they offer low emissions and high efficiencies. These advantages are of particular interest to remote power users, where grid connected power is unavailable, and most electrical power comes from diesel electric generators. Diesel fuel is the fuel of choice because it can be easily transported and stored in quantities large enough to supply energy for small communities for extended periods of time. This projected aimed to demonstrate the operation of a solid oxide fuel cell on diesel fuel, and to measure the resulting efficiency. Results from this project have been somewhat encouraging, with a laboratory breadboard integration of a small scale diesel reformer and a Solid Oxide Fuel Cell demonstrated in the first 18 months of the project. This initial demonstration was conducted at INEEL in the spring of 2005 using a small scale diesel reformer provided by SOFCo and a fuel cell provided by Acumentrics. However, attempts to integrate and automate the available technology have not proved successful as yet. This is due both to the lack of movement on the fuel processing side as well as the rather poor stack lifetimes exhibited by the fuel cells. Commercial product is still unavailable, and precommercial devices are both extremely expensive and require extensive field support.

Dennis Witmer; Thomas Johnson

2008-12-31T23:59:59.000Z

288

Chemical Looping Reforming for H2, CO and Syngas Production  

SciTech Connect

We demonstrate that the extension of CLC onto oxidants beyond air opens new, highly efficient pathways for production of ultra-pure hydrogen, activation of CO{sub 2} via reduction to CO, and are currently working on production of syngas using nanocomposite Fe-BHA. CLR hold great potential due to fuel flexibility and CO{sub 2} capture. Chemical Looping Combustion (CLC) is a novel clean combustion technology which offers an elegant and highly efficient route for fossil fuel combustion. In CLC, combustion of a fuel is broken down into two spatially separated steps. In the reducer, the oxygen carrier (typically a metal) supplies the stoichiometric oxygen required for fuel combustion. In the oxidizer, the oxygen-depleted carrier is then re-oxidized with air. After condensation of steam from the effluent of the reducer, a high-pressure, high-purity sequestration-ready CO{sub 2} stream is obtained. In the present study, we apply the CLC principle to the production of high-purity H{sub 2}, CO, and syngas streams by replacing air with steam and/or CO{sub 2} as oxidant, respectively. Using H{sub 2}O as oxidant, pure hydrogen streams can be obtained. Similarly, using CO{sub 2} as oxidant, CO is obtained, thus opening an efficient route for CO{sub 2} utilization. Using steam and CO{sub 2} mixtures for carrier oxidation should thus allow production of syngas with adjustable CO:H{sub 2} ratios. Overall, these processes result in Chemical Looping Reforming (CLR), i.e. the net overall reaction is the steam and/or dry reforming of the respective fuel.

Bhavsar,Saurabh; Najera,Michelle; Solunke,Rahul; Veser,Götz

2001-06-06T23:59:59.000Z

289

Autothermal Reforming of Natural Gas to Synthesis Gas  

DOE Green Energy (OSTI)

This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Süd-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO2 in the burner feed showed that the conditions in the burner allow for the direct participation of CO2 in the oxidation chemistry.

Steven F. Rice; David P. Mann

2007-04-13T23:59:59.000Z

290

,"Catalytic Reforming Downstream Processing of Fresh Feed Input"  

U.S. Energy Information Administration (EIA) Indexed Site

Catalytic Reforming Downstream Processing of Fresh Feed Input" Catalytic Reforming Downstream Processing of Fresh Feed Input" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Catalytic Reforming Downstream Processing of Fresh Feed Input",16,"Monthly","9/2013","1/15/2010" ,"Release Date:","11/27/2013" ,"Next Release Date:","Last Week of December 2013" ,"Excel File Name:","pet_pnp_dwns_a_(na)_ydr_mbblpd_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/pet/pet_pnp_dwns_a_(na)_ydr_mbblpd_m.htm" ,"Source:","Energy Information Administration"

291

Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Bio-Derived Liquids to Hydrogen Distributed DOE Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Meeting Investigation of Bio-Ethanol Steam Reforming over Cobalt-based Catalysts Hua Song Lingzhi Zhang Umit S. Ozkan* November 6 th , 2007 Heterogeneous Catalysis Research Group Department of Chemical and Biomolecular Engineering The Ohio State University Columbus, OH 43210 *Ozkan.1@osu.edu Biomass to Hydrogen (Environmentally Friendly) Plant cultivation Plant cultivation Saccharification Saccharification / / Fermentation Fermentation Anaerobic digestion Anaerobic digestion Residues of Residues of agroindustries agroindustries and cultivations and cultivations Municipal Solid Waste Municipal Solid Waste (organic fraction) (organic fraction) Distillation Distillation Reformation of ethanol

292

HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS  

DOE Green Energy (OSTI)

Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

2003-08-24T23:59:59.000Z

293

Modeling of On-Cell Reforming Reaction for Planar SOFC Stacks  

Science Conference Proceedings (OSTI)

Planar Solid Oxide Fuel Cell (SOFC) stack is known to suffer thermal problem from high stack temperature during operation to generate high current. On-Cell Reforming (OCR) phenomenon is often used to reduce stack temperature by an endothermic reaction of steam-methane reforming process. RIST conducted single-cell experiment to validate modeling tool to simulate OCR performance including temperature measurement. 2D modeling is used to check reforming rate during OCR using temperature measurement data, and 3D modeling is used to check overall thermal performance including furnace boundary conditions.

Yang, Choongmo; Lim, Hyung-Tae; Hwang, Soon Cheol; Kim, Dohyung; Lai, Canhai; Koeppel, Brian J.; Recknagle, Kurtis P.; Khaleel, Mohammad A.

2011-05-30T23:59:59.000Z

294

Refiners look at H sub 2 SO sub 4 alkylation and catalytic reforming  

Science Conference Proceedings (OSTI)

Sulfuric acid alkylation and catalytic reforming drew many questions at the most recent National Petroleum Refiners Association (NPRA) question and answer session on refining and petrochemical technology. At this annual meeting, presubmitted questions are answered by a panel of experts. For more information on the meeting's format, see OGJ, Mar. 16, p. 37. This third and final article in the series of excerpts from the 1991 NPRA Q and A Session examines such pertinent alkylation topics as tertiary amyl methyl ether (TAME) raffinate processing and unit operation during acid runaway. Also discussed are skewed platinum/rhenium reforming catalyst and how catalyst life affects reformate aromatics levels.

Not Available

1992-04-27T23:59:59.000Z

295

Catalytic reforming with a platinum group and phosphorus-containing composition  

Science Conference Proceedings (OSTI)

A new catalyst composition for converting hydrocarbons is disclosed. Also disclosed is a method for making the catalyst. The catalyst comprises a platinum group component and a phosphorous component with a porous support material. The catalyst is made by compositing a platinum group component with a porous support material and then contacting that composite with phosphorus or a compound of phosphorus. In a preferred embodiment of the invention a catalyst comprising platinum, phosphorus and chlorine with alumina is utilized in the catalytic reforming of hydrocarbons boiling in the gasoline range to produce a high octane reformate suitable for gasoline blending or a high aromatics content reformate suitable as a petrochemical feedstock.

Antos, G. J.; Chao, T.-H.

1984-11-20T23:59:59.000Z

296

Internal natural gas reformer-dividers for a solid oxide fuel cell generator configuration  

Science Conference Proceedings (OSTI)

This patent describes a fuel cell generator configuration. It comprises electrically connected, axially elongated, fuel cells, each cell having an outer and inner electrode with solid oxide electrolyte therebetween; where elongated dividers separate and are positioned between fuel cells, and where at least one of the elongated dividers is hollow, the hollow divider having solid elongated walls, a reformable fuel mixture entrance, and an exit allowing passage of reformed fuel to the fuel cells, and where the cross-section of the divider contains a catalytic reforming material.

Reichner, P.

1992-01-21T23:59:59.000Z

297

An Act to Reform Land Use Planning in the Unorganized Territory (Maine) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

An Act to Reform Land Use Planning in the Unorganized Territory An Act to Reform Land Use Planning in the Unorganized Territory (Maine) An Act to Reform Land Use Planning in the Unorganized Territory (Maine) < Back Eligibility Agricultural Commercial Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Provider Conservation An Act to Reform Land Use Planning in the Unorganized Territory alters the makeup and responsibilities of Maine's Land Use Regulation Commission (LURC). It took effect on August 29, 2012 and changed the Commission's name to the Land Use Planning Commission. Under the Act, permitting review for significant projects, such as

298

Incentives in Water Management Reform: Assessing the Effect on Water Use,  

NLE Websites -- All DOE Office Websites (Extended Search)

Incentives in Water Management Reform: Assessing the Effect on Water Use, Incentives in Water Management Reform: Assessing the Effect on Water Use, Production and Poverty in the Yellow River Basin Speaker(s): Jinixia Wang Date: May 22, 2003 - 12:00pm Location: Bldg. 90 The purpose of this presentation is to better understand water management reform in China's rural communities, focusing on the effect of incentives to water managers on the nation's water resources and the welfare of the rural population. Based on a survey study in the Yellow River Basin, our findings show that Water User Associations and contracting have begun to systematically replace traditional forms of collective management. The analysis demonstrates, however, that it is not a nominal implementation of the reform that matters, but rather it is a creation of new management

299

Status of Power Sector Reform in Africa: Impact on the Poor | Open Energy  

Open Energy Info (EERE)

Status of Power Sector Reform in Africa: Impact on the Poor Status of Power Sector Reform in Africa: Impact on the Poor Jump to: navigation, search Tool Summary Name: Status of Power Sector Reform in Africa: Impact on the Poor Agency/Company /Organization: Stephen Karekezi and John Kimani Sector: Energy Focus Area: Renewable Energy, Energy Efficiency, People and Policy Phase: Create a Vision Topics: Co-benefits assessment, - Energy Access Resource Type: Publications User Interface: Website Website: www.sciencedirect.com/science/article/pii/S0301421502000484 Cost: Free UN Region: Eastern Africa, Southern Africa Language: English This article is based on a regional study by the authors reviewing the status, challenges and prospects of ongoing and planned power sector reform in eastern and southern Africa with special emphasis on the implications

300

The risk of reform : privatisation and liberalisation in the Brazilian electric power industry  

E-Print Network (OSTI)

In 1996, when Brazil was well-underway to privatising and liberalising its electric power industry, few would have predicted that within five years the reforms would be a shambles. Like its neighbors Argentina and Chile, ...

Tankha, Sunil, Ph. D. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electricity Sector Reform in Developing Countries: A Survey of Empirical Evidence on Determinants and Performance  

E-Print Network (OSTI)

, patronage, labour opposition to reducing waste, poor collection and other fiscal leakage. Simpler reforms, such as encouraging Independent Power Producers to enter into long-term Power Purchase Agreements with financially fragile counterparts, stored up...

Jamasb, Tooraj; Mota, Raffaella L; Newbery, David; Pollitt, Michael G.

2004-07-09T23:59:59.000Z

302

Synthesis and characterization of 1D ceria nanomaterials for CO oxidation and steam reforming of methanol  

Science Conference Proceedings (OSTI)

Novel one-dimensional (1D) ceria nanostructure has been investigated as a promising and practical approach for the reforming of methanol reaction. Size and shape of the ceria nanomaterials are directly involved with the catalytic activities. Several ...

Sujan Chowdhury; Kuen-Song Lin

2011-01-01T23:59:59.000Z

303

Numerical simulation of micro/mini-channel based methane-steam reformer.  

E-Print Network (OSTI)

??Numerical modeling of methane-steam reforming is performed in a micro/mini-channel with heat input through catalytic channel walls. The low-Mach number, variable density Navier-Stokes equations together… (more)

[No author

2010-01-01T23:59:59.000Z

304

Computational heterogeneous catalysis applied to steam methane reforming over nickel and nickel/silver catalysts  

E-Print Network (OSTI)

The steam methane reforming (SMR) reaction is the primary industrial means for producing hydrogen gas. As such, it is a critical support process for applications including petrochemical processing and ammonia synthesis. ...

Blaylock, Donnie Wayne

2011-01-01T23:59:59.000Z

305

"Quality" control in China's reform era : investigating the suzhi discourse in women's work  

E-Print Network (OSTI)

China's reform era has coincided with an emergence of a Chinese Communist Party-State ideological discourse concerning "population quality." Claims and accusations of 'low quality' are particularly targeted at rural migrant ...

Yip, Cheryl

2008-01-01T23:59:59.000Z

306

Deregulating and regulatory reform in the U.S. electric power sector  

E-Print Network (OSTI)

This paper discusses the evolution of wholesale and retail competition in the U.S electricity sector and associated industry restructuring and regulatory reforms. It begins with a discussion of the industry structure and ...

Joskow, Paul L.

2000-01-01T23:59:59.000Z

307

Organizational sense making : responsibilities to the MCAS reform in the Massachusetts public schools  

E-Print Network (OSTI)

Educational reform has become a central concern of public policy debates at both the state and federal level. The policy trend both nationally and locally is towards uniform standards in education, with testing as the ...

Goldman, Janice J., 1953-

2005-01-01T23:59:59.000Z

308

Jews and Catholics in Catholic Poland: A Beleaguered Church in the Post Reformation Era.  

E-Print Network (OSTI)

??Jews and Heretics in Catholic Poland takes issue with historians’ common contention that the Catholic Church triumphed in Counter-reformation Poland. In fact, the Church’s own… (more)

Teter, Magda

2006-01-01T23:59:59.000Z

309

Fuel cell generator with fuel electrodes that control on-cell fuel reformation  

Science Conference Proceedings (OSTI)

A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA); Zhang, Gong (Murrysville, PA)

2011-10-25T23:59:59.000Z

310

The wholesale market for electricity in England and Wales : recent developments and future reforms  

E-Print Network (OSTI)

The England and Wales wholesale electricity market is about to undergo major reform (NETA). I describe and analyse the proposed arrangements, contrasting them with those currently in operation. I argue that while NETA will ...

Sweeting, Andrew

2000-01-01T23:59:59.000Z

311

Admonition and the academy : installation, video, and performance art in Reform Era China  

E-Print Network (OSTI)

China's Reform Era (1978-present) has seen the reinvigoration of academic, and artistic practice, and a rapprochement between the Chinese Communist Party and the intellectual elite. At its beginnings in the early- to ...

Oen, Karin Grace

2012-01-01T23:59:59.000Z

312

Exposing the seams : the impetus for reforming U.S. counterintelligence .  

E-Print Network (OSTI)

??U.S. counterintelligence is in need of reform. The September 11, 2001 attacks by Al-Qa'ida against America highlight this fact but are not in themselves the… (more)

Gleghorn, Todd E.

2003-01-01T23:59:59.000Z

313

Development of Ni-based Sulfur Resistant Catalyst for Diesel Reforming  

DOE Green Energy (OSTI)

In order for diesel fuel to be used in a solid oxide fuel cell auxiliary power unit, the diesel fuel must be reformed into hydrogen, carbon monoxide and carbon dioxide. One of the major problems facing catalytic reforming is that the level of sulfur found in low sulfur diesel can poison most catalysts. This report shows that a proprietary low cost Ni-based reforming catalyst can be used to reform a 7 and 50 ppm sulfur containing diesel fuel for over 500 hours of operation. Coking, which appears to be route of catalyst deactivation due to metal stripping, can be controlled by catalyst modifications, introduction of turbulence, and/or by application of an electromagnetic field with a frequency from {approx}50 kHz to 13.56 MHz with field strength greater than about 100 V/cm and more preferably greater about 500 V/cm.

Gunther Dieckmann

2006-06-30T23:59:59.000Z

314

Effects of operating conditions, compression ratio, and gasoline reformate on SI engine knock limits  

E-Print Network (OSTI)

A set of experiments was performed to investigate the effects of air-fuel ratio, inlet boost pressure, hydrogen rich fuel reformate, and compression ratio on engine knock behavior. For each condition the effect of spark ...

Gerty, Michael D

2005-01-01T23:59:59.000Z

315

Nonlinear multivariable predictive control of an autothermal reforming reactor for fuel cell applications  

Science Conference Proceedings (OSTI)

In this work, we present a computationally efficient nonlinear multivariable predictive controller (NMPC) for an autothermal reforming (ATR) reactor. The proposed NMPC scheme is based on a fast reduced order nonlinear model and consists of three parts. ...

Yongyou Hu; Donald J. Chmielewski

2009-06-01T23:59:59.000Z

316

Catalytic activation and reforming of methane on supported palladium clusters Aritomo Yamaguchi, Enrique Iglesia *  

E-Print Network (OSTI)

of pollutants, oxygen generation, and intermediate-temperature solid oxide fuel cells, as well as catalytic reforming. Sekine et al.56 investigated four catalytic reactions assisted with an electric field to promote

Iglesia, Enrique

317

Influence of support material on Ni catalysts for propane dry reforming to synthesis gas.  

E-Print Network (OSTI)

??Ni/SiO2 and Ni/Mg(Al)O catalysts with difference metal loadings have been prepared. The activity, selectivity and stability of supported Ni catalysts for propane dry reforming to… (more)

Dai, Xin

2008-01-01T23:59:59.000Z

318

OXIDATION OF FUELS IN THE COOL FLAME REGIME FOR COMBUSTION AND REFORMING FOR FUEL CELLS.  

DOE Green Energy (OSTI)

THE REVIEW INTEGRATES RECENT INVESTIGATIONS ON AUTO OXIDATION OF FUEL OILS AND THEIR REFORMING INTO HYDROGEN RICH GAS THAT COULD SERVE AS A FEED FOR FUEL CELLS AND COMBUSTION SYSTEMS.

NAIDJA,A.; KRISHNA,C.R.; BUTCHER,T.; MAHAJAN,D.

2002-08-01T23:59:59.000Z

319

Earnings Determination and Taxes: Evidence from a Cohort-Based Payroll Tax Reform in Greece  

E-Print Network (OSTI)

pension outcomes i n Greece." British Jour¬ nal ofIndustrialL T A X R E F O R M IN GREECE Emmanuel Saez Manos MatsaganisBased Payroll Tax Reform in Greece Emmanuel Saez, Manos

Saez, Emmanuel; Matsaganis, Manos; Tsakloglou, Panos

2010-01-01T23:59:59.000Z

320

Steam Reforming on Transition-metal Carbides from Density-functional Theory  

Science Conference Proceedings (OSTI)

A screening study of the steam reforming reaction on clean and oxygen covered early transition-metal carbides surfaces is performed by means of density-functional theory calculations. It is found that carbides provide a wide spectrum of reactivities, from too reactive via suitable to too inert. Several molybdenum-based systems are identified as possible steam reforming catalysts. The findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

Vojvodic, Aleksandra

2012-05-11T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

A Methanol Steam Reforming Micro Reactor for Proton Exchange Membrane Micro Fuel Cell System  

DOE Green Energy (OSTI)

The heat, mass and momentum transfer from a fuel reforming packed bed to a surrounding silicon wafer has been simulated. Modeling showed quantitatively reasonable agreement with experimental data for fuel conversion efficiency, hydrogen production rate, outlet methanol mole fraction and outlet steam mole fraction. The variation in fuel conversion efficiency with the micro reformer thermal isolation can be used to optimize fuel-processing conditions for micro PEM fuel cells.

Park, H G; Piggott, W T; Chung, J; Morse, J D; Havstad, M; Grigoropoulos, C P; Greif, R; Benett, W; Sopchak, D; Upadhye, R

2003-07-28T23:59:59.000Z

322

DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR BENCH-SCALE REFORMER TREATABILITY STUDIES  

SciTech Connect

This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Bench-Scale Reforming testing. The type, quantity, and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluidized bed steam reformer. A determination of the adequacy of the fluidized bed steam reformer process to treat Hanford tank waste is required. The initial step in determining the adequacy of the fluidized bed steam reformer process is to select archived waste samples from the 222-S Laboratory that will be used in a bench scale tests. Analyses of the selected samples will be required to confirm the samples meet the shipping requirements and for comparison to the bench scale reformer (BSR) test sample selection requirements.

BANNING DL

2011-02-11T23:59:59.000Z

323

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

DOE Green Energy (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the eighth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2004-September 30, 2005 and includes an entire review of the progress for year 2 of the project. This year saw progress in eight areas. These areas are: (1) steam reformer transient response, (2) steam reformer catalyst degradation, (3) steam reformer degradation tests using bluff bodies, (4) optimization of bluff bodies for steam reformation, (5) heat transfer enhancement, (6) autothermal reforming of coal derived methanol, (7) autothermal catalyst degradation, and (8) autothermal reformation with bluff bodies. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

Paul A. Erickson

2005-09-30T23:59:59.000Z

324

February 2012Home Production and Social Security Reform  

E-Print Network (OSTI)

This paper incorporates home production into a dynamic general equilibrium model of overlapping generations with endogenous retirement to study Social Security reforms. As such, the model di¤erentiates both consumption goods and labor e¤ort according to their respective roles in home production and market activities. Using a calibrated model, we …nd that eliminating the current pay-asyou-go Social Security system has important implications for both labor supply and consumption decisions and that these decisions are in‡uenced by the presence of a home production technology. Comparing our benchmark economy to one with di¤erentiated goods but no home production, we …nd that eliminating Social Security bene…ts generates larger welfare gains in the presence of home production. This result is due to the self insurance aspects generated by the presence of home production. Comparing our economy to a one-good economy without home production, we show that the welfare gains of eliminating Social Security are magni…ed even further. These policy analyses suggest the importance of modeling home production and distinguishing between both time use and consumption goods depending on whether they are involved in market or home production. JEL Classi…cations: E21, E62, H55

Michael Dotsey; Wenli Li; Michael Dotsey; Wenli Li; Fang Yang

2012-01-01T23:59:59.000Z

325

Hydrogen production from the steam reforming of Dinethyl Ether and Methanol  

SciTech Connect

This study investigates dimethyl ether (DME) steam reforming for the generation of hydrogen rich fuel cell feeds for fuel cell applications. Methanol has long been considered as a fuel for the generation of hydrogen rich fuel cell feeds due to its high energy density, low reforming temperature, and zero impurity content. However, it has not been accepted as the fuel of choice due its current limited availability, toxicity and corrosiveness. While methanol steam reforming for the generation of hydrogen rich fuel cell feeds has been extensively studied, the steam reforming of DME, CH{sub 3}OCH{sub 3} + 3H{sub 2}O = 2CO{sub 2} + 6H{sub 2}, has had limited research effort. DME is the simplest ether (CH{sub 3}OCH{sub 3}) and is a gas at ambient conditions. DME has physical properties similar to those of LPG fuels (i.e. propane and butane), resulting in similar storage and handling considerations. DME is currently used as an aerosol propellant and has been considercd as a diesel substitute due to the reduced NOx, SOx and particulate emissions. DME is also being considered as a substitute for LPG fuels, which is used extensively in Asia as a fuel for heating and cooking, and naptha, which is used for power generation. The potential advantages of both methanol and DME include low reforming temperature, decreased fuel proccssor startup energy, environmentally benign, visible flame, high heating value, and ease of storage and transportation. In addition, DME has the added advantages of low toxicity and being non-corrosive. Consequently, DME may be an ideal candidate for the generation of hydrogen rich fuel cell feeds for both automotive and portable power applications. The steam reforming of DME has been demonstrated to occur through a pair of reactions in series, where the first reaction is DME hydration followed by MeOH steam reforming to produce a hydrogen rich stream.

Semelsberger, T. A. (Troy A.); Borup, R. L. (Rodney L.)

2004-01-01T23:59:59.000Z

326

SCIENCE TEACHERS' ASSESSMENT PRACTICES AND THEIR PERCEPTIONS OF HOW SCIENCE EDUCATION REFORM AND HIGH STAKES TESTS AFFECT THEIR INSTRUCTIONAL DECISIONS.  

E-Print Network (OSTI)

??Both assessment and reform are prominent topics in education and specifically science education. The purpose of this study was to achieve greater insight into science… (more)

Feitler, Michele

2010-01-01T23:59:59.000Z

327

The Effects of Maternal Welfare Participation on Children’s Developmental Outcomes in the Welfare Reform Era.  

E-Print Network (OSTI)

??Since welfare reform legislation in 1996, Temporary Assistance to Needy Families (TANF) has been implemented. Under TANF, most recipients are required to work. Work requirements… (more)

Lee, Wonik

2010-01-01T23:59:59.000Z

328

A novel technique for on-line coke gasification during propane steam reforming using forced CO2 cycling.  

E-Print Network (OSTI)

??Steam reforming is an important source of synthesis gas production that is used by major petrochemical processes such as ammonia, methanol and the Fisher-Tropsch process.… (more)

Alenazey, Feraih Sheradh

2011-01-01T23:59:59.000Z

329

Adult perceptions of the impact of Kentucky Education Reform Act initiatives on achievement : insights of rural gifted students.  

E-Print Network (OSTI)

??Ph. D. This phenomenological study investigated perceptions regarding the impact of the tenets of the Kentucky Education Reform Act (KERA) on the self-reported achievement and… (more)

Lanham, Jan Kathryn Weaver, 1954-

2010-01-01T23:59:59.000Z

330

Development of an impedance-based sensor for the detection of catalyst coking in fuel-reforming systems.  

E-Print Network (OSTI)

??A novel sensor for detecting the early stages of catalyst coking in fuel reforming systems has been developed. The sensor was manufactured by inkjet printing… (more)

Wheeler, Jeffrey L.

2013-01-01T23:59:59.000Z

331

An Innovative Injection and Mixing System for Diesel Fuel Reforming  

DOE Green Energy (OSTI)

This project focused on fuel stream preparation improvements prior to injection into a solid oxide fuel cell reformer. Each milestone and the results from each milestone are discussed in detail in this report. The first two milestones were the creation of a coking formation test rig and various testing performed on this rig. Initial tests indicated that three anti-carbon coatings showed improvement over an uncoated (bare metal) baseline. However, in follow-up 70 hour tests of the down selected coatings, Scanning Electron Microscope (SEM) analysis revealed that no carbon was generated on the test specimens. These follow-up tests were intended to enable a down selection to a single best anti-carbon coating. Without the formation of carbon it was impossible to draw conclusions as to which anti-carbon coating showed the best performance. The final 70 hour tests did show that AMCX AMC26 demonstrated the lowest discoloration of the metal out of the three down selected anti-carbon coatings. This discoloration did not relate to carbon but could be a useful result when carbon growth rate is not the only concern. Unplanned variations in the series of tests must be considered and may have altered the results. Reliable conclusions could only be drawn from consistent, repeatable testing beyond the allotted time and funding for this project. Milestones 3 and 4 focused on the creation of a preheating pressure atomizer and mixing chamber. A design of experiment test helped identify a configuration of the preheating injector, Build 1, which showed a very uniform fuel spray flow field. This injector was improved upon by the creation of a Build 2 injector. Build 2 of the preheating injector demonstrated promising SMD results with only 22psi fuel pressure and 0.7 in H2O of Air. It was apparent from testing and CFD that this Build 2 has flow field recirculation zones. These recirculation zones may suggest that this Build 2 atomizer and mixer would require steam injection to reduce the auto ignition potential. It is also important to note that to achieve uniform mixing within a short distance, some recirculation is necessary. Milestone 5 generated CFD and FEA results that could be used to optimize the preheating injector. CFD results confirmed the recirculation zones seen in test data and confirmed that the flow field would not change when attached to a reformer. The FEA predicted fuel wetted wall temperatures which led to several suggested improvements that could possibly improve nozzle efficiency. Milestone 6 (originally an optional task) took a different approach than the preheating pressure atomizer. It focused on creation and optimization of a piezoelectric injector which could perform at extremely low fuel pressures. The piezoelectric atomizer showed acceptable SMD results with fuel pressure less than 1.0 psig and air pressure less than 1.0 in H2O. These SMD values were enhanced when a few components were changed, and it is expected would improve further still at elevated air temperatures. It was demonstrated that the piezoelectric injector could accomplish the desired task. The addition of phase tracking and a burst mode to the frequency controller increased the usability of the piezoelectric injector. This injector is ready to move on to the next phase of development. Engine Components has met the required program milestones of this project. Some of the Milestones were adjusted to allow Milestone 6 to be completed in parallel with the other Milestones. Because of this, Task 3.10 and 3.13 were made optional instead of Milestone 6. Engine Components was extremely grateful for the support that was provided by NETL in support of this work.

Spencer Pack

2007-12-31T23:59:59.000Z

332

FLUIDIZED BED STEAM REFORMER (FBSR) PRODUCT: MONOLITH FORMATION AND CHARACTERIZATION  

SciTech Connect

The most important requirement for Hanford's low activity waste (LAW) form for shallow land disposal is the chemical durability of the product. A secondary, but still essential specification, is the compressive strength of the material with regards to the strength of the material under shallow land disposal conditions, e.g. the weight of soil overburden and potential intrusion by future generations, because the term ''near-surface disposal'' indicates disposal in the uppermost portion, or approximately the top 30 meters, of the earth's surface. The THOR{reg_sign} Treatment Technologies (TTT) mineral waste form for LAW is granular in nature because it is formed by Fluidized Bed Steam Reforming (FBSR). As a granular product it has been shown to be as durable as Hanford's LAW glass during testing with ASTM C-1285-02 known as the Product Consistency Test (PCT) and with the Single Pass Flow Through Test (SPFT). Hanford Envelope A and Envelope C simulants both performed well during PCT and SPFT testing and during subsequent performance assessment modeling. This is partially due to the high aluminosilicate content of the mineral product which provides a natural aluminosilicate buffering mechanism that inhibits leaching and is known to occur in naturally occurring aluminosilicate mineral analogs. In order for the TTT Na-Al-Si (NAS) granular mineral product to meet the compressive strength requirements (ASTM C39) for a Hanford waste form, the granular product needs to be made into a monolith or disposed of in High Integrity Containers (HIC's). Additionally, the Hanford intruder scenario for disposal in the Immobilized Low Activity Waste (ILAW) trench is mitigated as there is reduced intruder exposure when a waste form is in a monolithic form. During the preliminary testing of a monolith binder for TTT's FBSR mineral product, four parameters were monitored: (1) waste loading (not optimized for each waste form tested); (2) density; (3) compressive strength; and (4) durability must not be compromised--binding agent should not react with the NAS product and binding agent should not create an unfavorable pH environment that may cause accelerated leaching. It is the goal of the present study to survey cementitious waste forms based on Ordinary Portland Cement (OPC), Ceramicrete, and hydroceramic binders by correlating waste loading, density and compressive strength and then determine if these binders affect the product performance in terms of the PCT response. This will be done by making a one-to-one comparison of the PCT response measured on granular NAS mineral product (mixed bed and fines products) with the PCT response of the monolithed NAS product in the different binders. Future studies may include, refining the above binders, and examining other binders. It is likely that binders formed from kaolin would be most compatible with the chemistry of the THOR{reg_sign} mineral waste form which is made by steam reforming of kaolin and sodium rich wastes. The economics of production on a large scale have yet to be investigated for any of the binders tested.

Jantzen, C

2006-09-13T23:59:59.000Z

333

Development of a Catalyst/Sorbent for Methane Reforming  

Science Conference Proceedings (OSTI)

This project led to the further development of a combined catalyst and sorbent for improving the process technology required for converting CH{sub 4} and/or CO into H{sub 2} while simultaneously separating the CO{sub 2} byproduct all in a single step. The new material is in the form of core-in-shell pellets such that each pellet consists of a CaO core surrounded by an alumina-based shell capable of supporting a Ni catalyst. The Ni is capable of catalyzing the reactions of steam with CH{sub 4} or CO to produce H{sub 2} and CO{sub 2}, whereas the CaO is capable of absorbing the CO{sub 2} as it is produced. The absorption of CO{sub 2} eliminates the reaction inhibiting effects of CO{sub 2} and provides a means for recovering the CO{sub 2} in a useful form. The present work showed that the lifecycle performance of the sorbent can be improved either by incorporating a specific amount of MgO in the material or by calcining CaO derived from limestone at 1100 C for an extended period. It also showed how to prepare a strong shell material with a large surface area required for supporting an active Ni catalyst. The method combines graded particles of {alpha}-alumina with noncrystalline alumina having a large specific surface area together with a strength promoting additive followed by controlled calcination. Two different additives produced good results: 3 {micro}m limestone and lanthanum nitrate which were converted to their respective oxides upon calcination. The oxides partially reacted with the alumina to form aluminates which probably accounted for the strength enhancing properties of the additives. The use of lanthanum made it possible to calcine the shell material at a lower temperature, which was less detrimental to the surface area, but still capable of producing a strong shell. Core-in-shell pellets made with the improved shell materials and impregnated with a Ni catalyst were used for steam reforming CH{sub 4} at different temperatures and pressures. Under all conditions tested, the CH{sub 4} conversion was large (>80%) and nearly equal to the predicted thermodynamic equilibrium level as long as CO{sub 2} was being rapidly absorbed. Similar results were obtained with both shell material additives. Limited lifecycle tests of the pellets also produced similar results that were not affected by the choice of additive. However, during each lifecycle test the period during which CO{sub 2} was rapidly absorbed declined from cycle to cycle which directly affected the corresponding period when CH{sub 4} was reformed rapidly. Therefore, the results showed a continuing need for improving the lifecycle performance of the sorbent. Core-in-shell pellets with the improved shell materials were also utilized for conducting the water gas shift reaction in a single step. Three different catalyst formulations were tested. The best results were achieved with a Ni catalyst, which proved capable of catalyzing the reaction whether CO{sub 2} was being absorbed or not. The calcined alumina shell material by itself also proved to be a very good catalyst for the reaction as long as CO{sub 2} was being fully absorbed by the core material. However, neither the alumina nor a third formulation containing Fe{sub 2}O{sub 3} were good catalysts for the reaction when CO{sub 2} was not absorbed by the core material. Furthermore, the Fe{sub 2}O{sub 3}-containing catalyst was not as good as the other two catalysts when CO{sub 2} was being absorbed.

B.H. Shans; T.D. Wheelock; Justinus Satrio; Karl Albrecht; Tanya Harris Janine Keeley; Ben Silva; Aaron Shell; Molly Lohry; Zachary Beversdorf

2008-12-31T23:59:59.000Z

334

Development of a comprehensive reporting system for a school reform organization: The Accelerated Schools Project  

E-Print Network (OSTI)

Given the conflicting research results on the effectiveness of whole-school reform models (Nunnery, 1998; Stringfield & Herman, 1997; American Institutes for Research, 1999; U.S. Department of Education, 2004), there is a need to focus on the evaluation procedures of whole-school reform organizations. Because the ultimate goal is to improve school performance, it should also be a goal of each whole-school reform organization to design a comprehensive data collection system to evaluate each schoolÂ?s performance. A comprehensive reporting system was developed for a school reform organization, the Accelerated Schools Project (ASP). Using the steps of the research and development process recommended by Borg and Gall (1989), this study: (a) developed a theoretical framework for the reporting system, (b) identified data that should be collected in the reporting system, (c) performed a field test with an expert panel of educational professionals, (d) developed a preliminary form of the reporting system, (e) performed a main field test with principals and coaches in the ASP network, (f) reported field test results, (g) revised the preliminary reporting system, (h) developed a website for the reporting system, and (i) provided recommendations for the completion, dissemination and implementation of the system in accelerated schools across the nation. This study has important implications for both the ASP community and for the entire whole-school reform community. For the ASP community, the reporting system could be used: (a) to collect data in all accelerated schools across the nation (b) as a longitudinal database of information to monitor data on each ASP school, and (c) to generate school summary reports on ASP schools. These data will assist researchers in measuring the effectiveness of the ASP model on student achievement and other important variables. For the whole-school reform community, the method used in this study could be replicated in other school reform organizations to develop a comprehensive reporting system. By providing consistent data for school reform organizations to evaluate the impact of their models on students and schools, educational researchers will be better equipped to understand each modelÂ?s impact, and thus will better understand the diverse research results on school reform effectiveness.

Stephens, Jennifer Anne

2004-12-01T23:59:59.000Z

335

DURABILITY TESTING OF FLUIDIZED BED STEAM REFORMER (FBSR) WASTE FORMS  

SciTech Connect

Fluidized Bed Steam Reforming (FBSR) is being considered as a potential technology for the immobilization of a wide variety of high sodium aqueous radioactive wastes. The addition of clay and a catalyst as co-reactants converts high sodium aqueous low activity wastes (LAW) such as those existing at the Hanford and Idaho DOE sites to a granular ''mineralized'' waste form that may be made into a monolith form if necessary. Simulant Hanford and Idaho high sodium wastes were processed in a pilot scale FBSR at Science Applications International Corporation (SAIC) Science and Technology Applications Research (STAR) facility in Idaho Falls, ID. Granular mineral waste forms were made from (1) a basic Hanford Envelope A low-activity waste (LAW) simulant and (2) an acidic INL simulant commonly referred to as sodium-bearing waste (SBW). The FBSR waste forms were characterized and the durability tested via ASTM C1285 (Product Consistency Test), the Environmental Protection Agency (EPA) Toxic Characteristic Leaching Procedure (TCLP), and the Single Pass Flow Through (SPFT) test. The durability of the FBSR waste form products was tested in order to compare the measured durability to previous FBSR waste form testing on Hanford Envelope C waste forms that were made by THOR Treatment Technologies (TTT) and to compare the FBSR durability to vitreous LAW waste forms, specifically the Hanford low activity waste (LAW) glass known as the Low-activity Reference Material (LRM). The durability of the FBSR waste form is comparable to that of the LRM glass for the test responses studied.

Jantzen, C

2006-01-06T23:59:59.000Z

336

Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided by Fundamental Atomistics Insights  

SciTech Connect

Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a novel hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, Sn/Ni alloy as a potential carbon tolerant reforming catalyst. Sn/Ni alloy was synthesized and tested in steam reforming of methane, propane, and isooctane. We demonstrated that the alloy catalyst is carbon-tolerant under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by a few characteristics: (a) Knowledge-based, bottom-up approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) The focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

Suljo Linic

2006-08-31T23:59:59.000Z

337

Experimental and computational investigations of sulfur-resistant bimetallic catalysts for reforming of biomass gasification products  

DOE Green Energy (OSTI)

A combination of density functional theory (DFT) calculations and experimental studies of supported catalysts was used to identify H{sub 2}S-resistant biomass gasification product reforming catalysts. DFT calculations were used to search for bimetallic, nickel-based (1 1 1) surfaces with lower sulfur adsorption energies and enhanced ethylene adsorption energies. These metrics were used as predictors for H{sub 2}S resistance and activity toward steam reforming of ethylene, respectively. Relative to Ni, DFT studies found that the Ni/Sn surface alloy exhibited enhanced sulfur resistance and the Ni/Ru system exhibited an improved ethylene binding energy with a small increase in sulfur binding energy. A series of supported bimetallic nickel catalysts was prepared and screened under model ethylene reforming conditions and simulated biomass tar reforming conditions. The observed experimental trends in activity were consistent with theoretical predictions, with observed reforming activities in the order Ni/Ru > Ni > Ni/Sn. Interestingly, Ni/Ru showed a high level of resistance to sulfur poisoning compared with Ni. This sulfur resistance can be partly explained by trends in sulfur versus ethylene binding energy at different types of sites across the bimetallic surface.

Rangan, Meghana; Yung, Matthew M.; Medlin, J. William (NREL); (Colorado)

2011-11-17T23:59:59.000Z

338

Development of Sulfur and Carbon Tolerant Reforming Alloy Catalysts Aided Fundamental Atomistic Insights  

SciTech Connect

Current hydrocarbon reforming catalysts suffer from rapid carbon and sulfur poisoning. Even though there is a tremendous incentive to develop more efficient catalysts, these materials are currently formulated using inefficient trial and error experimental approaches. We have utilized a hybrid experimental/theoretical approach, combining quantum Density Functional Theory (DFT) calculations and various state-of-the-art experimental tools, to formulate carbon tolerant reforming catalysts. We have employed DFT calculations to develop molecular insights into the elementary chemical transformations that lead to carbon poisoning of Ni catalysts. Based on the obtained molecular insights, we have identified, using DFT quantum calculation, various Ni alloy catalysts as potential carbon tolerant reforming catalysts. The alloy catalysts were synthesized and tested in steam reforming and partial oxidation of methane, propane, and isooctane. We demonstrated that the alloy catalysts are much more carbon-tolerant than monometallic Ni catalysts under nearly stoichiometric steam-to-carbon ratios. Under these conditions, monometallic Ni is rapidly poisoned by sp2 carbon deposits. The research approach is distinguished by two characteristics: (a) knowledge-based, bottomup approach, compared to the traditional trial and error approach, allows for a more efficient and systematic discovery of improved catalysts. (b) the focus is on exploring alloy materials which have been largely unexplored as potential reforming catalysts.

Suljo Linic

2008-12-31T23:59:59.000Z

339

Public Law 108-458-Dec. 17, 2004; Intelligence Reform and Terrorism Prevention Act of 2004  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8-458-DEC. 17, 2004 8-458-DEC. 17, 2004 INTELLIGENCE REFORM AND TERRORISM PREVENTION ACT OF 2004 VerDate 11-MAY-2000 13:50 Jan 28, 2005 Jkt 039139 PO 00458 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL458.108 APPS06 PsN: PUBL458 118 STAT. 3638 PUBLIC LAW 108-458-DEC. 17, 2004 Public Law 108-458 108th Congress An Act To reform the intelligence community and the intelligence and intelligence-related activities of the United States Government, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE; TABLE OF CONTENTS. (a) SHORT TITLE.-This Act may be cited as the ''Intelligence Reform and Terrorism Prevention Act of 2004''. (b) TABLE OF CONTENTS.-The table of contents for this Act is as follows:

340

IT Reform: Energy TechStat Examines Identity Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IT Reform: Energy TechStat Examines Identity Program IT Reform: Energy TechStat Examines Identity Program IT Reform: Energy TechStat Examines Identity Program May 3, 2011 - 11:59am Addthis Michael W. Locatis, CIO, Department of Energy, reviews report on Identity Management Program Michael W. Locatis, CIO, Department of Energy, reviews report on Identity Management Program Bob Brese Chief Information Officer (Acting) In an effort to improve the performance of one of the Department of Energy's (DOE) major IT investments, an agency TechStat review was recently held. The session focused on the Identity, Credential, and Access Management (ICAM) Program, a holistic approach for department-wide initiatives that support access to Federal IT systems and facilities. Fifteen DOE staff participated in the review, including program office

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Process and apparatus for the production of hydrogen by steam reforming of hydrocarbon  

DOE Patents (OSTI)

In the steam reforming of hydrocarbon, particularly methane, under elevated temperature and pressure to produce hydrogen, a feed of steam and hydrocarbon is fed into a first reaction volume containing essentially only reforming catalyst to partially reform the feed. The balance of the feed and the reaction products of carbon dioxide and hydrogen are then fed into a second reaction volume containing a mixture of catalyst and adsorbent which removes the carbon dioxide from the reaction zone as it is formed. The process is conducted in a cycle which includes these reactions followed by countercurrent depressurization and purge of the adsorbent to regenerate it and repressurization of the reaction volumes preparatory to repeating the reaction-sorption phase of the cycle.

Sircar, Shivaji (Wescosville, PA); Hufton, Jeffrey Raymond (Fogelsville, PA); Nataraj, Shankar (Allentown, PA)

2000-01-01T23:59:59.000Z

342

IT Reform: Energy TechStat Examines Identity Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IT Reform: Energy TechStat Examines Identity Program IT Reform: Energy TechStat Examines Identity Program IT Reform: Energy TechStat Examines Identity Program May 3, 2011 - 11:59am Addthis Michael W. Locatis, CIO, Department of Energy, reviews report on Identity Management Program Michael W. Locatis, CIO, Department of Energy, reviews report on Identity Management Program Bob Brese Chief Information Officer (Acting) In an effort to improve the performance of one of the Department of Energy's (DOE) major IT investments, an agency TechStat review was recently held. The session focused on the Identity, Credential, and Access Management (ICAM) Program, a holistic approach for department-wide initiatives that support access to Federal IT systems and facilities. Fifteen DOE staff participated in the review, including program office

343

Distributed Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) (Presentation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Reforming of Renewable Reforming of Renewable Liquids via Water Splitting using Oxygen Transport Membrane (OTM) * U. (Balu) Balachandran, T. H. Lee, C. Y. Park, and S. E. Dorris Energy Systems Division E-mail: balu@anl.gov * Work supported by the Hydrogen, Fuel Cells, and Infrastructure Technologies Program of DOE's Office of Energy Efficiency and Renewable Energy Presented at the Bio-derived Liquids Working Group (BILIWG) Meeting, Nov. 6, 2007. BILIWG Meeting, Nov. 6, 2007 2 Objective & Rationale Objective: Develop compact dense ceramic membrane reactors that enable the efficient and cost-effective production of hydrogen by reforming renewable liquid fuels using pure oxygen produced by water splitting and transported by an OTM. Rationale: Membrane technology provides the means to attack barriers to the

344

Public Law 108-458-Dec. 17, 2004; Intelligence Reform and Terrorism Prevention Act of 2004  

NLE Websites -- All DOE Office Websites (Extended Search)

8-458-DEC. 17, 2004 8-458-DEC. 17, 2004 INTELLIGENCE REFORM AND TERRORISM PREVENTION ACT OF 2004 VerDate 11-MAY-2000 13:50 Jan 28, 2005 Jkt 039139 PO 00458 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL458.108 APPS06 PsN: PUBL458 118 STAT. 3638 PUBLIC LAW 108-458-DEC. 17, 2004 Public Law 108-458 108th Congress An Act To reform the intelligence community and the intelligence and intelligence-related activities of the United States Government, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT TITLE; TABLE OF CONTENTS. (a) SHORT TITLE.-This Act may be cited as the ''Intelligence Reform and Terrorism Prevention Act of 2004''. (b) TABLE OF CONTENTS.-The table of contents for this Act is as follows:

345

DATA QUALITY OBJECTIVES FOR SELECTING WASTE SAMPLES FOR THE BENCH STEAM REFORMER TEST  

SciTech Connect

This document describes the data quality objectives to select archived samples located at the 222-S Laboratory for Fluid Bed Steam Reformer testing. The type, quantity and quality of the data required to select the samples for Fluid Bed Steam Reformer testing are discussed. In order to maximize the efficiency and minimize the time to treat Hanford tank waste in the Waste Treatment and Immobilization Plant, additional treatment processes may be required. One of the potential treatment processes is the fluid bed steam reformer (FBSR). A determination of the adequacy of the FBSR process to treat Hanford tank waste is required. The initial step in determining the adequacy of the FBSR process is to select archived waste samples from the 222-S Laboratory that will be used to test the FBSR process. Analyses of the selected samples will be required to confirm the samples meet the testing criteria.

BANNING DL

2010-08-03T23:59:59.000Z

346

Steam reforming on transition-metal carbides from density-functional theory  

E-Print Network (OSTI)

A screening study of the steam reforming reaction (CH_4 + H_2O -> CO + 3H_2) on early transition-metal carbides (TMC's) is performed by means of density-functional theory calculations. The set of considered surfaces includes the alpha-Mo_2C(100) surfaces, the low-index (111) and (100) surfaces of TiC, VC, and delta-MoC, and the oxygenated alpha-Mo_2C(100) and TMC(111) surfaces. It is found that carbides provide a wide spectrum of reactivities towards the steam reforming reaction, from too reactive via suitable to too inert. The reactivity is discussed in terms of the electronic structure of the clean surfaces. Two surfaces, the delta-MoC(100) and the oxygen passivated alpha-Mo_2C(100) surfaces, are identified as promising steam reforming catalysts. These findings suggest that carbides provide a playground for reactivity tuning, comparable to the one for pure metals.

Vojvodic, Aleksandra

2009-01-01T23:59:59.000Z

347

GREENHOUSE GAS CATALYTIC REFORMING TO SYNGAS A thesis submitted in partial fulfillment of the requirements for the degree of  

E-Print Network (OSTI)

GREENHOUSE GAS CATALYTIC REFORMING TO SYNGAS A thesis submitted in partial fulfillment've missed over the past two years. #12;4 TABLE OF CONTENTS GREENHOUSE GAS CATALYTIC REFORMING TO SYNGAS 1.083 moles CH4, 0.083 moles CO2, and 0.834 moles Ar which are the inlet conditions for many of the catalytic

Columbia University

348

Testing of a Catalytic Partial Oxidation Diesel Reformer with a Solid Oxide Fuel Cell System  

DOE Green Energy (OSTI)

Rural Alaska currently uses diesel generator sets to produce much of its power. The high energy content of diesel (i.e. ~140,000 BTU per gallon) makes it the fuel of choice because this reduces the volume of fuel that must be transported, stored, and consumed in generating the power. There is an existing investment in infrastructure for the distribution and use of diesel fuel. Problems do exist, however, in that diesel generators are not very efficient in their use of diesel, maintenance levels can be rather high as systems age, and the environmental issues related to present diesel generators are of concern. The Arctic Energy Technology Development Laboratory at the University of Alaska -- Fairbanks is sponsoring a project to address the issues mentioned above. The project takes two successful systems, a diesel reformer and a tubular solid oxide fuel cell unit, and jointly tests those systems with the objective of producing a for-purpose diesel fueled solid oxide fuel cell system that can be deployed in rural Alaska. The reformer will convert the diesel to a mixture of carbon monoxide and hydrogen that can be used as a fuel by the fuel cell. The high temperature nature of the solid oxide fuel cell (SOFC is capable of using this mixture to generate electricity and provide usable heat with higher efficiency and lower emissions. The high temperature nature of the SOFC is more compatible with the arctic climate than are low temperature technologies such as the proton exchange membrane fuel cells. This paper will look at the interaction of a SOFC system that is designed to internally reform methane and a catalytic partial oxidation (CPOX) diesel reformer. The diesel reformer produces a reformate that is approximately 140 BTU per scf (after removal of much of the reformate water) as compared to a methane based reformate that is over twice that value in BTU content. The project also considers the effect of altitude since the test location will be at 4800 feet with the consequential drop in oxygen content and necessary increases in flow rates.

Lyman Frost; Bob Carrington; Rodger McKain; Dennis Witmer

2005-03-01T23:59:59.000Z

349

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

DOE Green Energy (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the sixth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1-March 31, 2005. This quarter saw progress in four areas. These areas are: (1) Autothermal reforming of coal derived methanol, (2) Catalyst deactivation, (3) Steam reformer transient response, and (4) Catalyst degradation with bluff bodies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-04-01T23:59:59.000Z

350

Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report  

DOE Green Energy (OSTI)

Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam and fuel chemically recuperating. Reformation of natural gas or diesel fuels to a homogeneous hydrogen-rich fuel has been demonstrated. Performance tests on screening various reforming catalysts and operating conditions were conducted on a batch-tube reactor. Producing over 70 percent of hydrogen (on a dry basis) in the product stream was obtained using natural gas as a feedstock. Hydrogen concentration is seen to increase with temperature but less rapidly above 1300{degrees}F. The percent reforming increases as the steam to carbon ratio is increased. Two basic groups of reforming catalysts, nickel - and platinum-basis, have been tested for the reforming activity.

NONE

1996-11-01T23:59:59.000Z

351

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the fourth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of July 1-Sept 30, 2004 along with a recap of progress from the start of the project on Oct 1, 2003 to Sept 30, 2004. All of the projects are proceeding on or slightly ahead of schedule. This year saw progress in several areas. These areas are: (1) External and internal evaluation of coal based methanol and a fuel cell grade baseline fuel, (2) Design set up and initial testing of three laboratory scale steam reformers, (3) Design, set up and initial testing of a laboratory scale autothermal reactor, (4) Hydrogen generation from coal-derived methanol using steam reformation, (5) Experiments to determine the axial and radial thermal profiles of the steam reformers, (6) Initial catalyst degradation studies with steam reformation and coal based methanol, and (7) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-09-30T23:59:59.000Z

352

Modular pebble-bed reactor reforming plant design for process heat  

Science Conference Proceedings (OSTI)

This report describes a preliminary design study of a Modular Pebble-Bed Reactor System Reforming (MPB-R) Plant. The system uses one pressure vessel for the reactor and a second pressure vessel for the components, i.e., reformer, steam generator and coolant circulator. The two vessels are connected by coaxial pipes in an arrangement known as the side-by-side (SBS). The goal of the study is to gain an understanding of this particular system and to identify any technical issues that must be resolved for its application to a modular reformer plant. The basic conditions for the MPB-R were selected in common with those of the current study of the MRS-R in-line prismatic fuel concept, specifically, the module core power of 250 MWt, average core power density of 4.1 w/cc, low enriched uranium (LEU) fuel with a /sup 235/U content of 20% homogeneously mixed with thorium, and a target burnup of 80,000 MWD/MT. Study results include the pebble-bed core neutronics and thermal-hydraulic calculations. Core characteristics for both the once-through-then-out (OTTO) and recirculation of fuel sphere refueling schemes were developed. The plant heat balance was calculated with 55% of core power allotted to the reformer.

Lutz, D.E.; Cowan, C.L.; Davis, C.R.; El Sheikh, K.A.; Hui, M.M.; Lipps, A.J.; Wu, T.

1982-09-01T23:59:59.000Z

353

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production  

E-Print Network (OSTI)

Anaerobic digestion for methane generation and ammonia reforming for hydrogen production Accepted 24 May 2013 Available online Keywords: Anaerobic digestion Ammonia Bioenergy Bioammonia Hydrogen Anaerobic digestion-bioammonia to hydrogen (ADBH) a b s t r a c t During anaerobic digestion, organic matter

354

Mixed Ionic/Electronic Conducting Ceramic Membranes for Oxygen-Assisted CO2 Reforming.  

E-Print Network (OSTI)

??Incorporating a SrFeCo0.5Ox (SFC) membrane into a CO2 reforming reactor doubles methane conversion with a powder Pt/ZrO2 catalyst. The deactivation of both Pt/ZrO2 and a… (more)

Slade, David

2010-01-01T23:59:59.000Z

355

FLUIDIZED BED STEAM REFORMING FOR TREATMENT AND IMMOBILIZATION OF LOW-ACTIVITY WASTE  

SciTech Connect

This report is one of four reports written to provide background information regarding immobilization technologies remaining under consideration for supplemental immobilization of Hanford's low-activity waste. This paper provides the reader a general understanding of fluidized bed steam reforming and its possible application to treat and immobilize Hanford low-activity waste.

HEWITT WM

2011-04-08T23:59:59.000Z

356

URBAN WATER SUPPLY IN INDIA: STATUS, REFORM OPTIONS AND POSSIBLE LESSONS  

E-Print Network (OSTI)

of water produced that does not reach water board customers. Unaccounted for water results both from for water accounts for 25-40% of water produced by utilities in the main urban areas in India. WhileURBAN WATER SUPPLY IN INDIA: STATUS, REFORM OPTIONS AND POSSIBLE LESSONS David McKenzie Development

Kammen, Daniel M.

357

Steam reforming as a method to treat Hanford underground storage tank (UST) wastes  

Science Conference Proceedings (OSTI)

This report summarizes a Sandia program that included partnerships with Lawrence Livermore National Laboratory and Synthetica Technologies, Inc. to design and test a steam reforming system for treating Hanford underground storage tank (UST) wastes. The benefits of steam reforming the wastes include the resolution of tank safety issues and improved radionuclide separations. Steam reforming destroys organic materials by first gasifying, then reacting them with high temperature steam. Tests indicate that up to 99% of the organics could be removed from the UST wastes by steam exposure. In addition, it was shown that nitrates in the wastes could be destroyed by steam exposure if they were first distributed as a thin layer on a surface. High purity alumina and nickel alloys were shown to be good candidates for materials to be used in the severe environment associated with steam reforming the highly alkaline, high nitrate content wastes. Work was performed on designing, building, and demonstrating components of a 0.5 gallon per minute (gpm) system suitable for radioactive waste treatment. Scale-up of the unit to 20 gpm was also considered and is feasible. Finally, process demonstrations conducted on non-radioactive waste surrogates were carried out, including a successful demonstration of the technology at the 0.1 gpm scale.

Miller, J.E.; Kuehne, P.B. [eds.] [and others

1995-07-01T23:59:59.000Z

358

Life Cycle Assessment of Hydrogen Production via Natural Gas Steam Reforming  

DOE Green Energy (OSTI)

A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes.

Spath, P. L.; Mann, M. K.

2000-09-28T23:59:59.000Z

359

THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS  

Science Conference Proceedings (OSTI)

Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enable increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.

Parks, II, James E [ORNL; Ponnusamy, Senthil [ORNL

2006-01-01T23:59:59.000Z

360

Recovery of normally gaseous hydrocarbons from net excess hydrogen in a catalytic reforming process  

Science Conference Proceedings (OSTI)

A process is disclosed for the catalytic reforming of hydrocarbons in the presence of hydrogen, preferably to produce high quality gasoline boiling range products. An improved recovery of normally gaseous hydrocarbons from the net excess hydrogen is realized by chilling and contacting said hydrogen with a normally liquid hydrocarbon stream in a plural stage absorption zone at an elevated pressure.

Scheifele, C.A.

1982-06-08T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Hydrogen Production via a High-Efficiency Low-Temperature Reformer  

Science Conference Proceedings (OSTI)

Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposed to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of the packed bed and an adsorptive reactor respectively. In addition CO contamination with energy savings and ~50% capital savings over conventional reforming for fuel cell applications. The pollution abatement potential associated with the implementation of fuel cells, including the elimination of nitrogen oxides and CO, and the reduction in volatile organics and CO2, can thus be realized with the implementation of this invented process. The projected total market size for equipment sale for the proposed process in US is $1.5 billion annually.

Paul KT Liu; Theo T. Tsotsis

2006-05-31T23:59:59.000Z

362

Operation of a solid oxide fuel cell on biodiesel with a partial oxidation reformer  

Science Conference Proceedings (OSTI)

The National Energy Technology Laboratory’s Office of Research & Development (NETL/ORD) has successfully demonstrated the operation of a solid oxide fuel cell (SOFC) using reformed biodiesel. The biodiesel for the project was produced and characterized by West Virginia State University (WVSU). This project had two main aspects: 1) demonstrate a catalyst formulation on monolith for biodiesel fuel reforming; and 2) establish SOFC stack test stand capabilities. Both aspects have been completed successfully. For the first aspect, in–house patented catalyst specifications were developed, fabricated and tested. Parametric reforming studies of biofuels provided data on fuel composition, catalyst degradation, syngas composition, and operating parameters required for successful reforming and integration with the SOFC test stand. For the second aspect, a stack test fixture (STF) for standardized testing, developed by Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) for the Solid Energy Conversion Alliance (SECA) Program, was engineered and constructed at NETL. To facilitate the demonstration of the STF, NETL employed H.C. Starck Ceramics GmbH & Co. (Germany) anode supported solid oxide cells. In addition, anode supported cells, SS441 end plates, and cell frames were transferred from PNNL to NETL. The stack assembly and conditioning procedures, including stack welding and sealing, contact paste application, binder burn-out, seal-setting, hot standby, and other stack assembly and conditioning methods were transferred to NETL. In the future, fuel cell stacks provided by SECA or other developers could be tested at the STF to validate SOFC performance on various fuels. The STF operated on hydrogen for over 1000 hrs before switching over to reformed biodiesel for 100 hrs of operation. Combining these first two aspects led to demonstrating the biodiesel syngas in the STF. A reformer was built and used to convert 0.5 ml/min of biodiesel into mostly hydrogen and carbon monoxide (syngas.) The syngas was fed to the STF and fuel cell stack. The results presented in this experimental report document one of the first times a SOFC has been operated on syngas from reformed biodiesel.

Siefert, N, Shekhawat, D.; Gemmen, R.; Berry, D.

2010-01-01T23:59:59.000Z

363

California's Zero-Emission Vehicle Mandate  

E-Print Network (OSTI)

y o f first-generation electric cars. A l t h o u g h sharedfor instance in the electric station car programs of thewas a series o f electric station car programs launched i n

Shaheen, Susan

2004-01-01T23:59:59.000Z

364

California's Zero-Emission Vehicle Mandate  

E-Print Network (OSTI)

in a Shared Electric Vehicle Program. In Transporta- tionadvanced technologies and electric vehicles i n Japan. Earlysur­ vey. Nearly 50 electric vehicles were used, including

Shaheen, Susan

2004-01-01T23:59:59.000Z

365

California's Zero-Emission Vehicle Mandate  

E-Print Network (OSTI)

E V s ) such as compressed natural gas, gas-electric hybrid,e.g. , electric, compressed natural gas, and hybridP Z E V (e.g. , compressed natural gas vehicles and hybrids)

Shaheen, Susan

2004-01-01T23:59:59.000Z

366

In Support of Local Solar Mandates  

E-Print Network (OSTI)

Passive solar space conditioning can save 70 to 85 percent of the heating and cooling costs of a house.

Hamrin, Janice G.

1981-01-01T23:59:59.000Z

367

Technical and economic assessment of producing hydrogen by reforming syngas from the Battelle indirectly heated biomass gasifier  

SciTech Connect

The technical and economic feasibility of producing hydrogen from biomass by means of indirectly heated gasification and steam reforming was studied. A detailed process model was developed in ASPEN Plus{trademark} to perform material and energy balances. The results of this simulation were used to size and cost major pieces of equipment from which the determination of the necessary selling price of hydrogen was made. A sensitivity analysis was conducted on the process to study hydrogen price as a function of biomass feedstock cost and hydrogen production efficiency. The gasification system used for this study was the Battelle Columbus Laboratory (BCL) indirectly heated gasifier. The heat necessary for the endothermic gasification reactions is supplied by circulating sand from a char combustor to the gasification vessel. Hydrogen production was accomplished by steam reforming the product synthesis gas (syngas) in a process based on that used for natural gas reforming. Three process configurations were studied. Scheme 1 is the full reforming process, with a primary reformer similar to a process furnace, followed by a high temperature shift reactor and a low temperature shift reactor. Scheme 2 uses only the primary reformer, and Scheme 3 uses the primary reformer and the high temperature shift reactor. A pressure swing adsorption (PSA) system is used in all three schemes to produce a hydrogen product pure enough to be used in fuel cells. Steam is produced through detailed heat integration and is intended to be sold as a by-product.

Mann, M.K. [National Renewable Energy Lab., Golden, CO (United States). Industrial Technologies Div.

1995-08-01T23:59:59.000Z

368

BENCH-SCALE STEAM REFORMING OF ACTUAL TANK 48H WASTE  

Science Conference Proceedings (OSTI)

Fluidized Bed Steam Reforming (FBSR) has been demonstrated to be a viable technology to remove >99% of the organics from Tank 48H simulant, to remove >99% of the nitrate/nitrite from Tank 48H simulant, and to form a solid product that is primarily carbonate based. The technology was demonstrated in October of 2006 in the Engineering Scale Test Demonstration Fluidized Bed Steam Reformer1 (ESTD FBSR) at the Hazen Research Inc. (HRI) facility in Golden, CO. The purpose of the Bench-scale Steam Reformer (BSR) testing was to demonstrate that the same reactions occur and the same product is formed when steam reforming actual radioactive Tank 48H waste. The approach used in the current study was to test the BSR with the same Tank 48H simulant and same Erwin coal as was used at the ESTD FBSR under the same operating conditions. This comparison would allow verification that the same chemical reactions occur in both the BSR and ESTD FBSR. Then, actual radioactive Tank 48H material would be steam reformed in the BSR to verify that the actual tank 48H sample reacts the same way chemically as the simulant Tank 48H material. The conclusions from the BSR study and comparison to the ESTD FBSR are the following: (1) A Bench-scale Steam Reforming (BSR) unit was successfully designed and built that: (a) Emulated the chemistry of the ESTD FBSR Denitration Mineralization Reformer (DMR) and Carbon Reduction Reformer (CRR) known collectively as the dual reformer flowsheet. (b) Measured and controlled the off-gas stream. (c) Processed real (radioactive) Tank 48H waste. (d) Met the standards and specifications for radiological testing in the Savannah River National Laboratory (SRNL) Shielded Cells Facility (SCF). (2) Three runs with radioactive Tank 48H material were performed. (3) The Tetraphenylborate (TPB) was destroyed to > 99% for all radioactive Bench-scale tests. (4) The feed nitrate/nitrite was destroyed to >99% for all radioactive BSR tests the same as the ESTD FBSR. (5) The radioactive Tank 48H DMR product was primarily made up of soluble carbonates. The three most abundant species were thermonatrite, [Na{sub 2}CO{sub 3} {center_dot} H{sub 2}O], sodium carbonate, [Na{sub 2}CO{sub 3}], and trona, [Na{sub 3}H(CO{sub 3}){sub 2} {center_dot} 2H{sub 2}O] the same as the ESTD FBSR. (6) Insoluble solids analyzed by X-Ray Diffraction (XRD) did not detect insoluble carbonate species. However, they still may be present at levels below 2 wt%, the sensitivity of the XRD methodology. Insoluble solids XRD characterization indicated that various Fe/Ni/Cr/Mn phases are present. These crystalline phases are associated with the insoluble sludge components of Tank 48H slurry and impurities in the Erwin coal ash. The percent insoluble solids, which mainly consist of un-burnt coal and coal ash, in the products were 4 to 11 wt% for the radioactive runs. (7) The Fe{sup +2}/Fe{sub total} REDOX measurements ranged from 0.58 to 1 for the three radioactive Bench-scale tests. REDOX measurements > 0.5 showed a reducing atmosphere was maintained in the DMR indicating that pyrolysis was occurring. (8) Greater than 90% of the radioactivity was captured in the product for all three runs. (9) The collective results from the FBSR simulant tests and the BSR simulant tests indicate that the same chemistry occurs in the two reactors. (10) The collective results from the BSR simulant runs and the BSR radioactive waste runs indicates that the same chemistry occurs in the simulant as in the real waste. The FBSR technology has been proven to destroy the organics and nitrates in the Tank 48H waste and form the anticipated solid carbonate phases as expected.

Burket, P; Gene Daniel, G; Charles Nash, C; Carol Jantzen, C; Michael Williams, M

2008-09-25T23:59:59.000Z

369

Agenda for the Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) Hydrogen Production Technical Team Research Review  

NLE Websites -- All DOE Office Websites (Extended Search)

& Hydrogen Production Technical Team Research Review Agenda for Tuesday, November 6, 2007 Location: BCS Incorporated, 8929 Stephens Road, Laurel, MD. 20723 410-997-7778 8:30 - 9:00 Continental Breakfast 9:00 DOE Targets, Tools and Technology o Bio-Derived Liquids to Hydrogen Distributed Reforming Targets DOE, Arlene Anderson o H2A Overview, NREL, Darlene Steward o Bio-Derived Liquids to Hydrogen Distributed Reforming Cost Analysis DTI, Brian James 10:00 Research Review o Low-Cost Hydrogen Distributed Production Systems, H2Gen, Sandy Thomas o Integrated Short Contact Time Hydrogen Generator, GE Global Research, Wei Wei o Distributed Bio-Oil Reforming, NREL, Darlene Steward o High Pressure Steam Ethanol Reforming, ANL, Romesh Kumar

370

A New Cycle of UK Higher Education Reforms: New Labour and New Fees May Foster Mission Differentiation  

E-Print Network (OSTI)

cshe/ A NEW CYCLE OF UK HIGHER EDUCATION REFORMS: NEW LABOURfor Studies in Higher Education, UC Berkeley Copyright 2004in system building in higher education in the United Kingdom

Douglass, John Aubrey

2004-01-01T23:59:59.000Z

371

The Politics of Reform in an Era of "Texas-style" Accountability: An Interview with Angela Valenzuela  

E-Print Network (OSTI)

of Reform in an Era of "Texas-style" Accountability: AnStudies at the University of Texas at Austin. Dr. ValenzuelaChildren Behind: How "Texas-style" Accountability Fails

Valenzuela, Angela; Jaramillo, Nathalia E.

2005-01-01T23:59:59.000Z

372

From the Frontlines to the Bottom Line: Medical Marijuana, the War on Drugs, and the Drug Policy Reform Movement  

E-Print Network (OSTI)

interviews that I conducted. Because I am using a nonprobability snowball sampling technique,interviews with the members of several different drug policy reform organizations. I employed a snowball sampling technique

Heddleston, Thomas Reed

2012-01-01T23:59:59.000Z

373

Preparation, characterization, and evaluation of Mg-Al mixed oxide supported nickel catalysts for the steam reforming of ethanol.  

E-Print Network (OSTI)

??The conversion of ethanol to hydrogen or syngas can be achieved by reacting ethanol with water via steam reforming, CH3CH2OH + (1-x)H2O = (4-x)H2 +… (more)

Coleman, Luke James Ivor

2008-01-01T23:59:59.000Z

374

The magazine for alumni and friends of the University of Canterbury Volume 6, no. 2 Summer 2009 Pacific reformer  

E-Print Network (OSTI)

Pacific reformer Tongan PM Feleti Sevele To Mars and beyond Space rover Allan McInnes Seismic shift he's happy to inspire the next generation of engineers. 18 Telling tales Ever since a big, roaring

Hickman, Mark

375

Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions  

Science Conference Proceedings (OSTI)

Pyrolysis of lignocellulosic biomass and reforming of the pyroligneous oils are being studied as a strategy for producing hydrogen. A process of this nature has the potential to be cost competitive with conventional means of producing hydrogen. The authors propose a regionalized system of hydrogen production, where small- and medium-sized pyrolysis units (catalytic reforming of model compounds to hydrogen using Ni-based catalysts have achieved essentially complete conversion to H{sub 2}. Existing data on the catalytic reforming of oxygenates have been studied to guide catalyst selection. A process diagram for the pyrolysis and reforming operations is discussed, as are initial production cost estimates. A window of opportunity clearly exists if the bio-oil is first refined to yield valuable oxygenates so that only a residual fraction is used for hydrogen production.

Wang, D.; Czernik, S.; Montane, D.; Mann, M. [National Renewable Energy Lab., Golden, CO (United States); Chornet, E. [National Renewable Energy Lab., Golden, CO (United States)]|[Univ. de Sherbrooke, Quebec (Canada)

1997-05-01T23:59:59.000Z

376

Influence of Ceria and Nickel Addition to Alumina-Supported Rhodium Catalyst for Propane Steam Reforming at Low Temperatures.  

E-Print Network (OSTI)

??This work aims to develop a fundamental understanding of the catalyst composition-structure-activity relationships for propane steam reforming over supported Rh catalysts. The work investigates the… (more)

Li, Yan

2009-01-01T23:59:59.000Z

377

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

DOE Green Energy (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

Paul A. Erickson

2006-01-01T23:59:59.000Z

378

DOE 2010 Safety and Security Reform Project - HSS Directives Disposition and Status (December 4, 2012)  

NLE Websites -- All DOE Office Websites (Extended Search)

10 Safety and Security Reform Project - HSS Directives Disposition and Status (December 4, 2012) 10 Safety and Security Reform Project - HSS Directives Disposition and Status (December 4, 2012) Page 1 of 3 2010 HSS Directives Disposition Status Secretary of Energy Notice SEN-35-91, Nuclear Safety Policy Revise Complete - see Policy 420.1. Order 5400.5, Radiation Protection of the Public and the Environment Revise Complete - see Order 458.1. Order 5480.19, Conduct of Operations Requirements for DOE Facilities Revise Complete - see Order 422.1. Order 5480.20A, Personnel Selection, Training, Qualification, and Certification Requirements Revise Complete - see Order 426.2. Order 5480.30, Nuclear Reactor Design Criteria Re-certify Complete - re-certified. Manual 140.1-1B, Interface with the Defense Nuclear Facilities Safety Board Re-certify Complete - re-certified.

379

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

DOE Green Energy (OSTI)

Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the seventh report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 31, 2005. This quarter saw progress in these areas. These areas are: (1) Steam reformer transient response, (2) Heat transfer enhancement, (3) Catalyst degradation, (4) Catalyst degradation with bluff bodies, and (5) Autothermal reforming of coal-derived methanol. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2005-06-30T23:59:59.000Z

380

Reforming a large lecture modern physics course for engineering majors using a PER-based design  

E-Print Network (OSTI)

We have reformed a large lecture modern physics course for engineering majors by radically changing both the content and the learning techniques implemented in lecture and homework. Traditionally this course has been taught in a manner similar to the equivalent course for physics majors, focusing on mathematical solutions of abstract problems. Based on interviews with physics and engineering professors, we developed a syllabus and learning goals focused on content that was more useful to our actual student population: engineering majors. The content of this course emphasized reasoning development, model building, and connections to real world applications. In addition we implemented a variety of PER-based learning techniques, including peer instruction, collaborative homework sessions, and interactive simulations. We have assessed the effectiveness of reforms in this course using pre/post surveys on both content and beliefs. We have found significant improvements in both content knowledge and beliefs compared...

McKagan, S B; Wieman, C E

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Catalytic reforming catalyst with modified pore size distribution and a process using the same  

Science Conference Proceedings (OSTI)

This patent describes a catalytic reforming process for conversion of a naptha hydrocarbon at reforming conditions using a catalyst comprising at least one catalytic metal and alumina. The improvement comprises using a catalyst having the following properties in combination: a surface area above about 250 M/sup 2//gram of catalyst; a pore volume above about 0.44 cc/gram of catalyst in pores having diameters of from about 30 angstroms to about 38,000 angstroms; and a pore volume distribution wherein about 70 percent or less of the pore volume is in pores having diameters of from about 30 angstroms to about 400 angstroms. About 30 percent or more pore volume is in pores having diameters of from about 400 angstroms to about 38,000 angstroms.

Unmuth, E.E.; Fleming, B.A.

1987-05-12T23:59:59.000Z

382

Making contracting work better and cost less: Report of the Contract Reform Team  

Science Conference Proceedings (OSTI)

In June 1993, Secretary of Energy Hazel O`Leary formed a Contract Reform Team, chaired by Deputy Secretary Bill White, to evaluate the contracting practices of the Department of Energy and to formulate specific proposals for improving those practices. This report summarizes the results of the work of the Contract Reform Team. It recommends actions for implementation that will significantly improve the Department`s contracting practices and will enable the Department to help create a government that -- in the words of Vice President Gore -- {open_quotes}works better and costs less.{close_quotes} These actions and the deadlines for their implementation are listed. Among other things, they recommend replacing the Department`s standard Management and Operating Contract with a new Performance-Based Management Contract and strengthening the Department`s systems for selecting and managing contractors.

Not Available

1994-02-01T23:59:59.000Z

383

A Comparative Study between Co and Rh for Steam Reforming of Ethanol  

Science Conference Proceedings (OSTI)

Rh and Co-based catalyst performance was compared for steam reforming of ethanol under conditions suitable for industrial hydrogen production. The reaction conditions were varied to elucidate the differences in reaction pathways on both catalysts. On Co/ZnO, CH4 is a secondary product formed through the methanation reaction, while it is produced directly by ethanol decomposition on Rh. The difference in the reaction mechanism is shown to favor Co-based catalysts for selective hydrogen production under elevated system pressures (up to 15 bar) of industrial importance. The carbon deposition rate was also studied, and we show that Co is more prone to coking and catalyst failure. However, the Co/ZnO catalyst can be regenerated, by mild oxidation, despite the high carbon deposition rate. We conclude that Co/ZnO is a more suitable catalyst system for steam reforming of ethanol due to the low methane selectivity, low cost and possibility of regeneration with mild oxidation.

Karim, Ayman M.; Su, Yu; Sun, Junming; Yang, Cheng; Strohm, James J.; King, David L.; Wang, Yong

2010-06-01T23:59:59.000Z

384

Health Care Reform, What’s in It? Rural Communities and Rural Medical Care  

E-Print Network (OSTI)

A critical component of the Patient Protection and Affordable Care Act (PPACA), the federal health care reform law, is the expansion of health insurance coverage and a resulting improvement in health outcomes through access to affordable and timely medical care. One notable concern expressed in the wake of passage of the law is the ability of the health care system to effectively serve over 30 million newly insured, plus deliver effective services to the currently insured in order to meet the goals of the new law. (McMorrow) We have long said the ultimate goal of health care reform is to help make people healthier. Access to health services is a crucial need to meet that goal, and constraints on access will make the health care reform law less meaningful than it should. (McMorrow) Access issues are even more acute in rural communities. As we have shown, many rural communities have severe medical professional shortages, few of the nation’s medical professionals practice in rural areas, rural health professionals are aging, fewer professionals are being trained in primary care and fewer new professionals are being educated and trained. (Top 10 paper) Medicare and Medicaid—major components of rural medical care—pay rural medical providers and facilities less than do private insurers and less than providers in urban areas. All of these exist at a time when, in general, rural people have greater medical care needs than do nonrural people. (National Advisory Committee on Rural Health and Human Services, Center on an Aging Society) Access provisions turned out to be a major part of the health reform law, but an unsung part that received little

Jon M. Bailey

2010-01-01T23:59:59.000Z

385

Dynamic response of steam-reformed, methanol-fueled, polymer electrolyte fuel cell systems  

DOE Green Energy (OSTI)

Analytical models were developed for the dynamic response of steam-reformed, methanol-fueled, polymer electrolyte fuel cell (PEFC) systems for transportation applications. Focus is on heat transfer effects likely to limit rapid response of PEFC systems. Depending on the thermal mass, the heat exchangers and steam reformer can have time constants on the order of several seconds to many minutes. On the other hand, the characteristic time constants associated with pressure/density disturbances arising from flow rate fluctuations are on the order of milliseconds. In vehicular applications, the response time of the turbomachinery, which is determined by rotational inertia, can be on the order of seconds or less. Dynamic reformer model was used to examine methanol conversion efficiency and thermal performance during a cold start. Response times are determined to achieve 50-100% of the steady-state methanol conversion for two catalyst tube diameters. Thermal performance is considered in terms of the approach to steady-state temperature, possibility of catalyst overheating, and penalty in system efficiency incurred during startup time. For the complete reference PEFC system, various turn-down scenarios were simulated by varying the relative rates of change of fuel cell loading and system flows. Depending on relative rates of cell loading changes to flow rate changes, overheating of the catalyst can occur due to excess heat transfer in the reformer preheater; this can be controlled by an additional water quench between catalyst bed and preheater, but only if the flow rate change is sufficiently fast relative to load changes.

Geyer, H.K.; Ahluwalia, R.K.; Kumar, R.

1996-07-01T23:59:59.000Z

386

Fixing the national security state: commissions and the politics of disaster and reform  

E-Print Network (OSTI)

“Narrative in Political Science,” Annual Review of Political Science, 1998 1:315-31. 3 As motors of reform, commissions wield singular power. Commissions frequently drive changes in official policy and issue recommendations that become benchmarks... Policy in the Middle Easy,” Contemporary Sociology: 34(2): 107-15. 14 See 9/11 Commission Report, 375-77. 4 between terrorism and U.S. interests in Middle Eastern oil was the product of political and corporate ties.15 Terrorism analysts, furthermore...

Kirchhoff, Christopher

2010-10-12T23:59:59.000Z

387

The low-temperature partial oxidation reforming of fuels for transportation fuel cell systems  

DOE Green Energy (OSTI)

Argonne`s partial-oxidation reformer (APOR) is a compact, lightweight, rapid-start, and dynamically responsive device to convert liquid fuels to H{sub 2} for use in automotive fuel cells. An APOR catalyst for methanol has been developed and tested; catalysts for other fuels are being evaluated. Simple in design, operation, and control, the APOR can help develop efficient fuel cell propulsion systems.

Kumar, R.; Ahmed, S.; Krumpelt, M.

1996-12-31T23:59:59.000Z

388

Feasibility Analysis of Steam Reforming of Biodiesel by-product Glycerol to Make Hydrogen  

E-Print Network (OSTI)

Crude glycerol is the major byproduct from biodiesel industry. In general, for every 100 pounds of biodiesel produced, approximately 10 pounds of crude glycerol are produced as a by-product. As the biodiesel industry rapidly expands in the U.S., the market is being flooded with this low quality waste glycerol. Due to its high impurities, it is expensive to purify and use in food, pharmaceutical, and cosmetics industries. Biodiesel producers should seek an alternative method which is economically and environmentally friendly. This research contains reforming process to covert waste glycerol from a biodiesel industry into sellable hydrogen. This process consists of 850oC reformer, 350oC and 210oC shift reactors for water gas shift reaction, flash tanks, and a separator. It is considered to be the least expensive method. At 850oC and 1 atm pressure, glycerol reacts with superheated steam to produce gaseous mixture of hydrogen, carbon dioxide, carbon monoxide, and methane. Reformer is a batch process where only 68% of waste glycerol is converted into gaseous mixture. The excess glycerol is recycled back as a feedstock. Water gas shift (WGS) reaction, further convert carbon monoxide into hydrogen and carbon dioxide which is further subjected to separation process to isolate hydrogen from CO2 and any other impurities. The final product stream consists of 68% of hydrogen, and 27% of CO2 based on molar flow rate.

Joshi, Manoj

2009-06-09T23:59:59.000Z

389

Hydrogen Production via a High-Efficiency Low-Temperature Reformer  

DOE Green Energy (OSTI)

Fuel cells are promoted by the US government as a viable alternative for clean and efficient energy generation. It is anticipated that the fuel cell market will rise if the key technical barriers can be overcome. One of them is certainly fuel processing and purification. Existing fuel reforming processes are energy intensive, extremely complicated and capital intensive; these disadvantages handicap the scale-down of existing reforming process, targeting distributed or on-board/stationary hydrogen production applications. Our project involves the bench-scale demonstration of a high-efficiency low-temperature steam reforming process. Hydrogen production can be operated at 350 to 400ºC with our invention, as opposed to >800ºC of existing reforming. In addition, our proposed process improves the start-up deficiency of conventional reforming due to its low temperature operation. The objective of this project is to demonstrate the invented process concept via a bench scale unit and verify mathematical simulation for future process optimization study. Under this project, we have performed the experimental work to determine the adsorption isotherm, reaction kinetics, and membrane permeances required to perform the process simulation based upon the mathematical model developed by us. A ceramic membrane coated with palladium thin film fabricated by us was employed in this study. The adsorption isotherm for a selected hydrotalcite adsorbent was determined experimentally. Further, the capacity loss under cyclic adsorption/desorption was confirmed to be negligible. Finally a commercial steam reforming catalyst was used to produce the reaction kinetic parameters required for the proposed operating condition. With these input parameters, a mathematical simulation was performed to predict the performance of the invented process. According to our simulation, our invented hybrid process can deliver 35 to 55% methane conversion, in comparison with the 12 and 18-21% conversion of the packed bed and an adsorptive reactor respectively. In addition CO contamination with <10 to 120 ppm is predicted for the invented process depending upon the cycle time for the PSA type operation. In comparison, the adsorption reactor can also deliver a similar CO contaminant at the low end; however, its high end reaches as high as 300 ppm based upon the simulation of our proposed operating condition. Our experimental results for the packed bed and the membrane reactor deliver 12 and 18% conversion at 400°C, approaching the conversion by the mathematical simulation. Due to the time constraint, the experimental study on the conversion of the invented process has not been complete. However, our in-house study using a similar process concept for the water gas shift reaction has demonstrated the reliability of our mathematical simulation for the invented process. In summary, we are confident that the invented process can deliver efficiently high purity hydrogen at a low temperature (~400°C). According to our projection, the invented process can further achieve 5% energy savings and ~50% capital savings over conventional reforming for fuel cell applications. The pollution abatement potential associated with the implementation of fuel cells, including the elimination of nitrogen oxides and CO, and the reduction in volatile organics and CO2, can thus be realized with the implementation of this invented process. The projected total market size for equipment sale for the proposed process in US is $1.5 billion annually.

Paul KT Liu; Theo T. Tsotsis

2006-05-31T23:59:59.000Z

390

Influence of Reduction Pretreatment and Methane Reforming on Nickel Solubility in YSZ Grains and Nickel Sintering within Ni-YSZ SOFC Anode Materials  

Science Conference Proceedings (OSTI)

Internal reforming of hydrocarbon fuels (e.g. methane or natural gas) can improve the thermal efficiency of solid oxide fuel cells (SOFC) by balancing exothermic electrochemical oxidation of H2 and CO at the anode/cathode interface with endothermic steam reforming reactions on the anode1. Generally the rate of reforming is much greater than the rate of H2 and CO oxidation leading to extensive thermal gradients across the cell that can compromise the physical integrity of the cell. Therefore, methods to control reformation activity and predict thermal gradients are needed. Computational modeling is used to predict thermal gradients and fuel conversion profiles across the cell, thus accurate and predictable methane reforming kinetics are required. Significant discrepancies in activation energy, rate expressions, and rate constants for methane reforming over nickel-yttria stabilized zirconia (Ni-YSZ) are reported in the open literature1-4. The objective of this work is to provide clarity on factors leading to discrepancies in kinetic information reported in the literature and identify potential methods to control reforming rates over NiYSZ anodes. Effects of pretreatment and reforming on Ni microstructure and activity of NiYSZ anodes for methane reforming were examined under open-circuit conditions.

Strohm, James J.; King, David L.; Saraf, Laxmikant V.; Lea, Alan S.; Wang, Chong M.; Singh, Prabhakar

2009-08-15T23:59:59.000Z

391

Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks: Thermal, Electrical and Stress Analysis  

DOE Green Energy (OSTI)

This report summarizes a parametric analysis performed to determine the effect of varying the percent on-cell reformation (OCR) of methane on the thermal and electrical performance for a generic, planar solid oxide fuel cell (SOFC) stack design. OCR of methane can be beneficial to an SOFC stack because the reaction (steam-methane reformation) is endothermic and can remove excess heat generated by the electrochemical reactions directly from the cell. The heat removed is proportional to the amount of methane reformed on the cell. Methane can be partially pre-reformed externally, then supplied to the stack, where rapid reaction kinetics on the anode ensures complete conversion. Thus, the thermal load varies with methane concentration entering the stack, as does the coupled scalar distributions, including the temperature and electrical current density. The endotherm due to the reformation reaction can cause a temperature depression on the anode near the fuel inlet, resulting in large thermal gradients. This effect depends on factors that include methane concentration, local temperature, and stack geometry.

Recknagle, Kurtis P.; Yokuda, Satoru T.; Jarboe, Daniel T.; Khaleel, Mohammad A.

2006-04-07T23:59:59.000Z

392

Dual mandates or dueling mandates : federal energy efficiency programs and the Recovery Act  

E-Print Network (OSTI)

In February 2009, President Barack Obama signed the American Recovery and Reinvestment Act (ARRA) into law, providing billions of dollars in funding for federal energy efficiency programs. ARRA represented different things ...

Sklarsky, Joshua (Joshua Lee)

2010-01-01T23:59:59.000Z

393

Stelzer on rate reform: if you don't, the Government will  

SciTech Connect

It is becoming difficult to support utilities in rate cases, warns Irwin Stelzer, president of National Economic Research Associates. Stelzer says he is often used by utilities as a witness in their requests for higher rates, but he is finding it hard to argue in their favor. The problem, he says, is the ''uneconomic'' pricing policy of the utility industry. Instead of favoring different rate structures, utility managers tend to favor direct load management and appeals to customers as a method of reducing peak demand. He blasted both of these tactics. Large industrial consumers also like direct load management because they think it is better than rate reform. The author sees no advantage in attempts to flatten load curve, because he maintains utilities have the equipment and technical know-how to satisfy any sort of demand curve. He challenged managers and executives at the meeting of the Electric Council of New England to rethink their position on rate reform because ''if utilities don't reform rates on their own, the Federal Government is going to do it.'' The answer to the problem, in Stelzer's opinion, is to junk the existing embedded-cost pricing method and switch to marginal cost pricing. ''If the cost varies by time of use, let the customers know by letting the price vary by time of use, then let the customer decide what to do. The economically appropriate load shape will follow,'' he says. (MCW)

1977-01-01T23:59:59.000Z

394

INVESTIGATION OF FUEL CHEMISTRY AND BED PERFORMANCE IN A FLUIDIZED BED BLACK LIQUOR STEAM REFORMER  

DOE Green Energy (OSTI)

The University of Utah project ''Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer'' (DOE award number DE-FC26-02NT41490) was developed in response to a solicitation for projects to provide technical support for black liquor and biomass gasification. The primary focus of the project is to provide support for a DOE-sponsored demonstration of MTCI's black liquor steam reforming technology at Georgia-Pacific's paper mill in Big Island, Virginia. A more overarching goal is to improve the understanding of phenomena that take place during low temperature black liquor gasification. This is achieved through five complementary technical tasks: (1) construction of a fluidized bed black liquor gasification test system, (2) investigation of bed performance, (3) evaluation of product gas quality, (4) black liquor conversion analysis and modeling and (5) computational modeling of the Big Island gasifier. Four experimental devices have been constructed under this project. The largest facility, which is the heart of the experimental effort, is a pressurized fluidized bed gasification test system. The system is designed to be able to reproduce conditions near the black liquor injectors in the Big Island steam reformer, so the behavior of black liquor pyrolysis and char gasification can be quantified in a representative environment. The gasification test system comprises five subsystems: steam generation and superheating, black liquor feed, fluidized bed reactor, afterburner for syngas combustion and a flue gas cooler/condenser. The three-story system is located at University of Utah's Industrial Combustion and Gasification Research Facility, and all resources there are available to support the research.

Kevin Whitty

2003-12-01T23:59:59.000Z

395

Study of Methane Reforming in Warm Non-Equilibrium Plasma Discharges  

E-Print Network (OSTI)

Utilization of natural gas in remote locations necessitates on-site conversion of methane into liquid fuels or high value products. The first step in forming high value products is the production of ethylene and acetylene. Non-thermal plasmas, due to their unique nonequilibrium characteristics, offer advantages over traditional methods of methane reforming. Different kinds of non-thermal plasmas are being investigated for methane reforming. Parameters of these processes like flow rate, discharge size, temperature and other variables determine efficiency of conversion. An efficient process is identified by a high yield and low specific energy of production for the desired product. A study of previous work reveals that higher energy density systems are more efficient for methane conversion to higher hydrocarbons as compared to low energy density systems. Some of the best results were found to be in the regime of warm discharges. Thermal equilibrium studies indicate that higher yields of ethylene are possible with an optimal control of reaction kinetics and fast quenching. With this idea, two different glow discharge reactor systems are designed and constructed for investigation of methane reforming. A counter flow micro plasma discharge system was used to investigate the trends of methane reforming products and the control parameters were optimized to get best possible ethylene yields while minimizing its specific energy. Later a magnetic glow discharge system is used and better results are obtained. Energy costs lower than thermal equilibrium calculations were achieved with magnetic glow discharge systems for both ethylene and acetylene. Yields are obtained from measurements of product concentrations using gas chromatography and power measurements are done using oscilloscope. Energy balance and mass balances are performed for product measurement accuracy and carbon deposition calculations. Carbon deposition is minimized through control of the temperature and residence time conditions in magnetic glow discharges. Ethylene production is observed to have lower specific energies at higher powers and lower flow rates in both reactors. An ethylene selectivity of 40 percent is achieved at an energy cost of 458MJ/Kg and an input energy cost of 5 MJ/Kg of methane.

Parimi, Sreekar

2010-12-01T23:59:59.000Z

396

Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer  

DOE Green Energy (OSTI)

University of Utah's project entitled 'Investigation of Fuel Chemistry and Bed Performance in a Fluidized Bed Black Liquor Steam Reformer' (DOE Cooperative Agreement DE-FC26-02NT41490) was developed in response to a solicitation released by the U.S. Department of Energy in December 2001, requesting proposals for projects targeted towards black liquor/biomass gasification technology support research and development. Specifically, the solicitation was seeking projects that would provide technical support for Department of Energy supported black liquor and biomass gasification demonstration projects under development at the time.

Kevin Whitty

2007-06-30T23:59:59.000Z

397

STEAM REFORMING TECHNOLOGY DEMONSTRATION FOR THE DESTRUCTION OF ORGANICS ON ACTUAL DOE SAVANNAH RIVER SITE TANK 48H WASTE 9138  

SciTech Connect

This paper describes the design of the Bench-scale Steam Reformer (BSR); a processing unit for demonstrating steam reforming technology on actual radioactive waste [1]. It describes the operating conditions of the unit used for processing a sample of Savannah River Site (SRS) Tank 48H waste. Finally, it compares the results from processing the actual waste in the BSR to processing simulant waste in the BSR to processing simulant waste in a large pilot scale unit, the Fluidized Bed Steam Reformer (FBSR), operated at Hazen Research Inc. in Golden, CO. The purpose of this work was to prove that the actual waste reacted in the same manner as the simulant waste in order to validate the work performed in the pilot scale unit which could only use simulant waste.

Burket, P

2009-02-24T23:59:59.000Z

398

Bank Reform in Greece with reference to Eastern Europe The Case of The Hellenic Industrial Development Bank S.A.  

E-Print Network (OSTI)

Is Greece a reforming economy? The purpose of this paper is to present the evolution and structure of the banking sector in Greece, with reference to the parallel experiences of the Eastern European (EE) countries. In Section 2, we are concerned with the domestic economic environment within which the Greek Banking System (GBS) operates. and the pressures building up within the system encouraging reform. In Section 3, we look into the evolution of the Greek Banking System, both in terms of structures and in terms of policy. Changes in the instruments of monetary policy are also considered in this section. In Section 4, we present the case of the Hellenic Industrial Development Bank, currently undergoing a thorough restructuring plan. In Section 5, we examine some of the main similarities and differences between Greece and the EE countries in relation to banking sector problems and reforms.

Marica Frangakis

1998-01-01T23:59:59.000Z

399

The role of randomized field trials in social science research: A perspective from evaluations of reforms of social welfare programs  

E-Print Network (OSTI)

views are those of the author alone. yale_ms_v3.wpd One of the areas of policy research where randomized field trials have been utilized most intensively is welfare reform. Starting in the late 1960s with experimental tests of a negative income tax and continuing through current experimental tests of recent welfare reforms, randomized evaluations have played a strong and increasing role in informing policy. This paper reviews the record of these experiments and assesses the implications of that record for the use of randomization. The review demonstrates that, while randomized field trials in the area of welfare reform have been professionally conducted and well-run, and have yielded much valuable and credible information, their usefulness has been limited by a number of weaknesses, some of which are inherent in the method and some of which result from constraints imposed by the political process. The conclusion is that randomized field trials have an important but limited role to play in future welfare reform evaluations, and that it is essential that they be supplemented by nonexperimental research. Unlike the case in many other social sciences, randomized field trials (RFTs) have been used extensively in certain subareas of the discipline of economics. While there are several such subareas where experimentation has been employed, the area of social welfare is perhaps that which has seen the most intensive use. RFTs in social welfare were begun in the 1960s with experimental tests of a negative income tax, and RFTs testing various reforms of cash welfare--most notably, reforms to the Aid to Families with Dependent Children (AFDC) program--have continued unabated since then and have, indeed, accelerated in the 1990s.

Robert A. Moffitt; Alan Krueger; Charles Michalopoulos

2004-01-01T23:59:59.000Z

400

Experimental and theoretical study of exhaust gas fuel reforming of Diesel fuel by a non-thermal arc discharge for syngas production  

E-Print Network (OSTI)

-thermal arc discharge for syngas production A. Lebouvier1,2 , F. Fresnet2 , F. Fabry1 , V. Boch2 , V. Rohani1% and a conversion rate of 95% have been reached which correspond to a syngas dry molar fraction of 25%. For the most and promote H2O and CO2 production. Keywords: Plasma reformer, syngas, diesel fuel reforming, NOx trap. 1

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Reformer assisted lean NO.sub.x catalyst aftertreatment system and method  

DOE Patents (OSTI)

A method and apparatus for catalytically processing a gas stream passing therethrough to reduce the presence of NO.sub.x therein, wherein the apparatus includes a first catalyst composed of a silver-containing alumina that is adapted for catalytically processing the gas stream at a first temperature range, a second catalyst composed of a copper-containing zeolite located downstream from the first catalyst, wherein the second catalyst is adapted for catalytically processing the gas stream at a lower second temperature range relative to the first temperature range, a hydrocarbon compound for injection into the gas stream upstream of the first catalyst to provide a reductant, and a reformer for reforming a portion of the hydrocarbon compound into H.sub.2 and/or oxygenated hydrocarbon for injection into the gas stream upstream of the first catalyst. The second catalyst is adapted to facilitate the reaction of reducing NOx into N.sub.2, whereby the intermediates are produced via the first catalyst reacting with NOx and hydrocarbons.

Kalyanaraman, Mohan (Media, PA); Park, Paul W. (Peoria, IL); Ragle, Christie S. (Havana, IL)

2010-06-29T23:59:59.000Z

402

EFFECT OF H2 PRODUCED THROUGH STEAM-METHANE REFORMING ON CHP PLANT EFFICIENCY  

E-Print Network (OSTI)

In-situ hydrogen production is carried out by a catalytic reformer kit set up into exhaust gases for a CHP plant based on spark ignition engine running under lean conditions. An overall auto-thermal reforming process is achieved. Hydrogen production is mainly dependent on O2 content in exhaust gases. Experiments are conducted at constant speed at 2 air/fuel ratios and 4 additional natural gas flow rates. H2 content varies in the range 6 % to 10 % in vol. H2 content effect is analyzed with respect to performance and emissions. Comparing with EGR shows an increasing of electrical efficiency of 1 % whilst heat recovery decreases by 1%. NO and HC decrease by 18 % and 12%, but CO increases by 14%, respectively. The results show that: (i) graphite joints were destroyed under effect of H2 and high temperature; (ii) a cold spot appeared in the RGR line, and condensation has as consequence a carbon deposit; and (iii) no back-fire or knock occurred.

O. Le Corre; C. Rahmouni; K. Saikaly; I. Dincer

2013-01-01T23:59:59.000Z

403

Phase 2 THOR Steam Reforming Tests for Sodium Bearing Waste Treatment  

Science Conference Proceedings (OSTI)

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste is stored in stainless steel tanks at the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory. Steam reforming is a candidate technology being investigated for converting the waste into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. A steam reforming technology patented by Studsvik, Inc., and licensed to THOR Treatment Technologies has been tested in two phases using a Department of Energy-owned fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center located in Idaho Falls, Idaho. The Phase 1 tests were reported earlier in 2003. The Phase 2 tests are reported here. For Phase 2, the process feed rate, stoichiometry, and chemistry were varied to identify and demonstrate process operation and product characteristics under different operating conditions. Two test series were performed. During the first series, the process chemistry was designed to produce a sodium carbonate product. The second series was designed to produce a more leach-resistant, mineralized sodium aluminosilicate product. The tests also demonstrated the performance of a MACT-compliant off-gas system.

Nicholas R. Soelberg

2004-01-01T23:59:59.000Z

404

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at INL for ICP  

SciTech Connect

The patented THOR® steam reforming waste treatment technology has been selected as the technology of choice for treatment of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL) for the Idaho Cleanup Project (ICP). SBW is an acidic tank waste at the Idaho Nuclear Technology and Engineering Center (INTEC) at INL. It consists primarily of waste from decontamination activities and laboratory wastes. SBW contains high concentrations of nitric acid, alkali and aluminum nitrates, with minor amounts of many inorganic compounds including radionuclides, mainly cesium and strontium. The THOR® steam reforming process will convert the SBW tank waste feed into a dry, solid, granular product. The THOR® technology was selected to treat SBW, in part, because it can provide flexible disposal options to accommodate the final disposition path selected for SBW. THOR® can produce a final end-product that will meet anticipated requirements for disposal as Remote-Handled TRU (RH-TRU) waste; and, with modifications, THOR® can also produce a final endproduct that could be qualified for disposal as High Level Waste (HLW). SBW treatment will be take place within the Integrated Waste Treatment Unit (IWTU), a new facility that will be located at the INTEC. This paper provides an overview of the THOR® process chemistry and process equipment being designed for the IWTU.

J. Bradley Mason; Kevin Ryan; Scott Roesener; Michael Cowen; Duane Schmoker; Pat Bacala; Bill Landman

2006-03-01T23:59:59.000Z

405

Phase 2 TWR Steam Reforming Test for Sodium-Bearing Waste Treatment  

SciTech Connect

About one million gallons of acidic, hazardous, and radioactive sodium-bearing waste (SBW) is stored in stainless steel tanks a the Idaho Nuclear Technology and Engineering Center (INTEC), which is a major operating facility of the Idaho National Engineering and Environmental Laboratory (INEEL). Steam reforming is a candidate technology being investigated for converting the SBW into a road ready waste form that can be shipped to the Waste Isolation Pilot Plant in New Mexico for interment. Fluidized bed steam reforming technology, licensed to ThermoChem Waste Remediation, LLC (TWR) by Manufacturing Technology Conversion International, was tested in two phases using an INEEL (Department of Energy) fluidized bed test system located at the Science Applications International Corporation (SAIC) Science and Technology Applications Research Center in Idaho Falls, Idaho. The Phase 1 tests were reported earlier. The Phase 2 tests are reported here. For Phase 2, the process feed rate, reductant stoichiometry, and process temperature were varied to identify and demonstrate how the process might be optimized to improve operation and product characteristics. The first week of testing was devoted primarily to process chemistry and the second week was devoted more toward bed stability and particle size control.

Nicholas R. Soelberg; Doug Marshall; Dean Taylor; Steven Bates

2004-01-01T23:59:59.000Z

406

Interim report:feasibility of microscale glucose reforming for renewable hydrogen.  

DOE Green Energy (OSTI)

Micro-scale aqueous steam reforming of glucose is suggested as a novel method of H{sub 2} production for micro fuel cells. Compact fuel cell systems are a viable alternative to batteries as a portable electrical power source. Compared with conventional lithium polymer batteries, hydrocarbon powered fuel cells are smaller, weigh less, and have a much higher energy density. The goal of this project is to develop a hydrocarbon powered microfuel processor capable of driving an existing microfuel cell, and this interim report provides a summary of the engineering information for microscale reforming of carbohydrates and the summarizes the work completed as of September 2006. Work on this program will continue. Gas analysis of the gas evolved from glucose breakdown using a quadrupole mass spectrometer is now possible due do significant modifications to the vacuum chamber and to the mass spectrometer electronics. Effective adhesion of Pt/Al{sub 2}O{sub 3} to 316SS microstructured catalyst plates is still under investigation. Electrophoretic and dip coat methods of catalyst deposition have produced coatings with poor adhesion and limited available Pt surface area.

Norman, Kirsten (New Mexico Institute of Mining and Technology, Socorro, NM)

2007-03-01T23:59:59.000Z

407

Solar reforming of methane in a direct absorption catalytic reactor on a parabolic dish  

DOE Green Energy (OSTI)

The concept of solar driven chemical reactions in a commercial-scale volumetric receiver/reactor on a parabolic concentrator was successfully demonstrated in the CAtalytically Enhanced Solar Absorption Receiver (CAESAR) test. Solar reforming of methane (CH{sub 4}) with carbon dioxide (CO{sub 2}) was achieved in a 64-cm diameter direct absorption reactor on a parabolic dish capable of 150 kW solar power. The reactor was a catalytic volumetric absorber consisting of a multi-layered, porous alumina foam disk coated with rhodium (Rh) catalyst. The system was operated during both steady-state and solar transient (cloud passage) conditions. The total solar power absorbed reached values up to 97 kW and the maximum methane conversion was 70%. Receiver thermal efficiencies ranged up to 85% and chemical efficiencies peaked at 54%. The absorber performed satisfactorily in promoting the reforming reaction during the tests without carbon formation. However, problems of cracking and degradation of the porous matrix, nonuniform dispersion of the Rh through the absorber, and catalyst deactivation due to sintering and possible encapsulation, must be resolved to achieve long-term operation and eventual commercialization. 17 refs., 11 figs., 1 tab.

Muir, J.F.; Hogan, R.E. Jr.; Skocypec, R.D. (Sandia National Labs., Albuquerque, NM (USA)); Buck, R. (Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Stuttgart (Germany, F.R.). Inst. fuer Technische Thermodynamik)

1990-01-01T23:59:59.000Z

408

CHARM COST-EFFECTIVE HIGH-EFFICIENCY ADVANCED REFORMING MODULE FINAL TECHNICAL REPORT  

Science Conference Proceedings (OSTI)

Background Creation of a hydrogen infrastructure is an important prerequisite of widespread fuel cell commercialization, especially for the automotive market. Hydrogen is an attractive fuel since it offers an opportunity to replace petroleum-based fuels, but hydrogen occurs naturally only in chemical compounds like water or hydrocarbons that must be chemically converted to produce it. While an ultimate goal is to produce hydrogen through renewable energy sources, steam methane reforming (SMR) of natural gas is currently the most economical solution to initiate the transition to a hydrogen economy. Centralized hydrogen generation using large industrial SMR plants is already in place to serve customers. Yet, because of the weight and size of cylinders needed to contain hydrogen gas or liquid, transportation of hydrogen may only be economical for short distances. Consequently, distributed natural gas reforming, which trades off the economies of scale of large plants for simplified delivery logistics, is an attractive alternative that could address immediate problems with the lack of hydrogen infrastructure.

Pollica, Darryl; Cross, James C; Sharma, Atul; Shi, Yanlong; Clawson, Lawrence; O'Brien, Chris; Gilhooly, Kara; Kim, Changsik; Quet, Pierre-Francois

2009-09-02T23:59:59.000Z

409

Review of Novel Catalysts for Biomass Tar Cracking and Methane Reforming  

DOE Green Energy (OSTI)

A review of the literature was conducted to examine the performance of catalysts other than conventional nickel catalysts, and alkaline earth and olivine based catalysts for treating hot raw product gas from a biomass gasifier to convert methane and tars into synthesis gas. Metal catalysts other than Ni included precious metals Rh, Ru, Ir, Pt, and Pd, as well as Cu, Co, and Fe in limited testing. Nickel catalysts promoted with Rh, Zr, Mn, Mo, Ti, Ag, or Sn were also examined, as were Ni catalysts on Ce2O3, TiO2, ZrO2, SiO2, and La2O3. In general, Rh stood out as a consistently superior metal catalyst for methane reforming, tar cracking, and minimizing carbon buildup on the catalyst. Ru and Ir also showed significant improvement over Ni for methane reforming. Ceria stood out as good support material and particularly good promoter material when added in small quantities to another support material such as alumina, zirconia, or olivine. Other promising supports were lanthana, zirconia, and titania.

Gerber, Mark A.

2007-10-10T23:59:59.000Z

410

The Myth of Post-Reform Income Stagnation: Evidence from Brazil and Mexico  

E-Print Network (OSTI)

This Working Paper should not be reported as representing the views of the IMF. The views expressed in this Working Paper are those of the author(s) and do not necessarily represent those of the IMF or IMF policy. Working Papers describe research in progress by the author(s) and are published to elicit comments and to further debate. Economic policies are often judged by a handful of statistics, some of which may be biased during periods of change. We estimate the income growth implied by the evolution of food demand and durable good ownership in post-reform Brazil and Mexico, and find that changes in consumption patterns are inconsistent with official estimates of near stagnant incomes. That is attributed to biases in the price deflator. The estimated unmeasured income gains are higher for poorer households, implying marked reductions in “real ” inequality. These findings challenge the conventional wisdom that post-reform income growth was low and did not benefit the poor. 25BJEL Classification

Irineu De Carvalho Filho; Prepared Irineu; Carvalho Filho; Marcos Chamon

2008-01-01T23:59:59.000Z

411

REFORMING OF LIQUID HYDROCARBONS IN A NOVEL HYDROGEN-SELECTIVE MEMBRANE-BASED FUEL PROCESSOR  

DOE Green Energy (OSTI)

We propose to develop an inorganic metal-metal composite membrane to study reforming of liquid hydrocarbons and methanol by equilibrium shift in membrane-reactor configuration, viewed as fuel processor. Based on our current understanding and experience in the Pd-ceramic composite membrane, we propose to further develop this membrane to a Pd and Pd-Ag alloy membrane on microporous stainless steel support to provide structural reliability from distortion due to thermal cycling. Because of the metal-metal composite structure, we believe that the associated end-seal problem in the Pd-ceramic composite membrane in tubular configuration would not be an issue at all. We plan to test this membrane as membrane-reactor-separator for reforming liquid hydrocarbons and methanol for simultaneous production and separation of high-purity hydrogen for PEM fuel cell applications. To improve the robustness of the membrane film and deep penetration into the pores, we have used osmotic pressure field in the electroless plating process. Using this novel method, we deposited thin Pd-film on the inside of microporous stainless steel tube and the deposited film appears to robust and defect free. Work is in progress to evaluate the hydrogen perm-selectivity of the Pd-stainless steel membrane.

Shamsuddin Ilias

2003-06-30T23:59:59.000Z

412

Another instance where privatization trumped liberalization: The politics of telecommunications reform in South Africa-A ten-year retrospective  

Science Conference Proceedings (OSTI)

Soon after the first democratic election in 1994, South Africa passed legislation to revamp the telecommunications sector-to roll out telephone service to the previously disadvantaged and establish an independent regulator to oversee the reform. The ... Keywords: African National Congress, Black Economic Empowerment, Liberalization, Privatization, Regulation, South Africa, Telecommunications

Robert B. Horwitz; Willie Currie

2007-09-01T23:59:59.000Z

413

An Empirical Framework for Large-Scale Policy Analysis, with an Application to School Finance Reform in Michigan  

E-Print Network (OSTI)

In this paper I develop an empirical framework for the analysis of large-scale policies, and apply it to study the effects of Michigan’s 1994 school finance reform on the Detroit metropolitan area. The framework includes estimating a general equilibrium model of multiple jurisdictions with data before the reform, predicting the post-reform equilibrium, and comparing this prediction with postreform data to validate the model. According to my analysis, the Michigan reform had little impact on household demographics or school quality in Detroit. The alternative school funding policies analyzed here do not seem to affect school quality much either. (JEL C52, I22, H73) I thank the Berkman Faculty Development Fund at Carnegie Mellon University for financial support. I also thank Julie Berry Cullen and Susanna Loeb for providing me with data on pass rates for Michigan. Mary Ann Cleary, Jeff Guilfoyle, Andrew Lockwood, and Glenda Rader from the government of the state of Michigan answered many of my questions on Proposal A. I am indebted to Dennis Epple, George-Levy Gayle, Holger Sieg, and Fallaw Sowell for valuable conversations, and to participants at the 2004 summer workshop at the Federal Reserve of Cleveland for comments on an

Maria Marta Ferreyra

2009-01-01T23:59:59.000Z

414

INDONESIA'S DEMOCRATIC TRANSFORMATION Launch by Prof the Hon Gareth Evans, Chancellor, of Harold Crouch, Political Reform in  

E-Print Network (OSTI)

INDONESIA'S DEMOCRATIC TRANSFORMATION Launch by Prof the Hon Gareth Evans, Chancellor, of Harold Crouch, Political Reform in Indonesia after Soeharto and Edward Aspinall and Marcus Mietzner (eds) Problems of Democratisation in Indonesia, College of Asia and the Pacific, Australian National University

Botea, Adi

415

Separation and recovery of hydrogen and normally gaseous hydrocarbons from net excess hydrogen from a catalytic reforming process  

Science Conference Proceedings (OSTI)

A process is disclosed for the catalytic reforming of hydrocarbons in the presence of hydrogen, preferably to produce high quality gasoline boiling range products. An improved recovery of normally gaseous hydrocarbons from the net excess hydrogen is realized by chilling and contacting said hydrogen with a normally liquid hydrocarbon stream in a plural stage absorption zone at an elevated pressure.

Scheifele, C.A.

1982-06-08T23:59:59.000Z

416

Role of metal-support interactions on the activity of Pt and Rh catalysts for reforming methane and butane.  

DOE Green Energy (OSTI)

For residential fuel cell systems, reforming of natural gas is one option being considered for providing the H{sub 2} necessary for the fuel cell to operate. Industrially, natural gas is reformed using Ni-based catalysts supported on an alumina substrate, which has been modified to inhibit coke formation. At Argonne National Laboratory, we have developed a new family of catalysts derived from solid oxide fuel cell technology for reforming hydrocarbon fuels to generate H{sub 2}. These catalysts consist of a transition metal supported on an oxide-ion-conducting substrate, such as ceria, that has been doped with a small amount of a non-reducible element, such as gadolinium, samarium, or zirconium. Unlike alumina, the oxide-ion-conducting substrate has been shown to induce strong metal-support interactions. Metal-support interactions are known to play an important role in influencing the catalytic activity of many metals supported on oxide supports. Based on results from temperature-programmed reduction/oxidation and kinetic reaction studies, this paper discusses the role of the metal and the substrate in the metal-support interactions, and how these interactions influence the activity and the selectivity of the catalyst in reforming methane and butane to hydrogen for use in fuel cell power systems.

Rossignol, C.; Krause, T.; Krumpelt, M.

2002-01-11T23:59:59.000Z

417

Fluidized Bed Steam Reforming of INEEL SBW Using THORsm Mineralizing Technology  

SciTech Connect

Sodium bearing waste (SBW) disposition is one of the U.S. Department of Energy (DOE) Idaho Operation Office’s (NE-ID) and State of Idaho’s top priorities at the Idaho National Engineering and Environmental Laboratory (INEEL). Many studies have resulted in the identification of five treatment alternatives that form a short list of perhaps the most appropriate technologies for the DOE to select from. The alternatives are (a) calcination with maximum achievable control technology (MACT) upgrade, (b) steam reforming, (c) cesium ion exchange (CsIX) with immobilization, (d) direct evaporation, and (e) vitrification. Each alternative has undergone some degree of applied technical development and preliminary process design over the past four years. DOE desired further experimental data, with regard to steam reforming technology, to make informed decisions concerning selection of treatment technology for SBW. Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was performed in a 15-cm-diameter reactor vessel September 27 through October 1, 2004. The pilot scale equipment is owned by the DOE, and located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Personnel from Science Applications International Corporation, owners of the STAR Center, operated the pilot plant. The pilot scale test was terminated as planned after achieving a total of 100 hrs of cumulative/continuous processing operation. About 230 kg of SBW surrogate were processed that resulted in about 88 kg of solid product, a mass reduction of about 62%. The process achieved about a 90% turnover of the starting bed. Samples of mineralized solid product materials were analyzed for chemical/physical properties. Results of product performance testing conducted by SRNL will be reported separately by SRNL.

Arlin L. Olson; Nicholas R. Soelberg; Douglas W. Marshall; Gary L. Anderson

2004-12-01T23:59:59.000Z

418

RADIOACTIVE DEMONSTRATIONS OF FLUIDIZED BED STEAM REFORMING (FBSR) WITH HANFORD LOW ACTIVITY WASTES  

SciTech Connect

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750°C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C.; Crawford, C.; Burket, P.; Bannochie, C.; Daniel, G.; Nash, C.; Cozzi, A.; Herman, C.

2012-10-22T23:59:59.000Z

419

Distributed Bio-Oil Reforming - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Stefan Czernik (Primary Contact), Richard French, Michael Penev National Renewable Energy Laboratory (NREL) 15013 Denver West Parkway Golden, CO 80401 Phone: (303) 384-6135 Email: Stefan.Czernik@nrel.gov DOE Manager Sara Dillich Phone: (202) 586-1623 Email: Sara.Dillich@ee.doe.gov Subcontractor: University of Minnesota, Minneapolis, MN Project Start Date: October 1, 2004 Project End Date: September 30, 2012 Fiscal Year (FY) 2012 Objectives By 2012, develop and demonstrate distributed reforming * technology for producing hydrogen from bio-oil at $4.10/ kilogram (kg) purified hydrogen. Demonstrate integrated performance at bench scale * including bio-oil vaporization, partial-oxidation (POX)

420

Corrosion Behavior of Interconnect Candidate Alloys under Air//Simulated Reformate Dual Exposure Conditions  

SciTech Connect

Metallic interconnects in solid oxide fuel cell (SOFC) stacks, perform in a very challenging dual environment, as they are simultaneously exposed to a reducing fuel (either hydrogen or a hydrocarbon fuel) on one side and air on the other side at elevated temperatures. Thus candidate metals or alloys for the interconnect applications must demonstrate excellent surface stability under the SOFC operating conditions. Following previous studies which led to an improved understanding of the oxidation/corrosion behavior of metals and alloys under air/hydrogen dual exposure conditions, PNNL recently investigated the behavior of Fe-Cr and Ni-Cr base interconnect candidate alloys in an air/simulated reformate dual environment. This paper reports and discusses the findings of this work.

Yang, Z Gary; Xia, Gordon; Stevenson, Jeffry W.; Singh, Prabhakar

2008-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Radioactive Demonstrations Of Fluidized Bed Steam Reforming (FBSR) With Hanford Low Activity Wastes  

Science Conference Proceedings (OSTI)

Several supplemental technologies for treating and immobilizing Hanford low activity waste (LAW) are being evaluated. One immobilization technology being considered is Fluidized Bed Steam Reforming (FBSR) which offers a low temperature (700-750?C) continuous method by which wastes high in organics, nitrates, sulfates/sulfides, or other aqueous components may be processed into a crystalline ceramic (mineral) waste form. The granular waste form produced by co-processing the waste with kaolin clay has been shown to be as durable as LAW glass. The FBSR granular product will be monolithed into a final waste form. The granular component is composed of insoluble sodium aluminosilicate (NAS) feldspathoid minerals such as sodalite. Production of the FBSR mineral product has been demonstrated both at the industrial, engineering, pilot, and laboratory scales on simulants. Radioactive testing at SRNL commenced in late 2010 to demonstrate the technology on radioactive LAW streams which is the focus of this study.

Jantzen, C. M.; Crawford, C. L.; Burket, P. R.; Bannochie, C. J.; Daniel, W. G.; Nash, C. A.; Cozzi, A. D.; Herman, C. C.

2012-10-22T23:59:59.000Z

422

Study of net soot formation in hydrocarbon reforming for hydrogen fuel cells. Final report  

DOE Green Energy (OSTI)

The hydrogen fuel cell is expected to be a valuable addition to the electric utility industry; however, the current fuel supply availability requires that conventional heavier hydrocarbon fuels also be considered as primary fuels. Typical heavier fuels would be No. 2 fuel oil with its accompanying sulfur impurities, compared with the currently used light hydrocarbon gases. The potential future use of alternate fuels which are rich in aromatics would exacerbate the problems associated with hydrogen production. Among the more severe of these problems, is the greater tendency of heavier hydrocarbons to form soot. The development of a quasi-global kinetics model to represent the homogeneous and heterogeneous reactions which control the autothermal hydrogen reforming process and the accompanying soot formation and gasification was the objective of this study.

Edelman, R. B.; Farmer, R. C.; Wang, T. S.

1982-08-01T23:59:59.000Z

423

Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol  

SciTech Connect

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the third report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of April 1-June 30, 2004. This quarter saw progress in five areas. These areas are: (1) External evaluation of coal based methanol and the fuel cell grade baseline fuel, (2) Design, set up and initial testing of the autothermal reactor, (3) Experiments to determine the axial and radial thermal profiles of the steam reformers, (4) Catalyst degradation studies, and (5) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-06-30T23:59:59.000Z

424

Steam Reforming, 6-in. Bench-Scale Design and Testing Project -- Technical and Functional Requirements Description  

SciTech Connect

Feasibility studies and technology development work are currently being performed on several processes to treat radioactive liquids and solids currently stored at the Idaho Nuclear Technology and Engineering Center (INTEC), located within the Idaho National Engineering and Environmental Laboratory (INEEL). These studies and development work will be used to select a treatment process for treatment of the radioactive liquids and solids to meet treatment milestones of the Settlement Agreement between the Department of Energy and the State of Idaho. One process under consideration for treating the radioactive liquids and solids, specifically Sodium-Bearing Waste (SBW) and tank heel solids, is fluid bed steam reforming (FBSR). To support both feasibility and development studies a bench-scale FBSR is being designed and constructed. This report presents the technical and functional requirements, experimental objectives, process flow sheets, and equipment specifications for the bench-scale FBSR.

Losinski, Sylvester John; Marshall, Douglas William

2002-08-01T23:59:59.000Z

425

FEEDSTOCK-FLEXIBLE REFORMER SYSTEM (FFRS) FOR SOLID OXIDE FUEL CELL (SOFC)- QUALITY SYNGAS  

DOE Green Energy (OSTI)

The U.S. Department of Energy National Energy Technology Laboratory funded this research collaboration effort between NextEnergy and the University of Michigan, who successfully designed, built, and tested a reformer system, which produced highquality syngas for use in SOFC and other applications, and a novel reactor system, which allowed for facile illumination of photocatalysts. Carbon and raw biomass gasification, sulfur tolerance of non-Platinum Group Metals (PGM) based (Ni/CeZrO2) reforming catalysts, photocatalysis reactions based on TiO2, and mild pyrolysis of biomass in ionic liquids (ILs) were investigated at low and medium temperatures (primarily 450 to 850 C) in an attempt to retain some structural value of the starting biomass. Despite a wide range of processes and feedstock composition, a literature survey showed that, gasifier products had narrow variation in composition, a restriction used to develop operating schemes for syngas cleanup. Three distinct reaction conditions were investigated: equilibrium, autothermal reforming of hydrocarbons, and the addition of O2 and steam to match the final (C/H/O) composition. Initial results showed rapid and significant deactivation of Ni/CeZrO2 catalysts upon introduction of thiophene, but both stable and unstable performance in the presence of sulfur were obtained. The key linkage appeared to be the hydrodesulfurization activity of the Ni reforming catalysts. For feed stoichiometries where high H2 production was thermodynamically favored, stable, albeit lower, H2 and CO production were obtained; but lower thermodynamic H2 concentrations resulted in continued catalyst deactivation and eventual poisoning. High H2 levels resulted in thiophene converting to H2S and S surface desorption, leading to stable performance; low H2 levels resulted in unconverted S and loss in H2 and CO production, as well as loss in thiophene conversion. Bimetallic catalysts did not outperform Ni-only catalysts, and small Ni particles were found to have lower activities under S-free conditions, but did show less effect of S on performance, in this study. Imidazolium-based ILs, choline chloride compounds and low-melting eutectics of metal nitrates were evaluated, and it was found that, ILs have some capacity to dissolve cellulose and show thermal stability to temperatures where pyrolysis begins, have no vapor pressure, (simplifying product recoveries), and can dissolve ionic metal salts, allowing for the potential of catalytic reactions on breakdown intermediates. Clear evidence of photoactive commercial TiO2 was obtained, but in-house synthesis of photoactive TiO2 proved difficult, as did fixed-bed gasification, primarily due to the challenge of removing the condensable products from the reaction zone quickly enough to prevent additional reaction. Further investigation into additional non-PGM catalysts and ILs is recommended as a follow-up to this work.

Kelly Jezierski; Andrew Tadd; Johannes Schwank; Roland Kibler; David McLean; Mahesh Samineni; Ryan Smith; Sameer Parvathikar; Joe Mayne; Tom Westrich; Jerry Mader; F. Michael Faubert

2010-07-30T23:59:59.000Z

426

HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL  

DOE Green Energy (OSTI)

Hydrogen can be produced from many feed stocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the second report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of January 1--March 31, 2004. This quarter saw progress in five areas. These areas are: (1) Internal and external evaluations of coal based methanol and the fuel cell grade baseline fuel; (2) Experimental investigations of heat and mass transfer enhancement methods by flow field manipulation; (3) Design and set up of the autothermal reactor; (4) Steam reformation of Coal Based Methanol; and (5) Initial catalyst degradation studies. All of the projects are proceeding on or slightly ahead of schedule.

Paul A. Erickson

2004-04-01T23:59:59.000Z

427

Ab Initio Studies of Coke Formation on Ni Catalysts During Methane Reforming  

SciTech Connect

The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts. The adsorption and diffusion of atomic H on several flat and stepped Ni surfaces has also been characterized experimentally.

David S. Sholl

2006-03-05T23:59:59.000Z

428

AB INITIO STUDIES OF COKE FORMATION ON NI CATALYSTS DURING METHANE REFORMING  

SciTech Connect

The atomic-scale processes that control the formation of carbon deposits on Ni catalysts in reforming applications are poorly understood. Ab initio Density Functional Theory calculations have been used to examine several key elementary steps in the complex network of chemical reactions that precedes carbon formation on practical catalysts. Attention has been focused on the disproportionation of CO. A comparative study of this reaction on flat and stepped crystal planes of Ni has provided the first direct evidence that surface carbon formation is driven by elementary reactions occurring at defect sites on Ni catalysts. The adsorption and diffusion of atomic H on several flat and stepped Ni surfaces has also been characterized experimentally.

David S. Sholl

2004-09-25T23:59:59.000Z

429

Mill Integration-Pulping, Stream Reforming and Direct Causticization for Black Liquor Recovery  

DOE Green Energy (OSTI)

MTCI/StoneChem developed a steam reforming, fluidized bed gasification technology for biomass. DOE supported the demonstration of this technology for gasification of spent wood pulping liquor (or 'black liquor') at Georgia-Pacific's Big Island, Virginia mill. The present pre-commercial R&D project addressed the opportunities as well as identified negative aspects when the MTCI/StoneChem gasification technology is integrated in a pulp mill production facility. The opportunities arise because black liquor gasification produces sulfur (as H{sub 2}S) and sodium (as Na{sub 2}CO{sub 3}) in separate streams which may be used beneficially for improved pulp yield and properties. The negative aspect of kraft black liquor gasification is that the amount of Na{sub 2}CO{sub 3} which must be converted to NaOH (the so called causticizing requirement) is increased. This arises because sulfur is released as Na{sub 2}S during conventional kraft black liquor recovery, while during gasification the sodium associated Na{sub 2}S is partly or fully converted to Na{sub 2}CO{sub 3}. The causticizing requirement can be eliminated by including a TiO{sub 2} based cyclic process called direct causticization. In this process black liquor is gasified in the presence of (low sodium content) titanates which convert Na{sub 2}CO{sub 3} to (high sodium content) titanates. NaOH is formed when contacting the latter titanates with water, thereby eliminating the causticizing requirement entirely. The leached and low sodium titanates are returned to the gasification process. The project team comprised the University of Maine (UM), North Carolina State University (NCSU) and MTCI/ThermoChem. NCSU and MTCI are subcontractors to UM. The principal organization for the contract is UM. NCSU investigated the techno-economics of using advanced pulping techniques which fully utilize the unique cooking liquors produced by steam reforming of black liquor (Task 1). UM studied the kinetics and agglomeration problems of the conversion of Na{sub 2}CO{sub 3} to (high sodium) titanates during gasification of black liquor in the presence of (low sodium) titanates or TiO{sub 2} (Task 2). MTCI/ThermoChem tested the performance and operability of the combined technology of steam reforming and direct causticization in their Process Development Unit (PDU) (Task 3). The specific objectives were: (1) to investigate how split sulfidity and polysulfide (+ AQ) pulping can be used to increase pulp fiber yield and properties compared to conventional kraft pulping; (2) to determine the economics of black liquor gasification combined with these pulping technologies in comparison with conventional kraft pulping and black liquor recovery; (3) to determine the effect of operating conditions on the kinetics of the titanate-based direct causticization reaction during black liquor gasification at relatively low temperatures ({le} 750 C); (4) to determine the mechanism of particle agglomeration during gasification of black liquor in the presence of titanates at relatively low temperatures ({le} 750 C); and (5) to verify performance and operability of the combined technology of steam reforming and direct causticization of black liquor in a pilot scale fluidized bed test facility.

Adriaan van Heiningen

2007-06-30T23:59:59.000Z

430

Electro-catalytic oxidation device for removing carbon from a fuel reformate  

SciTech Connect

An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.

Liu, Di-Jia (Naperville, IL)

2010-02-23T23:59:59.000Z

431

Reforming of Liquid Hydrocarbons in a Novel Hydrogen-Selective Membrane-Based Fuel Processor  

DOE Green Energy (OSTI)

In this work, asymmetric dense Pd/porous stainless steel composite membranes were fabricated by depositing palladium on the outer surface of the tubular support. The electroless plating method combined with an osmotic pressure field was used to deposit the palladium film. Surface morphology and microstructure of the composite membranes were characterized by SEM and EDX. The SEM and EDX analyses revealed strong adhesion of the plated pure palladium film on the substrate and dense coalescence of the Pd film. Membranes were further characterized by conducting permeability experiments with pure hydrogen, nitrogen, and helium gases at temperatures from 325 to 450 C and transmembrane pressure differences from 5 to 45 psi. The permeation results showed that the fabricated membranes have both high hydrogen permeability and selectivity. For example, the hydrogen permeability for a composite membrane with a 20 {micro}m Pd film was 3.02 x 10{sup -5} moles/m{sup 2}.s.Pa{sup 0.765} at 450 C. Hydrogen/nitrogen selectivity for this composite membrane was 1000 at 450 C with a transmembrane pressure difference of 14.7 psi. Steam reforming of methane is one of the most important chemical processes in hydrogen and syngas production. To investigate the usefulness of palladium-based composite membranes in membrane-reactor configuration for simultaneous production and separation of hydrogen, steam reforming of methane by equilibrium shift was studied. The steam reforming of methane using a packed-bed inert membrane tubular reactor (PBIMTR) was simulated. A two-dimensional pseudo-homogeneous reactor model with parallel flow configuration was developed for steam reforming of methane. The shell volume was taken as the feed and sweep gas was fed to the inside of the membrane tube. Radial diffusion was taken into account for concentration gradient in the radial direction due to hydrogen permeation through the membrane. With appropriate reaction rate expressions, a set of partial differential equations was derived using the continuity equation for the reaction system and then solved by finite difference method with appropriate boundary and initial conditions. An iterative scheme was used to obtain a converged solution. Membrane reactor performance was compared to that in a traditional non-membrane packed-bed reactor (PBR). Their performances were also compared with thermodynamic equilibrium values achievable in a conventional non-membrane reactor. Numerical results of the models show that the methane conversions in the PBIMTR are always higher than that in the PBR, as well as thermodynamic equilibrium conversions. For instance, at a reaction pressure of 6 atm, a temperature of 650 C, a space velocity of 900/16.0 SCCM/gm{sub cat}, a steam to methane molar feed ratio of 3.0, a sweep ratio of 0.15, the conversion in the membrane reactor is about 86.5%, while the conversion in the non-membrane reactor is about 50.8%. The corresponding equilibrium conversion is about 56.4%. The effects on the degree of conversion and hydrogen yield were analyzed for different parameters such as temperature, reactor pressure, feed and sweep flow rate, feed molar ratio, and space time. From the analysis of the model results, it is obvious that the membrane reactor operation can be optimized for conversion or yield through the choice of proper operating and design parameters. Comparisons with available literature data for both membrane and non-membrane reactors showed a good agreement.

Shamsuddin Ilias

2006-03-10T23:59:59.000Z

432

DIESEL REFORMERS FOR LEAN NOX TRAP REGENERATION AND OTHER ON-BOARD HYDROGEN APPLICATIONS  

DOE Green Energy (OSTI)

Many solutions to meeting the 2007 and 2010 diesel emissions requirements have been suggested. On board production of hydrogen for in-cylinder combustion and exhaust after-treatment provide promising opportunities for meeting those requirements. Other benefits may include using syngas to rapidly heat up exhaust after-treatment catalysts during engine startup. HydrogenSource's development of a catalytic partial oxidation reformer for generating hydrogen from ultra-low sulfur diesel fuel is presented. The system can operate on engine exhaust and diesel fuel with no water tank. Test data for hydrogen regeneration of a lean NOx trap is presented showing 90% NOx conversion at temperatures as low as 150 degrees C and 99% conversion at 300 degrees C. Finally, additional efforts required to fully understand the benefits and commercial challenges of this technology are discussed.

Mauss, M; Wnuck, W

2003-08-24T23:59:59.000Z

433

Clean gasoline reforming with superacid catalysts. Final technical report, September 25, 1990--September 24, 1992  

DOE Green Energy (OSTI)

The objectives of this project are to: (a) determine if a coal-derived naphtha can be hydrotreated to produce a product with a sufficiently low heteroatom content that can be used for reforming, (b) identify hydrocarbon compounds in the naphtha with concentrations greater than 0.5 wt %, (c) develop a Pt/Al{sub 2}O{sub 3} heavily chlorided catalyst and determine the activity, selectivity and deactivation of this catalyst using model compounds and the hydrotreated naphtha, and (d) develop both a sulfated Pt/ZrO{sub 2} and Fe/Mn/ZrO{sub 2} catalyst formulations and determine the activity, selectivity and deactivation of these catalysts using model compounds and d warranted, the hydrotreated naphtha.

Davis, B.H.

1992-12-31T23:59:59.000Z

434

Efficiency of a hybrid-type plasma-assisted fuel reformation system  

Science Conference Proceedings (OSTI)

The major advantages of a new plasma-assisted fuel reformation system are its cost effectiveness and technical efficiency. Applied Plasma Technologies has proposed its new highly efficient hybrid-type plasma-assisted system for organic fuel combustion and gasification. The system operates as a multimode multipurpose reactor in a wide range of plasma feedstock gases and turndown ratios. This system also has convenient and simultaneous feeding of several reagents in the reaction zone such as liquid fuels, coal, steam, and air. A special methodology has been developed for such a system in terms of heat balance evaluation and optimization. This methodology considers all existing and possible energy streams, which could influence the system's efficiency. The developed hybrid-type plasma system could be suitable for combustion applications, mobile and autonomous small- to mid-size liquid fuel and coal gasification modules, hydrogen-rich gas generators, waste-processing facilities, and plasma chemical reactors.

Matveev, I.B.; Serbin, S.I.; Lux, S.M. [Applied Plasma Technologies, Mclean, VA (USA)

2008-12-15T23:59:59.000Z

435

Thermodynamics of Hydrogen Production from Dimethyl Ether Steam Reforming and Hydrolysis  

SciTech Connect

The thermodynamic analyses of producing a hydrogen-rich fuel-cell feed from the process of dimethyl ether (DME) steam reforming were investigated as a function of steam-to-carbon ratio (0-4), temperature (100 C-600 C), pressure (1-5 atm), and product species: acetylene, ethanol, methanol, ethylene, methyl-ethyl ether, formaldehyde, formic acid, acetone, n-propanol, ethane and isopropyl alcohol. Results of the thermodynamic processing of dimethyl ether with steam indicate the complete conversion of dimethyl ether to hydrogen, carbon monoxide and carbon dioxide for temperatures greater than 200 C and steam-to-carbon ratios greater than 1.25 at atmospheric pressure (P = 1 atm). Increasing the operating pressure was observed to shift the equilibrium toward the reactants; increasing the pressure from 1 atm to 5 atm decreased the conversion of dimethyl ether from 99.5% to 76.2%. The order of thermodynamically stable products in decreasing mole fraction was methane, ethane, isopropyl alcohol, acetone, n-propanol, ethylene, ethanol, methyl-ethyl ether and methanol--formaldehyde, formic acid, and acetylene were not observed. The optimal processing conditions for dimethyl ether steam reforming occurred at a steam-to-carbon ratio of 1.5, a pressure of 1 atm, and a temperature of 200 C. Modeling the thermodynamics of dimethyl ether hydrolysis (with methanol as the only product considered), the equilibrium conversion of dimethyl ether is limited. The equilibrium conversion was observed to increase with temperature and steam-to-carbon ratio, resulting in a maximum dimethyl ether conversion of approximately 68% at a steam-to-carbon ratio of 4.5 and a processing temperature of 600 C. Thermodynamically, dimethyl ether processed with steam can produce hydrogen-rich fuel-cell feeds--with hydrogen concentrations exceeding 70%. This substantiates dimethyl ether as a viable source of hydrogen for PEM fuel cells.

T.A. Semelsberger

2004-10-01T23:59:59.000Z

436

Autothermal reforming of natural gas to synthesis gas:reference: KBR paper #2031.  

DOE Green Energy (OSTI)

This Project Final Report serves to document the project structure and technical results achieved during the 3-year project titled Advanced Autothermal Reformer for US Dept of Energy Office of Industrial Technology. The project was initiated in December 2001 and was completed March 2005. It was a joint effort between Sandia National Laboratories (Livermore, CA), Kellogg Brown & Root LLC (KBR) (Houston, TX) and Sued-Chemie (Louisville, KY). The purpose of the project was to develop an experimental capability that could be used to examine the propensity for soot production in an Autothermal Reformer (ATR) during the production of hydrogen-carbon monoxide synthesis gas intended for Gas-to-Liquids (GTL) applications including ammonia, methanol, and higher hydrocarbons. The project consisted of an initial phase that was focused on developing a laboratory-scale ATR capable of reproducing conditions very similar to a plant scale unit. Due to budget constraints this effort was stopped at the advanced design stages, yielding a careful and detailed design for such a system including ATR vessel design, design of ancillary feed and let down units as well as a PI&D for laboratory installation. The experimental effort was then focused on a series of measurements to evaluate rich, high-pressure burner behavior at pressures as high as 500 psi. The soot formation measurements were based on laser attenuation at a view port downstream of the burner. The results of these experiments and accompanying calculations show that soot formation is primarily dependent on oxidation stoichiometry. However, steam to carbon ratio was found to impact soot production as well as burner stability. The data also showed that raising the operating pressure while holding mass flow rates constant results in considerable soot formation at desirable feed ratios. Elementary reaction modeling designed to illuminate the role of CO{sub 2} in the burner feed showed that the conditions in the burner allow for the direct participation of CO{sub 2} in the oxidation chemistry.

Mann, David (KBR, Houston, TX); Rice, Steven, D.

2007-04-01T23:59:59.000Z

437

Hydrocarbon autothermal reforming program. Final technical report, 28 September 1979-31 October 1981  

DOE Green Energy (OSTI)

The goal of the PSI program was to understand the mechanisms of the formation of carbon deposits under conditions relevant to authothermal reformers (ATR). The first year of this two year program was dedicated almost entirely to investigations of gas phase soot formation. It was speculated that soot could form in the gas phase and deposit downstream in the catalyst bed. A high temperature experimental test rig was constructed and comptuer models developed to aid in understanding this process. The conclusion of these studies is that soot does not form in the gas phase upstream of the catalyst bed, under ATR conditions, at least, not under well mixed conditions. In the second year, the program was redirected to study carbon formation processes on surfaces and to perform testing and analysis of Engelhard's six inch ATR rig. This work has resulted in an operational computer code for use in modeling the Engelhard ATR. This code requires rate constant information for performance prediction. The PSI laboratory experiments have shown that coke formation on surfaces of nickel catalysts is very rapid, particularly from olefins. Filamentary carbon was formed. Various relevant processes and their relative rates were studied on various nickel surfaces. Coke was not observed when precious metal catalysts were used. Testing on the Engelhard reactor was performed. These preliminary tests show that the Engelhard catalysts can be used to reform number two fuel oil with no problems associated with carbonaceous deposits. Some hydrocarbon breakthrough was observed, increasing at low oxygen to carbon ratio (0.355). These limited data clearly indicate a high potential for a useful ATR. Further testing and analysis are clearly necessary.

Ham, D.O.; Lewis, P.F.; Lord, G.W.; Yarrington, R.M.; Hwang, H.S.

1982-02-01T23:59:59.000Z

438

Modeling of Pressurized Electrochemistry and Steam-Methane Reforming in Solid Oxide Fuel Cells and the Effects on Thermal and Electrical Stack Performance  

SciTech Connect

Summarizes work done to extend the electrochemical performance and methane reforming submodels to include the effects of pressurization and to demonstrate this new modeling capability by simulating large stacks operating on methane-rich fuel under pressurized and non-pressurized conditions. Pressurized operation boosts electrochemical performance, alters the kinetics of methane reforming, and effects the equilibrium composition of methane fuels. This work developed constitutive submodels that couple the electrochemistry, reforming, and pressurization to yield an increased capability of the modeling tool for prediction of SOFC stack performance.

Recknagle, Kurtis P.; Khaleel, Mohammad A.

2009-03-01T23:59:59.000Z

439

RADIOACTIVE DEMONSTRATION OF FINAL MINERALIZED WASTE FORMS FOR HANFORD WASTE TREATMENT PLANT SECONDARY WASTE BY FLUIDIZED BED STEAM REFORMING USING THE BENCH SCALE REFORMER PLATFORM  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy's Office of River Protection (ORP) is responsible for the retrieval, treatment, immobilization, and disposal of Hanford's tank waste. Currently there are approximately 56 million gallons of highly radioactive mixed wastes awaiting treatment. A key aspect of the River Protection Project (RPP) cleanup mission is to construct and operate the Waste Treatment and Immobilization Plant (WTP). The WTP will separate the tank waste into high-level and low-activity waste (LAW) fractions, both of which will subsequently be vitrified. The projected throughput capacity of the WTP LAW Vitrification Facility is insufficient to complete the RPP mission in the time frame required by the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement (TPA), i.e. December 31, 2047. Therefore, Supplemental Treatment is required both to meet the TPA treatment requirements as well as to more cost effectively complete the tank waste treatment mission. In addition, the WTP LAW vitrification facility off-gas condensate known as WTP Secondary Waste (WTP-SW) will be generated and enriched in volatile components such as {sup 137}Cs, {sup 129}I, {sup 99}Tc, Cl, F, and SO{sub 4} that volatilize at the vitrification temperature of 1150 C in the absence of a continuous cold cap (that could minimize volatilization). The current waste disposal path for the WTP-SW is to process it through the Effluent Treatment Facility (ETF). Fluidized Bed Steam Reforming (FBSR) is being considered for immobilization of the ETF concentrate that would be generated by processing the WTP-SW. The focus of this current report is the WTP-SW. FBSR offers a moderate temperature (700-750 C) continuous method by which WTP-SW wastes can be processed irrespective of whether they contain organics, nitrates, sulfates/sulfides, chlorides, fluorides, volatile radionuclides or other aqueous components. The FBSR technology can process these wastes into a crystalline ceramic (mineral) waste form. The mineral waste form that is produced by co-processing waste with kaolin clay in an FBSR process has been shown to be as durable as LAW glass. Monolithing of the granular FBSR product is being investigated to prevent dispersion during transport or burial/storage, but is not necessary for performance. A Benchscale Steam Reformer (BSR) was designed and constructed at the SRNL to treat actual radioactive wastes to confirm the findings of the non-radioactive FBSR pilot scale tests and to qualify the waste form for applications at Hanford. BSR testing with WTP SW waste surrogates and associated analytical analyses and tests of granular products (GP) and monoliths began in the Fall of 2009, and then was continued from the Fall of 2010 through the Spring of 2011. Radioactive testing commenced in 2010 with a demonstration of Hanford's WTP-SW where Savannah River Site (SRS) High Level Waste (HLW) secondary waste from the Defense Waste Processing Facility (DWPF) was shimmed with a mixture of {sup 125/129}I and {sup 99}Tc to chemically resemble WTP-SW. Prior to these radioactive feed tests, non-radioactive simulants were also processed. Ninety six grams of radioactive granular product were made for testing and comparison to the non-radioactive pilot scale tests. The same mineral phases were found in the radioactive and non-radioactive testing.

Crawford, C.; Burket, P.; Cozzi, A.; Daniel, W.; Jantzen, C.; Missimer, D.

2012-02-02T23:59:59.000Z

440

Engineering Study for a Full Scale Demonstration of Steam Reforming Black Liquor Gasification at Georgia-Pacific's Mill in Big Island, Virginia  

SciTech Connect

Georgia-Pacific Corporation performed an engineering study to determine the feasibility of installing a full-scale demonstration project of steam reforming black liquor chemical recovery at Georgia-Pacific's mill in Big Island, Virginia. The technology considered was the Pulse Enhanced Steam Reforming technology that was developed and patented by Manufacturing and Technology Conversion, International (MTCI) and is currently licensed to StoneChem, Inc., for use in North America. Pilot studies of steam reforming have been carried out on a 25-ton per day reformer at Inland Container's Ontario, California mill and on a 50-ton per day unit at Weyerhaeuser's New Bern, North Carolina mill.

Robert De Carrera; Mike Ohl

2002-03-19T23:59:59.000Z

Note: This page contains sample records for the topic "unfunded mandates reform" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

GAO-04-611 Nuclear Waste: Absence of Key Management Reforms on Hanford's Cleanup Project Adds to Challenges of Achieving Cost and Schedule Goals  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Committee on Government Committee on Government Reform, House of Representatives June 2004 NUCLEAR WASTE Absence of Key Management Reforms on Hanford's Cleanup Project Adds to Challenges of Achieving Cost and Schedule Goals GAO-04-611 www.gao.gov/cgi-bin/getrpt?GAO-04-611. To view the full product, including the scope and methodology, click on the link above. For more information, contact Robin M. Nazzaro at (202) 512-3841 or nazzaror@gao.gov. Highlights of GAO-04-611, a report to the Committee on Government Reform, House of Representatives June 2004 NUCLEAR WASTE Absence of Key Management Reforms on Hanford's Cleanup Project Adds to Challenges of Achieving Cost and Schedule Goals DOE's initial approach called for treating 10 percent of the site's high-level waste by 2018 and for operating the plant until treatment was completed in

442

Analysis of Percent On-Cell Reformation of Methane in SOFC Stacks and the Effects on Thermal, Electrical, and Mechanical Performance  

Science Conference Proceedings (OSTI)

Numerical simulations were performed to determine the effect that varying the percent on-cell steam-methane reformation would have on the thermal, electrical, and mechanical performance of generic, planar solid oxide fuel cell stacks. The study was performed using three-dimensional model geometries for cross-, co-, and counter-flow configuration stacks of 10x10- and 20x20-cm cell sizes. The analysis predicted the stress and temperature difference would be minimized for the 10x10-cm counter- and cross-flow stacks when 40 to 50% of the reformation reaction occurred on the anode. Gross electrical power density was virtually unaffected by the reforming. The co-flow stack benefited most from the on-cell reforming and had the lowest anode stresses of the 20x20-cm stacks. The analyses also suggest that airflows associated with 15% air utilization may be required for cooling the larger (20x20-cm) stacks.

Recknagle, Kurtis P.; Koeppel, Brian J.; Sun, Xin; Khaleel, Mohammad A.; Yokuda, Satoru T.; Singh, Prabhakar

2007-04-30T23:59:59.000Z

443

Mathematical modelling of diffusion-reaction, and solution algorithm for complex reaction networks in porous catalyst pellets-steam reforming of natural gas  

Science Conference Proceedings (OSTI)

Three models of different degrees of rigor are developed for diffusion and reaction in porous catalyst pellets for the industrially important multicomponents' system with a multiple reversible reaction for the steam reforming of natural gas. The more ...

M. E. Abashar; S. S. Elnashaie

1993-10-01T23:59:59.000Z

444

A Novel Slurry-Based Biomass Reforming Process Final Technical Report  

SciTech Connect

This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood to hydrogen, methane, and carbon dioxide was repeatedly demonstrated in batch reactors varying in size from 50 mL to 7.6 L. The different wood sources (e.g., swamp maple, poplar, and commercial wood flour) were converted in the presence of a heterogeneous catalyst and base at relatively low temperatures (e.g., 310 �������°C) at sub-critical pressures sufficient to maintain the liquid phase. Both precious metal and base metal catalysts were found to be active for the liquid phase hydrolysis and reforming of wood. Pt-based catalysts, particularly Pt-Re, were shown to be more selective toward breaking C-C bonds, resulting in a higher selectivity to hydrogen versus methane. Ni-based catalysts were found to prefer breaking C-O bonds, favoring the production of methane. The project showed that increasing the concentration of base (base to wood ratio) in the presence of Raney Ni catalysts resulted in greater selectivity toward hydrogen but at the expense of increasing the production of undesirable organic acids from the wood, lowering the amount of wood converted to gas. It was shown that by modifying Ni-based catalysts with dopants, it was possible to reduce the base concentration while maintaining the selectivity toward hydrogen and increasing wood conversion to gas versus organic acids. The final stage of the project was the construction and testing of a demonstration unit for H2 production. This continuous flow demonstration unit consisted of wood slurry and potassium carbonate feed pump systems, two reactors for hydrolysis and reforming, and a gas-liquid separation system. The technical challenges associated with unreacted wood fines and Raney Ni catalyst retention limited the demonstration unit to using a fixed bed Raney Ni catalyst form. The lower activity of the larger particle Raney Ni in turn limited the residence time and thus the wood mass flow feed rate to 50 g min-1 for a 1 wt% wood slurry. The project demonstrated continuous H2 yields with unmodified, fixed bed Raney Ni, from 63% to 100% with correspond

Sean C. Emerson; Timothy D. Davis; A. Peles; Ying She; Joshua Sheffel; Rhonda R. Willigan; Thomas H. Vanderspurt; Tianli Zhu

2011-09-30T23:59:59.000Z

445

97e Intermediate Temperature Catalytic Reforming of Bio-Oil for Distributed Hydrogen Production  

Science Conference Proceedings (OSTI)

With the world's energy demands rapidly increasing, it is necessary to look to sources other than fossil fuels, preferably those that minimize greenhouse emissions. One such renewable source of energy is biomass, which has the added advantage of being a near-term source of hydrogen. While there are several potential routes to produce hydrogen from biomass thermally, given the near-term technical barriers to hydrogen storage and delivery, distributed technologies such that hydrogen is produced at or near the point of use are attractive. One such route is to first produce bio-oil via fast pyrolysis of biomass close to its source to create a higher energy-density product, then ship this bio-oil to its point of use where it can be reformed to hydrogen and carbon dioxide. This route is especially well suited for smaller-scale reforming plants located at hydrogen distribution sites such as filling stations. There is also the potential for automated operation of the conversion system. A system has been developed for volatilizing bio-oil with manageable carbon deposits using ultrasonic atomization and by modifying bio-oil properties, such as viscosity, by blending or reacting bio-oil with methanol. Non-catalytic partial oxidation of bio-oil is then used to achieve significant conversion to CO with minimal aromatic hydrocarbon formation by keeping the temperature at 650 C or less and oxygen levels low. The non-catalytic reactions occur primarily in the gas phase. However, some nonvolatile components of bio-oil present as aerosols may react heterogeneously. The product gas is passed over a packed bed of precious metal catalyst where further reforming as well as water gas shift reactions are accomplished completing the conversion to hydrogen. The approach described above requires significantly lower catalyst loadings than conventional catalytic steam reforming due to the significant conversion in the non-catalytic step. The goal is to reform and selectively oxidize the bio-oil and catalyze the water gas shift reaction without catalyzing methanation or oxidation of CO and H{sub 2}, thus attaining equilibrium levels of H{sub 2}, CO, H{sub 2}O, and CO{sub 2} at the exit of the catalyst bed. Experimental Bio-oil (mixed with varied amounts of methanol to reduce the viscosity and homogenize the bio-oil) or selected bio-oil components are introduced at a measured flow rate through the top of a vertical quartz reactor which is heated using a five zone furnace. The ultrasonic nozzle used to feed the reactants allows the bio-oil to flow down the center of the reactor at a low, steady flow rate. Additionally, the fine mist created by the nozzle allows for intimate mixing with oxygen and efficient heat transfer, providing optimal conditions to achieve high conversion at relatively low temperatures in the non-catalytic step thus reducing the required catalyst loading. Generation of the fine mist is especially important for providing good contact between non-volatile bio-oil components and oxygen. Oxygen and helium are also delivered at the top of the reactor via mass flow meters with the amount of oxygen being varied to maximize the yields of H{sub 2} and CO and the amount of helium being adjusted such that the gas phase residence time in the hot zone is {approx}0.3 and {approx}0.45 s for bio-oil and methanol experiments, respectively. A catalyst bed can be located at the bottom of the reactor tube. To date, catalyst screening experiments have used Engelhard noble metal catalysts. The catalysts used for these experiments were 0.5 % rhodium, ruthenium, platinum, and palladium (all supported on alumina). Experiments were performed using pure alumina as well. Both the catalyst type and the effect of oxygen and steam on the residual hydrocarbons and accumulated carbon containing particulates were investigated. The residence time before the catalyst is varied to determine the importance of the non-catalytic step and its potential effect on the required catalyst loading. Non-catalytic experiments (primarily homogeneous cracking) use a bed of quartz p

Marda, J. R.; Dean, A. M.; Czernik, S.; Evans, R. J.; French, R.; Ratcliff, M.

2008-01-01T23:59:59.000Z

446

Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LWO-SPT-2007-00249 LWO-SPT-2007-00249 Rev. 1 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) For Tank 48H Treatment Project (TTP) November, 2007 Technology Maturation Plan (TMP) Fluidized Bed Steam Reforming (FBSR) Technology for Tank 48H Treatment Project (TTP) LWO-SPT-2007-00249 Rev. 1 DISCLAIMER This report was prepared by Washington Savannah River Company (WSRC) for the United States Department of Energy under Contract No. DEA-AC09-96SR18500 and is an account of work performed under that contract. Neither the United States Department of Energy, nor WSRC, nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, or product or process

447

Multi-fuel reformers for fuel cells used in transportation: Assessment of hydrogen storage technologies. Phase 1, Final report  

DOE Green Energy (OSTI)

This report documents a portion of the work performed Multi-fuel Reformers for Fuel Cells Used in Transportation. One objective for development is to develop advanced fuel processing systems to reform methanol, ethanol, natural gas, and other hydrocarbons into hydrogen for use in transportation fuel cell systems, while a second objective is to develop better systems for on-board hydrogen storage. This report examines techniques and technology available for storage of pure hydrogen on board a vehicle as pure hydrogen of hydrides. The report focuses separately on near- and far-term technologies, with particular emphasis on the former. Development of lighter, more compact near-term storage systems is recommended to enhance competitiveness and simplify fuel cell design. The far-term storage technologies require substantial applied research in order to become serious contenders.

Not Available

1994-03-01T23:59:59.000Z

448

Gas-to-liquids synthetic fuels for use in fuel cells : reformability, energy density, and infrastructure compatibility.  

DOE Green Energy (OSTI)

The fuel cell has many potential applications, from power sources for electric hybrid vehicles to small power plants for commercial buildings. The choice of fuel will be critical to the pace of its commercialization. This paper reviews the various liquid fuels being considered as an alternative to direct hydrogen gas for the fuel cell application, presents calculations of the hydrogen and carbon dioxide yields from autothermal reforming of candidate liquid fuels, and reports the product gas composition measured from the autothermal reforming of a synthetic fuel in a micro-reactor. The hydrogen yield for a synthetic paraffin fuel produced by a cobalt-based Fischer-Tropsch process was found to be similar to that of retail gasoline. The advantages of the synthetic fuel are that it contains no contaminants that would poison the fuel cell catalyst, is relatively benign to the environment, and could be transported in the existing fuel distribution system.

Ahmed, S.; Kopasz, J. P.; Russell, B. J.; Tomlinson, H. L.

1999-09-08T23:59:59.000Z

449

Steam Reforming Solidification of Cesium and Strontium Separations Product from Advanced Aqueous Processing of Spent Nuclear Fuel  

SciTech Connect

The Advanced Fuel Cycle Initiative program is conducting research on aqueous separations processes for the nuclear fuel cycle. This research includes development of solvent extraction processes for the separation of cesium and strontium from dissolved spent nuclear fuel solutions to reduce the short-term decay heat load. The cesium/strontium strip solution from candidate separation processes will require treatment and solidification for managed storage. Steam reforming is currently being investigated for stabilization of these streams because it can potentially destroy the nitrates and organics present in these aqueous, nitrate-bearing solutions, while converting the cesium and strontium into leach-resistant aluminosilicate minerals, such as pollucite. These ongoing experimental studies are being conducted to evaluate the effectiveness of steam reforming for this application.

Julia L. Tripp; T. G. Garn; R. D. Boardman; J. D. Law

2006-02-01T23:59:59.000Z

450

BMC Medical Education BioMed Central Commentary The pioneer cohort of curriculum reform: Guinea pigs or  

E-Print Network (OSTI)

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. With curriculum reform, whether we admit it or not, the first cohort of students will be 'testdriving' the new programme. Not only are they the pioneers of a new curriculum, but as they progress through their studies, they experience each year of the innovation for the first time. As curriculum designers, we learn from their experiences and their feedback to improve the programme content and delivery, invariably for subsequent cohorts. A considerable onus therefore rests with this pioneer group, and their contribution to curriculum design, evaluation and programme revision should be valued. Text With curriculum reform, whether we admit it or not, the first cohort of students will be 'test-driving ' the new programme. Not only are they the pioneers of a new curriculum, but as they progress through their studies, they experience each year of the innovation for the first time.

Michelle Mclean

2004-01-01T23:59:59.000Z

451

Investigation of H{sub 2}O and CO{sub 2} reforming and partial oxidation of methane: catalytic effects of coal char and coal ash  

Science Conference Proceedings (OSTI)

Methane reforming and partial oxidation was studied to evaluate the catalytic effects of coal chars and coal ashes on methane (CH{sub 4}) conversion, sum selectivity (the sum of H{sub 2} and CO), and ratio selectivity (the ratio of H{sub 2}/CO) in an atmospheric fluidized bed. The kinetics study presented the possibility of CH{sub 4} reforming and partial oxidation with a favorable H{sub 2}/CO ratio, greater than 5. The higher H{sub 2}/CO ratio in CH{sub 4} reforming and the partial-oxidation process can reduce the consumption of CH{sub 4} needed to adjust the H{sub 2}/CO ratio during combined coal gasification and methane reforming. Coal ashes failed to be good candidates of catalysts on CH{sub 4} reforming and partial oxidation because of their very low specific surface area available for catalytic reactions. However, coal chars presented very promising catalytic performance on CH{sub 4} reforming and partial oxidation because of their larger specific surface area. In this study, no other constituents in coal fly ash or special surface properties of coal chars were correlated with the enhanced methane-conversion efficiency. It seems that the specific surface area is only variable in controlling methane-conversion efficiency. 16 refs., 9 figs.

Hongcang Zhou; Yan Cao; Houyin Zhao; Hongying Liu; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

2008-07-15T23:59:59.000Z

452

Recovery of C/sub 3/. sqrt. hydrocarbon conversion products and net excess hydrogen in a catalytic reforming process  

Science Conference Proceedings (OSTI)

This invention relates to a hydrocarbon conversion process effected in the presence of hydrogen, especially a hydrogenproducing hydrocarbon conversion process. More particularly, this invention relates to the catalytic reforming of a naphtha feedstock, and is especially directed to an improved recovery of the net excess hydrogen, and to an improved recovery of a C/sub 3/..sqrt.. normally gaseous hydrocarbon conversion product and a C/sub 5/..sqrt.. hydrocarbon conversion product boiling in the gasoline range.

Degraff, R.R.; Peters, K.D.

1982-12-21T23:59:59.000Z

453

Fluidized Bed Steam Reforming of Hanford LAW Using THORsm Mineralizing Technology  

SciTech Connect

The U.S. Department of Energy (DOE) documented, in 2002, a plan for accelerating cleanup of the Hanford Site, located in southeastern Washington State, by at least 35 years. A key element of the plan was acceleration of the tank waste program and completion of ''tank waste treatment by 2028 by increasing the capacity of the planned Waste Treatment Plant (WTP) and using supplemental technologies for waste treatment and immobilization.'' The plan identified steam reforming technology as a candidate for supplemental treatment of as much as 70% of the low-activity waste (LAW). Mineralizing steam reforming technology, offered by THOR Treatment Technologies, LLC would produce a denitrated, granular mineral waste form using a high-temperature fluidized bed process. A pilot scale demonstration of the technology was completed in a 15-cm-diameter reactor vessel. The pilot scale facility was equipped with a highly efficient cyclone separator and heated sintered metal filters for particulate removal, a thermal oxidizer for reduced gas species and NOx destruction, and a packed activated carbon bed for residual volatile species capture. The pilot scale equipment is owned by the DOE, but located at the Science and Technology Applications Research (STAR) Center in Idaho Falls, ID. Pilot scale testing was performed August 2–5, 2004. Flowsheet chemistry and operational parameters were defined through a collaborative effort involving Idaho National Engineering and Environmental Laboratory, Savannah River National Laboratory (SRNL), and THOR Treatment Technologies personnel. Science Application International Corporation, owners of the STAR Center, personnel performed actual pilot scale operation. The pilot scale test achieved a total of 68.7 hrs of cumulative/continuous processing operation before termination in response to a bed de-fluidization condition. 178 kg of LAW surrogate were processed that resulted in 148 kg of solid product, a mass reduction of about 17%. The process achieved essentially complete bed turnover within approximately 40 hours. Samples of mineralized solid product materials were analyzed for chemical/physical properties. SRNL will report separately the results of product performance testing that were accomplished.

Olson, Arlin L.; Nicholas R Soelberg; Douglas W. Marshall; Gary L. Anderson

2004-11-01T23:59:59.000Z

454

Steam Reforming Application for Treatment of DOE Sodium Bearing Tank Wastes at Idaho National Laboratory for Idaho Cleanup Project  

SciTech Connect

The patented THOR{sup R} steam reforming waste treatment technology has been selected by the Department of Energy (DOE) as the technology of choice for treatment of about one million gallons of Sodium Bearing Waste (SBW) at the Idaho National Laboratory (INL). SBW is an acidic waste created primarily from cleanup of the fuel reprocessing equipment at the Idaho Nuclear Technology and Engineering Center (INTEC) at the INL. SBW contains high concentrations of nitric acid and alkali and aluminum nitrates with minor amounts of many inorganic compounds including radionuclides, mainly cesium. The steam reforming process will convert the SBW into dry, solid, carbonate and aluminate minerals supporting a preferred path for disposal as remote handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Project (WIPP). The Idaho Cleanup Project (ICP) will design, build, and operate an Integrated Waste Treatment Unit (IWTU) that will comprise an integrated THOR{sup R} process system that will utilize dual fluidized bed steam reformers (FBSR) for treatment of the SBW. Design of the IWTU is nearing completion. The IWTU will be constructed at INTEC, immediately east of the New Waste Calcine Facility (NWCF), with planned fabrication and construction to start in early 2007 upon receipt of needed permits and completion of design and engineering. This paper provides a project and process overview of the IWTU and discusses the design and construction status. IWTU equipment and facility designs and bases will be presented. (authors)

Landman, W.; Roesener, S. [CH2M WG Idaho, LLC, Idaho Falls, ID (United States); Mason, B.; Wolf, K.; Amaria, N. [THOR Treatment Technologies, LLC, Aiken, SC (United States)

2007-07-01T23:59:59.000Z

455

Steady-State Simulation of Steam Reforming of INEEL Tank Farm Waste  

SciTech Connect

A steady-state model of the Sodium-Bearing Waste steam reforming process at the Idaho National Engineering and Environmental Laboratory has been performed using the commercial ASPEN Plus process simulator. The preliminary process configuration and its representation in ASPEN are described. As assessment of the capability of the model to mechanistically predict product stream compositions was made, and fidelity gaps and opportunities for model enhancement were identified, resulting in the following conclusions: (1) Appreciable benefit is derived from using an activity coefficient model for electrolyte solution thermodynamics rather than assuming ideality (unity assumed for all activity coefficients). The concentrations of fifteen percent of the species present in the primary output stream were changed by more than 50%, relative to Electrolyte NRTL, when ideality was assumed; (2) The current baseline model provides a good start for estimating mass balances and performing integrated process optimization because it contains several key species, uses a mechanistic electrolyte thermodynamic model, and is based on a reasonable process configuration; and (3) Appreciable improvement to model fidelity can be realized by expanding the species list and the list of chemical and phase transformations. A path forward is proposed focusing on the use of an improved electrolyte thermodynamic property method, addition of chemical and phase transformations for key species currently absent from the model, and the combination of RGibbs and Flash blocks to simulate simultaneous phase and chemical equilibria in the off-gas treatment train.

Nichols, T.T.; Taylor, D.D.; Wood, R.A.; Barnes, C.M.

2002-08-15T23:59:59.000Z

456

Steady-State Simulation of Steam Reforming of INEEL Tank Farm Waste  

SciTech Connect

A steady-state model of the Sodium-Bearing Waste steam reforming process at the Idaho National Engineering and Environmental Laboratory has been performed using the commercial ASPEN Plus process simulator. The preliminary process configuration and its representation in ASPEN are described. As assessment of the capability of the model to mechanistically predict product stream compositions was made, and fidelity gaps and opportunities for model enhancement were identified, resulting in the following conclusions: 1) Appreciable benefit is derived from using an activity coefficient model for electrolyte solution thermodynamics rather than assuming ideality (unity assumed for all activity coefficients). The concentrations of fifteen percent of the species present in the primary output stream were changed by more than 50%, relative to Electrolyte NRTL, when ideality was assumed; 2) The current baseline model provides a good start for estimating mass balances and performing integrated process optimization because it contains several key species, uses a mechanistic electrolyte thermodynamic model, and is based on a reasonable process configuration; and 3) Appreciable improvement to model fidelity can be realized by expanding the species list and the list of chemical and phase transformations. A path forward is proposed focusing on the use of an improved electrolyte thermodynamic property method, addition of chemical and phase transformations for key species currently absent from the model, and the combination of RGibbs and Flash blocks to simulate simultaneous phase and chemical equilibria in the off-gas treatment train.

Nichols, Todd Travis; Taylor, Dean Dalton; Wood, Richard Arthur; Barnes, Charles Marshall

2002-08-01T23:59:59.000Z

457

Privatization and Other Post-Contract Reform Project Delivery Methods: What Works Best and Why  

Science Conference Proceedings (OSTI)

This paper explores the successes and failures of privatization and other contract reform initiatives within the DOE