Powered by Deep Web Technologies
Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

WP 3 Report: Biomass Potentials Biomass production potentials  

E-Print Network (OSTI)

WP 3 Report: Biomass Potentials 1 Biomass production potentials in Central and Eastern Europe under different scenarios Final report of WP3 of the VIEWLS project, funded by DG-Tren #12;WP 3 Report: Biomass Potentials 2 Report Biomass production potentials in central and Eastern Europe under different scenarios

2

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre Arctic National Wildlife Refuge is the largest unexplored, potentially productive geologic onshore basin in the United States. The primary area of the coastal plain is the 1002 Area of ANWR established when ANWR was created. A decision on permitting the exploration and development of the 1002 Area is up to Congress and has not been approved to date. Also included in the Coastal Plain are State lands to the 3-mile offshore limit and Native Inupiat land near the village of Kaktovik. The USGS estimated: a 95 percent probability that at least 5.7 billion barrels of technically recoverable undiscovered oil are in the ANWR coastal plain,

3

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

Changing World Product Markets and Potential Refining Capacity Increases. NPRA Annual Meeting March 2006

4

Economics and market potential of hydrogen production  

DOE Green Energy (OSTI)

A study was undertaken to evaluate the economics of producing hydrogen from coal and from water and to assess the market potential for this hydrogen in chemical and fuel applications. Results of this study are summarized. Current chemical applications of hydrogen in manufacturing ammonia and methanol, in refining petroleum and in specialty uses provide a base market for penetration by new hydrogen production technologies, although prospects for the use of hydrogen in fuel applications remain unclear. Electrolysis and coal gasification will be complementary, not competitive, technologies for producing hydrogen. Coal gasification plants are better suited to production of large quantities of hydrogen, while electrolyzers are better suited to the production of hydrogen for small-scale uses. Hydrogen produced through coal gasification may be economical in chemical applications (e.g., ammonia production) by the late 1990's. Development programs now underway are expected to provide new coal gasification technologies with lower first costs and higher efficiencies than current technologies. An on-site coal gasification plant supplying hydrogen in the quantities usually required in chemical applications (from 10 to 100 million cubic feet per day) will be smaller than is generally proposed for syngas plants. Growth in smaller scale specialty uses of hydrogen and improvements in the technology for electrolysis will create conditions favorable to expanded use of hydrogen produced through water electrolysis. The major constraint on use of electrolysis will be the availability of low cost electricity. Shortages of natural gas caused by declining domestic production could induce shifts to producing hydrogen through electrolysis or through coal gasification earlier in time (i.e., the late 1980's or early 1990's) than is suggested by comparative cost calculations alone.

Not Available

1978-09-01T23:59:59.000Z

5

Economics and market potential of hydrogen production  

SciTech Connect

A study was undertaken to evaluate the economics of producing hydrogen from coal and from water and to assess the market potential for this hydrogen in chemical and fuel applications. Results of this study are summarized. Current chemical applications of hydrogen in manufacturing ammonia and methanol, in refining petroleum and in specialty uses provide a base market for penetration by new hydrogen production technologies, although prospects for the use of hydrogen in fuel applications remain unclear. Electrolysis and coal gasification will be complementary, not competitive, technologies for producing hydrogen. Coal gasification plants are better suited to production of large quantities of hydrogen, while electrolyzers are better suited to the production of hydrogen for small-scale uses. Hydrogen produced through coal gasification may be economical in chemical applications (e.g., ammonia production) by the late 1990's. Development programs now underway are expected to provide new coal gasification technologies with lower first costs and higher efficiencies than current technologies. An on-site coal gasification plant supplying hydrogen in the quantities usually required in chemical applications (from 10 to 100 million cubic feet per day) will be smaller than is generally proposed for syngas plants. Growth in smaller scale specialty uses of hydrogen and improvements in the technology for electrolysis will create conditions favorable to expanded use of hydrogen produced through water electrolysis. The major constraint on use of electrolysis will be the availability of low cost electricity. Shortages of natural gas caused by declining domestic production could induce shifts to producing hydrogen through electrolysis or through coal gasification earlier in time (i.e., the late 1980's or early 1990's) than is suggested by comparative cost calculations alone.

1978-09-01T23:59:59.000Z

6

SR/O&G/2000-02 Potential Oil Production  

Annual Energy Outlook 2012 (EIA)

various programs, has assessed foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral agency, EIA's standard analysis of the potential...

7

Potential of Floriculture Residue For Biogas Production.  

E-Print Network (OSTI)

??Production of methane reach biogas through anaerobic digestion of organic material provides versatile carrier of renewable energy, as methane can be used in replacement for… (more)

TAMRAT, ASNAKE

2008-01-01T23:59:59.000Z

8

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan and Sergey Paltsev://globalchange.mit.edu/ Printed on recycled paper #12;1 Shale Gas Production: Potential versus Actual GHG Emissions Francis O'Sullivan* and Sergey Paltsev* Abstract Estimates of greenhouse gas (GHG) emissions from shale gas production and use

9

Shale gas production: potential versus actual greenhouse gas emissions*  

E-Print Network (OSTI)

Shale gas production: potential versus actual greenhouse gas emissions* Francis O Environ. Res. Lett. 7 (2012) 044030 (6pp) doi:10.1088/1748-9326/7/4/044030 Shale gas production: potential gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level

10

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

various programs, has assessed foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral agency, EIAs standard analysis of the...

11

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS:...

12

Commercial Products Show Potential to serve as Nuclear Material and  

NLE Websites -- All DOE Office Websites (Extended Search)

Commercial Products Show Potential to serve as Nuclear Material and Commercial Products Show Potential to serve as Nuclear Material and Activity Monitoring Technologies | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Commercial Products Show Potential to serve as ... Commercial Products Show Potential to serve as Nuclear Material and

13

Commercial Products Show Potential to serve as Nuclear Material and  

National Nuclear Security Administration (NNSA)

Commercial Products Show Potential to serve as Nuclear Material and Commercial Products Show Potential to serve as Nuclear Material and Activity Monitoring Technologies | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > NNSA Blog > Commercial Products Show Potential to serve as ... Commercial Products Show Potential to serve as Nuclear Material and

14

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre...

15

Experimental GOES Sounder Products for the Assessment of Downburst Potential  

Science Conference Proceedings (OSTI)

Several experimental products derived from Geostationary Operational Environmental Satellite (GOES) Sounder retrievals (vertical profiles of temperature and moisture) have been developed to assist weather forecasters in assessing the potential ...

Gary P. Ellrod; James P. Nelson III; Michael R. Witiw; Lynda Bottos; William P. Roeder

2000-10-01T23:59:59.000Z

16

Utilization Potential of Advanced SO2 Control By Products  

Science Conference Proceedings (OSTI)

Using results of literature surveys and preliminary market assessments, this report evaluates potential applications for advanced SO2 control by-products. Investigators formed their evaluations by comparing the marketability of these by-products with that of coal ash and wet scrubber sludge.

1987-06-18T23:59:59.000Z

17

Market potential of IGCC for domestic power production  

SciTech Connect

Mitretek Systems and CONSOL Inc. have completed the first phase of a market potential study for Integrated Coal Gasification Combined Cycle (IGCC) domestic power production. The U. S. Department of Energy (DOE) funded this study. The objective of this study is to provide DOE with data to estimate the future domestic market potential of IGCC for electricity generation. Major drivers in this study are the state of technology development, feedstock costs, environmental control costs, demand growth, and dispatchability. This study examines IGCC potential for baseload power production in the Northeast U. S., an important market area by virtue of existing coal infrastructure and proximity to coal producing regions. IGCC market potential was examined for two levels of technology development as a function of natural gas price and carbon tax. This paper discusses the results of this study, including the levels of performance and cost necessary to insure competitiveness with natural gas combined cycle plants.

Gray, D.; Tomlinson, G.; Hawk, E.; Maskew, J.

1999-07-01T23:59:59.000Z

18

National Microalgae Biofuel Production Potential and Resource Demand  

SciTech Connect

Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

2011-04-14T23:59:59.000Z

19

POTENTIAL REQUIREMENTS FOR FISSION PRODUCTS AS HEAT AND RADIATION SOURCES  

SciTech Connect

An outline is presented of the potential applications and quantity requiremerts of fission products for the period 1964 to 1968. These applications include military, governmert, and civilian heat sources; irradiation processing; and food irradiation. The potential requirements for 1964 to 1968 are 273 MC / sup 90/Sr and 351 MC /sup 137/Cs. An evaluation is made of the applications of heat-producing isotopes in Coast Guard navigational buoys, lights, and beacons; undersea electronic systems; and weather stations. Costs were determined for conventional methods of power generation and compared to radioisotope power generation. Fuel requiremerts and break-even fuel costs for isotopic power are tabulated. (D.L.C.)

1964-01-01T23:59:59.000Z

20

Simulating Potential Switchgrass Production in the United States  

SciTech Connect

Using results from field trials of switchgrass (Panicum virgatum L.) in the United States, the EPIC (Environmental Policy Integrated Climate) process-level agroecosystem model was calibrated, validated, and applied to simulate potential productivity of switchgrass for use as a biofuel feedstock. The model was calibrated with a regional study of 10-yr switchgrass field trials and subsequently tested against a separate compiled dataset of field trials from across the eastern half of the country. An application of the model in a national database using 8-digit watersheds as the primary modeling unit produces 30-yr average switchgrass yield estimates that can be aggregated to 18 major watersheds. The model projects average annual switchgrass productivity of greater than 7 Mg ha-1 in the Upper Mississippi, Lower Mississippi, and Ohio watersheds. The major factors limiting simulated production vary by region; low precipitation is the primary limiting factor across the western half of the country, while moderately acidic soils limit yields on lands east of the Mississippi River. Average projected switchgrass production on all crop land in the continental US is 5.6 Mg ha-1. At this level of productivity, 28.6 million hectares of crop land would be required to produce the 16 billion gallons of cellulosic ethanol called for by 2022 in the 2007 Energy Independence and Security Act. The model described here can be applied as a tool to inform the land-use and environmental consequences of switchgrass production.

Thomson, Allison M.; Izaurralde, Roberto C.; West, T. O.; Parrish, David J.; Tyler, Donald D.; Williams, Jimmy R.

2009-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Potential Benefits from Improved Energy Efficiency of Key Electrical Products:  

NLE Websites -- All DOE Office Websites (Extended Search)

8254 8254 Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India Michael McNeil, Maithili Iyer, Stephen Meyers, Virginie Letschert, James E. McMahon Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California, Berkeley Berkeley, CA December 2005 This work was supported by the International Copper Association through the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 2 ABSTRACT The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These

22

Geothermal source potential and utilization for alcohol production  

DOE Green Energy (OSTI)

A study was conducted to assess the technical and economic feasibility of using a potential geothermal source to drive a fuel grade alcohol plant. Test data from the well at the site indicated that the water temperature at approximately 8500 feet should approach 275/sup 0/F. However, no flow data was available, and so the volume of hot water that can be expected from a well at this site is unknown. Using the available data, numerous fuel alcohol production processes and various heat utilization schemes were investigated to determine the most cost effective system for using the geothermal resource. The study found the direct application of hot water for alcohol production based on atmospheric processes using low pressure steam to be most cost effective. The geothermal flow rates were determined for various sizes of alcohol production facility using 275/sup 0/F water, 235/sup 0/F maximum processing temperature, 31,000 and 53,000 Btu per gallon energy requirements, and appropriate process approach temperatures. It was determined that a 3 million gpy alcohol plant is the largest facility that can practically be powered by the flow from one large geothermal well. An order-of-magnitude cost estimate was prepared, operating costs were calculated, the economic feasibility of the propsed project was examined, and a sensitivity analysis was performed.

Austin, J.C.

1981-11-01T23:59:59.000Z

23

Hydrogen Absorption in Fluids: An Unexplored Solution for Onboard Hydrogen Storage  

DOE Green Energy (OSTI)

Adoption of hydrogen (H{sub 2}) vehicles has been advocated for decades as an ecological ideal, capable of eliminating petroleum consumption as well as tail-pipe air pollution and carbon dioxide (CO{sub 2}) from automobiles. Storing sufficient hydrogen fuel onboard still remains a great technological challenge, despite recent advances in lightweight automotive materials, hybrid-electric drivetrains and fuel cells enabling 60-100 mpg equivalent H{sub 2}-fueled automobiles. Future onboard hydrogen storage choices will be pivotal, with lasting strategic consequences for the eventual scale, shape, security, investment requirements, and energy intensity of the H{sub 2} refueling infrastructure, in addition to impacts on automotive design, cost, range, performance, and safety. Multiple hydrogen storage approaches have been examined and deployed onboard prototype automobiles since the 1970's. These include storing H{sub 2} as a cryogenic liquid (LH{sub 2}) at temperatures of 20-25 Kelvin, compressing room temperature H{sub 2} gas to pressures as high as 10,000 psi, and reversible chemical absorption storage within powdered metal hydrides (e.g. LaNi{sub 5}H{sub 6}, TiFeH{sub 2}, MgH{sub 2}, NaAlH{sub 4}) which evolve H{sub 2} when warmed. Each of these approaches face well-known fundamental physical limits (thermal endurance, volume, and weight, respectively). This report details preliminary experiments investigating the potential of a new approach to H{sub 2} storage: absorption in fluids, specifically liquid nitrogen (LN{sub 2}). N{sub 2} was chosen for this study because it offers unique advantages as an inert but lightweight solvent with high hydrogen solubility and is an abundant atmospheric component. H{sub 2} absorbed in liquid nitrogen (LN{sub 2}) can be lighter than metal hydrides, with greater thermal endurance than cryogenic H{sub 2} or LH{sub 2}, while being more compact than ambient compressed H{sub 2}. Previous researchers have examined H{sub 2} mixed with a variety of simple molecular fluids (N{sub 2}, Ar, CH{sub 4}, CO). These studies were mainly aimed at the general problem of fluid phase equilibria of H{sub 2} mixtures, and focused on identification and prediction of fluid/liquid phase boundary pressures and temperatures. In contrast, the present experiments are aimed at measuring the PVT properties of H{sub 2}/N{sub 2} mixtures with a view toward evaluating the applicability of these mixtures for onboard automotive H{sub 2} storage. To our knowledge, the experiments conducted for this project are the first systematic density measurements of H{sub 2}/N{sub 2} mixtures at cryogenic temperatures. H{sub 2}/N{sub 2} mixtures containing 50, 60, and 70% mole fraction H{sub 2} were examined at temperatures of 77 K, 87 K, and 273 K, under pressures ranging from 500 to 30,000 psi (from 34 to 2000 atm), corresponding to molar densities of 15-30 moles per liter.

Berry, G D

2005-02-10T23:59:59.000Z

24

Closing the gap: global potential for increasing biofuel production through agricultural intensification  

E-Print Network (OSTI)

Closing the gap: global potential for increasing biofuel production through agricultural: global potential for increasing biofuel production through agricultural intensification Matt Johnston1 and biodiesel feedstock crops. With biofuels coming under increasing pressure to slow or eliminate indirect land

Wisconsin at Madison, University of

25

Potential of biogas production from livestock manure in China.  

E-Print Network (OSTI)

??With great change of food pattern on Chinese people‘s table, livestock production has been expanded to meet increasing demand of meat, egg and dairy products.… (more)

Liu, Gougou

2011-01-01T23:59:59.000Z

26

Potential for biogas production fromslaughter houses residues in Bolivia.  

E-Print Network (OSTI)

?? Residues from slaughter houses offer an abundant resource in Bolivia. The residues can beused for biogas production with biofertilizer as a bi-product. These resources… (more)

Tesfaye Tefera, Tadious

2011-01-01T23:59:59.000Z

27

Use of tamarisk as a potential feedstock for biofuel production.  

DOE Green Energy (OSTI)

This study assesses the energy and water use of saltcedar (or tamarisk) as biomass for biofuel production in a hypothetical sub-region in New Mexico. The baseline scenario consists of a rural stretch of the Middle Rio Grande River with 25% coverage of mature saltcedar that is removed and converted to biofuels. A manufacturing system life cycle consisting of harvesting, transportation, pyrolysis, and purification is constructed for calculating energy and water balances. On a dry short ton woody biomass basis, the total energy input is approximately 8.21 mmBTU/st. There is potential for 18.82 mmBTU/st of energy output from the baseline system. Of the extractable energy, approximately 61.1% consists of bio-oil, 20.3% bio-char, and 18.6% biogas. Water consumptive use by removal of tamarisk will not impact the existing rate of evapotranspiration. However, approximately 195 gal of water is needed per short ton of woody biomass for the conversion of biomass to biocrude, three-quarters of which is cooling water that can be recovered and recycled. The impact of salt presence is briefly assessed. Not accounted for in the baseline are high concentrations of Calcium, Sodium, and Sulfur ions in saltcedar woody biomass that can potentially shift the relative quantities of bio-char and bio-oil. This can be alleviated by a pre-wash step prior to the conversion step. More study is needed to account for the impact of salt presence on the overall energy and water balance.

Sun, Amy Cha-Tien; Norman, Kirsten

2011-01-01T23:59:59.000Z

28

Exploring Potential U.S. Switchgrass Production for Lignocellulosic Ethanol  

Science Conference Proceedings (OSTI)

In response to concerns about oil dependency and the contributions of fossil fuel use to climatic change, the U.S. Department of Energy has begun a research initiative to make 20% of motor fuels biofuel based in 10 years, and make 30% of fuels bio-based by 2030. Fundamental to this objective is developing an understanding of feedstock dynamics of crops suitable for cellulosic ethanol production. This report focuses on switchgrass, reviewing the existing literature from field trials across the United States, and compiling it for the first time into a single database. Data available from the literature included cultivar and crop management information, and location of the field trial. For each location we determined latitude and longitude, and used this information to add temperature and precipitation records from the nearest weather station. Within this broad database we were able to identify the major sources of variation in biomass yield, and to characterize yield as a function of some of the more influential factors, e.g., stand age, ecotype, precipitation and temperature in the year of harvest, site latitude, and fertilization regime. We then used a modeling approach, based chiefly on climatic factors and ecotype, to predict potential yields for a given temperature and weather pattern (based on 95th percentile response curves), assuming the choice of optimal cultivars and harvest schedules. For upland ecotype varieties, potential yields were as high as 18 to 20 Mg/ha, given ideal growing conditions, whereas yields in lowland ecotype varieties could reach 23 to 27 Mg/ha. The predictive equations were used to produce maps of potential yield across the continental United States, based on precipitation and temperature in the long term climate record, using the Parameter-elevation Regressions on Independent Slopes Model (PRISM) in a Geographic Information System (GIS). Potential yields calculated via this characterization were subsequently compared to the Oak Ridge Energy Crop County Level data base (ORECCL), which was created at Oak Ridge National Laboratory (Graham et al. 1996) to predict biofuel crop yields at the county level within a limited geographic area. Mapped output using the model was relatively consistent with known switchgrass distribution. It correctly showed higher yields for lowland switchgrass when compared with upland varieties at most locations. Projections for the most northern parts of the range suggest comparable yields for the two ecotypes, but inadequate data for lowland ecotypes grown at high latitudes make it difficult to fully assess this projection. The final model is a predictor of optimal yields for a given climate scenario, but does not attempt to identify or account for other limiting or interacting factors. The statistical model is nevertheless an improvement over historical efforts, in that it is based on quantifiable climatic differences, and it can be used to extrapolate beyond the historic range of switchgrass. Additional refinement of the current statistical model, or the use of different empirical or process-based models, might improve the prediction of switchgrass yields with respect to climate and interactions with cultivar and management practices, assisting growers in choosing high-yielding cultivars within the context of local environmental growing conditions.

Gunderson, Carla A [ORNL; Davis, Ethan [ORNL; Jager, Yetta [ORNL; West, Tristram O. [ORNL; Perlack, Robert D [ORNL; Brandt, Craig C [ORNL; Wullschleger, Stan D [ORNL; Baskaran, Latha Malar [ORNL; Webb, Erin [ORNL; Downing, Mark [ORNL

2008-08-01T23:59:59.000Z

29

Potential benefits of geothermal electrical production from hydrothermal resources  

DOE Green Energy (OSTI)

The potential national benefits of geothermal electric energy development from the hydrothermal resources in the West are estimated for several different scenarios. The U.S. electrical economy is simulated by computer using a linear programming optimization technique. Under most of the scenarios, benefits are estimated at $2 to $4 billion over the next 50 years on a discounted present value basis. The electricity production from hydrothermal plants reaches 2 to 4 percent of the national total, which will represent 10 to 20 percent of the installed capacity in the West. Installed geothermal capacity in 1990 is estimated to be 9,000 to 17,000 Mw(e). The geothermal capacity should reach 28,000 to 65,000 Mw(e) by year 2015. The ''most likely'' scenario yields the lower values in the above ranges. Under this scenario geothermal development would save the utility industry $11 billion in capital costs (undiscounted); 32 million separative work units; 64,000 tons of U/sub 3/O/sub 8/; and 700 million barrels of oil. The most favorable scenario for geothermal energy occurs when fossil fuel prices are projected to increase at 5 percent/year. The benefits of geothermal energy then exceed $8 billion on a discounted present value basis. Supply curves were developed for hydrothermal resources based on the recent U.S. Geological Survey (USGS) resource assessment, resource characteristics, and projected power conversion technology and costs. Geothermal plants were selected by the optimizing technique to fill a need for ''light load'' plants. This infers that geothermal plants may be used in the future primarily for load-following purposes.

Bloomster, C.H.; Engel, R.L.

1976-06-01T23:59:59.000Z

30

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Asia Demand growth, product mix, trade Price Signals for Capacity Changes Capacity ... 150 AZ Clean Fuels FCC/RCC Coking ...

31

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Survey (USGS) resource assessments. This report contains EIA projections of future daily production rates using recent USGS resource estimates. The Coastal Plain study area...

32

Commercial Products Show Potential to serve as Nuclear Material...  

National Nuclear Security Administration (NNSA)

here. The workshop hosted a team of independent and international experts to identify developing and existing commercial products that may be valuable to meet these challenges....

33

Changing World Product Markets and Potential Refining Capacity Increases  

Reports and Publications (EIA)

The presentation explores potential refinery capacity increases over the next 5 years in various world regions, based on changing demand patterns, changing price incentives, and capacity expansion announcements.

Information Center

2006-03-20T23:59:59.000Z

34

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil and gas resources of ANWR Coastal Plain (The Oil and Gas Resource Potential of the Arctic...

35

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

The presentation explores potential refinery capacity increases over the next 5 years in various world regions, based on changing demand patterns, changing price ...

36

Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse  

E-Print Network (OSTI)

Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production on Greenhouse Gas on recycled paper #12;1 Potential Direct and Indirect Effects of Global Cellulosic Biofuel Production. Melillo*, John M. Reilly§ , and Sergey Paltsev§ Abstract The production of cellulosic biofuels may have

37

POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS  

Science Conference Proceedings (OSTI)

A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

PUIGH RJ; TOFFER H

2011-10-19T23:59:59.000Z

38

Atlantic Bluefin Tuna (Thunnus thynnus) Feeding Ecology and Potential Ecosystem Effects During Winter in North Carolina.  

E-Print Network (OSTI)

??Atlantic bluefin tuna (Thunnus thynnus) occupy North Carolina waters during winter months. Their potential impact on prey populations during this time has largely been unexplored.… (more)

Butler, Christopher Matthew

2007-01-01T23:59:59.000Z

39

Shale Gas Production: Potential versus Actual GHG Emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O'Sullivan, Francis

40

Shale gas production: potential versus actual greenhouse gas emissions  

E-Print Network (OSTI)

Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during ...

O’Sullivan, Francis Martin

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

From product concept to user experience: exploring UX potentials at early product stages  

Science Conference Proceedings (OSTI)

The focus on users' needs and emotions while interacting with products is a key factor for product success. As the field of User Experience (UX) explores these needs and their fulfilment, it gains in importance against the background of the wish for ... Keywords: concept testing, design methods, participatory design, user experience, user-driven innovation

Sandra Sproll; Matthias Peissner; Christina Sturm

2010-10-01T23:59:59.000Z

42

Market Potential of Electrolytic Hydrogen Production in Three Northeastern Utilities' Service Territories  

Science Conference Proceedings (OSTI)

Hydrogen produced by water electrolysis can be potentially cheaper than bottled industrial hydrogen. But in the Northeast, expensive electrolyzers, costly electricity, high interest rates, and excess hydrogen production capacity at existing plants make electrolytic hydrogen less attractive than bottled hydrogen.

1984-05-01T23:59:59.000Z

43

LEAPS: realising the potential of algal biomass production through semantic web and linked data  

Science Conference Proceedings (OSTI)

Recently algal biomass has been identified as a potential source of large scale production of biofuels. Governments, environmental research councils and special interests groups are funding several efforts that investigate renewable energy production ... Keywords: SPARQL, algal biomass, linked data, ontologies, semantic web

Monika Solanki; Johannes Skarka; Craig Chapman

2012-09-01T23:59:59.000Z

44

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Preface Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment is a product of the Energy Information AdministrationÂ’s (EIA) Reserves and Production Division. EIA, under various programs, has assessed foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral agency, EIAÂ’s standard analysis of the potential of the Alaska North Slope (ANS) has focused on the areas without exploration and development restrictions. EIA received a letter (dated March 10, 2000) from Senator Frank H. Murkowski as Chairman of the Senate Committee on Energy and Natural Resources requesting an EIA Service Report "with plausible scenarios for ANWR supply development consistent with the most recent U.S. Geological Survey resource assessments." This service report is prepared in response to the request of Senator Murkowski. It focuses on the ANWR coastal plain, a region currently restricted from exploration and development, and updates EIAÂ’s 1987 ANWR assessment.

45

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment References Energy Information Administration, Annual Energy Outlook 2000, DOE/EIA-0383(2000) (Washington, DC, December 1999), Table A11. Energy Information Administration, Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge, SR/RNGD/87-01 (Washington, DC, September 1987). U.S. Department of Interior, Arctic National Wildlife Refuge, Alaska, Coastal Plain Resource Assessment, (Washington, DC, November, 1986). U.S. Department of Interior, Bureau of Land Management, Minerals Management Service. Northeast National Petroleum Reserve-Alaska Final Integrated Activity Plan / Environmental Impact Statement, (Anchorage , Alaska, August, 1998).

46

Potential for Hydrogen Production from Key Renewable Resources in the United States  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for Hydrogen Production Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Technical Report NREL/TP-640-41134 February 2007 NREL is operated by Midwest Research Institute â—Ź Battelle Contract No. DE-AC36-99-GO10337 Potential for Hydrogen Production from Key Renewable Resources in the United States A. Milbrandt and M. Mann Prepared under Task No. H278.2100 Technical Report NREL/TP-640-41134 February 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government.

47

Study of the geothermal production potential in the Williston Basin, North Dakota  

SciTech Connect

Preliminary studies of geothermal production potential for the North Dakota portion of the Williston Basin have been carried out. Reservoir data such as formation depth, subsurface temperatures, and water quality were reviewed for geothermal brine production predictions. This study, in addition, provides important information about net pay thickness, porosity, volume of geothermal water available, and productivity index for future geothermal direct-use development. Preliminary results show that the Inyan Kara Formation of the Dakota Group is the most favorable geothermal resource in terms of water quality and productivity. The Madison, Duperow, and Red River Formations are deeper formations but because of their low permeability and great depth, the potential flow rates from these three formations are considerably less than those of the Inyan Kara Formation. Also, poor water quality and low porosity will make those formations less favorable for geothermal direct-use development.

Chu, Min H.

1991-09-10T23:59:59.000Z

48

Groundwater Quality Signatures for Assessing Potential Impacts from Coal Combustion Product Leachate  

Science Conference Proceedings (OSTI)

Boron and sulfate are recognized as potential indicators of the influence of leachate from coal-combustion products (CCPs) on groundwater quality. However, there are cases in which these two constituents do not provide sufficient data to characterize groundwater for potential impacts from CCPs. In these cases, the concentrations of other indicator constituents in solution and/or advanced analytical techniques may be used to support other information. A three-tiered analysis approach can provide a ...

2012-11-15T23:59:59.000Z

49

Estimating Hydrogen Production Potential in Biorefineries Using Microbial Electrolysis Cell Technology  

Science Conference Proceedings (OSTI)

Microbial electrolysis cells (MECs) are devices that use a hybrid biocatalysis-electrolysis process for production of hydrogen from organic matter. Future biofuel and bioproducts industries are expected to generate significant volumes of waste streams containing easily degradable organic matter. The emerging MEC technology has potential to derive added- value from these waste streams via production of hydrogen. Biorefinery process streams, particularly the stillage or distillation bottoms contain underutilized sugars as well as fermentation and pretreatment byproducts. In a lignocellulosic biorefinery designed for producing 70 million gallons of ethanol per year, up to 7200 m3/hr of hydrogen can be generated. The hydrogen can either be used as an energy source or a chemical reagent for upgrading and other reactions. The energy content of the hydrogen generated is sufficient to meet 57% of the distillation energy needs. We also report on the potential for hydrogen production in existing corn mills and sugar-based biorefineries. Removal of the organics from stillage has potential to facilitate water recycle. Pretreatment and fermentation byproducts generated in lignocellulosic biorefinery processes can accumulate to highly inhibitory levels in the process streams, if water is recycled. The byproducts of concern including sugar- and lignin- degradation products such as furans and phenolics can also be converted to hydrogen in MECs. We evaluate hydrogen production from various inhibitory byproducts generated during pretreatment of various types of biomass. Finally, the research needs for development of the MEC technology and aspects particularly relevant to the biorefineries are discussed.

Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL

2011-01-01T23:59:59.000Z

50

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS: Alaskan North Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The amount of petroleum extracted per day from a well, group of wells, region, etc. (usually expressed in barrels per day) EIA: Energy Information Administration MBbls: thousand barrels MMBbls: million barrels NPR-A: National Petroleum Reserve-Alaska Petroleum Play: A set of known or postulated petroleum accumulations sharing similar geologic, geographic, and temporal properties such as source rock, migration, pathway, timing, trapping mechanism, and hydrocarbon type

51

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment, was prepared for the U.S. Senate Committee on Energy and Natural Resources at the request of Chairman Frank H. Murkowski in a letter dated March 10, 2000. The request asked the Energy Information Administration (EIA) to develop plausible scenarios for Arctic National Wildlife Refuge (ANWR) supply development consistent with the most recent U.S. Geological Survey (USGS) resource assessments. This report contains EIA projections of future daily production rates using recent USGS resource estimates. The Coastal Plain study area includes 1.5 million acres in the ANWR 1002 Area, 92,000 acres of Native Inupiat lands and State of Alaska offshore lands out to the 3-mile limit which are expected to be explored and developed if and when ANWR is developed. (Figure ES1) About 26 percent of the technically recoverable oil resources are in the Native and State lands.

52

Environmental characterization of two potential locations at Hanford for a new production reactor  

Science Conference Proceedings (OSTI)

This report describes various environmental aspects of two areas on the Hanford Site that are potential locations for a New Production Reactor (NPR). The area known as the Skagit Hanford Site is considered the primary or reference site. The second area, termed the Firehouse Site, is considered the alternate site. The report encompasses an environmental characterization of these two potential NPR locations. Eight subject areas are covered: geography and demography; ecology; meteorology; hydrology; geology; cultural resources assessment; economic and social effects of station construction and operation; and environmental monitoring. 80 refs., 68 figs., 109 tabs.

Watson, E.C.; Becker, C.D.; Fitzner, R.E.; Gano, K.A.; Imhoff, K.L.; McCallum, R.F.; Myers, D.A.; Page, T.L.; Price, K.R.; Ramsdell, J.V.; Rice D.G.; Schreiber D.L.; Skumatz L.A.; Sommer D.J.; Tawil J.J.; Wallace R.W.; Watson D.G.

1984-09-01T23:59:59.000Z

53

GAS PRODUCTION POTENTIAL OF DISPERSE LOW-SATURATION HYDRATE ACCUMULATIONS IN  

NLE Websites -- All DOE Office Websites (Extended Search)

61446 61446 GAS PRODUCTION POTENTIAL OF DISPERSE LOW-SATURATION HYDRATE ACCUMULATIONS IN OCEANIC SEDIMENTS George J. Moridis Earth Sciences Division Lawrence Berkeley National Laboratory Berkeley, CA 94720 E. Dendy Sloan Center for Hydrate Research and Chemical Engineering Department Colorado School of Mines Golden, CO 80401 August 2006 This work was partly supported by the Assistant Secretary for Fossil Energy, Office of Natural Gas and Petroleum Technology, through the National Energy Technology Laboratory, under the U.S. Department of Energy, Contract No. DE-AC03-76SF00098. Gas Production Potential of Disperse Low-Saturation Hydrate Accumulations in Oceanic Sediments George J. Moridis 1 and E. Dendy Sloan 2 1 Earth Sciences Division, Lawrence Berkeley National Laboratory, MS 90-1166

54

SR/O&G/2000-02 Potential Oil Production  

Gasoline and Diesel Fuel Update (EIA)

0-02 0-02 Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment May 2000 Energy Information Administration Office of Oil and Gas U. S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the U. S. Department of Energy. The information contained herein should be attributed to the Energy Information Administration and should not be construed as advocating or reflecting any policy of the Department of Energy or any other organization. Energy Information Administration Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment ii Energy Information Administration

55

Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets  

Gasoline and Diesel Fuel Update (EIA)

Reductions in Northeast Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets December 2011 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Reductions in Northeast Refining Activity: Potential Implications for Petroleum Product Markets i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy

56

Electric Energy Conservation and Production Project: Vpolume 3: Wind energy potential  

Science Conference Proceedings (OSTI)

A final report has been prepared under the Electric Energy Conservation and Production Project, conducted by the Blackfeet Indian Tribe and its consultants, Black Hawk Associates, Inc. The report addresses two major issues - the heavy reliance on electricity by residents of the Blackfeet Reservation, and the opportunities for electricity production from wind energy resources on the Reservation. The findings of this report (1) help provide a basis for comprehensive energy management planning on the Reservation, (2) analyze the potential for minimizing electricity demand and maximizing the efficiency of electrical end-uses through appropriate conservation measures, (3) assess the potential of wind energy resources located on the Reservation, and (4) identify and assess the technical, financial, legal, institutional, and regulatory issues involved in wind energy development within the Blackfeet Reservation.

Not Available

1984-02-01T23:59:59.000Z

57

Estimate of federal relighting potential and demand for efficient lighting products  

SciTech Connect

The increasing level of electric utility rebates for energy-efficient lighting retrofits has recently prompted concern over the adequacy of the market supply of energy-efficient lighting products (Energy User News 1991). In support of the U.S. Department of Energy`s Federal Energy Management Program, Pacific Northwest Laboratory (PNL) has developed an estimate of the total potential for energy-efficient lighting retrofits in federally owned buildings. This estimate can be used to address the issue of the impact of federal relighting projects on the supply of energy-efficient lighting products. The estimate was developed in 1992, using 1991 data. Any investments in energy-efficient lighting products that occurred in 1992 will reduce the potential estimated here. This analysis proceeds by estimating the existing stock of lighting fixtures in federally owned buildings. The lighting technology screening matrix is then used to determine the minimum life-cycle cost retrofit for each type of existing lighting fixture. Estimates of the existing stock are developed for (1) four types of fluorescent lighting fixtures (2-, 3-, and 4-lamp, F40 4-foot fixtures, and 2-lamp, F96 8-foot fixtures, all with standard magnetic ballasts); (2) one type of incandescent fixture (a 75-watt single bulb fixture); and (3) one type of exit sign (containing two 20-watt incandescent bulbs). Estimates of the existing stock of lighting fixtures in federally owned buildings, estimates of the total potential demand for energy-efficient lighting products if all cost-effective retrofits were undertaken immediately, and total potential annual energy savings (in MWh and dollars), the total investment required to obtain the energy savings and the present value of the efficiency investment, are presented.

Shankle, S.A.; Dirks, J.A.; Elliott, D.B.; Richman, E.E.; Grover, S.E.

1993-11-01T23:59:59.000Z

58

Regional Differences in Corn Ethanol Production: Profitability and Potential Water Demands  

E-Print Network (OSTI)

Through the use of a stochastic simulation model this project analyzes both the impacts of the expanding biofuels sector on water demand in selected regions of the United States and variations in the profitability of ethanol production due to location differences. Changes in consumptive water use in the Texas High Plains, Southern Minnesota, and the Central Valley of California, as impacted by current and proposed grain-based ethanol plants were addressed. In addition, this research assesses the potential impacts of technologies to reduce consumptive water use in the production of ethanol in terms of water usage and the economic viability of each ethanol facility. This research quantifies the role of corn ethanol production on water resource availability and identifies the alternative water pricing schemes at which ethanol production is no longer profitable. The results of this research show that the expansion of regional ethanol production and the resulting changes in the regional agricultural landscapes do relatively little to change consumptive water usage in each location. The California Central Valley has the highest potential for increased water usage with annual water usage in 2017 at levels 15% higher than historical estimates, whereas Southern Minnesota and the Texas High Plains are predicted to have increases of less than 5% during the same time period. Although water use by ethanol plants is extremely minor relative to consumptive regional agricultural water usage, technological adaptations by ethanol facilities have the potential to slightly reduce water usage and prove to be economically beneficial adaptations to make. The sensitivity of net present value (NPV) with respect to changes in water price is shown to be extremely inelastic, indicating that ethanol producers have the ability to pay significantly more for their fresh water with little impact on their 10 year economic performance.

Higgins, Lindsey M.

2009-05-01T23:59:59.000Z

59

International Trade of Bio-Energy Products – Economic Potentials for Austria  

E-Print Network (OSTI)

TRIOPOL studies the role of domestic bioenergy potentials for agriculture, the wider economy and international trade for Austria. In particular, agricultural biomass production can contribute to significant shares of energy provision in Austria. A detailed scenario is developed to explore the opportunities and challenges of enhanced domestic biomass production based on short rotation forestry (SRF) for heat supply which is currently among the most competitive technologies. To that end, TRIOPOL establishes a model linkage between a sectoral supply-model for Austrian agriculture and a national small open economy general equilibrium model. Model results show that a biomass premium of 65 € per ton dry matter is required to support 250,000 ha of SRF on cropland in Austria by 2020. The thus provided bioheat covers some 33 petajoule (PJ) heat energy demand in Austria; taking into account the likely rising of energy prices by 2020, this number rises to 47 PJ. Substantial land use changes may also be compensated by increases in land use intensity and as well as changes in imports and exports. Scenario results suggest that domestic food production of non-meat commodities falls by 1.3%. The sector meat products profits from the high competitiveness of Austrian livestock production and responds by a slight increase in net exports. The results of the quantitative analysis shall support the scientific and political debate on securing food and energy supply as well as economic development goals.

Olivia Kol; Martin Schönhart; Erwin Schmid

2013-01-01T23:59:59.000Z

60

Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

and and Frictional Drag on a Floating Sphere in a Flowing Plasma I. H. Hutchinson Plasma Science and Fusion Center Massachusetts Institute of Technology, Cambridge, MA, USA The interaction of an ion-collecting sphere at floating potential with a flowing colli- sionless plasma is investigated using the "Specialized Coordinate Electrostatic Particle and Thermals In Cell" particle-in-cell code SCEPTIC[1, 2]. Code calculations are given of potential and the total force exerted on the sphere by the flowing plasma. This force is of crucial importance to the problem of dusty plasmas, and the present results are the first for a collisionless plasma to take account of the full self-consistent potential. They reveal discrepancies amounting to as large as 20% with the standard analytic expressions, in parameter regimes where the analytic approximations might have been expected

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw  

NLE Websites -- All DOE Office Websites (Extended Search)

Cultivar Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw J. Lindedam a, *, S.B. Andersen b , J. DeMartini c , S. Bruun b , H. Jørgensen a , C. Felby a , J. Magid b , B. Yang d , C.E. Wyman c a Forestry and Wood Products, Forest & Landscape, Faculty of Life Sciences, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark b Plant and Soil Science Laboratory, Department of Agriculture and Ecology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark c Center for Environmental Research and Technology, Bourns College of Engineering, University of California Riverside, 1084 Columbia Avenue, Riverside, CA 92507, USA d Center for Bioproducts and Bioenergy, Washington State University, 2710 University Drive, Richland, WA 99354, USA a r t i c l e i n f o Article history:

62

Increasing Distillate Production at U.S. Refineries Â… Past Changes and Future Potential  

Gasoline and Diesel Fuel Update (EIA)

Increasing Distillate Production at U.S. Refineries - Past Changes and Future Increasing Distillate Production at U.S. Refineries - Past Changes and Future Potential U.S. Energy Information Administration Office of Petroleum, Gas, and Biofuels Analysis Department of Energy Office of Policy and International Affairs October 2010 Summary World consumption growth for middle distillate fuels (diesel fuel, heating oil, kerosene, and jet fuel) has exceeded the consumption growth for gasoline for some time, and the United States is no exception. Although the decrease in the ratio of total gasoline consumption to consumption for middle distillate fuels has been small in the United States, recent legislation requiring increased use of renewable fuels has resulted in forecasts that project a decline in consumption for petroleum-based gasoline from refineries, which would accelerate the decline in the

63

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil and gas resources of ANWR Coastal Plain (The Oil and Gas Resource Potential of the Arctic National Wildlife Refuge 1002 Area, Alaska, Open File Report 98-34, 1999) provided basic information used in this study. A prior assessment was completed in 1987 by the USGS. Information from recent offset drilling, offsetting discoveries, and new geologic and geophysical data were used to update the oil and gas resource potential. An evaluation was made of each of 10 petroleum plays (similar geologic settings). For each play, USGS constructed statistical distributions of the number and size of potential accumulations based on a probabilistic range of geologic attributes. Minimum accumulation size was 500 million barrels. The resulting distributions were subjected to three risk parameters. Risk was assigned for the occurrence of adequate generation and migration of petroleum to meet the minimum size requirements, for the occurrence of reservoir rock to contain the minimum volume, and for the occurrence of a trapping mechanism to seal the petroleum in the reservoir. USGS analysts applied an appropriate recovery factor to the estimated oil in place that was calculated for each play to obtain an estimate of technically recoverable petroleum resources. The combined recovery factor for the entire study area averages approximately 37 percent of the initial oil in place. It is likely that the actual recovery factor of potential large fields would exceed 37 percent, because the nearby giant Prudhoe Bay field recovery factor will exceed 50 percent.

64

Fuels from solar energy: photosynthetic systems--state of the art and potential for energy production  

DOE Green Energy (OSTI)

Research on the mass culturing of microalgae has been carried out over the past 30 years in many parts of the world. Today there are numerous potential applications for algal mass cultures including protein production, wastewater treatment, water renovation, closed life-support systems, production of commercial chemicals, aquaculture, and bioconversion of energy. Photosynthetic yields over 30 gr dry wt m/sup -2/ day/sup -1/ have been attained on occasion in many locations for short periods and yields between 15 to 25 gr dry wt m/sup -2/ day/sup -1/ for longer periods are now common. This apparent upper limit in productivity is not coincidental. Under outdoor conditions peak yields are possible only under conditions of light limitation. Photosynthetic algae absorb light energy and convert it to stored chemical energy under rigid adherence to the laws of thermodynamics. By examining the basic physics of photosynthesis, it is possible to clearly demonstrate that under conditions of full sunlight in the most ideal locations maximum yields of 30 to 40 gr m/sup -2/ day/sup -1/ can be expected. For long-term operation of large-scale outdoor cultures, many bioengineering factors are involved and realistic yields considerably less than the maximum potential can be anticipated. Manipulation of the two independent variables, flow rate and depth, is the key to maximizing yields for varying outdoor sunlight intensities. Future applications for algal mass cultures will probably be restricted to small well-managed systems for solving specific environmental problems in individual communities and not on the grand scale envisaged in the past.

Goldman, J.C.

1978-07-01T23:59:59.000Z

65

Chemicals from biomass: an assessment of the potential for production of chemical feedstocks from renewable resources  

DOE Green Energy (OSTI)

This assessment of the potential for production of commodity chemicals from renewable biomass resources is based on (1) a Delphi study with 50 recognized authorities to identify key technical issues relevant to production of chemicals from biomass, and (2) a systems model based on linear programming for a commodity chemicals industry using renewable resources and coal as well as gas and petroleum-derived resources. Results from both parts of the assessment indicate that, in the absence of gas and petroleum, coal undoubtedly would be a major source of chemicals first, followed by biomass. The most attractive biomass resources are wood, agricultural residues, and sugar and starch crops. A reasonable approximation to the current product slate for the petrochemical industry could be manufactured using only renewable resources for feedstocks. Approximately 2.5 quads (10/sup 15/ Btu (1.055 x 10/sup 18/ joules)) per year of oil and gas would be released. Further use of biomass fuels in the industry could release up to an additional 1.5 quads. however, such an industry would be unprofitable under current economic conditions with existing or near-commercial technology. As fossil resources become more expensive and biotechnology becomes more efficient, the economics will be more favorable. Use of the chemicals industry model to evaluate process technologies is demonstrated. Processes are identified which have potential for significant added value to the system if process improvements can be made to improve the economics. Guidelines and recommendations for research and development programs to improve the attractiveness of chemicals from biomass are discussed.

Donaldson, T.L.; Culberson, O.L.

1983-06-01T23:59:59.000Z

66

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential  

SciTech Connect

Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

2008-02-12T23:59:59.000Z

67

Potential air quality impact of geothermal power production in the Imperial Valley  

DOE Green Energy (OSTI)

A regional assessment of the potential impact on air quality of developing the Imperial Valley's geothermal resources for power production is presented. A network of six stations was installed to characterize the air quality and atmospheric transport properties of the valley before development. These measured the ambient air concentrations of H/sub 2/S, SO/sub 2/, O/sub 3/, NO, NO/sub x/, CO/sub 2/, Hg, Rn, and particulates. Wind velocity and the directional variability of the winds were also measured to determine atmospheric stability. The geothermal fluids were analyzed chemically to estimate potential emission rates of H/sub 2/S, NH/sub 3/, CO/sub 2/, CH/sub 4/, Hg, and Rn from future power plants. Using these data and advanced air quality modeling led to the prediction of the potential valley-wide impact of a 3000 MW development scenario. The impact analysis reveals that H/sub 2/S is the principal gaseous pollutant of concern due to its noxious odor and the potential release rate. The ambient H/sub 2/S concentrations that would result from generating 3000 MW without emission controls exceed the California air quality standard (30 ppb) at least 1% of the time for an area in the northern part of the valley that is roughly 1500 km/sup 2/ in size. This compares with current ambient air concentrations that exceed the standard much less than 0.1% of the time. The population center most impacted is Calipatria, where the standard could be exceeded almost 10% of the time. In addition, the odor of H/sub 2/S will be noticeable at least 1% of the time for most of the valley if the 3000 MW are placed on-line without abatement systems.

Gudiksen, P.H.; Ermak, D.L.; Lamson, K.C.; Axelrod, M.C.; Nyholm, R.A.

1979-10-01T23:59:59.000Z

68

Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments  

E-Print Network (OSTI)

Page viable gas production. The overall conclusion drawnnot promising targets for gas production. Acknowledgment TheTS. Strategies for gas production from hydrate accumulations

Moridis, George J.; Sloan, E. Dendy

2006-01-01T23:59:59.000Z

69

Infrared absorption strengths of potential gaseous diffusion plant coolants and related reaction products  

SciTech Connect

The DOE gaseous diffusion plant complex makes extensive use of CFC-114 as a primary coolant. As this material is scheduled for production curtailment within the next few years, a search for substitutes is underway, and apparently workable alternatives have been found and are under testing. The presently favored substitutes, FC-c3l8 and FC-3110, satisfy ozone depletion and operational chemical compatibility concerns, but will be long-lived greenhouse gases, and thus may be regulated on that basis in the future. A further search is therefore underway for compounds with shorter atmospheric lifetimes which could otherwise satisfy operational physical and chemical requirements. A number of such candidates are in the process of being screened for chemical compatibility in a fluorinating environment. This document presents infrared spectral data developed and used in that study for candidates recently examined, and also for many of their fluorination reaction products. The data include gas-phase infrared spectra, quantitative peak intensities as a function of partial pressure, and integrated absorbance strength in the IR-transparent atmospheric window of interest to global warming modeling. Combining this last property with literature or estimated atmospheric lifetimes, rough estimates of global warming potential for these compounds are also presented.

Trowbridge, L.D.; Angel, E.C.

1993-05-01T23:59:59.000Z

70

Market potential of electrolytic hydrogen production in three northeastern utilities' service territories. Final report  

SciTech Connect

The study develops a method for exploring the market potential for electrolytic hydrogen. The service areas of three northeastern utilities - Public Service Electric and Gas, Niagara Mohawk, and Northeast Utilities - are examined, and results reported on the effort to locate specialty hydrogen users, determine patterns of hydrogen utilization, and assess the possibility of satisfying this hydrogen demand by electrolytic hydrogen from advanced electrolyzers. Hydrogen users were sought in six major product categories: chemicals, pharmaceuticals, oils, metals, electronics and float glass. Identification of users through appropriate standard industrial classification codes served as a basis for locating possible users in each of the service areas. Mailed questionnaires sought information on hydrogen demand, characteristics of hydrogen use, present hydrogen supply costs, and factors that would influence the purchase of an electrolyzer. In the three utility service areas examined, electrolytic hydrogen can be expected to have limited success competing with merchant hydrogen. Specific hydrogen users may be found whose location with respect to the source of merchant hydrogen may put electrolytic hydrogen at an economic advantage. Reduction in electrolyzer plant costs may be necessary to expand the possibilities for electrolysis. Annual power requirements for current potential demand for electrolytic hydrogen in three utilities was estimated at 140 x 10/sup 6/ kWh, which could expand to 240 x 10/sup 6/ kWh in ten years.

Fein, E.; Edwards, K.

1984-05-01T23:59:59.000Z

71

World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard  

Science Conference Proceedings (OSTI)

This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022. Within the mandate, amounts of advanced biofuels, including biomass-based diesel and cellulosic biofuels, are required beginning in 2009. Imported renewable fuels are also eligible for the RFS. Another key U.S. policy is the $1.01 per gal tax credit for producers of cellulosic biofuels enacted as part of the 2008 Farm Bill. This credit, along with the DOE's research, development and demonstration (RD&D) programs, are assumed to enable the rapid expansion of U.S. and global cellulosic biofuels production needed for the U.S. to approach the 2022 RFS goal. While the Environmental Protection Agency (EPA) has yet to issue RFS rules to determine which fuels would meet the greenhouse gas (GHG) reduction and land use restrictions specified in EISA, we assume that cellulosic ethanol, biomass-to-liquid fuels (BTL), sugar-derived ethanol, and fatty acid methyl ester biodiesel would all meet the EISA advanced biofuel requirements. We also assume that enough U.S. corn ethanol would meet EISA's biofuel requirements or otherwise be grandfathered under EISA to reach 15 B gal per year.

Sastri, B.; Lee, A.

2008-09-15T23:59:59.000Z

72

Gas production potential of disperse low-saturation hydrate accumulations in oceanic sediments  

E-Print Network (OSTI)

to economically Page viable gas production. The overallare not promising targets for gas production. AcknowledgmentEnergy, Office of Natural Gas and Petroleum Technology,

Moridis, George J.; Sloan, E. Dendy

2006-01-01T23:59:59.000Z

73

Quantifying the Nonconservative Production of Conservative Temperature, Potential Temperature, and Entropy  

Science Conference Proceedings (OSTI)

The evolution equation of potential temperature has to date been treated as an approximation to the oceanic version of the first law of thermodynamics. That is, oceanographers have regarded the advection and diffusion of potential temperature as ...

Felicity S. Graham; Trevor J. McDougall

2013-05-01T23:59:59.000Z

74

Evaluation of Potential Human Health Inhalation Risks from Mercury in Building and Construction Materials Containing Coal Combustion Products  

Science Conference Proceedings (OSTI)

Concerns have been raised regarding the potential public health risks from mercury that is associated with the use of coal combustion products in building materials and construction applications. This report presents the results of a risk assessment that evaluated mercury inhalation under several exposure scenarios, including concrete and wallboard in residential and classroom settings.

2009-08-20T23:59:59.000Z

75

Potential impact of Thailand's alcohol program on production, consumption, and trade of cassava, sugarcane, and corn  

SciTech Connect

On the first of May 1980, Thailand's fuel-alcohol program was announced by the Thai government. According to the program, a target of 147 million liters of ethanol would be produced in 1981, from cassava, sugarcane, and other biomasses. Projecting increases in output each year, the target level of ethanol produciton was set at 482 million liters of ethanol for 1986. The proposed amount of ethanol production could create a major shift up in the demand schedule of energy crops such as cassava, sugarcane, and corn. The extent of the adjustments in price, production, consumption, and exports for these energy crops need to be evaluated. The purpose of this study is to assess the potential impact of Thailand's fuel-alcohol program on price, production, consumption, and exports of three potential energy crops: cassava, sugarcane, and corn. Econometric commodity models of cassava, sugarcane, and corn are constructed and used as a method of assessment. The overall results of the forecasting simulations of the models indicate that the fuel-alcohol program proposed by the Thai government will cause the price, production, and total consumption of cassava, sugarcane, and corn to increase; on the other hand, it will cause exports to decline. In addition, based on the relative prices and the technical coefficients of ethanol production of these three energy crops, this study concludes that only cassava should be used to produce the proposed target of ethanol production.

Boonserm, P.

1985-01-01T23:59:59.000Z

76

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

below the cost of production of 7.7 cents per kWh. Thus, the1 to 5.2 cents per kWh, well below the cost of electricitythe average cost of production was 7.7 cents per kWh. We

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

77

Agricultural productivity potential assessment by using rainfall contribution index in Sub-Sahara Africa  

Science Conference Proceedings (OSTI)

Food deficit alleviation is the most important aspect for poverty reduction in the entire Sub-Sahara African (SSA) region. This alleviation can be achieved by increasing agricultural productivity. The deficit is in one way or the other attributed to ... Keywords: agricultural water, effective rainfall, food deficit, planting period, productivity, rainfall contribution index

Yu-Min Wang; Seydou Traore; Willy Namaona; Tienfuan Kerh

2009-05-01T23:59:59.000Z

78

Net mineralization of N at deeper soil depths as a potential mechanism for sustained forest production under elevated [CO2  

SciTech Connect

Elevated atmospheric [CO2] is projected to increase forest production, which could increase ecosystem carbon (C) storage. However, sustained forest production will depend on the nutrient balance of the forested ecosystem. Our aim was to examine the causes and consequences of increased fine-root production and mortality throughout the soil profile under elevated CO2 with respect to potential gross nitrogen (N) cycling rates. Our study was conducted in a CO2-enriched sweetgum (Liquidambar styraciflua L.) plantation in Oak Ridge, TN, USA. We used isotope pool dilution methodology to measure potential gross N cycling rates in laboratory incubations of soil from four depth increments to 60 cm. Our objectives were two-fold: (1) determine whether N is available for root acquisition in deeper soil, and (2) determine whether increased inputs of labile C from greater fine-root mortality at depth under elevated [CO2] had altered N cycling rates. While gross N fluxes declined with soil depth, we found that N is potentially available for roots to access, especially below 15 cm depth where microbial consumption of mineral N was reduced. Overall, up to 60% of potential gross N mineralization, and 100% of potential net N mineralization, occurred below 15-cm depth at this site. This finding was supported by in situ measurements from ion-exchange resins, where total inorganic N availability at 55 cm depth was equal to or greater than N availability at 15 cm depth. While it is likely that trees grown under elevated [CO2] are accessing a larger pool of inorganic N by mining deeper soil, we found no effect of elevated [CO2] on potential gross or net N cycling rates. Thus, increased root exploration of the soil volume under elevated [CO2] may be more important than changes in potential gross N cycling rates in sustaining forest responses to rising atmospheric CO2.

Iversen, Colleen M [ORNL; Hooker, Toby [Utah State University (USU); Classen, Aimee T [University of Tennessee, Knoxville (UTK); Norby, Richard J [ORNL

2011-01-01T23:59:59.000Z

79

Evaluation of a MODIS-Based Potential Evapotranspiration Product at the Point Scale  

Science Conference Proceedings (OSTI)

This paper outlines the development of a continuous, daily time series of potential evapotranspiration (PET) using Moderate Resolution Imaging Spectroradiometer (MODIS) sensor data from the Terra satellite platform. The approach is based on the ...

Jongyoun Kim; Terri S. Hogue

2008-06-01T23:59:59.000Z

80

Monitoring natural subsidence and seismicity in the Imperial Valley as a basis for evaluating potential impacts of geothermal production  

DOE Green Energy (OSTI)

Results of work done on potential geologic effects of geothermal development are discussed. The key geological issues in the Imperial Valley are the potential for significant subsidence and seismicity which could be induced by geothermal production. The major technical problem is to develop techniques to distinguish between natural and induced activity. In both subsidence and seismicity studies, the projects augment the existing network to obtain additional information in critical areas; thus, local subsidence detection networks were added to the regional networks. The U.S. Geological Survey seismograph network was augmented to increase sensitivity to small earthquakes near the Salton Sea. Techniques being used and initial results are summarized briefly. (JGB)

Crow, N.B.; Kasamayer, P.W.

1978-04-04T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea  

Science Conference Proceedings (OSTI)

Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni

2007-11-16T23:59:59.000Z

82

Potential for by-product recovery in geothermal energy operations issue paper  

DOE Green Energy (OSTI)

This document identifies and discusses the significant issues raised by the idea of recovering useful by-products from wastes (primarily spent brine) generated during geothermal power production. The physical availability of numerous valuable materials in geothermal brines has captured the interest of geothermal resource developers and other parties ever since their presence was known. The prospects for utilizing huge volumes of highly-saline geothermal brines for electricity generation in the Imperial Valley of California have served to maintain this interest in both private sector and government circles.

None

1982-07-01T23:59:59.000Z

83

Potential Benefits from Improved Energy Efficiency of Key Electrical Products: The Case of India  

E-Print Network (OSTI)

marginal electricity rates for the residential, commercial,residential and agricultural tariffs in line with the cost of electricity production. In particular, agricultural ratesresidential consumers would see a present (discounted) benefit of 1.9 billion dollars over the forecast period, based on a marginal electricity rate

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert, Virginie; McMahon, James E.

2005-01-01T23:59:59.000Z

84

Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects  

DOE Green Energy (OSTI)

To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

None

1981-08-07T23:59:59.000Z

85

Strong RNAi-inhibition of 4CL expression alters lignification, saccharification potential and productivity of field-grown poplar  

SciTech Connect

RNAi-associated down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been proposed as a means for reducing lignin content in cell walls, and thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplars (Populus) we employed RNAi gene suppression of 4CL to generate 14 transgenic events and compared them to a non-transgenic control. After a two-year field trial we characterized the consequences of 4CL down-regulation on wood biochemistry and tree productivity. Lignin reductions correlated well with 4CL RNA expression, with a sharp decrease in lignin observed for RNA expression levels below ~50%. Lignin reductions greater than ~10% of the control value were associated with reduced productivity, decreased wood S/G (syringyl/guaiacyl) lignin monomer ratios, and increased incorporation of H-monomers (p-hydroxyphenyl) into cell walls. Strongly affected transgenic events were also characterized by patches of brown, discolored wood with about twice the extractive (complex polyphenolic) content of controls. There was no support for the hypothesis that reduced lignin would increase saccharification potential. The data presented suggest that a threshold of lignin reduction exists, beyond which there are large changes in wood chemistry and plant metabolism that affect productivity and potential ethanol yield.

Tuskan, Gerald A [ORNL; Gunter, Lee E [ORNL; Strauss, S [Oregon State University

2007-01-01T23:59:59.000Z

86

Supporting Information for: A Global Comparison of National Biodiesel Production Potentials  

E-Print Network (OSTI)

by this study, units = US$ per liter OYi "Well-managed" oil yield for feedstock i NewCROP 2006, Duke 2001 Liters oil processing ratio Van Gerpen, Shanks et al. 2004 % of processed to crude vegetable oil ADj Biodiesel Potential · Table S.2: Variables Used in Calculating Biodiesel Volumes and Prices · Figure S.3: U.S

Wisconsin at Madison, University of

87

Potential of Using Poultry Litter as a Feedstock for Energy Production Rangika Perera, Graduate Research Assistant  

E-Print Network (OSTI)

on co-firing with woody biomass. 2. Potential of Poultry Litter for Energy Generation Poultry litter of phosphorous and potassium, which are important nutrients for plants. Co-firing is the simultaneous in the coal pile and fed to the boiler through the coal feed system. Co-firing poultry litter in an existing

88

Potential Benefits from Improved Energy Efficiency of KeyElectrical Products: The Case of India  

Science Conference Proceedings (OSTI)

The goal of this project was to estimate the net benefits that cost-effective improvements in energy efficiency can bring to developing countries. The study focused on four major electrical products in the world's second largest developing country, India. These products--refrigerators, room air conditioners, electric motors, and distribution transformers--are important targets for efficiency improvement in India and in other developing countries. India is an interesting subject of study because of it's size and rapid economic growth. Implementation of efficient technologies in India would save billions in energy costs, and avoid hundreds of megatons of greenhouse gas emissions. India also serves as an example of the kinds of improvement opportunities that could be pursued in other developing countries.

McNeil, Michael; Iyer, Maithili; Meyers, Stephen; Letschert,Virginie; McMahon, James E.

2005-12-20T23:59:59.000Z

89

Fossil fuel potential of Turkey: A statistical evaluation of reserves, production, and consumption  

Science Conference Proceedings (OSTI)

Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy production from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.

Korkmaz, S.; Kara-Gulbay, R.; Turan, M. [Karadeniz Technical University, Trabzon (Turkey)

2008-07-01T23:59:59.000Z

90

Geothermal source potential and utilization for methane generation and alcohol production  

DOE Green Energy (OSTI)

A study was conducted to assess the technical and economic feasibility of integrating a geothermally heated anaerobic digester with a fuel alcohol plant and cattle feedlot. Thin stillage produced from the alcohol production process and manure collected from the cattle feedlot would be digested in anaerobic digesters to produce biogas, a mixture of methane and carbon dioxide, and residue. The energy requirements to maintain proper digester temperatures would be provided by geothermal water. The biogas produced in the digesters would be burned in a boiler to produce low-pressure steam which would be used in the alcohol production process. The alcohol plant would be sized so that the distiller's grains byproduct resulting from the alcohol production would be adequate to supply the daily cattle feed requirements. A portion of the digester residue would substitute for alfalfa hay in the cattle feedlot ration. The major design criterion for the integrated facilty was the production of adequate distiller's grain to supply the daily requirements of 1700 head of cattle. It was determined that, for a ration of 7 pounds of distiller's grain per head per day, a 1 million gpy alcohol facility would be required. An order-of-magnitude cost estimate was prepared for the proposed project, operating costs were calculated for a facility based on a corn feedstock, the economic feasibility of the proposed project was examined by calculating its simple payback, and an analysis was performed to examine the sensitivity of the project's economic viability to variations in feedstock costs and alcohol and distiller's grain prices.

Austin, J.C.

1981-11-01T23:59:59.000Z

91

Potential Effects and Challenges of Required Increases in Production and Use Why GAO Did This Study  

E-Print Network (OSTI)

expanded the renewable fuel standard (RFS), which requires rising use of ethanol and other biofuels, from 9 billion gallons in 2008 to 36 billion gallons in 2022. To meet the RFS, the Departments of Agriculture (USDA) and Energy (DOE) are developing advanced biofuels that use cellulosic feedstocks, such as corn stover and switchgrass. The Environmental Protection Agency (EPA) administers the RFS. This report examines, among other things, (1) the effects of increased biofuels production on U.S. agriculture, environment, and greenhouse gas emissions; (2) federal support for domestic biofuels production; and (3) key challenges in meeting the RFS. GAO extensively reviewed scientific studies, interviewed experts and agency officials, and visited five DOE and USDA laboratories. What GAO Recommends GAO suggests that the Congress consider requiring EPA to develop a strategy to assess lifecycle environmental effects of increased biofuels production and whether revisions are needed to the VEETC. GAO also recommends that EPA, DOE, and USDA develop a coordinated approach for addressing uncertainties in lifecycle greenhouse gas analysis and give priority to R&D that addresses future blend wall issues. DOE, USDA, and EPA generally agreed with the recommendations. View GAO-09-446 or key components.

Congressional Requesters

2007-01-01T23:59:59.000Z

92

Potential growth of electric power production from Imperial Valley geothermal resources  

DOE Green Energy (OSTI)

The growth of geothermal electric power operations in Imperial Valley, California is projected over the next 40 years. With commercial power forecast to become available in the 1980's, the scenario considers three subsequent growth rates: 40, 100, and 250 MW per year. These growth rates, along with estimates of the total resource size, result in a maximum level of electric power production ranging from 1000 to 8000 MW to be attained in the 2010 to 2020 time period. Power plant siting constraints are developed and used to make siting patterns for the 400- through 8000-MW level of power production. Two geothermal technologies are included in the scenario: flashed steam systems that produce cooling water from the geothermal steam condensate and emit noncondensable gases to the atmosphere; and high pressure, confined flow systems that inject the geoghermal fluid back into the ground. An analysis of the scenario is made with regard to well drilling and power plant construction rates, land use, cooling water requirements, and hydrogen sulfide emissions.

Ermak, D.L.

1977-09-30T23:59:59.000Z

93

Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields  

SciTech Connect

In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

2010-02-22T23:59:59.000Z

94

The Potential for Biomass District Energy Production in Port Graham, Alaska  

SciTech Connect

This project was a collaboration between The Energy & Environmental Research Center (EERC) and Chugachmiut – A Tribal organization Serving the Chugach Native People of Alaska and funded by the U.S. Department of Energy (DOE) Tribal Energy Program. It was conducted to determine the economic and technical feasibility for implementing a biomass energy system to service the Chugachmiut community of Port Graham, Alaska. The Port Graham tribe has been investigating opportunities to reduce energy costs and reliance on energy imports and support subsistence. The dramatic rise in the prices of petroleum fuels have been a hardship to the village of Port Graham, located on the Kenai Peninsula of Alaska. The Port Graham Village Council views the forest timber surrounding the village and the established salmon industry as potential resources for providing biomass energy power to the facilities in their community. Benefits of implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

2008-05-08T23:59:59.000Z

95

Assessment of potential domestic fossil-fuel resources for SNG (substitute natural gas) production. Final report, February 1983-August 1984  

Science Conference Proceedings (OSTI)

Quality and availability of naturally occurring resources and industrial by-products which could be gasified and thereby serve as feedstock for SNG plants were studied to identify those resources with the greatest potential for exploitation in this regard. KRSI accumulated information from a large number of literature sources relative to the resources identified by GRI for study. To the extent possible, KRSI then organized this information to highlight for each resource the grades available, typical chemical compositions, quantities and locations of reserves, recovery methods and rates of production and consumption. This information clearly shows that coal is the most practical source of long-term feedstock for SNG in the contiguous USA. Coal resources amount to 84% (by quads) of the energy resources which were studied. In comparison, peat, shale oil and tar sand contain about 11% of the total.

Cover, A.E.; Hubbard, D.A.; Shah, K.V.; Koneru, P.B.

1984-08-01T23:59:59.000Z

96

Potential for CO2 Sequestration and Enhanced Coalbed Methane Production, Blue Creek Field, NW Black Warrior Basin, Alabama  

E-Print Network (OSTI)

Carbon dioxide (CO2) is a primary source of greenhouse gases. Injection of CO2 from power plants near coalbed reservoirs is a win-win method to reducing emissions of CO2 to the atmosphere. Limited studies have investigated CO2 sequestration and enhanced coalbed methane production in San Juan and Alberta basins, but reservoir modeling is needed to assess the potential of the Black Warrior basin. Alabama ranks 9th nationally in CO2 emissions from power plants; two electricity generation plants are adjacent to the Black Warrior coalbed methane fairway. This research project was a reservoir simulation study designed to evaluate the potential for CO2 sequestration and enhanced coalbed methane (ECBM) recovery in the Blue Creek Field of Black Warrior basin, Alabama. It considered the injection and production rate, the components of injected gas, coal dewatering, permeability anisotropy, various CO2 soak times, completion of multiple reservoir layers and pressure constraints at the injector and producer. The simulation study was based on a 5-spot well pattern 40-ac well spacing. Injection of 100 percent CO2 in coal seams resulted in average volumes of 0.57 Bcf of sequestered CO2 and average volumes of 0.2 Bcf of enhance methane production for the Mary Lee coal zone only, from an 80-acre 5-spot well pattern. For the entire Blue Creek field of the Black Warrior basin, if 100 percent CO2 is injected in the Pratt, Mary Lee and Black Creek coal zones, enhance methane resources recovered are estimated to be 0.3 Tcf, with a potential CO2sequestration capacity of 0.88 Tcf. The methane recovery factor is estimated to be 68.8 percent, if the three coal zones are completed but produced one by one. Approximately 700 wells may be needed in the field. For multi-layers completed wells, the permeability and pressure are important in determining the breakthrough time, methane produced and CO2 injected. Dewatering and soaking do not benefit the CO2 sequestration process but allow higher injection rates. Permeability anisotropy affects CO2 injection and enhanced methane recovery volumes of the field. I recommend a 5-spot pilot project with the maximum well BHP of 1,000 psi at the injector, minimum well BHP of 500 psi at the producer, maximum injection rate of 70 Mscf/D, and production rate of 35 Mscf/D. These technical results, with further economic evaluation, could generate significant projects for CO2 sequestration and enhance coalbed methane production in Blue Creek field, Black Warrior Basin, Alabama.

He, Ting

2009-12-01T23:59:59.000Z

97

The Potential for Biomass District Energy Production in Port Graham, Alaska  

DOE Green Energy (OSTI)

implementing a biomass fuel include reduced energy costs, energy independence, economic development, and environmental improvement. Fish oil–diesel blended fuel and indoor wood boilers are the most economical and technically viable options for biomass energy in the village of Port Graham. Sufficient regional biomass resources allow up to 50% in annual heating savings to the user, displacing up to 70% current diesel imports, with a simple payback of less than 3 years for an estimated capital investment under $300,000. Distributive energy options are also economically viable and would displace all imported diesel, albeit offering less savings potential and requiring greater capital. These include a large-scale wood combustion system to provide heat to the entire village, a wood gasification system for cogeneration of heat and power, and moderate outdoor wood furnaces providing heat to 3–4 homes or community buildings per furnace. Coordination of biomass procurement and delivery, ensuring resource reliability and technology acceptance, and arbitrating equipment maintenance mitigation for the remote village are challenges to a biomass energy system in Port Graham that can be addressed through comprehensive planning prior to implementation.

Charles Sink, Chugachmiut; Keeryanne Leroux, EERC

2008-05-08T23:59:59.000Z

98

AN INITIAL ASSESSMENT OF POTENTIAL PRODUCTION TECHNOLOGIES FOR EPSILON-METAL WASTE FORMS  

SciTech Connect

This report examines and ranks a total of seven materials processing techniques that may be potentially utilized to consolidate the undissolved solids from nuclear fuel reprocessing into a low-surface area form. Commercial vendors of processing equipment were contacted and literature researched to gather information for this report. Typical equipment and their operation, corresponding to each of the seven techniques, are described in the report based upon the discussions and information provided by the vendors. Although the report does not purport to describe all the capabilities and issues of various consolidation techniques, it is anticipated that this report will serve as a guide by highlighting the key advantages and disadvantages of these techniques. The processing techniques described in this report were broadly classified into those that employed melting and solidification, and those in which the consolidation takes place in the solid-state. Four additional techniques were examined that were deemed impractical, but were included for completeness. The techniques were ranked based on criteria such as flexibility in accepting wide-variety of feed-stock (chemistry, form, and quantity), ease of long-term maintenance, hot cell space requirements, generation of additional waste streams, cost, and any special considerations. Based on the assumption of ~2.5 L of waste to be consolidated per day, sintering based techniques, namely, microwave sintering, spark plasma sintering and hot isostatic pressing, were ranked as the top-3 choices, respectively. Melting and solidification based techniques were ranked lower on account of generation of volatile phases and difficulties associated with reactivity and containment of the molten metal.

Rohatgi, Aashish; Strachan, Denis M.

2011-03-01T23:59:59.000Z

99

Assessment of Energy Production Potential from Tidal Streams in the United States  

DOE Green Energy (OSTI)

Tidal stream energy is one of the alternative energy sources that are renewable and clean. With the constantly increasing effort in promoting alternative energy, tidal streams have become one of the more promising energy sources due to their continuous, predictable and spatially-concentrated characteristics. However, the present lack of a full spatial-temporal assessment of tidal currents for the U.S. coastline down to the scale of individual devices is a barrier to the comprehensive development of tidal current energy technology. This project created a national database of tidal stream energy potential, as well as a GIS tool usable by industry in order to accelerate the market for tidal energy conversion technology. Tidal currents are numerically modeled with the Regional Ocean Modeling System and calibrated with the available measurements of tidal current speed and water level surface. The performance of the model in predicting the tidal currents and water levels is assessed with an independent validation. The geodatabase is published at a public domain via a spatial database engine and interactive tools to select, query and download the data are provided. Regions with the maximum of the average kinetic power density larger than 500 W/m2 (corresponding to a current speed of ~1 m/s), surface area larger than 0.5 km2 and depth larger than 5 m are defined as hotspots and list of hotspots along the USA coast is documented. The results of the regional assessment show that the state of Alaska (AK) contains the largest number of locations with considerably high kinetic power density, and is followed by, Maine (ME), Washington (WA), Oregon (OR), California (CA), New Hampshire (NH), Massachusetts (MA), New York (NY), New Jersey (NJ), North and South Carolina (NC, SC), Georgia (GA), and Florida (FL). The average tidal stream power density at some of these locations can be larger than 8 kW/m2 with surface areas on the order of few hundred kilometers squared, and depths larger than 100 meters. The Cook Inlet in AK is found to have a substantially large tidal stream power density sustained over a very large area.

Haas, Kevin A.

2011-06-29T23:59:59.000Z

100

Assessment of Energy Production Potential from Ocean Currents along the United States Coastline  

SciTech Connect

Increasing energy consumption and depleting reserves of fossil fuels have resulted in growing interest in alternative renewable energy from the ocean. Ocean currents are an alternative source of clean energy due to their inherent reliability, persistence and sustainability. General ocean circulations exist in the form of large rotating ocean gyres, and feature extremely rapid current flow in the western boundaries due to the Coriolis Effect. The Gulf Stream system is formed by the western boundary current of the North Atlantic Ocean that flows along the east coastline of the United States, and therefore is of particular interest as a potential energy resource for the United States. This project created a national database of ocean current energy resources to help advance awareness and market penetration in ocean current energy resource assessment. The database, consisting of joint velocity magnitude and direction probability histograms, was created from data created by seven years of numerical model simulations. The accuracy of the database was evaluated by ORNL?s independent validation effort documented in a separate report. Estimates of the total theoretical power resource contained in the ocean currents were calculated utilizing two separate approaches. Firstly, the theoretical energy balance in the Gulf Stream system was examined using the two-dimensional ocean circulation equations based on the assumptions of the Stommel model for subtropical gyres with the quasi-geostrophic balance between pressure gradient, Coriolis force, wind stress and friction driving the circulation. Parameters including water depth, natural dissipation rate and wind stress are calibrated in the model so that the model can reproduce reasonable flow properties including volume flux and energy flux. To represent flow dissipation due to turbines additional turbine drag coefficient is formulated and included in the model. Secondly, to determine the reasonableness of the total power estimates from the Stommel model and to help determine the size and capacity of arrays necessary to extract the maximum theoretical power, further estimates of the available power based on the distribution of the kinetic power density in the undisturbed flow was completed. This used estimates of the device spacing and scaling to sum up the total power that the devices would produce. The analysis has shown that considering extraction over a region comprised of the Florida Current portion of the Gulf Stream system, the average power dissipated ranges between 4-6 GW with a mean around 5.1 GW. This corresponds to an average of approximately 45 TWh/yr. However, if the extraction area comprises the entire portion of the Gulf Stream within 200 miles of the US coastline from Florida to North Carolina, the average power dissipated becomes 18.6 GW or 163 TWh/yr. A web based GIS interface, http://www.oceancurrentpower.gatech.edu/, was developed for dissemination of the data. The website includes GIS layers of monthly and yearly mean ocean current velocity and power density for ocean currents along the entire coastline of the United States, as well as joint and marginal probability histograms for current velocities at a horizontal resolution of 4-7 km with 10-25 bins over depth. Various tools are provided for viewing, identifying, filtering and downloading the data.

Haas, Kevin

2013-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Production  

E-Print Network (OSTI)

There are serious concerns about the greenhouse gas (GHG) emissions, energy and nutrient and water use efficiency of large-scale, first generation bio-energy feedstocks currently in use. A major question is whether biofuels obtained from these feedstocks are effective in combating climate change and what impact they will have on soil and water resources. Another fundamental issue relates to the magnitude and nature of their impact on food prices and ultimately on the livelihoods of the poor. A possible solution to overcome the current potentially large negative effects of large-scale biofuel production is developing second and third generation conversion techniques from agricultural residues and wastes and step up the scientific research efforts to achieve sustainable biofuel production practices. Until such sustainable techniques are available governments should scale back their support for and promotion of biofuels. Multipurpose feedstocks should be investigated making use of the bio-refinery concept (bio-based economy). At the same time, the further development of non-commercial, small scale

Science Council Secretariat

2008-01-01T23:59:59.000Z

102

Unexplored Aspect of Velocity of light  

E-Print Network (OSTI)

In the post-Maxwellian era, sensing that the tide of discoveries in electromagnetim indicated a decline of the mechanical view, Einstein replaced Newton's three absolutes -- space, time and mass, with a single one, the velocity of light. The magnitude of the velocity of light was first determined and proven to be finite independently by Ole Romer and Bradley in the eighteenth century. In the nineteenth century, Fizeau carried out the first successful measurement of the speed of light using an earthbound apparatus. Thereafter, many earthbound experiments were conducted for its determination till 1983, when its magnitude was frozen at a fixed value after it was determined up to an accuracy level of a fraction of a meter per second. Einstein considered the speed of light derived from terrestrial experiments, to be the limiting speed of all natural phenomena. Einstein stated in connection with his general relativity theory that light rays could curve only when the velocity of propagation of light varies with position. Experiments have been conducted to prove the phenomenon of light deflection to higher and higher accuracy levels, but none so far to determine the speed of light at locations closer to the sun. To verify some essential aspects of general relativity, NASA had commendably planned many costly experiments. Hence, NASA can now be expected to expeditiously plan and execute the low cost experiment proposed here, so as to conclusively verify the effect of the solar gravitational field on the speed of light, as regards the important predictions of Einstein's theory of gravitation and of its remodeled form -- the Remodeled Relativity Theory, which retained and incorporated only experimentally proven concepts and principles.

Abhijit Biswas; Krishnan RS Mani

2008-05-13T23:59:59.000Z

103

Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluation of Technology and Potential  

E-Print Network (OSTI)

Mallik Gas Hydrate Production Research Program, Northwestof Depressurization for Gas Production from Gas Hydrate5L-38 Gas Hydrate Thermal Production Test Through Numerical

Moridis, George J.

2008-01-01T23:59:59.000Z

104

Evaluation of the Potential for the Production of Lignocellulosic Based Ethanol at Existing Corn Ethanol Facilities: Final Subcontract Report, 2 March 2000 - 30 March 2002  

DOE Green Energy (OSTI)

Subcontract report on opportunities to explore the business potential provided by converting biomass to products such as ethanol. The goals of this study were: (1) To provide the opportunity to explore the business potential provided by converting biomass to products such as ethanol. (2) To take advantage of the grain-processing infrastructure by investigating the co-location of additional biomass conversion facilities at an existing plant site.

Not Available

2002-07-01T23:59:59.000Z

105

Potential products and applications  

E-Print Network (OSTI)

process n Well-suited to prepare dense ceramics n Removal of drying step. Contact us Industry Engagement magnification, (b) cross-sectional view at high magnification, (c) surface view. Drying-free ceramic casting colloidal casting method for forming advanced ceramics without requiring a drying step. A polymerisable

Albrecht, David

106

Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I  

Science Conference Proceedings (OSTI)

The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

None

1982-01-31T23:59:59.000Z

107

Macroalgae Analysis A National GIS-based Analysis of Macroalgae Production Potential Summary Report and Project Plan  

DOE Green Energy (OSTI)

The overall project objective is to conduct a strategic analysis to assess the state of macroalgae as a feedstock for biofuels production. The objective in FY11 is to develop a multi-year systematic national assessment to evaluate the U.S. potential for macroalgae production using a GIS-based assessment tool and biophysical growth model developed as part of these activities. The initial model development for both resource assessment and constraints was completed and applied to the demonstration areas. The model for macroalgal growth was extended to the EEZ off the East and West Coasts of the United States, and a plan to merge the findings for an initial composite assessment was developed. In parallel, an assessment of land-based, port, and offshore infrastructure needs based on published and grey literature was conducted. Major information gaps and challenges encountered during this analysis were identified. Also conducted was an analysis of the type of local, state, and federal requirements that pertain to permitting land-based facilities and nearshore/offshore culture operations

Roesijadi, Guritno; Coleman, Andre M.; Judd, Chaeli; Van Cleve, Frances B.; Thom, Ronald M.; Buenau, Kate E.; Tagestad, Jerry D.; Wigmosta, Mark S.; Ward, Jeffrey A.

2011-12-01T23:59:59.000Z

108

Determination of the potential for release of mercury from combustion product amended soils: Part 1 - Simulations of beneficial use  

SciTech Connect

This paper describes a project that assessed the potential for mercury (Hg) release to air and water from soil amended with combustion products to simulate beneficial use. Combustion products (ash) derived from wood, sewage sludge, subbituminous coal, and a subbituminous coal-petroleum coke mixture were added to soil as agricultural supplements, soil stabilizers, and to develop low permeability surfaces. Hg release was measured from the latter when intact and after it was broken up and mixed into the soil. Air-substrate Hg exchange was measured for all materials six times over 24 hr, providing data that reflected winter, spring, summer, and fall meteorological conditions. Dry deposition of atmospheric Hg and emission of Hg to the atmosphere were both found to be important fluxes. Measured differences in seasonal and diel (24 hr) fluxes demonstrated that to establish an annual estimate of air-substrate flux from these materials data on both of these time steps should be collected. Air-substrate exchange was highly correlated with soil and air temperature, as well as incident light. Hg releases to the atmosphere from coal and wood combustion product-amended soils to simulate an agricultural application were similar to that measured for the unamended soil, whereas releases to the air for the sludge-amended materials were higher. Hg released to soil solutions during the Synthetic Precipitation Leaching Procedure for ashamended materials was higher than that released from soil alone. On the basis of estimates of annual releases of Hg to the air from the materials used, emissions from coal and wood ash-amended soil to simulate an agricultural application could simply be re-emission of Hg deposited by wet processes from the atmosphere; however, releases from sludge-amended materials and those generated to simulate soil stabilization and disturbed low-permeability pads include Hg indigenous to the material. 37 refs., 5 figs., 4 tabs.

Mae Sexauer Gustin; Jody Ericksen; George C. Fernandez [University of Nevada-Reno, Reno, NV (United States). Department of Natural Resources and Environmental Sciences

2008-05-15T23:59:59.000Z

109

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-04-28T23:59:59.000Z

110

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-02-10T23:59:59.000Z

111

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

Brandon C. Nuttall

2003-02-11T23:59:59.000Z

112

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-10-29T23:59:59.000Z

113

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-04-01T23:59:59.000Z

114

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2003-07-28T23:59:59.000Z

115

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of shale. At 500 psia, adsorption capacity of the Lower Huron Member of the shale is 72 scf/ton. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the Devonian shales in Kentucky. The black shales of Kentucky could be a viable geologic sink for CO{sub 2}, and their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-01-01T23:59:59.000Z

116

The Potential Impacts of the Use of Southern Oscillation Information on theTexas Aggregate Sorghum Production  

Science Conference Proceedings (OSTI)

Economic decision models incorporating biophysical simulation models are used to examine the impact of the use of Southern Oscillation (SO) information on sorghum production in Texas. Production for 18 sites is aggregated to examine the impact of ...

Harvey S. J. Hill; James W. Mjelde; Wesley Rosenthal; Peter J. Lamb

1999-02-01T23:59:59.000Z

117

Analysis of Devonian Black Shales in Kentucky for Potential Carbon Dioxide Sequestration and Enhanced Natural Gas Production  

Science Conference Proceedings (OSTI)

Carbonaceous (black) Devonian gas shales underlie approximately two-thirds of Kentucky. In these shales, natural gas occurs in the intergranular and fracture porosity and is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO2 is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO2. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine both CO2 and CH4 adsorption isotherms. Sidewall core samples were acquired to investigate CO2 displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO2 adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton in the more organic-rich zones. There is a direct linear correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO2 adsorption capacity increases with increasing organic carbon content. Initial volumetric estimates based on these data indicate a CO2 sequestration capacity of as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. In the Big Sandy Gas Field area of eastern Kentucky, calculations using the net thickness of shale with 4 percent or greater total organic carbon, indicate that 6.8 billion tonnes of CO2 could be sequestered in the five county area. Discounting the uncertainties in reservoir volume and injection efficiency, these results indicate that the black shales of Kentucky are a potentially large geologic sink for CO2. Moreover, the extensive occurrence of gas shales in Paleozoic and Mesozoic basins across North America make them an attractive regional target for economic CO2 storage and enhanced natural gas production.

Brandon C. Nuttall; Cortland F. Eble; James A. Drahovzal; R. Marc Bustin

2005-09-30T23:59:59.000Z

118

Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.  

Science Conference Proceedings (OSTI)

Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific productivities of selected algal strains will eventually be incorporated into this model.

Passell, Howard David; Whalen, Jake (SmartWhale Consulting, Dartmouth, NS, CA); Pienkos, Philip P. (National Renewable Energy Laboratory, Golden, CO); O'Leary, Stephen J. (National Research Council Canada, Institute for Marine Biosciences, Halifax, NS, CA); Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

2010-12-01T23:59:59.000Z

119

The effects of potential changes in United States beef production on global grazing systems and greenhouse gas emissions  

E-Print Network (OSTI)

and greenhouse gas emissions Jerome Dumortier1 , Dermot J Hayes2 , Miguel Carriquiry2 , Fengxia Dong3 , Xiaodong production and trade model with a greenhouse gas model to assess leakage associated with modified beef

Zhou, Yaoqi

120

Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates  

SciTech Connect

As part of the effort to investigate the technical feasibility of gas production from hydrate deposits, a long-term field test (lasting 18-24 months) is under consideration in a project led by the U.S. Department of Energy. We evaluate a candidate deposit involving the C-Unit in the vicinity of the PBU-L106 site in North Slope, Alaska. This deposit is stratigraphically bounded by impermeable shale top and bottom boundaries (Class 3), and is characterized by high intrinsic permeabilities, high porosity, high hydrate saturation, and a hydrostatic pressure distribution. The C-unit deposit is composed of two hydrate-bearing strata separated by a 30-ft-thick shale interlayer, and its temperatrure across its boundaries ranges between 5 and 6.5 C. We investigate by means of numerical simulation involving very fine grids the production potential of these two deposits using both vertical and horizontal wells. We also explore the sensitivity of production to key parameters such as the hydrate saturation, the formation permeability, and the permeability of the bounding shale layers. Finally, we compare the production performance of the C-Unit at the PBU-L106 site to that of the D-Unit accumulation at the Mount Elbert site, a thinner, single-layer Class 3 deposit on the North Slope of Alaska that is shallower, less-pressurized and colder (2.3-2.6 C). The results indicate that production from horizontal wells may be orders of magnitude larger than that from vertical ones. Additionally, production increases with the formation permeability, and with a decreasing permeability of the boundaries. The effect of the hydrate saturation on production is complex and depends on the time frame of production. Because of higher production, the PBU-L106 deposit appears to have an advantage as a candidate for the long-term test.

Moridis, G.J.; Reagan, M.T.; Boyle, K.L.; Zhang, K.

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Yakama Indian Nation, Annual Report 2002-2003.  

DOE Green Energy (OSTI)

This document represents the FY2002 BPA contract Statement of Work for the Yakama Nation (YN) portion of the project entitled 'Assessment of current and potential salmonid production in Rattlesnake Creek associated with restoration efforts'. The purpose of the project is to complete detailed surveys of water quality, fish populations, habitat conditions and riparian health in the Rattlesnake Creek sub-basin of the White Salmon River in south central Washington. Results of the surveys will be used to establish Rattlesnake Creek sub-basin baseline environmental factors prior to anticipated removal of Condit Dam in 2006 and enable cost-effective formulation of future watershed restoration strategies.

Morris, Gregory

2003-05-01T23:59:59.000Z

122

Fermentative production of butanol from sorghum molasses as a potential agricultural fuel. Final report, June 26, 1981-September 25, 1982  

Science Conference Proceedings (OSTI)

A strain, Clostridium acetobutylicum ATCC 4259, suitable for butanol-acetone fermentation of sorghum molasses was selected from several strains of the American Type Culture Collection (ATCC). It was cultivated in the composition-optimized sorghum molasses medium. The microbial growth and sugar consumption pattern in the sorghum molasses medium exhibited a typical diauxie phenomenon. The results strongly suggest that the difficulty encountered by the Weizmann type of organisms in butanol-acetone fermentation of molasses is due to the diauxie phenomenon causing a significant decrease in the solvent production rate. Acid hydrolysis of sorghum molasses minimizes the occurrence of the phenomenon, thereby remarkably increasing the solvent yield. The final solvent concentrations in the inverted molasses medium were butanol, 1.0% (w/v); acetone, 0.37% (w/v); ethanol, 0.18% (w/v); and total solvent, 1.55% (w/v). The total solvent yield in the inverted sorghum molasses medium was 30.3% based on the weight of sugar consumed. Effects of the temperature, agitation and heat-shocking were also investigated.

Fan, L.T.

1982-12-01T23:59:59.000Z

123

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-01T23:59:59.000Z

124

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library are being sampled to collect CO{sub 2} adsorption isotherms. Sidewall core samples have been acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log has been acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 4.62 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 19 scf/ton in less organic-rich zones to more than 86 scf/ton in the Lower Huron Member of the shale. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2004-08-01T23:59:59.000Z

125

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-07-29T23:59:59.000Z

126

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-04-26T23:59:59.000Z

127

ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION  

Science Conference Proceedings (OSTI)

Devonian gas shales underlie approximately two-thirds of Kentucky. In the shale, natural gas is adsorbed on clay and kerogen surfaces. This is analogous to methane storage in coal beds, where CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. Drill cuttings from the Kentucky Geological Survey Well Sample and Core Library were sampled to determine CO{sub 2} and CH{sub 4} adsorption isotherms. Sidewall core samples were acquired to investigate CO{sub 2} displacement of methane. An elemental capture spectroscopy log was acquired to investigate possible correlations between adsorption capacity and mineralogy. Average random vitrinite reflectance data range from 0.78 to 1.59 (upper oil to wet gas and condensate hydrocarbon maturity range). Total organic content determined from acid-washed samples ranges from 0.69 to 14 percent. CO{sub 2} adsorption capacities at 400 psi range from a low of 14 scf/ton in less organic-rich zones to more than 136 scf/ton. There is a direct correlation between measured total organic carbon content and the adsorptive capacity of the shale; CO{sub 2} adsorption capacity increases with increasing organic carbon content. Initial estimates based on these data indicate a sequestration capacity of 5.3 billion tons of CO{sub 2} in the Lower Huron Member of the Ohio Shale of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker parts of the Devonian shales in Kentucky. Should the black shales of Kentucky prove to be a viable geologic sink for CO{sub 2}, their extensive occurrence in Paleozoic basins across North America would make them an attractive regional target for economic CO{sub 2} storage and enhanced natural gas production.

Brandon C. Nuttall

2005-01-28T23:59:59.000Z

128

Direct Carbon Conversion: Review of Production and Electrochemical Conversion of Reactive Carbons, Economics and Potential Impact on the Carbon Cycle  

SciTech Connect

Concerns over global warning have motivated the search for more efficient technologies for electric power generation from fossil fuels. Today, 90% of electric power is produced from coal, petroleum or natural gas. Higher efficiency reduces the carbon dioxide emissions per unit of electric energy. Exercising an option of deep geologic or ocean sequestration for the CO{sub 2} byproduct would reduce emissions further and partially forestall global warming. We introduce an innovative concept for conversion of fossil fuels to electricity at efficiencies in the range of 70-85% (based on standard enthalpy of the combustion reaction). These levels exceed the performance of common utility plants by up to a factor of two. These levels are also in excess of the efficiencies of combined cycle plants and of advanced fuel cells now operated on the pilot scale. The core of the concept is direct carbon conversion a process that is similar to that a fuel cell but differs in that synthesized forms of carbon, not hydrogen, are used as fuel. The cell sustains the reaction, C + O{sub 2} = CO{sub 2} (E {approx} 1.0 V, T = 800 C). The fuel is in the form of fine particulates ({approx}100 nm) distributed by entrainment in a flow of CO{sub 2} to the cells to form a slurry of carbon in the melt. The byproduct stream of CO{sub 2} is pure. It affords the option of sequestration without additional separation costs, or can be reused in secondary oil or gas recovery. Our experimental program has discovered carbon materials with orders of magnitude spreads in anode reactivity reflected in cell power density. One class of materials yields energy at about 1 kW/m{sup 2} sufficiently high to make practical the use of the cell in electric utility applications. The carbons used in such cells are highly disordered on the nanometer scale (2-30 nm), relative to graphite. Such disordered or turbostratic carbons can be produced by controlled pyrolysis (thermal decomposition) of hydrocarbons extracted from coal, petroleum or natural gas. For coal and lignite, such hydrocarbons may be produced by cyclic hydrogenation (hydropyrolysis), with the recycle of the hydrogen intermediate following pyrolysis. Starting with common CH{sub x} feedstock for carbon black manufacture, the ash entrained into the carbon (<0.03%) does not jeopardize cell life or enter into the economic estimates for power generation. The value of carbon (relative to hydrogen) as an electrochemical fuel derives from thermodynamic aspects of the C/O{sub 2} reaction. First, the entropy change of the C/O{sub 2} reaction is nearly zero, allowing theoretical efficiencies ({Delta}G(T)/{Delta}H{sub i298}) of 100% (cf. H{sub 2}/O{sub 2} theoretical efficiency of 70%). Second, the thermodynamic activity of the carbon fuel and the CO{sub 2} product are spatially and temporally invariant. This allows 100% utilization of the carbon fuel in single pass (cf. hydrogen utilizations of 75-85%). The carbodmelt slurry is non-explosive at operating temperatures. The total energy efficiency for the C/O{sub 2} is roughly 80% for cell operation at practical rates. In summary, what gives this route its fundamental advantage in energy conversion is that it derives the greatest possible fraction of energy of the fossil resource from an electrochemical reaction (C+O{sub 2} = CO{sub 2}) that is comparatively simple to operate at efficiencies of 80%, in a single-pass cell configuration without bottoming turbine cycles.

Cooper, J F; Cherepy, N; Upadhye, R; Pasternak, A; Steinberg, M

2000-12-12T23:59:59.000Z

129

Potential role of the Fast Flux Test Facility and the advanced test reactor in the U.S. tritium production system  

Science Conference Proceedings (OSTI)

The Deparunent of Energy is currently engaged in a dual-track strategy to develop an accelerator and a conunercial light water reactor (CLWR) as potential sources of tritium supply. New analysis of the production capabilities of the Fast Flux Test Facility (FFTF) at the Hanford Site argues for considering its inclusion in the tritium supply,system. The use of the FFTF (alone or together with the Advanced Test Reactor [ATR] at the Idaho National Engineering Laboratory) as an integral part of,a tritium production system would help (1) ensure supply by 2005, (2) provide additional time to resolve institutional and technical issues associated with the- dual-track strategy, and (3) reduce discounted total life-cycle`costs and near-tenn annual expenditures for accelerator-based systems. The FFRF would also provide a way to get an early start.on dispositioning surplus weapons-usable plutonium as well as provide a source of medical isotopes. Challenges Associated With the Dual-Track Strategy The Departinent`s purchase of either a commercial reactor or reactor irradiation services faces challenging institutional issues associated with converting civilian reactors to defense uses. In addition, while the technical capabilities of the individual components of the accelerator have been proven, the entire system needs to be demonstrated and scaled upward to ensure that the components work toge ther 1548 as a complete production system. These challenges create uncertainty over the ability of the du2a-track strategy to provide an assured tritium supply source by 2005. Because the earliest the accelerator could come on line is 2007, it would have to operate at maximum capacity for the first few years to regenerate the reserves lost through radioactive decay aftei 2005.

Dautel, W.A.

1996-10-01T23:59:59.000Z

130

Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates  

E-Print Network (OSTI)

of the shale boundaries k B on gas production (Q R and Q P )during the production period. The shale interlayer betweenbounding shale layers. Finally, we compare the production

Moridis, G.J.

2010-01-01T23:59:59.000Z

131

Technical support for the Ohio Clean Coal Technology Program. Volume 2, Baseline of knowledge concerning process modification opportunities, research needs, by-product market potential, and regulatory requirements: Final report  

Science Conference Proceedings (OSTI)

This report was prepared for the Ohio Coal Development Office (OCDO) under Grant Agreement No. CDO/R-88-LR1 and comprises two volumes. Volume 1 presents data on the chemical, physical, and leaching characteristics of by-products from a wide variety of clean coal combustion processes. Volume 2 consists of a discussion of (a) process modification waste minimization opportunities and stabilization considerations; (b) research and development needs and issues relating to clean coal combustion technologies and by-products; (c) the market potential for reusing or recycling by-product materials; and (d) regulatory considerations relating to by-product disposal or reuse.

Olfenbuttel, R.; Clark, S.; Helper, E.; Hinchee, R.; Kuntz, C.; Means, J.; Oxley, J.; Paisley, M.; Rogers, C.; Sheppard, W.; Smolak, L. [Battelle, Columbus, OH (United States)

1989-08-28T23:59:59.000Z

132

Effects of momentum-dependent nuclear potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions RID A-2398-2009  

E-Print Network (OSTI)

Using an isospin- and momentum-dependent transport model, we study the effects due to the momentum dependence of isoscalar nuclear potential as well as that of symmetry potential on two-nucleon correlation functions and light cluster production in intermediate energy heavy-ion collisions induced by neutron-rich nuclei. It is found that both observables are affected significantly by the momentum dependence of nuclear potential, leading to a reduction of their sensitivity to the stiffness of nuclear symmetry energy. However, the t/He-3 ratio remains a sensitive probe of the density dependence of nuclear symmetry energy.

Chen, LW; Ko, Che Ming; Li, Ba.

2004-01-01T23:59:59.000Z

133

Energy Resource Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Potential Resource Potential of Methane Hydrate Energy Resource Potential An introduction to the science and energy potential of a unique resource Disclaimer Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights.

134

Evaluation of a deposit in the vicinity of the PBU L-106 Site, North Slope, Alaska, for a potential long-term test of gas production from hydrates  

E-Print Network (OSTI)

cumulative mass of produced water (M W ). Production Using aw and cumulative mass of produced water M w associated withcumulative mass of produced water M w in Figure 16 increase

Moridis, G.J.

2010-01-01T23:59:59.000Z

135

Oil Crop Potential for Biodiesel Production: Summary of Three Years of Spring Mustard Research -- Methodologies, Results, and Recommendations; 2000-2003  

DOE Green Energy (OSTI)

This report summarizes a project whose goal was to support R&D to develop an oil-seed crop that has the potential to reduce the feedstock cost of biodiesel to between 7 and 8 cents per pound of oil and expand supplies of biodiesel as demand for biodiesel grows. The key to this goal is that the non-oil fraction of the oil crop (the seed meal) must have a high value outside of the animal feed markets and produce oil that is not suitable for human consumption. To that end, a spring breeding program was developed to increase diversity of glucosinolate and the concentration of glucosinolates in the meal and to optimize the oil composition for biodiesel fuels. This report presents the research on the spring planted hybrids.

Brown, J.

2005-07-01T23:59:59.000Z

136

Assess Current and Potential Salmonid Production in Rattlesnake Creek in Association with Restoration Efforts, US Geological Survey Report, 2004-2005 Annual Report.  

SciTech Connect

This project was designed to document existing habitat conditions and fish populations within the Rattlesnake Creek watershed (White Salmon River subbasin, Washington) before major habitat restoration activities are implemented and prior to the reintroduction of salmon and steelhead above Condit Dam. Returning adult salmon Oncorhynchus spp. and steelhead O. mykiss have not had access to Rattlesnake Creek since 1913. An assessment of resident trout populations should serve as a good surrogate for evaluation of factors that would limit salmon and steelhead production in the watershed. Personnel from United States Geological Survey's Columbia River Research Laboratory (USGS-CRRL) attended to three main objectives of the Rattlesnake Creek project. The first objective was to characterize stream and riparian habitat conditions. This effort included measures of water quality, water quantity, stream habitat, and riparian conditions. The second objective was to determine the status of fish populations in the Rattlesnake Creek drainage. To accomplish this, we derived estimates of salmonid population abundance, determined fish species composition, assessed distribution and life history attributes, obtained tissue samples for genetic analysis, and assessed fish diseases in the watershed. The third objective was to use the collected habitat and fisheries information to help identify and prioritize areas in need of restoration. As this report covers the fourth year of a five-year study, it is largely restricted to describing our efforts and findings for the first two objectives.

Allen, M. Brady; Connolly, Patrick J.; Jezorek, Ian G. (US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA)

2006-06-01T23:59:59.000Z

137

Wilcox sandstone reservoirs in the deep subsurface along the Texas Gulf Coast: their potential for production of geopressured geothermal energy. Report of Investigations No. 117  

DOE Green Energy (OSTI)

Regional studies of the lower Eocene Wilcox Group in Texas were conducted to assess the potential for producing heat energy and solution methane from geopressured fluids in the deep-subsurface growth-faulted zone. However, in addition to assembling the necessary data for the geopressured geothermal project, this study has provided regional information of significance to exploration for other resources such as lignite, uranium, oil, and gas. Because the focus of this study was on the geopressured section, emphasis was placed on correlating and mapping those sandstones and shales occurring deeper than about 10,000 ft. The Wilcox and Midway Groups comprise the oldest thick sandstone/shale sequence of the Tertiary of the Gulf Coast. The Wilcox crops out in a band 10 to 20 mi wide located 100 to 200 mi inland from the present-day coastline. The Wilcox sandstones and shales in the outcrop and updip shallow subsurface were deposited primarily in fluvial environments; downdip in the deep subsurface, on the other hand, the Wilcox sediments were deposited in large deltaic systems, some of which were reworked into barrier-bar and strandplain systems. Growth faults developed within the deltaic systems, where they prograded basinward beyond the older, stable Lower Cretaceous shelf margin onto the less stable basinal muds. Continued displacement along these faults during burial resulted in: (1) entrapment of pore fluids within isolated sandstone and shale sequences, and (2) buildup of pore pressure greater than hydrostatic pressure and development of geopressure.

Debout, D.G.; Weise, B.R.; Gregory, A.R.; Edwards, M.B.

1982-01-01T23:59:59.000Z

138

Assess Current and Potential Salmonid Production in Rattlesnake Creek Associated with Restoration Efforts; Underwood Conservation District, Annual Report 2001-2002.  

DOE Green Energy (OSTI)

The White Salmon River Watershed Enhancement Project (WSRWEP) began in 1993 through efforts of the Underwood Conservation District (UCD), local stakeholders and various agencies. Early accomplishments of the project included the formation of a multi-stakeholder watershed management committee (WMC) and technical advisory committee (TAC), completion of several baseline assessments, drafting of a watershed management plan, and beginning implementation of the plan. Since inception, the effort has utilized the support of various government/private grants, and local in-kind contributions to accomplish project goals. The WMC and its partners utilize a four-pronged approach for achieving watershed enhancement: on-ground restoration, extension of technical and financial assistance to cooperators, community and environmental education, and assessment/monitoring to develop strategies and track the success of ongoing work. Project activities are generally targeted to sub-basins and stream reaches within the White Salmon watershed that exhibit important water quality and fish/wildlife habitat problems. Such project prioritization is being conducted with the active input of both the White Salmon WMC and TAC. An important current phase of the WSRWEP targets detailed monitoring and assessment of the Rattlesnake Creek sub-basin, and is the focus of this report. The 'Assessment of Rattlesnake Creek in Relation to Restoration Efforts' project (BPA Project ID Number 21009) was identified and prioritized for accomplishment by the White Salmon River TAC in January of 2000. Rationale for the project stemmed from the group's realization that Condit Dam on the lower White Salmon is scheduled for removal, or fish passage retrofitting, within the near future. Given this eventuality, the TAC identified the current lack of understanding regarding both potential anadromous habitat and existing native fish and habitat conditions above Condit Dam (RM 3.2) as an important need. In response to the TAC's determination, the US Geological Survey (USGS), Yakama Nation (YN) and UCD began work to develop the current project that is intended to address the above. The overall goal of the Rattlesnake Creek assessment is to document existing riparian habitat and water quality conditions, native fish populations, and future restoration sites before future return of anadromous fish to the basin above RM 3.2. Since the project is jointly enacted by the USGS, YN and UCD, a high degree of shared planning and joint implementation is applied during completion of tasks. In general, the USGS and YN are cooperatively working to monitor and assess fish populations and riparian habitat conditions within the drainage and adjacent sections of the White Salmon. The UCD is generally responsible for assessing water quality, mapping stream channel geomorphology to enable future restoration planning, and measuring the ratios of carbon and nitrogen isotopes at various trophic levels The remainder of this report provides a summary of significant activities achieved by the UCD under BPA Project 21009 during the first project year. The report follows the FY 2001 UCD/BPA contract Statement of Work (SOW) format. Discussion of major problems encountered, changes in the work plan and schedule deviations are noted in italics after the description of accomplishments for each task.

Stampfli, Steve

2004-02-01T23:59:59.000Z

139

U.S. Hydropower Potential from Existing Non-powered Dams | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Total Energy Production by State 2009 Total...

140

Production analysis of Marcellus Shale.  

E-Print Network (OSTI)

??The purpose of this thesis was to analyze the production potential of Marcellus shale using actual field data. By using real field production data for… (more)

Belyadi, Hossein.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Potential Land Use Implications of a Global Biofuels Industry  

E-Print Network (OSTI)

In this paper we investigate the potential production and implications of a global biofuels industry. We

Gurgel, Angelo C.

142

Map Data: Renewable Production | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Production Map Data: Renewable Production renewprod2009.csv More Documents & Publications Map Data: Total Production Map Data: State Consumption Directory of Potential...

143

Biomedical device potential for robust, implantable product  

NLE Websites -- All DOE Office Websites (Extended Search)

Light-emitting nanocrystal diodes go ultraViolet Light-emitting nanocrystal diodes go ultraViolet Light-emitting nanocrystal diodes go ultraviolet A team of scientists has developed a process for creating glass-based, inorganic light-emitting diodes (LEDs) that produce light in the ultraviolet range. February 24, 2012 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials.

144

The Higgs discovery potential of ATLAS  

E-Print Network (OSTI)

Higgs boson production and decay at the LHC is described, together with related ATLAS search channels, in order to provide an overview of the ATLAS Higgs discovery potential.

Christopher Collins-Tooth

2007-12-10T23:59:59.000Z

145

Renewable Energy Production By State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Per Person Solar Energy Potential Solar Energy Potential 2009 Total Energy Production by State 2009 Total Energy Production by State 2009 Energy Consumption Per Person...

146

2009 Total Energy Production by State | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Per Person Solar Energy Potential Solar Energy Potential Renewable Energy Production By State Renewable Energy Production By State 2009 Energy Consumption Per Person...

147

Biofuel Production  

E-Print Network (OSTI)

Copyright © 2011 Hiroshi Sakuragi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Large amounts of fossil fuels are consumed every day in spite of increasing environmental problems. To preserve the environment and construct a sustainable society, the use of biofuels derived from different kinds of biomass is being practiced worldwide. Although bioethanol has been largely produced, it commonly requires food crops such as corn and sugar cane as substrates. To develop a sustainable energy supply, cellulosic biomass should be used for bioethanol production instead of grain biomass. For this purpose, cell surface engineering technology is a very promising method. In biobutanol and biodiesel production, engineered host fermentation has attracted much attention; however, this method has many limitations such as low productivity and low solvent tolerance of microorganisms. Despite these problems, biofuels such as bioethanol, biobutanol, and biodiesel are potential energy sources that can help establish a sustainable society. 1.

Hiroshi Sakuragi; Kouichi Kuroda; Mitsuyoshi Ueda

2010-01-01T23:59:59.000Z

148

Modified Higgs Sectors and NLO Associated Production  

E-Print Network (OSTI)

Many beyond the Standard Model (BSM) scenarios involve Higgs couplings to additional electroweak fields. It is well established that these new fields may modify Higgs gamma-gamma and gamma-Z decays at one-loop. However, one unexplored aspect of such scenarios is that by electroweak symmetry one should also expect modifications to the Higgs Z-Z coupling at one-loop and, more generally, modifications to Higgs production and decay channels beyond tree-level. In this paper we investigate the full BSM modified electroweak corrections to associated Higgs production at both the LHC and a future lepton collider in two simple SM extensions. From both inclusive and differential NLO associated production cross sections we find BSM-NLO corrections can be as large as O(>10%) when compared to the SM expectation, consistent with other precision electroweak measurements, even in scenarios where modifications to the Higgs diphoton rate are not significant. At the LHC such corrections are comparable to the involved QCD uncertainties. At a lepton collider the Higgs associated production cross section can be measured to high accuracy (O(1%) independent of uncertainties in total width and other couplings), and such a deviation could be easily observed even if the new states remain beyond kinematic reach. This should be compared to the expected accuracy for a model-independent determination of the Higgs diphoton coupling at a lepton collider, which is O(15%). This work demonstrates that precision measurements of the Higgs associated production cross section constitute a powerful probe of modified Higgs sectors and will be valuable for indirectly exploring BSM scenarios.

Christoph Englert; Matthew McCullough

2013-03-06T23:59:59.000Z

149

Glass Production  

E-Print Network (OSTI)

40, pp. 162 - 186. Glass Production, Shortland, UEE 2009AINES Short Citation: Shortland 2009, Glass Production. UEE.Andrew, 2009, Glass Production. In Willeke Wendrich (ed. ),

Shortland, Andrew

2009-01-01T23:59:59.000Z

150

Production Targets  

E-Print Network (OSTI)

Hall (2005), “Prices, Production, and Inventories over theProduction Targets ? Guillermo Caruana CEMFI caruana@cem?.esthe theory using monthly production targets of the Big Three

Caruana, Guillermo; Einav, Liran

2005-01-01T23:59:59.000Z

151

Pottery Production  

E-Print Network (OSTI)

Paul T. Nicholson. ) Pottery Production, Nicholson, UEE 2009Short Citation: Nicholson 2009, Pottery Production. UEE.Paul T. , 2009, Pottery Production. In Willeke Wendrich (

Nicholson, Paul T.

2009-01-01T23:59:59.000Z

152

Cordage Production  

E-Print Network (OSTI)

294: fig. 15-3). Cordage Production, Veldmeijer, UEE 2009Short Citation: Veldmeijer, 2009, Cordage Production. UEE.André J. , 2009, Cordage Production. In Willeke Wendrich (

Veldmeijer, André J.

2009-01-01T23:59:59.000Z

153

Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production DELIVERY FUEL CELLS STORAGE PRODUCTION TECHNOLOGY VALIDATION CODES & STANDARDS SYSTEMS INTEGRATION ANALYSES SAFETY EDUCATION RESEARCH & DEVELOPMENT Economy...

154

Isolation, Preliminary Characterization and Preliminary Assessment of Scale-Up Potential of Photosynthetic Microalgae for the Production of Both Biofuels and Bio-Active Molecules in the U.S. and Canada: Cooperative Research and Development Final Report, CRADA Number CRD-10-372  

DOE Green Energy (OSTI)

Combustion flue gases are a major contributor to carbon dioxide emissions into the Earth's atmosphere, a factor that has been linked to the possible global climate change. It is, therefore, critical to begin thinking seriously about ways to reduce this influx into the atmosphere. Using carbon dioxide from fossil fuel combustion as a feedstock for the growth, photosynthetic microorganisms can provide a large sink for carbon assimilation as well as a feedstock for the production of significant levels of biofuels. Combining microalgal farming with fossil fuel energy production has great potential to diminish carbon dioxide releases into the atmosphere, as well as contribute to the production of biofuels (e.g., biodiesel, renewable diesel and gasoline and jet fuel) as well as valuable co-products such as animal feeds and green chemicals. CO2 capture may be a regulatory requirement in future new coal or natural gas power plants and will almost certainly become an opportunity for commerce, the results of such studies may provide industries in the US and Canada with both regulatory relief and business opportunities as well as the ability to meet environmental and regulatory requirements, and to produce large volumes of fuels and co-products.

Pienkos, P.

2012-09-01T23:59:59.000Z

155

Biogas Potential in the United States (Fact Sheet), Energy Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis Biogas Potential in the United States Biogas is the gaseous product of anaerobic digestion, a biological process in which microorganisms break down biodegradable...

156

Low-Temperature Biodiesel Research Reveals Potential Key to Successful...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

while making biodiesel blends an affordable option. While biodiesel has very low production costs and the potential to displace up to 10% of petroleum diesel, until now,...

157

Biomass fuel systems: directory of sources and potential users  

DOE Green Energy (OSTI)

Sources and potential users of technical information on biomass fuel systems are identified. Organizations and individual contacts are listed in various production and conversion categories.

Henry, J.F.; Salo, D.J.; Schauffler, M.S.; Smith, B.T.

1978-08-01T23:59:59.000Z

158

NETL: News Release - DOE-Sponsored Field Test Finds Potential...  

NLE Websites -- All DOE Office Websites (Extended Search)

potential targets for CCS. The study also investigated the feasibility of combining CO2 storage with enhanced methane production. When CO2 comes in contact with coal, including...

159

EIS-0249: Medical Isotopes Production Project | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

49: Medical Isotopes Production Project EIS-0249: Medical Isotopes Production Project Summary This EIS evaluates the potential environmental impacts of a proposal to establish a...

160

RMOTC - Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production RMOTC Pumpjack in action During the process of the sale of NPR-3, RMOTC will focus on maximizing the value of the NPR-3 site and will continue with its Production Optimization Projects. NPR-3 includes 9,481 acres with more than 400 oil-producing wells. Current oil production is at approximately 240 barrels of oil per day. In July 2013, RMOTC began working on a number of Production Optimization Projects within the NPR-3 field, with the goal to optimize and improve flow and efficiency. Production Optimization Projects include repairing and replacing existing infrastructure with new infrastructure in order to optimize current wells and bring additional wells online. These Production Optimization Projects will continue throughout 2013 and are focused on improving current production and creating revenue for the America tax payer.

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Antihydrogen production  

SciTech Connect

Antihydrogen production in ATHENA is analyzed more carefully. The most important peculiarities of the different experimental situations are discussed. The protonium production via the first matter-antimatter chemical reaction is commented too.

Rizzini, Evandro Lodi; Venturelli, Luca; Zurlo, Nicola [Dipartimento di Chimica e Fisica per l'Ingegneria e per i Materiali, Universita di Brescia, 25133 Brescia (Italy); Istituto Nazionale di Fisica Nucleare, Gruppo Collegato di Brescia, 25133 Brescia (Italy)

2008-08-08T23:59:59.000Z

162

Continuous production of conducting polymer  

E-Print Network (OSTI)

A device to continuously produce polypyrrole was designed, manufactured, and tested. Polypyrrole is a conducting polymer which has potential artificial muscle applications. The objective of continuous production was to ...

Gaige, Terry A. (Terry Alden), 1981-

2004-01-01T23:59:59.000Z

163

Tin Production  

Science Conference Proceedings (OSTI)

...descending order, Brazil, Indonesia, Malaysia, Thailand, Bolivia, and Australia. These countries supply more than 85% of total world production....

164

Piecewise Potential Vorticity Inversion  

Science Conference Proceedings (OSTI)

The treatment of the potential vorticity (PV) distribution as a composite of individual perturbations is central to the diagnostic and conceptual utility of PV. Nonlinearity in the inversion operator for Ertel's potential vorticity renders ...

Christopher A. Davis

1992-08-01T23:59:59.000Z

165

Methane Hydrate Production from Alaskan Permafrost  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE and Maurer Technology are to evaluate the subsurface hydrate occurrence and its production potential. It is anticipated that it will require two to three months from spud...

166

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Working With Argonne Contact TTRDC Thermochemical Cycles for Hydrogen Production Argonne researchers are studying thermochemical cycles to determine their potential...

167

Canopy architecture and water productivity in sorghum.  

E-Print Network (OSTI)

??Increasing crop water use efficiency (WUE), the amount of biomass produced per unit water consumed, can enhance crop productivity and yield potential. The objective of… (more)

Narayanan, Sruthi

2011-01-01T23:59:59.000Z

168

Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential  

E-Print Network (OSTI)

1 Potential for Biofuel-based Greenhouse Gas Emission Mitigation: Rationale and Potential By Bruce biofuel usage. Biofuel feedstocks are a source of raw material that can be transformed into petroleum for coal. In the USA, liquid fuel biofuel production has not proven to be broadly economically feasible

McCarl, Bruce A.

169

Hydropower potential in Turkey  

Science Conference Proceedings (OSTI)

Turkey has a total hydropower potential of 433 GW that is equal to 1.2% of the total hydropower potential of the world and to 14% of European hydropower potential. Only 125 GW of the total hydroelectric potential of Turkey can be economically used. By the commissioning of new hydropower plants, which are under construction, 34% of the economically usable potential of the country would be tapped. At the present, hydropower energy is an important energy source for Turkey due to its useful characteristics such as being renewable, clean, and less of an impact on the environment, and a cheap and domestic energy source.

Kaygusuz, K. [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Chemistry

1999-08-01T23:59:59.000Z

170

New oilseeds boast feedstock potential  

Science Conference Proceedings (OSTI)

Researchers in the United States are investigating the chemical potential of the Chinese tallow tree and the buffalo gourd. It is estimated that the Houston area of Texas could yield up to 70lb of seeds per tree per year. The oily component of the seed is recovered by solvent extraction and the product may some day compete with petroleum-based waxes or fats. In contrast to the Chinese tallow tree, which grows near swamps and marshes, the buffalo gourd is a desert plant. Experiments are underway aimed at improving the yield of the plant by hybridization and other genetic manipulations, and also to come up with an efficient harvesting technique.

Not Available

1982-03-24T23:59:59.000Z

171

Product Family Glossary  

E-Print Network (OSTI)

Printed on Recycled PaperIMPORTANT NOTICE Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current. TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”).

Sprua Glossary; Tms Dsp; Literature Number Sprua

1998-01-01T23:59:59.000Z

172

Solar Power Potential in SE New Mexico  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Power Potential in Southeast New Mexico Solar Power Potential in Southeast New Mexico Solar Power Project Opportunities Abound in the Region The WIPP site is receives abundant solar energy with 6-7 kWh/sq meter power production potential As the accompanying map of New Mexico shows, the WIPP site enjoys abundant year-round sunshine. With an average solar power production potential of 6-7 kWh/sq meter per day, one exciting project being studied for location at WIPP is a 30-50 MW Solar Power Tower: The American Solar Energy Society (ASES) is is a national trade association promoting solar energy as a clean source of electricity, and provides a comprehensive resource for additional information. DOE's Office of Energy Efficiency and Renewable Energy is also a comprehensive resource for more information on renewable energy.

173

Topic: Productivity  

Science Conference Proceedings (OSTI)

... General Information: 301-975-5020 mfg@nist ... competitive in the global market, companies need to ... become more efficient in energy, production and ...

2013-09-26T23:59:59.000Z

174

Silicon Production  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... An Investigation into the Electrochemical Production of Si by the FFC Cambridge Process: Emre Ergül1; ?shak Karakaya2; Metehan Erdo?an2; ...

175

OIL PRODUCTION  

NLE Websites -- All DOE Office Websites (Extended Search)

OIL PRODUCTION Enhanced Oil Recovery (EOR) is a term applied to methods used for recovering oil from a petroleum reservoir beyond that recoverable by primary and secondary methods....

176

Hydrogen Production  

Office of Scientific and Technical Information (OSTI)

Hydrogen Production Hydrogen Research in DOE Databases Energy Citations Database Information Bridge Science.gov WorldWideScience.org Increase your H2IQ More information Making...

177

Potential Release Sites  

NLE Websites -- All DOE Office Websites (Extended Search)

PRS PRS Potential Release Sites Legacy sites where hazardous materials are found to be above acceptable levels are collectively called potential release sites. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Less than 10 percent of the total number of potential release sites need to go through the full corrective action process. What are potential release sites? Potential release sites are areas around the Laboratory and the town of Los Alamos at which hazardous materials from past activities have been found. Some examples of potential release sites include septic tanks and associated drain lines chemical storage areas wastewater outfalls material disposal areas incinerators sumps firing ranges

178

By-products from DU Storage (Fluorine and Empty Cylinders)  

NLE Websites -- All DOE Office Websites (Extended Search)

By-products from DU Storage By-products from DU Storage (Fluorine and Empty Cylinders) Potential applications involving by-products from DUF6 storage include fluorine applications...

179

Interatomic Potentials Repository Project  

Science Conference Proceedings (OSTI)

... potentials appropriate for simulation of liquid and glass properties of ... Superalloy," Sandia National Laboratories Report Number SAND-95-8549C ...

2013-09-19T23:59:59.000Z

180

Potential Enthalpy: A Conservative Oceanic Variable for Evaluating Heat Content and Heat Fluxes  

Science Conference Proceedings (OSTI)

Potential temperature is used in oceanography as though it is a conservative variable like salinity; however, turbulent mixing processes conserve enthalpy and usually destroy potential temperature. This negative production of potential ...

Trevor J. McDougall

2003-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Potential Conservation Laws  

E-Print Network (OSTI)

We prove that potential conservation laws have characteristics depending only on local variables if and only if they are induced by local conservation laws. Therefore, characteristics of pure potential conservation laws have to essentially depend on potential variables. This statement provides a significant generalization of results of the recent paper by Bluman, Cheviakov and Ivanova [J. Math. Phys., 2006, V.47, 113505]. Moreover, we present extensions to gauged potential systems, Abelian and general coverings and general foliated systems of differential equations. An example illustrating possible applications of proved statements is considered. A special version of the Hadamard lemma for fiber bundles and the notions of weighted jet spaces are proposed as new tools for the investigation of potential conservation laws.

Michael Kunzinger; Roman O. Popovych

2008-03-07T23:59:59.000Z

182

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

In 1987 the Department of Interior recommended opening the area for oil and gas exploration and development. In 1995 the House and Senate approved ANWR 1002 Area...

183

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Refuge: Updated Assessment References Energy Information Administration, Annual Energy Outlook 2000, DOEEIA-0383(2000) (Washington, DC, December 1999), Table A11. Energy...

184

Commercial Products Show Potential to serve as Nuclear Material...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Posted By Office of Public Affairs IAEA Copper Seal (Photo credit: International Atomic Energy Agency) IAEA Copper Seal (Photo credit: International Atomic Energy...

185

Ohio: Devonian evaluated for most favorable potential production  

SciTech Connect

Commercial quantities of gas are likely to occur within closely spaced natural fracture systems close to, or within, organic-rich source beds. Four principal source beds have been identified within the shales of east Ohio. Ranked in order of importance based on geographic distribution and thickness, they are the Huron, Rhinestreet, Cleveland, and Marcellus shales. Within each of these zones, there is believed to be a north-south trending area of most favorable shale lying between immature shales to the west and shales too organically lean to the east. Closely spaced localized fracturing of the Devonian shale sequence is likely to occur along 2 regional trends in east Ohio: the Cambridge arch and the Lake Erie shoreline. Operators drilling within these areas, or near any structurally disturbed area, should evaluate and test shale zones that exhibit indications of being naturally fractured.

Not Available

1981-08-01T23:59:59.000Z

186

Biogas production Potential of Cotton Seed Cake and Rapeseed Cake.  

E-Print Network (OSTI)

??A Thesis Submitted to the School of Graduate Studies of Addis Ababa University in Partial Fulfillment of the Requirement for the Degree of Master of… (more)

Selamawit, Seyoum

2011-01-01T23:59:59.000Z

187

Refinery Outages: Description and Potential Impact on Petroleum Product Prices  

Reports and Publications (EIA)

This report responds to a July 13, 2006 request from Chairman Jeff Bingaman of the Senate Committee on Energy and Natural Resources requested that EIA conduct a study of the impact that refinery shutdowns have had on the price of oil and gasoline.

Joanne Shore

2007-03-27T23:59:59.000Z

188

Biomass to ethanol : potential production and environmental impacts  

E-Print Network (OSTI)

This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn stover, and switchgrass. A life-cycle assessment approach ...

Groode, Tiffany Amber, 1979-

2008-01-01T23:59:59.000Z

189

Potential Oil Production from the Coastal Plain of the Arctic...  

Annual Energy Outlook 2012 (EIA)

Setting Geology 2. Analysis Discussion Resource Assessment Method of Analysis ANWR Coastal Plain Assessment 3. Summary Glossary References Access the PDF version of the...

190

Biomass to ethanol : potential production and environmental impacts.  

E-Print Network (OSTI)

??This study models and assesses the current and future fossil fuel consumption and greenhouse gas impacts of ethanol produced from three feedstocks; corn grain, corn… (more)

Groode, Tiffany Amber, 1979-

2008-01-01T23:59:59.000Z

191

Potential Oil Production from the Coastal Plain of the Arctic ...  

U.S. Energy Information Administration (EIA)

1. Overview of the Arctic National Wildlife Refuge. Background. The Arctic National Wildlife Refuge (ANWR) 1002 Area of the Alaska North Slope represents an area ...

192

CALIFORNIA ENERGY Small HVAC Problems and Potential  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION Small HVAC Problems and Potential Savings Reports Summary of Problems of the Integrated Design of Small Commercial HVAC Systems research project. The reports are a result of funding: Productivity and Interior Environments Integrated Design of Large Commercial HVAC Systems Integrated Design

193

Hydrogen Production  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen production technologies. Intended for a non-technical audience, it explains how different resources and processes can be used to produ

194

Heart and Electric Potential  

NLE Websites -- All DOE Office Websites (Extended Search)

Heart and Electric Potential Name: Pete Location: NA Country: NA Date: NA Question: What is the electrical output that the SA Node andor AV Node put out when emitting an...

195

Daylighting potential in Thailand  

SciTech Connect

Daylighting has good potential for application in tropical climates. It can help save electric energy as well as reduce the daytime power demand substantially. It can bring another dimension of energy efficiency in addition to efficient lighting technology, as well as aesthetic value. Its integration with continuous-dimming electric lighting is found to be acceptable. However, fundamental research as well as daylighting application technology are required to realize the potential.

Chirarattananon, S.; Limmechokchai, B. [Asian Inst. of Tech., Bangkok (Thailand)

1996-12-01T23:59:59.000Z

196

Hydrogen production  

SciTech Connect

The production of hydrogen by reacting an ash containing material with water and at least one halogen selected from the group consisting of chlorine, bromine and iodine to form reaction products including carbon dioxide and a corresponding hydrogen halide is claimed. The hydrogen halide is decomposed to separately release the hydrogen and the halogen. The halogen is recovered for reaction with additional carbonaceous materials and water, and the hydrogen is recovered as a salable product. In a preferred embodiment the carbonaceous material, water and halogen are reacted at an elevated temperature. In accordance with another embodiment, a continuous method for the production of hydrogen is provided wherein the carbonaceous material, water and at least one selected halogen are reacted in one zone, and the hydrogen halide produced from the reaction is decomposed in a second zone, preferably by electrolytic decomposition, to release the hydrogen for recovery and the halogen for recycle to the first zone. There also is provided a method for recovering any halogen which reacts with or is retained in the ash constituents of the carbonaceous material.

Darnell, A.J.; Parkins, W.E.

1978-08-08T23:59:59.000Z

197

Product Forms  

Science Conference Proceedings (OSTI)

Table 1 Wrought alloy products and tempers...or cold-finished Rivets Forgings and forging stock Foil Fin stock Drawn Extruded Rod Bar Wire 1050 . . . . . . . . . H112 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1060 O, H12, H14, H16, H18 O, H12, H14, H112 O, H12, H14, H18, H113 O, H112 . . . .

198

Potential energy for quarks  

SciTech Connect

It is argued on theoretical and phenomenological grounds that confinement of quarks is intrinsically a many-body interaction. The Born-Oppenheimer approximation to the bag model is shown to give rise to a static potential energy that consists of a sum of two-body Coulomb terms and a many-body confining term. Following the success of this potential in heavy Q anti Q systems it is being applied to Q/sup 2/ anti Q/sup 2/. Preliminary calculations suggest that dimeson bound states with exotic flavor, such as bb anti s anti s, exist. 13 refs., 5 figs.

Heller, L.

1985-01-01T23:59:59.000Z

199

TRANSPORTATION: THE POTENTIAL  

E-Print Network (OSTI)

INTERMODAL TRANSPORTATION: THE POTENTIAL AND THE CHALLENGE A Summary Report 2003 #12;June 2003 To the Reader This report summarizes the second James L. Oberstar Forum on Transportation Policy and Technology. Over two days, we explored the chal- lenges and opportunities in intermodal transportation, addressing

Minnesota, University of

200

Production Practice  

Science Conference Proceedings (OSTI)

...Figure 1 shows the sequence of shapes in the production of a hollow handle for a table knife formed and coined in a 410 kg (900 lb) pneumatic drop hammer. The work metal was 0.81 mm (0.032 in.) thick copper alloy C75700 (nickel silver, 65â??12) annealed to a hardness of 35 to 45 HRB; blank size was 25 by...

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Method for the Production of Mineral Wool andIron from ...  

Method for the Production of Mineral Wool and Iron from Serpentine Ore Overview This invention discloses a method to fabricate a product that has the potential

202

Synthetic fuels: production and products  

DOE Green Energy (OSTI)

A brief primer on synthetic fuels is given. The paper includes brief descriptions of generic conversion technologies that can be used to convert various raw materials such as coal, oil shale, tar sands, peat, and biomass into synthetic fuels similar in character to petroleum-derived fuels currently in commerce. References for additional information on synthetic fuel processes and products are also given in the paper.

Singh, S.P.N.

1984-01-01T23:59:59.000Z

203

Synthetic fuels: production and products  

DOE Green Energy (OSTI)

A brief review on synthetic fuels is given. The paper includes brief descriptions of generic conversion technologies that can be used to convert various raw materials such as coal, oil shale, tar sands, peat and biomass into synthetic fuels similar in character to petroleum-derived fuels currently in commerce. Because the subject is vast and the space is limited, references for additional information on synthetic fuel processes and products are also given in the paper. 24 references.

Singh, S.P.

1985-08-01T23:59:59.000Z

204

Identifying Project Potential and Options Webinar | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Identifying Project Potential and Options Webinar Identifying Project Potential and Options Webinar Identifying Project Potential and Options Webinar April 30, 2014 11:00AM MDT Attendees will understand the components of identifying energy project potential and options. Presenters will discuss market considerations, initial site considerations, project savings or rate-of-return estimates, production potential, final site selection, tribal options, finance, partnerships, and participation processes. Attendees will also become familiar with data gathering and analysis procedures such as tribal facility electric cost data, regulations, and interconnection requirements; paths to market for project power; and renewable sales, risks; and utility rules. By following the steps outlined in the webinar, Tribes can determine

205

Biomass energy: the scale of the potential resource  

E-Print Network (OSTI)

Biomass energy: the scale of the potential resource Christopher B. Field1 , J. Elliott Campbell1 Avenue, Livermore, CA 94550, USA Increased production of biomass for energy has the potential to offset resources and decrease food security. The net effect of biomass energy agriculture on climate could

206

California Industrial Energy Efficiency Potential  

E-Print Network (OSTI)

The Potential for Energy Efficiency. Prepared for The EnergyIndustrial Sector Energy Efficiency Potential Study - DraftIndustrial Energy Efficiency Market Characterization Study.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; Rafael Friedmann; Rufo, Mike

2005-01-01T23:59:59.000Z

207

Sugar Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Sugar Production Sugar Production Name: Lauren Location: N/A Country: N/A Date: N/A Question: This is the experiment I did: our class took 6 sugars, placed them in test tubes and put three drops of yeast in each test tube. we then placed them in the incubator for one day and the next day looked at our results. the purpose was to find out with sugar would produce the most carbon dioxide. two of the sugars that we tested were LACTOSE and STARCH. my question is, why are lactose and starch the only sugars who didn't produce any, or very very little, carbon dioxide? and how is this process related to glycolysis? Replies: Bacteria and yeast are very efficient with their enzyme systems. They don't make enzymes they can't use. Yeast don't have the enzymes necessary to metabolize lactose. Starch is a complex sugar and yeast needs certain enzymes to break starch down into sugar. Every chemical reaction needs its own enzyme.

208

Alaska's renewable energy potential.  

SciTech Connect

This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

Not Available

2009-02-01T23:59:59.000Z

209

Vector potential photoelectron microscopy  

SciTech Connect

A new class of electron microscope has been developed for the chemical microanalysis of a wide range of real world samples using photoelectron spectroscopy. Highly structured, three-dimensional samples, such as fiber mats and fracture surfaces can be imaged, as well as insulators and magnetic materials. The new microscope uses the vector potential field from a solenoid magnet as a spatial reference for imaging. A prototype instrument has demonstrated imaging of uncoated silk, magnetic steel wool, and micron-sized single strand tungsten wires.

Browning, R. [R. Browning Consultants, 14 John Street, Shoreham, New York 11786 (United States)

2011-10-15T23:59:59.000Z

210

The Brazil Eucalyptus Potential Productivity Project: Influence of water, nutrients and stand uniformity on wood production  

E-Print Network (OSTI)

in Ecology, Colorado State University, Fort Collins, CO 80523, USA e Fibria Celulose, Aracruz, Espirito Santo, Brazil f Veracel Celulose, Eunapolis, Bahia, Brazil g International Paper do Brasil, Mogi Guacu, Sao Paulo, Brazil h Suzano Papel e Celulose, Teixeira de Freitas, Bahia, Brazil i CENIBRA, Ipatinga, Minas

Binkley, Dan

211

Geothermal resources in California: potentials and problems  

DOE Green Energy (OSTI)

The technology, cost and potential of geothermal resources in California are examined. The production of power from dry stream fields is expanding in Northern California, at The Geysers, at costs that compare favorably with alternate means of generation. The possibility exists that economic production of power can be started in the Imperial Valley, but numerous issues remain to be resolved; chief among them is the demonstration that commercially valuable aquifers indeed exist. The production of demineralized water from the geothermal fluids of the Imperial Valley depends, among other things, upon the identification of other sources of water for power plant cooling, or for reservoir reinjection, should it be necessary to avoid subsidence. It would appear that water production, without the income-producing capability of associated power generation, is not economically reasonable. The pace of geothermal development at the Geysers could probably be accelerated perhaps offering the opportunity for maintenance of adequate generating reserves should their nuclear construction program be delayed. The unknown factors and risks involved seem to preclude the Imperial Valley resource from being immediately effective in improving the power generation picture in Southern California. However, in the next decade, geothermal power could provide a useful energy increment, perhaps 10 percent of peak load. Associated water production could offer relief for the Imperial Valley in its predicted water quality problem. The pace of public and private development in the Imperial Valley seems incommensurately slow in relation to the potential of the resource. Geothermal power and water production is not intrinsically pollution-free, but appropriate environmental protection is possible.

Goldsmith, M.

1971-12-01T23:59:59.000Z

212

CRC handbook of agricultural energy potential of developing countries  

Science Conference Proceedings (OSTI)

This book provides background information on the agroenergetic potential of 65 countries and offers summaries of major crops planted, total area planted, yield per hectare, and total production. Total land area is categorized as to agriculture, forest, and woodland, and is discussed with demographic statistics for each country. The potential for agricultural by-products and biomass to contribute to energy availability is explored, with reference to each major crop. Vegetation and/or economic activity, or soil maps are presented for most countries, as are climatic data, with crop yields and residues which are compared with production elsewhere.

Duke, J.A.

1986-01-01T23:59:59.000Z

213

Production Services  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome The Production Services site contains links to each of the division's groups with descriptions of their services. Our goal is to update this website frequently to reflect ongoing service upgrades which, by planning and design, are added so that we can continue to meet your needs in a constantly changing work environment. Note: The Graphic Design Studio has been relocated to the second floor in the north wing of the Research Support Building 400. The telephone number remains the same, X7288. If you have any questions, please call supervisor, Rick Backofen, X6183. Photography Photography services are available at no charge to BNL and Guest users. See a list of the complete range of photography services available. Video Video services are available at no charge to BNL and Guest users. See a list of the complete range of video services available.

214

Performance potential of the coal strip mining in the east of Russia  

Science Conference Proceedings (OSTI)

The potentialities of the leading mining districts in Russia to improve coal production by strip mining are analyzed. The operational issues of the Erunakovskiy (Kuzbass), Kansko-Achinskiy and South Yakutia territorial production complexes are considered.

Cheskidov, V.I. [Russian Academy of Science, Novosibirsk (Russian Federation). Inst. of Mining

2007-07-15T23:59:59.000Z

215

Decommissioning of U.S. Uranium Production Facilities  

Reports and Publications (EIA)

This report analyzes the uranium production facility decommissioning process and its potential impact on uranium supply and prices. 1995 represents the most recent publication year.

Information Center

1995-02-01T23:59:59.000Z

216

Energy and Environmental Aspects of an FPSO for LNG Production.  

E-Print Network (OSTI)

??The floating production unit HLNG FPSO-1 has been evaluated with respect to its energy consumption and emissions to air, and improvement potentials within the same… (more)

Revheim, Lars Petter Rein

2009-01-01T23:59:59.000Z

217

Gravity and the quantum potential  

E-Print Network (OSTI)

We review some material connecting gravity and the quantum potential and provide a few new observations.

Robert Carroll

2004-06-02T23:59:59.000Z

218

Energy Efficiency Potential Assessment: (Appendices)  

Science Conference Proceedings (OSTI)

This document contains the appendices to EPRI Report 1008911, "Energy Efficiency Potential Assessment."

2003-07-28T23:59:59.000Z

219

Spatial assessment of the environmental impacts of potential wheat and switchgrass bioethanol chains in Ukraine.  

E-Print Network (OSTI)

??Various scientific sources have identified Ukraine as one of the most promising European countries for the production of bioethanol. However, before exploiting this potential, the… (more)

Gelten, R.M.

2011-01-01T23:59:59.000Z

220

Potential of Beauty Leaf Tree (Calophyllum inophyllum L) as a biodiesel feedstock.  

E-Print Network (OSTI)

??"The primary goal of this project was to evaluate the potential of Calophyllum inophylum as a biodiesel feedstock by studying various aspects of biodiesel production.… (more)

Hathurusingha, Subhash.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Ground potential rise monitor  

SciTech Connect

A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

2012-04-03T23:59:59.000Z

222

Controlled-Potential Electrolysis  

Science Conference Proceedings (OSTI)

Table 2   Metals determined by controlled-potential coulometry...27 Silver Pt Ag + â?? Ag(s) 0.1 M H 2 SO 4 14 , 28 Technetium Hg Tc 7+ â?? Tc 3+ Acetate-tripolyphosphate 29 Thallium Pt Tl + â?? Tl 3+ 1 M HCl 30 Tin Hg Sn 4+ Sn(Hg) 3 M KBr, 0.2 M HBr 31 Titanium Hg Ti 4+ â?? Ti 3+ 6â??9 M H 2 SO 4 32 Uranium Hg U 6+ â?? U 4+ 0.5 M H 2 SO 4 33 Vanadium Pt V 5+ â?? V 4+ V 4+ â?? V 5+ 1.5...

223

Synfuel (hydrogen) production from fusion power  

DOE Green Energy (OSTI)

A potential use of fusion energy for the production of synthetic fuel (hydrogen) is described. The hybrid-thermochemical bismuth-sulfate cycle is used as a vehicle to assess the technological and economic merits of this potential nonelectric application of fusion power.

Krakowski, R.A.; Cox, K.E.; Pendergrass, J.H.; Booth, L.A.

1979-01-01T23:59:59.000Z

224

Stone Tool Production  

E-Print Network (OSTI)

by the author. ) Stone Tool Production, Hikade, UEE 2010Short Citation: Hikade 2010, Stone Tool Production. UEE.Thomas, 2010, Stone Tool Production. In Willeke Wendrich (

Hikade, Thomas

2010-01-01T23:59:59.000Z

225

FCT Hydrogen Production: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Production: Contacts on Facebook Tweet about FCT Hydrogen Production: Contacts on Twitter Bookmark FCT Hydrogen Production:...

226

Lifting hydro's potential  

Science Conference Proceedings (OSTI)

Electric utilities are taking another look at potential sites for hydroelectric installations, reevaluating sites that had been uneconomic to develop and those that can be renovated or expanded. Both large- and small-scale facilities now offer the advantages of free fuel, no air or thermal pollution, and no waste - making hydro an attractive way to increase utility capacity. The Electric Power Research Institute (EPRI) is participating in screening studies which evaluate the unique characteristics of specific sites and recommend technical improvements for better water control and a higher output. Pumped-hydro facilities are increasing, with new attention going to underground storage as new aboveground sites become harder to find. The institutional hurdles of licensing and regulation, interference with recreational and shoreline activities, down-stream water temperature changes, fish migration, and insurance are often in conflict. EPRI's screening program includes a simplified cost/benefit analysis and a site characterization, which utilities can use for their evaluation. Future research will explore a new financing arrangement that will lower front-end costs. (DCK)

Lihach, N.; Ferreira, A.

1980-12-01T23:59:59.000Z

227

Market potential for electrolytic hydrogen. Final report  

SciTech Connect

The economics of hydrogen production by the major users of hydrogen (petroleum refiners and manufacturers of ammonia and methanol) favor the continued use of fossil fuels for hydrogen generation. However, there are a large number of miscellaneous small users for whom hydrogen produced by advanced electrolyzers may become economically attractive. Many of these small users, with hydrogen demands of < 0.5 million SCF per day, purchase their hydrogen requirements from industrial gas suppliers. Forseeable improvements in current electrolyzer technology, which will reduce plant capital costs and improve plant performance and efficiency, may make electrolytic hydrogen competitive with purchased hydrogen for many specialty users. This study analyzed the small user hydrogen market. Telephone interviews were conducted with representative hydrogen users in the chemical, pharmaceutical, electronics, metals, fats and oils, and float glass industries to determine the decision factors governing the choice of their hydrogen supply. Cost projections to the year 2000 for production of hydrogen by advanced electrolyzers were made and compared with price projections for merchant hydrogen, and the estimates of the potential market for each of the industrial sub-sectors were determined. By the year 2000, the potential market for advanced technology electrolytic hydrogen among specialty users is projected to be about half of what the merchant hydrogen market would be in the absence of electrolytic hydrogen. This potential market, representing an annual demand of about 16 billion SCF of hydrogen, will develop from market penetrations of electrolyzers assumed to begin in the early 1980s.

Fein, E.; Mathey, C.J.; Arnstein, C.

1979-08-01T23:59:59.000Z

228

RANGELAND SEQUESTRATION POTENTIAL ASSESSMENT  

DOE Green Energy (OSTI)

Rangelands occupy approximately half of the world's land area and store greater than 10% of the terrestrial biomass carbon and up to 30% of the global soil organic carbon. Although soil carbon sequestration rates are generally low on rangelands in comparison to croplands, increases in terrestrial carbon in rangelands resulting from management can account for significant carbon sequestration given the magnitude of this land resource. Despite the significance rangelands can play in carbon sequestration, our understanding remains limited. Researchers conducted a literature review to identify sustainably management practices that conserve existing rangeland carbon pools, as well as increase or restore carbon sequestration potentials for this type of ecosystem. The research team also reviewed the impact of grazing management on rangeland carbon dynamics, which are not well understood due to heterogeneity in grassland types. The literature review on the impact of grazing showed a wide variation of results, ranging from positive to negative to no response. On further review, the intensity of grazing appears to be a major factor in controlling rangeland soil organic carbon dynamics. In 2003, researchers conducted field sampling to assess the effect of several drought years during the period 1993-2002. Results suggested that drought can significantly impact rangeland soil organic carbon (SOC) levels, and therefore, carbon sequestration. Resampling was conducted in 2006; results again suggested that climatic conditions may have overridden management effects on SOC due to the ecological lag of the severe drought of 2002. Analysis of grazing practices during this research effort suggested that there are beneficial effects of light grazing compared to heavy grazing and non-grazing with respect to increased SOC and nitrogen contents. In general, carbon storage in rangelands also increases with increased precipitation, although researchers identified threshold levels of precipitation where sequestration begins to decrease.

Lee Spangler; George F. Vance; Gerald E. Schuman; Justin D. Derner

2012-03-31T23:59:59.000Z

229

On the Economic Nature of Crop Production Decisions Using the Oklahoma Mesonet  

Science Conference Proceedings (OSTI)

Because of the sensitivity of agricultural production to both short-term weather and long-range climatic patterns, the availability of reliable and relevant meteorological data and climate products can potentially affect the entire production ...

Kimberly E. Klockow; Renee A. McPherson; Daniel S. Sutter

2010-07-01T23:59:59.000Z

230

Economics of hydrogen production  

DOE Green Energy (OSTI)

Much of the current interest in hydrogen (H/sub 2/) centers around its potential to displace oil and gas as a fuel. The results of this study should be useful to research and development managers making funding decisions, and they should also be of interest to energy analysts, economists, and proponents of a hydrogen economy. We examined the current costs of H/sub 2/ produced by commercially available technologies (from fossil fuels and by electrolysis) and projected these costs to 2010, to set cost goals for H/sub 2/ produced via new technologies. We also examined the sensitivity of H/sub 2/ costs to varying energy price forecasts, capital costs and the required rate of return on investment, and by-product credits. We find that conventionally produced H/sub 2/ will not break into the fuel market before 2010. 23 references, 19 figures, 12 tables.

Gaines, L.L.; Wolsky, A.M.

1984-01-01T23:59:59.000Z

231

Petroleum - Exploration & Production - EIA  

U.S. Energy Information Administration (EIA)

Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity. ... Oil Production Capacity Expansion Costs for the Persian Gulf.

232

Potential underground risks associated with CAES.  

Science Conference Proceedings (OSTI)

CAES in geologic media has been proposed to help 'firm' renewable energy sources (wind and solar) by providing a means to store energy when excess energy was available, and to provide an energy source during non-productive renewable energy time periods. Such a storage media may experience hourly (perhaps small) pressure swings. Salt caverns represent the only proven underground storage used for CAES, but not in a mode where renewable energy sources are supported. Reservoirs, both depleted natural gas and aquifers represent other potential underground storage vessels for CAES, however, neither has yet to be demonstrated as a functional/operational storage media for CAES.

Kirk, Matthew F.; Webb, Stephen Walter; Broome, Scott Thomas; Pfeifle, Thomas W.; Grubelich, Mark Charles; Bauer, Stephen J.

2010-10-01T23:59:59.000Z

233

Innovative DOE Technology Demonstrates Potential for Significant Increases  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative DOE Technology Demonstrates Potential for Significant Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields April 25, 2012 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today that an innovative technology has successfully improved oil recovery at a 106-year old Illinois field by more than 300 percent. This method of extraction could help pull as many as 130 million additional barrels of oil from the depleted field, which is past peak production using traditional drilling. "The Energy Department is making critical investments in innovations today that are helping the U.S. find and develop every available source of

234

Innovative DOE Technology Demonstrates Potential for Significant Increases  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative DOE Technology Demonstrates Potential for Significant Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields April 25, 2012 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today that an innovative technology has successfully improved oil recovery at a 106-year old Illinois field by more than 300 percent. This method of extraction could help pull as many as 130 million additional barrels of oil from the depleted field, which is past peak production using traditional drilling. "The Energy Department is making critical investments in innovations today that are helping the U.S. find and develop every available source of

235

Renewable hydrogen production for fossil fuel processing  

DOE Green Energy (OSTI)

The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

Greenbaum, E.

1994-09-01T23:59:59.000Z

236

Modified biochemical methane potential (BMP) assays to assess biodegradation potential of landfilled refuse  

DOE Green Energy (OSTI)

Modified Biochemical Methane Potential (BMP) assays were used to assess biogas production potential of solid landfill samples. In landfill samples with visible soil content, moisture addition alone was generally as effective at stimulating biogas production as the addition of a comprehensive nutrient media. In a variety of samples from humid and semiarid landfills, addition of an aqueous nutrient media was the most effective stimulant for biogas production; however, moisture addition was almost as effective for most samples, suggesting that water addition would be the most cost-effective field approach. Onset of methanogenesis was slower in fresh refuse samples (even when inoculated with anaerobic digester sludge) than in landfill samples, indicating that the soil into which materials are landfilled is a major source of microorganisms. High volatile solids loading in fresh refuse and landfill assays retarded methanogenesis. A comparison of anaerobic and aerobic sample handling techniques showed no significant differences with regard to onset of methanogenesis and total gas production. The technique shows initial promise with regard to replication and reproducibility of results and could be a meaningful addition to landfill site evaluations where commercial gas recovery is anticipated. The BMP technique could also be adapted to assess anaerobic biodegradability of other solid waste materials for conventional anaerobic digestion applications. 9 refs., 6 figs., 2 tabs.

Bogner, J.E.; Rose, C.; Piorkowski, R.

1989-01-01T23:59:59.000Z

237

Economical Production of Pu-238  

SciTech Connect

All space exploration missions traveling beyond Jupiter must use radioisotopic power sources for electrical power. The best isotope to power these sources is plutonium-238. The US supply of Pu-238 is almost exhausted and will be gone within the next decade. The Department of Energy has initiated a production program with a $10M allocation from NASA but the cost is estimated at over $100 M to get to production levels. The Center for Space Nuclear Research has conceived of a potentially better process to produce Pu-238 earlier and for significantly less cost. The new process will also produce dramatically less waste. Potentially, the front end costs could be provided by private industry such that the government only had to pay for the product produced. Under a NASA Phase I NIAC grant, the CSNR has evaluated the feasibility of using a low power, commercially available nuclear reactor to produce at least 1.5 kg of Pu-238 per year. The impact on the neutronics of the reactor have been assessed, the amount of Neptunium target material estimated, and the production rates calculated. In addition, the size of the post-irradiation processing facility has been established. In addition, a new method for fabricating the Pu-238 product into the form used for power sources has been identified to reduce the cost of the final product. In short, the concept appears to be viable, can produce the amount of Pu-238 needed to support the NASA missions, can be available within a few years, and will cost significantly less than the current DOE program.

Steven D. Howe; Douglas Crawford; Jorge Navarro; Terry Ring

2013-02-01T23:59:59.000Z

238

Forest Products Supply Chain --Availability of Woody Biomass in Indiana for Bioenergy Production  

E-Print Network (OSTI)

Forest Products Supply Chain -- Availability of Woody Biomass in Indiana for Bioenergy Production or wood waste biomass · Map Indiana's wood waste for each potential bioenergy supply chain · Develop break-even analyses for transportation logistics of wood waste biomass Isaac S. Slaven Abstract: The purpose

239

Biogas Potential in the United States (Fact Sheet)  

SciTech Connect

Biogas has received increased attention as an alternative energy source in the United States. The factsheet provides information about the biogas (methane) potential from various sources in the country (by county and state) and estimates the power generation and transportation fuels production (renewable natural gas) potential from these biogas sources. It provides valuable information to the industry, academia and policy makers in support of their future decisions.

Not Available

2013-10-01T23:59:59.000Z

240

Biological production of products from waste gases  

DOE Patents (OSTI)

A method and apparatus are designed for converting waste gases from industrial processes such as oil refining, and carbon black, coke, ammonia, and methanol production, into useful products. The method includes introducing the waste gases into a bioreactor where they are fermented to various products, such as organic acids, alcohols, hydrogen, single cell protein, and salts of organic acids by anaerobic bacteria within the bioreactor. These valuable end products are then recovered, separated and purified.

Gaddy, James L. (Fayetteville, AR)

2002-01-22T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Covered Product Category: Cool Roof Products  

Energy.gov (U.S. Department of Energy (DOE))

FEMP provides acquisition guidance across a variety of product categories, including cool roof products, which are an ENERGY STAR®-qualified product category. Federal laws and executive orders mandate that agencies meet these efficiency requirements in all procurement and acquisition actions that are not specifically exempted by law.

242

Biomass resource potential using energy crops  

DOE Green Energy (OSTI)

Biomass energy crops can provide a significant and environmentally beneficial source of renewable energy feedstocks for the future. They can revitalize the agricultural sector of the US economy by providing profitable uses for marginal cropland. Energy crops include fast-growing trees, perennial grasses, and annual grasses, all capable of collecting solar energy and storing it as cellulosic compounds for several months to several years. Once solar energy is thus captured, it can be converted by means of currently available technologies to a wide variety of energy products such as electricity, heat, liquid transportation fuels, and gases. Experimental results from field trials have generated optimism that selected and improved energy crops, established on cropland with moderate limitations for crop production, have the potential for producing high yields. Both trees and grasses, under very good growing conditions, have produced average annual yields of 20 to 40 dry Mg ha{sup {minus}1} year{sup {minus}1}. Sorghum has shown especially high yields in the Midwest. Hybrids between sugar cane and its wild relatives, called energy cane, have yielded as much as 50 dry Mg ha{sup {minus}1} year{sup {minus}1} in Florida. These experimental results demonstrate that some species have the genetic potential for very rapid growth rates. New wood energy crop systems developed by the Department of Energy`s Biofuels Feedstock Development Program offer, at a minimum, a 100% increase in biomass production rates over the 2 to 4 Mg ha{sup {minus}1} year{sup {minus}1} of dry leafless woody biomass produced by most natural forest systems. Experimental data indicate that short rotation wood crops established on cropland with moderate limitations are capable of producing biomass yields of 8--20 dry Mg ha{sup {minus}1} year{sup {minus}1} with a present average about 11 dry Mg ha{sup {minus}1} year{sup {minus}1} on typical cropland sites.

Wright, L.L.; Cushman, J.H.; Martin, S.A.

1993-09-01T23:59:59.000Z

243

WEB RESOURCES: Magnesium Production  

Science Conference Proceedings (OSTI)

Feb 12, 2007 ... Mg Production(Australia).pdf 49.21 KB MgProduction_Australia.mht 81.47 KB Mg Production(Brazil Israel Congo Malaysia).pdf 50.48 KB

244

General inflaton potentials in supergravity  

E-Print Network (OSTI)

We describe a way to construct supergravity models with an arbitrary inflaton potential V ({\\phi}) and show that all other scalar fields in this class of models can be stabilized at the inflationary trajectory by a proper choice of the K\\"ahler potential.

Renata Kallosh; Andrei Linde; Tomas Rube

2010-11-27T23:59:59.000Z

245

General inflaton potentials in supergravity  

E-Print Network (OSTI)

We describe a way to construct supergravity models with an arbitrary inflaton potential V ({\\phi}) and show that all other scalar fields in this class of models can be stabilized at the inflationary trajectory by a proper choice of the K\\"ahler potential.

Kallosh, Renata; Rube, Tomas

2010-01-01T23:59:59.000Z

246

Venezuela. [LPG marketing and production  

SciTech Connect

Liquefied petroleum gas marketing and production from Venezuela are not very complicated or big in the business. There is moderate LPG production since the main production comes from oil. There is about 2.3 million bpd of oil production compared with less than 70,000 bpd of gas liquids. Of more than 95% of the associated gas produced with the oil, 50% is injected as a condensate recovery process. Up to now, the LPG plants have been producing only a trickle, most of it from gas before it was injected. In the future program for gas utilization, it is estimated that by 1980 about twice the liquid that is now being produced would be available for exportation to natural markets of the Gulf of Mexico and the east coast. The production of about 7 million tons until the year 2000 can be continued with good conservation and with the future potential area that has been discovered in the south part of the lake and offshore Venezuela.

Reyes, A.

1977-01-01T23:59:59.000Z

247

Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs  

SciTech Connect

In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than $100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

Webber, Carrie A.; Brown, Richard E.

1998-06-19T23:59:59.000Z

248

Chemical production from industrial by-product gases: Final report  

DOE Green Energy (OSTI)

The potential for conservation of natural gas is studied and the technical and economic feasibility and the implementation of ventures to produce such chemicals using carbon monoxide and hydrogen from byproduct gases are determined. A survey was performed of potential chemical products and byproduct gas sources. Byproduct gases from the elemental phosphorus and the iron and steel industries were selected for detailed study. Gas sampling, preliminary design, market surveys, and economic analyses were performed for specific sources in the selected industries. The study showed that production of methanol or ammonia from byproduct gas at the sites studied in the elemental phosphorus and the iron and steel industries is technically feasible but not economically viable under current conditions. Several other applications are identified as having the potential for better economics. The survey performed identified a need for an improved method of recovering carbon monoxide from dilute gases. A modest experimental program was directed toward the development of a permselective membrane to fulfill that need. A practical membrane was not developed but further investigation along the same lines is recommended. (MCW)

Lyke, S.E.; Moore, R.H.

1981-04-01T23:59:59.000Z

249

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL DAAC MODIS Land Product Subsets MODIS Collection 5 Global Subsetting and Visualization Tool Create subset for user selected site, area, product, and time period. Data for...

250

Production Project Accounts  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Project Accounts Production Project Accounts Overview Most NERSC login accounts are associated with specific individuals and must not be shared. Sometimes it is...

251

from Isotope Production Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Cancer-fighting treatment gets boost from Isotope Production Facility April 13, 2012 Isotope Production Facility produces cancer-fighting actinium - 2 - 2:32 Isotope cancer...

252

Century Model Product Available  

NLE Websites -- All DOE Office Websites (Extended Search)

Century Model Available The ORNL DAAC announces the availability of a new model product. The model product "CENTURY: Modeling Ecosystem Responses to Climate Change, Version 4...

253

Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA)

Home > Nuclear > Domestic Uranium Production Report Domestic Uranium Production Report Data for: 2005 Release Date: May 15, 2006 Next Release: May 15, 2007

254

Comparison of Productive Capacity  

U.S. Energy Information Administration (EIA)

Appendix B Comparison of Productive Capacity Comparisons of base case productive capacities for this and all previous studies were made (Figure B1).

255

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

256

Potential  

E-Print Network (OSTI)

colonization of newly available tree-species habitat under climate change: an analysis for five eastern US species

Louis R. Iverson; M. W. Schwartz; Anantha M. Prasad

2004-01-01T23:59:59.000Z

257

Evaluation of potential geopressure geothermal test sites in southern Louisiana  

DOE Green Energy (OSTI)

Six geopressured-geothermal prospects in southern Louisiana were studied in detail to assess their potential use as test sites for the production of geopressure-geothermal energy. Each of the six sites contains substantial quantities of energy. Three of these prospects, Grand Lake, Lake Theriot, and Bayou Hebert, appear to be suitable for a test site. A summary of the findings is presented.

Bassiouni, Z.

1980-04-01T23:59:59.000Z

258

Environmental, Energetic, and Economic Potential of Biochar CCSF Topical Lunch  

E-Print Network (OSTI)

Environmental, Energetic, and Economic Potential of Biochar CCSF Topical Lunch November 19, 2008 discussed such as Hatch fund ­ multi-state (specifically with Anthony Hay and ecotoxicity and biochar for remediation research) Agricultural Companies, fertilizer companies ­ biochar could be seen as a co- product

Angenent, Lars T.

259

Ecological Effects of Coal Combustion Products  

Science Conference Proceedings (OSTI)

An extensive amount of research has been conducted to evaluate the potential adverse effects of coal-combustion products (CCPs) on the health of ecosystems. The objective of this project was to evaluate the ecological effects of CCPs and to identify the primary CCP-related factors that have the potential to pose the most substantial risk to ecological receptors. To meet this objective, the investigators conducted a comprehensive review of the peer-reviewed chemical and toxicological literature on the eco...

2011-11-29T23:59:59.000Z

260

Self Potential | Open Energy Information  

Open Energy Info (EERE)

Self Potential Self Potential Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Self Potential Details Activities (20) Areas (20) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: SP technique originally applied to locating sulfide ore-bodies. Stratigraphic/Structural: Detection and tracing of faults. Hydrological: Determination of fluid flow patterns: electrochemical coupling processes due to variations in ionic concentrations, and electrokinetic coupling processes due to fluid flow in the subsurface. Thermal: Location of near-surface thermal anomalies: thermoelectric coupling processes due to variations in temperature in the subsurface.

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A study of algal biomass potential in selected Canadian regions.  

DOE Green Energy (OSTI)

A dynamic assessment model has been developed for evaluating the potential algal biomass and extracted biocrude productivity and costs, using nutrient and water resources available from waste streams in four regions of Canada (western British Columbia, Alberta oil fields, southern Ontario, and Nova Scotia). The purpose of this model is to help identify optimal locations in Canada for algae cultivation and biofuel production. The model uses spatially referenced data across the four regions for nitrogen and phosphorous loads in municipal wastewaters, and CO{sub 2} in exhaust streams from a variety of large industrial sources. Other data inputs include land cover, and solar insolation. Model users can develop estimates of resource potential by manipulating model assumptions in a graphic user interface, and updated results are viewed in real time. Resource potential by location can be viewed in terms of biomass production potential, potential CO{sub 2} fixed, biocrude production potential, and area required. The cost of producing algal biomass can be estimated using an approximation of the distance to move CO{sub 2} and water to the desired land parcel and an estimation of capital and operating costs for a theoretical open pond facility. Preliminary results suggest that in most cases, the CO{sub 2} resource is plentiful compared to other necessary nutrients (especially nitrogen), and that siting and prospects for successful large-scale algae cultivation efforts in Canada will be driven by availability of those other nutrients and the efficiency with which they can be used and re-used. Cost curves based on optimal possible siting of an open pond system are shown. The cost of energy for maintaining optimal growth temperatures is not considered in this effort, and additional research in this area, which has not been well studied at these latitudes, will be important in refining the costs of algal biomass production. The model will be used by NRC-IMB Canada to identify promising locations for both demonstration and pilot-scale algal cultivation projects, including the production potential of using wastewater, and potential land use considerations.

Passell, Howard David; Roach, Jesse Dillon; Klise, Geoffrey T.

2011-11-01T23:59:59.000Z

262

Illinois coal production pushes Illinois Basin production ...  

U.S. Energy Information Administration (EIA)

Coal production in the Illinois Basin during the first half of 2012 (64.4 million short tons) was 13% higher than the same period in 2011. This ...

263

Modeling grassland productivity through remote sensing products .  

E-Print Network (OSTI)

??Mixed grasslands in south Canada serve a variety of economic, environmental and ecological purposes. Numerical modeling has become a major method used to identify potential… (more)

He, Yuhong

2008-01-01T23:59:59.000Z

264

By-Products Utilization  

E-Print Network (OSTI)

such as sodium bicarbonate, soda ash, trona, or nahcalite (ICF Northwest, 1988). By-products generated

Wisconsin-Milwaukee, University of

265

Technology Key to Harnessing Natural Gas Potential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Key to Harnessing Natural Gas Potential Technology Key to Harnessing Natural Gas Potential Technology Key to Harnessing Natural Gas Potential July 18, 2012 - 3:52pm Addthis Deputy Secretary Daniel Poneman tours Proinlosa Energy Corp. in Houston, Texas. Proinlosa is a company in the wind turbine manufacturing supply chain that develops tower parts and has benefitted from the Production Tax Credit (PTC). | Photo courtesy of Keri Fulton. Deputy Secretary Daniel Poneman tours Proinlosa Energy Corp. in Houston, Texas. Proinlosa is a company in the wind turbine manufacturing supply chain that develops tower parts and has benefitted from the Production Tax Credit (PTC). | Photo courtesy of Keri Fulton. Daniel B. Poneman Daniel B. Poneman Deputy Secretary of Energy What does this project do? Builds on President Obama's call for a new era for American energy

266

Spontaneous potential | Open Energy Information  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Book Section: Spontaneous potential Author NA Published NA, The date "NA" was not understood.The date "NA" was not understood....

267

Available Potential Energy: A Clarification  

Science Conference Proceedings (OSTI)

In order to clarify some inconsistencies in the literature, on ocean energetics, the evaluation of the available potential energy (APE) is reconsidered. Attention is focused on the baroclinic APE under conditions in which the hydrostatic ...

R. O. Reid; B. A. Elliott; D. B. Olson

1981-01-01T23:59:59.000Z

268

Potential Vorticity Diagnostics of Cyclogenesis  

Science Conference Proceedings (OSTI)

The assumption of dynamically balanced flow allows one to completely encase the dynamics of extratropical cyclones in a potential vorticity (PV) framework. This approach offers a conceptually simple interpretation of dynamics because PV is a ...

Christopher A. Davis; Kerry A. Emanuel

1991-08-01T23:59:59.000Z

269

Solar Energy Potential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Solar Energy Potential Solar Energy Potential Solar Energy Potential Addthis Browse By...

270

Solar Energy Potential | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Potential Solar Energy Potential Solar Energy Potential Addthis Browse By Topic TOPICS Energy Efficiency ---Home Energy Audits --Design & Remodeling -Vehicles --Alternative...

271

Market potential for electrolytic hydrogen  

SciTech Connect

By the year 2000, the potential market for advanced-technology electrolytic hydrogen among specialty users is projected to be about half of what the merchant hydrogen market would be in the absence of electrolytic hydrogen. This potential market, representing an annual demand of about 16 billion SCF of hydrogen, will develop from market penetrations of electrolyzers assumed to begin in the early 1980s. 6 refs.

Fein, E.

1981-01-01T23:59:59.000Z

272

Economic potential of inertial fusion  

SciTech Connect

Beyond the achievement of scientific feasibility, the key question for fusion energy is: does it have the economic potential to be significantly cheaper than fission and coal energy. If fusion has this high economic potential then there are compelling commercial and geopolitical incentives to accelerate the pace of the fusion program in the near term, and to install a global fusion energy system in the long term. Without this high economic potential, fusion's success depends on the failure of all alternatives, and there is no real incentive to accelerate the program. If my conjectures on the economic potential of inertial fusion are approximately correct, then inertial fusion energy's ultimate costs may be only half to two-thirds those of advanced fission and coal energy systems. Relative cost escalation is not assumed and could increase this advantage. Both magnetic and inertial approaches to fusion potentially have a two-fold economic advantage which derives from two fundamental properties: negligible fuel costs and high quality energy which makes possible more efficient generation of electricity. The wining approach to fusion may excel in three areas: electrical generating efficiency, minimum material costs, and adaptability to manufacture in automated factories. The winning approach must also rate highly in environmental potential, safety, availability factor, lifetime, small 0 and M costs, and no possibility of utility-disabling accidents.

Nuckolls, J.H.

1984-04-01T23:59:59.000Z

273

Method for producing flame retardant porous products and products produced thereby  

DOE Patents (OSTI)

A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame. 1 fig.

Salyer, I.O.

1998-08-04T23:59:59.000Z

274

Method for producing flame retardant porous products and products produced thereby  

DOE Green Energy (OSTI)

A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

Salyer, Ival O. (Dayton, OH)

1998-08-04T23:59:59.000Z

275

Method for Producing Flame Retardant Porous Products and Products Produced Thereby  

DOE Patents (OSTI)

A method for fire retarding porous products used for thermal energy storage and products produced thereby is provided. The method includes treating the surface of the phase change material-containing porous products with a urea fire-retarding agent. Upon exposure to a flame, the urea forms an adduct with the phase change material which will not sustain combustion (is self-extinguishing) in air. No halogens or metal oxides are contained in the fire retardant, so no potentially noxious halide smoke or fumes are emitted if the product is continuously exposed to a flame.

Salyer, Ival O. (Dayton, OH)

1998-08-04T23:59:59.000Z

276

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

Feder, Harold M. (Darien, IL); Chen, Michael J. (Darien, IL)

1981-01-01T23:59:59.000Z

277

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. The only other significant by-product is methane. Selected transition metal carbonyls include those of iron, ruthenium and possibly manganese and osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 24-diazabicyclooctane, dimethyneopentylamine and 2-pryidinol.

Feder, H.M.; Chen, M.J.

1980-05-21T23:59:59.000Z

278

Fuel Cell Technologies Program: Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production Hydrogen is an energy carrier, not an energy source-hydrogen stores and delivers energy in a usable form, but it must be produced from hydrogen containing compounds. Hydrogen can be produced using diverse, domestic resources including fossil fuels, such as coal (preferentially with carbon sequestration), natural gas, and biomass or using nuclear energy and renewable energy sources, such as wind, solar, geothermal, and hydroelectric power to split water. This great potential for diversity of supply is an important reason why hydrogen is such a promising energy carrier. Hydrogen can be produced at large central plants, semi-centrally, or in small distributed units located at or very near the point of use, such as at refueling stations or stationary power

279

Ultra-Deepwater Production Systems  

SciTech Connect

The report herein is a summary of the work performed on three projects to demonstrate hydrocarbon drilling and production methods applicable to deep and ultra deepwater field developments in the Gulf of Mexico and other like applications around the world. This work advances technology that could lead to more economic development and exploitation of reserves in ultra-deep water or remote areas. The first project is Subsea Processing. Its scope includes a review of the ''state of the art'' in subsea components to enable primary production process functions such as first stage liquids and gas separation, flow boosting, chemical treatment, flow metering, etc. These components are then combined to allow for the elimination of costly surface production facilities at the well site. A number of studies were then performed on proposed field development projects to validate the economic potential of this technology. The second project involved the design and testing of a light weight production riser made of composite material. The proposed design was to meet an actual Gulf of Mexico deepwater development project. The various engineering and testing work is reviewed, including test results. The third project described in this report encompasses the development and testing of a close tolerance liner drilling system, a new technology aimed at reducing deepwater drilling costs. The design and prototype testing in a test well are described in detail.

Ken L. Smith; Marc E. Leveque

2005-05-31T23:59:59.000Z

280

Uranium Metal: Potential for Discovering Commercial Uses  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Metal Uranium Metal Potential for Discovering Commercial Uses Steven M. Baker, Ph.D. Knoxville Tn 5 August 1998 Summary Uranium Metal is a Valuable Resource 3 Large Inventory of "Depleted Uranium" 3 Need Commercial Uses for Inventory  Avoid Disposal Cost  Real Added Value to Society 3 Uranium Metal Has Valuable Properties  Density  Strength 3 Market will Come if Story is Told Background The Nature of Uranium Background 3 Natural Uranium: 99.3% U238; 0.7% U 235 3 U235 Fissile  Nuclear Weapons  Nuclear Reactors 3 U238 Fertile  Neutron Irradiation of U238 Produces Pu239  Neutrons Come From U235 Fission  Pu239 is Fissile (Weapons, Reactors, etc.) Post World War II Legacy Background 3 "Enriched" Uranium Product  Weapons Program 

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Cogeneration development and market potential in China  

Science Conference Proceedings (OSTI)

China`s energy production is largely dependent on coal. China currently ranks third in global CO{sub 2} emissions, and rapid economic expansion is expected to raise emission levels even further in the coming decades. Cogeneration provides a cost-effective way of both utilizing limited energy resources and minimizing the environmental impacts from use of fossil fuels. However, in the last 10 years state investments for cogeneration projects in China have dropped by a factor of 4. This has prompted this study. Along with this in-depth analysis of China`s cogeneration policies and investment allocation is the speculation that advanced US technology and capital can assist in the continued growth of the cogeneration industry. This study provides the most current information available on cogeneration development and market potential in China.

Yang, F.; Levine, M.D.; Naeb, J. [Lawrence Berkeley Lab., CA (United States); Xin, D. [State Planning Commission of China, Beijing, BJ (China). Energy Research Inst.

1996-05-01T23:59:59.000Z

282

Host and Derivative Product Modeling and Synthesis  

E-Print Network (OSTI)

In recent years, numerous methods to aid designers in conceptualizing new products have been developed. These methods intend to give structure to a process that was, at one time, considered to be a purely creative exercise. Resulting from the study, implementation, and refinement of design methodologies is the notion that both the structure of the development process and the structure of the developed product are key factors in creating value in a firm’s product line. With respect to the latter key factor, product architecture, but more specifically, modular product architecture has been the subject of much study. However, prior research in the area of modular product architecture has, with limited exception, focused on the construction of modules that are to be incorporated into a product before it becomes available to its end-users; that is, the modules are incorporated ‘pre-market.’ The research contained in this thesis is focused on two tasks: advancing the notion of a modular product architecture in which modules can be incorporated into a product ‘post-market,’ and creating a method that aids designers in synthesizing these post-market modules. Researchers have examined the idea of post-market modules; however, they do not fully formalize language used to describe these modules, and they also do not give the product space created by post-market modularization well-defined boundaries. Additionally, the prior work gives no method that can be used to create post-market modules. The research presented here addresses these shortcomings in the prior work by first, defining the terms ‘derivative product’ and ‘host product’ to describe the post-market module and the product that the module augments, respectively. Second, by establishing three guidelines that are used to assess the validity of potential derivative products, giving the newly termed host and derivative product space defined boundaries. And lastly, by developing a 7-step, biomimetic-based methodology that can be used to create derivative product concepts (post-market modules). This developed methodology is applied to four case studies in which it is used to create five derivative product concepts for a given host product. Thus, 20 derivative product concepts are developed in this study, demonstrating the qualitative effectiveness of the 7-step methodology.

Davis, Matthew Louis Turner

2010-08-01T23:59:59.000Z

283

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network (OSTI)

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

284

Wind Turbine Productivity and Development in Iran  

Science Conference Proceedings (OSTI)

This paper presents an overview of the status of wind energy productivity and development issues in Iran. It also presents a summary of the present global work on offshore energy, including the most recent works as well as potential offshore wind energy ... Keywords: Iran, development, offshore, turbine, wind

Ali Mostafaeipour; Saeid Abesi

2010-03-01T23:59:59.000Z

285

Chemical Constituents in Coal Combustion Products: Molybdenum  

Science Conference Proceedings (OSTI)

This report provides comprehensive information on the environmental occurrence and behavior of molybdenum (Mo), with specific emphasis on Mo derived from coal combustion products (CCPs). Included are discussions of Mo's occurrence in water and soil, potential human health and ecological effects, geochemistry, occurrence in CCPs, leaching characteristics from CCPs, measurement techniques, and treatment/remediation options.

2011-11-04T23:59:59.000Z

286

Energy conservation in Kenya: progress, potentials, problems  

SciTech Connect

A study was carried out of the flows of commercial energy in the economy of Kenya. Indications were sought of the extent to which energy conservation, (i.e., increase in efficiency of energy use) has reduced the ratio of energy inputs to economic outputs, in the post-1973 years. An assessment was made of the potential for energy conservation to reduce the growth of Kenyan energy use in the future and of significant barriers to increasing energy efficiency. Consideration was given to the role of government policy and of international assistance in fostering energy conservation in Kenya and other developing countries. The study was performed by analyzing available energy data and statistics from the largest oil companies, the Kenyan electric utility, and the government. These sources were supplemented by conducting personal interviews with personnel of nearly 50 commercial firms in Kenya. Direct consumption of fuel accounts for 94% of the commercial energy use in Kenya, while electricity accounts for 6%. The sectoral division of fuel use is: transportation 53%, industry 21%, energy production 11%, agriculture 9%, buildings and residences 5%, and construction 1%. For electricity the division is: buildings and residences 48%, industry 45%, energy production 4%, agriculture 2%, and construction 1%. Recent progress in conservation is reported.

Schipper, L.; Hollander, J.M.; Milukas, M.; Alcamo, J.; Meyers, S.; Noll, S.

1981-09-01T23:59:59.000Z

287

Reactor power history from fission product signatures  

E-Print Network (OSTI)

The purpose of this research was to identify fission product signatures that could be used to uniquely identify a specific spent fuel assembly in order to improve international safeguards. This capability would help prevent and deter potential diversion of spent fuel for a nuclear weapons program. The power history experienced by a fuel assembly is distinct and could serve as the basis of a method for unique identification. Using fission product concentrations to characterize the assembly power history would limit the ability of a proliferator to deceive the identification method. As part of the work completed, the TransLat lattice physics code was successfully benchmarked for fuel depletion. By developing analytical models for potential monitor isotopes an understanding was built of how specific isotope characteristics affect the production and destruction mechanisms that determine fission product concentration. With this knowledge potential monitor isotopes were selected and tested for concentration differences as a result of power history variations. Signature ratios were found to have significant concentration differences as a result of power history variations while maintaining a constant final burnup. A conceptual method for implementation of a fission product identification system was proposed in conclusion.

Sweeney, David J.

2008-12-01T23:59:59.000Z

288

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

MODIS ASCII Subset Products - FTP Access MODIS ASCII Subset Products - FTP Access All of the MODIS ASCII Subsets are available from the ORNL DAAC's ftp site. The directory structure of the ftp site is based on the abbreviated names for the MODIS Products. Terra MODIS products are abbreviated "MOD", Aqua MODIS products are abbreviated "MYD" and combined Terra and Aqua MODIS products are abbreviated "MCD". The abbreviated names also include the version number (also known as collection). For specific products, please refer to the following table: Product Acronym Spatial Resolution Temporal Frequency Terra V005 SIN Aqua V005 SIN Terra/Aqua Combined V005 SIN Surface Reflectance SREF 500 m 8 day composites MOD09A1 MYD09A1 ---------- Land Surface Temperature and Emissivity TEMP 1 km 8 day composites MOD11A2 MYD11A2 ----------

289

FCT Hydrogen Production: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Hydrogen Production: Basics on Facebook Tweet about FCT Hydrogen Production: Basics on Twitter Bookmark FCT Hydrogen Production: Basics on Google Bookmark FCT Hydrogen Production: Basics on Delicious Rank FCT Hydrogen Production: Basics on Digg Find More places to share FCT Hydrogen Production: Basics on AddThis.com... Home Basics Central Versus Distributed Production Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of hydrogen production in photobioreactor Hydrogen, chemical symbol "H", is the simplest element on earth. An atom of hydrogen has only one proton and one electron. Hydrogen gas is a diatomic

290

Industrial Oil Products Division  

Science Conference Proceedings (OSTI)

A forum for professionals involved in research, development, engineering, marketing, and testing of industrial products and co-products from fats and oils, including fuels, lubricants, coatings, polymers, paints, inks, cosmetics, dielectric fluids, and ad

291

The Product Creation Process  

E-Print Network (OSTI)

The Product Creation Process is described in its context. A phased model is shown, as many organisations use such a model as blueprint. The operational organisation of the product creation process is discussed, especially the role of the operational leader.

Gerrit Muller

1999-01-01T23:59:59.000Z

292

Casthouse Productivity and Safety  

Science Conference Proceedings (OSTI)

Feb 28, 2011 ... Cast Shop for Aluminum Production: Casthouse Productivity and ... performance indicator called Specific Energy Consumption [SEC] ... Improved Monolithic Materials for Lining Aluminum Holding and Melting Furnaces: Andy ...

293

Bio-Based Products  

Energy.gov (U.S. Department of Energy (DOE))

Almost all of the products we currently make from fossil fuels can also be made from biomass. These bioproducts, or bio-based products, are not only made from renewable sources, but they also often...

294

MODIS Land Product Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Validation > MODIS Land Subsets Validation > MODIS Land Subsets MODIS Land Product Subsets Overview Earth, Western Hemisphere The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products and to characterize field sites. Output files contain pixel values of MODIS land products in text format and in GeoTIFF format. In addition, data visualizations (time series plots and grids showing single composite periods) are available. MODIS Land Product Subsets Resources The following MODIS Land Product Subsets resources are maintained by the ORNL DAAC: MODIS Land Products Offered Background Citation Policy Methods and formats MODIS Sinusoidal Grid - Google Earth KMZ Classroom Exercises

295

Stochastic Resonance in Washboard Potentials  

E-Print Network (OSTI)

We study the mobility of an overdamped particle in a periodic potential tilted by a constant force. The mobility exhibits a stochastic resonance in inhomogeneous systems with space dependent friction coefficient. The result indicates that the presence of oscillating external field is not essential for the observability of stochastic resonance, at least in the inhomogenous medium. I.

Debasis Dan A; Mangal C. Mahato; A. M. Jayannavar B

1999-01-01T23:59:59.000Z

296

Biomass Energy Crops: Massachusetts' Potential  

E-Print Network (OSTI)

Biomass Energy Crops: Massachusetts' Potential Prepared for: Massachusetts Division of Energy;#12;Executive Summary In Massachusetts, biomass energy has typically meant wood chips derived from the region's extensive forest cover. Yet nationally, biomass energy from dedicated energy crops and from crop residues

Schweik, Charles M.

297

Topic: Product Data  

Science Conference Proceedings (OSTI)

Topic: Product Data. Event. Model-Based Enterprise Summit. TDP Standards Development Summit. Group. Life Cycle Engineering Group. ...

2012-09-19T23:59:59.000Z

298

CERTIFIED FOREST PRODUCTS MARKETS  

E-Print Network (OSTI)

% Sawnwood 13% Panels 9% RW & primary 5% Windows & doors 5% Pulp & paper 5% DIY products 6% Trade & retailers

299

Soy Protein Products  

Science Conference Proceedings (OSTI)

This book will provide an overview of the key benefits of soy protein products in an easily understood format. ...

300

Table 3. Product Applications  

of all hazardous metals, low -level radioactive waste, fission products and transuranics • Macroencapsulation of contaminated debris, metal and ...

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MSID Products, Tools, & Services  

Science Conference Proceedings (OSTI)

SID Products, Tools, & Services. XML Testbed - collection of XML-Related Tools; Express Engine - STEP (ISO 10303) development ...

2013-09-16T23:59:59.000Z

302

IEEE 1588 Products & Implementations  

Science Conference Proceedings (OSTI)

... Facsimile. 100 Bureau Drive, M/S 8220 Gaithersburg, MD 20899-8220. IEEE 1588 Products & Implementations. This page ...

2012-11-06T23:59:59.000Z

303

Seamless Steel Tubular Products  

Science Conference Proceedings (OSTI)

...). The tank also contained the search units.Fig. 6 Seamless and welded austenitic stainless steel tubular products were

304

Fission product solvent extraction  

SciTech Connect

Two main objectives concerning removal of fission products from high-level tank wastes will be accomplished in this project. The first objective entails the development of an acid-side Cs solvent-extraction (SX) process applicable to remediation of the sodium-bearing waste (SBW) and dissolved calcine waste (DCW) at INEEL. The second objective is to develop alkaline-side SX processes for the combined removal of Tc, Cs, and possibly Sr and for individual separation of Tc (alone or together with Sr) and Cs. These alkaline-side processes apply to tank wastes stored at Hanford, Savannah River, and Oak Ridge. This work exploits the useful properties of crown ethers and calixarenes and has shown that such compounds may be economically adapted to practical processing conditions. Potential benefits for both acid- and alkaline-side processing include order-of-magnitude concentration factors, high rejection of bulk sodium and potassium salts, and stripping with dilute (typically 10 mM) nitric acid. These benefits minimize the subsequent burden on the very expensive vitrification and storage of the high-activity waste. In the case of the SRTALK process for Tc extraction as pertechnetate anion from alkaline waste, such benefits have now been proven at the scale of a 12-stage flowsheet tested in 2-cm centrifugal contactors with a Hanford supernatant waste simulant. SRTALK employs a crown ether in a TBP-modified aliphatic kerosene diluent, is economically competitive with other applicable separation processes being considered, and has been successfully tested in batch extraction of actual Hanford double-shell slurry feed (DSSF).

Moyer, B.A.; Bonnesen, P.V.; Sachleben, R.A. [and others

1998-02-01T23:59:59.000Z

305

Strangeness Production at COSY  

E-Print Network (OSTI)

The paper gives an overview of strangeness-production experiments at the Cooler Synchrotron COSY. Results on kaon-pair and phi meson production in pp, pd and dd collisions, hyperon-production experiments and Lambda p final-state interaction studies are presented.

Frank Hinterberger; Hartmut Machner; Regina Siudak

2010-10-08T23:59:59.000Z

306

Coal production 1989  

SciTech Connect

Coal Production 1989 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, reserves, and stocks to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. 7 figs., 43 tabs.

1990-11-29T23:59:59.000Z

307

Market Potential for Nitrogen Fertilizers Derived from the Electric Power Industry  

Science Conference Proceedings (OSTI)

This technology evaluation report describes the potential market for fertilizer materials derived from utility by-products from developing ammonia-based flue gas desulfurization (FGD) systems to control sulfur oxides (SOx) and nitrogen oxides (NOx).

2002-11-27T23:59:59.000Z

308

Max Tech Appliance Design: Potential for Maximizing U.S. Energy Savings through Standards  

E-Print Network (OSTI)

Annually the US DOE presents US energy use forecasts in its50 products, in terms of US energy savings potential overand Liu X. Impacts of US federal energy efficiency standards

Garbesi, Karina

2011-01-01T23:59:59.000Z

309

Spatial Interpolation of Daily Potential Evapotranspiration for New Zealand Using a Spline Model  

Science Conference Proceedings (OSTI)

Potential evapotranspiration (PET) is an important component of water balance calculations, and these calculations form an equally important role in applications such as irrigation scheduling, pasture productivity forecasts, and groundwater ...

Andrew Tait; Ross Woods

2007-06-01T23:59:59.000Z

310

Assessment of Aircraft Icing Potential and Maximum Icing Altitude from Geostationary Meteorological Satellite Data  

Science Conference Proceedings (OSTI)

A satellite product that displays regions of aircraft icing potential, along with corresponding cloud-top heights, has been developed using data from the Geostationary Operational Environmental Satellite (GOES) imager and sounder. The icing ...

Gary P. Ellrod; Andrew A. Bailey

2007-02-01T23:59:59.000Z

311

Potential for Producing Hydrogen from Key Renewable Resources in the United States  

DOE Green Energy (OSTI)

This study estimates the potential for hydrogen production from key renewable resources (onshore wind, solar photovoltaic, and biomass) by county in the United States. It includes maps that allow the reader to easily visualize the results.

Milbrandt, A.; Mann, M.

2006-02-01T23:59:59.000Z

312

Marine renewable energy: potential benefits to biodiversity? An urgent call for research  

E-Print Network (OSTI)

Marine renewable energy: potential benefits to biodiversity? An urgent call for research Richard 1 Centre for Ecology and Conservation and Peninsula Research Institute for Marine Renewable Energy driver. In response, many governments have initiated programmes of energy production from renewable

Exeter, University of

313

Evaluation of Devonian shale potential in West Virginia  

SciTech Connect

In West Virginia, all significant areas of current Devonian shale gas production are situated where the radioactive shale units are thicker than 200 feet. Most areas of current gas production exhibit a close correlation with the trend of the Rome trough structure, and nearly all lie within the optimum stress-ratio zone. In addition, most of the current gas-producing areas are located within the zone of optimum shale thermal maturity, and optimum shale thermal maturity nearly coincides with the optimum shale stress-ratio value (0.43) in western and southwestern West Virginia. Areas adjacent to existing gas fields, within northeastern Cabell County, northern Lincoln County, and central Wayne County, are excellent prospects for future production. Additional deeper drilling in existing gas fields within the main trend may tap potential new reservoirs in the Rhinestreet and Marcellus Shales. The area east of the Warfield anticline in central Boone, Logan, and eastern Mingo Counties also may be favorable for gas exploitation of the radioactive Huron Shale. Fractures associated with the flank of the anticline and possible reactivation of basement faults in this area should be sufficient to provide the means for production. Further drilling should also be conducted along extensions of the border fault zone of the Rome trough in the western portion of the state. However, the subsurface trend of the trough must be carefully delineated to successfully develop gas production from potential fractured reservoir systems.

Not Available

1981-01-01T23:59:59.000Z

314

The economics of biomass production in the United States  

DOE Green Energy (OSTI)

Biomass crops (e.g. poplar, willow, switchgrass) could become important feedstocks for power, liquid fuel, and chemical production. This paper presents estimates of the potential production of biomass in the US under a range of assumptions. Estimates of potential biomass crop yields and production costs from the Department of Energy`s (DOE) Oak Ridge National Laboratories (ORNL) are combined with measures of land rents from USDA`s Conservation Reserve Program (CRP), to estimate a competitive supply of biomass wood and grass crops. Estimates are made for one potential biomass use--electric power production--where future costs of electricity production from competing fossil fuels set the demand price. The paper outlines the methodology used and limitations of the analysis.

Graham, R.L.; Walsh, M.E. [Oak Ridge National Lab., TN (United States); Lichtenberg, E. [Univ. of Maryland, College Park, MD (United States); Roningen, V.O. [ERS-USDA, Washington, DC (United States); Shapouri, H. [OENU-ERS-USDA, Washington, DC (United States)

1995-12-31T23:59:59.000Z

315

Health Effects of Inhalation of Coal Combustion Products  

Science Conference Proceedings (OSTI)

This report assesses the potential human health effects of inhaled coal combustion products (CCPs), which consist of fly ash, bottom ash, boiler slag, and flue gas desulfurization (FGD) products. The focus is on as-managed CCPs, with evaluation of the potential effects of exposure through fugitive emissions from storage facilities. Because the literature pertaining to bottom ash, boiler slag, and FGD solids is scarce, this review draws almost entirely from studies of fly ash as a surrogate particulate ma...

2011-12-30T23:59:59.000Z

316

Comparison of nutrient data from four potential OTEC sites  

DOE Green Energy (OSTI)

An in-progress assessment of nutrient chemical data (phosphate, nitrate, nitrite, and silicate) from four potential OTEC sites (Puerto Rico, the Gulf of Mexico, Hawaii, and the South Atlantic) show reasonable comparison with archival data. At this time sufficient data is available only at the Tampa site (Gulf of Mexico) to discern seasonal variations which show an influx of nutrient-rich water in February, which decreases with time to a minimum in December. Results show a greater potential for stimulation of primary productivity at the Hawaii site than in the northern Gulf of Mexico due to the discharge of the cold water pipe into the photic zone.

Quinby-Hunt, M.S.

1979-06-01T23:59:59.000Z

317

Potential of arid zone vegetation as a source of substrates  

DOE Green Energy (OSTI)

Three aspects of the potential of vegetation in arid zones as a source of substrates are discussed. The first includes the limitations on efficiency of conversion of solar energy to the stored chemical energy of biomass in green plants, and the subsequent biochemical pathways of carbon dioxide fixation and biosynthesis. Second is the potential of plants endogenous to arid zones. Finally, the use of covered agriculture or controlled environmental agriculture (CEA) is considered both in its present form and in terms of possible extenion to the large scale production of stable crops. (JGB)

Bassham, J.A.

1977-11-01T23:59:59.000Z

318

An Assessment of the Potential for Remanufacturing Out-of-Service Southern Pine Utility Poles  

Science Conference Proceedings (OSTI)

EPRI engaged The Beck Group (BECK), a forest products consulting firm located in Portland, Oregon, to estimate the supply and quality of out-of-service Southern Pine utility poles and to assess the potential for remanufacturing/reusing and marketing out-of-service utility poles into various solid, roundwood and other products. This report principally identifies the potential volumes and condition of out-of-service utility poles from cooperating utilities that use primarily Southern Pine poles. The report...

2007-03-09T23:59:59.000Z

319

Process synthesis and design of low temperature Fischer-Tropsch crude production from biomass derived syngas.  

E-Print Network (OSTI)

??The production of biofuels via a low temperature Fischer-Tropsch synthesis could potentially increase the utilization of biofuels without having to change the currently used combustion… (more)

Pondini, Maddalena

2013-01-01T23:59:59.000Z

320

Renewable Energy Technical Potential | Open Energy Information  

Open Energy Info (EERE)

Energy Technical Potential Energy Technical Potential Jump to: navigation, search Dictionary.png Renewable Energy Technical Potential: Renewable energy technical potential represents the achievable energy generation of a particular technology given system performance, topographic limitations, environmental, and land-use constraints. Other definitions:Wikipedia Reegle The primary benefit of assessing technical potential is that it establishes an upper-boundary estimate of development potential.[1] Multiple Types of Potential Defining RE Potential There are multiple types of potential, each with their own assumptions. In addition to technical potential, resource, economic, and market potentials are also considered when assessing the overall development potential of a given technology. (See 'Defining RE Potential' to the right).

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Potential Uses of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

322

California Industrial Energy Efficiency Potential  

SciTech Connect

This paper presents an overview of the modeling approach andhighlights key findings of a California industrial energy efficiencypotential study. In addition to providing estimates of technical andeconomic potential, the study examines achievable program potential undervarious program-funding scenarios. The focus is on electricity andnatural gas savings for manufacturing in the service territories ofCalifornia's investor-owned utilities (IOUs). The assessment is conductedby industry type and by end use. Both crosscutting technologies andindustry-specific process measures are examined. Measure penetration intothe marketplace is modeled as a function of customer awareness, measurecost effectiveness, and perceived market barriers. Data for the studycomes from a variety of sources, including: utility billing records, theEnergy Information Association (EIA) Manufacturing Energy ConsumptionSurvey (MECS), state-sponsored avoided cost studies, energy efficiencyprogram filings, and technology savings and cost data developed throughLawrence Berkeley National Laboratory (LBNL). The study identifies 1,706GWh and 47 Mth (million therms) per year of achievable potential over thenext twelve years under recent levels of program expenditures, accountingfor 5.2 percent of industrial electricity consumption and 1.3 percent ofindustrial natural gas consumption. These estimates grow to 2,748 GWh and192 Mth per year if all cost-effective and achievable opportunities arepursued. Key industrial electricity end uses, in terms of energy savingspotential, include compressed air and pumping systems that combine toaccount for about half of the total achievable potential estimates. Fornatural gas, savings are concentrated in the boiler and process heatingend uses, accounting for over 99 percent to total achievablepotential.

Coito, Fred; Worrell, Ernst; Price, Lynn; Masanet, Eric; RafaelFriedmann; Rufo, Mike

2005-06-01T23:59:59.000Z

323

Propagation in nonlocal optical potentials  

SciTech Connect

It is shown that a nonlocal optical potential implies multiple eigenmode propagation. This is important when the mean free path becomes of the order of the nonlocality, such as in the strong absorption situation occurring for pion scattering near the 3-3 resonance, and consequently the propagation cannot be described reasonably by one complex wave number. The eigenmode structure can be seen most directly in quasielastic scattering.

Lenz, F.; Moniz, E.J.

1975-09-01T23:59:59.000Z

324

Peak load management: Potential options  

SciTech Connect

This report reviews options that may be alternatives to transmission construction (ATT) applicable both generally and at specific locations in the service area of the Bonneville Power Administration (BPA). Some of these options have potential as specific alternatives to the Shelton-Fairmount 230-kV Reinforcement Project, which is the focus of this study. A listing of 31 peak load management (PLM) options is included. Estimated costs and normalized hourly load shapes, corresponding to the respective base load and controlled load cases, are considered for 15 of the above options. A summary page is presented for each of these options, grouped with respect to its applicability in the residential, commercial, industrial, and agricultural sectors. The report contains comments on PLM measures for which load shape management characteristics are not yet available. These comments address the potential relevance of the options and the possible difficulty that may be encountered in characterizing their value should be of interest in this investigation. The report also identifies options that could improve the efficiency of the three customer utility distribution systems supplied by the Shelton-Fairmount Reinforcement Project. Potential cogeneration options in the Olympic Peninsula are also discussed. These discussions focus on the options that appear to be most promising on the Olympic Peninsula. Finally, a short list of options is recommended for investigation in the next phase of this study. 9 refs., 24 tabs.

Englin, J.E.; De Steese, J.G.; Schultz, R.W.; Kellogg, M.A.

1989-10-01T23:59:59.000Z

325

Production of extremophilic bacterial cellulase enzymes in aspergillus niger.  

SciTech Connect

Enzymes can be used to catalyze a myriad of chemical reactions and are a cornerstone in the biotechnology industry. Enzymes have a wide range of uses, ranging from medicine with the production of pharmaceuticals to energy were they are applied to biofuel production. However, it is difficult to produce large quantities of enzymes, especially if they are non-native to the production host. Fortunately, filamentous fungi, such as Aspergillus niger, are broadly used in industry and show great potential for use a heterologous enzyme production hosts. Here, we present work outlining an effort to engineer A. niger to produce thermophilic bacterial cellulases relevant to lignocellulosic biofuel production.

Gladden, John Michael

2013-09-01T23:59:59.000Z

326

Refinery Net Production of Total Finished Petroleum Products  

U.S. Energy Information Administration (EIA) Indexed Site

Waxes Petroleum Coke Marketable Petroleum Coke Catalyst Petroleum Coke Asphalt and Road Oil Still Gas Miscellaneous Products Misc. Products - Fuel Use Misc. Products - Nonfuel...

327

Cassava, a potential biofuel crop in China  

E-Print Network (OSTI)

as a biomass for biofuel production and some of its economiceconomic viability of biofuel production is the efficiencybiofuel; metabolic engineering; China Abstract Cassava is ranking as fifth among crops in global starch production.

Jansson, C.

2010-01-01T23:59:59.000Z

328

Tight Product Balance Pushes Up Product Spread (Spot Product - Crude  

Gasoline and Diesel Fuel Update (EIA)

5 5 Notes: Gasoline inventories indicate how tight the gasoline product market is in any one region. When the gasoline market is tight, it affects the portion of gasoline price is the spread between spot product price and crude oil price. Note that in late 1998-and early 1999 spreads were very small when inventories were quite high. Contrast summers of 1998 or 1999 with summer 2000. Last summer's tight markets, resulting low stocks and transition to Phase 2 RFG added price pressure over and above the already high crude price pressure on gasoline -- particularly in the Midwest. As we ended last winter, gasoline inventories were low, and the spread between spot prices and crude oil were higher than typical as a result. Inventories stayed well below average and the spread during the

329

Resource Evaluation and Site Selection for Microalgae Production in India  

DOE Green Energy (OSTI)

The study evaluates climate conditions, availability of CO2 and other nutrients, water resources, and land characteristics to identify areas in India suitable for algae production. The purpose is to provide an understanding of the resource potential in India for algae biofuels production and to assist policymakers, investors, and industry developers in their future strategic decisions.

Milbrandt, A.; Jarvis, E.

2010-09-01T23:59:59.000Z

330

Examining the Potential of Renewable Energy  

SciTech Connect

This outreach document goes to potential partners for NREL's Renewable Energy Potential Initiative, which will explore the long-term potential of Renewable Energy to meet a substantial share of U.S. energy needs.

2006-09-01T23:59:59.000Z

331

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base  

E-Print Network (OSTI)

Potential for Coal-to-Liquids Conversion in the U.S.-Resource Base Gregory D. Croft1 and Tad W the multi-Hubbert curve analysis to coal production in the United States, we demonstrate that anthracite production of this highest-rank coal. The pro- duction of bituminous coal from existing mines is about 80

Patzek, Tadeusz W.

332

Measurement Research of Borehole-to-Surface Electric Potential Gradient Method in Monitoring Hydraulic Fracture  

Science Conference Proceedings (OSTI)

As the main measures to improve oil and gas production, hydraulic fracturing has been widely applied in modern oil industry. By means of lower resistance properties of fracturing fluid, borehole-to-surface electric potential gradient method analyses ... Keywords: borehole-to-surface electric method, Ab normal depth, launch current, polar distance, electric potential gradient

Tingting Li; Kaiguang Zhu; Jia Wang; Chunling Qiu; Jun Lin

2012-04-01T23:59:59.000Z

333

Methanol production from Eucalyptus wood chips. Final report  

DOE Green Energy (OSTI)

This feasibility study includes all phases of methanol production from seedling to delivery of finished methanol. The study examines: production of 55 million, high quality, Eucalyptus seedlings through tissue culture; establishment of a Eucalyptus energy plantation on approximately 70,000 acres; engineering for a 100 million gallon-per-day methanol production facility; potential environmental impacts of the whole project; safety and health aspects of producing and using methanol; and development of site specific cost estimates.

Fishkind, H.H.

1982-06-01T23:59:59.000Z

334

Coal Production 1992  

SciTech Connect

Coal Production 1992 provides comprehensive information about US coal production, the number of mines, prices, productivity, employment, productive capacity, and recoverable reserves to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. In 1992, there were 3,439 active coal mining operations made up of all mines, preparation plants, and refuse operations. The data in Table 1 cover the 2,746 mines that produced coal, regardless of the amount of production, except for bituminous refuse mines. Tables 2 through 33 include data from the 2,852 mining operations that produced, processed, or prepared 10 thousand or more short tons of coal during the period, except for bituminous refuse, and includes preparation plants with 5 thousand or more employee hours. These mining operations accounted for over 99 percent of total US coal production and represented 83 percent of all US coal mining operations in 1992.

1993-10-29T23:59:59.000Z

335

The Antrim shale, fractured gas reservoirs with immense potential  

Science Conference Proceedings (OSTI)

Antrim shale gas production has grown from 0.4 Bcf of gas in 1987 to 127 Bcf in 1994, causing record gas production in Michigan. Recent industry activity suggests the play will continue to expand. The GRI Hydrocarbon Model's Antrim resource base description was developed in 1991 based on industry activity through 1990. The 1991 description estimated 32 Tcf of recoverable resource, and was limited to northern Michigan which represents only part of the Antrim's total potential. This description indicated production could increase manyfold, even with low prices. However, its well recovery rate is less than current industry results and projected near term production lags actual production by 1 to 2 years. GRI is updating its description to better reflect current industry results and incorporate all prospective areas. The description in northern Michigan is updated using production and well data through 1994 and results from GRI's research program. The description is then expanded to the entire basin. Results indicate the northern resource is somewhat larger than the previous estimate and the wells perform better. Extrapolation to the entire basin using a geologic analog model approximately doubles the 1991 estimate. The model considers depositional, structural, and tectonic influences; fracturing; organic content; thermal history; and hydrocarbon generation, migration and storage. Pleistocene glaciation and biogenic gas are also included for areas near the Antrim subcrop.

Manger, K.C. (DynCorp., Alexandria, VA (United States)); Woods, T.J. (Gas Research Institute., Washington, DC (United States)) Curtis, J.B. (Colorado School of Mines, Golden, CO (United States))

1996-01-01T23:59:59.000Z

336

Research highlights potential for improved solar cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential for improved solar cells Research highlights potential for improved solar cells Research has shown that carrier multiplication is a real phenomenon in tiny semiconductor...

337

Potential Benefits of Commissioning California Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential Benefits of Commissioning California Homes Title Potential Benefits of Commissioning California Homes Publication Type Report LBNL Report Number LBNL-48258 Year of...

338

Tribal Renewable Energy Development Potential Webinar | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tribal Renewable Energy Development Potential Webinar Tribal Renewable Energy Development Potential Webinar February 21, 2013 - 1:35pm Addthis Learn about opportunities for...

339

QCD based static potential between heavy quarks  

SciTech Connect

We calculate the static potential between a quark-anti quark pair using dual potentials to describe long-distance Yang-Mills theory.

Baker, M. [Washington Univ., Seattle, WA (United States). Dept. of Physics; Ball, J.S. [Utah Univ., Salt Lake City, UT (United States). Dept. of Physics; Zachriasen, R. [California Inst. of Tech., Pasadena, CA (United States)

1991-12-31T23:59:59.000Z

340

Cassava, a potential biofuel crop in China  

E-Print Network (OSTI)

Cassava, a potential biofuel crop in China Christer Janssoncassava; bioethanol; biofuel; metabolic engineering; Chinathe potentials of cassava in the biofuel sector and point to

Jansson, C.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Scientific Potential of Einstein Telescope  

E-Print Network (OSTI)

Einstein gravitational-wave Telescope (ET) is a design study funded by the European Commission to explore the technological challenges of and scientific benefits from building a third generation gravitational wave detector. The three-year study, which concluded earlier this year, has formulated the conceptual design of an observatory that can support the implementation of new technology for the next two to three decades. The goal of this talk is to introduce the audience to the overall aims and objectives of the project and to enumerate ET's potential to influence our understanding of fundamental physics, astrophysics and cosmology.

B. Sathyaprakash; M. Abernathy; F. Acernese; P. Amaro-Seoane; N. Andersson; K. Arun; F. Barone; B. Barr; M. Barsuglia; M. Beker; N. Beveridge; S. Birindelli; S. Bose; L. Bosi; S. Braccini; C. Bradaschia; T. Bulik; E. Calloni; G. Cella; E. Chassande-Mottin; S. Chelkowski; A. Chincarini; J. Clark; E. Coccia; C. Colacino; J. Colas; A. Cumming; L. Cunningham; E. Cuoco; S. Danilishin; K. Danzmann; R. De. Salvo; T. Dent; R. De. Rosa; L. Di. Fiore; A. Di. Virgilio; M. Doets; V. Fafone; P. Falferi; R. Flaminio; J. Franc; F. Frasconi; A. Freise; D. Friedrich; P. Fulda; J. Gair; G. Gemme; E. Genin; A. Gennai; A. Giazotto; K. Glampedakis; C. Gräf; M. Granata; H. Grote; G. Guidi; A. Gurkovsky; G. Hammond; M. Hannam; J. Harms; D. Heinert; M. Hendry; I. Heng; E. Hennes; S. Hild; J. Hough; S. Husa; S. Huttner; G. Jones; F. Khalili; K. Kokeyama; K. Kokkotas; B. Krishnan; T. G. F. Li; M. Lorenzini; H. Lück; E. Majorana; I. Mandel; V. Mandic; M. Mantovani; I. Martin; C. Michel; Y. Minenkov; N. Morgado; S. Mosca; B. Mours; H. Müller-Ebhardt; P. Murray; R. Nawrodt; J. Nelson; R. Oshaughnessy; C. D. Ott; C. Palomba; A. Paoli; G. Parguez; A. Pasqualetti; R. Passaquieti; D. Passuello; L. Pinard; W. Plastino; R. Poggiani; P. Popolizio; M. Prato; M. Punturo; P. Puppo; D. Rabeling; I. Racz; P. Rapagnani; J. Read; T. Regimbau; H. Rehbein; S. Reid; L. Rezzolla; F. Ricci; F. Richard; A. Rocchi; S. Rowan; A. Rüdiger; L. Santamaria; B. Sassolas; R. Schnabel; C. Schwarz; P. Seidel; A. Sintes; K. Somiya; F. Speirits; K. Strain; S. Strigin; P. Sutton; S. Tarabrin; A. Thüring; J. van den Brand; M van Veggel; C. Van Den Broeck; A. Vecchio; J. Veitch; F. Vetrano; A. Vicere; S. Vyatchanin; B. Willke; G. Woan; K. Yamamoto

2011-08-05T23:59:59.000Z

342

Equivalence of Local Potential Approximations  

E-Print Network (OSTI)

In recent papers it has been noted that the local potential approximation of the Legendre and Wilson-Polchinski flow equations give, within numerical error, identical results for a range of exponents and Wilson-Fisher fixed points in three dimensions, providing a certain ``optimised'' cutoff is used for the Legendre flow equation. Here we point out that this is a consequence of an exact map between the two equations, which is nothing other than the exact reduction of the functional map that exists between the two exact renormalization groups. We note also that the optimised cutoff does not allow a derivative expansion beyond second order.

Tim R. Morris

2005-03-21T23:59:59.000Z

343

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"...

344

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Shaaf, and the FLUXNET validation communities to choose sites and to identify the land products needed for validation. We also worked with MODAPS on subsetting the Land...

345

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Citation When using subsets of MODIS Land Products from the ORNL DAAC, please use the citation: Oak Ridge National Laboratory Distributed Active Archive Center (ORNL DAAC). 2011....

346

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction The goal of the MODIS Land Product Subsets project is to provide summaries of selected MODIS Land Products for the community to use for validation of models and remote-sensing products, and to characterize field sites. The MODIS Land Product Subsets are derived from MODIS products that were generated with Collection 4 or later algorithms. Please be advised that these products are subject to continual review and revision. The MODIS land product subsets are provided in ASCII and GeoTIFF format. The subsets are stored as individual text(ASCII) files, each file represents one field site and one MODIS product.The ASCII data covers 7x7 km of the field site. These ASCII files contain comma-delimited rows of parameter values (image bands) for each pixel in the selected area. Each row in the file will contain data from one 8-day, 16-day, or annual period (depending on the temporal frequency of the data product represented).

347

Coal Combustion Products: Challenges  

NLE Websites -- All DOE Office Websites (Extended Search)

Products: Challenges and Opportunities American Coal Ash Association Conference St. Petersburg, FL January 27-30, 2003 Carl O. Bauer National Energy Technology Laboratory...

348

CONSOLIDATED CERAMIC PRODUCTS, INC.  

Science Conference Proceedings (OSTI)

For 40 years, Consolidated Ceramic Products, Inc. has been of service to the aluminum industries worldwide. An innovative manufacturer and marketer of ...

349

Hydrology Group - Technologies & Products  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies & Products Systems & Sensors Water Fluxmeter Software & Models Fish Individual-based Numerical Simulator (FINS ) FRAMES 1.x ReActive Flow and Transport of Groundwater...

350

LENNOX HEARTH PRODUCTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and venting products for the specialty retail, residential new construction and industrial markets. LHP, based in Nashville, TN, is a business unit of Lennox...

351

Organic dairy production.  

E-Print Network (OSTI)

??The aim of this thesis was to gain further knowledge about the performance of cows in organic dairy production and their ability to adapt to… (more)

Ahlman, Therese

2010-01-01T23:59:59.000Z

352

Coalbed Methane Production  

Gasoline and Diesel Fuel Update (EIA)

Methane Production (Billion Cubic Feet) Period: Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes 2006 2007 2008 2009...

353

PRODUCTION AND DECAY OF  

NLE Websites -- All DOE Office Websites (Extended Search)

experimental observa- tion of CP violation, we briefly update the results on b quark production and lifetimes. Since this edition features separate reviews on the determination of...

354

Electromagnetic Higgs production  

E-Print Network (OSTI)

The cross section for central diffractive Higgs production is calculated, for the LHC range of energies. The graphs for the possible mechanisms for Higgs production, through pomeron fusion and photon fusions are calculated for all possibilities allowed by the standard model. The cross section for central diffractive Higgs production through pomeron fusion, must be multiplied by a factor for the survival probability, to isolate the Higgs signal and reduce the background. Due to the small value of the survival probability $\\Lb 4 \\times 10^{-3}\\Rb $, the cross sections for central diffractive Higgs production, in the two cases for pomeron fusion and photon fusion, are competitive.

J. S. Miller

2007-04-16T23:59:59.000Z

355

NGPL Production, Gaseous Equivalent  

U.S. Energy Information Administration (EIA) Indexed Site

NGPL Production, Gaseous Equivalent Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By:...

356

Weekly Blender Net Production  

Gasoline and Diesel Fuel Update (EIA)

Production (Thousand Barrels per Day) Period: Weekly 4-Week Average Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

357

Microsystem Product Development  

E-Print Network (OSTI)

Over the last decade the successful design and fabrication of complex MEMS (MicroElectroMechanical Systems), optical circuits and ASICs have been demonstrated. Packaging and integration processes have lagged behind MEMS research but are rapidly maturing. As packaging processes evolve, a new challenge presents itself, microsystem product development. Product development entails the maturation of the design and all the processes needed to successfully produce a product. Elements such as tooling design, fixtures, gages, testers, inspection, work instructions, process planning, etc., are often overlooked as MEMS engineers concentrate on design, fabrication and packaging processes. Thorough, up-front planning of product development efforts is crucial to the success of any project.

Polosky, M -A

2007-01-01T23:59:59.000Z

358

Product Pipeline Reports Tutorial  

Gasoline and Diesel Fuel Update (EIA)

Home > Petroleum > Petroleum Survey Forms> Petroleum Survey Forms Tutorial Product Pipeline Reports Tutorial Content on this page requires a newer version of Adobe Flash Player....

359

Sustainable hydrogen production  

SciTech Connect

This report describes the Sustainable Hydrogen Production research conducted at the Florida Solar Energy Center (FSEC) for the past year. The report presents the work done on the following four tasks: Task 1--production of hydrogen by photovoltaic-powered electrolysis; Task 2--solar photocatalytic hydrogen production from water using a dual-bed photosystem; Task 3--development of solid electrolytes for water electrolysis at intermediate temperatures; and Task 4--production of hydrogen by thermocatalytic cracking of natural gas. For each task, this report presents a summary, introduction/description of project, and results.

Block, D.L.; Linkous, C.; Muradov, N.

1996-01-01T23:59:59.000Z

360

Natural Gas Production  

U.S. Energy Information Administration (EIA)

Natural Gas Production. Measured By. Disseminated Through. Survey of Producing States and Mineral Management Service “Evolving Estimate” in Natural Gas Monthly.

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Products, Services: Not Procurable  

NLE Websites -- All DOE Office Websites (Extended Search)

Products, Services: Not Procurable As a premier national research and development laboratory, LANL seeks to do business with qualified companies that offer value and high...

362

Venezuela Gasoline Production & Demand  

U.S. Energy Information Administration (EIA)

... Change and Uncertainty Today’s gasoline imports essential to meet ... Refinery-based MTBE production and some merchant MTBE facilities will be ...

363

Furfuryl alcohol cellular product  

DOE Patents (OSTI)

Self-extinguishing rigid foam products are formed by polymerization of furfuryl alcohol in the presence of a lightweight, particulate, filler, zinc chloride and selected catalysts.

Sugama, T.; Kukacka, L.E.

1982-05-26T23:59:59.000Z

364

MESA PRODUCTS, INC. PROFILE  

Science Conference Proceedings (OSTI)

... services and products are energy related companies ... programs including the annual Appalachian Underground ... term and short-term outlook of the ...

2007-04-04T23:59:59.000Z

365

Net Primary Productivity Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

some scientists still tend to confuse productivity with standing biomass or standing crop. NPP is a fundamental ecological variable, not only because it measures the energy...

366

Production Methodologies and Uncertainties  

NLE Websites -- All DOE Office Websites (Extended Search)

from the calcination process for clinker production direct emissions from fossil fuel combustion and indirect emissions from electricity consumption This paper examines in...

367

HYDROMATRIX? Product Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Potential and Known Environmental Concerns Low Impact Hydro at Existing Structures Presentation at Hydrokinetic and Wave Energy Technologies Technical and Environmental Issues...

368

Nebraska shows potential to produce biofuel crops | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops December 9, 2009 - 11:12am Addthis Joshua DeLung What are the key facts? Utilizing sites in Nevada that are currently used as buffers around roads for biofuel production instead could meet up to 22 percent of the state's energy requirements. That's 11 times the energy the state currently produces from biomass. Nebraska is known for its rolling cornfields in America's heartland, and agriculture is so thick in the state that people there can smell the fresh produce in the air. Many more in the U.S. might end up tasting the hearty vegetables as well. But one concern about new technologies that use crops for fuel is that those crops, and the land on which they're grown,

369

Nebraska shows potential to produce biofuel crops | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops Nebraska shows potential to produce biofuel crops December 9, 2009 - 11:12am Addthis Joshua DeLung What are the key facts? Utilizing sites in Nevada that are currently used as buffers around roads for biofuel production instead could meet up to 22 percent of the state's energy requirements. That's 11 times the energy the state currently produces from biomass. Nebraska is known for its rolling cornfields in America's heartland, and agriculture is so thick in the state that people there can smell the fresh produce in the air. Many more in the U.S. might end up tasting the hearty vegetables as well. But one concern about new technologies that use crops for fuel is that those crops, and the land on which they're grown,

370

High potential recovery -- Gas repressurization  

SciTech Connect

The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

Madden, M.P.

1998-05-01T23:59:59.000Z

371

Promoting greater Federal energy productivity [Final report  

Science Conference Proceedings (OSTI)

This document is a close-out report describing the work done under this DOE grant to improve Federal Energy Productivity. Over the four years covered in this document, the Alliance To Save Energy conducted liaison with the private sector through our Federal Energy Productivity Task Force. In this time, the Alliance held several successful workshops on the uses of metering in Federal facilities and other meetings. We also conducted significant research on energy efficiency, financing, facilitated studies of potential energy savings in energy intensive agencies, and undertook other tasks outlined in this report.

Hopkins, Mark; Dudich, Luther

2003-03-05T23:59:59.000Z

372

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

Feder, Harold M. (Darien, IL); Chen, Michael J. (Darien, IL)

1983-01-01T23:59:59.000Z

373

Method and system for ethanol production  

DOE Patents (OSTI)

A transition metal carbonyl and a tertiary amine are employed as a homogeneous catalytic system in methanol or a less volatile solvent to react methanol with carbon monoxide and hydrogen gas producing ethanol and carbon dioxide. The gas contains a high carbon monoxide to hydrogen ratio as is present in a typical gasifier product. The reaction has potential for anhydrous ethanol production as carbon dioxide rather than water is produced. Selected transition metal carbonyls include those of iron, rhodium, ruthenium, manganese in combination with iron and possibly osmium. Selected amines include trimethylamine, N-Methylpyrrolidine, 2,4-diazabicyclooctane, dimethylneopentylamine, N-methylpiperidine and derivatives of N-methylpiperidine.

Feder, H.M.; Chen, M.J.

1981-09-24T23:59:59.000Z

374

ASSOCIATED HIGGS BOSON PRODUCTION WITH HEAVY QUARKS.  

SciTech Connect

The production of a Higgs boson in association with a pair of e quarks will play a very important role at both hadron and lepton colliders. We review the status of theoretical predictions and their relevance to Higgs boson studies, with particular emphasis on the recently calculated NLO QCD corrections to the inclusive cross section for p{bar p}, pp {yields} t{bar t}h. We conclude by briefly discussing the case of exclusive b{bar b}h production and the potential of this process in revealing signals of new physics beyond the Standard Model.

DAWSON,S.ORR,L.H.REINA,L.WACKEROTH,D.

2003-03-15T23:59:59.000Z

375

POTENTIAL THERMOELECTRIC APPLICATIONS IN DIESEL VEHICLES  

DOE Green Energy (OSTI)

Novel thermodynamic cycles developed by BSST provide improvements by factors of approximately 2 in cooling, heating and power generation efficiency of solid-state thermoelectric systems. The currently available BSST technology is being evaluated in automotive development programs for important new applications. Thermoelectric materials are likely to become available that further increase performance by a comparable factor. These major advancements should allow the use of thermoelectric systems in new applications that have the prospect of contributing to emissions reduction, fuel economy, and improved user comfort. Potential applications of thermoelectrics in diesel vehicles are identified and discussed. As a case in point, the history and status of the Climate Controlled Seat (CCS) system from Amerigon, the parent of BSST, is presented. CCS is the most successful and highest production volume thermoelectric system in vehicles today. As a second example, the results of recent analyses on electric power generation from vehicle waste heat are discussed. Conclusions are drawn as to the practicality of waste power generation systems that incorporate BSST's thermodynamic cycle and advanced thermoelectric materials.

Crane, D

2003-08-24T23:59:59.000Z

376

Geomicrobiology of the ocean crust : the phylogenetic diversity, abundance, and distribution of microbial communities inhabiting basalt and implications for rock alteration processes.  

E-Print Network (OSTI)

??Basaltic ocean crust has the potential to host one of the largest endolithic communities on Earth. This portion of the biosphere, however, remains largely unexplored.… (more)

Santelli, Cara M.

2007-01-01T23:59:59.000Z

377

State Energy Production Data  

Gasoline and Diesel Fuel Update (EIA)

State Energy Data System State Energy Data System Production Estimates Technical Notes For 1960-2011 Estimates Table of Contents Section 1. Introduction ................................................................................................................... 1 Section 2. Coal ............................................................................................................................... 5 Section 3. Crude Oil ....................................................................................................................... 7 Section 4. Natural Gas (Marketed Production) .............................................................................. 9 Section 5. Renewable Energy and Nuclear Energy ..................................................................... 13

378

Production reactor characteristics  

SciTech Connect

Reactors for the production of special nuclear materials share many similarities with commercial nuclear power plants. Each relies on nuclear fission, uses uranium fuel, and produces large quantities of thermal power. However, there are some important differences in production reactor characteristics that may best be discussed in terms of mission, role, and technology.

Thiessen, C.W.; Hootman, H.E.

1990-01-01T23:59:59.000Z

379

MTEACH: Didactic Multimedia Production  

Science Conference Proceedings (OSTI)

Multimedia production is generally considered to be an expensive task. This is true when dealing with complex graphics, animation, artistic effects, music and high quality video editing, but didactic applications do not require such advanced features. ... Keywords: Didactic, language-based multimedia production, automatic links generation, microneurosurgery

Pier Luca Montessoro; Stefano Caschi

1999-06-01T23:59:59.000Z

380

Jet production at HERA  

E-Print Network (OSTI)

Recent results from jet production in deep inelastic ep scattering to investigate parton dynamics at low x are reviewed. The results on jet production in deep inelastic scattering and photoproduction used to test perturbative QCD are discussed and the values of alphas(Mz) extracted from a QCD analysis of the data are presented

C. Glasman

2004-10-07T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

By-Products Utilization  

E-Print Network (OSTI)

Center for By-Products Utilization USE OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST OF CLASS F FLY ASH AND CLEAN-COAL ASH BLENDS FOR CAST CONCRETE PRODUCTS Authors: Tarun R. Naik, Director investigation. Two additional ash samples were prepared by blending these selected conventional and clean coal

Wisconsin-Milwaukee, University of

382

Tools and Products  

Science Conference Proceedings (OSTI)

A look at new products on the market, including the BOXX Technologies' Apexx 4 Super-Workstation and renderBOXX Classic 7500, Dimension 3D Printers from Tekpro Group, Micronas' VCT-Premium single-chip flat panel TV processors, Cyberware Head and Face ... Keywords: graphics tools, graphics products

Carl Machover; David J. Kasik

2007-11-01T23:59:59.000Z

383

Production of Recycled Lead  

Science Conference Proceedings (OSTI)

...production of lead from recycled and mined (primary) sources for 1980 to 1988. At present, just under half of the total world lead production of 4.3 million metric tons (4.7 million tons) comes from recycling of scrap materials. As indicated in Table 4, there has been very little change in recent...

384

Conditionally Exactly Solvable Potentials and Supersymmetric Transformations  

E-Print Network (OSTI)

A general procedure is presented to construct conditionally solvable (CES) potentials using the techniques of supersymmetric quantum mechanics.The method is illustrated with potentials related to the harmonic oscillator problem.Besides recovering known results,new CES potentials are also obtained within the framework of this general approach.The conditions under which this method leads to CES potentials are also discussed.

Geza Levai; Pinaki Roy

1999-09-01T23:59:59.000Z

385

Gulf Coast Distillate Production  

Gasoline and Diesel Fuel Update (EIA)

4 of 15 4 of 15 Notes: PADD 3 is a major source of supply for the East Coast. This graph shows how during the winter of 1997-1998 when distillate stocks were very high, production fell back. In contrast, we entered the winter of 1996-1997 with very low stocks, and refineries reached record production levels as they tried to build stocks late in the season. Notice that production is normally reduced in January as distillate stocks are used to meet demand and as refineries begin maintenance and turnovers, which continue into February. This January is no different. There is room for some production increases in January and February, if refineries postpone maintenance. But postponing maintenance and turnarounds can create problems when the gasoline production season begins in March and April.

386

Charm Production at RHIC  

E-Print Network (OSTI)

The latest results for open charm and $J/\\psi$ production in p-p, d-Au and Au-Au from the PHENIX and STAR experiments at $\\sqrt{s_{NN}}=200$ GeV at RHIC are presented. The preliminary data show open charm production follows binary scaling in d-Au and Au-Au collisions at RHIC. In d-Au collisions, a suppression in $J/\\psi$ production has been observed at the forward rapidity (d direction), at the backward rapidity (Au direction), $J/\\psi$ production seems strongly dependent on collisions centrality. The implications of heavy flavor production in cold (d-Au) and hot (Au-Au) nuclear media at RHIC are discussed.

Ming Xiong Liu

2004-05-28T23:59:59.000Z

387

Semiconductor Nanoclusters as Potential Photocatalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

High Power Electronics Based on the 2-Dimensional Electron Gas in GaN High Power Electronics Based on the 2-Dimensional Electron Gas in GaN Heterostructures by S. R. Kurtz, A. A. Allerman, and D. Koleski Motivation-GaN-based electronics offer miniaturization potential of radical proportions for microwave power amplifiers. GaN's large bandgap, high breakdown field, high electron velocity, and excellent thermal properties have led to high electron mobility transistors (HEMT) with up to 10x the power density of GaAs and other traditional semiconductors at frequencies up to 20 GHz. Further contributing to the outstanding performance of GaN-based amplifiers is the highly conducting, 2-dimensional electron gas (2DEG) used for the HEMT channel. Intrinsic polarization and piezoelectric properties of GaN materials can produce a 2DEG at an

388

Semiconductor Nanoclusters as Potential Photocatalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

0001 0001 Transport and Kinetic Processes in GaN Epitaxial Lateral Overgrowth M. E. Coltrin and C. C. Mitchell Motivation-GaN is a wide band gap semi- conductor with a broad range of potential appli- cations, e.g., high-temperature electronics, op- telectronics, chemical or biological sensors. GaN thin films usually have a high defect den- sity, leading to poor performance. Epitaxial Lat- eral Overgrowth (ELO) has been shown to greatly reduce defect densities, often by factors of 100 or more. We are conducting fundamental studies of GaN growth kinetics during ELO. Accomplishment-In ELO, a mask pattern of dielectric material is deposited on top of a GaN buffer layer. Further growth of GaN occurs se- lectively on exposed areas of the underlying buffer layer, and not on the dielectric material.

389

FCT Hydrogen Production: Hydrogen Production R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Production R&D Hydrogen Production R&D Activities to someone by E-mail Share FCT Hydrogen Production: Hydrogen Production R&D Activities on Facebook Tweet about FCT Hydrogen Production: Hydrogen Production R&D Activities on Twitter Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Google Bookmark FCT Hydrogen Production: Hydrogen Production R&D Activities on Delicious Rank FCT Hydrogen Production: Hydrogen Production R&D Activities on Digg Find More places to share FCT Hydrogen Production: Hydrogen Production R&D Activities on AddThis.com... Home Basics Current Technology R&D Activities Quick Links Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts

390

Potential small-scale development of western oil shale  

SciTech Connect

Several studies have been undertaken in an effort to determine ways to enhance development of western oil shale under current market conditions for energy resources. This study includes a review of the commercial potential of western oil shale products and byproducts, a review of retorting processes, an economic evaluation of a small-scale commercial operation, and a description of the environmental requirements of such an operation. Shale oil used as a blend in conventional asphalt appears to have the most potential for entering today's market. Based on present prices for conventional petroleum, other products from oil shale do not appear competitive at this time or will require considerable marketing to establish a position in the marketplace. Other uses for oil shale and spent shale, such as for sulfur sorbtion, power generation, cement, aggregate, and soil stabilization, are limited economically by transportation costs. The three-state area area consisting of Colorado, Utah, and Wyoming seems reasonable for the entry of shale oil-blended asphalt into the commercial market. From a review of retorting technologies and the product characteristics from various retorting processes it was determined that the direct heating Paraho and inclined fluidized-bed processes produce a high proportion of heavy material with a high nitrogen content. The two processes are complementary in that they are each best suited to processing different size ranges of materials. An economic evaluation of a 2000-b/d shale oil facility shows that the operation is potentially viable, if the price obtained for the shale oil residue is in the top range of prices projected for this product. Environmental requirements for building and operating an oil shale processing facility are concerned with permitting, control of emissions and discharges, and monitoring. 62 refs., 6 figs., 10 tabs.

Smith, V.; Renk, R.; Nordin, J.; Chatwin, T.; Harnsberger, M.; Fahy, L.J.; Cha, C.Y.; Smith, E.; Robertson, R.

1989-10-01T23:59:59.000Z

391

Evaluation of Coal Combustion Product Damage Cases  

Science Conference Proceedings (OSTI)

In 2007, the United States Environmental Protection Agency (USEPA) published an assessment that identified 67 coal combustion product (CCP) management with groundwater or surface water impacts that were categorized as proven or potential damage cases. This report provides further evaluation of these cases, including additional data obtained from power companies and public sources. Volume 1 provides an overview and summary of findings, and Volume 2 provides descriptions of individual cases.

2010-07-26T23:59:59.000Z

392

Evaluation of Coal Combustion Product Damage Cases  

Science Conference Proceedings (OSTI)

In 2007, the United States Environmental Protection Agency (USEPA) published an assessment that identified 67 coal combustion product (CCP) management facilities with groundwater or surface water impacts that were categorized as proven or potential damage cases. This report provides further evaluation of these cases, including additional data obtained from power companies and public sources. Volume 1 provides an overview and summary of findings, and Volume 2 provides descriptions of individual cases.

2010-09-03T23:59:59.000Z

393

Danby Products: Proposed Penalty (2011-CE-1503) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Danby Products: Proposed Penalty (2011-CE-1503) Danby Products: Proposed Penalty (2011-CE-1503) Danby Products: Proposed Penalty (2011-CE-1503) April 22, 2011 DOE alleged in a Notice of Proposed Civil Penalty that Danby Products, Inc., failed to certify room air conditioners as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Danby Products: Penalty Notice (2011-CE-1503) More Documents & Publications Danby Products: Order (2011-CE-1503) Sunpentown: Proposed Penalty (2011-CE-1504)

394

Danby Products: Proposed Penalty (2012-CE-1415) | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Danby Products: Proposed Penalty (2012-CE-1415) Danby Products: Proposed Penalty (2012-CE-1415) Danby Products: Proposed Penalty (2012-CE-1415) July 9, 2012 DOE alleged in a Notice of Proposed Civil Penalty that Danby Products, Inc. failed to certify refrigerators and freezers as compliant with the energy conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Danby Products: Penalty Notice (2012-CE-1415) More Documents & Publications Danby Products: Order (2012-CE-1415) Fagor America: Proposed Penalty (2013-CEW-19001)

395

Barclay Products: Proposed Penalty (2013-CW-3005) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Barclay Products: Proposed Penalty (2013-CW-3005) Barclay Products: Proposed Penalty (2013-CW-3005) Barclay Products: Proposed Penalty (2013-CW-3005) February 7, 2013 DOE alleged in a Notice of Proposed Civil Penalty that Barclay Products, Ltd. failed to certify a variety of water closets as compliant with the applicable water conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable water conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Barclay Products: Proposed Penalty (2013-CW-3005) More Documents & Publications Barclay Products: Order (2013-CW-3005) Fagor America: Proposed Penalty (2013-CEW-19001)

396

DOE Hydrogen Analysis Repository: Water Implications of Biofuels Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Implications of Biofuels Production Water Implications of Biofuels Production Project Summary Full Title: Water Implications of Biofuels Production in the United States Project ID: 227 Principal Investigator: William S. Logan Brief Description: The National Research Council conducted a workshop and wrote a report examining the potential effects of biofuels production in the U.S. on water and related land resources. Purpose Examine the possible effects of biofuel development on water and related land resources. The central questions are how water use and water quality are expected to change as the U.S. agricultural portfolio shifts to include more energy crops and as overall agricultural production potentially increases. Such questions are considered within the context of U.S. policy and also the expected advances in technology and agricultural practices

397

HDR reservoir flow impedance and potentials for impedance reduction  

DOE Green Energy (OSTI)

The data from flow tests which employed two different production zones in a well at Fenton Hill indicates the flow impedance of a wellbore zone damaged by rapid depressurization was altered, possibly by pressure spallation, which appears to have mechanically propped the joint apertures of outlet flow paths intersecting the altered wellbore. The rapid depressurization and subsequent flow test data derived from the damaged well has led to the hypothesis that pressure spallation and the resultant mechanical propping of outlet flow paths reduced the outlet flow impedance of the damaged wellbore. Furthermore, transient pressure data shows the largest pressure drop between the injection and production wellheads occurs near the production wellbore, so lowering the outlet impedance by increasing the apertures of outlet flow paths will have the greatest effect on reducing the overall reservoir impedance. Fenton Hill data also reveals that increasing the overall reservoir pressure dilates the apertures of flow paths, which likewise serves to reduce the reservoir impedance. Data suggests that either pressure dilating the wellbore connected joints with high production wellhead pressure, or mechanically propping open the outlet flow paths will increase the near-wellbore permeability. Finally, a new method for calculating and comparing near-wellbore outlet impedances has been developed. Further modeling, experimentation, and engineered reservoir modifications, such as pressure dilation and mechanical propping, hold considerable potential for significantly improving the productivity of HDR reservoirs.

DuTeau, R.; Brown, D.

1993-06-01T23:59:59.000Z

398

HDR reservoir flow impedance and potentials for impedance reduction  

DOE Green Energy (OSTI)

The data from flow tests which employed two different production zones in a well at Fenton Hill indicates the flow impedance of a wellbore zone damaged by rapid depressurization was altered, possibly by pressure spallation, which appears to have mechanically propped the joint apertures of outlet flow paths intersecting the altered wellbore. The rapid depressurization and subsequent flow test data derived from the damaged well has led to the hypothesis that pressure spallation and the resultant mechanical propping of outlet flow paths reduced the outlet flow impedance of the damaged wellbore. Furthermore, transient pressure data shows the largest pressure drop between the injection and production wellheads occurs near the production wellbore, so lowering the outlet impedance by increasing the apertures of outlet flow paths will have the greatest effect on reducing the overall reservoir impedance. Fenton Hill data also reveals that increasing the overall reservoir pressure dilates the apertures of flow paths, which likewise serves to reduce the reservoir impedance. Data suggests that either pressure dilating the wellbore connected joints with high production wellhead pressure, or mechanically propping open the outlet flow paths will increase the near-wellbore permeability. Finally, a new method for calculating and comparing near-wellbore outlet impedances has been developed. Further modeling, experimentation, and engineered reservoir modifications, such as pressure dilation and mechanical propping, hold considerable potential for significantly improving the productivity of HDR reservoirs.

DuTeau, R.; Brown, D.

1993-01-01T23:59:59.000Z

399

Potential energy savings from aquifer thermal energy storage  

DOE Green Energy (OSTI)

Pacific Northwest Laboratory researchers developed an aggregate-level model to estimate the short- and long-term potential energy savings from using aquifer thermal storage (ATES) in the United States. The objectives of this effort were to (1) develop a basis from which to recommend whether heat or chill ATES should receive future research focus and (2) determine which market sector (residential, commercial, or industrial) offers the largest potential energy savings from ATES. Information was collected on the proportion of US land area suitable for ATES applications. The economic feasibility of ATES applications was then evaluated. The potential energy savings from ATES applications was calculated. Characteristic energy use in the residential, commercial, and industrial sectors was examined, as was the relationship between waste heat production and consumption by industrial end-users. These analyses provided the basis for two main conclusions: heat ATES applications offer higher potential for energy savings than do chill ATES applications; and the industrial sector can achieve the highest potential energy savings for the large consumption markets. Based on these findings, it is recommended that future ATES research and development efforts be directed toward heat ATES applications in the industrial sector. 11 refs., 6 figs., 9 tabs.

Anderson, M.R.; Weijo, R.O.

1988-07-01T23:59:59.000Z

400

Coal combustion products (CCPs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

combustion products (CCPs) combustion products (CCPs) are solid materials produced when coal is burned to generate electricity. Since coal provides the largest segment of U.S. electricity generation (45 percent in 2010), finding a sustainable solution for CCPs is an important environmental challenge. When properly managed, CCPs offer society environmental and economic benefits without harm to public health and safety. Research supported by the U.S. Department of Energy's (DOE) Office of Fossil Energy (FE) has made an important contribution in this regard. Fossil Energy Research Benefits Coal Combustion Products Fossil Energy Research Benefits

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Monthly Biodiesel Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Biodiesel Production Monthly Biodiesel Production Report November 2013 With Data for September 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Monthly Biodiesel Production Report This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

402

India's Fertilizer Industry: Productivity and Energy Efficiency  

Science Conference Proceedings (OSTI)

Historical estimates of productivity growth in India's fertilizer sector vary from indicating an improvement to a decline in the sector's productivity. The variance may be traced to the time period of study, source of data for analysis, and type of indices and econometric specifications used for reporting productivity growth. Our analysis shows that in the twenty year period, 1973 to 1993, productivity in the fertilizer sector increased by 2.3% per annum. An econometric analysis reveals that technical progress in India's fertilizer sector has been biased towards the use of energy, while it has been capital and labor saving. The increase in productivity took place during the era of total control when a retention price system and distribution control was in effect. With liberalization of the fertilizer sector and reduction of subsidies productivity declined substantially since the early 1990s. Industrial policies and fiscal incentives still play a major role in the Indian fertilizer sect or. As substantial energy savings and carbon reduction potential exists, energy policies can help overcome barriers to the adoption of these measures in giving proper incentives and correcting distorted prices.

Schumacher, K.; Sathaye, J.

1999-07-01T23:59:59.000Z

403

Configuration and technology implications of potential nuclear hydrogen system applications.  

DOE Green Energy (OSTI)

Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

2005-11-05T23:59:59.000Z

404

Configuration and technology implications of potential nuclear hydrogen system applications.  

SciTech Connect

Nuclear technologies have important distinctions and potential advantages for large-scale generation of hydrogen for U.S. energy services. Nuclear hydrogen requires no imported fossil fuels, results in lower greenhouse-gas emissions and other pollutants, lends itself to large-scale production, and is sustainable. The technical uncertainties in nuclear hydrogen processes and the reactor technologies needed to enable these processes, as well waste, proliferation, and economic issues must be successfully addressed before nuclear energy can be a major contributor to the nation's energy future. In order to address technical issues in the time frame needed to provide optimized hydrogen production choices, the Nuclear Hydrogen Initiative (NHI) must examine a wide range of new technologies, make the best use of research funding, and make early decisions on which technology options to pursue. For these reasons, it is important that system integration studies be performed to help guide the decisions made in the NHI. In framing the scope of system integration analyses, there is a hierarchy of questions that should be addressed: What hydrogen markets will exist and what are their characteristics? Which markets are most consistent with nuclear hydrogen? What nuclear power and production process configurations are optimal? What requirements are placed on the nuclear hydrogen system? The intent of the NHI system studies is to gain a better understanding of nuclear power's potential role in a hydrogen economy and what hydrogen production technologies show the most promise. This work couples with system studies sponsored by DOE-EE and other agencies that provide a basis for evaluating and selecting future hydrogen production technologies. This assessment includes identifying commercial hydrogen applications and their requirements, comparing the characteristics of nuclear hydrogen systems to those market requirements, evaluating nuclear hydrogen configuration options within a given market, and identifying the key drivers and thresholds for market viability of nuclear hydrogen options.

Conzelmann, G.; Petri, M.; Forsberg, C.; Yildiz, B.; ORNL

2005-11-05T23:59:59.000Z

405

Production Systems and Processing Effect on Phytochemicals in Citrus Fruits and Their Analytical and Isolation Methods  

E-Print Network (OSTI)

The emerging scientific evidences on the role of food components in prevention of several chronic diseases are the momentum for shifting from a traditional focus on production to enhancement of nutritional quality. To further understand the role of these phytochemicals this dissertation describes the development of rapid analytical and isolation methods, and the effect of production systems and processing techniques on the levels of phytochemicals in citrus fruits. In the first study, a simultaneous high performance liquid chromatography (HPLC) method for the rapid analysis of amines and organic acids was developed. The simultaneous extraction and analysis of samples provides an economical method for analyzing a large number of samples. In the second study, rapid separation method of potent health beneficial phytochemicals such as polymethoxyflavones from citrus peels using flash chromatography was developed. Using the developed method, five polymethoxyflavones were separated and isolated with high purity in gram level quantity. In the third study, the levels of phytochemicals in organically and conventionally grown lemons and their storage at market simulated conditions were determined. Results suggest that organically produced citrus fruits have higher content of organic acids and flavonoids than conventionally produced. The fourth and fifth study determined the influence of household processing (blending, juicing, hand squeezing techniques) and emerging processing (high pressure processing [HPP], thermal processing) on the phytochemicals content of ‘Rio Red’ grapefruits. Fruits processed by blending had significantly higher levels of flavonoids, furocoumarins and limonin compared to juicing and hand squeezing, while HPP enabled in extending the shelf life of the processed juice without any adverse effects. Therefore, consuming grapefruit juice processed by blending may provide higher levels of health beneficial phytochemicals. The sixth study describes a rapid flash chromatography method for isolation of PMFs and furocoumarins from citrus industrial by products such as peel oil. In the seventh study the developed method was applied to isolate 10 different phytochemicals from an unexplored citrus species, Miaray mandarin (Citrus miaray TAN.). Among them, the 5,7,8,3',4' pentamethoxyflavone was isolated for the first time from the genus Citrus.

Uckoo, Ram 1980-

2012-12-01T23:59:59.000Z

406

Pollution prevention cost savings potential  

SciTech Connect

The waste generated by DOE facilities is a serious problem that significantly impacts current operations, increases future waste management costs, and creates future environmental liabilities. Pollution Prevention (P2) emphasizes source reduction through improved manufacturing and process control technologies. This concept must be incorporated into DOE`s overall operating philosophy and should be an integral part of Total Quality Management (TQM) program. P2 reduces the amount of waste generated, the cost of environmental compliance and future liabilities, waste treatment, and transportation and disposal costs. To be effective, P2 must contribute to the bottom fine in reducing the cost of work performed. P2 activities at LLNL include: researching and developing innovative manufacturing; evaluating new technologies, products, and chemistries; using alternative cleaning and sensor technologies; performing Pollution Prevention Opportunity Assessments (PPOAs); and developing outreach programs with small business. Examples of industrial outreach are: innovative electroplating operations, printed circuit board manufacturing, and painting operations. LLNL can provide the infrastructure and technical expertise to address a wide variety of industrial concerns.

Celeste, J.

1994-12-01T23:59:59.000Z

407

Energy potential of modern landfills  

DOE Green Energy (OSTI)

Methane produced by refuse decomposition in a sanitary landfill can be recovered for commercial use. Landfill methane is currently under-utilized, with commercial recovery at only a small percentage of US landfills. New federal regulations mandating control of landfill gas migration and atmospheric emissions are providing impetus to methane recovery schemes as a means of recovering costs for increased environmental control. The benefits of landfill methane recovery include utilization of an inexpensive renewable energy resource, removal of explosive gas mixtures from the subsurface, and mitigation of observed historic increases in atmospheric methane. Increased commercial interest in landfill methane recovery is dependent on the final form of Clean Air Act amendments pertaining to gaseous emissions from landfills; market shifts in natural gas prices; financial incentives for development of renewable energy resources; and support for applied research and development to develop techniques for increased control of the gas generation process in situ. This paper will discuss the controls on methane generation in landfills. In addition, it will address how landfill regulations affect landfill design and site management practices which, in turn, influence decomposition rates. Finally, future trends in landfilling, and their relationship to gas production, will be examined. 19 refs., 2 figs., 3 tabs.

Bogner, J.E.

1990-01-01T23:59:59.000Z

408

Synergistic Hydrogen Production in a Biorefinery via Bioelectrochemical Systems  

Science Conference Proceedings (OSTI)

Microbial electrolysis cells are devices that use biocatalysis and electrolysis for production of hydrogen from organic matter. Biorefinery process streams contain fermentation by products and inhibitors which accumulate in the process stream if the water is recycled. These molecules also affect biomass to biofuel yields if not removed from the recycle water. The presence of sugar- and lignin- degradation products such as furfural, vanillic acid and 4-hydroxybenzaldehyde has been shown to reduce fermentation yields. In this work, we calculate the potential for hydrogen production using microbial electrolysis cells from these molecules as substrates. Conversion of these substrates to electricity is demonstrated in microbial fuel cells and will also be presented.

Borole, A. P.; Hamilton, C. Y.; Schell, D. J.

2012-01-01T23:59:59.000Z

409

Energy Impacts of Productivity Improvements in Manufacturing  

E-Print Network (OSTI)

The complexity of industrial processes and the need to consider the interaction of various systems has led in many cases to the maturing of the “energy audit” in to a more sophisticated “industrial assessment.” The assessment team typically looks for potential improvements in energy use in concert with examination of waste streams and potential productivity improvements. The benefits of this new approach are substantial in particular with respect to productivity improvements. Such projects are much easier to interest management in than waste or pure energy ones. In many cases they may also require smaller capital investments as many of the projects involve changes in practices and procedures. In a large number of cases, the impact of productivity projects on energy use in the plant are ignored or underestimated. This is unfortunate as the appropriate tracking of energy impacts would lower implementation payback times and potentially lead to greenhouse gas reduction credits. This paper examines how energy impacts are currently tracked in productivity projects and suggests two techniques for dramatically improving the accuracy of these estimates. Experiences from the DOE Industrial Assessment Center program are used as well as data from the programs publicly available database. It is shown that in many of the recommended productivity improvements there is an associated absolute reduction in energy use. For example, it is common to recommend the elimination of steps in a process by improving quality control etc. Savings are tracked in terms of time and manpower, but the elimination of parts of the process normally results in a reduction in energy consumption. Often, this reduction is underreported. Also very common, however, is that case where a productivity recommendation leads to an increase of total energy use. For example better management of process equipment will lead to greater load factors. Handled incorrectly this can lead to a negative energy impact which could result in increased paybacks and misleading indications about energy efficiency. Analysis shows that even when there is an increase in energy use, the amount of energy per product unit goes down, making a process demonstrably more energy efficient. Arguments are presented why using an Energy Intensity Metric is critical in properly accounting for energy impact of productivity on plant energy use. We present a concept called Virtual Reduction in Operating Time and show how it can be used to improve accounting for energy impacts.

Mitrovic, B.; Muller, M. R.

2002-04-01T23:59:59.000Z

410

The potential of renewable energy  

DOE Green Energy (OSTI)

On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

Not Available

1990-03-01T23:59:59.000Z

411

JGI - Product Offerings  

NLE Websites -- All DOE Office Websites (Extended Search)

Product Offerings Product Offerings Scientific Program Product Brief Description Deliverables FY14 target cycle time (median), days FY14 target cycle time (75th %), days Fungal Minimal Draft Low coverage whole genome shotgun sequencing for evaluation. May turn into a standard draft or improved standard draft. Assembly. Annotation optional (JGI portal); raw data submitted to SRA 250 400 Fungal Resequencing SNP and short indel calls, rearrangement detection, population analysis. Text file of SNPs (incl location in genome, coding/vs non, syn vs non-syn aa change etc) and structural rearrangements, alignment files, tracks for upload to genome browser and fastq files; raw data submitted to SRA 140 200 Fungal Standard Draft Whole genome shotgun sequencing. Exact scope items and quality of finished product depend on genome. Selected genomes will be improved based on feasibility and scientific merit. Assembly, annotation (JGI Portal + Genbank); raw data submitted to SRA 250 400

412

Net Primary Production  

NLE Websites -- All DOE Office Websites (Extended Search)

8 study sites, plus a worldwide data set, have been added to the global terrestrial Net Primary Production (NPP) reference database. The NPP database has been compiled by Dick...

413

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction Collection 5 The MODIS data from the Terra and Aqua satellites are being reprocessed using revised algorithms beginning in September 2006. This new set of MODIS Products is called Collection 5. To view the product changes that took place in going from Collection 4 to Collection 5, please visit the following Web site: http://landweb.nascom.nasa.gov/cgi-bin/QA_WWW/newPage.cgi?fileName=MODLAND_C005_changes The ORNL DAAC provides subsets of the Collection 5 MODIS Land Products. Investigators from around the world have shown a great deal of interest in this activity, asking that over 1000 field and flux tower sites be included in Collection 5 subsetting (up from 280 sites for Collection 4 MODIS subsetting). Availability of the Collection 5 Data Products

414

production | OpenEI  

Open Energy Info (EERE)

production production Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 1, and contains only the reference case. The dataset uses quadrillion BTUs, and quantifies the energy prices using U.S. dollars. The data is broken down into total production, imports, exports, consumption, and prices for energy types. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO consumption EIA export import production reference case total energy Data application/vnd.ms-excel icon AEO2011: Total Energy Supply, Disposition, and Price Summary - Reference Case (xls, 112.8 KiB) Quality Metrics Level of Review Peer Reviewed

415

MODIS Land Products Subsets  

NLE Websites -- All DOE Office Websites (Extended Search)

Data for Selected Field Sites (n=1147) Data for Selected Field Sites (n=1147) Obtain MODIS data for areas centered on selected field sites or flux towers from around the world. The goal of the MODIS Subsets for Selected Field Sites is to prepare summaries of selected MODIS Land Products for the community to use for validation of models and remote sensing products and to characterize field sites. Search for data: By Site from a Map Server from Google Earth (Install Google Earth) From FTP site (ASCII) Methods Data products were first subsetted from one or more 1200x1200-km MODIS tiles to 25 x 25-km arrays by the MODIS Science Data Support Team (MODAPS). These products were further subsetted (7x7) and reformatted from their native HDF-EOS to ASCII using version 2.2 of the MODIS Reprojection Tool (MRT) in combination with code developed at the ORNL DAAC.

416

Domestic Uranium Production Report  

Annual Energy Outlook 2012 (EIA)

6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

417

Offshore Development and Production  

Reports and Publications (EIA)

Natural gas production in the Federal offshore has increased substantially in recent years, gaining more than400 billion cubic feet between 1993 and 1997 to a level of 5.14 trillion cubic feet.

Information Center

1999-04-01T23:59:59.000Z

418

Natural Gas Production,  

Gasoline and Diesel Fuel Update (EIA)

Natural Gas Production, Transmission, and Consumption by State, 1996 (Million Cubic Feet) Table Alabama ... 530,841 5,361 -35,808 -163,227 0 921 18 325,542...

419

Coal production: 1980  

Science Conference Proceedings (OSTI)

US coal production and related data are reported for the year 1980, with similar data for 1979 given for comparison. The data here collected on Form EIA-7A, coal production report, from 3969 US mines that produced, processed, or prepared 10,000 or more short tons of coal in 1980. Among the items covered are production, prices, employment, productivity, stocks, and recoverable reserves. Data are reported by state, county, coal producing district, type of mining, and by type of coal (anthracite, bituminous, subbituminous, and lignite). Also included are a glossary of coal terms used, a map of the coal producing disricts, and form EIA-7A with instructions. 14 figures, 63 tables.

Not Available

1982-05-01T23:59:59.000Z

420

Particle Data Group - Products  

NLE Websites -- All DOE Office Websites (Extended Search)

One Cyclotron Road Berkeley, CA 94720-8166 USA In Europe, Africa, Middle East, India, Pakistan, Russia and all other countries: Via Email: pdg-products@cern.ch Via postal mail:...

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Propane Production by Source  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: So where do we get our supplies of propane? Well, propane comes from both gas plants and refineries. Here we see data through May which shows that production at both gas...

422

Radioactivity in consumer products  

SciTech Connect

Papers presented at the conference dealt with regulations and standards; general and biological risks; radioluminous materials; mining, agricultural, and construction materials containing radioactivity; and various products containing radioactive sources.

Moghissi, A.A.; Paras, P.; Carter, M.W.; Barker, R.F. (eds.)

1978-08-01T23:59:59.000Z

423

EIA Drilling Productivity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Drilling Productivity Report Drilling Productivity Report For Center on Global Energy Policy, Columbia University October 29, 2013 | New York, NY By Adam Sieminski, Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources Adam Sieminski, EIA Drilling Productivity Report October 29, 2013 2 0 5 10 15 20 25 30 35 2000 2002 2004 2006 2008 2010 2012 Rest of US Marcellus (PA and WV) Haynesville (LA and TX) Eagle Ford (TX) Bakken (ND) Woodford (OK) Fayetteville (AR) Barnett (TX) Antrim (MI, IN, and OH) 0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 2000 2002 2004 2006 2008 2010 2012 Eagle Ford (TX) Bakken (MT & ND) Granite Wash (OK & TX) Bonespring (TX Permian) Wolfcamp (TX Permian) Spraberry (TX Permian) Niobrara-Codell (CO) Woodford (OK)

424

PRODUCTION OF TRITIUM  

DOE Patents (OSTI)

This invention relates to a process for the production of tritium by subjecting comminuted solid lithium fluoride containing the lithium isotope of atomic mass number 6 to neutron radiation in a self-sustaining neutronic reactor. The lithium fiuoride is heated to above 450 deg C. in an evacuated vacuum-tight container during radiation. Gaseous radiation products are withdrawn and passed through a palladium barrier to recover tritium. (AEC)

Jenks, G.H.; Shapiro, E.M.; Elliott, N.; Cannon, C.V.

1963-02-26T23:59:59.000Z

425

Ethanol production from lignocellulose  

DOE Patents (OSTI)

This invention presents a method of improving enzymatic degradation of lignocellulose, as in the production of ethanol from lignocellulosic material, through the use of ultrasonic treatment. The invention shows that ultrasonic treatment reduces cellulase requirements by 1/3 to 1/2. With the cost of enzymes being a major problem in the cost-effective production of ethanol from lignocellulosic material, this invention presents a significant improvement over presently available methods.

Ingram, Lonnie O. (Gainesville, FL); Wood, Brent E. (Gainesville, FL)

2001-01-01T23:59:59.000Z

426

Particle production at HERA  

E-Print Network (OSTI)

H1 has measured a number of different known particles and compared their production to QCD models and to other reactions such as N-N collisions. ZEUS has also measured the production of K0SK0S pairs with a view to searching for glueballs. Several resonances are seen which are glueball candidates. The results on the masses and widths are compared to other experiments.

Changyi Zhou

2009-05-30T23:59:59.000Z

427

Grid-based Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Grid-based Production Grid-based Production Grid-based Production PDSF is a Tier 2 site for ALICE and as such has the infrastructure in place to run automated grid-based ALICE production jobs. The main components of this infrastructure are listed below. Grid-Enabled Storage Elements There are currently a set of 10 servers running XRootD with a total capacity of 720TB. Included in XRootD are the data transfer tools used to transfer the input and output files for the production jobs running at PDSF. In addition to the 10 servers there is also the XRootD redirector which is currently running on pc1801.nersc.gov (pdsf5.nersc.gov). VO Box A VO (Virtual Organization) box is a dedicated node (palicevo1.nersc.gov) that coordinates the production. It runs the grid-monitoring tool MonALISA, the AliEn grid framework software, a Condor-G client and does job

428

Energy potential of municipal solid waste is limited  

SciTech Connect

Energy recovery from municipal solid waste has the potential for making only a limited contribution to the nation`s overall energy production. Although the current contribution of waste-derived energy production is less than one-half of 1 percent of the nation`s total energy Supply, DOE has set a goal for energy from waste at 2 percent of the total supply by 2010. The industry`s estimates show a smaller role for waste as an energy source in the future. The energy potential from waste is limited not only by the volume and energy content of the waste itself, but also by the factors affecting the use of waste disposal options, including public opposition and the availability of financing. Energy production from waste combustors and from landfill gases generates pollutants, although these are reduced through current regulations that require the use of emissions control technology and define operational criteria for the facilities. Although DOE estimates that one-third of the energy available from waste is available in the form of energy savings through the recycling of materials, the Department`s research in this area is ongoing.

NONE

1994-09-01T23:59:59.000Z

429

NETL: EPAct Projects: Characterization of Potential Sites for Near Miscible  

NLE Websites -- All DOE Office Websites (Extended Search)

Characterization of Potential Sites for Near Miscible CO2 Applications to Improve Oil Recovery in Arbuckle Reservoirs Characterization of Potential Sites for Near Miscible CO2 Applications to Improve Oil Recovery in Arbuckle Reservoirs 09123-18 Primary Performer University of Kansas Center for Research, Inc. Additional Participants Tertiary Oil Recovery Project, University of Kansas Kansas Geological Survey Carmen Schmitt, Inc. Abstract Arbuckle reservoirs have significant potential in Kansas for Improved Oil Recovery (IOR). The Arbuckle has produced an estimated 2.2 billion barrels of oil representing 35% of the 6.1 billion barrels of oil of total Kansas oil production. Because of the characteristic production history, Arbuckle reservoirs have been viewed as fracture-controlled karstic reservoirs with strong pressure support from either a bottom water or edge water aquifer. A common practice of operation in Arbuckle reservoirs is to drill the well into the top of the zone with relative shallow penetration (under 10 feet) and complete open hole. No waterflooding application has been reported in these reservoirs in the published resources.

430

Potential impacts of nanotechnology on energy transmission applications and needs.  

SciTech Connect

The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

Elcock, D.; Environmental Science Division

2007-11-30T23:59:59.000Z

431

Potential for energy conservation in the glass industry  

SciTech Connect

While the glass industry (flat glass, container glass, pressed and blown glass, and insulation fiber glass) has reduced its specific energy use (Btu/ton) by almost 30% since 1972, significant potential for further reduction still remains. State-of-the-art technologies are available which could lead to incremental improvements in glass industry energy productivity; however, these technologies must compete for capital with projects undertaken for other reasons (e.g., capacity expansion, equipment rebuild, labor cost reduction, product quality improvement, or compliance with environmental, health or safety regulations). Narrowing profit margins in the large tonnage segments of the glass industry in recent years and the fact that energy costs represent less than 25% of the value added in glass manufacture have combined to impede the widespread adoption of many state-of-the-art conservation technologies. Savings in energy costs alone have not provided the incentive to justify the capital expenditures required to realize the energy savings. Beyond implementation of state-of-the-art technologies, significant potential energy savings could accrue from advanced technologies which represent a radical departure from current glass making technology. Long-term research and development (R and D) programs, which address the technical and economic barriers associated with advanced, energy-conserving technologies, offer the opportunity to realize this energy-saving potential.

Garrett-Price, B.A.; Fassbender, A.G.; Bruno, G.A.

1986-06-01T23:59:59.000Z

432

Low Cost Hydrogen Production Platform  

DOE Green Energy (OSTI)

A technology and design evaluation was carried out for the development of a turnkey hydrogen production system in the range of 2.4 - 12 kg/h of hydrogen. The design is based on existing SMR technology and existing chemical processes and technologies to meet the design objectives. Consequently, the system design consists of a steam methane reformer, PSA system for hydrogen purification, natural gas compression, steam generation and all components and heat exchangers required for the production of hydrogen. The focus of the program is on packaging, system integration and an overall step change in the cost of capital required for the production of hydrogen at small scale. To assist in this effort, subcontractors were brought in to evaluate the design concepts and to assist in meeting the overall goals of the program. Praxair supplied the overall system and process design and the subcontractors were used to evaluate the components and system from a manufacturing and overall design optimization viewpoint. Design for manufacturing and assembly (DFMA) techniques, computer models and laboratory/full-scale testing of components were utilized to optimize the design during all phases of the design development. Early in the program evaluation, a review of existing Praxair hydrogen facilities showed that over 50% of the installed cost of a SMR based hydrogen plant is associated with the high temperature components (reformer, shift, steam generation, and various high temperature heat exchange). The main effort of the initial phase of the program was to develop an integrated high temperature component for these related functions. Initially, six independent concepts were developed and the processes were modeled to determine overall feasibility. The six concepts were eventually narrowed down to the highest potential concept. A US patent was awarded in February 2009 for the Praxair integrated high temperature component design. A risk analysis of the high temperature component was conducted to identify any potential design deficiency related to the concept. The analysis showed that no fundamental design flaw existed with the concept, but additional simulations and prototypes would be required to verify the design prior to fabricating a production unit. These identified risks were addressed in detail during Phase II of the development program. Along with the models of the high temperature components, a detailed process and 3D design model of the remainder of system, including PSA, compression, controls, water treatment and instrumentation was developed and evaluated. Also, in Phase II of the program, laboratory/fullscale testing of the high temperature components was completed and stable operation/control of the system was verified. The overall design specifications and test results were then used to develop accurate hydrogen costs for the optimized system. Praxair continued development and testing of the system beyond the Phase II funding provided by the DOE through the end of 2008. This additional testing is not documented in this report, but did provide significant additional data for development of a prototype system as detailed in the Phase III proposal. The estimated hydrogen product costs were developed (2007 basis) for the 4.8 kg/h system at production rates of 1, 5, 10, 100 and 1,000 units built per year. With the low cost SMR approach, the product hydrogen costs for the 4.8 kg/h units at 50 units produced per year were approximately $3.02 per kg. With increasing the volume production to 1,000 units per year, the hydrogen costs are reduced by about 12% to $2.67 per kg. The cost reduction of only 12% is a result of significant design and fabrication efficiencies being realized in all levels of production runs through utilizing the DFMA principles. A simplified and easily manufactured design does not require large production volumes to show significant cost benefits. These costs represent a significant improvement and a new benchmark in the cost to produce small volume on-site hydrogen using existing process technologies. The cost mo

Timothy M. Aaron, Jerome T. Jankowiak

2009-10-16T23:59:59.000Z

433

Redirection of metabolism for hydrogen production  

SciTech Connect

This project is to develop and apply techniques in metabolic engineering to improve the biocatalytic potential of the bacterium Rhodopseudomonas palustris for nitrogenase-catalyzed hydrogen gas production. R. palustris, is an ideal platform to develop as a biocatalyst for hydrogen gas production because it is an extremely versatile microbe that produces copious amounts of hydrogen by drawing on abundant natural resources of sunlight and biomass. Anoxygenic photosynthetic bacteria, such as R. palustris, generate hydrogen and ammonia during a process known as biological nitrogen fixation. This reaction is catalyzed by the enzyme nitrogenase and normally consumes nitrogen gas, ATP and electrons. The applied use of nitrogenase for hydrogen production is attractive because hydrogen is an obligatory product of this enzyme and is formed as the only product when nitrogen gas is not supplied. Our challenge is to understand the systems biology of R. palustris sufficiently well to be able to engineer cells to produce hydrogen continuously, as fast as possible and with as high a conversion efficiency as possible of light and electron donating substrates. For many experiments we started with a strain of R. palustris that produces hydrogen constitutively under all growth conditions. We then identified metabolic pathways and enzymes important for removal of electrons from electron-donating organic compounds and for their delivery to nitrogenase in whole R. palustris cells. For this we developed and applied improved techniques in 13C metabolic flux analysis. We identified reactions that are important for generating electrons for nitrogenase and that are yield-limiting for hydrogen production. We then increased hydrogen production by blocking alternative electron-utilizing metabolic pathways by mutagenesis. In addition we found that use of non-growing cells as biocatalysts for hydrogen gas production is an attractive option, because cells divert all resources away from growth and to hydrogen. Also R. palustris cells remain viable in a non-growing state for long periods of time.

Harwood, Caroline S.

2011-11-28T23:59:59.000Z

434

An Integrative Modeling Framework to Evaluate the Productivity and Sustainability of Biofuel Crop Production Systems  

Science Conference Proceedings (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially-explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: 1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, 2) the biophysical and biogeochemical model EPIC (Environmental Policy Integrated Climate) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and 3) an evolutionary multi-objective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a 9-county Regional Intensive Modeling Area (RIMA) in SW Michigan to 1) simulate biofuel crop production, 2) compare impacts of management practices and local ecosystem settings, and 3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, Xuesong; Izaurralde, Roberto C.; Manowitz, David H.; West, T. O.; Post, W. M.; Thomson, Allison M.; Bandaru, V. P.; Nichols, J.; Williams, J.R.

2010-09-08T23:59:59.000Z

435

An integrative modeling framework to evaluate the productivity and sustainability of biofuel crop production systems  

Science Conference Proceedings (OSTI)

The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)-based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially-explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade-offs between biofuel energy production and unintended ecosystem-service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine-county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem-service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal-land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.

Zhang, X [University of Maryland; Izaurralde, R. C. [University of Maryland; Manowitz, D. [University of Maryland; West, T. O. [University of Maryland; Thomson, A. M. [University of Maryland; Post, Wilfred M [ORNL; Bandaru, Vara Prasad [ORNL; Nichols, Jeff [ORNL; Williams, J. [AgriLIFE, Temple, TX

2010-10-01T23:59:59.000Z

436

Potential Vorticity in a Moist Atmosphere  

Science Conference Proceedings (OSTI)

The potential vorticity principle for a nonhydrostatic, moist, precipitating atmosphere is derived. An appropriate generalization of the well-known (dry) Ertel potential vorticity is found to be P = ??1(2? + × u)?·???, where ? is the total ...

Wayne H. Schubert; Scott A. Hausman; Matthew Garcia; Katsuyuki V. Ooyama; Hung-Chi Kuo

2001-11-01T23:59:59.000Z

437

An Alternative Form for Potential Vorticity  

Science Conference Proceedings (OSTI)

A form of potential vorticity is described that has conservation properties similar to those of Ertel's potential vorticity (EPV) but removes the exponential variation with height displayed by EPV. This form is thus more suitable for inspecting ...

Leslie R. Lait

1994-06-01T23:59:59.000Z

438

Tracers and Potential Vorticities in Ocean Dynamics  

Science Conference Proceedings (OSTI)

The Ertel potential vorticity theorem for stratified viscous fluids in a rotating system is analyzed herein. A set of “tracers,” that is, materially conserved scalar quantities, and the corresponding Ertel potential vorticities are used to obtain ...

Michael V. Kurgansky; Giorgio Budillon; Ettore Salusti

2002-12-01T23:59:59.000Z

439

Available Potential Energy for MODE Eddies  

Science Conference Proceedings (OSTI)

Available, potential energy (APE) is defined as the difference between total potential plus internal energy of a fluid in a gravity field and a corresponding reference field in which the fluid is redistributed (leveled) adiabatically to have ...

N. A. Bray; N. P. Fofonoff

1981-01-01T23:59:59.000Z

440

Potential Vorticity Anomalies Associated with Squall Lines  

Science Conference Proceedings (OSTI)

This study involves observations and model simulations of potential vorticity anomalies in the wake of midlatitude squall lines. Using data from the Oklahoma–Kansas PRE-STORM experiment, we analyze potential vorticity fields near two squall lines—...

Rolf F. A. Hertenstein; Wayne H. Schubert

1991-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Potential Vorticity Distribution in the North Pacific  

Science Conference Proceedings (OSTI)

Vertical sections and maps of potential vorticity ??1f??/?z for the North Pacific are presented. On shallow isopycnals, high potential vorticity is found in the tropics, subpolar gyre, and along the eastern boundary of the subtropical gyre, all ...

Lynne D. Talley

1988-01-01T23:59:59.000Z

442

ARM - PI Product - Raman lidar/AERI PBL Height Product  

NLE Websites -- All DOE Office Websites (Extended Search)

ProductsRaman lidarAERI PBL Height Product Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Raman lidarAERI PBL...

443

Modelling Carbon with Transferable Empirical Potentials  

Science Conference Proceedings (OSTI)

Complexities associated with hybridization and anisotropy meant that transferable potentials for carbon were slow to emerge, lagging decades behind similar ...

444

Potential for Biofuels from Algae (Presentation)  

DOE Green Energy (OSTI)

Presentation on the potential for biofuels from algae presented at the 2007 Algae Biomass Summit in San Francisco, CA.

Pienkos, P. T.

2007-11-15T23:59:59.000Z

445

Process for chemical reaction of amino acids and amides yielding selective conversion products  

DOE Patents (OSTI)

The invention relates to processes for converting amino acids and amides to desirable conversion products including pyrrolidines, pyrrolidinones, and other N-substituted products. L-glutamic acid and L-pyroglutamic acid provide general reaction pathways to numerous and valuable selective conversion products with varied potential industrial uses.

Holladay, Jonathan E. (Kennewick, WA)

2006-05-23T23:59:59.000Z

446

Technical and Economic Evaluation of Macroalgae Cultivation for Fuel Production (Draft)  

DOE Green Energy (OSTI)

The potential of macroalgae as sources of renewable liquid and gaseous fuels is evaluated. A series of options for production of macroalgae feedstock is considered. Because of their high carbohydrate content, the fuel products for which macroalgae are most suitable are methane and ethanol. Fuel product costs were compared with projected fuel costs in the year 1995.

Feinberg, D. A.; Hock, S. M.

1985-04-01T23:59:59.000Z

447

Visualizing Motion in Potential Wells* Pratibha Jolly  

E-Print Network (OSTI)

1 Visualizing Motion in Potential Wells* Pratibha Jolly Department of Physics, University of Delhi well potential diagrams using either the velocity data and assuming conservation of energy or the force wells on the one hand and establishing the relationship between the operative forces and the potential

Zollman, Dean

448

Before Getting There: Potential and Actual Collaboration  

Science Conference Proceedings (OSTI)

In this paper we introduce the concepts of Actual and Potential Collaboration Spaces. The former applies to the space where collaborative activities are performed, while the second relates to the initial space where opportunities for collaboration are ... Keywords: Doc2U, PIŃAS, casual and informal interactions, potential and actual collaboration spaces, potential collaboration awareness

Alberto L. Morán; Jesús Favela; Ana María Martínez Enríquez; Dominique Decouchant

2002-09-01T23:59:59.000Z

449

On the design of potential collaboration spaces  

Science Conference Proceedings (OSTI)

In this paper, we introduce the concepts of Potential and Actual Collaboration Spaces. The former applies to the initial space where opportunities for collaboration are identified and an initial interaction is established, while the latter relates to ... Keywords: Doc2U, casual and informal interactions, potential collaboration awareness, potential collaboration spaces

Alberto L. Moran; Jesus Favela; Ana M. Martinez Enriquez; Dominique Decouchant

2004-05-01T23:59:59.000Z

450

Microbiological Production of Surfactant from Agricultural Residuals for IOR Application  

SciTech Connect

Utilization of surfactants for improved oil recovery (IOR) is an accepted technique with high potential. However, technology application is frequently limited by cost. Biosurfactants (surface-active molecules produced by microorganisms) are not widely utilized in the petroleum industry due to high production costs associated with use of expensive substrates and inefficient product recovery methods. The economics of biosurfactant production could be significantly impacted through use of media optimization and application of inexpensive carbon substrates such as agricultural process residuals. Utilization of biosurfactants produced from agricultural residuals may 1) result in an economic advantage for surfactant production and technology application, and 2) convert a substantial agricultural waste stream to a value-added product for IOR. A biosurfactant with high potential for use is surfactin, a lipopeptide biosurfactant, produced by Bacillus subtilis. Reported here is the production and potential IOR utilization of surfactin produced by Bacillus subtilis (American Type Culture Collection (ATCC) 21332) from starch-based media. Production of surfactants from microbiological growth media based on simple sugars, chemically pure starch medium, simulated liquid and solid potato-process effluent media, a commercially prepared potato starch in mineral salts, and process effluent from a potato processor is discussed. Additionally, the effect of chemical and physical pretreatments on starchy feedstocks is discussed.

Bala, Greg Alan; Bruhn, Debby Fox; Fox, Sandra Lynn; Noah, Karl Scott; Thompson, David Neal

2002-04-01T23:59:59.000Z

451

Anaerobic Digestion of Corn Ethanol Thin Stillage for Biogas Production in Batch and By Downflow Fixed Film Reactor .  

E-Print Network (OSTI)

??Anaerobic digestion (AD) of corn thin stillage (CTS) offers the potential to reduce corn grain ethanol production energy consumption. This thesis focuses on results collected… (more)

Wilkinson, Andrea

2011-01-01T23:59:59.000Z

452

Mississippi State Biodiesel Production Project  

SciTech Connect

Biodiesel is a renewable fuel conventionally generated from vegetable oils and animal fats that conforms to ASTM D6751. Depending on the free fatty acid content of the feedstock, biodiesel is produced via transesterification, esterification, or a combination of these processes. Currently the cost of the feedstock accounts for more than 80% of biodiesel production cost. The main goal of this project was to evaluate and develop non-conventional feedstocks and novel processes for producing biodiesel. One of the most novel and promising feedstocks evaluated involves the use of readily available microorganisms as a lipid source. Municipal wastewater treatment facilities (MWWTF) in the USA produce (dry basis) of microbial sludge annually. This sludge is composed of a variety of organisms, which consume organic matter in wastewater. The content of phospholipids in these cells have been estimated at 24% to 25% of dry mass. Since phospholipids can be transesterified they could serve as a ready source of biodiesel. Examination of the various transesterification methods shows that in situ conversion of lipids to FAMEs provides the highest overall yield of biodiesel. If one assumes a 7.0% overall yield of FAMEs from dry sewage sludge on a weight basis, the cost per gallon of extracted lipid would be $3.11. Since the lipid is converted to FAMEs, also known as biodiesel, in the in Situ extraction process, the product can be used as is for renewable fuel. As transesterification efficiency increases the cost per gallon drops quickly, hitting $2.01 at 15.0% overall yield. An overall yield of 10.0% is required to obtain biodiesel at $2.50 per gallon, allowing it to compete with soybean oil in the marketplace. Twelve plant species with potential for oil production were tested at Mississippi State, MS. Of the species tested, canola, rapeseed and birdseed rape appear to have potential in Mississippi as winter annual crops because of yield. Two perennial crops were investigated, Chinese tallow tree and tung tree. High seed yields from these species are possible because, there stature allows for a third dimension in yield (up). Harvest regimes have already been worked out with tung, and the large seed makes shedding of the seed with tree shakers possible. While tallow tree seed yields can be mind boggling (12,000 kg seed/ha at 40% oil), genotypes that shed seed easily are currently not known. Efficient methods were developed to isolate polyunsaturated fatty acid methyl esters from bio-diesel. The hypothesis to isolate this class of fatty acids, which are used as popular dietary supplements and prescription medicine (OMACOR), was that they bind transition metal ions much stronger than their harmful saturated analogs. AgBF4 has the highest extraction ability among all the metal ions tested. Glycerol is a key product from the production of biodiesel. It is produced during the transesterification process by cleaving the fatty acids from the glycerol backbone (the fatty acids are used as part of the biodiesel, which is a fatty acid methyl ester). Glycerol is a non-toxic compound with many uses; however, if a surplus exists in the future, more uses for the produced glycerol needs to be found. Another phase of the project was to find an add-on process to the biodiesel production process that will convert the glycerol by-product into more valuable substances for end uses other than food or cosmetics, focusing at present on 1,3-propanediol and lactic acid.All three MSU cultures produced products at concentrations below that of the benchmark microorganisms. There was one notable isolate the caught the eye of the investigators and that was culture J6 due to the ability of this microorganism to co-produce both products and one in particularly high concentrations. This culture with more understanding of its metabolic pathways could prove a useful biological agent for the conversion of glycerol. Heterogeneous catalysis was examined as an alternative to overcome the disadvantages of homogeneous transesterification, such as the presence of salts in the glycer

Rafael Hernandez; Todd French; Sandun Fernando; Tingyu Li; Dwane Braasch; Juan Silva; Brian Baldwin

2008-03-20T23:59:59.000Z

453

Utah Percent of Historical Oil Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Utah Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

454

Ohio Percent of Historical Gas Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Ohio Percent of Historical Gas Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

455

TOYOTA PRODUCTION SYSTEMTOYOTA PRODUCTION SYSTEM ( TPS ) 1930( TPS ) 1930s  

E-Print Network (OSTI)

Why Leany #12;// ? ? ?? ?? #12;#12;TOYOTA PRODUCTION SYSTEMTOYOTA PRODUCTION SYSTEM. 80 : (Standard Work- CPG) 2 Toyota2. Toyota // waste value 3. (time, human effort

Laksanacharoen, Sathaporn

456

Ohio Percent of Historical Oil Well Production (BOE) by Production ...  

U.S. Energy Information Administration (EIA)

Ohio Percent of Historical Oil Well Production (BOE) by Production Rate Bracket. Energy Information Administration (U.S. Dept. of Energy)

457

Technology's Impact on Production  

SciTech Connect

As part of a cooperative agreement with the United States Department of Energy (DOE) - entitled Technology's Impact on Production: Developing Environmental Solutions at the State and National Level - the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: (1) Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. (2) Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. (3) Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies - Regulating Change, is the result of research performed for Tasks 2 and 3.

Rachel Amann; Ellis Deweese; Deborah Shipman

2009-06-30T23:59:59.000Z

458

Technology's Impact on Production  

Science Conference Proceedings (OSTI)

As part of a cooperative agreement with the United States Department of Energy (DOE) ?? entitled Technology’s Impact on Production: Developing Environmental Solutions at the State and National Level ? ? the Interstate Oil and Gas Compact Commission (IOGCC) has been tasked with assisting state governments in the effective, efficient, and environmentally sound regulation of the exploration and production of natural gas and crude oil, specifically in relation to orphaned and abandoned wells and wells nearing the end of productive life. Project goals include: Developing (a) a model framework for prioritization and ranking of orphaned or abandoned well sites; (b) a model framework for disbursement of Energy Policy Act of 2005 funding; and (c) a research study regarding the current status of orphaned wells in the nation. Researching the impact of new technologies on environmental protection from a regulatory perspective. Research will identify and document (a) state reactions to changing technology and knowledge; (b) how those reactions support state environmental conservation and public health; and (c) the impact of those reactions on oil and natural gas production. Assessing emergent technology issues associated with wells nearing the end of productive life. Including: (a) location of orphaned and abandoned well sites; (b) well site remediation; (c) plugging materials; (d) plug placement; (e) the current regulatory environment; and (f) the identification of emergent technologies affecting end of life wells. New Energy Technologies ??Regulating Change, is the result of research performed for Tasks 2 and 3.

Amann, Rachel; Deweese, Ellis; Shipman, Deborah

2009-06-30T23:59:59.000Z

459

Survey and evaluation of current and potential coal beneficiation processes  

SciTech Connect

Coal beneficiation is a generic term used for processes that prepare run-of-mine coal for specific end uses. It is also referred to as coal preparation or coal cleaning and is a means of reducing the sulfur and the ash contents of coal. Information is presented regarding current and potential coal beneficiation processes. Several of the processes reviewed, though not yet commercial, are at various stages of experimental development. Process descriptions are provided for these processes commensurate with the extent of information and time available to perform the evaluation of these processes. Conceptual process designs, preliminary cost estimates, and economic evaluations are provided for the more advanced (from a process development hierarchy viewpoint) processes based on production levels of 1500 and 15,000 tons/day (maf) of cleaned product coal. Economic evaluations of the coal preparation plants are conducted for several project financing schemes and at 12 and 15% annual after-tax rates of return on equity capital. A 9% annual interest rate is used on the debt fraction of the plant capital. Cleaned product coal prices are determined using the discounted cash flow procedure. The study is intended to provide information on publicly known coal beneficiation processes and to indicate the relative costs of various coal beneficiation processes. Because of severe timeconstraints, several potential coal beneficiation processes are not evaluated in great detail. It is recommended that an additional study be conducted to complement this study and to more fully appreciate the potentially significant role of coal beneficiation in the clean burning of coal.

Singh, S. P.N.; Peterson, G. R.

1979-03-01T23:59:59.000Z

460

Potential of the heat pipe in coal gasification processes  

SciTech Connect

The declining production of natural gas in the United States has provided great impetus to the development of economcal methods of producing methane from coal. Coal gasification systems share in common a need for highly efficient heat transfer and energy recovery methods in order to maximize the coal-methane conversion efficiency. Characteristics of heat pipe heat transfer units that offer potential for increasing conversion efficiency and/or reducing production costs include: (1) complete physical separation of process streams, (2) capability of handling more than two process streams in a single unit, (3) heat removal at near-constant temperature, (4) high heat recovery efficiency, (5) low operating cost-with no requirement for auxiliary power, and (6) relative ease of cleaning. Design concepts incorporating heat pipes into indirect coal gasification units, methanators, and energy recovery units are presented and technological impediments that must be surmounted in the successful development of these units are discussed.

Ranken, W.A.

1976-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unexplored potentially productive" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Design of product development systems  

E-Print Network (OSTI)

The development of successful new products in less time and using fewer resources is key to the financial success of most consumer product companies. In this thesis we have studied the development of new products and how ...

Aguirre Granados, Adrian

2008-01-01T23:59:59.000Z

462

Assessing geothermal energy potential in upstate New York. Final report  

DOE Green Energy (OSTI)

The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

Hodge, D.S. [SUNY, Buffalo, NY (United States)

1996-08-01T23:59:59.000Z

463

MTBE Production Economics  

Gasoline and Diesel Fuel Update (EIA)

MTBE Production MTBE Production Economics Tancred C. M. Lidderdale Contents 1. Summary 2. MTBE Production Costs 3. Relationship between price of MTBE and Reformulated Gasoline 4. Influence of Natural Gas Prices on the Gasoline Market 5. Regression Results 6. Data Sources 7. End Notes 1. Summary Last year the price of MTBE (methyl tertiary butyl ether) increased dramatically on two occasions (Figure 1) (see Data Sources at end of article.): 1. Between April and June 2000, the price (U.S. Gulf Coast waterborne market) of MTBE rose from $1.00 per gallon to over $1.60 per gallon. This represented an increase in the price premium for MTBE over the wholesale price of conventional gasoline from its normal (1995 though 2000 average) $0.26 per gallon to $0.60 per gallon. The MTBE

464

NREL: Learning - Hydrogen Production  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Production The simplest and most common element, hydrogen is all around us, but always as a compound with other elements. To make it usable in fuel cells or otherwise provide energy, we must expend energy or modify another energy source to extract it from the fossil fuel, biomass, water, or other compound in which it is found. Nearly all hydrogen production in the United States today is by steam reformation of natural gas. This, however, releases carbon dioxide in the process and trades one relatively clean fuel for another, with associated energy loss, so it does little to meet national energy needs. Hydrogen can also be produced by electrolysis-passing an electrical current through water to break it into hydrogen and oxygen-but electrolysis is inefficient and is only as clean

465

Classifying forest productivity at different scales  

DOE Green Energy (OSTI)

Spatial scale is an important consideration when evaluating, using, or constructing forest productivity classifications. First, the factors which dominate spatial variability in forest productivity are scale dependent. For example, within a stand, spatial variability in productivity is dominated by microsite differences; within a national forest such as the Cherokee National Forest, spatial variability is dominated by topography and land-use history (e.g., years since harvest); within a large region such as the southeast, spatial variability is dominated by climatic patterns. Second, classifications developed at different spatial scales are often used for different purposes. For example, stand-level classifications are often keys or rules used in the field to judge the quality or potential of a site. National-forest classifications are often presented as maps or tables and may be used in forest land planning. Regional classifications may be maps or tables and may be used to quantify or predict resource availability. These scale-related differences in controlling factors and purposes will affect both the methods and the data used to develop classifications. In this paper, I will illustrate these points by describing and comparing three forest productivity classifications, each developed for a specific purpose at a specific scale. My objective is not to argue for or against any of these particular classifications but rather to heighten awareness of the critical role that spatial scale plays in the use and development of forest productivity classifications. 8 refs., 2 figs., 1 tab.

Graham, R.L.

1991-01-01T23:59:59.000Z

466

Thermo Products: Proposed Penalty (2011-SE-1603) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermo Products: Proposed Penalty (2011-SE-1603) Thermo Products: Proposed Penalty (2011-SE-1603) Thermo Products: Proposed Penalty (2011-SE-1603) September 28, 2011 DOE issued this Notice of Proposed Civil Penalty Notice to Thermo Products, LLC, alleging that the company certified several models of residential air conditioning heat pumps without performing testing required by DOE regulations. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable energy conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. Thermo Products: Proposed Penalty (2011-SE-1603) More Documents & Publications

467

Altmans Products: NPCP (2011-CW-1402) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Altmans Products: NPCP (2011-CW-1402) Altmans Products: NPCP (2011-CW-1402) Altmans Products: NPCP (2011-CW-1402) Jan. 25, 2010 DOE alleged in a Notice of Proposed Civil Penalty that Altmans Products LLC failed to certify showerheads as compliant with the applicable water conservation standards. DOE regulations require a manufacturer (which includes importers) to submit reports certifying that its products have been tested and meet the applicable water conservation standards. This civil penalty notice advises the company of the potential penalties and DOE's administrative process, including the company's right to a hearing. 2011-CW-1402_Altmans_Products_NPCP More Documents & Publications Westland Sales: Proposed Penalty (2010-CE-03/0411) Daewoo: Proposed Penalty (2010-CE-0410) Innovative Concept Appliances: Proposed Penalty (2010-CE-03/0415)

468

Green roofs: potential at LANL  

SciTech Connect

Green roofs, roof systems that support vegetation, are rapidly becoming one of the most popular sustainable methods to combat urban environmental problems in North America. An extensive list of literature has been published in the past three decades recording the ecological benefits of green roofs; and now those benefits have been measured in enumerated data as a means to analyze the costs and returns of green roof technology. Most recently several studies have made substantial progress quantifying the monetary savings associated with storm water mitigation, the lessoning of the Urban Heat Island, and reduction of building cooling demands due to the implementation of green roof systems. Like any natural vegetation, a green roof is capable of absorbing the precipitation that falls on it. This capability has shown to significantly decrease the amount of storm water runoff produced by buildings as well as slow the rate at which runoff is dispensed. As a result of this reduction in volume and velocity, storm drains and sewage systems are relieved of any excess stress they might experience in a storm. For many municipalities and private building owners, any increase in storm water mitigation can result in major tax incentives and revenue that does not have to be spent on extra water treatments. Along with absorption of water, vegetation on green roofs is also capable of transpiration, the process by which moisture is evaporated into the air to cool ambient temperatures. This natural process aims to minimize the Urban Heat Island Effect, a phenomenon brought on by the dark and paved surfaces that increases air temperatures in urban cores. As the sun distributes solar radiation over a city's area, dark surfaces such as bitumen rooftops absorb solar rays and their heat. That heat is later released during the evening hours and the ambient temperatures do not cool as they normally would, creating an island of constant heat. Such excessively high temperatures induce heat strokes, heat exhaustion, and pollution that can agitate the respiratory system. The most significant savings associated with green roofs is in the reduction of cooling demands due to the green roof's thermal mass and their insulating properties. Unlike a conventional roof system, a green roof does not absorb solar radiation and transfer that heat into the interior of a building. Instead the vegetation acts as a shade barrier and stabilizes the roof temperature so that interior temperatures remain comfortable for the occupants. Consequently there is less of a demand for air conditioning, and thus less money spent on energy. At LANL the potential of green roof systems has already been realized with the construction of the accessible green roof on the Otowi building. To further explore the possibilities and prospective benefits of green roofs though, the initial capital costs must be invested. Three buildings, TA-03-1698, TA-03-0502, and TA-53-0031 have all been identified as sound candidates for a green roof retrofit project. It is recommended that LANL proceed with further analysis of these projects and implementation of the green roofs. Furthe