National Library of Energy BETA

Sample records for unexpected heat wave

  1. An Unexpected Heat Wave | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Unexpected Heat Wave Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: Email Us More Information » 02.01.13 An Unexpected Heat Wave Observation of wavelike heat conduction

  2. Circulating heat exchangers for oscillating wave engines and...

    Office of Scientific and Technical Information (OSTI)

    heat exchangers for oscillating wave engines and refrigerators Title: Circulating heat exchangers for oscillating wave engines and refrigerators An oscillating-wave engine or ...

  3. Characterization of Heat-Wave Propagation through Laser-Driven...

    Office of Scientific and Technical Information (OSTI)

    Characterization of Heat-Wave Propagation through Laser-Driven Ti-Doped Underdense Plasma Citation Details In-Document Search Title: Characterization of Heat-Wave Propagation...

  4. Supersonic Heat Wave Propagation in Laser-Produced Underdense...

    Office of Scientific and Technical Information (OSTI)

    Conference: Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation Citation Details In-Document Search Title: Supersonic Heat Wave...

  5. Supersonic Heat Wave Propagation in Laser-Produced Underdense...

    Office of Scientific and Technical Information (OSTI)

    Supersonic Heat Wave Propagation in Laser-Produced Underdense Plasma for Efficient X-Ray Generation Citation Details In-Document Search Title: Supersonic Heat Wave Propagation in...

  6. Full wave simulations of fast wave heating losses in the scrape...

    Office of Scientific and Technical Information (OSTI)

    Full wave simulations of fast wave heating losses in the scrape-off layer of NSTX and NSTX-U Citation Details In-Document Search Title: Full wave simulations of fast wave heating...

  7. HEATING AND CURRENT DRIVE IN NSTX WITH ELECTRON BERNSTEIN WAVES AND HIGH HARMONIC FAST WAVES

    SciTech Connect (OSTI)

    Ram, Abhay K

    2010-06-14

    A suitable theoretical and computational framework for studying heating and current drive by electron Bernstein waves in the National Spherical Torus Experiment has been developed. This framework can also be used to study heating and current drive by electron Bernstein waves in spherical tori and other magnetic confinement devices. It is also useful in studying the propagation and damping of electron cyclotron waves in the International Thermonuclear Experimental Reactor

  8. A STUDY OF ALFVN WAVE PROPAGATION AND HEATING THE CHROMOSPHERE

    SciTech Connect (OSTI)

    Tu, Jiannan; Song, Paul

    2013-11-01

    Alfvn wave propagation, reflection, and heating of the chromosphere are studied for a one-dimensional solar atmosphere by self-consistently solving plasma, neutral fluid, and Maxwell's equations with incorporation of the Hall effect and strong electron-neutral, electron-ion, and ion-neutral collisions. We have developed a numerical model based on an implicit backward difference formula of second-order accuracy both in time and space to solve stiff governing equations resulting from strong inter-species collisions. A non-reflecting boundary condition is applied to the top boundary so that the wave reflection within the simulation domain can be unambiguously determined. It is shown that due to the density gradient the Alfvn waves are partially reflected throughout the chromosphere and more strongly at higher altitudes with the strongest reflection at the transition region. The waves are damped in the lower chromosphere dominantly through Joule dissipation, producing heating strong enough to balance the radiative loss for the quiet chromosphere without invoking anomalous processes or turbulences. The heating rates are larger for weaker background magnetic fields below ?500 km with higher-frequency waves subject to heavier damping. There is an upper cutoff frequency, depending on the background magnetic field, above which the waves are completely damped. At the frequencies below which the waves are not strongly damped, the interaction of reflected waves with the upward propagating waves produces power at their double frequencies, which leads to more damping. The wave energy flux transmitted to the corona is one order of magnitude smaller than that of the driving source.

  9. Alfvn wave solar model (AWSoM): Coronal heating

    SciTech Connect (OSTI)

    Van der Holst, B.; Sokolov, I. V.; Meng, X.; Jin, M.; Manchester, W. B. IV; Tth, G.; Gombosi, T. I.

    2014-02-20

    We present a new version of the Alfvn wave solar model, a global model from the upper chromosphere to the corona and the heliosphere. The coronal heating and solar wind acceleration are addressed with low-frequency Alfvn wave turbulence. The injection of Alfvn wave energy at the inner boundary is such that the Poynting flux is proportional to the magnetic field strength. The three-dimensional magnetic field topology is simulated using data from photospheric magnetic field measurements. This model does not impose open-closed magnetic field boundaries; those develop self-consistently. The physics include the following. (1) The model employs three different temperatures, namely the isotropic electron temperature and the parallel and perpendicular ion temperatures. The firehose, mirror, and ion-cyclotron instabilities due to the developing ion temperature anisotropy are accounted for. (2) The Alfvn waves are partially reflected by the Alfvn speed gradient and the vorticity along the field lines. The resulting counter-propagating waves are responsible for the nonlinear turbulent cascade. The balanced turbulence due to uncorrelated waves near the apex of the closed field lines and the resulting elevated temperatures are addressed. (3) To apportion the wave dissipation to the three temperatures, we employ the results of the theories of linear wave damping and nonlinear stochastic heating. (4) We have incorporated the collisional and collisionless electron heat conduction. We compare the simulated multi-wavelength extreme ultraviolet images of CR2107 with the observations from STEREO/EUVI and the Solar Dynamics Observatory/AIA instruments. We demonstrate that the reflection due to strong magnetic fields in the proximity of active regions sufficiently intensifies the dissipation and observable emission.

  10. Wave

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Summer 2001 Heat Wave This summer has proved to be downright hot in the Southern Great ... Not only is a summer heat wave uncomfortable, but it can also be ARM Facilities Newsletter ...

  11. Resonance in fast-wave amplitude in the periphery of cylindrical plasmas and application to edge losses of wave heating power in tokamaks

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perkins, R. J.; Hosea, J. C.; Bertelli, N.; Taylor, G.; Wilson, J. R.

    2016-07-01

    Heating magnetically confined plasmas using waves in the ion-cyclotron range of frequencies typically requires coupling these waves over a steep density gradient. Furthermore, this process has produced an unexpected and deleterious phenomenon on the National Spherical Torus eXperiment (NSTX): a prompt loss of wave power along magnetic field lines in front of the antenna to the divertor. Understanding this loss may be key to achieving effective heating and expanding the operational space of NSTX-Upgrade. Here, we propose that a new type of mode, which conducts a significant fraction of the total wave power in the low-density peripheral plasma, is drivingmore » these losses. We demonstrate the existence of such modes, which are distinct from surface modes and coaxial modes, in a cylindrical cold-plasma model when a half wavelength structure fits into the region outside the core plasma. The latter condition generalizes the previous hypothesis regarding the occurence of the edge losses and may explain why full-wave simulations predict these losses in some cases but not others. If valid, this condition implies that outer gap control is a potential strategy for mitigating the losses in NSTX-Upgrade in addition to raising the magnetic field or influencing the edge density.« less

  12. Circulating heat exchangers for oscillating wave engines and refrigerators

    DOE Patents [OSTI]

    Swift, Gregory W.; Backhaus, Scott N.

    2003-10-28

    An oscillating-wave engine or refrigerator having a regenerator or a stack in which oscillating flow of a working gas occurs in a direction defined by an axis of a trunk of the engine or refrigerator, incorporates an improved heat exchanger. First and second connections branch from the trunk at locations along the axis in selected proximity to one end of the regenerator or stack, where the trunk extends in two directions from the locations of the connections. A circulating heat exchanger loop is connected to the first and second connections. At least one fluidic diode within the circulating heat exchanger loop produces a superimposed steady flow component and oscillating flow component of the working gas within the circulating heat exchanger loop. A local process fluid is in thermal contact with an outside portion of the circulating heat exchanger loop.

  13. Bulk ion heating with ICRF waves in tokamaks

    SciTech Connect (OSTI)

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.; Kappatou, A.; McDermott, R. M.; Odstrčil, T.; Tardini, G.; Bernert, M.; Dux, R.; Maraschek, M.; Noterdaeme, J.-M.; Ryter, F.; Stober, J.; Nocente, M.; Hellsten, T.; Mantica, P.; Tardocchi, M.; Nielsen, S. K.; Rasmussen, J.; Stejner, M.; and others

    2015-12-10

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER and DEMO operation. This is of particular importance for the bulk ion heating capabilities of ICRF waves. Efficient bulk ion heating with the standard ITER ICRF scheme, i.e. the second harmonic heating of tritium with or without {sup 3}He minority, was demonstrated in experiments carried out in deuterium-tritium plasmas on JET and TFTR and is confirmed by ICRF modelling. This paper focuses on recent experiments with {sup 3}He minority heating for bulk ion heating on the ASDEX Upgrade (AUG) tokamak with ITER-relevant all-tungsten PFCs. An increase of 80% in the central ion temperature T{sub i} from 3 to 5.5 keV was achieved when 3 MW of ICRF power tuned to the central {sup 3}He ion cyclotron resonance was added to 4.5 MW of deuterium NBI. The radial gradient of the T{sub i} profile reached locally values up to about 50 keV/m and the normalized logarithmic ion temperature gradients R/LT{sub i} of about 20, which are unusually large for AUG plasmas. The large changes in the T{sub i} profiles were accompanied by significant changes in measured plasma toroidal rotation, plasma impurity profiles and MHD activity, which indicate concomitant changes in plasma properties with the application of ICRF waves. When the {sup 3}He concentration was increased above the optimum range for bulk ion heating, a weaker peaking of the ion temperature profile was observed, in line with theoretical expectations.

  14. Evidence for wave heating of the quiet-sun corona

    SciTech Connect (OSTI)

    Hahn, M.; Savin, D. W.

    2014-11-10

    We have measured the energy and dissipation of Alfvénic waves in the quiet Sun. A magnetic field model was used to infer the location and orientation of the magnetic field lines along which the waves are expected to travel. The waves were measured using spectral lines to infer the wave amplitude. The waves cause a non-thermal broadening of the spectral lines, which can be expressed as a non-thermal velocity v {sub nt}. By combining the spectroscopic measurements with this magnetic field model, we were able to trace the variation of v {sub nt} along the magnetic field. At each footpoint of the quiet-Sun loops, we find that waves inject an energy flux in the range of 1.3-5.5 × 10{sup 5} erg cm{sup –2} s{sup –1}. At the minimum of this range, this amounts to more than 80% of the energy needed to heat the quiet Sun. We also find that these waves are dissipated over a region centered on the top of the loops. The position along the loop where the damping begins is strongly correlated with the length of the loop, implying that the damping mechanism depends on the global loop properties rather than on local collisional dissipation.

  15. HEATING THE SOLAR ATMOSPHERE BY THE SELF-ENHANCED THERMAL WAVES CAUSED BY THE DYNAMO PROCESSES

    SciTech Connect (OSTI)

    Dumin, Yurii V. E-mail: dumin@izmiran.ru

    2012-05-20

    We discuss a possible mechanism for heating the solar atmosphere by the ensemble of thermal waves, generated by the photospheric dynamo and propagating upward with increasing magnitudes. These waves are self-sustained and amplified due to the specific dependence of the efficiency of heat release by Ohmic dissipation on the ratio of the collisional to gyrofrequencies, which in its turn is determined by the temperature profile formed in the wave. In the case of sufficiently strong driving, such a mechanism can increase the plasma temperature by a few times, i.e., it may be responsible for heating the chromosphere and the base of the transition region.

  16. Twenty years after '95: What climate change means for heat waves...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Twenty years after '95: What climate change means for heat waves, cities and forecasting ... "In the last few years, there's been a big push to get instruments into urban areas." ...

  17. Whistler mode waves and the electron heat flux in the solar wind: cluster observations

    SciTech Connect (OSTI)

    Lacombe, C.; Alexandrova, O.; Cornilleau-Wehrlin, N.; Mangeney, A.; De Conchy, Y.; Maksimovic, M.; Matteini, L.; Santolík, O.

    2014-11-20

    The nature of the magnetic field fluctuations in the solar wind between the ion and electron scales is still under debate. Using the Cluster/STAFF instrument, we make a survey of the power spectral density and of the polarization of these fluctuations at frequencies f in [1, 400] Hz, during five years (2001-2005), when Cluster was in the free solar wind. In ∼10% of the selected data, we observe narrowband, right-handed, circularly polarized fluctuations, with wave vectors quasi-parallel to the mean magnetic field, superimposed on the spectrum of the permanent background turbulence. We interpret these coherent fluctuations as whistler mode waves. The lifetime of these waves varies between a few seconds and several hours. Here, we present, for the first time, an analysis of long-lived whistler waves, i.e., lasting more than five minutes. We find several necessary (but not sufficient) conditions for the observation of whistler waves, mainly a low level of background turbulence, a slow wind, a relatively large electron heat flux, and a low electron collision frequency. When the electron parallel beta factor β {sub e∥} is larger than 3, the whistler waves are seen along the heat flux threshold of the whistler heat flux instability. The presence of such whistler waves confirms that the whistler heat flux instability contributes to the regulation of the solar wind heat flux, at least for β {sub e∥} ≥ 3, in slow wind at 1 AU.

  18. EIA - Sorry! Unexpected Error

    U.S. Energy Information Administration (EIA) Indexed Site

    Cold Fusion Error Unexpected Error Sorry An error was encountered. This error could be due to scheduled maintenance. Information about the error has been routed to the appropriate...

  19. EIA - Sorry! Unexpected Error

    Gasoline and Diesel Fuel Update (EIA)

    Cold Fusion Error Unexpected Error Sorry An error was encountered. This error could be due to scheduled maintenance. Information about the error has been routed to the appropriate ...

  20. Heat wave contributes to higher summer electricity demand in the Northeast

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat wave contributes to higher summer electricity demand in the Northeast In its new energy forecast, the U.S. Energy Information Administration expects summer retail electricity prices in the Northeast to be 2.7 percent higher than last summer...mainly due to rising costs for the fuels used to generate electricity. Many households ran their air conditioners more than usual last month to try to beat the East Coast heat wave. While customers in New England are expected to use 1 percent more

  1. Collisionless inter-species energy transfer and turbulent heating in drift wave turbulence

    SciTech Connect (OSTI)

    Zhao, L.; Diamond, P. H.

    2012-08-15

    We reconsider the classic problems of calculating 'turbulent heating' and collisionless inter-species transfer of energy in drift wave turbulence. These issues are of interest for low collisionality, electron heated plasmas, such as ITER, where collisionless energy transfer from electrons to ions is likely to be significant. From the wave Poynting theorem at steady state, a volume integral over an annulus r{sub 1}heating as {integral}{sub r{sub 1}} {sup r{sub 2}} dr=-S{sub r}|{sub r{sub 1}{sup r{sub 2}}}{ne}0. Here S{sub r} is the wave energy density flux in the radial direction. Thus, a wave energy flux differential across an annular region indeed gives rise to a net heating, in contrast to previous predictions. This heating is related to the Reynolds work by the zonal flow, since S{sub r} is directly linked to the zonal flow drive. In addition to net heating, there is inter-species heat transfer. For collisionless electron drift waves, the total turbulent energy source for collisionless heat transfer is due to quasilinear electron cooling. Subsequent quasilinear ion heating occurs through linear ion Landau damping. In addition, perpendicular heating via ion polarization currents contributes to ion heating. Since at steady state, Reynolds work of the turbulence on the zonal flow must balance zonal flow frictional damping ({approx}{nu}{sub ii}{sup 2}{approx}|(e{phi}(tilde sign)/T)|{sup 4}), it is no surprise that zonal flow friction appears as an important channel for ion heating. This process of energy transfer via zonal flow has not previously been accounted for in analyses of energy transfer. As an application, we compare the rate of turbulent energy transfer in a low collisionality plasma with the rate of the energy transfer by collisions. The result shows that the collisionless turbulent energy transfer is a significant energy coupling process for ITER plasma.

  2. Air Leaks in Unexpected Places | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Leaks in Unexpected Places Air Leaks in Unexpected Places February 3, 2015 - 9:58am Addthis Sealing air leaks will help to decrease heating and cooling costs and make your home more comfortable. | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory Sealing air leaks will help to decrease heating and cooling costs and make your home more comfortable. | Photo courtesy of Dennis Schroeder, National Renewable Energy Laboratory Elizabeth Spencer Communicator, National

  3. Self-Consistent Full-Wave/Fokker-Planck Calculations for Ion Cyclotron Heating in Non-Maxwellian Plasmas

    SciTech Connect (OSTI)

    Jaeger, E.F.; Berry, L.A.; Batchelor, D.B.; Carter, M.D.; D'Azevedo, E.; Harvey, R.W.; Myra, J.R.; D'Ippolito, D.A.; Dumont, R.J.; Smithe, D.N.; Bonoli, P.T.; Wright, J.C.

    2005-09-26

    Self-consistent solutions for the wave electric field and particle distribution function are calculated for ion cyclotron heating in non-Maxwellian plasmas. The all-orders wave solver AORSA is generalized to treat non-thermal velocity distributions arising from fusion reactions, neutral beam injection, and wave driven diffusion in velocity space. Quasi-linear diffusion coefficients are derived directly from the wave electric fields and used to calculate velocity distribution functions with the CQL3D Fokker-Planck code. Self-consistent results are obtained by iterating the full-wave and Fokker-Planck solutions.

  4. Co-counter asymmetry in fast wave heating and current drive and profile control in NSTX

    SciTech Connect (OSTI)

    Jaeger, E.F.; Carter, M.D.; Berry, L.A.; Batchelor, D.B.; Ryan, P.M.; Forest, C.B.; Weitzner, H.; Majeski, R.

    1997-08-01

    In this paper, full-wave ICRF coupling models are applied to understand the difference in plasma response when antenna arrays are phased to drive currents co and counter to the plasma current. The source of this difference lies in the natural up-down asymmetry of the antenna`s radiated power spectrum caused by Hall currents. When a poloidal field is applied, this up-down asymmetry acquires a toroidal component. The result is that plasma absorption (i.e., antenna loading) is shifted or skewed toward the co-current drive direction, independent of the direction of the magnetic field. When waves are launched to drive current counter to the plasma current, electron heating and current profiles are more peaked on axis, and this peaking becomes more pronounced at lower toroidal magnetic fields.

  5. Understanding ion cyclotron harmonic fast wave heating losses in the scrape off layer of tokamak plasmas

    SciTech Connect (OSTI)

    Bertelli, N; Jaeger, E F; Hosea, J C; Phillips, C K; Berry, L; Bonoli, P T; Gerhardt, S P; Green, D; LeBlanc, B; Perkins, R J; Ryan, P M; Taylor, G; Valeo, E J; Wilso, J R; Wright, J C

    2014-07-01

    Fast waves at harmonics of the ion cyclotron frequency, which have been used successfully on National Spherical Torus Experiment (NSTX), will also play an important role in ITER and are a promising candidate for the Fusion Nuclear Science Facility (FNSF) designs based on spherical torus (ST). Experimental studies of high harmonic fast waves (HHFW) heating on the NSTX have demonstrated that substantial HHFW power loss occurs along the open field lines in the scrape-off layer (SOL), but the mechanism behind the loss is not yet understood. The full wave RF code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain, is applied to specific NSTX discharges in order to predict the effects and possible causes of this power loss. In the studies discussed here, a collisional damping parameter has been implemented in AORSA as a proxy to represent the real, and most likely nonlinear, damping processes. A prediction for the NSTX Upgrade (NSTX-U) experiment, that will begin operation next year, is also presented, indicating a favorable condition for the experiment due to a wider evanescent region in edge density.*Research supported by the U.S. DOE under Contract No. DE-AC02-09CH11466 with Princeton University.

  6. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    SciTech Connect (OSTI)

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; Phillips, C. K.; Berry, L.; Bonoli, P. T.; Gerhardt, S. P.; Green, D.; LeBlanc, B.; Perkins, R. J.; Qin, C. M.; Pinsker, R. I.; Prater, R.; Ryan, P. M.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Wright, J. C.; Zhang, X. J.

    2015-12-17

    Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSA results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.

  7. Full wave simulations of fast wave efficiency and power losses in the scrape-off layer of tokamak plasmas in mid/high harmonic and minority heating regimes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bertelli, N.; Jaeger, E. F.; Hosea, J. C.; Phillips, C. K.; Berry, L.; Bonoli, P. T.; Gerhardt, S. P.; Green, D.; LeBlanc, B.; Perkins, R. J.; et al

    2015-12-17

    Here, several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves (HHFW), have found strong interaction between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 2D and 3D AORSAmore » results for the National Spherical Torus eXperiment (NSTX) have shown a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is removed from in front of the antenna by increasing the edge density. Here, full wave simulations have been extended for 'conventional' tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results in HHFW regime show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for C-Mod and EAST, which operate in the minority heating regime.« less

  8. New insights into the decay of ion waves to turbulence, ion heating, and soliton generation

    SciTech Connect (OSTI)

    Chapman, T. Banks, J. W.; Berger, R. L.; Cohen, B. I.; Williams, E. A.; Brunner, S.

    2014-04-15

    The decay of a single-frequency, propagating ion acoustic wave (IAW) via two-ion wave decay to a continuum of IAW modes is found to result in a highly turbulent plasma, ion soliton production, and rapid ion heating. Instability growth rates, thresholds, and sensitivities to plasma conditions are studied via fully kinetic Vlasov simulations. The decay rate of IAWs is found to scale linearly with the fundamental IAW potential amplitude ϕ{sub 1} for ZT{sub e}/T{sub i}≲20, beyond which the instability is shown to scale with a higher power of ϕ{sub 1}, where Z is the ion charge number and T{sub e} (T{sub i}) is the electron (ion) thermal temperature. The threshold for instability is found to be smaller by an order of magnitude than linear theory estimates. Achieving a better understanding of the saturation of stimulated Brillouin scatter levels observed in laser-plasma interaction experiments is part of the motivation for this study.

  9. ION HEATING IN INHOMOGENEOUS EXPANDING SOLAR WIND PLASMA: THE ROLE OF PARALLEL AND OBLIQUE ION-CYCLOTRON WAVES

    SciTech Connect (OSTI)

    Ozak, N.; Ofman, L.; Viñas, A.-F.

    2015-01-20

    Remote sensing observations of coronal holes show that heavy ions are hotter than protons and their temperature is anisotropic. In-situ observations of fast solar wind streams provide direct evidence for turbulent Alfvén wave spectrum, left-hand polarized ion-cyclotron waves, and He{sup ++} - proton drift in the solar wind plasma, which can produce temperature anisotropies by resonant absorption and perpendicular heating of the ions. Furthermore, the solar wind is expected to be inhomogeneous on decreasing scales approaching the Sun. We study the heating of solar wind ions in inhomogeneous plasma with a 2.5D hybrid code. We include the expansion of the solar wind in an inhomogeneous plasma background, combined with the effects of a turbulent wave spectrum of Alfvénic fluctuations and initial ion-proton drifts. We study the influence of these effects on the perpendicular ion heating and cooling and on the spectrum of the magnetic fluctuations in the inhomogeneous background wind. We find that inhomogeneities in the plasma lead to enhanced heating compared to the homogenous solar wind, and the generation of significant power of oblique waves in the solar wind plasma. The cooling effect due to the expansion is not significant for super-Alfvénic drifts, and is diminished further when we include an inhomogeneous background density. We reproduce the ion temperature anisotropy seen in observations and previous models, which is present regardless of the perpendicular cooling due to solar wind expansion. We conclude that small scale inhomogeneities in the inner heliosphere can significantly affect resonant wave ion heating.

  10. Continuous-wave radar to detect defects within heat exchangers and steam generator tubes.

    SciTech Connect (OSTI)

    Nassersharif, Bahram (New Mexico State University, Las Cruces, NM); Caffey, Thurlow Washburn Howell; Jedlicka, Russell P.; Garcia, Gabe V. (New Mexico State University, Las Cruces, NM); Rochau, Gary Eugene

    2003-01-01

    A major cause of failures in heat exchangers and steam generators in nuclear power plants is degradation of the tubes within them. The tube failure is often caused by the development of cracks that begin on the outer surface of the tube and propagate both inwards and laterally. A new technique was researched for detection of defects using a continuous-wave radar method within metal tubing. The experimental program resulted in a completed product development schedule and the design of an experimental apparatus for studying handling of the probe and data acquisition. These tests were completed as far as the prototypical probe performance allowed. The prototype probe design did not have sufficient sensitivity to detect a defect signal using the defined radar technique and did not allow successful completion of all of the project milestones. The best results from the prototype probe could not detect a tube defect using the radar principle. Though a more precision probe may be possible, the cost of design and construction was beyond the scope of the project. This report describes the probe development and the status of the design at the termination of the project.

  11. Effect of the scrape-off layer in AORSA full wave simulations of fast wave minority, mid/high harmonic, and helicon heating regimes

    SciTech Connect (OSTI)

    Bertelli, N. Gerhardt, S.; Hosea, J. C.; LeBlanc, B.; Perkins, R. J.; Phillips, C. K.; Taylor, G.; Valeo, E. J.; Wilson, J. R.; Jaeger, E. F.; Lau, C.; Blazevski, D.; Green, D. L.; Berry, L.; Ryan, P. M.; Bonoli, P. T.; Wright, J. C.; Pinsker, R. I.; Prater, R.; Qin, C. M.; and others

    2015-12-10

    Several experiments on different machines and in different fast wave (FW) heating regimes, such as hydrogen minority heating and high harmonic fast waves, have found strong interactions between radio-frequency (RF) waves and the scrape-off layer (SOL) region. This paper examines the propagation and the power loss in the SOL by using the full wave code AORSA, in which the edge plasma beyond the last closed flux surface (LCFS) is included in the solution domain and a collisional damping parameter is used as a proxy to represent the real, and most likely nonlinear, damping processes. 3D AORSA results for the National Spherical Torus eXperiment (NSTX), where a full antenna spectrum is reconstructed, are shown, confirming the same behavior found for a single toroidal mode results in Bertelli et al, Nucl. Fusion, 54 083004, 2014, namely, a strong transition to higher SOL power losses (driven by the RF field) when the FW cut-off is moved away from in front of the antenna by increasing the edge density. Additionally, full wave simulations have been extended to “conventional” tokamaks with higher aspect ratios, such as the DIII-D, Alcator C-Mod, and EAST devices. DIII-D results show similar behavior found in NSTX and NSTX-U, consistent with previous DIII-D experimental observations. In contrast, a different behavior has been found for Alcator C-Mod and EAST, which operate in the minority heating regime unlike NSTX/NSTX-U and DIII-D, which operate in the mid/high harmonic regime. A substantial discussion of some of the main aspects, such as (i) the pitch angle of the magnetic field; (ii) minority heating vs. mid/high harmonic regimes is presented showing the different behavior of the RF field in the SOL region for NSTX-U scenarios with different plasma current. Finally, the preliminary results of the impact of the SOL region on the evaluation of the helicon current drive efficiency in DIII-D is presented for the first time and briefly compared with the different regimes

  12. SciDAC Center for Simulation of Wave-Plasma Interactions - Iterated Finite-Orbit Monte Carlo Simulations with Full-Wave Fields for Modeling Tokamak ICRF Wave Heating Experiments - Final Report

    SciTech Connect (OSTI)

    Choi, Myunghee; Chan, Vincent S.

    2014-02-28

    This final report describes the work performed under U.S. Department of Energy Cooperative Agreement DE-FC02-08ER54954 for the period April 1, 2011 through March 31, 2013. The goal of this project was to perform iterated finite-orbit Monte Carlo simulations with full-wall fields for modeling tokamak ICRF wave heating experiments. In year 1, the finite-orbit Monte-Carlo code ORBIT-RF and its iteration algorithms with the full-wave code AORSA were improved to enable systematical study of the factors responsible for the discrepancy in the simulated and the measured fast-ion FIDA signals in the DIII-D and NSTX ICRF fast-wave (FW) experiments. In year 2, ORBIT-RF was coupled to the TORIC full-wave code for a comparative study of ORBIT-RF/TORIC and ORBIT-RF/AORSA results in FW experiments.

  13. Full-wave Simulations of ICRF Heating in Toroidal Plasma with Non-Maxwellian Distribution Functions in the FLR Limit

    SciTech Connect (OSTI)

    E.J. Valeo, C.K. Phillips, H. Okuda, J.C. Wright, P.T. Bonoli, L.A. Berry, and the RF SciDAC Team

    2007-07-18

    At the power levels required for signicant heating and current drive in magnetically-con ned toroidal plasma, modi cation of the particle distribution function from a Maxwellian shape is likely [T.H. Stix, Nucl. Fusion, 15:737 1975], with consequent changes in wave propagation and in the location and amount of absorption. In order to study these e ects computationally, the nite-Larmor-radius, full-wave, hot-plasma toroidal simulation code, TORIC [M. Brambilla. Plasma Phys. Controlled Fusion, 41:1, 1999], has been extended to allow the prescription of arbitrary velocity distributions of the form (?||, ??, ?, ?). For H minority heating of a D-H plasma with anisotropic Maxwellian H distributions, the fractional H absorption varies signi cantly with changes in parallel temperature but is essentially independent of perpendicular temperature.

  14. The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind

    SciTech Connect (OSTI)

    Maneva, Y. G.; Ofman, L.; Vinas, A. F.

    2013-06-13

    In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

  15. Transparent conducting impurity-doped ZnO thin films prepared using oxide targets sintered by millimeter-wave heating

    SciTech Connect (OSTI)

    Minami, Tadatsugu; Okada, Kenji; Miyata, Toshihiro; Nomoto, Juni-chi; Hara, Youhei; Abe, Hiroshi

    2009-07-15

    The preparation of transparent conducting impurity-doped ZnO thin films by both pulsed laser deposition (PLD) and magnetron sputtering deposition (MSD) using impurity-doped ZnO targets sintered with a newly developed energy saving millimeter-wave (28 GHz) heating technique is described. Al-doped ZnO (AZO) and V-co-doped AZO (AZO:V) targets were prepared by sintering with various impurity contents for 30 min at a temperature of approximately 1250 degree sign C in an air or Ar gas atmosphere using the millimeter-wave heating technique. The resulting resistivity and its thickness dependence obtainable in thin films prepared by PLD using millimeter-wave-sintered AZO targets were comparable to those obtained in thin films prepared by PLD using conventional furnace-sintered AZO targets; a low resistivity on the order of 3x10{sup -4} {Omega} cm was obtained in AZO thin films prepared with an Al content [Al/(Al+Zn) atomic ratio] of 3.2 at. % and a thickness of 100 nm. In addition, the resulting resistivity and its spatial distribution on the substrate surface obtainable in thin films prepared by rf-MSD using a millimeter-wave-sintered AZO target were almost the same as those obtained in thin films prepared by rf-MSD using a conventional powder AZO target. Thin films prepared by PLD using millimeter-wave-sintered AZO:V targets exhibited an improved resistivity stability in a high humidity environment. Thin films deposited with a thickness of approximately 100 nm using an AZO:V target codoped with an Al content of 4 at. % and a V content [V/(V+Zn) atomic ratio] of 0.2 at. % were sufficiently stable when long-term tested in air at 90% relative humidity and 60 degree sign C.

  16. Pressure waves in liquid mercury target from pulsed heat loads and the possible way controlling their effects

    SciTech Connect (OSTI)

    Ni, L.; Skala, K.

    1996-06-01

    In ESS project liquid metals are selected as the main target for the pulsed spallation neutron source. Since the very high instantaneous energy is deposited on the heavy molten target in a very short period time, pressure waves are generated. They travel through the liquid and cause high stress in the container. Also, additional stress should be considered in the wall which is the result of direct heating of the target window. These dynamic processes were simulated with computational codes with the static response being analized first. The total resulting dynamic wall stress has been found to have exceeded the design stress for the selected container material. Adding a small amount of gas bubbles in the liquid could be a possible way to reduce the pressure waves.

  17. Heat

    U.S. Energy Information Administration (EIA) Indexed Site

    Release date: April 2015 Revised date: May 2016 Heat pumps Furnaces Indiv- idual space heaters District heat Boilers Pack- aged heating units Other All buildings 87,093 80,078 11,846 8,654 20,766 5,925 22,443 49,188 1,574 Building floorspace (square feet) 1,001 to 5,000 8,041 6,699 868 1,091 1,747 Q 400 3,809 Q 5,001 to 10,000 8,900 7,590 1,038 1,416 2,025 Q 734 4,622 Q 10,001 to 25,000 14,105 12,744 1,477 2,233 3,115 Q 2,008 8,246 Q 25,001 to 50,000 11,917 10,911 1,642 1,439 3,021 213 2,707

  18. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Enol Intermediates Unexpectedly Found in Flames Print Wednesday, 27 July 2005 00:00 For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With

  19. Channeling of high-power radio waves under conditions of strong anomalous absorption in the presence of an averaged electron heating source

    SciTech Connect (OSTI)

    Vas'kov, V. V.; Ryabova, N. A.

    2010-02-15

    Strong anomalous absorption of a high-power radio wave by small-scale plasma inhomogeneities in the Earth's ionosphere can lead to the formation of self-consistent channels (solitons) in which the wave propagates along the magnetic field, but has a soliton-like intensity distribution across the field. The structure of a cylindrical soliton as a function of the wave intensity at the soliton axis is analyzed. Averaged density perturbations leading to wave focusing were calculated using the model proposed earlier by Vas'kov and Gurevich (Geomagn. Aeron. 16, 1112 (1976)), in which an averaged electron heating source was used. It is shown that, under conditions of strong electron recombination, the radii of individual solitons do not exceed 650 m.

  20. Universal heat conduction in Ce1-xYbxCoIn5: Evidence for robust nodal d-wave superconducting gap

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Y.; Petrovic, C.; Dong, J. K.; Lum, I. K.; Zhang, J.; Hong, X. C.; He, L. P.; Wang, K. F.; Ma, Y. C.; Maple, M. B.; et al

    2016-02-01

    In the heavy-fermion superconductor Ce1-xYbxCoIn5, Yb doping was reported to cause a possible change from nodal d-wave superconductivity to a fully gapped d-wave molecular superfluid of composite pairs near x ≈ 0.07 (nominal value xnom = 0.2). Here we present systematic thermal conductivity measurements on Ce1-xYbxCoIn5 (x = 0.013, 0.084, and 0.163) single crystals. The observed finite residual linear term κ0/T is insensitive to Yb doping, verifying the universal heat conduction of the nodal d-wave superconducting gap in Ce1-xYbxCoIn5. Similar universal heat conduction is also observed in the CeCo(In1–yCdy)5 system. Furthermore, these results reveal a robust nodal d-wave gap inmore » CeCoIn5 upon Yb or Cd doping.« less

  1. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  2. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  3. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  4. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  5. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  6. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  7. Enol Intermediates Unexpectedly Found in Flames

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enol Intermediates Unexpectedly Found in Flames Print For those studying flame chemistry and the properties of combustion intermediates by means of molecular beam mass spectrometry, the addition of tunable vacuum ultraviolet (VUV) from a synchrotron to photoionize the beam for mass spectrometry makes for a powerful technique capable of differentiating between isomers with the same molecular weight and composition. With the help of a unique experimental apparatus, an international team of

  8. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic ... The effect is unique in that it allows us to distinguish which atomic species magnetism ...

  9. A laser gyro with a four-mirror square resonator: formulas for simulating the dynamics of the synchronisation zone parameters of the frequencies of counterpropagating waves during the device operation in the self-heating regime

    SciTech Connect (OSTI)

    Bondarenko, E A

    2014-04-28

    For a laser gyro with a four-mirror square resonator we have developed a mathematical model, which allows one to simulate the temporal behaviour of the synchronisation zone parameters of the frequencies of counterpropagating waves in a situation when the device operates in the self-heating regime and is switched-on at different initial temperatures. (laser gyroscopes)

  10. MeV ion loss during sup 3 He minority heating in TFTR

    SciTech Connect (OSTI)

    Zweben, S.J.; Hammett, G.; Boivin, R.; Phillips, C.; Wilson, R.

    1992-01-01

    The loss of MeV ions during {sup 3}He ICRH minority heating experiments has been measured using scintillator detectors near the wall of TFTR. The observed MeV ion losses to the bottom (90{degrees} poloidal) detector are generally consistent with the expected first-orbit loss of D-{sup 3}He alpha particle fusion products, with an inferred global reaction rate up to {approx}10{sup 16} reactions/sec. A qualitatively similar but unexpectedly large loss occurs 45{degrees} poloidally below the outer midplane. This additional loss might be due to ICRH tail ions or to ICRH wave-induced loss of previously confined fusion products.

  11. MeV ion loss during {sup 3}He minority heating in TFTR

    SciTech Connect (OSTI)

    Zweben, S.J.; Hammett, G.; Boivin, R.; Phillips, C.; Wilson, R.

    1992-01-01

    The loss of MeV ions during {sup 3}He ICRH minority heating experiments has been measured using scintillator detectors near the wall of TFTR. The observed MeV ion losses to the bottom (90{degrees} poloidal) detector are generally consistent with the expected first-orbit loss of D-{sup 3}He alpha particle fusion products, with an inferred global reaction rate up to {approx}10{sup 16} reactions/sec. A qualitatively similar but unexpectedly large loss occurs 45{degrees} poloidally below the outer midplane. This additional loss might be due to ICRH tail ions or to ICRH wave-induced loss of previously confined fusion products.

  12. Optimization of microwave heating in an existing cubicle cavity by incorporating additional wave guide and control components

    SciTech Connect (OSTI)

    Erle, R.R.; Eschen, V.G.; Sprenger, G.S.

    1995-04-01

    The use of microwave energy to thermally treat Low Level (LLW), Transuranic (TRU), and mixed waste has been under development at the Rocky Flats Environmental Technology Site (Site) since 1986. During that time, the technology has progressed from bench-scale tests, through pilot-scale tests, and finally to a full-scale demonstration unit. Experimental operations have been conducted on a variety of non-radioactive surrogates and actual radioactive waste forms. Through these studies and development efforts, the Microwave Vitrification Engineering Team (MVET) at Rocky Flats has successfully proven the application of microwave energy for waste treatment operations. In the microwave solidification process, microwave energy is used to heat a mixture of waste and glass frit to produce a vitrified product that meets all the current acceptance criteria at the final disposal sites. All of the development to date has utilized a multi-mode microwave system to provide the energy to treat the materials. Currently, evaluations are underway on modifications to the full-scale demonstration system that provide a single-mode operation as a possible method to optimize the system. This poster presentation describes the modifications made to allow the single-mode operation.

  13. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Wednesday, 29 August 2007 00:00 Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic

  14. Electron Bernstein wave heating and emission measurement through the very narrow O-X-B mode conversion window in the LHD

    SciTech Connect (OSTI)

    Igami, H.; Shimozuma, T.; Yoshimura, Y.; Takahashi, H.; Nishiura, M.; Seki, T.; Osakabe, M.; Mutoh, T.; Kubo, S.; Ogasawara, S.; Makino, R.; Idei, H.; Nagasaki, K.

    2014-02-12

    In the large helical device (LHD), the theoretically predicted width of the ordinary-extraordinary-electron Bernstein wave (O-X-B) mode conversion (MC) window is comparable to the beam width and the power deposition is located in the off-axis region if the 77GHz fundamental electron cyclotron (EC) wave of is launched from an existing horizontal port antenna. In the experiment, the actual MC window location was looked for with changing the aiming. The effective aiming with that the increase of the stored energy was observed was two degrees apart from the location of the theoretical MC window at a maximum. Measurement of the waves originated from the thermally emitted EBW and radiated via the B-X-O mode conversion process is effective to improve the accuracy of the theoretical prediction with comparison between the theoretical and the experimental results. The theoretical prediction suggests that the width of the MC window of the fundamental 77GHz EC wave can be expanded if the lower port antenna is used. On the other hand, the MC window of the second harmonic 154GHz EC wave is blocked by horizontal port wall if another horizontal port antenna is used. It is required to move the final mirror of the quasi-optical antenna toward the plasma surface. Focusing of the beam at the plasma cutoff is (PC) also necessary for the effective mode conversion.

  15. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  16. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  17. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  18. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  19. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism Print Using spectroscopic information for magnetometry and magnetic microscopy obviously requires detailed theoretical understanding of spectral shape and magnitude of dichroism signals. A research team at ALS Beamline 4.0.2 has now shown unambiguously that, contrary to common belief, spectral shape and magnitude of x-ray magnetic linear dichroism (XMLD) are not only determined by the relative orientation of magnetic moments and

  20. Unexpectedly, Navy?s Superlaser Blasts Away a Record (Wired) | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Unexpectedly, Navy?s Superlaser Blasts Away a Record (Wired) External Link: http://www.wired.com/dangerroom/2011/02/unexpectedly-navys-superlaser-blasts-awa... By jlab_admin on Fri, 2011-02-18

  1. Fusion heating technology

    SciTech Connect (OSTI)

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  2. Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56 MHz planar coil inductively coupled argon discharge

    SciTech Connect (OSTI)

    Jayapalan, Kanesh K. Chin, Oi-Hoong

    2014-04-15

    The axial and radial magnetic field profiles in a 13.56 MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

  3. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  4. Unexpected matching insensitivity in DTL of GTA accelerator

    SciTech Connect (OSTI)

    Yuan, V.W.; Gilpatrick, J.D.; Johnson, K.F.; Lysenko, W.P.; Rusthoi, D.P.; Sander, O.R.; Smith, M.; Weiss, R.

    1995-05-01

    The Intertank Matching Section (IMS) of the Ground Test Accelerator (GTA) contains four variable-field quadrupoles (VFQs) and is designed to match beam exiting the Radio-Frequency Quadrupole to the first tank of the Drift-tube LINAC (DTL-1). By varying the VFQ field strengths to create a range of beam mismatches at the entrance to DTL-1, one can test the sensitivity of the DTL-1 output beam to variations in the DTL-1 input beam. Experimental studies made during commissioning of the GTA indicate an unexpected result: the beam exiting DTL-1 shows little variation for a range of mismatches produced at the entrance. Results of the experiment and simulation studies are presented.

  5. Theory of unidirectional spin heat conveyer

    SciTech Connect (OSTI)

    Adachi, Hiroto Maekawa, Sadamichi

    2015-05-07

    We theoretically investigate the unidirectional spin heat conveyer effect recently reported in the literature that emerges from the Damon-Eshbach spin wave on the surface of a magnetic material. We develop a simple phenomenological theory for heat transfer dynamics in a coupled system of phonons and the Damon-Eshbach spin wave, and demonstrate that there arises a direction-selective heat flow as a result of the competition between an isotropic heat diffusion by phonons and a unidirectional heat drift by the spin wave. The phenomenological approach can account for the asymmetric local temperature distribution observed in the experiment.

  6. Unexpected Stable Two-dimensional Silicon Phosphides with Different Stoichiometries

    SciTech Connect (OSTI)

    Huang, Bing; Zhuang, Houlong; Yoon, Mina; Wei, Su-Huai; Sumpter, Bobby G

    2015-01-01

    The discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several previously unknown semiconducting silicon phosphides (SixPy) monolayers, which could be formed stably at the stoichiometries of y/x1. Unexpectedly, some of these compounds, i.e., P-6m2 Si1P1 and Pm Si1P2, have comparable or even lower formation enthalpies than their previously known bulk allotropes. The band gaps (Eg) of SixPy compounds can be dramatically tuned in an extremely wide range (0< Eg < 3 eV) by simply changing the number of layers or applying an in-plane strain. Moreover, we find that carrier doping can drive the ground state of C2/m Si1P3 from a nonmagnetic state into a robust half-metallic spin-polarized state, originating from its unique valence band structure, which can extend the use of Si-related compounds for spintronics.

  7. Unexpected Stable Two-dimensional Silicon Phosphides with Different Stoichiometries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yoon, Mina; Wei, Su-Huai; Sumpter, Bobby G

    2015-01-01

    The discovery of stable two-dimensional, earth-abundant, semiconducting materials is of great interest and may impact future electronic technologies. By combining global structural prediction and first-principles calculations, we have theoretically discovered several previously unknown semiconducting silicon phosphides (SixPy) monolayers, which could be formed stably at the stoichiometries of y/x1. Unexpectedly, some of these compounds, i.e., P-6m2 Si1P1 and Pm Si1P2, have comparable or even lower formation enthalpies than their previously known bulk allotropes. The band gaps (Eg) of SixPy compounds can be dramatically tuned in an extremely wide range (0< Eg < 3 eV) by simply changing the number of layersmore » or applying an in-plane strain. Moreover, we find that carrier doping can drive the ground state of C2/m Si1P3 from a nonmagnetic state into a robust half-metallic spin-polarized state, originating from its unique valence band structure, which can extend the use of Si-related compounds for spintronics.« less

  8. Home Heating

    Broader source: Energy.gov [DOE]

    Your choice of heating technologies impacts your energy bill. Learn about the different options for heating your home.

  9. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  10. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  11. Estimation and Uncertainty Analysis of Impacts of Future Heat...

    Office of Scientific and Technical Information (OSTI)

    However, the estimation of excess mortality attributable to future heat waves is subject to large uncertainties, which have not been examined under the latest greenhouse gas ...

  12. Refrigeration system having standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S.

    1992-01-01

    A compression-evaporation refrigeration system, wherein gaseous compression of the refrigerant is provided by a standing wave compressor. The standing wave compressor is modified so as to provide a separate subcooling system for the refrigerant, so that efficiency losses due to flashing are reduced. Subcooling occurs when heat exchange is provided between the refrigerant and a heat pumping surface, which is exposed to the standing acoustic wave within the standing wave compressor. A variable capacity and variable discharge pressure for the standing wave compressor is provided. A control circuit simultaneously varies the capacity and discharge pressure in response to changing operating conditions, thereby maintaining the minimum discharge pressure needed for condensation to occur at any time. Thus, the power consumption of the standing wave compressor is reduced and system efficiency is improved.

  13. Ionospheric modifications in high frequency heating experiments

    SciTech Connect (OSTI)

    Kuo, Spencer P.

    2015-01-15

    Featured observations in high-frequency (HF) heating experiments conducted at Arecibo, EISCAT, and high frequency active auroral research program are discussed. These phenomena appearing in the F region of the ionosphere include high-frequency heater enhanced plasma lines, airglow enhancement, energetic electron flux, artificial ionization layers, artificial spread-F, ionization enhancement, artificial cusp, wideband absorption, short-scale (meters) density irregularities, and stimulated electromagnetic emissions, which were observed when the O-mode HF heater waves with frequencies below foF2 were applied. The implication and associated physical mechanism of each observation are discussed and explained. It is shown that these phenomena caused by the HF heating are all ascribed directly or indirectly to the excitation of parametric instabilities which instigate anomalous heating. Formulation and analysis of parametric instabilities are presented. The results show that oscillating two stream instability and parametric decay instability can be excited by the O-mode HF heater waves, transmitted from all three heating facilities, in the regions near the HF reflection height and near the upper hybrid resonance layer. The excited Langmuir waves, upper hybrid waves, ion acoustic waves, lower hybrid waves, and field-aligned density irregularities set off subsequent wave-wave and wave-electron interactions, giving rise to the observed phenomena.

  14. Deflagration Wave Profiles

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2012-04-03

    Shock initiation in a plastic-bonded explosives (PBX) is due to hot spots. Current reactive burn models are based, at least heuristically, on the ignition and growth concept. The ignition phase occurs when a small localized region of high temperature (or hot spot) burns on a fast time scale. This is followed by a growth phase in which a reactive front spreads out from the hot spot. Propagating reactive fronts are deflagration waves. A key question is the deflagration speed in a PBX compressed and heated by a shock wave that generated the hot spot. Here, the ODEs for a steady deflagration wave profile in a compressible fluid are derived, along with the needed thermodynamic quantities of realistic equations of state corresponding to the reactants and products of a PBX. The properties of the wave profile equations are analyzed and an algorithm is derived for computing the deflagration speed. As an illustrative example, the algorithm is applied to compute the deflagration speed in shock compressed PBX 9501 as a function of shock pressure. The calculated deflagration speed, even at the CJ pressure, is low compared to the detonation speed. The implication of this are briefly discussed.

  15. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  16. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-12-25

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. The second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat. 11 figs.

  17. Intrinsically irreversible heat engine

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1984-01-01

    A class of heat engines based on an intrinsically irreversible heat transfer process is disclosed. In a typical embodiment the engine comprises a compressible fluid that is cyclically compressed and expanded while at the same time being driven in reciprocal motion by a positive displacement drive means. A second thermodynamic medium is maintained in imperfect thermal contact with the fluid and bears a broken thermodynamic symmetry with respect to the fluid. the second thermodynamic medium is a structure adapted to have a low fluid flow impedance with respect to the compressible fluid, and which is further adapted to be in only moderate thermal contact with the fluid. In operation, thermal energy is pumped along the second medium due to a phase lag between the cyclical heating and cooling of the fluid and the resulting heat conduction between the fluid and the medium. In a preferred embodiment the engine comprises an acoustical drive and a housing containing a gas which is driven at a resonant frequency so as to be maintained in a standing wave. Operation of the engine at acoustic frequencies improves the power density and coefficient of performance. The second thermodynamic medium can be coupled to suitable heat exchangers to utilize the engine as a simple refrigeration device having no mechanical moving parts. Alternatively, the engine is reversible in function so as to be utilizable as a prime mover by coupling it to suitable sources and sinks of heat.

  18. Carbon footprints of heating oil and LPG heating systems

    SciTech Connect (OSTI)

    Johnson, Eric P.

    2012-07-15

    For European homes without access to the natural gas grid, the main fuels-of-choice for heating are heating oil and LPG. How do the carbon footprints of these compare? Existing literature does not clearly answer this, so the current study was undertaken to fill this gap. Footprints were estimated in seven countries that are representative of the EU and constitute two-thirds of the EU-27 population: Belgium, France, Germany, Ireland, Italy, Poland and the UK. Novelties of the assessment were: systems were defined using the EcoBoiler model; well-to-tank data were updated according to most-recent research; and combustion emission factors were used that were derived from a survey conducted for this study. The key finding is that new residential heating systems fuelled by LPG are 20% lower carbon and 15% lower overall-environmental-impact than those fuelled by heating oil. An unexpected finding was that an LPG system's environmental impact is about the same as that of a bio heating oil system fuelled by 100% rapeseed methyl ester, Europe's predominant biofuel. Moreover, a 20/80 blend (by energy content) with conventional heating oil, a bio-heating-oil system generates a footprint about 15% higher than an LPG system's. The final finding is that fuel switching can pay off in carbon terms. If a new LPG heating system replaces an ageing oil-fired one for the final five years of its service life, the carbon footprint of the system's final five years is reduced by more than 50%.

  19. Heat exchanger

    DOE Patents [OSTI]

    Daman, Ernest L.; McCallister, Robert A.

    1979-01-01

    A heat exchanger is provided having first and second fluid chambers for passing primary and secondary fluids. The chambers are spaced apart and have heat pipes extending from inside one chamber to inside the other chamber. A third chamber is provided for passing a purge fluid, and the heat pipe portion between the first and second chambers lies within the third chamber.

  20. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  3. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  4. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  5. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  6. Ash reduction system using electrically heated particulate matter filter

    DOE Patents [OSTI]

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  7. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

    1989-01-01

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  8. Stochastic acceleration of ions driven by Pc1 wave packets

    SciTech Connect (OSTI)

    Khazanov, G. V. Sibeck, D. G.; Tel'nikhin, A. A.; Kronberg, T. K.

    2015-07-15

    The stochastic motion of protons and He{sup +} ions driven by Pc1 wave packets is studied in the context of resonant particle heating. Resonant ion cyclotron heating typically occurs when wave powers exceed 10{sup −4} nT{sup 2}/Hz. Gyroresonance breaks the first adiabatic invariant and energizes keV ions. Cherenkov resonances with the electrostatic component of wave packets can also accelerate ions. The main effect of this interaction is to accelerate thermal protons to the local Alfven speed. The dependencies of observable quantities on the wave power and plasma parameters are determined, and estimates for the heating extent and rate of particle heating in these wave-particle interactions are shown to be in reasonable agreement with known empirical data.

  9. ocean waves

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    waves - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  10. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  11. Ion temperature in plasmas with intrinsic Alfven waves

    SciTech Connect (OSTI)

    Wu, C. S.; Yoon, P. H.; Wang, C. B.

    2014-10-15

    This Brief Communication clarifies the physics of non-resonant heating of protons by low-frequency Alfvenic turbulence. On the basis of general definition for wave energy density in plasmas, it is shown that the wave magnetic field energy is equivalent to the kinetic energy density of the ions, whose motion is induced by the wave magnetic field, thus providing a self-consistent description of the non-resonant heating by Alfvenic turbulence. Although the study is motivated by the research on the solar corona, the present discussion is only concerned with the plasma physics of the heating process.

  12. Visualization of Shock Wave Driven by Millimeter Wave Plasma in a Parabolic Thruster

    SciTech Connect (OSTI)

    Yamaguchi, Toshikazu; Shimada, Yutaka; Shiraishi, Yuya; Shibata, Teppei; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro

    2010-05-06

    By focusing a high-power millimeter wave beam generated by a 170 GHz gyrotron, a breakdown occurred and a shock wave was driven by plasma heated by following microwave energy. The shock wave and the plasma around a focal point of a parabolic thruster were visualized by a shadowgraph method, and a transition of structures between the shock wave and the plasma was observed. There was a threshold local power density to make the transition, and the propagation velocity at the transition was around 800 m/s.

  13. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  14. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  15. Large Aerosols Play Unexpected Role in Ganges Valley | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Large Aerosols Play Unexpected Role in Ganges Valley Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC

  16. COLLOQUIUM: NIF An Unexpected Journey or Lessons Learned to Secure Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Scale | Princeton Plasma Physics Lab January 7, 2015, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: NIF An Unexpected Journey or Lessons Learned to Secure Projects of Scale Dr. Edward Michael Campbell Sandia National Laboratory Developing the mission, science, technology and support for projects of scale is a demanding and multifaceted enterprise. There are many lessons to be learned from the National Ignition Facility (NIF) experience that can be applied in the quest to secure

  17. HEAT EXCHANGER

    DOE Patents [OSTI]

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  18. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  19. A stochastic mechanism of electron heating

    SciTech Connect (OSTI)

    Galinsky, V. L.; Shevchenko, V. I.

    2012-08-15

    Due to Landau resonant interaction with lower hybrid waves in the lower hybrid current drive scheme part of electrons are accelerated and, as a result of this, a tail of energetic electrons is formed on the electron distribution function. The same situation takes place in the problem of type III radio bursts when the suprathermal burst electrons acquire a plateau distribution due to excitation of plasma waves in the solar wind plasma. These distributions are unstable with respect to the cyclotron excitation of waves at anomalous Doppler resonance ('fan' instability). In this case, the tail electrons interact simultaneously with both (i) waves that accelerate or decelerate them (Cerenkov resonance) and (ii) waves excited in the process of the fan instability that led to their pitch angle diffusion. Because velocity diffusion lines of electrons formed due to heir interaction with each type of waves intersect, this interaction can lead not only to pitch angle diffusion but also to heating of electrons mainly in perpendicular direction. We investigated this mechanism of electron heating and studied the temporal evolution of the electron temperature and the energy of excited waves. Our results show significant enhancement of the electron perpendicular temperature T{sub Up-Tack} due to this stochastic heating mechanism.

  20. Skyrmion creation and annihilation by spin waves

    SciTech Connect (OSTI)

    Liu, Yizhou Yin, Gen; Lake, Roger K.; Zang, Jiadong; Shi, Jing

    2015-10-12

    Single skyrmion creation and annihilation by spin waves in a crossbar geometry are theoretically analyzed. A critical spin-wave frequency is required both for the creation and the annihilation of a skyrmion. The minimum frequencies for creation and annihilation are similar, but the optimum frequency for creation is below the critical frequency for skyrmion annihilation. If a skyrmion already exists in the cross bar region, a spin wave below the critical frequency causes the skyrmion to circulate within the central region. A heat assisted creation process reduces the spin-wave frequency and amplitude required for creating a skyrmion. The effective field resulting from the Dzyaloshinskii-Moriya interaction and the emergent field of the skyrmion acting on the spin wave drive the creation and annihilation processes.

  1. Plane wave method for elastic wave scattering by a heterogeneous...

    Office of Scientific and Technical Information (OSTI)

    Plane wave method for elastic wave scattering by a heterogeneous fracture Citation Details In-Document Search Title: Plane wave method for elastic wave scattering by a ...

  2. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  3. Wave excitation by nonlinear coupling among shear Alfvén waves in a mirror-confined plasma

    SciTech Connect (OSTI)

    Ikezoe, R. Ichimura, M.; Okada, T.; Hirata, M.; Yokoyama, T.; Iwamoto, Y.; Sumida, S.; Jang, S.; Takeyama, K.; Yoshikawa, M.; Kohagura, J.; Shima, Y.; Wang, X.

    2015-09-15

    A shear Alfvén wave at slightly below the ion-cyclotron frequency overcomes the ion-cyclotron damping and grows because of the strong anisotropy of the ion temperature in the magnetic mirror configuration, and is called the Alfvén ion-cyclotron (AIC) wave. Density fluctuations caused by the AIC waves and the ion-cyclotron range of frequencies (ICRF) waves used for ion heating have been detected using a reflectometer in a wide radial region of the GAMMA 10 tandem mirror plasma. Various wave-wave couplings are clearly observed in the density fluctuations in the interior of the plasma, but these couplings are not so clear in the magnetic fluctuations at the plasma edge when measured using a pick-up coil. A radial dependence of the nonlinearity is found, particularly in waves with the difference frequencies of the AIC waves; bispectral analysis shows that such wave-wave coupling is significant near the core, but is not so evident at the periphery. In contrast, nonlinear coupling with the low-frequency background turbulence is quite distinct at the periphery. Nonlinear coupling associated with the AIC waves may play a significant role in the beta- and anisotropy-limits of a mirror-confined plasma through decay of the ICRF heating power and degradation of the plasma confinement by nonlinearly generated waves.

  4. Heating apparatus

    SciTech Connect (OSTI)

    Page, V. J.

    1981-02-10

    A solar energy heating apparatus is described comprising means for concentrating solar energy incident thereon at an absorption station, an absorber located at the said absorption station for absorbing solar energy concentrated thereat, a first passageway associated with the said energy concentrating means for directing fluid so as to be preheated by the proportion of the incident energy absorbed by the said means, a second passageway associated with the absorber for effecting principal heating of fluid directed therethrough. The second passageway is such that on directing fluid through the first passageway it is initially preheated by the proportion of the incident energy absorbed by the energy concentrating means, the preheated fluid thereafter being directed to the second passageway where the principal heating takes place.

  5. Unexpected crystal and magnetic structures in MnCu4In and MnCu4Sn...

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Search Results Journal Article: Unexpected crystal and magnetic structures ... OSTI Identifier: 1096858 Report Number(s): IS-J 7964 Journal ID: 1359-6454 DOE Contract ...

  6. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...

  7. Heat exchanger

    DOE Patents [OSTI]

    Wolowodiuk, Walter

    1976-01-06

    A heat exchanger of the straight tube type in which different rates of thermal expansion between the straight tubes and the supply pipes furnishing fluid to those tubes do not result in tube failures. The supply pipes each contain a section which is of helical configuration.

  8. Wave Energy Scotland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Industry outreach: DOE and Wave Energy Scotland co-sponsored WEC technology workshop News, Partnership, Renewable Energy, Water Power, Workshops Industry outreach: DOE and Wave ...

  9. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  10. Fast wave evanescence in filamentary boundary plasmas

    SciTech Connect (OSTI)

    Myra, J. R.

    2014-02-15

    Radio frequency waves for heating and current drive of plasmas in tokamaks and other magnetic confinement devices must first traverse the scrape-off-layer (SOL) before they can be put to their intended use. The SOL plasma is strongly turbulent and intermittent in space and time. These turbulent properties of the SOL, which are not routinely taken into account in wave propagation codes, can have an important effect on the coupling of waves through an evanescent SOL or edge plasma region. The effective scale length for fast wave (FW) evanescence in the presence of short-scale field-aligned filamentary plasma turbulence is addressed in this paper. It is shown that although the FW wavelength or evanescent scale length is long compared with the dimensions of the turbulence, the FW does not simply average over the turbulent density; rather, the average is over the exponentiation rate. Implications for practical situations are discussed.

  11. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1979-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchangers and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  12. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  13. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  14. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh; Vinegar, Harold J.

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  15. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, P.J.

    1983-12-08

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  16. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, Phillip J.

    1986-01-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  17. Heat exchanger

    DOE Patents [OSTI]

    Brackenbury, Phillip J.

    1986-04-01

    A heat exchanger comparising a shell attached at its open end to one side of a tube sheet and a detachable head connected to the other side of said tube sheet. The head is divided into a first and second chamber in fluid communication with a nozzle inlet and nozzle outlet, respectively, formed in said tube sheet. A tube bundle is mounted within said shell and is provided with inlets and outlets formed in said tube sheet in communication with said first and second chambers, respectively.

  18. Wave-particle Interactions In Rotating Mirrors

    SciTech Connect (OSTI)

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in EB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  19. RF wave propagation and scattering in turbulent tokamak plasmas

    SciTech Connect (OSTI)

    Horton, W. Michoski, C.; Peysson, Y.; Decker, J.

    2015-12-10

    Drift wave turbulence driven by the steep electron and ion temperature gradients in H-mode divertor tokamaks produce scattering of the RF waves used for heating and current drive. The X-ray emission spectra produced by the fast electrons require the turbulence broaden RF wave spectrum. Both the 5 GHz Lower Hybrid waves and the 170 GHz electron cyclotron [EC] RF waves experience scattering and diffraction by the electron density fluctuations. With strong LHCD there are bifurcations in the coupled turbulent transport dynamics giving improved steady-state confinement states. The stochastic scattering of the RF rays makes the prediction of the distribution of the rays and the associated particle heating a statistical problem. Thus, we introduce a Fokker-Planck equation for the probably density of the RF rays. The general frame work of the coupled system of coupled high frequency current driving rays with the low-frequency turbulent transport determines the profiles of the plasma density and temperatures.

  20. Unexpected Type of Failure of Thermal Battery Resulting in a Near Miss to a Serious Injury

    SciTech Connect (OSTI)

    Richter, Daena Kei

    2015-10-01

    On 6/26/2015 at 1445 in 894/136, a thermal battery (approximately the size of a commercial size C cell) experienced an unexpected failure following a routine test where the battery is activated. The failure occurred while a test operator was transferring the battery from the testing primary containment box to another containment box within the same room; initial indications are that the battery package ruptured after it went into thermal runaway which led to the operator receiving bruising to the palm of the hand from the pressure of the expulsion. The operator was wearing the prescribed PPE, which was safety glasses and a high temperature glove on the hand that was holding the battery.

  1. Heat pipe methanator

    DOE Patents [OSTI]

    Ranken, William A.; Kemme, Joseph E.

    1976-07-27

    A heat pipe methanator for converting coal gas to methane. Gravity return heat pipes are employed to remove the heat of reaction from the methanation promoting catalyst, transmitting a portion of this heat to an incoming gas pre-heat section and delivering the remainder to a steam generating heat exchanger.

  2. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L.; Pietsch, Joseph A.

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  3. Segmented heat exchanger

    DOE Patents [OSTI]

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  4. Method and apparatus for millimeter-wave detection of thermal waves for materials evaluation

    DOE Patents [OSTI]

    Gopalsami, Nachappa; Raptis, Apostolos C.

    1991-01-01

    A method and apparatus for generating thermal waves in a sample and for measuring thermal inhomogeneities at subsurface levels using millimeter-wave radiometry. An intensity modulated heating source is oriented toward a narrow spot on the surface of a material sample and thermal radiation in a narrow volume of material around the spot is monitored using a millimeter-wave radiometer; the radiometer scans the sample point-by-point and a computer stores and displays in-phase and quadrature phase components of thermal radiations for each point on the scan. Alternatively, an intensity modulated heating source is oriented toward a relatively large surface area in a material sample and variations in thermal radiation within the full field of an antenna array are obtained using an aperture synthesis radiometer technique.

  5. Detonation Wave Profile

    SciTech Connect (OSTI)

    Menikoff, Ralph

    2015-12-14

    The Zel’dovich-von Neumann-Doering (ZND) profile of a detonation wave is derived. Two basic assumptions are required: i. An equation of state (EOS) for a partly burned explosive; P(V, e, λ). ii. A burn rate for the reaction progress variable; d/dt λ = R(V, e, λ). For a steady planar detonation wave the reactive flow PDEs can be reduced to ODEs. The detonation wave profile can be determined from an ODE plus algebraic equations for points on the partly burned detonation loci with a specified wave speed. Furthermore, for the CJ detonation speed the end of the reaction zone is sonic. A solution to the reactive flow equations can be constructed with a rarefaction wave following the detonation wave profile. This corresponds to an underdriven detonation wave, and the rarefaction is know as a Taylor wave.

  6. Catching a Wave: Innovative Wave Energy Device Surfs for Power...

    Office of Environmental Management (EM)

    Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii Catching a Wave: Innovative Wave Energy Device Surfs for Power in Hawaii July 29, 2015 - 12:00pm Addthis...

  7. Heat-driven acoustic cooling engine having no moving parts

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert; Hofler, Thomas J.

    1989-01-01

    A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

  8. Kinetic Alfvn wave turbulence and formation of localized structures

    SciTech Connect (OSTI)

    Sharma, R. P.; Modi, K. V.; Mechanical Engineering Department, Government Engineering College Valsad, Gujarat 396001

    2013-08-15

    This work presents non-linear interaction of magnetosonic wave with kinetic Alfvn wave for intermediate ?-plasma (m{sub e}/m{sub i}???1). A set of dimensionless equations have been developed for analysis by considering ponderomotive force due to pump kinetic Alfvn wave in the dynamics of magnetosonic wave. Stability analysis has been done to study modulational instability or linear growth rate. Further, numerical simulation has been carried out to study the nonlinear stage of instability and resulting power spectrum applicable to solar wind around 1 AU. Due to the nonlinearity, background density of magnetosonic wave gets modified which results in localization of kinetic Alfvn wave. From the obtained results, we observed that spectral index follows k{sup ?3.0}, consistent with observation received by Cluster spacecraft for the solar wind around 1 AU. The result shows the steepening of power spectrum which may be responsible for heating and acceleration of plasma particles in solar wind.

  9. Wave Energy | Open Energy Information

    Open Energy Info (EERE)

    Wave Energy Jump to: navigation, search Contents 1 Description 2 History 3 Technology 4 Current and Possible Wave Farms 5 Pros and Cons Description Wave energy (or wave power) is...

  10. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L.

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  11. Solar heating panel

    SciTech Connect (OSTI)

    Ellsworth, R.L.

    1983-01-18

    A solar heating panel for collecting solar heat energy and method for making same having a heat insulative substrate with a multiplicity of grooves and structural supporting ribs formed therein covered by a thin, flexible heat conductive film to form fluid conducting channels which in turn are connected to manifolds from which fluid is directed into the channels and heated fluid is removed therefrom.

  12. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  13. Cycloidal Wave Energy Converter

    SciTech Connect (OSTI)

    Stefan G. Siegel, Ph.D.

    2012-11-30

    This program allowed further advancing the development of a novel type of wave energy converter, a Cycloidal Wave Energy Converter or CycWEC. A CycWEC consists of one or more hydrofoils rotating around a central shaft, and operates fully submerged beneath the water surface. It operates under feedback control sensing the incoming waves, and converts wave power to shaft power directly without any intermediate power take off system. Previous research consisting of numerical simulations and two dimensional small 1:300 scale wave flume experiments had indicated wave cancellation efficiencies beyond 95%. The present work was centered on construction and testing of a 1:10 scale model and conducting two testing campaigns in a three dimensional wave basin. These experiments allowed for the first time for direct measurement of electrical power generated as well as the interaction of the CycWEC in a three dimensional environment. The Atargis team successfully conducted two testing campaigns at the Texas A&M Offshore Technology Research Center and was able to demonstrate electricity generation. In addition, three dimensional wave diffraction results show the ability to achieve wave focusing, thus increasing the amount of wave power that can be extracted beyond what was expected from earlier two dimensional investigations. Numerical results showed wave cancellation efficiencies for irregular waves to be on par with results for regular waves over a wide range of wave lengths. Using the results from previous simulations and experiments a full scale prototype was designed and its performance in a North Atlantic wave climate of average 30kW/m of wave crest was estimated. A full scale WEC with a blade span of 150m will deliver a design power of 5MW at an estimated levelized cost of energy (LCOE) in the range of 10-17 US cents per kWh. Based on the new results achieved in the 1:10 scale experiments these estimates appear conservative and the likely performance at full scale will

  14. Grating formation by a high power radio wave in near-equator ionosphere

    SciTech Connect (OSTI)

    Singh, Rohtash; Sharma, A. K.; Tripathi, V. K.

    2011-11-15

    The formation of a volume grating in the near-equator regions of ionosphere due to a high power radio wave is investigated. The radio wave, launched from a ground based transmitter, forms a standing wave pattern below the critical layer, heating the electrons in a space periodic manner. The thermal conduction along the magnetic lines of force inhibits the rise in electron temperature, limiting the efficacy of heating to within a latitude of few degrees around the equator. The space periodic electron partial pressure leads to ambipolar diffusion creating a space periodic density ripple with wave vector along the vertical. Such a volume grating is effective to cause strong reflection of radio waves at a frequency one order of magnitude higher than the maximum plasma frequency in the ionosphere. Linearly mode converted plasma wave could scatter even higher frequency radio waves.

  15. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  16. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  17. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  18. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  19. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  20. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  1. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  2. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) (3.31 MB) More Documents & Publications PIA - WEB Physical ...

  3. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  4. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  5. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  6. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  7. Waste Heat Recovery

    Office of Environmental Management (EM)

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. ... 2 4 1.1. Introduction to Waste Heat Recovery ......

  8. RADIATION WAVE DETECTION

    DOE Patents [OSTI]

    Wouters, L.F.

    1960-08-30

    Radiation waves can be detected by simultaneously measuring radiation- wave intensities at a plurality of space-distributed points and producing therefrom a plot of the wave intensity as a function of time. To this end. a detector system is provided which includes a plurality of nuclear radiation intensity detectors spaced at equal radial increments of distance from a source of nuclear radiation. Means are provided to simultaneously sensitize the detectors at the instant a wave of radiation traverses their positions. the detectors producing electrical pulses indicative of wave intensity. The system further includes means for delaying the pulses from the detectors by amounts proportional to the distance of the detectors from the source to provide an indication of radiation-wave intensity as a function of time.

  9. Guide to Geothermal Heat Pumps

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    among the most effcient and comfortable heating and cooling technologies available because they use the earth's natural heat to provide heating, cooling, and often, water heating. ...

  10. QUASI-PERIODIC FAST-MODE WAVE TRAINS WITHIN A GLOBAL EUV WAVE AND SEQUENTIAL TRANSVERSE OSCILLATIONS DETECTED BY SDO/AIA

    SciTech Connect (OSTI)

    Liu Wei; Nitta, Nariaki V.; Aschwanden, Markus J.; Schrijver, Carolus J.; Title, Alan M.; Tarbell, Theodore D.; Ofman, Leon

    2012-07-01

    We present the first unambiguous detection of quasi-periodic wave trains within the broad pulse of a global EUV wave (so-called EIT wave) occurring on the limb. These wave trains, running ahead of the lateral coronal mass ejection (CME) front of 2-4 times slower, coherently travel to distances {approx}> R{sub Sun }/2 along the solar surface, with initial velocities up to 1400 km s{sup -1} decelerating to {approx}650 km s{sup -1}. The rapid expansion of the CME initiated at an elevated height of 110 Mm produces a strong downward and lateral compression, which may play an important role in driving the primary EUV wave and shaping its front forwardly inclined toward the solar surface. The wave trains have a dominant 2 minute periodicity that matches the X-ray flare pulsations, suggesting a causal connection. The arrival of the leading EUV wave front at increasing distances produces an uninterrupted chain sequence of deflections and/or transverse (likely fast kink mode) oscillations of local structures, including a flux-rope coronal cavity and its embedded filament with delayed onsets consistent with the wave travel time at an elevated (by {approx}50%) velocity within it. This suggests that the EUV wave penetrates through a topological separatrix surface into the cavity, unexpected from CME-caused magnetic reconfiguration. These observations, when taken together, provide compelling evidence of the fast-mode MHD wave nature of the primary (outer) fast component of a global EUV wave, running ahead of the secondary (inner) slow component of CME-caused restructuring.

  11. On the possibility of reducing the instability threshold of a parametric decay of an extraordinary wave into two upper hybrid waves in an inhomogeneous plasma

    SciTech Connect (OSTI)

    Popov, A. Yu. Gusakov, E. Z.

    2015-01-15

    A parametric decay instability (PDI) of an extraordinary wave leading to excitation of two upper hybrid (UH) plasmons at frequencies close to half the pump wave frequency is analyzed. It is shown that the two-plasmon PDI power threshold can be significantly reduced under conditions of electron cyclotron resonance heating (ECRH) experiments in toroidal magnetic devices, where the plasma density profile is often nonmonotonic, which leads to the localization of UH waves.

  12. Kinetic Theory of Plasma Waves - Part I: Introduction

    SciTech Connect (OSTI)

    Lamalle, P.U

    2004-03-15

    The kinetic description of linear waves in plasmas is succinctly presented, with emphasis on applications to high-frequency (hf) wave heating and current drive. The Maxwell-Vlasov system of equations is introduced. Its two-timescale analysis yields the linearized Vlasov and the quasilinear Fokker-Planck equations. The standard guiding centre and Hamiltonian formalisms are presented. Two formulations of the hf plasma wave equation are given: as a partial differential equation to hold at each position, and as a global Galerkin ('variational') form.

  13. The Unexpected Discovery of the Mg(HMDS)2/MgCl2 Complex as a Magnesium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrolyte for Rechargeable Magnesium Batteries - Joint Center for Energy Storage Research February 2, 2015, Research Highlights The Unexpected Discovery of the Mg(HMDS)2/MgCl2 Complex as a Magnesium Electrolyte for Rechargeable Magnesium Batteries NMR confirms formation of new species Scientific Achievement A simple mixture of magnesium compounds: magnesium hexamethyldisilazide (Mg(HMDS)2) and magnesium chloride (MgCl2) was prepared to achieve reversible Mg deposition/dissolution, a wide

  14. Resonance between heat-carrying electrons and Langmuir waves...

    Office of Scientific and Technical Information (OSTI)

    Department of Physics, University of Alberta, Edmonton, Alberta T6G 2G7, Canada Lawrence Livermore National Laboratory, Livermore, California 94551, USA P.N. Lebedev Physics ...

  15. Experimental verification of heat transport by acoustic wave...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 78; Journal Issue: C; Journal ID: ISSN 1359-4311 Publisher: Elsevier Sponsoring Org: USDOE Office of Electricity Delivery and Energy ...

  16. Extreme ultra-violet burst, particle heating, and whistler wave...

    Office of Scientific and Technical Information (OSTI)

    induced by kink-driven Rayleigh-Taylor instability This content will become ... induced by kink-driven Rayleigh-Taylor instability Authors: Chai, Kil-Byoung 1 ...

  17. Characterization of Heat-Wave Propagation through Laser-Driven...

    Office of Scientific and Technical Information (OSTI)

    74 ATOMIC AND MOLECULAR PHYSICS; 70 PLASMA PHYSICS AND FUSION; ABSORPTION; ELECTRON TEMPERATURE; HYDRODYNAMICS; K SHELL; LASER-PRODUCED PLASMA; LASERS; PLASMA; PLASMA ...

  18. Nonlinear upper hybrid waves and the induced density irregularities

    SciTech Connect (OSTI)

    Kuo, Spencer P.

    2015-08-15

    Upper hybrid waves are excited parametrically by the O-mode high-frequency heater waves in the ionospheric heating experiments. These waves grow to large amplitudes and self-induced density perturbations provide nonlinear feedback. The lower hybrid resonance modifies the nonlinear feedback driven by the ponderomotive force; the nonlinear equation governing the envelope of the upper hybrid waves is derived. Solutions in symmetric alternating functions, in non-alternating periodic functions, as well as in solitary functions are shown. The impact of lower hybrid resonance on the envelope of the upper hybrid waves is explored; the results show that both the spatial period and amplitude are enlarged. The average fluctuation level of induced density irregularities is also enhanced. In the soliton form, the induced density cavity is widened considerably.

  19. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, L.D.

    1987-02-11

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation. 5 figs.

  20. Rotary magnetic heat pump

    DOE Patents [OSTI]

    Kirol, Lance D.

    1988-01-01

    A rotary magnetic heat pump constructed without flow seals or segmented rotor accomplishes recuperation and regeneration by using split flow paths. Heat exchange fluid pumped through heat exchangers and returned to the heat pump splits into two flow components: one flowing counter to the rotor rotation and one flowing with the rotation.

  1. Direct fired heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY); Root, Richard A. (Spokane, WA)

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  2. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, Roger R.

    1987-01-01

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  3. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, Roger R.

    1987-05-05

    In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  4. Slow Wave Excitation in the ICRF and HHFW Regimes

    SciTech Connect (OSTI)

    Phillips, C. K.; Valeo, E. J.; Hosea, J. C.; LeBlanc, B. P.; Wilson, J. R.; Jaeger, E. F.; Berry, L. A.; Ryan, P. M.; Bonoli, P. T.; Wright, J. C.; Smithe, D. N.

    2011-12-23

    Theoretical considerations and high spatial resolution numerical simulations of radio frequency (rf) wave heating in tokamaks and in spherical toruses (ST) indicate that fast waves launched into tokamaks in the ion cyclotron range of frequencies (ICRF) or into spherical toruses in the high harmonic fast wave (HHFW) regime may excite a short wavelength slow mode inside of the plasma discharge due to the presence of hot electrons that satisfy the condition {omega}wave frequency, k{sub ||} is the local parallel component of the wave vector, and v{sub te} is the local electron thermal speed. This excited slow wave may be related to the electrostatic ion cyclotron wave that propagates for frequencies above the fundamental ion cyclotron frequency in warm plasmas or to a high frequency version of a kinetic Alfven wave. This slow wave, if physically real, would provide another path for rf power absorption in tokamaks and ST devices.

  5. Current generation by minority species heating

    SciTech Connect (OSTI)

    Fisch, N.J.

    1980-07-01

    It is proposed that electric currents be generated from the preferential heating of ions traveling in one direction but with no net momentum injected into the system. This can be accomplished with, for example, traveling waves in a two-ion-species plasma. The current can be generated efficiently enough for the scheme to be of interest in maintaining steady-state toroidal currents in a reactor.

  6. Thulium-170 heat source

    DOE Patents [OSTI]

    Walter, Carl E.; Van Konynenburg, Richard; VanSant, James H.

    1992-01-01

    An isotopic heat source is formed using stacks of thin individual layers of a refractory isotopic fuel, preferably thulium oxide, alternating with layers of a low atomic weight diluent, preferably graphite. The graphite serves several functions: to act as a moderator during neutron irradiation, to minimize bremsstrahlung radiation, and to facilitate heat transfer. The fuel stacks are inserted into a heat block, which is encased in a sealed, insulated and shielded structural container. Heat pipes are inserted in the heat block and contain a working fluid. The heat pipe working fluid transfers heat from the heat block to a heat exchanger for power conversion. Single phase gas pressure controls the flow of the working fluid for maximum heat exchange and to provide passive cooling.

  7. Heat Treating Apparatus

    DOE Patents [OSTI]

    De Saro, Robert; Bateman, Willis

    2002-09-10

    Apparatus for heat treating a heat treatable material including a housing having an upper opening for receiving a heat treatable material at a first temperature, a lower opening, and a chamber therebetween for heating the heat treatable material to a second temperature higher than the first temperature as the heat treatable material moves through the chamber from the upper to the lower opening. A gas supply assembly is operatively engaged to the housing at the lower opening, and includes a source of gas, a gas delivery assembly for delivering the gas through a plurality of pathways into the housing in countercurrent flow to movement of the heat treatable material, whereby the heat treatable material passes through the lower opening at the second temperature, and a control assembly for controlling conditions within the chamber to enable the heat treatable material to reach the second temperature and pass through the lower opening at the second temperature as a heated material.

  8. Thermoelectric heat exchange element

    DOE Patents [OSTI]

    Callas, James J.; Taher, Mahmoud A.

    2007-08-14

    A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

  9. SQUARE WAVE AMPLIFIER

    DOE Patents [OSTI]

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  10. Combustion of Bulk 84% Fe/16% KCIO{sub 4} heat powder

    SciTech Connect (OSTI)

    Nissen, M.; Guidotti, R.A.; Berry, B.

    1996-05-01

    Fe/KClO{sub 4} pyrotechnic mixtures are used in thermal batteries to provide the heat necessary to bring the battery stack to operating temperatures of 550 to 600 C. This heat source is normally used as discs pressed from bulk powder. To evaluate the consequences associated with unexpected ignition of large amounts of heat powder, combustion of 84% Fe/16% KClO{sub 4} heat powders was conducted for various scenarios under controlled conditions and the response documented. Increasing amounts of heat powder--up to 8 lbs--were ignited in both unconfined and confined (sealed) containers in a remote area. The containers were thermocoupled and the resulting burning filmed with a standard video camera, high-speed (1,000 frames/s) film and video cameras, and an infrared video camera. A 20- minute video of the burning under the various conditions is presented.

  11. Waste Heat Management Options for Improving Industrial Process Heating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems | Department of Energy Waste Heat Management Options for Improving Industrial Process Heating Systems Waste Heat Management Options for Improving Industrial Process Heating Systems This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power. Waste Heat Management Options for Improving Industrial Process Heating Systems (August 20, 2009) (494.7 KB) More

  12. Heat Exchangers for Solar Water Heating Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. | Photo from iStockphoto.com Solar water heating systems use heat exchangers to transfer solar energy absorbed in solar collectors to the liquid or air used to heat water or a space. Heat exchangers can be made of steel, copper, bronze, stainless steel, aluminum, or cast iron. Solar heating systems usually use copper,

  13. SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT SELF HELPS ST. LUCIE RESIDENTS BEAT THE FLORIDA HEAT In the hot Florida climate, poor insulation or inefficient equipment can have a large impact on homeowners' energy use. Because the state has some of the highest energy consumption per capita and fairly high electricity rates, summer heat waves can send Floridians' utility bills soaring. St. Lucie County in the heart of Florida's Treasure

  14. SLOW MAGNETOACOUSTIC WAVES OBSERVED ABOVE A QUIET-SUN REGION IN A DARK CAVITY

    SciTech Connect (OSTI)

    Liu Jiajia; Zhou Zhenjun; Wang Yuming; Liu Rui; Liao Chijian; Shen Chenglong; Zheng Huinan; Miao Bin; Su Zhenpeng; Wang, S.; Wang Bin E-mail: ymwang@ustc.edu.cn

    2012-10-20

    Waves play a crucial role in diagnosing the plasma properties of various structures in the solar corona and coronal heating. Slow magnetoacoustic (MA) waves are one of the important types of magnetohydrodynamic waves. In past decades, numerous slow MA waves were detected above active regions and coronal holes, but were rarely found elsewhere. Here, we investigate a 'tornado'-like structure consisting of quasi-periodic streaks within a dark cavity at about 40-110 Mm above a quiet-Sun region on 2011 September 25. Our analysis reveals that these streaks are actually slow MA wave trains. The properties of these wave trains, including phase speed, compression ratio, and kinetic energy density, are similar to those of the reported slow MA waves, except that the period of these waves is about 50 s, much shorter than the typical reported values (3-5 minutes).

  15. Wave induced density modification in RF sheaths and close to wave launchers

    SciTech Connect (OSTI)

    Van Eester, D.; Lu, Ling-Feng

    2015-12-10

    With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale model involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple ’derivative switch-on’ procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.

  16. Wave-wave interactions in solar type III radio bursts

    SciTech Connect (OSTI)

    Thejappa, G.; MacDowall, R. J.

    2014-02-11

    The high time resolution observations from the STEREO/WAVES experiment show that in type III radio bursts, the Langmuir waves often occur as localized magnetic field aligned coherent wave packets with durations of a few ms and with peak intensities well exceeding the strong turbulence thresholds. Some of these wave packets show spectral signatures of beam-resonant Langmuir waves, down- and up-shifted sidebands, and ion sound waves, with frequencies, wave numbers, and tricoherences satisfying the resonance conditions of the oscillating two stream instability (four wave interaction). The spectra of a few of these wave packets also contain peaks at f{sub pe}, 2f{sub pe} and 3 f{sub pe} (f{sub pe} is the electron plasma frequency), with frequencies, wave numbers and bicoherences (computed using the wavelet based bispectral analysis techniques) satisfying the resonance conditions of three wave interactions: (1) excitation of second harmonic electromagnetic waves as a result of coalescence of two oppositely propagating Langmuir waves, and (2) excitation of third harmonic electromagnetic waves as a result of coalescence of Langmuir waves with second harmonic electromagnetic waves. The implication of these findings is that the strong turbulence processes play major roles in beam stabilization as well as conversion of Langmuir waves into escaping radiation in type III radio bursts.

  17. Wound tube heat exchanger

    DOE Patents [OSTI]

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  18. Heat transfer system

    DOE Patents [OSTI]

    Not Available

    1980-03-07

    A heat transfer system for a nuclear reactor is described. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  19. Heat transfer system

    DOE Patents [OSTI]

    McGuire, Joseph C.

    1982-01-01

    A heat transfer system for a nuclear reactor. Heat transfer is accomplished within a sealed vapor chamber which is substantially evacuated prior to use. A heat transfer medium, which is liquid at the design operating temperatures, transfers heat from tubes interposed in the reactor primary loop to spaced tubes connected to a steam line for power generation purposes. Heat transfer is accomplished by a two-phase liquid-vapor-liquid process as used in heat pipes. Condensible gases are removed from the vapor chamber through a vertical extension in open communication with the chamber interior.

  20. Fast wave current drive in DEMO

    SciTech Connect (OSTI)

    Lerche, E.; Van Eestera, D.; Messiaen, A.; Collaboration: EFDA-PPPT Contributors

    2014-02-12

    The ability to non-inductively drive a large fraction of the toroidal plasma current in magnetically confined plasmas is an essential requirement for steady state fusion reactors such as DEMO. Besides neutral beam injection (NBI), electron-cyclotron resonance heating (ECRH) and lower hybrid wave heating (LH), ion-cyclotron resonance heating (ICRH) is a promising candidate to drive current, in particular at the high temperatures expected in fusion plasmas. In this paper, the current drive (CD) efficiencies calculated with coupled ICRF wave / CD numerical codes for the DEMO-1 design case (R{sub 0}=9m, B{sub 0}=6.8T, a{sub p}=2.25m) [1] are presented. It will be shown that although promising CD efficiencies can be obtained in the usual ICRF frequency domain (20-100MHz) by shifting the dominant ion-cyclotron absorption layers to the high-field side, operation at higher frequencies (100-300MHz) has a stronger CD potential, provided the parasitic RF power absorption of the alpha particles can be minimized.

  1. Demonstration of anomalous heat from the cold fusion effect

    SciTech Connect (OSTI)

    Storms, E.

    1995-12-01

    Heat production by an unexpected process is the most challenging aspect of the {open_quotes}cold fusion{close_quotes} phenomenon to accept. Many studies have been done in ways that invite criticism and easy rejection. A few recent studies have attempted to eliminate obvious errors and, thereby, reduce the ease of rejection. In addition, several of these studies have revealed important variables related to improving reproducibility. This paper will describe heat measurements done at the Los Alamos National Laboratory using a closed, pressurized, stirred calorimeter having two independent methods of calibration. Results using several batches of palladium are discussed in terms of those characteristics that lead to reproducibility using the electrolytic loading technique.

  2. Measurements of ion cyclotron range of frequencies mode converted wave intensity with phase contrast imaging in Alcator C-Mod and comparison with full-wave simulations

    SciTech Connect (OSTI)

    Tsujii, N.; Porkolab, M.; Bonoli, P. T.; Lin, Y.; Wright, J. C.; Wukitch, S. J.; Jaeger, E. F.; Green, D. L.; Harvey, R. W.

    2012-08-15

    Radio frequency waves in the ion cyclotron range of frequencies (ICRF) are widely used to heat tokamak plasmas. In ICRF heating schemes involving multiple ion species, the launched fast waves convert to ion cyclotron waves or ion Bernstein waves at the two-ion hybrid resonances. Mode converted waves are of interest as actuators to optimise plasma performance through current drive and flow drive. In order to describe these processes accurately in a realistic tokamak geometry, numerical simulations are essential, and it is important that these codes be validated against experiment. In this study, the mode converted waves were measured using a phase contrast imaging technique in D-H and D-{sup 3}He plasmas. The measured mode converted wave intensity in the D-{sup 3}He mode conversion regime was found to be a factor of {approx}50 weaker than the full-wave predictions. The discrepancy was reduced in the hydrogen minority heating regime, where mode conversion is weaker.

  3. WindWaveFloat

    SciTech Connect (OSTI)

    Weinstein, Alla

    2011-11-01

    Presentation from the 2011 Water Peer Review includes in which principal investigator Alla Weinstein discusses project progress in development of a floating offshore wind structure - the WindFloat - and incorporation therin of a Spherical Wave Energy Device.

  4. Traveling-wave photodetector

    DOE Patents [OSTI]

    Hietala, Vincent M.; Vawter, Gregory A.

    1993-01-01

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size.

  5. Traveling-wave photodetector

    DOE Patents [OSTI]

    Hietala, V.M.; Vawter, G.A.

    1993-12-14

    The traveling-wave photodetector of the present invention combines an absorptive optical waveguide and an electrical transmission line, in which optical absorption in the waveguide results in a photocurrent at the electrodes of the electrical transmission line. The optical waveguide and electrical transmission line of the electrically distributed traveling-wave photodetector are designed to achieve matched velocities between the light in the optical waveguide and electrical signal generated on the transmission line. This velocity synchronization provides the traveling-wave photodetector with a large electrical bandwidth and a high quantum efficiency, because of the effective extended volume for optical absorption. The traveling-wave photodetector also provides large power dissipation, because of its large physical size. 4 figures.

  6. Gravitational Waves Community Lecture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravitational Waves Community Lecture Gravitational Waves Community Lecture WHEN: Sep 19, 2016 7:30 PM - 8:30 PM WHERE: Grand Ballroom at the Eldorado Hotel 309 W San Francisco St Santa Fe, New Mexico 87501 USA (505) 988-4455 SPEAKER: Gabriela Gonzalez CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Sponsored by Los Alamos National Laboratory, University of New Mexico, St. John's College and Santa Fe Community College The Los Alamos National

  7. Wave Propagation Program

    Energy Science and Technology Software Center (OSTI)

    2007-01-08

    WPP is a massively parallel, 3D, C++, finite-difference elastodynamic wave propagation code. Typical applications for wave propagation with WPP include: evaluation of seismic event scenarios and damage from earthquakes, non-destructive evaluation of materials, underground facility detection, oil and gas exploration, predicting the electro-magnetic fields in accelerators, and acoustic noise generation. For more information, see User’s Manual [1].

  8. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  9. Geothermal District Heating Economics

    Energy Science and Technology Software Center (OSTI)

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  10. ARM - Atmospheric Heat Budget

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Atmospheric Heat Budget shows where the atmospheric heat energy comes from and where it goes. Practically all this energy ultimately comes from the sun in the form of the ...

  11. ARM - Heat Index Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Heat Index Calculations Heat Index is an index that ...

  12. Electron Heat Transport Measured

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transport Measured in a Stochastic Magnetic Field T. M. Biewer, * C. B. Forest, ... limit of s &29; 1, RR assumed the electron heat flux to be diffusive, obeying Fourier's ...

  13. Evaluation of Heat Checking and Washout of Heat Resistant Superalloys...

    Office of Scientific and Technical Information (OSTI)

    Evaluation of Heat Checking and Washout of Heat Resistant Superalloys and Coatings for Die inserts Citation Details In-Document Search Title: Evaluation of Heat Checking and ...

  14. Buildings","All Buildings with Water Heating","Water-Heating...

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used ...

  15. Consolidated Electric Cooperative- Heat Pump and Water Heating Rebates

    Office of Energy Efficiency and Renewable Energy (EERE)

    Consolidated Electric Cooperative provides rebates to residential customers who install electric water heaters, dual-fuel heating system or geothermal heat pumps. A dual-fuel heating systems...

  16. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, Donald M. (Leola, PA)

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  17. Abrasion resistant heat pipe

    DOE Patents [OSTI]

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  18. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, Arlon J.; Hansen, Leif J.; Evans, David B.

    1985-01-01

    A receiver for converting solar energy to heat a gas to temperatures from 700.degree.-900.degree. C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  19. MA HEAT Loan Overview

    Broader source: Energy.gov [DOE]

    Presents information on the success of Massachusetts's HEAT loan offerings and how the financing tool is funded.

  20. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.6 cents from a week ago to $2.97 per gallon. That's down $1.05 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.94 per gallon, down 6.7 cents from last week, and down $1.07

  1. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 6.3 cents from a week ago to $2.91 per gallon. That's down $1.10 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.88 per gallon, down 6.8 cents from last week, and down $1.13

  2. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 7.5 cents from a week ago to $2.84 per gallon. That's down $1.22 from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.80 per gallon, down 7.4 cents from last week, and down $1.23

  3. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 4.1 cents from a week ago to $2.89 per gallon, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $2.84 per gallon, down 5.4 cents from last week

  4. Residential heating oil price

    U.S. Energy Information Administration (EIA) Indexed Site

    heating oil price decreases The average retail price for home heating oil fell 3.6 cents from a week ago to $3.04 per gallon. That's down 99.4 cents from a year ago, based on the residential heating fuel survey by the U.S. Energy Information Administration. Heating oil prices in the New England region fell to $3.01 per gallon, down 3.6 cents from last week, and down $1.01

  5. Solar heat receiver

    DOE Patents [OSTI]

    Hunt, A.J.; Hansen, L.J.; Evans, D.B.

    1982-09-29

    A receiver is described for converting solar energy to heat a gas to temperatures from 700 to 900/sup 0/C. The receiver is formed to minimize impingement of radiation on the walls and to provide maximum heating at and near the entry of the gas exit. Also, the receiver is formed to provide controlled movement of the gas to be heated to minimize wall temperatures. The receiver is designed for use with gas containing fine heat absorbing particles, such as carbon particles.

  6. Quasi-linear heating and acceleration in bi-Maxwellian plasmas

    SciTech Connect (OSTI)

    Hellinger, Petr; Trávníček, Pavel M.

    2013-12-15

    Quasi-linear acceleration and heating rates are derived for drifting bi-Maxwellian distribution functions in a general nonrelativistic case for arbitrary wave vectors, propagation angles, and growth/damping rates. The heating rates in a proton-electron plasma due to ion-cyclotron/kinetic Alfvén and mirror waves for a wide range of wavelengths, directions of propagation, and growth or damping rates are explicitly computed.

  7. Heat pipes for industrial waste heat recovery

    SciTech Connect (OSTI)

    Merrigan, M.A.

    1981-01-01

    Development work on the high temperature ceramic recuperator at Los Alamos National Laboratory is described and involved material investigations, fabrication methods development, compatibility tests, heat pipe operation, and the modeling of application conditions based on current industrial usage. Solid ceramic heat pipes, ceramic coated refractory pipes, and high-temperature oxide protected metallic pipes have been investigated. Economic studies of the use of heat-pipe based recuperators in industrial furnaces have been conducted and payback periods determined as a function of material, fabrication, and installation cost.

  8. Waste Heat Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - PRE-DECISIONAL - DRAFT 1 Waste Heat Recovery 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 2 4 1.1. Introduction to Waste Heat Recovery .......................................................................................... 2 5 1.2. Challenges and Barriers for Waste Heat Recovery ..................................................................... 13 6 1.3. Public

  9. Liquid heat capacity lasers

    DOE Patents [OSTI]

    Comaskey, Brian J.; Scheibner, Karl F.; Ault, Earl R.

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  10. HEAT TRANSFER MEANS

    DOE Patents [OSTI]

    Fraas, A.P.; Wislicenus, G.F.

    1961-07-11

    A heat exchanger is adapted to unifomly cool a spherical surface. Equations for the design of a spherical heat exchanger hav~g tubes with a uniform center-to-center spining are given. The heat exchanger is illustrated in connection with a liquid-fueled reactor.

  11. Monitoring and Understanding Changes in Heat Waves, Cold Waves, Floods, and Droughts in the United States

    SciTech Connect (OSTI)

    Peterson, Thomas C.; Kaiser, Dale Patrick

    2013-01-01

    Some of the long-term changes in weather and climate extremes have occurred as expected in the warming climate, but trends are not all uniform across the United States nor easily detected amidst multiyear and decadal variations.

  12. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    defined as geothermal heat pump unit with all the necessary functional components, except for installation materials. These include geothermal heat pump, air handler, heat ...

  13. Solar Process Heat Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Process Heat Basics Commercial and industrial buildings may use the same solar technologies-photovoltaics, passive heating, daylighting, and water heating-that are used for ...

  14. A corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, S.L.

    1987-08-10

    A corrosive and erosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is pumped through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium. 3 figs., 3 tabs.

  15. Chemical heat pump

    DOE Patents [OSTI]

    Greiner, Leonard

    1980-01-01

    A chemical heat pump system is disclosed for use in heating and cooling structures such as residences or commercial buildings. The system is particularly adapted to utilizing solar energy, but also increases the efficiency of other forms of thermal energy when solar energy is not available. When solar energy is not available for relatively short periods of time, the heat storage capacity of the chemical heat pump is utilized to heat the structure as during nighttime hours. The design also permits home heating from solar energy when the sun is shining. The entire system may be conveniently rooftop located. In order to facilitate installation on existing structures, the absorber and vaporizer portions of the system may each be designed as flat, thin wall, thin pan vessels which materially increase the surface area available for heat transfer. In addition, this thin, flat configuration of the absorber and its thin walled (and therefore relatively flexible) construction permits substantial expansion and contraction of the absorber material during vaporization and absorption without generating voids which would interfere with heat transfer. The heat pump part of the system heats or cools a house or other structure through a combination of evaporation and absorption or, conversely, condensation and desorption, in a pair of containers. A set of automatic controls change the system for operation during winter and summer months and for daytime and nighttime operation to satisfactorily heat and cool a house during an entire year. The absorber chamber is subjected to solar heating during regeneration cycles and is covered by one or more layers of glass or other transparent material. Daytime home air used for heating the home is passed at appropriate flow rates between the absorber container and the first transparent cover layer in heat transfer relationship in a manner that greatly reduce eddies and resultant heat loss from the absorbant surface to ambient atmosphere.

  16. Heat recovery casebook

    SciTech Connect (OSTI)

    Lawn, J.

    1980-10-01

    Plants and factories could apply a great variety of sources and uses for valuable waste heat. Applications may be evaluated on the basis of real use for a specific waste heat, high-enough temperature and quality of work, and feasibility of mechanical heat transfer method. Classification may be by temperature, application, heat-transfer equipment, etc. Many buildings and industrial processes lend themselves well to heat-recovery strategies. Five case histories describe successful systems used by the Continental Corporation Data Center; Nabisco, Inc.; Kasper Foundry Company; Seven Up Bottling Company of Indiana; and Lehr Precision Tool company. (DCK)

  17. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon; Perez-Blanco, Horacio

    1984-01-01

    An improvement in an absorption heat pump cycle is obtained by adding adiabatic absorption and desorption steps to the absorber and desorber of the system. The adiabatic processes make it possible to obtain the highest temperature in the absorber before any heat is removed from it and the lowest temperature in the desorber before heat is added to it, allowing for efficient utilization of the thermodynamic availability of the heat supply stream. The improved system can operate with a larger difference between high and low working fluid concentrations, less circulation losses, and more efficient heat exchange than a conventional system.

  18. Heat Transfer Fluids for Solar Water Heating Systems | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Illustration of a solar water heater. Illustration of a solar water heater. Heat-transfer fluids carry heat through solar collectors and a heat exchanger to the heat storage tanks...

  19. Heat pump apparatus

    DOE Patents [OSTI]

    Nelson, Paul A.; Horowitz, Jeffrey S.

    1983-01-01

    A heat pump apparatus including a compact arrangement of individual tubular reactors containing hydride-dehydride beds in opposite end sections, each pair of beds in each reactor being operable by sequential and coordinated treatment with a plurality of heat transfer fluids in a plurality of processing stages, and first and second valves located adjacent the reactor end sections with rotatable members having multiple ports and associated portions for separating the hydride beds at each of the end sections into groups and for simultaneously directing a plurality of heat transfer fluids to the different groups. As heat is being generated by a group of beds, others are being regenerated so that heat is continuously available for space heating. As each of the processing stages is completed for a hydride bed or group of beds, each valve member is rotated causing the heat transfer fluid for the heat processing stage to be directed to that bed or group of beds. Each of the end sections are arranged to form a closed perimeter and the valve member may be rotated repeatedly about the perimeter to provide a continuous operation. Both valves are driven by a common motor to provide a coordinated treatment of beds in the same reactors. The heat pump apparatus is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators but may be used with any source of heat, including a source of low-grade heat.

  20. Characterising the acceleration phase of blast wave formation

    SciTech Connect (OSTI)

    Fox, T. E. Pasley, J.; Robinson, A. P. L.; Schmitz, H.

    2014-10-15

    Intensely heated, localised regions in uniform fluids will rapidly expand and generate an outwardly propagating blast wave. The Sedov-Taylor self-similar solution for such blast waves has long been studied and applied to a variety of scenarios. A characteristic time for their formation has also long been identified using dimensional analysis, which by its very nature, can offer several interpretations. We propose that, rather than simply being a characteristic time, it may be interpreted as the definitive time taken for a blast wave resulting from an intense explosion in a uniform media to contain its maximum kinetic energy. A scaling relation for this measure of the acceleration phase, preceding the establishment of the blast wave, is presented and confirmed using a 1D planar hydrodynamic model.

  1. Active microchannel heat exchanger

    DOE Patents [OSTI]

    Tonkovich, Anna Lee Y. [Pasco, WA; Roberts, Gary L. [West Richland, WA; Call, Charles J. [Pasco, WA; Wegeng, Robert S. [Richland, WA; Wang, Yong [Richland, WA

    2001-01-01

    The present invention is an active microchannel heat exchanger with an active heat source and with microchannel architecture. The microchannel heat exchanger has (a) an exothermic reaction chamber; (b) an exhaust chamber; and (c) a heat exchanger chamber in thermal contact with the exhaust chamber, wherein (d) heat from the exothermic reaction chamber is convected by an exothermic reaction exhaust through the exhaust chamber and by conduction through a containment wall to the working fluid in the heat exchanger chamber thereby raising a temperature of the working fluid. The invention is particularly useful as a liquid fuel vaporizer and/or a steam generator for fuel cell power systems, and as a heat source for sustaining endothermic chemical reactions and initiating exothermic reactions.

  2. Suppression of energetic particle driven instabilities with HHFW heating

    SciTech Connect (OSTI)

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; Darrow, D. S.; Gorelenkov, N.; Kramer, G.; Liu, D.; Crocker, N. A.; Kubota, S.; White, R.

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvén Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fast Wave heating.

  3. Suppression of energetic particle driven instabilities with HHFW heating

    SciTech Connect (OSTI)

    Fredrickson, E. D.; Taylor, G.; Bertelli, N.; Darrow, D. S.; Gorelenkov, N.; Kramer, G.; Liu, D.; Crocker, N. A.; Kubota, S.; White, R.

    2015-01-01

    In plasmas in the National Spherical Torus Experiment (NSTX) [Ono et al., Nucl. Fusion 40 (2000) 557] heated with neutral beams, the beam ions typically excite Energetic Particle Modes (EPMs or fishbones), and Toroidal, Global or Compressional Alfvn Eigenmodes (TAE, GAE, CAE). These modes can redistribute the energetic beam ions, altering the beam driven current profile and the plasma heating profile, or they may affect electron thermal transport or cause losses of the beam ions. In this paper we present experimental results where these instabilities, driven by the super-thermal beam ions, are suppressed with the application of High Harmonic Fast Wave heating.

  4. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    ARI-320 Water-Source Heat Pumps 10 ARI-325 Ground Water-Source Heat Pumps 13 ARI-330 Ground Source Closed-Loop Heat Pumps 11 ARI-870 Direct Geoexhange Heat Pumps 2 Other Non-ARI ...

  5. Standing wave compressor

    DOE Patents [OSTI]

    Lucas, Timothy S.

    1991-01-01

    A compressor for compression-evaporation cooling systems, which requires no moving parts. A gaseous refrigerant inside a chamber is acoustically compressed and conveyed by means of a standing acoustic wave which is set up in the gaseous refrigerant. This standing acoustic wave can be driven either by a transducer, or by direct exposure of the gas to microwave and infrared sources, including solar energy. Input and output ports arranged along the chamber provide for the intake and discharge of the gaseous refrigerant. These ports can be provided with optional valve arrangements, so as to increase the compressor's pressure differential. The performance of the compressor in either of its transducer or electromagnetically driven configurations, can be optimized by a controlling circuit. This controlling circuit holds the wavelength of the standing acoustical wave constant, by changing the driving frequency in response to varying operating conditions.

  6. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott

    2003-02-11

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase-shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in the direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  7. Piezoelectric wave motor

    DOE Patents [OSTI]

    Yerganian, Simon Scott

    2001-07-17

    A piezoelectric motor having a stator in which piezoelectric elements are contained in slots formed in the stator transverse to the desired wave motion. When an electric field is imposed on the elements, deformation of the elements imposes a force perpendicular to the sides of the slot, deforming the stator. Appropriate frequency and phase shifting of the electric field will produce a wave in the stator and motion in a rotor. In a preferred aspect, the piezoelectric elements are configured so that deformation of the elements in direction of an imposed electric field, generally referred to as the d.sub.33 direction, is utilized to produce wave motion in the stator. In a further aspect, the elements are compressed into the slots so as to minimize tensile stresses on the elements in use.

  8. TIMING OF SHOCK WAVES

    DOE Patents [OSTI]

    Tuck, J.L.

    1955-03-01

    This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

  9. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  10. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1977-01-01

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  11. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F.; Moore, Paul B.

    1983-06-21

    An air heating and cooling system for a building includes an expansion type refrigeration circuit and a vapor power circuit. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The vapor power circuit includes two heat exchangers, one of which is disposed in series air flow relationship with the indoor refrigeration circuit heat exchanger and the other of which is disposed in series air flow relationship with the outdoor refrigeration circuit heat exchanger. Fans powered by electricity generated by a vapor power circuit alternator circulate indoor air through the two indoor heat exchangers and circulate outside air through the two outdoor heat exchangers. The system is assembled as a single roof top unit, with a vapor power generator and turbine and compressor thermally insulated from the heat exchangers, and with the indoor heat exchangers thermally insulated from the outdoor heat exchangers.

  12. Adaptive multiconfigurational wave functions

    SciTech Connect (OSTI)

    Evangelista, Francesco A.

    2014-03-28

    A method is suggested to build simple multiconfigurational wave functions specified uniquely by an energy cutoff ?. These are constructed from a model space containing determinants with energy relative to that of the most stable determinant no greater than ?. The resulting ?-CI wave function is adaptive, being able to represent both single-reference and multireference electronic states. We also consider a more compact wave function parameterization (?+SD-CI), which is based on a small ?-CI reference and adds a selection of all the singly and doubly excited determinants generated from it. We report two heuristic algorithms to build ?-CI wave functions. The first is based on an approximate prescreening of the full configuration interaction space, while the second performs a breadth-first search coupled with pruning. The ?-CI and ?+SD-CI approaches are used to compute the dissociation curve of N{sub 2} and the potential energy curves for the first three singlet states of C{sub 2}. Special attention is paid to the issue of energy discontinuities caused by changes in the size of the ?-CI wave function along the potential energy curve. This problem is shown to be solvable by smoothing the matrix elements of the Hamiltonian. Our last example, involving the Cu{sub 2}O{sub 2}{sup 2+} core, illustrates an alternative use of the ?-CI method: as a tool to both estimate the multireference character of a wave function and to create a compact model space to be used in subsequent high-level multireference coupled cluster computations.

  13. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, Stanley P. (Los Alamos, NM)

    1988-01-01

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive.

  14. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1988-03-08

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  15. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1987-03-12

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  16. RADIATION WAVE DETECTOR

    DOE Patents [OSTI]

    Wouters, L.F.

    1958-10-28

    The detection of the shape and amplitude of a radiation wave is discussed, particularly an apparatus for automatically indicating at spaced lntervals of time the radiation intensity at a flxed point as a measure of a radiation wave passing the point. The apparatus utilizes a number of photomultiplier tubes surrounding a scintillation type detector, For obtainlng time spaced signals proportional to radiation at predetermined intervals the photolnultiplier tubes are actuated ln sequence following detector incidence of a predetermined radiation level by electronic means. The time spaced signals so produced are then separately amplified and relayed to recording means.

  17. Quantum positron acoustic waves

    SciTech Connect (OSTI)

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  18. Compressional instability in the solar wind driven by wave dissipation

    SciTech Connect (OSTI)

    Dougherty, M.K. ); McKenzie, J.F. )

    1991-01-01

    In this paper, the authors examine the stability of a steady solar wind dissipatively heated by Alfven waves whose relative amplitude is saturated at a given level by nonlinear processes. It is shown that long-wavelength compressional modes can be driven unstable by dissipative heating arising from short-wavelength saturated Alfven waves. Analytic expressions are derived for the marginal stability condition and the growth rates in the unstable region for the case of a moderate to low {beta} plasma. These are supplemented by a numerical solution of the full MHD dispersion equation, including dissipative Alfvenic effects, which confirms the approximate analysis. It is shown that the growth time of the instability can be of the order of 7 times the characteristic period of an Alfven wave for a wide range of parameters appropriate to the solar wind. The implication is that the compressional instability driven by dissipative Alfven waves could play a significant role in the large-scale heating and dynamics of the solar wind, particularly in the supersonic region.

  19. Heat Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool Home Heating Systems Heat Distribution Systems Heat Distribution Systems Radiators are used in steam and hot water heating. | Photo courtesy of iStockphoto...

  20. Waste Heat Management Options: Industrial Process Heating Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat Management Options Industrial Process Heating Systems By Dr. Arvind C. Thekdi E-mail: athekdi@e3minc.com E3M, Inc. August 20, 2009 2 Source of Waste Heat in Industries * Steam Generation * Fluid Heating * Calcining * Drying * Heat Treating * Metal Heating * Metal and Non-metal Melting * Smelting, agglomeration etc. * Curing and Forming * Other Heating Waste heat is everywhere! Arvind Thekdi, E3M Inc Arvind Thekdi, E3M Inc 3 Waste Heat Sources from Process Heating Equipment * Hot gases -

  1. Water-heating dehumidifier

    DOE Patents [OSTI]

    Tomlinson, John J.

    2006-04-18

    A water-heating dehumidifier includes a refrigerant loop including a compressor, at least one condenser, an expansion device and an evaporator including an evaporator fan. The condenser includes a water inlet and a water outlet for flowing water therethrough or proximate thereto, or is affixed to the tank or immersed into the tank to effect water heating without flowing water. The immersed condenser design includes a self-insulated capillary tube expansion device for simplicity and high efficiency. In a water heating mode air is drawn by the evaporator fan across the evaporator to produce cooled and dehumidified air and heat taken from the air is absorbed by the refrigerant at the evaporator and is pumped to the condenser, where water is heated. When the tank of water heater is full of hot water or a humidistat set point is reached, the water-heating dehumidifier can switch to run as a dehumidifier.

  2. Fluidized bed heat treating system

    SciTech Connect (OSTI)

    Ripley, Edward B; Pfennigwerth, Glenn L

    2014-05-06

    Systems for heat treating materials are presented. The systems typically involve a fluidized bed that contains granulated heat treating material. In some embodiments a fluid, such as an inert gas, is flowed through the granulated heat treating medium, which homogenizes the temperature of the heat treating medium. In some embodiments the fluid may be heated in a heating vessel and flowed into the process chamber where the fluid is then flowed through the granulated heat treating medium. In some embodiments the heat treating material may be liquid or granulated heat treating material and the heat treating material may be circulated through a heating vessel into a process chamber where the heat treating material contacts the material to be heat treated. Microwave energy may be used to provide the source of heat for heat treating systems.

  3. Heat storage duration

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

  4. Hydride heat pump

    DOE Patents [OSTI]

    Cottingham, James G.

    1977-01-01

    Method and apparatus for the use of hydrides to exhaust heat from one temperature source and deliver the thermal energy extracted for use at a higher temperature, thereby acting as a heat pump. For this purpose there are employed a pair of hydridable metal compounds having different characteristics working together in a closed pressure system employing a high temperature source to upgrade the heat supplied from a low temperature source.

  5. Heating performances of a IC in-blanket ring array

    SciTech Connect (OSTI)

    Bosia, G.; Ragona, R.

    2015-12-10

    An important limiting factor to the use of ICRF as candidate heating method in a commercial reactor is due to the evanescence of the fast wave in vacuum and in most of the SOL layer, imposing proximity of the launching structure to the plasma boundary and causing, at the highest power level, high RF standing and DC rectified voltages at the plasma periphery, with frequent voltage breakdowns and enhanced local wall loading. In a previous work [1] the concept for an Ion Cyclotron Heating & Current Drive array (and using a different wave guide technology, a Lower Hybrid array) based on the use of periodic ring structure, integrated in the reactor blanket first wall and operating at high input power and low power density, was introduced. Based on the above concept, the heating performance of such array operating on a commercial fusion reactor is estimated.

  6. Electron heating during discharges driven by thermionic emission

    SciTech Connect (OSTI)

    Levko, D.; Krasik, Ya. E.

    2014-11-15

    The heating of plasma electrons during discharges driven by thermionic emission is studied using one-dimensional particle-in-cell Monte Carlo collisions modeling that self-consistently takes the dependence of the thermionic current on the plasma parameters into account. It is found that at a gas pressure of 10{sup 2?}Pa the electron two-stream instability is excited. As a consequence, the electrostatic plasma wave propagates from the cathode to the anode. The trapping of electrons by this wave contributes noticeably to the heating of the plasma. At a larger gas pressure, this instability is not excited. As a consequence, plasma electrons are heated only because of the generation of energetic electrons in ionization events and the scattering of emitted electrons.

  7. Electroconvection under injection from cathode and heating from above

    SciTech Connect (OSTI)

    Mordvinov, A. N.; Smorodin, B. L.

    2012-05-15

    We study the electroconvection that appears in a nonuniformly heated, poorly conducting liquid in a parallel-plate horizontal capacitor due to the action of an external static electric field on the charge injected from the cathode. It is shown that the heating of the layer from above prevents steady-state convection and that, unlike the isothermal situation, electroconvection can appear in the oscillatory manner as a result of direct Hopf bifurcation. The effect of the heating intensity, the intensity of charge injection from the cathode, and the charge mobility on the thresholds of oscillatory and monotonic electroconvection is analyzed and the characteristic scales and frequencies of critical perturbations are determined. The nonlinear wave and steady-state regimes of the 2D convective structures formed in the poorly conducting liquid under the action of thermogravitational and injection mechanisms of convection are analyzed. The domains of existence of standing, traveling, and modulated waves are determined.

  8. Geothermal Heat Pumps | Department of Energy

    Energy Savers [EERE]

    Heat Pump Systems Geothermal Heat Pumps Geothermal Heat Pumps Watch how geothermal heat ... As with any heat pump, geothermal and water-source heat pumps are able to heat, cool, and, ...

  9. Heat rejection system

    DOE Patents [OSTI]

    Smith, Gregory C.; Tokarz, Richard D.; Parry, Jr., Harvey L.; Braun, Daniel J.

    1980-01-01

    A cooling system for rejecting waste heat consists of a cooling tower incorporating a plurality of coolant tubes provided with cooling fins and each having a plurality of cooling channels therein, means for directing a heat exchange fluid from the power plant through less than the total number of cooling channels to cool the heat exchange fluid under normal ambient temperature conditions, means for directing water through the remaining cooling channels whenever the ambient temperature rises above the temperature at which dry cooling of the heat exchange fluid is sufficient and means for cooling the water.

  10. New Mexico Heat Flow

    SciTech Connect (OSTI)

    Shari Kelley

    2015-10-21

    This is an updated and simplified version of the New Mexico heat flow data already on the NGDS that was used for Play Fairway analysis.