Powered by Deep Web Technologies
Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Momentum spread in a relativistic electron beam in an undulator  

Science Conference Proceedings (OSTI)

The motion of the relativistic electron beam in the spatially periodic magnetic field of an undulator has been considered taking into account the effect of the incoherent field of the spontaneous undulator radiation on the motion of the electrons. An expression for the rms momentum of the electrons has been obtained. It has been shown that the momentum spread in the ultrarelativistic electron beam increases in the spontaneous incoherent emission mode. Conditions for the self-amplification of the spontaneous undulator radiation in ultrashort-wavelength free-electron lasers have been discussed.

Ognivenko, V. V., E-mail: ognivenko@kipt.kharkov.ua [National Science Center Kharkov Institute of Physics and Technology (Ukraine)

2012-11-15T23:59:59.000Z

2

Electron Beam Alignment Strategy in the LCLS Undulators  

SciTech Connect

The x-ray FEL process puts very tight tolerances on the straightness of the electron beam trajectory (2 {micro}m rms) through the LCLS undulator system. Tight but less stringent tolerances of 80 {micro}m rms vertical and 140 {micro}m rms horizontally are to be met for the placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through beam-based alignment (BBA) based on electron energy variations. Conventional alignment will set the start conditions for BBA. Precision-fiducialization of components mounted on remotely adjustable girders and the use of beam-finder wires (BFW) will satisfy placement tolerances. Girder movement due to ground motion and temperature changes will be monitored continuously by an alignment monitoring system (ADS) and remotely corrected. This stabilization of components as well as the monitoring and correction of the electron beam trajectory based on BPMs and correctors will increase the time between BBA applications. Undulator segments will be periodically removed from the undulator Hall and measured to monitor radiation damage and other effects that might degrade undulator tuning.

Nuhn, H.-D.; Emma, P.J.; Gassner, G.L.; LeCocq, C.M.; Peters, E.; Ruland, R.E.; /SLAC

2007-01-03T23:59:59.000Z

3

SCIENTIFIC POTENTIAL AND DESIGN CONSIDERATIONS FOK AN UNDULATOR BEAM LINE  

NLE Websites -- All DOE Office Websites (Extended Search)

POTENTIAL AND POTENTIAL AND DESIGN CONSIDERATIONS FOK AN UNDULATOR BEAM LINE ON ALADDIN STORAGE RING A. J. Arko, S. D. Bader, J. L. Dehmer~ S. H. Kim, G. S. Knap~, G. K. Shenoy B. W. Veal and C. E. Young Argonne National Laboratory F. C. Brown University of Illinois J. W. Weaver University of Minnesota LS -21 April 8 ~ 1~8~ 1. Introducti on The unique features of undulator radiation, i.e., high photon nux and brightness, partial coherence, small b~am divergence, spectral tunabi1ity, etc., mandate that undulators be included in the future plans for Aladdin. Tnis will make it possible to perfonn the -next generation of experiments in photon-stimulated spectroscopies. A tealn of scientists (see Appendix) has now been assembled to build an insertion device (ID) and the associated beam line

4

Estimate of Undulator Magnet Damage Due to Beam Finder Wire Measurements  

Science Conference Proceedings (OSTI)

Beam Finder Wire (BFW) devices will be installed at each break in the Undulator magnet line. These devices will scan small wires across the beam causing some electrons to lose energy through bremsstrahlung. The degraded electrons are subsequently detected downstream of a set of vertical dipole magnets after they pass through the vacuum chamber. This signal can then be used to accurately determine the beam position with respect to the BFW wire. The choice of the wire diameter, scan speed, and operating parameters, depends on the trade-off between the signal size and the radiation damage to the undulator magnets. In this note I estimate the rate of undulator magnet damage that results from scanning as a function of, wire size, scan speed, and average beam current. A separate analysis of the signal size was carried out by Wu. The damage estimate is primarily based on two sources: the first, Fasso, is used to estimate the amount of radiation generated and then absorbed by the magnets; the second, Alderman et. al., is used to estimate the amount of damage the magnet undergoes as a result of the absorbed radiation. Fasso performed a detailed calculation of the radiation, including neutron fluence, that results from a the electron beam passing through a 100 micron diamond foil inserted just in front of the undulator line. Fasso discussed the signficance of various types of radiation and stated that photoneutrons probably play a major role. The estimate in this paper assumes the neutron fluence is the only significant cause of radiation-induced demagnetization. The specific results I use from Fasso's paper are reproduced here in Figure 1, which shows the radial distribution of the integrated neutron fluence per day in the undulator magnets, and Figure 2, which shows the absorbed radiation dose all along the undulator line. In the longitudinal dimension, Fasso's calculation, (see Figure 2), shows that the radiation dose is widely distributed all along the undulator line, but is highest around 70 m from the front of the undulator line where the foil is. At the 70 m point, for the purpose of calculating the demagnetization, I chose a conservative estimate for the effective neutron flux of 1.0 x 10{sup 13} n/cm{sup 2}/day. As can be seen in Figure 1, this choice is representative of the flux nearest the beam where it is the highest. A less conservative estimate, but perhaps more accurate, estimate of the effective flux, would be the average flux in the magnet block, which is roughly one half as much.

Welch, J.

2010-12-03T23:59:59.000Z

5

The LCLS Undulator Beam Loss Monitor Readout System  

SciTech Connect

The LCLS Undulator Beam Loss Monitor System is required to detect any loss radiation seen by the FEL undulators. The undulator segments consist of permanent magnets which are very sensitive to radiation damage. The operational goal is to keep demagnetization below 0.01% over the life of the LCLS. The BLM system is designed to help achieve this goal by detecting any loss radiation and indicating a fault condition if the radiation level exceeds a certain threshold. Upon reception of this fault signal, the LCLS Machine Protection System takes appropriate action by either halting or rate limiting the beam. The BLM detector consists of a PMT coupled to a Cherenkov radiator located near the upstream end of each undulator segment. There are 33 BLMs in the system, one per segment. The detectors are read out by a dedicated system that is integrated directly into the LCLS MPS. The BLM readout system provides monitoring of radiation levels, computation of integrated doses, detection of radiation excursions beyond set thresholds, fault reporting and control of BLM system functions. This paper describes the design, construction and operational performance of the BLM readout system.

Dusatko, John; Browne, M.; Fisher, A.S.; Kotturi, D.; Norum, S.; Olsen, J.; /SLAC

2012-07-23T23:59:59.000Z

6

Resistive wall heating due to image current on the beam chamber for a superconducting undulator.  

SciTech Connect

The image-current heating on the resistive beam chamber of a superconducting undulator (SCU) was calculated based on the normal and anomalous skin effects. Using the bulk resistivity of copper for the beam chamber, the heat loads were calculated for the residual resistivity ratios (RRRs) of unity at room temperature to 100 K at a cryogenic temperature as the reference. Then, using the resistivity of the specific aluminum alloy 6053-T5, which will be used for the SCU beam chamber, the heat loads were calculated. An electron beam stored in a storage ring induces an image current on the inner conducting wall, mainly within a skin depth, of the beam chamber. The image current, with opposite charge to the electron beam, travels along the chamber wall in the same direction as the electron beam. The average current in the storage ring consists of a number of bunches. When the pattern of the bunched beam is repeated according to the rf frequency, the beam current may be expressed in terms of a Fourier series. The time structure of the image current is assumed to be the same as that of the beam current. For a given resistivity of the chamber inner wall, the application ofthe normal or anomalous skin effect will depend on the harmonic numbers of the Fourier series of the beam current and the temperature of the chamber. For a round beam chamber with a ratius r, much larger than the beam size, one can assume that the image current density as well as the density square, may be uniform around the perimeter 2{pi}r. For the SCU beam chamber, which has a relatively narrow vertical gap compared to the width, the effective perimeter was estimated since the heat load should be proportional to the inverse of the perimeter.

Kim, S. H. (Accelerator Systems Division (APS))

2012-03-27T23:59:59.000Z

7

Undulator-Based Laser Wakefield Accelerator Electron Beam Energy Spread and Emittance Diagnostic  

Science Conference Proceedings (OSTI)

The design and current status of experiments to couple the Tapered Hybrid Undulator (THUNDER) to the Lawrence Berkeley National Laboratory (LBNL) laser plasma accelerator (LPA) to measure electron beam energy spread and emittance are presented.

Bakeman, M.S.; Van Tilborg, J.; Nakamura, K.; Gonsalves, A.; Osterhoff, J.; Sokollik, T.; Lin, C.; Robinson, K.E.; Schroeder, C.B.; Toth, Cs.; Weingartner, R.; Gruner, F.; Esarey, E.; Leemans, W.P.

2010-06-01T23:59:59.000Z

8

Tuning The Laser Heater Undulator  

Science Conference Proceedings (OSTI)

The laser heater undulator for the LCLS requires different tuning techniques than the main undulators. It is a pure permanent magnet (PPM) undulator, rather than the hybrid design of the main undulators. The PPM design allows analytic calculation of the undulator fields. The calculations let errors be introduced and correction techniques be derived. This note describes how the undulator was modelled, and the methods which were found to correct potential errors in the undulator. The laser heater undulator for the LCLS is a pure permanent magnet device requiring different tuning techniques than the main undulators. In this note, the laser heater undulator is modelled and tuning techniques to compensate various errors are derived.

Wolf, Zackary

2010-12-03T23:59:59.000Z

9

An Energy-Stabilized Varied-Line-Space-Monochromator UndulatorBeam Line for PEEM Illumination and Magnetic Circular Dichroism  

Science Conference Proceedings (OSTI)

A new undulator beam line has been built and commissioned at the Advanced Light Source for illumination of the PEEM3 microscope. The beam line delivers high flux beams over an energy range from C1s through the transition metals to include the M edges of the magnetic rare earth elements. We present details of the optical design, and data on the performance of the zero-order tracking of the photon energy.

Warwick, Tony; McKinney, Wayne; Domning, Ed; Doran, Andrew; Padmore, Howard

2006-06-01T23:59:59.000Z

10

Optical Performance of the GM/CA-CAT Canted Undulator Beam lines for Protein Crystallography  

SciTech Connect

A new macromolecular crystallographic facility developed by GM/CA-CAT is operational at the Advanced Photon Source (APS). The facility consists of three beamlines: two lines based on the first 'hard' dual canted undulators and one bending magnet beamline. The ID lines are operational, and the BM line is being commissioned. Both insertion device (ID) beamlines are independently tunable over a wide energy range. The inboard ID lines have been upgraded with a new insertion device to provide enhanced performance for MAD phasing experiments near the selenium and bromine K-edges. The ID line monochromators' crystals are indirectly, cryogenically cooled for improved performance and reliability. Focusing is achieved by long bimorph mirrors in a Kirkpatrick-Baez geometry. This paper describes the design of the beam lines and the optical characterization of the mirrors and monochromators.

Fischetti, Robert F.; Yoder, Derek W.; Xu Shenglan; Stepanov, Sergey; Makarov, Oleg; Benn, Richard; Corcoran, Stephen [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Diete, Wolfgang; Schwoerer-Boehing, Markus; Signorato, Riccardo; Schroeder, Leif [ACCEL Instruments GmbH, Friedrich-Ebert Strasse 1, D-51429 Bergisch Gladbach (Germany); Berman, Lonny [National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973 (United States); Viccaro, P. James [University of Chicago, CARS-CAT, Argonne National Laboratory, Argonne, IL 60439 (United States); Smith, Janet L. [GM/CA-CAT, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439 (United States); Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States)

2007-01-19T23:59:59.000Z

11

APS undulator radiation: First results  

Science Conference Proceedings (OSTI)

The first undulator radiation has been extracted from the Advanced Photon Source (APS). The results from the characterization of this radiation are very satisfactory. With the undulator set at a gap of 15.8 mm (K=1.61), harmonics as high as the 17th were observed using a crystal spectrometer. The angular distribution of the third-harmonic radiation was measured, and the source was imaged using a zone plate to determine the particle beam emittance. The horizontal beam emittance was found to be 6.9 {plus_minus} 1.0 nm-rad, and the vertical emittance coupling was found to be less than 3%. The absolute spectral flux was measured over a wide range of photon energies, and it agrees remarkably well with the theoretical calculations based on the measured undulator magnetic field profile and the measured beam emittance. These results indicate that both the emittance of the electron beam and the undulator magnetic field quality exceed the original specifications.

Cai, Z.; Dejus, R.J.; Hartog, P.D.

1995-12-31T23:59:59.000Z

12

Undulator A diagnostics at the Advanced Photon Source  

SciTech Connect

Diagnostics of Undulator A{number_sign}2 (UA2) radiation was performed during the October 1997 mn at the Advanced Photon Source (APS). The UA2 undulator is a standard 3.3-cm-period APS Undulator A, which was positioned downstream from the center of the straight section at Sector 8. The diagnostics included the angular-spectral measurements of the undulator radiation to determine the undulator radiation absolute spectral flux and the particle beam divergence. The results of the absolute spectral flux measurements are compared to the undulator spectrum calculated from measured undulator magnetic field. The particle`s energy spread was determined from spectra comparison. Previously, the authors reported the first measurements made on Undulator A at the APS. The purpose of the present report is to summarize the results of the diagnostics performed on the Sector 8 undulator at the request of the IMM-CAT staff, and to present a more general discussion of undulator radiation sources at the APS and details of their diagnostics.

Ilinski, P.

1998-01-01T23:59:59.000Z

13

High-Brightness Beams from a Light Source Injector The Advanced Photon Source Low-Energy Undulator Test Line Linac  

E-Print Network (OSTI)

The use of existing linacs, and in particular light source injectors, for free-electron laser (FEL) experiments is becoming more common due to the desire to test FELs at ever shorter wavelengths. The high-brightness, high-current beams required by high-gain FELs impose technical specifications that most existing linacs were not designed to meet. Moreover, the need for specialized diagnostics, especially shot-to-shot data acquisition, demands substantial modification and upgrade of conventional linacs. Improvements have been made to the Advanced Photon Source (APS) injector linac in order to produce and characterize high-brightness beams. Specifically, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) FEL in support of fourth-generation light source research. The enhancements to the linac technical and diagnostic capabilities that allowed for self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm are described. Recent results, includi...

Travish, G; Borland, M; Hahne, M; Harkay, K C; Lewellen, J W; Lumpkin, Alex H; Milton, S V; Sereno, N S

2000-01-01T23:59:59.000Z

14

Reference Undulator Measurement Results  

SciTech Connect

The LCLS reference undulator has been measured 22 times during the course of undulator tuning. These measurements provide estimates of various statistical errors. This note gives a summary of the reference undulator measurements and it provides estimates of the undulator tuning errors. We measured the reference undulator many times during the tuning of the LCLS undulators. These data sets give estimates of the random errors in the tuned undulators. The measured trajectories in the reference undulator are stable and straight to within {+-}2 {micro}m. Changes in the phase errors are less than {+-}2 deg between data sets. The phase advance in the cell varies by less than {+-}2 deg between data sets. The rms variation between data sets of the first integral of B{sub x} is 9.98 {micro}Tm, and the rms variation of the second integral of B{sub x} is 17.4 {micro}Tm{sup 2}. The rms variation of the first integral of B{sub y} is 6.65 {micro}Tm, and the rms variation of the second integral of B{sub y} is 12.3 {micro}Tm{sup 2}. The rms variation of the x-position of the fiducialized beam axis is 35 {micro}m in the final production run This corresponds to an rms uncertainty in the K value of {Delta}K/K = 2.7 x 10{sup -5}. The rms variation of the y-position of the fiducialized beam axis is 4 {micro}m in the final production run.

Wolf, Z

2011-08-18T23:59:59.000Z

15

LCLS CDR Chapter 8 - Undulator  

NLE Websites -- All DOE Office Websites (Extended Search)

8 8 Undulator TECHNICAL SYNOPSIS The LCLS Undulator is made up of 33 individual undulator segments. Each undulator segment will be a permanent-magnet planar hybrid device with a period length of 30 mm and a fixed gap of nominally 6 mm. The actual gap will be adjusted as necessary to yield an effective K of 3.71. Each undulator segment is 3.42 m long, with 226 poles per jaw. The poles will be made of vanadium permendur and the magnets of a grade of NdFeB with a high intrinsic coercivity for better resistance to radiation-induced demagnetization. The electron beam will be focused by a separated function FODO lattice, using permanent-magnet quadrupoles placed between the undulator segments. These focusing or defocusing lenses will share the drift spaces between the

16

Micropole undulator  

DOE Patents (OSTI)

Micropole undulators for use in the generation of x-rays from moving charged particles are disclosed. Two rows of spaced apart poles are arranged so that each pole produces a magnetic field aligned with all other similar fields. The poles are the ends of "C"-shaped magnets. In each row, adjacent poles are separated by spacers made of a superconducting material.

Tatchyn, Roman O. (Palo Alto, CA); Csonka, Paul L. (Eugene, OR); Cremer, Jay T. (Burlingame, CA)

1990-12-11T23:59:59.000Z

17

Planar Undulator Considerations rw2  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 July 2002 Planar Undulator Considerations John C. Sheppard Stanford Linear Accelerator Center Stanford University Menlo Park, California Abstract: This note consists of informal working notes that document an effort to understand the TESLA baseline, unpolarized, undulator based positron source. This is the first step in the design process of an undulator based positron system for the NLC. The expressions and methodologies developed herein are used in subsequent memos that reference this note. In regards to the TESLA design, it is found that a 135 m long (versus 100 m length) undulator is consistent with the performance descriptions in the TDR text. And while operation of the TESLA system with a 250 GeV drive beam energy provides a safety margin of a factor of 2

18

The Optimized Design of Undulators for the HiSOR Users Experiments  

Science Conference Proceedings (OSTI)

The HiSOR is a small racetrack type storage ring aiming for usage of synchrotron radiation. This ring is equipped with two undulators. One of them is a linear undulator and another is a helical one. These undulators serve high-flux VUV photon beams. Therefore, these beamlines are oversubscribed mainly for the high precision photo-electron spectroscopy experiments to investigate various materials. To solve this problem, we investigated possibilities to replace present undulators and beamline optics to those with better performance. One of such candidate undulator beamlines is a two-branch-beamline with a single elliptical undulator. Another candidate is a beamline equipped with a quasi-periodic undulator.

Sasaki, S.; Miyamoto, A.; Namatame, H.; Taniguchi, M. [Hiroshima Synchrotron Radiation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima (Japan)

2010-06-23T23:59:59.000Z

19

An Undulator based Polarized Positron Source for CLIC  

NLE Websites -- All DOE Office Websites (Extended Search)

is proposed that uses circularly polarized gamma rays generated from the main 250 GeV electron beam. The beam passes through a helical superconducting undulator with a magnetic...

20

Transmission Grating Measurements of Undulator K  

SciTech Connect

This study was undertaken to understand the practicalities of determine K differences in the undulator modules by measuring single-shot x-ray spectra of the spontaneous radiation with a transmissive grating spectrometer under development to measure FEL spectra. Since the quality of the FEL is dependent on a uniform K value in all the undulator modules, being able to measure the relative undulator K values is important. Preliminary results were presented in a presentation, 'Use of FEL Off-Axis Zone Plate Spectrometer to Measure Relative K by the Pinhole/Centroid Method', at the 'LCLS Beam-Based Undulator K Measurements Workshop' on November 14, 2005 (UCRL-PRES-217281). This study applies equally well to reflective gratings of the appropriate period and inclinations.

Bionta, R. M.

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Undulator Transportation Test Results  

SciTech Connect

A test was performed to determine whether transporting and handling the undulators makes any changes to their properties. This note documents the test. No significant changes to the test undulator were observed. After the LCLS undulators are tuned and fiducialized in the Magnetic Measurement Facility (MMF), they must be transported to storage buildings and transported to the tunnel. It has been established that the undulators are sensitive to temperature. We wish to know whether the undulators are also sensitive to the vibrations and shocks of transportation. To study this issue, we performed a test in which an undulator was measured in the MMF, transported to the tunnel, brought back to the MMF, and re-measured. This note documents the test and the results.

Wolf, Zachary

2010-11-17T23:59:59.000Z

22

CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION INSIDE BEAM CHAMBERS  

NLE Websites -- All DOE Office Websites (Extended Search)

CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION INSIDE BEAM CHAMBERS S. H. Kim January 8, 2001 1. Introduction and Summary The ceramic beam chambers in the sections of the kicker magnets for the beam injection and extraction in the Advanced Photon Source (APS) are made of alumina. The inner surface of the ceramic chamber is coated with a conductive paste. The choice of coating thickness is intended to reduce the shielding of the pulsed kicker magnetic field while containing the electromagnetic fields due to the beam bunches inside the chamber, and minimize the Ohmic heating due to the fields on the chamber [1]. The thin coating generally does not give a uniform surface resistivity for typical dimensions of the ceramic chambers in use. The chamber cross section is a circular or

23

Magnetic Measurement Results of the LCLS Undulator Quadrupoles  

Science Conference Proceedings (OSTI)

This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

Anderson, S

2011-08-18T23:59:59.000Z

24

An Undulator Based Polarized Positron Source for CLIC  

Science Conference Proceedings (OSTI)

A viable positron source scheme is proposed that uses circularly polarized gamma rays generated from the main 250 GeV electron beam. The beam passes through a helical superconducting undulator with a magnetic field of {approx} 1 Tesla and a period of 1.15 cm. The gamma-rays produced in the undulator in the energy range between {approx} 3 MeV - 100 MeV will be directed to a titanium target and produce polarized positrons. The positrons are then captured, accelerated and transported to a Pre-Damping Ring (PDR). Detailed parameter studies of this scheme including positron yield, and undulator parameter dependence are presented. Effects on the 250 GeV CLIC main beam, including emittance growth and energy loss from the beam passing through the undulator are also discussed.

Liu, Wanming; /Argonne; Gai, Wei; /Argonne; Rinolfi, Louis; /CERN; Sheppard, John; /SLAC

2012-07-02T23:59:59.000Z

25

Algorithms to Automate LCLS Undulator Tuning  

Science Conference Proceedings (OSTI)

Automation of the LCLS undulator tuning offers many advantages to the project. Automation can make a substantial reduction in the amount of time the tuning takes. Undulator tuning is fairly complex and automation can make the final tuning less dependent on the skill of the operator. Also, algorithms are fixed and can be scrutinized and reviewed, as opposed to an individual doing the tuning by hand. This note presents algorithms implemented in a computer program written for LCLS undulator tuning. The LCLS undulators must meet the following specifications. The maximum trajectory walkoff must be less than 5 {micro}m over 10 m. The first field integral must be below 40 x 10{sup -6} Tm. The second field integral must be below 50 x 10{sup -6} Tm{sup 2}. The phase error between the electron motion and the radiation field must be less than 10 degrees in an undulator. The K parameter must have the value of 3.5000 {+-} 0.0005. The phase matching from the break regions into the undulator must be accurate to better than 10 degrees. A phase change of 113 x 2{pi} must take place over a distance of 3.656 m centered on the undulator. Achieving these requirements is the goal of the tuning process. Most of the tuning is done with Hall probe measurements. The field integrals are checked using long coil measurements. An analysis program written in Matlab takes the Hall probe measurements and computes the trajectories, phase errors, K value, etc. The analysis program and its calculation techniques were described in a previous note. In this note, a second Matlab program containing tuning algorithms is described. The algorithms to determine the required number and placement of the shims are discussed in detail. This note describes the operation of a computer program which was written to automate LCLS undulator tuning. The algorithms used to compute the shim sizes and locations are discussed.

Wolf, Zachary

2010-12-03T23:59:59.000Z

26

Coherent Radiation Effects in the LCLS Undulator  

Science Conference Proceedings (OSTI)

For X-ray Free-Electron Lasers such as LCLS and TESLA FEL, a change in the electron energy while amplifying the FEL radiation can shift the resonance condition out of the bandwidth of the FEL. The largest sources of energy loss is the emission of incoherent undulator radiation. Because the loss per electron depends only on the undulator parameters and the beam energy, which are fixed for a given resonant wavelength, the average energy loss can be compensated for by a fixed taper of the undulator. Coherent radiation has a strong enhancement proportional to the number of electrons in the bunch for frequencies comparable to or longer than the bunch dimension. If the emitted coherent energy becomes comparable to that of the incoherent emission, it has to be included in the taper as well. However, the coherent loss depends on the bunch charge and the applied compression scheme and a change of these parameters would require a change of the taper. This imposes a limitation on the practical operation of Free-Electron Lasers, where the taper can only be adjusted manually. In this presentation we analyze the coherent emission of undulator radiation and transition undulator radiation for LCLS, and estimate whether the resulting energy losses are significant for the operation of LCLS.

Reiche, S.; /UCLA; Huang, Z.; /SLAC

2010-12-14T23:59:59.000Z

27

LCLS Undulator Commissioning, Alignment, and Performance  

SciTech Connect

The LCLS x-ray FEL has recently achieved its 1.5-Angstrom lasing and saturation goals upon first trial. This was achieved as a result of a thorough pre-beam checkout, both traditional and beam-based component alignment techniques, and high electron beam brightness. The x-ray FEL process demands very tight tolerances on the straightness of the electron beam trajectory (<5 {micro}m) through the LCLS undulator system. Tight, but less stringent tolerances of {approx}100 {micro}m rms were met for the transverse placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through a beam-based alignment (BBA) method, which is implemented using large electron energy variations and sub-micron resolution cavity beam position monitors (BPM), with precise conventional alignment used to set the starting conditions. Precision-fiducialization of components mounted on remotely adjustable girders, and special beam-finder wires (BFW) at each girder have been used to meet these challenging alignment tolerances. Longer-term girder movement due to ground motion and temperature changes are being monitored, continuously, by a unique stretched wire and hydrostatic level Alignment Diagnostics System (ADS).

Nuhn, Heinz-Dieter

2009-10-30T23:59:59.000Z

28

The JLAB UV Undulator  

SciTech Connect

Recently the JLAB FEL has demonstrated 150 W at 400 nm and 200 W at 700 nm using a 33mm period undulator designed and built by STI Optronics. This paper describes the undulator design and performance. Two key requirements were low phase error, zero steering and offset end fields and small rms trajectory errors. We will describe a new genetic algorithm that allowed phase error minimization to 1.8 degrees while exceeding specifications. The mechanical design, control system and EPICS interface will also be summarized.

Gottschalk, Steven C. [STI, Washington, USA; Benson, Steven V. [JLAB; Moore, Steven Wesley [JLAB

2013-05-01T23:59:59.000Z

29

Efficiency calculations for the direct energy conversion system of the Cadarache neutral beam injectors  

DOE Green Energy (OSTI)

A prototype energy conversion system is presently in operation at Cadarache, France. Such a device is planned for installation on each six neutral beam injectors for use in the Tore Supra experiment in 1989. We present calculations of beam performance that may influence design considerations. The calculations are performed with the DART charged particle beam code. We investigate the effects of cold plasma, direct energy conversion and neutral beam production. 4 refs., 6 figs., 4 tabs.

White, R.C.

1988-06-08T23:59:59.000Z

30

Performance Evaluation of Undulator Radiation at CEBAF  

Science Conference Proceedings (OSTI)

The performance of undulator radiation (UR) at CEBAF with a 3.5 m helical undulator is evaluated and compared with APS undulator-A radiation in terms of brilliance, peak brilliance, spectral flux, flux density and intensity distribution.

Chuyu Liu, Geoffrey Krafft, Guimei Wang

2010-05-01T23:59:59.000Z

31

ANL/APS/TB-20 Bremsstrahlung Scattering Calculations for the Beam Stops  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Bremsstrahlung Scattering Calculations for the Beam Stops and Collimators in the APS Insertion-Device Beamlines P. K. Job, D. R. Haeffner, and D. Shu Contents 1. Introduction........................................................................................................1 2. Calculation Method............................................................................................2 3. Results and Discussion ......................................................................................3 a. Thick Lead and Tungsten Targets................................................................3 b. Monochromatic Aperture and Bremsstrahlung Stop ...................................4 c. Collimators for the White-Beam Transport .................................................5

32

Undulator-Based Production of Polarized Photons  

Science Conference Proceedings (OSTI)

"Project Title: Undulator-Based Production of Polarized Photons" DOE Contract Number: FG02-04ER41355 Principal Investigator: Prof. Kirk McDonald Period of Performance: 09/10/2004 thru 08/31/2006 This award was to fund Princeton's activity on SLAC experiment E166, "Undulator-Based Production of Polarized Positrons" which was performed at SLAC during June and September 2005. Princeton U. fabricated a magnetic spectrometer for this experiment, and participated in the commissioning, operation, and analysis of the experiment, for which Prof. McDonald was a co-spokesperson. The experiment demonstrated that an intense positron beam with 80% longitudinal polarization could be generated by conversion of MeVenergy circularly polarized photons in a thin target, which photons were generated by passage of high-energy electrons through a helical undulator. This technique has since been adopted as the baseline for the polarized positron source of the proposed International Linear Collider. Results of the experiment have been published in Physical Review Letters, vol 100, p 210801 (2008) [see attached .pdf file], and a longer paper is in preparation.

Professor Kirk McDonald

2008-05-29T23:59:59.000Z

33

Self-stimulated Emission of Undulator Radiation  

E-Print Network (OSTI)

We attract attention that interaction of particle in downstream undulator with its own wavelet emitted in upstream undulator could be as strong as with the frictional field in undulator itself. This phenomenon could be used for enhancement of signal from pickup undulators in optical stochastic cooling methods as well as for increase of damping.

Bessonov, E G; Mikhailichenko, A A; Osipov, A L

2010-01-01T23:59:59.000Z

34

New implementation of an SX700 undulator beamline at the Advanced Light Source  

Science Conference Proceedings (OSTI)

A newly engineered implementation of a collimated SX700-style beam line for soft x-rays is described. This facility is operational at the Advanced Light Source and delivers high brightness undulator beams to a scanning zone plate microscope and to an array of end stations for x-ray spectroscopic studies of wet surfaces. Switching between branches is motorized, servo-steering systems maintain throughput and the monochromator works together with the elliptical undulator for a fully automated facility.

Warwick, T.; Andresen, N.; Comins, J.; Kaznacheyev, K.; Kortright, J.B.; McKean, P.J.; Padmore, H.A.; Shuh, D.K.; Stevens, T.; Tyliszczak, T.

2004-06-04T23:59:59.000Z

35

Coherent Radiation in an Undulator  

E-Print Network (OSTI)

solving the particle-radiation system in a self-consistentto clarify the coherent radiation mechanism. References 1.the Proceedings Coherent Radiation in an Undulator Y,H. Chin

Chin, Y.H.

2011-01-01T23:59:59.000Z

36

Photon energy tunability of advanced photon source undulators  

SciTech Connect

At a fixed storage ring energy, the energy of the harmonics of an undulator can be shifted or ''tuned'' by changing the magnet gap of the device. The possible photon energy interval spanned in this way depends on the undulator period, minimum closed gap, minimum acceptable photon intensity and storage ring energy. The minimum magnet gap depends directly on the stay clear particle beam aperture required for storage ring operation. The tunability of undulators planned for the Advanced Photon Source with first harmonic photon energies in the range of 5 to 20 keV are discussed. The results of an analysis used to optimize the APS ring energy is presented and tunability contours and intensity parameters are presented for two typical classes of devices.

Viccaro, P.J.; Shenoy, G.K.

1987-08-01T23:59:59.000Z

37

Dose measurements and calculations in the epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR)  

SciTech Connect

The characteristics of the epithermal neutron beam at BMRR were measured, calculated, and reported. This beam has already been used for animal irradiations. We anticipate that it will be used for clinical trials. Thermal and epithermal neutron flux densities distributions, and dose rate distributions, as a function of depth were measured in a lucite dog-head phantom. Monte Carlo calculations were performed and compared with the measured values. 2 refs., 4 figs., 1 tab.

Fairchild, R.G.; Greenberg, D.; Kamen, Y.; Fiarman, S. (Brookhaven National Lab., Upton, NY (USA). Medical Dept.); Benary, V. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. Tel Aviv Univ. (Israel)); Kalef-Ezra, J. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. Ioannina Univ. (Greece)); Wielopolski, L. (Brookhaven National Lab., Upton, NY (USA). Medical Dept. State Univ. of New

1990-01-01T23:59:59.000Z

38

Interferometry using undulator sources  

Science Conference Proceedings (OSTI)

Optical systems for extreme ultraviolet (EUV) lithography need to use optical components with subnanometer surface figure error tolerances to achieve diffraction-limited performance [M.D. Himel, in {ital Soft} {ital X}-{ital Ray} {ital Projection} {ital Lithography}, A.M. Hawryluk and R.H. Stulen, eds. (OSA, Washington, D.C., 1993), {bold 18}, 1089, and D. Attwood {ital et} {ital al}., Appl. Opt. {bold 32}, 7022 (1993)]. Also, multilayer-coated optics require at-wavelength wavefront measurement to characterize phase effects that cannot be measured by conventional optical interferometry. Furthermore, EUV optical systems will additionally require final testing and alignment at the operational wavelength for adjustment and reduction of the cumulative optical surface errors. Therefore, at-wavelength interferometric measurement of EUV optics will be the necessary metrology tool for the successful development of optics for EUV lithography. An EUV point diffraction interferometer (PDI) has been developed at the Center for X-Ray Optics (CXRO) and has been already in operation for a year [K. Goldberg {ital et} {ital al}., in {ital Extreme} {ital Ultra} {ital Lithography}, D.T. Attwood and F. Zernike, eds. (OSA, Washington, D.C., 1994), K. Goldberg {ital et} {ital al}., Proc. SPIE {bold 2437}, to be published, and K. Goldberg {ital et} {ital al}., J. Vac. Sci. Technol. B {bold 13}, 2923 (1995)] using an undulator radiation source and coherent optics beamline at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory. An overview of the PDI interferometer and some EUV wavefront measurements obtained with this instrument will be presented. In addition, future developments planned for EUV interferometry at CXRO towards the measurement of actual EUV lithography optics will be shown. {copyright} {ital 1996 American Institute of Physics.}

Beguiristain, R.; Goldberg, K.A.; Tejnil, E.; Bokor, J.; Medecki, H.; Attwood, D.T.; Jackson, K. [Center for X-ray Optics, Lawrence Berkeley Laboratory, 1 Cyclotron Rd., MS 2-400, Berkeley, CA 94720 (United States)

1996-09-01T23:59:59.000Z

39

Performance Calculations of APPLE II Undulator  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Photon Source (formerly MD-TN-2008-001) R. Dejus - MD GroupASD S. Sasaki - Hiroshima Synchrotron Radiation Center, Higashi-Hiroshima, 739-0046, Japan Rev. 3, November...

40

Geometry and parameter optimization of PETRA undulator beamline slits  

SciTech Connect

The undulator beamline at the storage ring PETRA of the Hamburger Synchrotronstrahlungslabor HASYLAB delivers hard x-ray photons usable up to 300 keV. The total power of the beam is now up to 7.5 kW with closed gap and 60 mA stored particle beam. After a planned upgrade of the undulator, the power can increase to about 15 kW. The vertical white beam slit for the PETRA undulator beamline is located at about 105 m from the source. The worst case for the slit is when all the power is absorbed in one part of the slit system, which the slits must survive. This paper presents the results from parameter optimization in the worst case. The goal of the optimization is to minimize the maximum temperature of the slits. The geometrical parameters are the cooling hole size, its location from the surface, and the distance between holes. The worst case is found by moving the x-ray beam to all the possible locations. The maximum temperature of an optimized slit that has a two degree angle with the beam is about 192 degrees Celsius. The corresponding thermal stress in the slit is very low. The analysis assumptions, modeling, results, discussion, and conclusion will be given in the paper. 5 refs., 4 figs.

Wang, Z. [Argonne National Lab., IL (United States); Hahn, U. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Hamburger Synchrotronstrahlungslabor

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A new method to calculate the beam charge for an integrating current transformer  

SciTech Connect

The integrating current transformer (ICT) is a magnetic sensor widely used to precisely measure the charge of an ultra-short-pulse charged particle beam generated by traditional accelerators and new laser-plasma particle accelerators. In this paper, we present a new method to calculate the beam charge in an ICT based on circuit analysis. The output transfer function shows an invariable signal profile for an ultra-short electron bunch, so the function can be used to evaluate the signal quality and calculate the beam charge through signal fitting. We obtain a set of parameters in the output function from a standard signal generated by an ultra-short electron bunch (about 1 ps in duration) at a radio frequency linear electron accelerator at Tsinghua University. These parameters can be used to obtain the beam charge by signal fitting with excellent accuracy.

Wu Yuchi; Han Dan; Zhu Bin; Dong Kegong; Tan Fang; Gu Yuqiu [Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang, Sichuan 621900 (China)

2012-09-15T23:59:59.000Z

42

A PERMANENT MAGNET UNDULATOR FOR SPEAR  

E-Print Network (OSTI)

BLOCK — Figure 1 LBL - SSRL UNDULATOR BLOCK MAGNETIZATIONtested at LBL for use at SSRL. It was installed in the SPEAR

Halbach, K.

2010-01-01T23:59:59.000Z

43

Calculation of synchrotron radiation from high intensity electron beam at eRHIC  

Science Conference Proceedings (OSTI)

The Electron-Relativistic Heavy Ion Collider (eRHIC) at Brookhaven National Lab is an upgrade project for the existing RHIC. A 30 GeV energy recovery linac (ERL) will provide a high charge and high quality electron beam to collide with proton and ion beams. This will improve the luminosity by at least 2 orders of magnitude. The synchrotron radiation (SR) from the bending magnets and strong quadrupoles for such an intense beam could be penetrating the vacuum chamber and producing hazards to electronic devices and undesired background for detectors. In this paper, we calculate the SR spectral intensity, power density distributions and heat load on the chamber wall. We suggest the wall thickness required to stop the SR and estimate spectral characteristics of the residual and scattered background radiation outside the chamber.

Jing Y.; Chubar, O.; Litvinenko, V.

2012-05-20T23:59:59.000Z

44

HELICAL UNDULATOR FOR TEST AT SLAC  

NLE Websites -- All DOE Office Websites (Extended Search)

6 CBN 02-10 October 2002 Pulsed Helical Undulator for Test at SLAC Polarized Positron Production Scheme Alexander A. Mikhailichenko Cornell University LEPP Ithaca, New York...

45

Dose calculations using MARS for Bremsstrahlung beam stops and collimators in APS beamline stations.  

Science Conference Proceedings (OSTI)

The Monte Carlo radiation transport code MARS is used to model the generation of gas bremsstrahlung (GB) radiation from 7-GeV electrons which scatter from residual gas atoms in undulator straight sections within the Advanced Photon Source (APS) storage ring. Additionally, MARS is employed to model the interactions of the GB radiation with components along the x-ray beamlines and then determine the expected radiation dose-rates that result. In this manner, MARS can be used to assess the adequacy of existing shielding or the specifications for new shielding when required. The GB radiation generated in the 'thin-target' of an ID straight section will consist only of photons in a 1/E-distribution up to the full energy of the stored electron beam. Using this analytical model, the predicted GB power for a typical APS 15.38-m insertion device (ID) straight section is 4.59 x 10{sup -7} W/nTorr/mA, assuming a background gas composed of air (Z{sub eff} = 7.31) at room temperature (293K). The total GB power provides a useful benchmark for comparisons between analytical and numerical approaches. We find good agreement between MARS and analytical estimates for total GB power. The extended straight section 'target' creates a radial profile of GB, which is highly peaked centered on the electron beam. The GB distribution reflects the size of the electron beam that creates the radiation. Optimizing the performance of MARS in terms of CPU time per incident trajectory requires the use of a relatively short, high-density gas target (air); in this report, the target density is {rho}L = 2.89 x 10{sup -2} g/cm{sup 2} over a length of 24 cm. MARS results are compared with the contact dose levels reported in TB-20, which used EGS4 for radiation transport simulations. Maximum dose-rates in 1 cc of tissue phantom form the initial basis for comparison. MARS and EGS4 results are approximately the same for maximum 1-cc dose-rates and attenuation in the photon-dominated regions; for thicker targets, however, the dose-rate no longer depends only on photon attenuation, as photoneutrons (PNs) begin to dominate. The GB radiation-induced photoneutron measurements from four different metals (Fe, Cu, W, and Pb) are compared with MARS predictions. The simulated dose-rates for beamline 6-ID are approximately 3-5 times larger than the measured values, whereas those for beamline 11-ID are much closer. Given the uncertainty in local values of pressure and Z, the degree of agreement between MARS and the PN measurements is good. MARS simulations of GB-induced radiation in and around the FOE show the importance of using actual pressure and gas composition (Z{sub eff}) to obtain accurate PN dose. For a beam current of 300 mA, extrapolating pressure data measured in previously published studies predicts an average background gas pressure of 27 nTorr. An average atomic number of Z{sub eff} = 4.0 is obtained from the same studies. In addition, models of copper masks presently in use at the APS are included. Simulations show that inclusion of exit masks make significant differences in both the radiation spatial distribution within the FOE, as well as the peak intensity. Two studies have been conducted with MARS to assess shielding requirements. First, dose levels in contact with the outside wall of the FOE are examined when GB radiation strikes Pb or W beam stops of varying transverse size within the FOE. Four separate phantom regions are utilized to measure the dose, two at beam elevation and two at the horizontal beam position. The first two phantoms are used for scoring FOE dose along the outside and back walls, horizontally; the second two collect dose on the roof and vertically on the back wall. In all cases, the beam stop depth is maintained at 30 cm. Inclusion of front end (FE) exit masks typically cause a 1-2 order-of-magnitude increase in the dose-rates relative to the case with no masks. Masks place secondary bremsstrahlung sources inside the FOE, and therefore they must be shielded appropriately. The MARS model does not fully account for all shielding present

Dooling, J.; Accelerator Systems Division (APS)

2010-11-01T23:59:59.000Z

46

LCLS-II Undulator Tolerance Analysis  

SciTech Connect

The SLAC National Accelerator Laboratory is building a new FEL user facility, LCLS-II, as a major upgrade to the Linear Coherent Light Source (LCLS). The upgrade will include two new Free Electron Lasers (FELs), to generate soft (SXR) and hard x-ray (HXR) SASE FEL radiation, based on planar, variable gap hybrid undulators with two different undulator periods (SXU: 55 mm, HXU: 32 mm). An algebraic FEL tolerance analysis for the undulator lines, including tuning, alignment, and phase correction tolerances has been performed. The methods and results are presented in this paper.

Nuhn, H.-D.; /SLAC; Marks, S.; /LBL, Berkeley; Wu, J.; /SLAC

2012-06-06T23:59:59.000Z

47

Compact X-ray Free Electron Laser from a Laser-plasma Accelerator using a Transverse Gradient Undulator  

SciTech Connect

Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent FEL radiation generation. In this paper, we discuss a method to compensate the effects of beam energy spread by introducing a transverse field variation into the FEL undulator. Such a transverse gradient undulator together with a properly dispersed beam can greatly reduce the effects of electron energy spread and jitter on FEL performance. We present theoretical analysis and numerical simulations for SASE and seeded extreme ultraviolet and soft x-ray FELs based on laser plasma accelerators.

Huang, Zhirong; Ding, Yuantao; /SLAC; Schroeder, Carl B.; /LBL, Berkeley

2012-09-13T23:59:59.000Z

48

New Science with the APS Superconducting Undulator  

NLE Websites -- All DOE Office Websites (Extended Search)

| 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed New Science with the APS Superconducting Undulator JULY 24, 2013 Bookmark and Share The Nature...

49

Fast pulsed excitation wiggler or undulator  

DOE Patents (OSTI)

A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

Van Steenbergen, A.

1989-06-20T23:59:59.000Z

50

Fast pulsed excitation wiggler or undulator  

DOE Patents (OSTI)

A fast pulsed excitation, electromagnetic undulator or wiggler, employing geometrically alternating substacks of thin laminations of ferromagnetic material, together with a single turn current loop excitation of the composite assembly, of such shape and configuration that intense, spatially alternating, magnetic fields are generated; for use as a pulsed mode undulator or wiggler radiator, for use in a Free Electron Laser (FEL) type radiation source or, for use in an Inverse Free Electron Laser (IFEL) charged particle accelerator.

van Steenbergen, Arie (Shoreham, NY)

1990-01-01T23:59:59.000Z

51

On the Kinematics of Undulator Girder Motion  

SciTech Connect

The theory of rigid body kinematics is used to derive equations that govern the control and measurement of the position and orientation of undulator girders. The equations form the basis of the girder matlab software on the LCLS control system. The equations are linear for small motion and easily inverted as desired. For reference, some relevant girder geometrical data is also given. Equations 6-8 relate the linear potentiometer readings to the motion of the girder. Equations 9-11 relate the cam shaft angles to the motion of the girder. Both sets are easily inverted to either obtain the girder motion from the angles or readings, or, to find the angles and readings that would give a desired motion. The motion of any point on the girder can be calculated by applying either sets of equations to the two cam-planes and extrapolating in the z coordinate using equation 19. The formulation of the equations is quite general and easily coded via matrix and vector methods. They form the basis of the girder matlab software on the LCLS control system.

Welch, J

2011-08-18T23:59:59.000Z

52

MEASURED AND CALCULATED HEATING AND DOSE RATES FOR THE HFIR HB4 BEAM TUBE AND COLD SOURCE  

SciTech Connect

The High Flux Isotope Reactor at the Oak Ridge National Laboratory was upgraded to install a cold source in horizontal beam tube number 4. Calculations were performed and measurements were made to determine heating within the cold source and dose rates within and outside a shield tunnel surrounding the beam tube. This report briefly describes the calculations and presents comparisons of the measured and calculated results. Some calculated dose rates are in fair to good agreement with the measured results while others, particularly those at the shield interfaces, differ greatly from the measured results. Calculated neutron exposure to the Teflon seals in the hydrogen transfer line is about one fourth of the measured value, underpredicting the lifetime by a factor of four. The calculated cold source heating is in good agreement with the measured heating.

Slater, Charles O [ORNL; Primm, Trent [ORNL; Pinkston, Daniel [ORNL; Cook, David Howard [ORNL; Selby, Douglas L [ORNL; Ferguson, Phillip D [ORNL; Bucholz, James A [ORNL; Popov, Emilian L [ORNL

2009-03-01T23:59:59.000Z

53

Undulator Hall Air Temperature Fault Scenarios  

SciTech Connect

Recent experience indicates that the LCLS undulator segments must not, at any time following tuning, be allowed to change temperature by more than about {+-}2.5 C or the magnetic center will irreversibly shift outside of acceptable tolerances. This vulnerability raises a concern that under fault conditions the ambient temperature in the Undulator Hall might go outside of the safe range and potentially could require removal and retuning of all the segments. In this note we estimate changes that can be expected in the Undulator Hall air temperature for three fault scenarios: (1) System-wide power failure; (2) Heating Ventilation and Air Conditioning (HVAC) system shutdown; and (3) HVAC system temperature regulation fault. We find that for either a system-wide power failure or an HVAC system shutdown (with the technical equipment left on), the short-term temperature changes of the air would be modest due to the ability of the walls and floor to act as a heat ballast. No action would be needed to protect the undulator system in the event of a system-wide power failure. Some action to adjust the heat balance, in the case of the HVAC power failure with the equipment left on, might be desirable but is not required. On the other hand, a temperature regulation failure of the HVAC system can quickly cause large excursions in air temperature and prompt action would be required to avoid damage to the undulator system.

Sevilla, J.

2010-11-17T23:59:59.000Z

54

Proposed Laser-driven, Dielectric Microstructure Few-cm Long Undulator for Attosecond Coherent X-rays  

SciTech Connect

This article presents the concept of an all-dielectric laser-driven undulator for the generation of coherent X-rays. The proposed laser-driven undulator is expected to produce internal deflection forces equivalent to a several-Tesla magnetic field acting on a speed-of-light particle. The key idea for this laser-driven undulator is its ability to provide phase synchronicity between the deflection force and the electron beam for a distance that is much greater than the laser wavelength. The potential advantage of this undulator is illustrated with a possible design example that assumes a small laser accelerator which delivers a 2 GeV, 1 pC, 1 kHz electron bunch train to a 10 cm long, 1/2 mm period laser-driven undulator. Such an undulator could produce coherent X-ray pulses with {approx}10{sup 9} photons of 64 keV energy. The numerical modeling for the expected X-ray pulse shape was performed with GENESIS, which predicts X-ray pulse durations in the few-attosecond range. Possible applications for nonlinear electromagnetic effects from these X-ray pulses are briefly discussed.

Plettner, T; Byer, R.L.; /Stanford U., Ginzton Lab.

2011-09-16T23:59:59.000Z

55

Variable-Period Undulators for Synchrotron Radiation  

DOE Patents (OSTI)

A new and improved undulator design is provided that enables a variable period length for the production of synchrotron radiation from both medium-energy and high energy storage rings. The variable period length is achieved using a staggered array of pole pieces made up of high permeability material, permanent magnet material, or an electromagnetic structure. The pole pieces are separated by a variable width space. The sum of the variable width space and the pole width would therefore define the period of the undulator. Features and advantages of the invention include broad photon energy tunability, constant power operation and constant brilliance operation.

Shenoy, Gopal; Lewellen, John; Shu, Deming; Vinokurov, Nikolai

2005-02-22T23:59:59.000Z

56

Improvement of Air Transport Data and Wall Transmission/Reflection Data in the SKYSHINE Code (1) - Calculation of line Beam Reponse Functions for Gamma-Ray Skyshine Analysis  

E-Print Network (OSTI)

Improvement of Air Transport Data and Wall Transmission/Reflection Data in the SKYSHINE Code (1) - Calculation of line Beam Reponse Functions for Gamma-Ray Skyshine Analysis

Nemoto, M; Hirayama, H; Sakamoto, Y; Hayashi, K; Hayashida, Y; Ishikawa, S; Sato, O; Tayama, R

2000-01-01T23:59:59.000Z

57

Air Temperature in the Undulator Hall  

SciTech Connect

Various analyses have been performed recently to estimate the performance of the air conditioning (HVAC) system planned for the Undulator Hall. This reports summarizes the results and provides an upgrade plan to be used if new requirements are needed in the future. The estimates predict that with the planned loads the tunnel air temperature will be well within the allowed tolerance during normal operation.

Not Available

2010-12-07T23:59:59.000Z

58

Undulator tunability and synchrotron ring energy  

SciTech Connect

Both the photon energy of an undulator as well as its tunability are determined by the period, lambda, of the device, the magnetic gap, G (which is larger than the minimum aperture required for injection and operation of the storage ring), and the storage ring energy, E/sub R/. Given the photon energy, E/sub p/, the above parameters ultimately define the limits of operation or tunability of the undulator. In general, the larger the tunability range, the more useful the device. Therefore, for a given required maximum photon energy, it is desirable to find the operating conditions and device parameters which result in the largest tunability interval possible. This paper investigates the question of undulator tunability with emphasis on the role of the ring energy in order to find the smallest E/sub R/ consistent with the desired tunability interval and photon energy. As a guideline, we have included a preliminary criteria, concerning the tunability requirements for the Advanced Photon Source (APS) to be built at Argonne. The analysis is aimed at X-ray undulator sources on the APS but is applicable to any storage ring.

Viccaro, P.J.; Shenoy, G.K.

1987-03-01T23:59:59.000Z

59

Microstructure Measurements from a Towed Undulating Platform  

Science Conference Proceedings (OSTI)

MicroSoar, an undulating profiler capable of measuring turbulence parameters such as Thorpe scales and thermal dissipation rate while being towed at speeds of up to 4 m s?1, offers the possibility of obtaining a close-to-synoptic image of mixing ...

Michael W. Ott; John A. Barth; Anatoli Y. Erofeev

2004-10-01T23:59:59.000Z

60

CONSIDERATIONS IN THE DESIGN OF UNDULATORS L. C. Teng A. Relevant Radiation Formulas  

NLE Websites -- All DOE Office Websites (Extended Search)

CONSIDERATIONS IN THE DESIGN OF UNDULATORS CONSIDERATIONS IN THE DESIGN OF UNDULATORS L. C. Teng A. Relevant Radiation Formulas LS-66 July 28, 1986 (1) The midplane field in an undu1ator is given approximately by where y = s = t Bo = coordinate in coordinate in B (s) Y direction direction undu1ator period length peak field of gap of beam The orbit wiggles in the transverse direction x perpendicular to y and s, and is given by where d prime = Ts x' = 2;P cos (2~ t) - x~ cos (2~ ~) o Po = }- (rigidity, Bp = ~ p, of beam). o The deflection parameter K is defined by x' K max. wiggle angle 0 = ~ - radiation angle - l/y 2~po where Y is the particle energy in rest energy, mc 2 , units. A device '" with K > 10 for which the radiation spectrum is more-or-1ess continuous is

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fast Beam-Based BPM Calibration  

Science Conference Proceedings (OSTI)

The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of the gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.

Bertsche, K.; Loos, H.; Nuhn, H.-D.; Peters, F.; /SLAC

2012-10-15T23:59:59.000Z

62

Optimization of NSLS-II Blade X-ray Beam Position Monitors: from Photoemission type to Diamond Detector  

E-Print Network (OSTI)

Optimization of blade type X-ray Beam Position Monitors (XBPM) was performed for NSLS-II undulator IVU20. Blade material, configuration and operation principle was analyzed to improve XBPM performance. Optimization is based on calculation of the XBPM signal spatial distribution. Along with standard photoemission blades, Diamond Detector Blade (DDB) was analyzed as XBPM signal source. Analyses revealed, that Diamond Detector Blade XBPM would allow overcoming drawbacks of the photoemission type XBPMs.

Ilinski, Petr

2013-01-01T23:59:59.000Z

63

First Beam Measurements with the LHC Synchrotron Light Monitors  

SciTech Connect

The continuous monitoring of the transverse sizes of the beams in the Large Hadron Collider (LHC) relies on the use of synchrotron radiation and intensified video cameras. Depending on the beam energy, different synchrotron light sources must be used. A dedicated superconducting undulator has been built for low beam energies (450 GeV to 1.5 TeV), while edge and centre radiation from a beam-separation dipole magnet are used respectively for intermediate and high energies (up to 7 TeV). The emitted visible photons are collected using a retractable mirror, which sends the light into an optical system adapted for acquisition using intensified CCD cameras. This paper presents the design of the imaging system, and compares the expected light intensity with measurements and the calculated spatial resolution with a cross calibration performed with the wire scanners. Upgrades and future plans are also discussed.

Lefevre, Thibaut; /CERN; Bravin, Enrico; /CERN; Burtin, Gerard; /CERN; Guerrero, Ana; /CERN; Jeff, Adam; /CERN; Rabiller, Aurelie; /CERN; Roncarolo, Federico; /CERN; Fisher, Alan; /SLAC

2012-07-13T23:59:59.000Z

64

Two-dimensional Lasnex ray-trace calculations of thermal whole beam self-focusing  

DOE Green Energy (OSTI)

Thermal self-focusing of laser light may be significant when a plasma is irradiated with short-wavelength laser light. Self-focusing magnifies the light intensity which can increase absorption by plasma waves (producing hot electrons which may cause preheat), could increase scattering, and could be a perturbation source for the Rayleigh--Taylor instability. We use two-dimensional hydrodynamic simulations to characterize thermal self-focusing for parameters of interest to laser fusion applications, and present a simple model. A diverging beam is shown to reduce the self-focusing.

Estabrook, K.; Kruer, W.L.; Bailey, D.S.

1985-01-01T23:59:59.000Z

65

Chirping the LCLS Electron Beam  

E-Print Network (OSTI)

We explore scenarios for generating a linear time-correlated energy spread in the LCLS electron bunch, prior to the undulator, that is needed for optical (x-ray) pulse compression. The correlated energy spread (`chirp') is formed by generating an energy gradient along the length of the electron bunch using RF phasing and/or longitudinal wakefields of the accelerating structures. The sign of the correlation is an important limitation. Excluding a complete re-design of the compression systems, the best possibility is to use `over-compression' to effect the required energy chirp. This is easily done with only a slight strength increase (~10 %) in the chicane bends of the second compressor. In this case, the bend-plane emittance dilution associated with the increased coherent synchrotron radiation (CSR) in the bunch compressor may, however, significantly compromise the electron beam density. The CSR calculations for the momentary extremely short (~1 m) electron bunch during over-compressio...

P. Emma

2000-01-01T23:59:59.000Z

66

P. J. Viccaro, D. C. James & S. D. Bader PROCUREMENT HISTORY OF THE HYBRID UNDULATOR FOR THE U-5  

NLE Websites -- All DOE Office Websites (Extended Search)

#-137 #-137 April 1989 P. J. Viccaro, D. C. James & S. D. Bader PROCUREMENT HISTORY OF THE HYBRID UNDULATOR FOR THE U-5 BEAM LINE AT THE NATIONAL SYNCHROTRON LIGHT SOURCE D. C. James ANL Procurement S. D. Bader Materials Science Division P. J. Viccaro Advanced Photon Source Division Introduction: As part of a national multi -insti tutional Materials Research Group (MRG) , Argonne National Laboratory had the responsibility, under a prime contract wi th the U. S. Department of Energy, of 09taining a Permanent Magnet Hybrid undulator to be used on the U5 Beam Line on the VUV Ring at the National Synchrotron Light Source (NSLS). The procurement involved determining the technical "specifications of the device as well as developing an effective ... ....;.., procedure for evaluation of the proposals. The conceptual-design of the

67

Position Stability Monitoring of THEthe LCLS Undulator Quadrupoles  

SciTech Connect

X-ray FELs demand that the positions of undulator components be stable to less than 1 {mu}m per day. Simultaneously, the undulator length increases significantly in order to saturate at x-ray wavelengths. To minimize the impact of the outside environment, the Linac Coherent Light Source (LCLS) undulator is placed underground, but reliable data about ground motion inside such a tunnel was not available in the required stability range during the planning phase. Therefore, a new position monitor system had been developed and installed with the LCLS undulator. This system is capable of measuring x, y, roll, pitch and yaw of each of the 33 undulator quadrupoles with respect to stretched wires. Instrument resolution is about 10 nm and instrument drift is negligible. Position data of individual quadrupoles can be correlated along the entire 132-m long undulator. The system has been under continuous operation since 2009. This report describes long term experiences with the running system and the observed positional stability of the undulator quadrupoles.

Nuhn, Heinz Dieter; Gassner, Georg; Peters, Franz; /SLAC

2012-03-26T23:59:59.000Z

68

Racking Up the LCLS Undulator Controls  

NLE Websites -- All DOE Office Websites (Extended Search)

Looking into the Solar Wind Looking into the Solar Wind Board of Governors Awards Tim Fister Earns Henderson Prize from University of Washington Challenge Met as APS Sends Final Chambers to LCLS A Marriage of Hardware and Hard Work APS News Archives: 2012 | 2011 | 2010 | 2009 2008 | 2007 | 2006 | 2005 2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed Racking Up the LCLS Undulator Controls JUNE 19, 2008 Bookmark and Share Argonne expertise will once again be in the spotlight when the Linac Coherent Light Source (LCLS), the U.S. Department of Energy's next-generation, x-ray free-electron laser light source, enables frontier materials and biological research at the Stanford Linear Accelerator Center (SLAC) beginning in 2009. Scientists, engineers, and technicians at the Argonne Advanced Photon Source (APS), together with co-workers from other

69

ANL/APS/TB-54, Dose Calculations using MARS for Bremsstrahlung Beam Stops and Collimators in APS Beamline Stations  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 DOSE CALCULATIONS USING MARS FOR BREMSSTRAHLUNG BEAM STOPS AND COLLIMATORS IN APS BEAMLINE STATIONS Jeffrey C. Dooling Accelerator Systems Division Advanced Photon Source August 2010 This work is sponsored by the US Department of Energy Office of Science The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display

70

Microsoft Word - Emittance Evolution of the Drive Electron Beam...  

NLE Websites -- All DOE Office Websites (Extended Search)

WF-NOTE-237 Dec. 21, 2007 Emittance Evolution of the Drive Electron Beam in Helical Undulator for ILC Positron Source Wanming Liu, Wei Gai, Michael Borland, Aimin Xiao, and...

71

Soft x-ray undulator for the Siam Photon Source  

SciTech Connect

An undulator for production of intense soft x-rays has been designed for the Siam Photon Source. The construction of the undulator has been completed. It is now being characterized and prepared for installation. The device, named U60, is a pure permanent magnet planar undulator, consisting of 41 magnetic periods, with 60 mm period length. Utilization of the undulator radiation in the photon energy range of 30 - 900 eV is expected. The design studies of the magnetic structure, including investigation of perturbations arising from the magnetic field of the device, their effects on the SPS storage ring and compensation schemes are described. A magnetic measurement system has been constructed for magnetic characterization of the device. Partial results of magnetic measurements are presented.

Rugmai, S. [National Synchrotron Research Center, P.O. Box 93, Nakhon Ratchasima, 30000 (Thailand); School of Physics, Suranaree University of Technology, 111 University Avenue, Muang Distrct, Nakhon Ratchasima, 30000 (Thailand); Dasri, T. [School of Physics, Suranaree University of Technology, 111 University Avenue, Muang Distrct, Nakhon Ratchasima, 30000 (Thailand); Prawanta, S.; Siriwattanapaitoon, S.; Kwankasem, A.; Sooksrimuang, V.; Chachai, W.; Suradet, N.; Juthong, N.; Tancharakorn, S. [National Synchrotron Research Center, P.O. Box 93, Nakhon Ratchasima, 30000 (Thailand)

2007-01-19T23:59:59.000Z

72

Thermomechanical analysis of high-heat-load components for the canted-undulator front end.  

SciTech Connect

With the canted undulators operating at 200 mA at closed gap at the Advanced Photon Source in the future, the front end will receive 20.4 kW of total power and 281 kW/mrad{sup 2} of peak power density. Thermal analysis of the front-end high-heat-load components becomes an essential part of the front-end design. An extensive study has been conducted on the thermal design of the photon shutters and fixed masks. A unique dog-bone-shaped cross-section design for the photon shutters was derived to relieve high stress in the corners. The dual-undulator x-ray beams were simulated at several locations on the fixed mask to ensure the worst possible case is considered. Stress analysis on the fixed mask revealed that the maximum stress occurs when beam hits the intersection between the horizontal surface and the corner surface. The details of the analysis procedure are presented, and the failure criteria are discussed.

Jaski, Y.; Trakhtenberg, E.; Collins, J.; Benson, C.; Brajuskovic, B.; Den Hartog, P.

2002-09-20T23:59:59.000Z

73

Calculation of the parameters of the X-ray diffraction station with adaptive segmented optics on the side beam from the wiggler of the Sibir'-2 storage ring  

Science Conference Proceedings (OSTI)

The mounting of an X-ray diffraction station on the side beam of a 19-pole superconducting wiggler makes it possible not only to use the central synchrotron radiation beam with a wavelength of 0.5 Angstrom-Sign , but also to solve problems requiring softer X rays at a synchrotron radiation (SR) intensity exceeding that for the beams from the bending magnet. A numerical simulation of the formation of photon beams from a source and their transmission through the elements of the station (and through the station as a whole) allows one to calculate the parameters of the station, compare it with the existing analogs, determine its potential and actual efficiency of its elements, and estimate the adjustment quality. A numerical simulation of the SR source on the side beam from the wiggler and the focusing channel (segmented condenser mirror, monochromator with sagittal focusing by the segmented second crystal, and segmented focusing mirror) has been performed. The sizes of the focus and the divergence of rays in it are determined with allowance for the finite sizes of segments. The intensity of radiation with a wavelength {lambda} = 1.0 Angstrom-Sign in the focus is determined taking into account the loss in the SR extraction channel and in the focusing channel. The values of the critical wavelength for the side beam from the wiggler and the wavelength resolution are calculated. The intensities in the X-ray diffraction pattern and its angular resolution are found.

Molodenskii, D. S.; Kheiker, D. M., E-mail: kheiker@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Korchuganov, V. N. [National Research Center Kurchatov Institute (Russian Federation); Konoplev, E. E. [NPO Luch (Russian Federation); Dorovatovskii, P. V. [National Research Center Kurchatov Institute (Russian Federation)

2012-05-15T23:59:59.000Z

74

HYBRID UNDULATORS AND WIGGLERS LS-18 S.H. Kim  

NLE Websites -- All DOE Office Websites (Extended Search)

HYBRID UNDULATORS AND WIGGLERS HYBRID UNDULATORS AND WIGGLERS LS-18 S.H. Kim March 22, 1985 FOR. THE ALADDIN SYNCHROTRON LIGHT SOURCE In this note, design parameters of two hybrid undulators and one hybrid wiggler are considered with a minimum gap of 1.25 cm. The length of the insertion devices considered here is 3.5 m. The magnetic field along the axis of the hybrid devices of samarium-cobalt permanent magnets and vanadium per- mendur pole tips is expressed as: -f- (5.47 - 1.80 g/A u ) B 3.3 x 0.90 e u where Au and g are the undulator period and gap, and a filling or assembly factor of 90% is assumed. Figure 1 shows the deflection parameter K vs gap for three insertion devices (see the names). The parameters used in this note are marked as " 1 circles in Fig. * In Figs. 2 and 3, the first few harmonics of the spectral brilliance of

75

Modeling performance of horizontal, undulating, and multilateral wells  

E-Print Network (OSTI)

Horizontal, undulating, and multilateral wells are relatively new alternatives in field development because they can increase the productivity per well and reduce the cost of field development. Because the feasibility of these wells may not be valid in some reservoirs, well performance should be verified before making decisions. Undulation is usually associated to horizontal wells with some degrees. Existing inflow performance models do not account for the undulation of the well, which can cause significant error and economic loss. Moreover, some of the inflow models ignore pressure drop along the lateral, which is definitely not true in high production and long lateral wells. The inflow performance models of horizontal, undulating, and multilateral wells are developed in this study. The models can be divided into two main categories: the closed form model and the line source model. The closed form model applies for relatively low vertical permeability formations for the single-phase system and twophase system. The model is flexible and easy to apply with reasonable accuracy. The line source model does not have any restrictions with permeability. The model applies for single-phase system. The model is very accurate and easy to use. Both models can be applied to various well trajectories with realizable accuracy. As a result of this study, the well performance of unconventional well trajectories can be predicted and optimized.

Kamkom, Rungtip

2007-08-01T23:59:59.000Z

76

Triggering for Magnetic Field Measurements of the LCLS Undulators  

Science Conference Proceedings (OSTI)

A triggering system for magnetic field measurements of the LCLS undulators has been built with a National Instruments PXI-1002 and a Xylinx FPGA board. The system generates single triggers at specified positions, regardless of encoder sensor jitter about a linear scale.

Hacker, Kirsten

2010-12-13T23:59:59.000Z

77

Water waves over strongly undulating bottom  

E-Print Network (OSTI)

Two-dimensional free-surface potential flows of an ideal fluid over a strongly inhomogeneous bottom are investigated with the help of conformal mappings. Weakly-nonlinear and exact nonlinear equations of motion are derived by the variational method for arbitrary seabed shape parameterized by an analytical function. The band structure of linear waves over periodic bottoms is calculated.

Ruban, V P

2004-01-01T23:59:59.000Z

78

Reflectivity Measurements for Copper and Aluminumin the Far Infrared and the Resistive Wall Impedance in the LCLS Undulator  

E-Print Network (OSTI)

Reflectivity Measurements for Copper and Aluminumin the Far Infrared and the Resistive Wall Impedance in the LCLS Undulator

Bane, K L F; Tu, J J

2006-01-01T23:59:59.000Z

79

Optimization of the LCLS X-ray FEL output performance in the presence of strong undulator wakefields  

E-Print Network (OSTI)

Optimization of the LCLS X-ray FEL output performance in the presence of strong undulator wakefields

Reiche, S; Emma, P; Fawley, W M; Huang, Z; Nuhn, H D; Stupakov, G V

2005-01-01T23:59:59.000Z

80

The Linac Coherent Light Source at SLAC. Radiological Considerations and Shielding calculations  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source (LCLS) at SLAC will be the world's first X-ray free electron laser when it becomes operational in 2009. Pulses of X-ray laser light from LCLS will be many orders of magnitude brighter and several orders of magnitude shorter than what can be produced by other X-ray sources available in the world. These characteristics will enable frontier new science in many areas. This paper describes the LCLS beam parameters and its lay-out. Results of the Monte Carlo calculations for the shielding design of the electron dump line, radiation damage to undulator, the residual radiation and the soil activation around the electron dump are presented.

Mao, X.S.; Fasso, A.; Nakao, N.; Rokni, S.H.; Vincke, H.; /SLAC

2005-12-02T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

ANL/APS/TB-3 Undulator A Characteristics and Specifications  

NLE Websites -- All DOE Office Websites (Extended Search)

ANL/APS/TB-3 ANL/APS/TB-3 Undulator A Characteristics and Specifications by B. Lai, A. Khounsary,R. Savoy, L. Moog, and E. Gluskin February 1993 Advanced Photon Source . & Argonne National Laboratory, Argonne, Illinois 60439 o operated by The University of Chicago for the United States Department of Energy under Contract W-31-1 09-Eng-38 '"~ Argonne National Laboratory, with facilties in the states of Ilinois and Idaho, is owned by the United States government, and operated by The University of Chicago under the provisions of a contract with the Department of Energy. . DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any waranty, express

82

Nd-Fe-B Undulator Design for CES~ G. K. Shenoy, P. J. Viccaro and S. Kim  

NLE Websites -- All DOE Office Websites (Extended Search)

Nd-Fe-B Undulator Design for CES~ Nd-Fe-B Undulator Design for CES~ G. K. Shenoy, P. J. Viccaro and S. Kim Introduction LS-72 10/14/86 It is proposed to build a Nd-Fe-B based undulator on CESR ring which would provide pseudomonochromatic tunable radiation in the hard x-ray range from 4 to 15 keY. Such an intense radiation source opens unlimited possibilities for doing exciting science in material science and condensed matter physics. Here, we present the design goals for such an undulator and discuss the influence of various parameters that govern the properties of radiation from undulators. The analysis of these results leads us to select the specific design parameters of the undulator that will meet the radiation needs of the experimental program. Undulator Design Goals

83

Start-to-end global imaging as a sunward propagating, SAPS-associated giant undulation event  

SciTech Connect

We present high-time resolution global imaging of a sunward propagating giant undulation event from start to finish. The event occurred on November 24, 2001 during a very disturbed storm interval. The giant undulations began to develop at around 13UT and persisted for approximately 2 hours. The sunward propagation speed was on the order of 0.6 km/s (relative to SM coordinate system). The undulations had a wavelength of {approx} 750 km, amplitudes of {approx} 890 km and produced ULF pulsations on the ground with a period of {approx} 1108s. We show that the undulations were associated with SAPs flows that were caused by the proton plasma sheet penetrating substantially farther Earthward than the electron plasma sheet on the duskside. The observations appear to be consistent with the development of a shear flow and/or ballooning type of instability at the plasmapause driven by intense SAPS-associated shear flows.

Henderson, Michael G [Los Alamos National Laboratory; Donovan, Eric F [U OF CALGARY; Foster, John C [MIT; Mann, Ian R [UNIV OF ALBERTA; Immel, Thomas J [UC/BERKELEY; Mende, Stephen B [UN/BERKELEY; Sigwarth, John B [NASA/GSFC

2009-01-01T23:59:59.000Z

84

On the Polarization Upgrade of ILC Undulator-based Positron Source  

NLE Websites -- All DOE Office Websites (Extended Search)

paper. INTRODUCTION The ILC SB2009 base line positron source is located at the end of electron main linac and it is still using the RDR undulator with K0.92 and u1.15cm1....

85

Scheme for simultaneous generation of three-color ten GW-level X-ray pulses from baseline XFEL undulator and multi-user distribution system for XFEL laboratory  

E-Print Network (OSTI)

The baseline design of present XFEL projects only considers the production of a single photon beam at fixed wavelength from each baseline undulator. At variance, the scheme described in this paper considers the simultaneous production of high intensity SASE FEL radiation at three different wavelengths. We present a feasibility study of our scheme, and we make exemplifications with parameters of the baseline SASE2 line of the European XFEL operating in simultaneous mode at 0.05 nm, 0.15 nm and 0.4 nm. Our technique for generating the two colors at 0.05 nm and 0.15 nm is based in essence on a "fresh bunch" technique. For the generation of radiation at 0.4 nm we propose to use an "afterburner" technique. Implementation of these techniques does not perturb the baseline mode of operation of the SASE2 undulator. The present paper also describes an efficient way to obtain a multi-user facility. It is shown that, although the XFEL photon beam from a given undulator is meant for a single user, movable multilayer X-ray...

Geloni, Gianluca; Saldin, Evgeni

2010-01-01T23:59:59.000Z

86

Wakefield Calculations for the LCLS in Multbunch Operation  

SciTech Connect

Normally the Linac Coherent Light Source (LCLS) operates in single-bunch mode, sending a bunch of up to 250 pC charge at 120 Hz through the linac and the undulator, and the resulting FEL radiation into one of the experimental hutches. With two bunches per rf pulse, each pulse could feed either two experiments or one experiment in a pump-probe type configuration. Two-bunch FEL operation has already been briefly tested at the LCLS, and works reasonably well, although not yet routinely. In this report we study the longitudinal and transverse long-range (bunch-to-bunch) wakefields of the linacs and their effects on LCLS performance in two-bunch mode, which is initially the most likely scenario. The longitudinal wake changes the average energy at the second bunch, and the transverse wake misaligns the second bunch (in transverse phase space) in the presence of e.g. transverse injection jitter or quad misalignments. Finally, we extend the study to consider the LCLS with trains of up to 20 bunches per rf pulse. In the LCLS the bunch is created in an rf gun, and then passes in sequence through Linac 0, Linac 1, Linac X, Bunch Compressor 1 (BC 1), Linac 2, BC 2, Linac 3, and finally the undulator. In the process the bunch energy reaches 13.5 GeV and peak current 3 kA. In Table 1 we present some machine and beam parameters in three of the linacs that we will use in the calculations: initial beam energy E{sub 0}, total accelerator length L, average beta function {beta}{sub y}, bunch peak current I, and rf phase (with respect to crest) {phi}; the final energy of a linac equals E{sub 0} of the following linac, and in Linac 3 is E{sub f} = 13.5 GeV. (The X-band linac, with L = 60 cm, has wake effects that are small compared to the other linacs, and will not be discussed.) In this report we limit our study to trains of equally populated, equally spaced bunches with a total length of less than 100 ns. The charge of each bunch is eN{sub b} = 250 pC.

Bane, K; /SLAC

2011-10-17T23:59:59.000Z

87

A Novel High-Resolution Alignment Technique for XFEL Using Undulator X-ray Beams  

E-Print Network (OSTI)

Biology beamline 9-3 at the Stanford Synchrotron Radiation Lightsource (SSRL), as described Trust New Phytologist (2011) www.newphytologist.com #12;05CH11231. SSRL is operated by Stanford University on behalf of the DOE, OBES. The SSRL Structural Molecular Biology Program is supported by the DOE

Kemner, Ken

88

UNDULATOR TUNABILITY AND RING-ENERGY P. J. Viccaro and G. K. Shenoy  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction Introduction UNDULATOR TUNABILITY AND RING-ENERGY P. J. Viccaro and G. K. Shenoy LS-73 An Undulator has two properties which make it an extremely attractive source of electromagnetic radiation.[l] The first is that the radiation is concentrated in a number of narrow energy bands known as harmonics of the device. The second characteristic is that under favorable operating conditions, the energy of these harmonics can be shifted or "tuned" over an energy interval which can be as large-as two or three times the value of the lowest energy harmonic. Both the photon energy of an undulator as well as its tunability are determined by the period, A, of the device, the magnetic gap, G (which is larger than the minimum aperture required for injection and operation of the storage

89

High?resolution x?ray microscopy using an undulator source, photoelectron studies with MAXIMUM  

Science Conference Proceedings (OSTI)

We present the first results of high?spatial resolution x?ray imaging studies with an upgraded version of the scanning photoemission multiple application x?ray imaging undulator microscope. The microscope is a multilayercoated Schwarzschild objective that focuses undulator radiation onto the sample. The recent upgrade improved the spatial resolution by a factor six reaching a full width at half maximum value of 0.5 ?m. Highly polished mirrors reduced the diffuse background by almost two orders of magnitude and drastically improved the contrast. The improved microscope was used to perform a series of tests on microgrids and reverse Fresnel zone plates. The microscope capability to detect chemical and topological contrast was verified by using patterned metal overlayers on Si and GaAs substrates. Further improvements to increase the flux and the spatial resolution are underway; this includes the installation of a new undulator beamline.

C. Capasso; A. K. Ray?Chaudhuri; W. Ng; S. Liang; R. K. Cole; J. Wallace; F. Cerrina; G. Margaritondo; J. H. Underwood; J. B. Kortright; R. C. C. Perera

1991-01-01T23:59:59.000Z

90

Knot Undulator to Generate Linearly Polarized Photons with Low on-Axis Power Density  

SciTech Connect

Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome by a figure-8 operating mode. But there is still no good method to tackle this problem for electromagnetic elliptical undulators. Here, a novel operating mode is suggested, which can generate pure linearly polarized photons with very low on-axis heat load. Also the available minimum photon energy of linearly polarized photons can be extended much by this method.

Qiao, S.; /Stanford U., Appl. Phys. Dept. /SLAC, SSRL /LBNL, ALS /Fudan U.; Ma, De-wei; Feng, Dong-lai; /Fudan U.; Hussain, Z.; /LBNL, ALS; Shen, Z.-X.; /Stanford U., Appl. Phys. Dept. /SLAC, SSRL

2009-06-19T23:59:59.000Z

91

Tests of Coordinate Transfer from Magnetic to Mechanical Reference for LCLS Undulator Fiducialization  

SciTech Connect

Fiducialization of the LCLS undulators will be based on magnetic measurements by Hall probe. Pointed magnets, proposed by I.Vasserman for quadrupole lens fiducialization will be used as an intermediate reference. A prototype of the pointed magnet fixture has been made and tested. In this note we will describe a procedure for measuring the position of the center of the Hall probe sensitive area with respect to the undulator fiducial marks. The pointed magnet calibration procedure, a two-point algorithm for locating the magnetic center of the fixture, and test results are presented.

Levashov, Yu.

2010-12-13T23:59:59.000Z

92

Beam History  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Status Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and...

93

Beam transport and monitoring for laser plasma accelerators  

SciTech Connect

The controlled transport and imaging of relativistic electron beams from laser plasma accelerators (LPAs) are critical for their diagnostics and applications. Here we present the design and progress in the implementation of the transport and monitoring system for an undulator based electron beam diagnostic. Miniature permanent-magnet quadrupoles (PMQs) are employed to realize controlled transport of the LPA electron beams, and cavity based electron beam position monitors for non-invasive beam position detection. Also presented is PMQ calibration by using LPA electron beams with broadband energy spectrum. The results show promising performance for both transporting and monitoring. With the proper transport system, XUV-photon spectra from THUNDER will provide the momentum distribution of the electron beam with the resolution above what can be achieved by the magnetic spectrometer currently used in the LOASIS facility.

Nakamura, K.; Sokollik, T.; Tilborg, J. van; Gonsalves, A. J.; Shaw, B.; Shiraishi, S.; Mittal, R.; De Santis, S.; Byrd, J. M.; Leemans, W. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States) and University of California, Berkeley, CA 94720 (United States)

2012-12-21T23:59:59.000Z

94

RF undulator for compact X-ray SASE source of variable wavelength  

Science Conference Proceedings (OSTI)

A room-temperature RF undulator, fed by Ka-band radiation and intended to produce {approx}1 nm wavelength radiation using moderate energy electrons, is considered. The necessary electron bunches with energy 0.2-1 GeV could be produced by petawatt laser pulses injected into plasma bubbles.

Kuzikov, S. V.; Hirshfield, J. L.; Jiang, Y.; Marshall, T. C.; Vikharev, A. A. [Institute of Applied Physics, 46 Ulyanov St., Nizhny Novgorod, 603950 (Russian Federation) and Omega-P, Inc., New Haven, CT (United States); Yale University, New Haven, CT (United States) and Omega-P, Inc., New Haven, CT (United States); Yale University, New Haven, CT (United States); Omega-P, Inc., New Haven, CT (United States) and Columbia University, New York, NY (United States); Yale University, New Haven, CT (United States)

2012-12-21T23:59:59.000Z

95

Improvements and recent performance of a double-crystal monochromator for a soft x-ray undulator at the Photon Factory  

Science Conference Proceedings (OSTI)

A cooling system for the first crystal of a double-crystal monochromator for a 60-period soft x-ray undulator at the Photon Factory is newly designed and installed. In order to keep smooth movements of the original mechanism in a high-vacuum chamber, heat pipes and a liquid-metal bath are utilized. A fear for melting of an InSb crystal and the instability caused by warming of mechanisms have vanished and significantly improved energy resolution of 5000--8000 is achieved by Si crystals for high photon flux of about 10{sup 11} photons/s in a beam size of 3{times}3 mm{sup 2} at a sample position with the cooling system.

Kitajima, Y.; Takata, Y.; Toyoshima, A.; Maezawa, H. (Photon Factory, National Laboratory for High Energy Physics, Oho 1-1, Tsukuba, Ibaraki 305 (Japan))

1992-01-01T23:59:59.000Z

96

Longitudinal phase space manipulation of an ultrashort electron beam via THz IFEL interaction  

Science Conference Proceedings (OSTI)

A scheme where a laser locked THz source is used to manipulate the longitudinal phase space of an ultrashort electron beam using an IFEL interaction is investigated. The efficiency of THz source based on the pulse front tilt optical rectification scheme is increased by cryogenic cooling to achieve sufficient THz power for compression and synchronization. Start-to-end simulations describing the evolution of the beam from the cathode to the compression point after the undulator are presented.

Moody, J. T.; Li, R. K.; Musumeci, P.; Scoby, C. M.; To, H. [Department of Physics and Astronomy, UCLA, Los Angeles California, 90095 (United States)

2012-12-21T23:59:59.000Z

97

Beam History  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam History Print Beamline History Request Form To request a beam current histograph from the ALS storage ring beam histograph database, select the year, month, and day, then...

98

Beam/seam alignment control for electron beam welding  

DOE Patents (OSTI)

This invention relates to a dynamic beam/seam alignment control system for electron beam welds utilizing video apparatus. The system includes automatic control of workpiece illumination, near infrared illumination of the workpiece to limit the range of illumination and camera sensitivity adjustment, curve fitting of seam position data to obtain an accurate measure of beam/seam alignment, and automatic beam detection and calculation of the threshold beam level from the peak beam level of the preceding video line to locate the beam or seam edges.

Burkhardt, Jr., James H. (Knoxville, TN); Henry, J. James (Oak Ridge, TN); Davenport, Clyde M. (Knoxville, TN)

1980-01-01T23:59:59.000Z

99

Use of a mirror as the first optical component for an undulator beamline at the APS  

SciTech Connect

In the design of Sector II of the Synchrotron Radiation Instrumentation (SRI) CAT, an x-ray mirror with multiple coatings is chosen as the first optical component of the undulator beamline. Two significant advantages of using the mirror are: A significant reduction in the peak radiation heat flux and total power on the downstream monochromator, and (2) availability of the wide-bandpass undulator spectrum between 0--30 key to experimental stations with substantially reduced radiation shielding requirements. The second advantage also allows us to place the monochromator outside the first optics enclosure (FOE) at a large distance from the source to further reduce the peak heat flux on the monochromator. The combined effect is that the inclined crystal monochromator may not be necessary, and a multilayer monochromator can be used because the expected heat fluxes are less than the value that has been demonstrated for those monochromators.

Yun, W.; Khounsary, A.; Lai, B.; Gluskin, E.

1992-09-01T23:59:59.000Z

100

ANL/APS/TB-24 Diamond Monochromators for APS Undulator-A Beamlines  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Diamond Monochromators for APS Undulator-A Beamlines R.C. Blasdell, L. A. Assoufid, and D. M. Mills TABLE OF CONTENTS 1. INTRODUCTION .................................................................................1 2. PHYSICAL PROPERTIES OF DIAMONDS ..................................................5 2.1 Varieties of Diamonds ....................................................................5 2.2 The Lattice Parameter .....................................................................5 2.3 Bulk Thermal and Mechanical Properties ...............................................6 2.4 Typical Surface and Lattice Plane Morphology ......................................8 2.5 The Liquid-GaIn/Diamond Interface ...................................................10 3. DIFFRACTION PROPERTIES OF DIAMOND

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

MEMS Calculator  

Science Conference Proceedings (OSTI)

... beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine. ...

102

Beam Conditioning for Free Electron Lasers:Consequences and Methods  

Science Conference Proceedings (OSTI)

The consequences of beam conditioning in four example cases [VISA, a soft x-ray free-electron laser (FEL), LCLS, and a 'Greenfield' FEL] are examined. It is shown that in emittance limited cases, proper conditioning reduces sensitivity to the transverse emittance and, furthermore, allows for stronger focusing in the undulator. Simulations show higher saturation power, with gain lengths reduced by a factor of 2 or more. The beam dynamics in a general conditioning system are studied, with 'matching conditions' derived for achieving conditioning without growth in the effective emittance. Various conditioning lattices are considered, and expressions derived for the amount of conditioning provided in each case when the matching conditions are satisfied. These results show that there is no fundamental obstacle to producing beam conditioning, and that the problem can be reduced to one of proper lattice design. Nevertheless, beam conditioning will not be easy to implement in practice.

Wolski, A.; Penn, G.; Sessler, A.; Wurtele, J.; /LBL, Berkeley /UC, Berkeley, Astron. Dept.

2010-12-14T23:59:59.000Z

103

Beam conditioner for free electron lasers and synchrotrons  

DOE Patents (OSTI)

A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.

Liu, Hongxiu (Williamsburg, VA); Neil, George R. (Williamsburg, VA)

1998-01-01T23:59:59.000Z

104

Hard x-ray or gamma ray laser by a dense electron beam  

SciTech Connect

A dense electron beam propagating through a laser undulator can radiate a coherent x-ray or gamma ray. This lasing scheme is studied with the Landau damping theory. The analysis suggests that, with currently available physical parameters, coherent gamma rays of up to 50 keV can be generated. The electron quantum diffraction suppresses the free electron laser action, which limits the maximum radiation.

Son, S. [18 Caleb Lane, Princeton, New Jersey 08540 (United States); Joon Moon, Sung [8 Benjamin Rush Ln., Princeton, New Jersey 08540 (United States)

2012-06-15T23:59:59.000Z

105

Subtropical Climatology of Direct Beam Solar Radiation  

Science Conference Proceedings (OSTI)

A climatology of direct beam irradiance has been compiled for Mauna Loa Observatory. A broadband transmittance, calculated from the direct-beam data, has been stratified into clear sky and optically thin and thick cloud regimes; statistics of ...

T. M. Thompson; S. K. Cox

1982-03-01T23:59:59.000Z

106

LS-29  

NLE Websites -- All DOE Office Websites (Extended Search)

s. H. Kim 7/19/85 Nouideal Undulator Spect.ra The undulator spectra may have harmonic broadening due to the angular divergence and energy spread of the electron beam in the storage ~ing, varia- tion of the undulator spatial period, and nonideal magnetic field distribution between the gap of the undulator. In most cases the energy spread of the electron beam seems to be rather small. The correction of the nonuniformity of the undulator period may be easier compared to that of the magnetic field distribution in an undulator. This note calculates the undulator spectra under the following assump- tions. The electron beam has divergences in the horizontal and vertical directions with an overall Gaussian distribution of the divergence. The undulator period is constant and magnetic field distribution is sinusoidal

107

Invert Effective Thermal Conductivity Calculation  

SciTech Connect

The objective of this calculation is to evaluate the temperature-dependent effective thermal conductivities of a repository-emplaced invert steel set and surrounding ballast material. The scope of this calculation analyzes a ballast-material thermal conductivity range of 0.10 to 0.70 W/m {center_dot} K, a transverse beam spacing range of 0.75 to 1.50 meters, and beam compositions of A 516 carbon steel and plain carbon steel. Results from this calculation are intended to support calculations that identify waste package and repository thermal characteristics for Site Recommendation (SR). This calculation was developed by Waste Package Department (WPD) under Office of Civilian Radioactive Waste Management (OCRWM) procedure AP-3.12Q, Revision 1, ICN 0, Calculations.

M.J. Anderson; H.M. Wade; T.L. Mitchell

2000-03-17T23:59:59.000Z

108

On-Axis Brilliance and Power of In-Vacuum Undulators for The Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 On-Axis Brilliance and Power of In-Vacuum Undulators for the Advanced Photon Source (formerly MD-TN-2009-004) R. Dejus, M. Jaski, and S.H. Kim - MD Group/ASD Rev. 1, November 25, 2009: Updated the fitted B eff in Tables 1 - 3, and 5 to use two decimals in the fitted equation. Explained chosen gaps. Added clarifications in the text and added additional references. Edited by C. Eyberger for release as cleared document ANL/APS/LS-314; updated in ICMS. Rev. 0a, June 17, 2009: ICMS Initial Release (minor clarifications and corrections of typographical errors, added footnote "d" to Table 4). Rev. 0, June 16, 2009: First Release as Technical Note MD-TN-2009-004. Table of Contents Introduction ......................................................................................................................... 2

109

Chamber Surface Roughness and Electron Cloud for the Advanced Photon Source Superconducting Undulator  

E-Print Network (OSTI)

The electron cloud is a possible heat source in the superconducting undulator (SCU) designed for the Advanced Photon Source (APS), a 7-GeV electron synchrotron radiation source at Argonne National Laboratory. In electron cloud generation extensive research has been done, and is continuing, to understand the secondary electron component. However, little work has been done to understand the parameters of photoemission in the accelerator environment. To better understand the primary electron generation in the APS; a beamline at the Australian Light Source synchrotron was used to characterize two samples of the Al APS vacuum chamber. The total photoelectron yield and the photoemission spectra were measured. Four parameters were varied: surface roughness, sample temperature, incident photon energy, and incident photon angle, with their results presented here.

Boon, Laura

2013-01-01T23:59:59.000Z

110

A pencil beam algorithm for helium ion beam therapy  

Science Conference Proceedings (OSTI)

Purpose: To develop a flexible pencil beam algorithm for helium ion beam therapy. Dose distributions were calculated using the newly developed pencil beam algorithm and validated using Monte Carlo (MC) methods. Methods: The algorithm was based on the established theory of fluence weighted elemental pencil beam (PB) kernels. Using a new real-time splitting approach, a minimization routine selects the optimal shape for each sub-beam. Dose depositions along the beam path were determined using a look-up table (LUT). Data for LUT generation were derived from MC simulations in water using GATE 6.1. For materials other than water, dose depositions were calculated by the algorithm using water-equivalent depth scaling. Lateral beam spreading caused by multiple scattering has been accounted for by implementing a non-local scattering formula developed by Gottschalk. A new nuclear correction was modelled using a Voigt function and implemented by a LUT approach. Validation simulations have been performed using a phantom filled with homogeneous materials or heterogeneous slabs of up to 3 cm. The beams were incident perpendicular to the phantoms surface with initial particle energies ranging from 50 to 250 MeV/A with a total number of 10{sup 7} ions per beam. For comparison a special evaluation software was developed calculating the gamma indices for dose distributions. Results: In homogeneous phantoms, maximum range deviations between PB and MC of less than 1.1% and differences in the width of the distal energy falloff of the Bragg-Peak from 80% to 20% of less than 0.1 mm were found. Heterogeneous phantoms using layered slabs satisfied a {gamma}-index criterion of 2%/2mm of the local value except for some single voxels. For more complex phantoms using laterally arranged bone-air slabs, the {gamma}-index criterion was exceeded in some areas giving a maximum {gamma}-index of 1.75 and 4.9% of the voxels showed {gamma}-index values larger than one. The calculation precision of the presented algorithm was considered to be sufficient for clinical practice. Although only data for helium beams was presented, the performance of the pencil beam algorithm for proton beams was comparable. Conclusions: The pencil beam algorithm developed for helium ions presents a suitable tool for dose calculations. Its calculation speed was evaluated to be similar to other published pencil beam algorithms. The flexible design allows easy customization of measured depth-dose distributions and use of varying beam profiles, thus making it a promising candidate for integration into future treatment planning systems. Current work in progress deals with RBE effects of helium ions to complete the model.

Fuchs, Hermann; Stroebele, Julia; Schreiner, Thomas; Hirtl, Albert; Georg, Dietmar [Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria); PEG MedAustron, 2700 Wiener Neustadt (Austria); Department of Nuclear Medicine, Medical University of Vienna, 1090 Vienna (Austria); Christian Doppler Laboratory for Medical Radiation Research for Radiation Oncology, Medical University of Vienna, 1090 Vienna (Austria); Department of Radiation Oncology, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria) and Comprehensive Cancer Center, Medical University of Vienna/AKH Vienna, 1090 Vienna (Austria)

2012-11-15T23:59:59.000Z

111

Footprint Calculator?  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on...

112

Microsoft Word - IN98-1.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

formerly referenced as formerly referenced as Short Note on Undulator Alignments and Beam Tolerances for the APS FEL at 220 MeV Roger J. Dejus and Isaac B. Vasserman Experimental Facilities Division June 1, 1998 A. Introduction The APS FEL consists of a series of undulators that must be carefully aligned for optimum gain and high spectral output. In order to get a better understanding of acceptable tolerance levels for undulator alignments and for the electron beam, we have performed computer calculations to simulate misalignments of one undulator (undulator number 2) with respect to adjacent undulators and to check the sensitivity to unmatched beam parameters (α and β) at the entrance and to a noncentered incident beam (x o , x o ', y o , y o '). We have not simulated horizontal misalignments because the undulators focus only

113

An interference wiggler for precise diagnostics of electron beam energy  

SciTech Connect

Relativistic electrons passing through two identical magnetic sections generate synchrotron radiation whose spectrum is strongly modulated as the photon energy varies. The modulation is caused by the interference of radiation from each section, and has been observed in the spectrum of spontaneous radiation from transverse optical klystron which utilizes two undulators. In this paper, another device based on two simple wigglers is analyzed. The device, which will be called the interference wiggler, can be used for precise diagnostics of electron beam energy; by analyzing the modulated spectrum with a monochromator, the electron energy can be determined up to an accuracy of 10/sup -3/ or 10/sup -4/. General design criteria for interference wigglers are developed. Several example designs are given for measurement of the electron energy for the planned electron beam facility at CEBAF for the 1 to 2 GeV Light Source at Berkeley.

Kim, Kwang-Je

1987-03-01T23:59:59.000Z

114

Ion-beam-driven resonant ion cyclotron instability  

SciTech Connect

The resonant ion-beam-driven electrostatic ion cyclotron instability is identified. Measured dispersion relation and onset vs. beam energy and density agree with numerical calculations based on a theory which includes beam acoustic terms. After amplitude saturation, velocity space diffusion of the beam ions is observed. (auth)

Hendel, H.W.; Yamada, M.; Seiler, S.W.; Ikezi, H.

1975-11-01T23:59:59.000Z

115

Beam line windows at LAMPF  

Science Conference Proceedings (OSTI)

The A-6 main beam-line window at LAMPF separates the vacuum of the main beam line from the isotope production station, proton irradiation ports, and the beam stop, which operate in air. This window must withstand the design beam current of 1 mA at 800 MeV for periods of at least 3000 hours without failure. The window is water cooled and must be strong enough to withstand the 2.1 MPa (300 psig) cooling water pressure, as well as beam-induced thermal stresses. Two designs have been used to meet these goals, a stepped-plate window and a hemispherical window, both made from a precipitation-hardened nickel base alloy, Alloy 718. Calculations of the temperatures and stresses in each of these windows are presented.

Brown, R.D.; Grisham, D.L.; Lambert, J.E.

1985-01-01T23:59:59.000Z

116

A new luminescence beam profile monitor for intense proton and heavy ion beams  

DOE Green Energy (OSTI)

A new luminescence beam profile monitor is realized in the polarized hydrogen gas jet target at the Relativistic Heavy Ion Collider (RHIC) facility. In addition to the spin polarization of the proton beam being routinely measured by the hydrogen gas jet, the luminescence produced by beam-hydrogen excitation leads to a strong Balmer series lines emission. A selected hydrogen Balmer line is spectrally filtered and imaged to produce the transverse RHIC proton beam shape with unprecedented details on the RHIC beam profile. Alternatively, when the passage of the high energy RHIC gold ion beam excited only the residual gas molecules in the beam path, sufficient ion beam induced luminescence is produced and the transverse gold ion beam profile is obtained. The measured transverse beam sizes and the calculated emittances provide an independent confirmation of the RHIC beam characteristics and to verify the emittance conservation along the RHIC accelerator. This optical beam diagnostic technique by making use of the beam induced fluorescence from injected or residual gas offers a truly noninvasive particle beam characterization, and provides a visual observation of proton and heavy ion beams. Combined with a longitudinal bunch measurement system, a 3-dimensional spatial particle beam profile can be reconstructed tomographically.

Tsang,T.; Bellavia, S.; Connolly, R.; Gassner, D.; Makdisi, Y.; Russo, T.; Thieberger, P.; Trbojevic, D.; Zelenski, A.

2008-10-01T23:59:59.000Z

117

Simple Low-Frequency Beam Pickup  

SciTech Connect

Detection of the field induced by a beam outside of the beam pipe can be used as a beam diagnostic. Wires placed in longitudinal slots in the outside wall of the beam pipe can be used as a beam pickup. This has a very small beam-coupling impedance and avoids complications of having a feedthrough. The signal can be reasonably high at low frequencies. We present a field waveform at the outer side of a beam pipe, obtained as a result of calculations and measurements. We calculate the beam-coupling impedance due to a long longitudinal slot in the resistive wall and the signal induced in a wire placed in such a slot and shielded by a thin screen from the beam. These results should be relevant for impedance calculations of the slot in an antechamber and for slots in the PEP-II distributed ion pump screens. The design of the low-frequency beam position monitor is very simple. It can be used in storage rings, synchrotron light sources, and free electron lasers, like LINAC coherent light source.

Novokhatski, A.; Heifets, S.; /SLAC; Aleksandrov, A.; /Oak Ridge

2011-10-12T23:59:59.000Z

118

Breaking the Attosecond, Angstrom and TV/M Field Barriers with Ultra-Fast Electron Beams  

Science Conference Proceedings (OSTI)

Recent initiatives at UCLA concerning ultra-short, GeV electron beam generation have been aimed at achieving sub-fs pulses capable of driving X-ray free-electron lasers (FELs) in single-spike mode. This use of very low Q beams may allow existing FEL injectors to produce few-100 attosecond pulses, with very high brightness. Towards this end, recent experiments at the LCLS have produced {approx}2 fs, 20 pC electron pulses. We discuss here extensions of this work, in which we seek to exploit the beam brightness in FELs, in tandem with new developments in cryogenic undulator technology, to create compact accelerator-undulator systems that can lase below 0.15 {angstrom}, or be used to permit 1.5 {angstrom} operation at 4.5 GeV. In addition, we are now developing experiments which use the present LCLS fs pulses to excite plasma wakefields exceeding 1 TV/m, permitting a table-top TeV accelerator for frontier high energy physics applications.

Rosenzweig, James; Andonian, Gerard; Fukasawa, Atsushi; Hemsing, Erik; Marcus, Gabriel; Marinelli, Agostino; Musumeci, Pietro; O'Shea, Brendan; O'Shea, Finn; Pellegrini, Claudio; Schiller, David; Travish, Gil; /UCLA; Bucksbaum, Philip; Hogan, Mark; Krejcik, Patrick; /SLAC; Ferrario, Massimo; /INFN, Rome; Full, Steven; /Penn State U.; Muggli, Patric; /Southern California U.

2012-06-22T23:59:59.000Z

119

Calculation of polarization effects  

Science Conference Proceedings (OSTI)

Basically there are two areas of accelerator applications that involve beam polarization. One is the acceleration of a polarized beam (most likely a proton beam) in a synchrotron. Another concerns polarized beams in an electron storage ring. In both areas, numerical techniques have been very useful.

Chao, A.W.

1983-09-01T23:59:59.000Z

120

Beam heating of target foils  

SciTech Connect

A target rotator, built to reduce the effects of beam spot heating, is fully adjustable, holds three targets, is chamber independent, and takes up limited space. The expected temperature rise in the target is calculated from the Stefan--Boltzmann law. (PMA)

Corwin, W.C.

1975-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

BEAM LINE  

NLE Websites -- All DOE Office Websites (Extended Search)

BEAM LINE BEAM LINE 45 W ILHELM ROENTGEN'S INITIAL DISCOVERY of X-radiation in 1895 led immediately to practical applications in medicine. Over the next few decades X rays proved to be an invaluable tool for the investigation of the micro-world of the atom and the development of the quantum theory of matter. Almost a century later, telescopes designed to detect X-radiation are indispensable for understanding the structure and evolution of the macro-world of stars, galaxies, and the Universe as a whole. The X-Ray Universe by WALLACE H. TUCKER X-ray images of the Universe are strikingly different from the usual visible-light images. 46 SUMMER 1995 did not think: I investigated." Undeterred by NASA's rejection of a proposal to search for cosmic X-radiation, Giacconi persuaded the

122

Accelerator beam profile analyzer  

DOE Patents (OSTI)

A beam profile analyzer employing sector or quadrant plates each servo controlled to outline the edge of a beam.

Godel, Julius B. (Bayport, NY); Guillaume, Marcel (Grivegnee, BE); Lambrecht, Richard M. (East Quogue, NY); Withnell, Ronald (East Setauket, NY)

1976-01-01T23:59:59.000Z

123

Method of automatic measurement and focus of an electron beam and apparatus therefor  

DOE Patents (OSTI)

An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined.

Giedt, Warren H. (San Jose, CA); Campiotti, Richard (Livermore, CA)

1996-01-01T23:59:59.000Z

124

Method of automatic measurement and focus of an electron beam and apparatus therefore  

DOE Patents (OSTI)

An electron beam focusing system, including a plural slit-type Faraday beam trap, for measuring the diameter of an electron beam and automatically focusing the beam for welding is disclosed. Beam size is determined from profiles of the current measured as the beam is swept over at least two narrow slits of the beam trap. An automated procedure changes the focus coil current until the focal point location is just below a workpiece surface. A parabolic equation is fitted to the calculated beam sizes from which optimal focus coil current and optimal beam diameter are determined. 12 figs.

Giedt, W.H.; Campiotti, R.

1996-01-09T23:59:59.000Z

125

Simple beam profile monitor  

Science Conference Proceedings (OSTI)

An inexpensive beam profile monitor is based on the well proven rotating wire method. The monitor can display beam position and shape in real time for particle beams of most energies and beam currents up to 200{mu}A. Beam shape, position cross-section and other parameters are displayed on a computer screen.

Gelbart, W.; Johnson, R. R.; Abeysekera, B. [ASD Inc. Garden Bay, BC (Canada); Best Theratronics Ltd Ottawa Ontario (Canada); PharmaSpect Ltd., Burnaby BC (Canada)

2012-12-19T23:59:59.000Z

126

Experimental Estimate of Beam Loading and Minimum rf Voltage for Acceleration of High Intensity Beam in the Fermilab Booster  

E-Print Network (OSTI)

The difference between the rf voltage seen by the beam and the accelerating voltage required to match the rate of change of the Booster magnetic field is used to estimate the energy loss per beam turn. Because the rf voltage (RFSUM) and the synchronous phase can be experimentally measured, they can be used to calculate the effective accelerating voltage. Also an RFSUM reduction technique has been applied to measure experimentally the RFSUM limit at which the beam loss starts. With information on beam energy loss, the running conditions, especially for the high intensity beam, can be optimized in order to achieve a higher intensity beam from the Fermilab Booster.

Yang, X; Norem, J; Yang, Xi

2004-01-01T23:59:59.000Z

127

Experimental estimate of beam loading and minimum rf voltage for acceleration of high intensity beam in the Fermilab Booster  

SciTech Connect

The difference between the rf voltage seen by the beam and the accelerating voltage required to match the rate of change of the Booster magnetic field is used to estimate the energy loss per beam turn. Because the rf voltage (RFSUM) and the synchronous phase can be experimentally measured, they can be used to calculate the effective accelerating voltage. Also an RFSUM reduction technique has been applied to measure experimentally the RFSUM limit at which the beam loss starts. With information on beam energy loss, the running conditions, especially for the high intensity beam, can be optimized in order to achieve a higher intensity beam from the Fermilab Booster.

Xi Yang; Charles M Ankenbrandt and Jim Norem

2004-04-01T23:59:59.000Z

128

Relativistic electron beam generator  

DOE Patents (OSTI)

A relativistic electron beam generator for laser media excitation is described. The device employs a diode type relativistic electron beam source having a cathode shape which provides a rectangular output beam with uniform current density.

Mooney, L.J.; Hyatt, H.M.

1975-11-11T23:59:59.000Z

129

NK Muon Beam  

Science Conference Proceedings (OSTI)

The NK Muon Beam will be a modified version of the existing NT beam line. The decision to employ a modified version of the NT beam line was made based on considerations of cost and availability of the beam line. Preliminary studies considered use of other beam lines, e.g., the NW beam line, and even of moving the bubble chamber with its superconducting coils but were rejected for reasons such as cost, personnel limitations, and potential conflicts with other users.

Koizumi, G.

1988-09-28T23:59:59.000Z

130

Eddy-Current-Induced Multipole Field Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

Eddy-Current-Induced Multipole Field Calculations Eddy-Current-Induced Multipole Field Calculations September 29, 2003 1 Eddy-Current-Induced Multipole Field Calculations Nicholas S. Sereno, Suk H. Kim 1.0 Abstract Time-varying magnetic fields of magnets in booster accelerators induce substantial eddy currents in the vacuum chambers. The eddy currents in turn act to produce various multi- pole fields that act on the beam. These fields must be taken into account when doing a lat- tice design. In the APS booster, the relatively long dipole magnets (3 meters) are linearly ramped to accelerate the injected 325 MeV beam to 7 GeV. Substantial dipole and sextu- pole fields are generated in the elliptical vacuum chamber from the induced eddy currents. In this note, formulas for the induced dipole and sextupole fields are derived for elliptical and rectangular vacuum chambers for a time-varying dipole field. A discussion is given

131

Accelerator Technology for Bright Radiation Beam  

E-Print Network (OSTI)

AP~ .bI.Qdulators I I to NSLS X1 '" PEP ci undulatorI J I I NSLS bend (2,5 GeV) Cu K o o Cl. C/) (J') c:: CJ) Mo

Kim, K.-J.

2011-01-01T23:59:59.000Z

132

CALCULATION OF PULSED KICKER MAGNETIC FIELD ATTENUATION INSIDE BEAM CHAMBERS  

E-Print Network (OSTI)

Petroleum Institute, and CENPES/Petrobrás in Brazil. REFERENCES Agência Nacional do Petróleo (ANP). 1999. http://www.anp.gov.br. Alvarez, P.J.J. and Vogel, T.M. 1995. Degradation of BTEX and their aerobic

Kemner, Ken

133

My Trip Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Calculator Trip Calculator Benefits Why is fuel economy important? Climate Change Oil Dependence Costs Sustainability Save Money Vehicles produce about half of the...

134

SUMMARY OF BEAM BEAM OBSERVATIONS DURING STORES IN RHIC.  

Science Conference Proceedings (OSTI)

During stores, the beam-beam interaction has a significant impact on the beam and luminosity lifetimes in RHIC. This was observed in heavy ion, and even more pronounced in proton collisions. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. In addition, RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. Coherent beam-beam modes were observed, and suppressed by tune changes. In this article we summarize the most important beam-beam observations made during stores so far.

FISCHER,W.

2003-05-19T23:59:59.000Z

135

Tevatron beam-beam compensation project progress  

SciTech Connect

In this paper, we report the progress of the Tevatron Beam-Beam Compensation (BBC) project [1]. Electron beam induced proton and antiproton tuneshifts have been reported in [2], suppression of an antiproton emittance growth has been observed, too [1]. Currently, the first electron lens (TEL1) is in operational use as the Tevatron DC beam cleaner. We have made a lot of the upgrades to improve its stability [3]. The 2nd Tevatron electron lens (TEL2) is under the final phase of development and preparation for installation in the Tevatron.

Shiltsev, V.; Zhang, X.L.; Kuznetsov, G.; Pfeffer, H.; Saewert, G.; /Fermilab; Zimmermann, F.; /CERN; Tiunov, M.; /Novosibirsk, IYF; Bishofberger, K.; /UCLA; Bogdanov, I.; Kashtanov, E.; Kozub, S.; Sytnik, V.; Tkachenko, L.; /Serpukhov, IHEP

2005-05-01T23:59:59.000Z

136

ION BEAM COLLIMATOR  

DOE Patents (OSTI)

A device is described for defining a beam of high energy particles wherein the means for defining the beam in the horizontal and vertical dimension are separately adjustable and the defining members are internally cooled. In general, the device comprises a mounting block having a central opening through which the beam is projected, means for rotatably supporting two pairs of beam- forming members, passages in each member for the flow of coolant; the beam- forming members being insulated from each other and the block, and each having an end projecting into the opening. The beam-forming members are adjustable and may be cooperatively positioned to define the beam passing between the end of the members. To assist in projecting and defining the beam, the member ends have individual means connected thereto for indicating the amount of charge collected thereon due to beam interception.

Langsdorf, A.S. Jr.

1957-11-26T23:59:59.000Z

137

LCLS X-Ray FEL Output Performance in the Presence of Highly Time-Dependent Undulator Wakefields  

E-Print Network (OSTI)

resistive-wall wake for a 1-nC LCLS bunch charge propagatingST Accel. Beams, 8, [3] LCLS CDR, SLAC Rpt. SLAC-R-593 (al. , “Optimization of the LCLS X-RAY FEL Performance in the

Bane, Karl L.F.; Emma, Paul; Huang, Heinz-Dieter Nuhn; Stupakov, Gennady; Fawley, William M.; Reiche, Sven

2005-01-01T23:59:59.000Z

138

Beam position monitor  

DOE Patents (OSTI)

An apparatus for determining the position of an x-ray beam relative to a desired beam axis where the apparatus is positioned along the beam path so that a thin metal foil target intersects the x-ray beam generating fluorescent radiation. A PIN diode array is positioned so that a portion of the fluorescent radiation is intercepted by the array resulting in a series of electrical signals from the PIN diodes making up the array. The signals are then analyzed and the position of the x-ray beam is determined relative to the desired beam path.

Alkire, Randy W.; Rosenbaum, Gerold; Evans, Gwyndaf

2000-09-21T23:59:59.000Z

139

USE OF COHERENT TRANSITION RADIATION TO SET UP THE APS RF THERMIONIC GUN TO PRODUCE HIGH-BRIGHTNESS BEAMS FOR SASE FEL EXPERIMENTS ?  

E-Print Network (OSTI)

We describe use of the Advanced Photon Source (APS) rf thermionic gun [1], alpha-magnet beamline, and linac [2] to produce a stable high-brightness beam in excess of 100 amperes peak current with normalized emittance of 10 ? mm-mrad. To obtain peak currents greater than 100 amperes, the rf gun system must be tuned to produce a FWHM bunch length on the order of 350 fs. Bunch lengths this short are measured using coherent transition radiation (CTR) produced when the rf gun beam, accelerated to 40 MeV, strikes a metal foil. The CTR is detected using a Golay detector attached to one arm of a Michelson interferometer. The alpha-magnet current and gun rf phase are adjusted so as to maximize the CTR signal at the Golay detector, which corresponds to the minimum bunch length. The interferometer is used to measure the autocorrelation of the CTR. The minimum phase approximation [3] is used to derive the bunch profile from the autocorrelation. The high-brightness beam is accelerated to 217 MeV and used to produce self-amplified spontaneous emission (SASE) in five APS undulators installed in the Low- Energy Undulator Test Line (LEUTL) experiment hall [4]. Initial optical measurements showed a gain length of 1.3 m at 530 nm. 1

unknown authors

2000-01-01T23:59:59.000Z

140

R-value Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Wall Systems Advanced Wall Systems ORNL Home ASTM Testing BEP Home Related Sites Work With Us Advanced Wall Systems Home Interactive Calculators New Whole Wall R-value Calculators As A Part Of The ORNL Material Database For Whole Building Energy Simulations These calculators are replacing the old Whole Wall Thermal Performance calculator. These new versions of the calculator contain many new features and are part of the newly developed Interactive Envelope Materials Database for Whole-Building Energy Simulation Programs. The simple version of the Whole Wall R-value calculator is now available for use. This calculator is similar to the previous Whole Wall Thermal Performance calculator and does not require any downloads from the user. However, it was updated to allow calculations for fourteen wall details

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A new bend magnet beam line for scanning transmission x-ray microscopy at the Advanced Light Source  

Science Conference Proceedings (OSTI)

The high brightness of the bend magnets at the Advanced Light Source has been exploited to illuminate a Scanning Transmission X-ray Microscope (STXM). This is the first diffraction-limited scanning x-ray microscope to operate with useful count rate on a synchrotron bend magnet source. A simple, dedicated beam line has been built covering the range of photon energy from 250 eV to 600 eV. Ease of use and operational availability are radically improved compared to previous installations using undulator beams. This facility provides radiation for C 1s, N 1s and O 1s near edge x-ray absorption spectro-microscopy with a spectral resolution up to about 1:5000 and with STXM count rates in excess of 1 MHz.

Warwick, Tony; Ade, Harald; Kilcoyne, A.L. David; Kritscher, Michael; Tylisczcak, Tolek; Fakra, Sirine; Hitchcock, Adam P.; Hitchcock, Peter; Padmore, Howard A.

2001-12-12T23:59:59.000Z

142

Nonclassicality of vortex Airy beams in the Wigner representation  

Science Conference Proceedings (OSTI)

The Wigner distribution function (WDF) of a vortex Airy beam is calculated analytically. The WDF provides intuitive pictures of the intriguing features of vorticity in phase space. The nonclassical property of the vortex Airy beam and the Airy beam is analyzed through the negative parts of the WDF. The study shows that destructive interference of certain classical waves can mimic nonclassical lights such as those due to quantum effects.

Chen Ruipin [School of Sciences, Zhejiang A and F University, Lin'an, Zhejiang Province 311300 (China); Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia); Ooi, C. H. Raymond [Department of Physics, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2011-10-15T23:59:59.000Z

143

Beam injection into RHIC  

SciTech Connect

During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

1997-07-01T23:59:59.000Z

144

Electron beam device  

DOE Patents (OSTI)

This patent pertains to an electron beam device in which a hollow target is symmetrically irradiated by a high energy, pulsed electron beam about its periphery and wherein the outer portion of the target has a thickness slightly greater than required to absorb the electron beam pulse energy. (auth)

Beckner, E.H.; Clauser, M.J.

1975-08-12T23:59:59.000Z

145

Method for measuring and controlling beam current in ion beam processing  

DOE Patents (OSTI)

A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

Kearney, Patrick A. (Livermore, CA); Burkhart, Scott C. (Livermore, CA)

2003-04-29T23:59:59.000Z

146

Scatterometer Beam Balancing Using Open-Ocean Backscatter Measurements  

Science Conference Proceedings (OSTI)

Calculation of vector winds from spaceborne fan-beam scatterometers requires that backscatter measurements from different antennas be relatively calibrated to high accuracy. A method is developed to perform postlaunch antenna calibration using ...

Michael H. Freilich; Hongbo Qi; R. Scott Dunbar

1999-02-01T23:59:59.000Z

147

Electron beam depolarization in a damping ring  

SciTech Connect

Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms.

Minty, M.

1993-04-01T23:59:59.000Z

148

BEAM CONTROL PROBE  

DOE Patents (OSTI)

A probe is described for intercepting a desired portion of a beam of charged particles and for indicating the spatial disposition of the beam. The disclosed probe assembly includes a pair of pivotally mounted vanes moveable into a single plane with adjacent edges joining and a calibrated mechanical arrangement for pivoting the vancs apart. When the probe is disposed in the path of a charged particle beam, the vanes may be adjusted according to the beam current received in each vane to ascertain the dimension of the beam.

Chesterman, A.W.

1959-03-17T23:59:59.000Z

149

EUROv Super Beam Studies  

Science Conference Proceedings (OSTI)

Neutrino Super Beams use conventional techniques to significantly increase the neutrino beam intensity compared to the present neutrino facilities. An essential part of these facilities is an intense proton driver producing a beam power higher than a MW. The protons hit a target able to accept the high proton beam intensity. The produced charged particles are focused by a system of magnetic horns towards the experiment detectors. The main challenge of these projects is to deal with the high beam intensity for many years. New high power neutrino facilities could be build at CERN profiting from an eventual construction of a high power proton driver. The European FP7 Design Study EUROv, among other neutrino beams, studies this Super Beam possibility. This paper will give the latest developments in this direction.

Dracos, Marcos [IPHC, Universite de Strasbourg, CNRS/IN2P3, F-67037 Strasbourg (France)

2011-10-06T23:59:59.000Z

150

LCLS Protype Undulator Report  

NLE Websites -- All DOE Office Websites (Extended Search)

must be non-magnetic. In fact, the practical choices are limited to stainless steel, brass or bronze, aluminum alloy and titanium alloy. Below we list the main advantages and...

151

Strong-strong beam-beam simulation on parallel computer  

DOE Green Energy (OSTI)

The beam-beam interaction puts a strong limit on the luminosity of the high energy storage ring colliders. At the interaction points, the electromagnetic fields generated by one beam focus or defocus the opposite beam. This can cause beam blowup and a reduction of luminosity. An accurate simulation of the beam-beam interaction is needed to help optimize the luminosity in high energy colliders.

Qiang, Ji

2004-08-02T23:59:59.000Z

152

Multiphase flow calculation software  

DOE Patents (OSTI)

Multiphase flow calculation software and computer-readable media carrying computer executable instructions for calculating liquid and gas phase mass flow rates of high void fraction multiphase flows. The multiphase flow calculation software employs various given, or experimentally determined, parameters in conjunction with a plurality of pressure differentials of a multiphase flow, preferably supplied by a differential pressure flowmeter or the like, to determine liquid and gas phase mass flow rates of the high void fraction multiphase flows. Embodiments of the multiphase flow calculation software are suitable for use in a variety of applications, including real-time management and control of an object system.

Fincke, James R. (Idaho Falls, ID)

2003-04-15T23:59:59.000Z

153

Oceanic Heat Flux Calculation  

Science Conference Proceedings (OSTI)

The authors review the procedure for the direct calculation of oceanic heat flux from hydrographic measurements and set out the full “recipe” that is required.

Sheldon Bacon; Nick Fofonoff

1996-12-01T23:59:59.000Z

154

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... For energy dependent cross sections please go to ... The neutron scattering length density is defined ... To calculate scattering length densities enter a ...

155

Heating Fuel Comparision Calculator  

U.S. Energy Information Administration (EIA)

Wood, Pellet, Corn (kernel), and Coal Heaters Heating Fuel Comparison Calculator Instructions and Guidance Residential Fuel/Energy Price Links Spot Prices, Daily

156

Scattering Length Density Calculator  

Science Conference Proceedings (OSTI)

... The first calculation will take the longest because the program has to download ... will take a few seconds as the database of isotopes is downloaded ...

157

Polarizing a stored proton beam by spin flip?  

E-Print Network (OSTI)

We discuss polarizing a proton beam in a storage ring, either by selective removal or by spin flip of the stored ions. Prompted by recent, conflicting calculations, we have carried out a measurement of the spin flip cross section in low-energy electron-proton scattering. The experiment uses the cooling electron beam at COSY as an electron target. The measured cross sections are too small for making spin flip a viable tool in polarizing a stored beam. This invalidates a recent proposal to use co-moving polarized positrons to polarize a stored antiproton beam.

D. Oellers; L. Barion; S. Barsov; U. Bechstedt; P. Benati; S. Bertelli; D. Chiladze; G. Ciullo; M. Contalbrigo; P. F. Dalpiaz; J. Dietrich; N. Dolfus; S. Dymov; R. Engels; W. Erven; A. Garishvili; R. Gebel; P. Goslawski; K. Grigoryev; H. Hadamek; A. Kacharava; A. Khoukaz; A. Kulikov; G. Langenberg; A. Lehrach; P. Lenisa; N. Lomidze; B. Lorentz; G. Macharashvili; R. Maier; S. Martin; S. Merzliakov; I. N. Meshkov; H. O. Meyer; M. Mielke; M. Mikirtychiants; S. Mikirtychiants; A. Nass; M. Nekipelov; N. N. Nikolaev; M. Nioradze; G. d'Orsaneo; M. Papenbrock; D. Prasuhn; F. Rathmann; J. Sarkadi; R. Schleichert; A. Smirnov; H. Seyfarth; J. Sowinski; D. Spoelgen; G. Stancari; M. Stancari; M. Statera; E. Steffens; H. J. Stein; H. Stockhorst; H. Straatmann; H. Stroeher; M. Tabidze; G. Tagliente; P. Thoerngren Engblom; S. Trusov; A. Vasilyev; Chr. Weidemann; D. Welsch; P. Wieder; P. Wuestner; P. Zupranski

2009-02-09T23:59:59.000Z

158

Multiple Electron Stripping of Heavy Ion Beams  

DOE Green Energy (OSTI)

One approach being explored as a route to practical fusion energy uses heavy ion beams focused on an indirect drive target. Such beams will lose electrons while passing through background gas in the target chamber, and therefore it is necessary to assess the rate at which the charge state of the incident beam evolves on the way to the target. Accelerators designed primarily for nuclear physics or high energy physics experiments utilize ion sources that generate highly stripped ions in order to achieve high energies economically. As a result, accelerators capable of producing heavy ion beams of 10 to 40 Mev/amu with charge state 1 currently do not exist. Hence, the stripping cross-sections used to model the performance of heavy ion fusion driver beams have, up to now, been based upon theoretical calculations. We have investigated experimentally the stripping of 3.4 Mev/amu Kr 7+ and Xe +11 in N2; 10.2 MeV/amu Ar +6 in He, N2, Ar and Xe; 19 MeV/amu Ar +8 in He, N2, Ar and Xe; 30 MeV He 1 + in He, N2, Ar and Xe; and 38 MeV/amu N +6 in He, N2, Ar and Xe. The results of these measurements are compared with the theoretical calculations to assess their applicability over a wide range of parameters.

D. Mueller; L. Grisham; I. Kaganovich; R. L. Watson; V. Horvat; K. E. Zaharakis; Y. Peng

2002-06-25T23:59:59.000Z

159

Beam-Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Gas Gas and Thermal Photon Scattering in the NLC Main Linac as a Source of Beam Halo P. Tenenbaum LCC-Note-0051 12-JAN-2001 Abstract Scattering of primary beam electrons off of residual gas molecules or blackbody radiation photons in the NLC main linac has been identified as a potential source of beam haloes which must be collimated in the beam delivery system. We consider the contributions from four scat- tering mechanisms: inelastic thermal-photon scattering, elastic beam-gas (Coulomb) scattering inelastic beam-gas (Bremsstrahlung) scattering, and atomic-electron scattering. In each case we develop the formalism necessary to estimate the backgrounds generated in the main linac, and determine the expected number of off-energy or large-amplitude particles from each process, assuming a main linac injection energy of 8 GeV and extraction energy of 500 GeV. 1 Introduction The

160

Ion Beam Materials Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities » Facilities » Ion Beam Materials Lab Ion Beam Materials Lab A new research frontier awaits! Our door is open and we thrive on mutually beneficial partnerships, collaborations that drive innovations and new technologies. April 12, 2012 Ion Beam Danfysik Implanter High Voltage Terminal. Contact Yongqiang Wang (505) 665-1596 Email Devoted to the characterization and modification of surfaces through the use of ion beams The Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to the characterization and modification of surfaces through the use of ion beams. The IBML provides and operates the core facilities, while supporting the design and implementation of specific apparati needed for experiments requested by users of the facility. The result is a facility with

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Particle beam injection system  

SciTech Connect

This invention provides a poloidal divertor for stacking counterstreaming ion beams to provide high intensity colliding beams. To this end, method and apparatus are provided that inject high energy, high velocity, ordered, atomic deuterium and tritium beams into a lower energy, toroidal, thermal equilibrium, neutral, target plasma column that is magnetically confined along an endless magnetic axis in a strong restoring force magnetic field having helical field lines to produce counterstreaming deuteron and triton beams that are received bent, stacked and transported along the endless axis, while a poloidal divertor removes thermal ions and electrons all along the axis to increase the density of the counterstreaming ion beams and the reaction products resulting therefrom. By balancing the stacking and removal, colliding, strong focused particle beams, reaction products and reactions are produced that convert one form of energy into another form of energy.

Jassby, Daniel L. (Princeton, NJ); Kulsrud, Russell M. (Princeton, NJ)

1977-01-01T23:59:59.000Z

162

Broad beam ion implanter  

DOE Patents (OSTI)

An ion implantation device for creating a large diameter, homogeneous, ion beam is described, as well as a method for creating same, wherein the device is characterized by extraction of a diverging ion beam and its conversion by ion beam optics to an essentially parallel ion beam. The device comprises a plasma or ion source, an anode and exit aperture, an extraction electrode, a divergence-limiting electrode and an acceleration electrode, as well as the means for connecting a voltage supply to the electrodes.

Leung, Ka-Ngo (Hercules, CA)

1996-01-01T23:59:59.000Z

163

BEAMS Crossword Puzzle  

NLE Websites -- All DOE Office Websites (Extended Search)

puzzle with words from the BEAMS Vocabulary List. Download this Activity Lab Pages Puzzle Puzzle Puzzle (cont) Puzzle (cont) Sample AnswersAnswer Key Ansewr Key Ansewr Key...

164

Electron Beam Melting (EBM)  

Science Conference Proceedings (OSTI)

Oct 18, 2011 ... Additive Manufacturing of Metals: Electron Beam Melting (EBM) I Sponsored by: MS&T Organization Program Organizers: Ian D. Harris, EWI; ...

165

Electron Beam Melting  

Science Conference Proceedings (OSTI)

Oct 9, 2012 ... Additive Manufacturing of Metals: Electron Beam Melting Program Organizers: Ian Harris, EWI; Ola Harrysson, North Carolina State University; ...

166

Four-button BPM coefficients in cylindrical and elliptic beam chambers.  

Science Conference Proceedings (OSTI)

Beam position monitor (BPM) coefficients are calculated from induced charges on four-button BPMs in circular and elliptic beam chambers for {gamma} >>1. Since the beam chamber cross-section for the APS storage ring is different from an exact elliptic geometry, numerical values of the BPM coefficients and their inversions are computed from two-dimensional electrostatic field distributions inside an exact geometry of the beam chamber. Utilizing Green's reciprocation theorem, a potential value is applied to the buttons rather than changing the beam position, and potential distributions corresponding to the beam positions are then computed.

Kim, S.H.

1999-04-08T23:59:59.000Z

167

Laser beam generating apparatus  

DOE Patents (OSTI)

Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 11 figures.

Warner, B.E.; Duncan, D.B.

1993-12-28T23:59:59.000Z

168

Laser beam generating apparatus  

DOE Patents (OSTI)

Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

1994-01-01T23:59:59.000Z

169

Laser beam generating apparatus  

DOE Patents (OSTI)

Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus is described. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect). 7 figures.

Warner, B.E.; Duncan, D.B.

1994-02-15T23:59:59.000Z

170

Laser beam generating apparatus  

DOE Patents (OSTI)

Laser beam generating apparatus including a septum segment disposed longitudinally within the tubular structure of the apparatus. The septum provides for radiatively dissipating heat buildup within the tubular structure and for generating relatively uniform laser beam pulses so as to minimize or eliminate radial pulse delays (the chevron effect).

Warner, Bruce E. (Livermore, CA); Duncan, David B. (Auburn, CA)

1993-01-01T23:59:59.000Z

171

Beam Diagnostics for FACET  

SciTech Connect

FACET, the Facility for Advanced Accelerator and Experimental Tests, is a new facility being constructed in sector 20 of the SLAC linac primarily to study beam driven plasma wakefield acceleration beginning in summer 2011. The nominal FACET parameters are 23GeV, 3nC electron bunches compressed to about 20 {micro}m long and focussed to about 10 {micro}m wide. Characterization of the beam-plasma interaction requires complete knowledge of the incoming beam parameters on a pulse-to-pulse basis. FACET diagnostics include Beam Position Monitors, Toroidal current monitors, X-ray and Cerenkov based energy spectrometers, optical transition radiation (OTR) profile monitors and coherent transition radiation (CTR) bunch length measurement systems. The compliment of beam diagnostics and their expected performance are reviewed. Beam diagnostic measurements not only provide valuable insights to the running and tuning of the accelerator but also are crucial for the PWFA experiments in particular. Beam diagnostic devices are being set up at FACET and will be ready for beam commissioning in summer 2011.

Li, S.Z.; Hogan, M.J.; /SLAC

2011-08-19T23:59:59.000Z

172

Physics of relativistic electron beams in rectangular and cylindrical geometries  

SciTech Connect

The use of electron beams for the direct pumping of lasers for fusion applications requires the generation of large area beams in appropriate geometries. Two geometries which are of particular interest are rectangular electron beams with planar anodes and radially converging beams with cyclindrical anodes. The generation of such beams requires the management of electron trajectories in a complex combination of applied and self-generated electric and magnetic fields. The beam's self-electric field limits the emitted current and the deflection of the electron in the self-magnetic field (beam pinch) limits the beam area that can be generated from a single cathode. A simple analytic model is used to derive a scaling relationship for beam pinch in both geometries of the form V/sup 1/2/ w/d = $alpha$ where V is the diode voltage, w the beam width, d the anode-cathode spacing, and $alpha$ is a weak function of the geometry. Numerical calculations are presented to show the effects of nonuniform electric fields encountered in typical geometries together with supporting experimental measurements. (auth)

Schlitt, L.G.; Bradley, L.P.

1975-11-01T23:59:59.000Z

173

Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electric Plug-in Hybrid Electric Natural Gas (CNG) Flex Fuel (E85) Biodiesel (B20) Next Vehicle Cost Calculator U.S. Department of Energy Energy Efficiency and Renewable Energy...

174

MODIFIED ZONE METHOD CALCULATOR  

NLE Websites -- All DOE Office Websites (Extended Search)

Zone Method is recommended for R-value calculations in steel stud walls by the 1997 ASHRAE Handbook of Fundamentals ASHRAE 1997. The Modified Zone Method is similar to the...

175

Laser beam alignment system  

DOE Patents (OSTI)

A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector.

Kasner, William H. (11686 Althea Dr., Pittsburgh, PA 15235); Racki, Daniel J. (712 Union Cemetery Rd., Greensburg, PA 15601); Swenson, Clark E. (228 Scott Dr., Monroeville, PA 15146)

1984-01-01T23:59:59.000Z

176

Beam director design report  

Science Conference Proceedings (OSTI)

A design and fabrication effort for a beam director is documented. The conceptual design provides for the beam to pass first through a bending and focusing system (or ''achromat''), through a second achromat, through an air-to-vacuum interface (the ''beam window''), and finally through the vernier steering system. Following an initial concept study for a beam director, a prototype permanent magnet 30/sup 0/ beam-bending achromat and prototype vernier steering magnet were designed and built. In volume II, copies are included of the funding instruments, requests for quotations, purchase orders, a complete set of as-built drawings, magnetic measurement reports, the concept design report, and the final report on the design and fabrication project. (LEW)

Younger, F.C.

1986-08-01T23:59:59.000Z

177

First Beam to FACET  

Science Conference Proceedings (OSTI)

The SLAC 3km linear electron accelerator has been reconfigured to provide a beam of electrons to the new Facility for Advanced Accelerator Experimental Tests (FACET) while simultaneously providing an electron beam to the Linac Coherent Light Source (LCLS). On June 23, 2011, the first electron beam was transported through this new facility. Commissioning of FACET is in progress. On June 23, 2011, an electron beam was successfully transported through the new FACET system to a dump in Sector 20 in the linac tunnel. This was achieved while the last third of the linac, operating from the same control room, but with a separate injector system, was providing an electron beam to the Linac Coherent Light Source (LCLS), demonstrating that concurrent operation of the two facilities is practical. With the initial checkout of the new transport line essentially complete, attention is now turning toward compressing the electron bunches longitudinally and focusing them transversely to support a variety of accelerator science experiments.

Erickson, R.; Clarke, C.; Colocho, W.; Decker, F.-J.; Hogan, M.; Kalsi, S.; Lipkowitz, N.; Nelson, J.; Phinney, N.; Schuh, P.; Sheppard, J.; Smith, H.; Smith, T.; Stanek, M.; Turner, J.; Warren, J.; Weathersby, S.; Wienands, U.; Wittmer, W.; Woodley, M.; Yocky, G.; /SLAC

2011-12-13T23:59:59.000Z

178

Source and replica calculations  

Science Conference Proceedings (OSTI)

The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem.

Whalen, P.P.

1994-02-01T23:59:59.000Z

179

SPEAR3 Beam Line Availability  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Line Support | Floor Support | Administrative Support SPEAR3 Beam Line Availability Beam Line BL Type Technique(s) Status 1-4 X-ray Small and Wide Angle X-ray Scattering Open...

180

Electron and laser beam welding  

SciTech Connect

This book contains 22 selections. Some of the titles are: Laser welding of chandelles to the plates of the sommier employed in the nuclear power plant core; Electron beam welding of hobbing cutters; Sealing welds in electron beam welding of thick metals; Development and application of high power electron beam welding; Electron beam welding of dissimilar metals (niobium, molybdenum, porous tungsten-molybdenum); Status of electron beam welding in the United States of America; and Electron and laser beam welding in Japan.

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Challenges in Accelerator Beam Instrumentation  

E-Print Network (OSTI)

The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

Wendt, M

2009-01-01T23:59:59.000Z

182

Challenges in Accelerator Beam Instrumentation  

Science Conference Proceedings (OSTI)

The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

Wendt, M.

2009-12-01T23:59:59.000Z

183

Frontiers of Particle Beam Physics  

E-Print Network (OSTI)

Low Emittance e--e+ Beams, Brookhaven National Laboratory,Island, NY, October 1988, Brookhaven National Laboratory,Low Emittance e--e+ Beams, Brookhaven National Laboratory,

Sessler, Andrew M.

2008-01-01T23:59:59.000Z

184

Space Charge Correction on Emittance Measurement of Low Energy Electron Beams  

SciTech Connect

The goal of any particle accelerator is to optimize the transport of a charged particle beam along a set path by confining the beam to a small region close to the design trajectory and directing it accurately along the beamline. To do so in the simplest fashion, accelerators use a system of magnets that exert approximately linear electromagnetic forces on the charged beam. These electromagnets bend the beam along the desired path, in the case of bending magnets, and constrain the beam to the desired area through alternating focusing and defocusing effects, in the case of quadrupole magnets. We can model the transport of such a beam through transfer matrices representing the actions of the various beamline elements. However, space charge effects, produced from self electric fields within the beam, defocus the beam and must be accounted for in the calculation of beam emittance. We present below the preliminary results of a MATLAB code built to model the transport of a charged particle beam through an accelerator and measure the emittance under the influence of space charge effects. We demonstrate the method of correctly calculating the emittance of a beam under space charge effects using a least square fit to determine the initial properties of the beam given the beam size measured at a specific point after transport.

Treado, Colleen J.; /Massachusetts U., Amherst

2012-09-07T23:59:59.000Z

185

Simulations of beam-beam and beam-wire interactions in RHIC  

SciTech Connect

The beam-beam interaction is one of the dominant sources of emittance growth and luminosity lifetime deterioration. A current carrying wire has been proposed to compensate long-range beam-beam effects in the LHC and strong localized long-range beam-beam effects are experimentally investigated in the RHIC collider. Tune shift, beam transfer function, and beam loss rate are measured in dedicated experiments. In this paper, they report on simulations to study the effect of beam-wire interactions based on diffusive apertures, beam loss rates, and beam transfer function using a parallelized weak-strong beam simulation code (BBSIMC). The simulation results are compared with measurements performed in RHIC during 2007 and 2008.

Kim, Hyung J.; Sen, Tanaji; /Fermilab; Abreu, Natalia P.; Fischer, Wolfram; /Brookhaven

2009-02-01T23:59:59.000Z

186

Beam Purification by Photodetachment  

Science Conference Proceedings (OSTI)

Ion beam purity is of crucial importance to many basic and applied studies. Selective photodetachment has been proposed to suppress unwanted species in negative ion beams while preserving the intensity of the species of interest. A highly efficient technique based on photodetachment in a gas-filled radio frequency quadrupole ion cooler has been demonstrated. In off-line experiments with stable ions, up to 104 times suppression of the isobar contaminants in a number of interesting radioactive negative ion beams has been demonstrated. For selected species, this technique promises experimental possibilities in studies on exotic nuclei, accelerator mass spectrometry, and fundamental properties of negative atomic and molecular ions.

Liu, Yuan [ORNL; Beene, James R [ORNL; Havener, Charles C [ORNL; Galindo-Uribarri, Alfredo {nmn} [ORNL; Andersson, P. [University of Gothenburg, Sweden; Lindahl, A. O. [University of Gothenburg, Sweden; Hanstorp, D. [University of Gothenburg, Sweden; Forstner, Dr. Oliver [University of Vienna, Austria; Gottwald, T. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Wendt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany

2012-01-01T23:59:59.000Z

187

TVDG LET Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

To The B N L Tandem Van de Graaff Accelerator To The B N L Tandem Van de Graaff Accelerator TVDG LET Calculator This program calculates the Peak LET, Corresponding Energy and Range as well as the LET and Range at the Specified Energy for the Specified Ion in the Specified Target. Select the Target Material from the dropdown list. Select the Ion Specie from the dropdown list. Enter the Total Ion Energy in the text box. This is equal to the Atomic Mass times the Energy/Nucleon. Click the 'Calculate' button or press the 'Enter' key. The Peak LET, Corresponding Energy and Range as well as the LET and Range at the Specified Energy for the Specified Ion in the Specified Target will be returned. Select your Target from the list Air Aluminum Oxide Carbon Copper Gallium Arsenide Gold Polyester Polyethylene Silicon Silicon Dioxide Skin Soda Lime Glass Sodium Iodide Water Select your Ion from the list

188

Solar Reflectance Index Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Reflectance Index Calculator Reflectance Index Calculator ASTM Designation: E 1980-01 Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Wind Speed (mph) Wind Speed (m/s) Please input both the SR and the TE and the convection coeficient and surface temperature will be calculated

189

Simulation study of beam-beam effects in ion beams with large space charge tuneshift  

Science Conference Proceedings (OSTI)

During low-energy operations with gold-gold collisions at 3.85 GeV beam energy, significant beam lifetime reductions have been observed due to the beam-beam interaction in the presence of large space charge tuneshifts. These beam-beam tuneshift parameters were about an order of magnitude smaller than during regular high energy operations. To get a better understanding of this effect, simulations have been performed. Recent results are presented.

Montag C.

2012-05-20T23:59:59.000Z

190

Spin resonance strength calculations  

SciTech Connect

In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

Courant,E.D.

2008-10-06T23:59:59.000Z

191

Neutral particle beam intensity controller  

DOE Patents (OSTI)

The neutral beam intensity controller is based on selected magnetic defocusing of the ion beam prior to neutralization. The defocused portion of the beam is dumped onto a beam dump disposed perpendicular to the beam axis. Selective defocusing is accomplished by means of a magnetic field generator disposed about the neutralizer so that the field is transverse to the beam axis. The magnetic field intensity is varied to provide the selected partial beam defocusing of the ions prior to neutralization. The desired focused neutral beam portion passes along the beam path through a defining aperture in the beam dump, thereby controlling the desired fraction of neutral particles transmitted to a utilization device without altering the kinetic energy level of the desired neutral particle fraction. By proper selection of the magnetic field intensity, virtually zero through 100% intensity control of the neutral beam is achieved.

Dagenhart, W.K.

1984-05-29T23:59:59.000Z

192

Calculation of fusion product angular correlation coefficients for fusion plasmas  

SciTech Connect

The angular correlation coefficients for fusion products are calculated in the cases of Maxwellian and beam-target plasmas. Measurement of these coefficients as a localized ion temperature or fast-ion diagnostic is discussed. 8 refs., 7 figs., 1 tab.

Murphy, T.J.

1987-08-01T23:59:59.000Z

193

Modeling the beam characterization system  

DOE Green Energy (OSTI)

The Beam Characterization System (BCS) recently developed for heliostat evaluation at the Central Receiver Test Facility at Sandia Laboratories, measures, digitizes, records, and analyzes a flux-density pattern in a beam of reflected sunlight. Since the BCS collects data with a given set of conditions (geometry, weather, etc.) to determine optical specifications which can predict heliostat behavior under other sets of conditions, it is necessary to use a theoretical model of the system to interpret results. This model serves as an aid to define specifications, analyze measurements, calculate performance, and answer other questions about the heliostat. A statistical method is used to handle stochastic variables such as sun-tracking errors and surface-slope errors. A cone-optics technique is used to incorporate the statistics into a consistent model of the optical behavior of a heliostat. An overview of this model is given. Use of the model is unfolding slope-error distributions and sun-tracking statistics is described for measurements both in and out of the focal plane. The importance of auxiliary input information such as the sunshape (angular distribution of sun rays) to the analysis of BCS measurements is discussed. Finally, the role of the BCS in validating heliostats against acceptance criteria is summarized.

Biggs, F.; Vittitoe, C.N.; King, D.L.

1979-01-01T23:59:59.000Z

194

Courses on Beam Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Physics Beam Physics The following is an incomplete listing of course available for beam physics. United States Particle Accelerator School The US Particle Accelerator School provides educational programs in the field of beams and their associated accelerator technologies not otherwise available to the community of science and technology. Joint Universities Accelerator School Each year JUAS provides a foundation course on accelerator physics and associated technologies. The US-CERN-Japan-Russia Joint Accelerator School The purpose of the US-CERN-Japan-Russia joint school is to better our relations by working together on an advanced topical course every two years, alternating between the U.S., western Europe, Japan and Russia. The last set of courses focused on the frontiers of accelerator technology in

195

BNL | ATF Beam Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Beam Schedule (pdf) Beam Schedule (pdf) Sunday Monday Tuesday Wednesday Thursday Friday Saturday 22 1/2 Holiday Holiday 28 January Holiday 4 5 Maintenance 11 12 Maintenance 18 19 Holiday AE52 - DWFA (Euclid), BL2 25 February AE52 - DWFA (Euclid), BL2 1 2 AE50 - PWFA in QNR (UCLA), BL2 8 9 AE50 - PWFA in QNR (UCLA), BL2 15 16 Holiday AE50 - PWFA in QNR (UCLA), BL2 22 March 1 2 AE53 - Nonlinear Compton (UCLA) 8 9 AE53 - Nonlinear Compton (UCLA) 15 16 AE53 - Nonlinear Compton (UCLA) 22 23 29 Sunday Monday Tuesday Wednesday Thursday Friday Saturday User operations (E-beam in use) Ions - Ion generation User operations (laser in use) PWFA - Plasma Wakefield Acceleration User operations (E-beam and laser in use)

196

1996 Beam Instrumentation Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

1996 Beam Instrumentation Workshop BIW '96 logo The Advanced Photon Source (APS) Argonne National Laboratory May 6-9, 1996 Dear Colleague: It is my pleasure to invite you to the...

197

Mitigation Efforts Calculator (MEC)  

Science Conference Proceedings (OSTI)

The Mitigation Efforts Calculator (MEC) has been developed by the International Institute for Applied Systems Analysis (IIASA) as an online tool to compare greenhouse gas (GHG) mitigation proposals by various countries for the year 2020. In this paper, ... Keywords: Business intelligence, Cost curves, Decision model, Interactive system, Optimisation

Thanh Binh Nguyen; Lena Hoeglund-Isaksson; Fabian Wagner; Wolfgang Schoepp

2013-04-01T23:59:59.000Z

198

Tunnel closure calculations  

SciTech Connect

When a deeply penetrating munition explodes above the roof of a tunnel, the amount of rubble that falls inside the tunnel is primarily a function of three parameters: first the cube-root scaled distance from the center of the explosive to the roof of the tunnel. Second the material properties of the rock around the tunnel, and in particular the shear strength of that rock, its RQD (Rock Quality Designator), and the extent and orientation of joints. And third the ratio of the tunnel diameter to the standoff distance (distance between the center of explosive and the tunnel roof). The authors have used CALE, a well-established 2-D hydrodynamic computer code, to calculate the amount of rubble that falls inside a tunnel as a function of standoff distance for two different tunnel diameters. In particular they calculated three of the tunnel collapse experiments conducted in an iron ore mine near Kirkeness, Norway in the summer of 1994. The failure model that they used in their calculations combines an equivalent plastic strain criterion with a maximum tensile strength criterion and can be calibrated for different rocks using cratering data as well as laboratory experiments. These calculations are intended to test and improve the understanding of both the Norway Experiments and the ACE (Array of conventional Explosive) phenomenology.

Moran, B.; Attia, A.

1995-07-01T23:59:59.000Z

199

Intense ion beam generator  

DOE Patents (OSTI)

Methods and apparatus for producing intense megavolt ion beams are disclosed. In one embodiment, a reflex triode-type pulsed ion accelerator is described which produces ion pulses of more than 5 kiloamperes current with a peak energy of 3 MeV. In other embodiments, the device is constructed so as to focus the beam of ions for high concentration and ease of extraction, and magnetic insulation is provided to increase the efficiency of operation.

Humphries, Jr., Stanley (Ithaca, NY); Sudan, Ravindra N. (Ithaca, NY)

1977-08-30T23:59:59.000Z

200

Wire Scanner Beam Profile Measurements: LANSCE Facility Beam Development  

SciTech Connect

The Los Alamos Neutron Science Center (LANSCE) is replacing Wire Scanner (WS) beam profile measurement systems. Three beam development tests have taken place to test the new wire scanners under beam conditions. These beam development tests have integrated the WS actuator, cable plant, electronics processors and associated software and have used H{sup -} beams of different beam energy and current conditions. In addition, the WS measurement-system beam tests verified actuator control systems for minimum profile bin repeatability and speed, checked for actuator backlash and positional stability, tested the replacement of simple broadband potentiometers with narrow band resolvers, and tested resolver use with National Instruments Compact Reconfigurable Input and Output (cRIO) Virtual Instrumentation. These beam tests also have verified how trans-impedance amplifiers react with various types of beam line background noise and how noise currents were not generated. This paper will describe these beam development tests and show some resulting data.

Gilpatrick, John D. [Los Alamos National Laboratory; Batygin, Yuri K. [Los Alamos National Laboratory; Gonzales, Fermin [Los Alamos National Laboratory; Gruchalla, Michael E. [Los Alamos National Laboratory; Kutac, Vincent G. [Los Alamos National Laboratory; Martinez, Derwin [Los Alamos National Laboratory; Sedillo, James Daniel [Los Alamos National Laboratory; Pillai, Chandra [Los Alamos National Laboratory; Rodriguez Esparza, Sergio [Los Alamos National Laboratory; Smith, Brian G. [Los Alamos National Laboratory

2012-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Plutonium 239 Equivalency Calculations  

SciTech Connect

This document provides the basis for converting actual weapons grade plutonium mass to a plutonium equivalency (PuE) mass of Plutonium 239. The conversion can be accomplished by performing calculations utilizing either: (1) Isotopic conversions factors (CF{sub isotope}), or (2) 30-year-old weapons grade conversion factor (CF{sub 30 yr}) Both of these methods are provided in this document. Material mass and isotopic data are needed to calculate PuE using the isotopic conversion factors, which will provide the actual PuE value at the time of calculation. PuE is the summation of the isotopic masses times their associated isotopic conversion factors for plutonium 239. Isotopic conversion factors are calculated by a normalized equation, relative to Plutonium 239, of specific activity (SA) and cumulated dose inhalation affects based on 50-yr committed effective dose equivalent (CEDE). The isotopic conversion factors for converting weapons grade plutonium to PuE are provided in Table-1. The unit for specific activity (SA) is curies per gram (Ci/g) and the isotopic SA values come from reference [1]. The cumulated dose inhalation effect values in units of rem/Ci are based on 50-yr committed effective dose equivalent (CEDE). A person irradiated by gamma radiation outside the body will receive a dose only during the period of irradiation. However, following an intake by inhalation, some radionuclides persist in the body and irradiate the various tissues for many years. There are three groups CEDE data representing lengths of time of 0.5 (D), 50 (W) and 500 (Y) days, which are in reference [2]. The CEDE values in the (W) group demonstrates the highest dose equivalent value; therefore they are used for the calculation.

Wen, J

2011-05-31T23:59:59.000Z

202

Small Spot, Brighter Beam  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Spot, Brighter Beam Small Spot, Brighter Beam Small Spot, Brighter Beam Print Do you notice the brighter beam? During the most recent shutdown, all of the corrector magnets were replaced with sextupoles, reducing the horizontal emittance and increasing beam brightness. "This is part of ongoing improvement to keep the ALS on the cutting edge," says Alastair MacDowell, a beamline scientist on Beamline 12.2.2. The brightness has increased by a factor of about three in the storage ring. Beamlines on superbend or center-bend magnets will see the most noticeable increase in brightness, but the horizontal beam size and divergence have been substantially reduced at all beamlines. "We are starting to approach the resolution of many beamlines. Therefore, not every beamline will be able to resolve the full improvement," says Christoph Steier, project leader of the brightness upgrade. Though superbend and center-bend magnet source sizes are reduced by roughly a factor of three, "measured improvements so far range from a factor of 2-2.5," Steier says. He and MacDowell agree that the beamline optics are likely the limiting factor in resolving the full improvement at the beamlines.

203

Laboratory Directed Research and Development Program FY 2005  

E-Print Network (OSTI)

gain length reduction in the LCLS undulator, thereby easingstringent requirements on the LCLS electron beam quality.saturation in the LCLS case with a 50m undulator, producing

Hansen, Todd

2006-01-01T23:59:59.000Z

204

Remote Sounding of High Clouds. III: Monte Carlo Calculations of Multiple-Scattered Lidar Returns  

Science Conference Proceedings (OSTI)

Monte Carlo calculations of multiple-scattered contributions to the total energy received in a lidar beam have been made for a representative cirrus ice-cloud scattering phase function. The phase function is varied arbitrarily near the back ...

C. M. R. Platt

1981-01-01T23:59:59.000Z

205

Single element laser beam shaper  

DOE Patents (OSTI)

A single lens laser beam shaper for converting laser beams from any spatial profile to a flat-top or uniform spatial profile. The laser beam shaper includes a lens having two aspheric surfaces. The beam shaper significantly simplifies the overall structure in comparison with conventional 2-element systems and therefore provides great ease in alignment and reduction of cost.

Zhang, Shukui (Yorktown, VA); Michelle D. Shinn (Newport News, VA)

2005-09-13T23:59:59.000Z

206

Electron Beam Powder Bed Processes  

Science Conference Proceedings (OSTI)

Advanced Materials, Processes and Applications for Additive Manufacturing : Electron Beam Powder Bed Processes Program Organizers: Andrzej ...

207

Hydrogen Threshold Cost Calculation  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Record (Offices of Fuel Cell Technologies) Program Record (Offices of Fuel Cell Technologies) Record #: 11007 Date: March 25, 2011 Title: Hydrogen Threshold Cost Calculation Originator: Mark Ruth & Fred Joseck Approved by: Sunita Satyapal Date: March 24, 2011 Description: The hydrogen threshold cost is defined as the hydrogen cost in the range of $2.00-$4.00/gge (2007$) which represents the cost at which hydrogen fuel cell electric vehicles (FCEVs) are projected to become competitive on a cost per mile basis with the competing vehicles [gasoline in hybrid-electric vehicles (HEVs)] in 2020. This record documents the methodology and assumptions used to calculate that threshold cost. Principles: The cost threshold analysis is a "top-down" analysis of the cost at which hydrogen would be

208

Steep Slope Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Steep Slope Calculator Steep Slope Calculator Estimates Cooling and Heating Savings for Residential Roofs with Non-Black Surfaces Enter A State: Select a state Alabama Alaska Arkansas Arizona California Colorado Connecticut Delaware Florida Georgia Hawaii Iowa Idaho Illinois Indiana Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana North Carolina North Dakota Nebraska Nevada New Hampshire New Jersey New Mexico New York Ohio Oklahoma Oregon Pennsylvania Pacific Islands Puerto Rico Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington Wisconsin West Virginia Wyoming Canadian Cities Enter A City: Select a city Click to see Data for All 243 Locations Roof Inputs: R-value(Btu-in/(hr ft2 oF):

209

Measurement of Beam Lifetime and Applications for SPEAR3  

SciTech Connect

Beam lifetime studies for the SPEAR3 storage ring are presented. The three lifetime components are separated with lifetime measurements under various combinations of beam currents and fill patterns and vertical scraper scans. Touschek lifetime is studied with rf voltage scans and with the horizontal or vertical scrapers inserted. The measurements are explained with calculations based on the calibrated lattice model. Quantum lifetime measurements are performed with reduced longitudinal and horizontal apertures, respectively, from which we deduce the radiation energy loss down to a few keV per revolution and the horizontal beam size.

Huang, Xiaobiao; Corbett, Jeff; /SLAC

2011-04-05T23:59:59.000Z

210

Beam Characterizations at Femtosecond Electron Beam Facility  

SciTech Connect

The SURIYA project at the Fast Neutron Research Facility (FNRF) has been established and is being commissioning to generate femtosecond (fs) electron bunches. Theses short bunches are produced by a system consisting of an S-band thermionic cathode RF-gun, an alpha magnet (a-magnet) serving as a magnetic bunch compressor, and a SLAC-type linear accelerator (linac). The characteristics of its major components and the beam characterizations as well as the preliminary experimental results will be presented and discussed in this paper.

Rimjaem, S.; Jinamoon, V.; Kangrang, M.; Kusoljariyakul, K.; Saisut, J.; Thongbai, C.; Vilaithong, T.; Rhodes, M.W.; Wichaisirimongkol, P.; /Chiang Mai U.; Wiedemann, H.; /SLAC

2006-03-17T23:59:59.000Z

211

Booster gold beam injection efficiency and beam loss  

SciTech Connect

The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide gold beam with the intensity of 10{sup 9} ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold ion beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam.

Zhang, S.Y.; Ahrens, L.A.

1998-08-01T23:59:59.000Z

212

ICFA Beam Dynamics Newsletter  

SciTech Connect

The Collider-Accelerator Department at Brookhaven National Laboratory is building a high-brightness 500 mA capable Energy Recovery Linac (ERL) as one of its main R&D thrusts towards eRHIC, the polarized electron - hadron collider as an upgrade of the operating RHIC facility. The ERL is in final assembly stages, with injection commisioning starting in October 2012. The objective of this ERL is to serve as a platform for R&D into high current ERL, in particular issues of halo generation and control, Higher-Order Mode (HOM) issues, coherent emissions for the beam and high-brightness, high-power beam generation and preservation. The R&D ERL features a superconducting laser-photocathode RF gun with a high quantum efficiency photoccathode served with a load-lock cathode delivery system, a highly damped 5-cell accelerating cavity, a highly flexible single-pass loop and a comprehensive system of beam instrumentation. In this ICFA Beam Dynamics Newsletter article we will describe the ERL in a degree of detail that is not usually found in regular publications. We will discuss the various systems of the ERL, following the electrons from the photocathode to the beam dump, cover the control system, machine protection etc and summarize with the status of the ERL systems.

Ben-Zvi I.; Kuczewski A.; Altinbas, Z.; Beavis, D.; Belomestnykh,; Dai, J. et al

2012-07-01T23:59:59.000Z

213

Beam-Based Alignment  

NLE Websites -- All DOE Office Websites (Extended Search)

One: One: Single-Bunch Comparative Study of Three Algorithms Peter Tenenbaum LCC-Note-0013 17-February-1999 Abstract We describe the results of a series of simulation studies of beam-based alignment of the NLC main linacs using the program LIAR. Three algorithms for alignment of quadrupoles and girders are consid- ered: the algorithm used in the ZDR, the ZDR algorithm combined with a post-alignment MICADO operation, and an algorithm which requires no steering dipoles but requires twice as many alignment segments per linac as the ZDR algorithm. The third algorithm appears to be the most robust, based on convergence time, required quad mover step sizes, and variation in extracted beam emittance as a function of BNS profile. We also study the effect of structure BPM resolution and ATL misalignments during the alignment process. 1 Introduction Beam-based alignment and steering of the

214

Colliding Crystalline Beams  

SciTech Connect

Crystalline Beams* are an ordered state of an ensemble of ions, circulating in a storage ring, with very small velocity fluctuations. They can be obtained from ordinary warm ion beams with the application of powerful cooling techniques (stochastic, electron, laser, ...). Depending on the focussing properties and dimensions of the storage ring, and on the ion beam density, several ground states are possible. All of them can be visualized as a bundle of n{sub s} symmetrically distributed, parallel strings. The longitudinal ion separation {lambda} is the same for all strings. The minimum temperature that can be achieved depends on die background noise of the cooling technique used. It is required for stability that the vibration amplitude of the ions is only a fraction of the separation {lambda}.

Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

1995-06-01T23:59:59.000Z

215

Microsoft Word - ls311.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

Achievable Magnetic Fields of Super-Ferric Helical Undulators Achievable Magnetic Fields of Super-Ferric Helical Undulators for the ILC S.H. Kim Advanced Photon Source, Argonne National Laboratory Abstract - The magnetic fields on the beam axis of helical undulators for the proposed International Linear Collider (ILC) gamma-ray production were calculated for undulator periods of 10 mm and 12 mm. The calculation assumed the use of low-carbon steel for the magnetic poles and a beam chamber outer diameter of 6.3 mm. Using NbTi superconducting coils at 4.2 K, the on-axis field for a 10-mm-period undulator was 0.62 T at the critical current density. The field for a 12-mm undulator period was 0.95 T, which gives a K value of 1.06. The K value for an 11-mm undulator with Nb 3 Sn superconducting coils was estimated to about 1.1.

216

BOOSTER GOLD BEAM INJECTION EFFICIENCY AND BEAM LOSS  

SciTech Connect

The Relativistic Heavy Ion Collider (RHIC) at the BNL requires the AGS to provide Gold beam with the intensity of 10{sup 9} ions per bunch. Over the years, the Tandem Van de Graaff has provided steadily increasing intensity of gold ion beams to the AGS Booster. However, the gold beam injection efficiency at the Booster has been found to decrease with the rising intensity of injected beams. As the result, for Tandem beams of the highest intensity, the Booster late intensity is lower than with slightly lower intensity Tandem beam. In this article, the authors present two experiments associated with the Booster injection efficiency and beam intensity. One experiment looks at the Booster injection efficiency by adjusting the Tandem beam intensity, and another looks at the beam life time while scraping the beam in the Booster. The studies suggest that the gold beam injection efficiency at the AGS Booster is related to the beam loss in the ring, rather than the intensity of injected beam or circulating beam. A close look at the effect of the lost gold ion at the Booster injection leads to the prediction that the lost gold ion creates large number of positive ions, and even larger number of electrons. The lost gold beam is also expected to create large numbers of neutral particles. In 1998 heavy ion run, the production of positive ions and electrons due to the lost gold beam has been observed. Also the high vacuum pressure due to the beam loss, presumably because of the neutral particles it created, has been measured. These results will be reported elsewhere.

ZHANG,S.Y.; AHRENS,L.A.

1998-06-22T23:59:59.000Z

217

PURIFICATION OF IRIDIUM BY ELECTRON BEAM MELTING  

Science Conference Proceedings (OSTI)

The purification of iridium metal by electron beam melting has been characterized for 48 impurity elements. Chemical analysis was performed by glow discharge mass spectrographic (GDMS) analysis for all elements except carbon, which was analyzed by combustion. The average levels of individual elemental impurities in the starting powder varied from 37 g/g to 0.02 g/g. The impurity elements Li, Na, Mg, P, S, Cl, K, Ca, Mn, Co, Ni, Cu, Zn, As, Pd, Ag, Cd, Sn, Sb, Te, Ba, Ce, Tl, Pb, and Bi were not detectable following the purification. No significant change in concentration of the elements Ti, V, Zr, Nb, Mo, and Re was found. The elements B, C, Al, Si, Cr, Fe, Ru, Rh, and Pt were partially removed by vaporization during electron beam melting. Langmuir's equation for ideal vaporization into a vacuum was used to calculate for each impurity element the expected ratio of impurity content after melting to that before melting. Equilibrium vapor pressures were calculated using Henry's law, with activity coefficients obtained from published data for the elements Fe, Ti, and Pt. Activity coefficients were estimated from enthalpy data for Al, Si, V, Cr, Mn, Co, Ni, Zr, Nb, Mo, and Hf and an ideal solution model was used for the remaining elements. The melt temperature was determined from measured iridium weight loss. Excellent agreement was found between measured and calculated impurity ratios for all impurity elements. The results are consistent with some localized heating of the melt pool due to rastering of the electron beam, with an average vaporization temperature of 3100 K as compared to a temperature of 2965 K calculated for uniform heating of the melt pool. The results are also consistent with ideal mixing in the melt pool.

Ohriner, Evan Keith [ORNL

2008-01-01T23:59:59.000Z

218

Electron beam dynamics for the ISIS bremsstrahlung beam generation system  

E-Print Network (OSTI)

An electron beam transport system was designed for use in the Bremsstrahlung Beam Generation System of the Integrated Stand-off Inspection System (ISIS). The purpose of this electron transport system was to provide for ...

Block, Robert E. (Robert Edward)

2011-01-01T23:59:59.000Z

219

Beam specie analyzer for intense neutral beams  

DOE Green Energy (OSTI)

A three-channel neutral particle energy analyzer has been fabricated and calibrated for H/sup 0/ particles. H/sup 0/ with energies 3.5-55 keV was passed through a N/sub 2/ gas cell maintained at charge equilibrium pressures. H/sup +/ ions formed by stripping collisions were energy analyzed by a 45/sup 0/, parabolic, electrostatic analyzer and detected by three Faraday cups spaced to intercept the full-, half-, and third-energy beam components. The conversion efficiency of the analyzer system increased from 0.11 at 3.5 keV to 0.54 at 55 keV with an accuracy of +- 3%.

Barnett, C.F.; Ray, J.A.

1981-03-01T23:59:59.000Z

220

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

222

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

223

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

2 Print 2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

224

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 9.0.2 Beamline 9.0.2 Print Tuesday, 20 October 2009 08:59 Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm

225

Beamline 9.0.2  

NLE Websites -- All DOE Office Websites (Extended Search)

9.0.2 Print 9.0.2 Print Chemical Dynamics Scientific disciplines: Chemical dynamics, aerosol chemistry, imaging mass spectrometry, chemical kinetics, laser ablation and clusters, combustion and flames. Endstations: Molecular-beam photoelectron/photoion imaging and spectroscopy Flame chamber Ablation chamber Aerosol chamber Kinetics chamber GENERAL BEAMLINE INFORMATION Operational Yes Source characteristics 10-cm period undulator (U10) (fundamental) Energy range 7.4-30 eV Undulator beam White beam (straight undulator beam) Calculated flux (1.9 GeV, 400 mA) 1016 photons/s, 2.5%BW Spot size at sample 170 (h) x 50 (v) µm Monochromator #1 3-m Off-plane Eagle Calculated flux (1.9 GeV, 400 mA) 1014 photons/s, 0.1%BW Spot size at sample 400 (h) x 350 (v) µm Monochromator #2 3-m Off-plane Eagle

226

Positive and Negative Ion Beam Merging System for Neutral Beam ...  

APPLICATIONS OF TECHNOLOGY: Semiconductor manufacturing; Low- and medium-energy ion implantation; Fusion plasma systems requiring neutral beam ...

227

Neutral particle beam intensity controller  

DOE Patents (OSTI)

A neutral beam intensity controller is provided for a neutral beam generator in which a neutral beam is established by accelerating ions from an ion source into a gas neutralizer. An amplitude modulated, rotating magnetic field is applied to the accelerated ion beam in the gas neutralizer to defocus the resultant neutral beam in a controlled manner to achieve intensity control of the neutral beam along the beam axis at constant beam energy. The rotating magnetic field alters the orbits of ions in the gas neutralizer before they are neutralized, thereby controlling the fraction of neutral particles transmitted out of the neutralizer along the central beam axis to a fusion device or the like. The altered path or defocused neutral particles are sprayed onto an actively cooled beam dump disposed perpendicular to the neutral beam axis and having a central open for passage of the focused beam at the central axis of the beamline. Virtually zero therough 100% intensity control is achieved by varying the magnetic field strength without altering the ion source beam intensity or its species yield.

Dagenhart, William K. (Oak Ridge, TN)

1986-01-01T23:59:59.000Z

228

Beam current sensor  

DOE Patents (OSTI)

A current sensor for measuring the dc component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivities in the nano-ampere range.

Kuchnir, M.; Mills, F.E.

1984-09-28T23:59:59.000Z

229

Beam current sensor  

DOE Patents (OSTI)

A current sensor for measuring the DC component of a beam of charged particles employs a superconducting pick-up loop probe, with twisted superconducting leads in combination with a Superconducting Quantum Interference Device (SQUID) detector. The pick-up probe is in the form of a single-turn loop, or a cylindrical toroid, through which the beam is directed and within which a first magnetic flux is excluded by the Meisner effect. The SQUID detector acts as a flux-to-voltage converter in providing a current to the pick-up loop so as to establish a second magnetic flux within the electrode which nulls out the first magnetic flux. A feedback voltage within the SQUID detector represents the beam current of the particles which transit the pick-up loop. Meisner effect currents prevent changes in the magnetic field within the toroidal pick-up loop and produce a current signal independent of the beam's cross-section and its position within the toroid, while the combination of superconducting elements provides current measurement sensitivites in the nano-ampere range.

Kuchnir, Moyses (Elmhurst, IL); Mills, Frederick E. (Elburn, IL)

1987-01-01T23:59:59.000Z

230

Beam experiments towards high-intensity beams in RHIC  

SciTech Connect

Proton bunch intensities in RHIC are planned to be increased from 2 {center_dot} 10{sup 11} to 3 {center_dot} 10{sup 11} protons per bunch to increase the luminosity, together with head-on beam-beam compensation using electron lenses. To study the feasibility of the intensity increase, beam experiments are being performed. Recent experimental results are presented.

Montag C.; Ahrens, L.; Brennan, J.M.; Blaskiewicz, M.; Drees, A.; Fischer, W.; Hayes, T.; Huang, H.; Mernick, K.; Robert-Demolaize, G.; Smith, K.; Than, R.; Thieberger, P.; Yip, K.; Zeno, K.; Zhang, S.Y.

2012-05-20T23:59:59.000Z

231

Crab Cavity Phase Noise Calculations  

NLE Websites -- All DOE Office Websites (Extended Search)

of whether or not it is reasonable to consider a conventional positron source for a Tesla formatted beam. The critical issue is that of energy deposition in the conversion...

232

Dependence of the Photon Beam Characteristics on Electron Beam Parameters in Third Generation Synchrotron Light Sources  

E-Print Network (OSTI)

Dependence of the Photon Beam Characteristics on Electron Beam Parameters in Third Generation Synchrotron Light Sources

Ivanyan, M I; Tsakanov, V M

2002-01-01T23:59:59.000Z

233

Focused ion beam direct fabrication of micro-optical elements: features compared with laser beam and electron beam direct writing  

E-Print Network (OSTI)

Three types of focused ion beam machine: focused ion beam milling (FIB milling), focused ion beam lithography (FIB lithography), and focused ion beam direct deposition (FIB deposition), are described in detail to compare ...

Fu, Yongqi

234

BTRIC - Tools & Calculators - ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Calculators Calculators Attic Radiant Barrier Calculator Low-Slope Roof Calculator for Commercial Buildings (6/05) - estimates annual energy cost savings Moisture Control for Low-Slope Roofing (5/04) - determine if a roof design needs a vapor retarder or if the roofing system can be modified to enhance its tolerance for small leaks Modified Zone Method Roof Savings Calculator (12/12) - for commerical and residential buildings using whole-building energy simulations Solar Reflectance Index (SRI) Calculator (6/06) Steep-Slope Roof Calculator on Residential Buildings (6/05) - estimate annual energy cost savings Whole-Wall R-Value Calculator 2.0 (10/06) ZIP-Code R-Value Recommendation Calculator (1/08) Roofs/Attics Attic Radiant Barrier Fact Sheet (Jan 2011) Cool Roofs Will Revolutionize the Building Industry Fact Sheet

235

LIFTING BEAM DESIGN/ANALYSIS FOR THE DATA ACQUISITION AND CONTROL SYSTEM TRAILER  

SciTech Connect

This supporting document details calculations completed to properly design an adjustable lifting beam. The main use of the lifting beam is to hoist the Data Acquisition and Controls Systems (DACS) trailer over a steam line. All design work was completed using the American Institute of Steel Construction, Manual of Steel Construction (AISC, 1989) and Hanford Hoisting and Rigging Manual (WHC, 1992).

MACKEY TC; BENEGAS TR

1993-03-15T23:59:59.000Z

236

Beam-stack search: Integrating backtracking with beam search  

E-Print Network (OSTI)

We describe a method for transforming beam search into a complete search algorithm that is guaranteed to find an optimal solution. Called beam-stack search, the algorithm uses a new data structure, called a beam stack, that makes it possible to integrate systematic backtracking with beam search. The resulting search algorithm is an anytime algorithm that finds a good, sub-optimal solution quickly, like beam search, and then backtracks and continues to find improved solutions until convergence to an optimal solution. We describe a memory-efficient implementation of beam-stack search, called divide-and-conquer beam-stack search, as well as an iterative-deepening version of the algorithm. The approach is applied to domain-independent STRIPS planning, and computational results show its advantages.

Rong Zhou; Eric A. Hansen

2005-01-01T23:59:59.000Z

237

Calibration of the Forward-scattering Spectrometer Probe: Modeling Scattering from a Multimode Laser Beam  

Science Conference Proceedings (OSTI)

Scattering calculations using a more detailed model of the multimode laser beam in the forward-scattering spectrometer probe (FSSP) were carried out by using a recently developed extension to Mie scattering theory. From this model, new ...

Edward A. Hovenac; James A. Lock

1993-08-01T23:59:59.000Z

238

Summary of working group g: beam material interaction  

E-Print Network (OSTI)

For the first time, the workshop on High-Intensity and High-Brightness Hadron Beams (HB2010), held at Morschach, Switzerland and organized by the Paul Scherrer Institute, included a Working group dealing with the interaction between beam and material. Due to the high power beams of existing and future facilities, this topic is already of great relevance for such machines and is expected to become even more important in the future. While more specialized workshops related to topics of radiation damage, activation or thermo - mechanical calculations, already exist, HB2010 provided the occasion to discuss the interplay of these topics, focusing on components like targets, beam dumps and collimators, whose reliability are crucial for a user facility. In addition, a broader community of people working on a variety of issues related to the operation of accelerators could be informed and their interest sparked.

Kiselev, D; Schmidt, R

2011-01-01T23:59:59.000Z

239

Laser beam guard clamps  

DOE Patents (OSTI)

A quick insert and release laser beam guard panel clamping apparatus having a base plate mountable on an optical table, a first jaw affixed to the base plate, and a spring-loaded second jaw slidably carried by the base plate to exert a clamping force. The first and second jaws each having a face acutely angled relative to the other face to form a V-shaped, open channel mouth, which enables wedge-action jaw separation by and subsequent clamping of a laser beam guard panel inserted through the open channel mouth. Preferably, the clamping apparatus also includes a support structure having an open slot aperture which is positioned over and parallel with the open channel mouth.

Dickson, Richard K. (Stockton, CA)

2010-09-07T23:59:59.000Z

240

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

1-5 1-5 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI BEAM LINE 7-1 Nov. 10, 2008 Nov. 11, 2008 Nov. 12, 2008 Nov. 13, 2008 Nov. 14, 2008 Nov. 15, 2008 Nov. 16, 2008 DOWN FACI FACI FACI FACI FACI FACI

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

1-5 1-5 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 Unscheduled FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI BEAM LINE 7-1 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 Unscheduled FACI FACI FACI FACI FACI FACI

242

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 1-5 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN

243

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

5-1 5-1 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02, 2005 Dec. 03, 2005 Dec. 04, 2005 MA FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI FACI BEAM LINE 5-2 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02, 2005 Dec. 03, 2005 Dec. 04, 2005 MA FACI FACI FACI FACI FACI FACI

244

Ion beam generating apparatus  

DOE Patents (OSTI)

An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam.

Brown, Ian G. (1088 Woodside Rd., Berkeley, CA 94708); Galvin, James (2 Commodore #276, Emeryville, CA 94608)

1987-01-01T23:59:59.000Z

245

Ion beam generating apparatus  

DOE Patents (OSTI)

An ion generating apparatus utilizing a vacuum chamber, a cathode and an anode in the chamber. A source of electrical power produces an arc or discharge between the cathode and anode. The arc is sufficient to vaporize a portion of the cathode to form a plasma. The plasma is directed to an extractor which separates the electrons from the plasma, and accelerates the ions to produce an ion beam. 10 figs.

Brown, I.G.; Galvin, J.

1987-12-22T23:59:59.000Z

246

Relativistic electron beam device  

DOE Patents (OSTI)

A design is given for an electron beam device for irradiating spherical hydrogen isotope bearing targets. The accelerator, which includes hollow cathodes facing each other, injects an anode plasma between the cathodes and produces an approximately 10 nanosecond, megajoule pulse between the anode plasma and the cathodes. Targets may be repetitively positioned within the plasma between the cathodes, and accelerator diode arrangement permits materials to survive operation in a fusion power source. (auth)

Freeman, J.R.; Poukey, J.W.; Shope, S.L.; Yonas, G.

1975-07-01T23:59:59.000Z

247

Stationary nonlinear Airy beams  

Science Conference Proceedings (OSTI)

We demonstrate the existence of an additional class of stationary accelerating Airy wave forms that exist in the presence of third-order (Kerr) nonlinearity and nonlinear losses. Numerical simulations and experiments, in agreement with the analytical model, highlight how these stationary solutions sustain the nonlinear evolution of Airy beams. The generic nature of the Airy solution allows extension of these results to other settings, and a variety of applications are suggested.

Lotti, A. [Dipartimento di Fisica e Matematica, Universita del'Insubria, Via Valleggio 11, I-22100 Como (Italy); Centre de Physique Theorique, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Faccio, D. [Dipartimento di Fisica e Matematica, Universita del'Insubria, Via Valleggio 11, I-22100 Como (Italy); School of Engineering and Physical Sciences, SUPA, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Couairon, A. [Centre de Physique Theorique, CNRS, Ecole Polytechnique, F-91128 Palaiseau (France); Papazoglou, D. G. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1527, GR-71110 Heraklion (Greece); Materials Science and Technology Department, University of Crete, GR-71003 Heraklion (Greece); Panagiotopoulos, P.; Tzortzakis, S. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1527, GR-71110 Heraklion (Greece); Abdollahpour, D. [Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology, Hellas (FORTH), P.O. Box 1527, GR-71110 Heraklion (Greece); Physics Department, University of Crete, GR-71003 Heraklion (Greece)

2011-08-15T23:59:59.000Z

248

Flattening Filter Free vs Flattened Beams for Breast Irradiation  

SciTech Connect

Purpose: Flattening filter free (FFF) beams offer the potential for a higher dose rate, shorter treatment time, and lower peripheral dose. To investigate their role in large-field treatments, this study compared flattened and FFF beams for breast irradiation. Methods and Materials: Ten left breast clinical plans comprising 2 tangential beams and a medially located 3-field simultaneous integrated boost (SIB) were replanned. Full intensity modulated radiotherapy (IMRT), hybrid IMRT, electronic tissue compensator (ETC), and multiple static field treatment plans were created for the elective breast volume using flattened and FFF beams, in combination with a 3-field IMRT SIB. Plan quality was assessed and delivery times were measured for all plans for 1 patient. Out-of-field doses were measured using an ionization chamber for an IMRT plan optimized on a corner of simple cubic phantom for both flattened and FFF beams. Results: For each technique, mean target volume metrics (planning target volume coverage, homogeneity, conformity) were typically within 3% for flattened and FFF beams. Larger mean differences in boost conformity favoring flattened hybrid (7.2%) and full IMRT (5.5%) plans may have reflected limitations in plan normalization. Calculated heart and ipsilateral lung doses were comparable; however, both flattened and FFF low-dose phantom measurements were substantially higher than calculated values, rendering the comparison of low dose in the contralateral breast uncertain. Beam delivery times were on average 31% less for FFF. Conclusions: In general, target volume metrics for flattened and FFF plans were comparable. The planning system did not seem to allow for accurate peripheral dose evaluation. FFF was associated with a potentially shorter treatment time. All 4 IMRT techniques allowed FFF beams to generate acceptable plans for breast IMRT.

Spruijt, Kees H., E-mail: k.spruijt@vumc.nl [Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam (Netherlands); Dahele, Max; Cuijpers, Johan P.; Jeulink, Marloes; Rietveld, Derek; Slotman, Ben J.; Verbakel, Wilko F.A.R. [Department of Radiation Oncology, VU University Medical Center, De Boelelaan 1117, 1081HV Amsterdam (Netherlands)

2013-02-01T23:59:59.000Z

249

TRACKING CODE DEVELOPMENT FOR BEAM DYNAMICS OPTIMIZATION  

SciTech Connect

Dynamic aperture (DA) optimization with direct particle tracking is a straight forward approach when the computing power is permitted. It can have various realistic errors included and is more close than theoretical estimations. In this approach, a fast and parallel tracking code could be very helpful. In this presentation, we describe an implementation of storage ring particle tracking code TESLA for beam dynamics optimization. It supports MPI based parallel computing and is robust as DA calculation engine. This code has been used in the NSLS-II dynamics optimizations and obtained promising performance.

Yang, L.

2011-03-28T23:59:59.000Z

250

2050 Calculator | Open Energy Information  

Open Energy Info (EERE)

0 Calculator 0 Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: 2050 Calculator Agency/Company /Organization: United Kingdom Department of Energy and Climate Change (DECC) Sector: Climate, Energy Focus Area: Renewable Energy, Non-renewable Energy, Biomass, Buildings - Commercial, Buildings - Residential, Economic Development, Geothermal, Greenhouse Gas, Multi-model Integration, Multi-sector Impact Evaluation, Solar, Wind Phase: Evaluate Options, Develop Goals, Prepare a Plan Topics: Analysis Tools, Pathways analysis Resource Type: Online calculator User Interface: Spreadsheet, Website Complexity/Ease of Use: Not Available Website: www.gov.uk/2050-pathways-analysis Country: United Kingdom Web Application Link: 2050-calculator-tool.decc.gov.uk/pathways/1111111111111111111111111111

251

HRA Calculator v. 5.0 BETA  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes ...

2013-04-19T23:59:59.000Z

252

EPRI HRA Calculator Version 5.0  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes ...

2013-09-30T23:59:59.000Z

253

Beam-Beam Interaction Simulations with Guinea Pig  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 SLAC-TN-03-070 September 2003 Beam-Beam Interaction Simulations with Guinea Pig C. Sramek, T. O. Raubenheimer, A. Seryi, M. Woods, J. Yu Stanford Linear Accelerator Center Stanford University Stanford, CA Abstract: At the interaction point of a particle accelerator, various phenomena occur that are known as beam-beam effects. Incident bunches of electrons (or positrons) experience strong electromagnetic fields from the opposing bunches, which leads to electron deflection, beamstrahlung and the creation of electron/positron pairs and hadrons due to two-photon exchange. In addition, the beams experience a "pinch effect" which focuses each beam and results in either a reduction or expansion of their vertical size. Finally, if a

254

BEAM HALO FORMATION IN HIGH-INTENSITY BEAMS.  

SciTech Connect

Studies of beam halo became unavoidable feature of high-intensity machines where uncontrolled beam loss should be kept to extremely small level. For a well controlled stable beam such a loss is typically associated with the low density halo surrounding beam core. In order to minimize uncontrolled beam loss or improve performance of an accelerator, it is very important to understand what are the sources of halo formation in a specific machine of interest. The dominant mechanisms are, in fact, different in linear accelerators, circular machines or Energy Recovering Linacs (ERL). In this paper, we summarize basic mechanisms of halo formation in high-intensity beams and discuss their application to various types of accelerators of interest, such as linacs, rings and ERL.

FEDOTOV, A.V.

2005-03-18T23:59:59.000Z

255

A low energy beam transport system for proton beam  

SciTech Connect

A low energy beam transport (LEBT) system has been built for a compact pulsed hadron source (CPHS) at Tsinghua University in China. The LEBT, consisting of two solenoids and three short-drift sections, transports a pulsed proton beam of 60 mA of energy of 50 keV to the entrance of a radio frequency quadrupole (RFQ). Measurement has shown a normalized RMS beam emittance less than 0.2 {pi} mm mrad at the end of the LEBT. Beam simulations were carried out to compare with the measurement and are in good agreement. Based on the successful CPHS LEBT development, a new LEBT for a China ADS projector has been designed. The features of the new design, including a beam chopper and beam simulations of the LEBT are presented and discussed along with CPHS LEBT development in this article.

Yang, Y. [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100039 (China); Zhang, Z. M.; Wu, Q.; Zhang, W. H.; Ma, H. Y.; Sun, L. T.; Zhang, X. Z.; Liu, Z. W.; He, Y.; Zhao, H. W.; Xie, D. Z. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

2013-03-15T23:59:59.000Z

256

Precision Absolute Beam Current Measurement of Low Power Electron Beam  

SciTech Connect

Precise measurements of low power CW electron beam current for the Jefferson Lab Nuclear Physics program have been performed using a Tungsten calorimeter. This paper describes the rationale for the choice of the calorimeter technique, as well as the design and calibration of the device. The calorimeter is in use presently to provide a 1% absolute current measurement of CW electron beam with 50 to 500 nA of average beam current and 1-3 GeV beam energy. Results from these recent measurements will also be presented.

Ali, M. M.; Bevins, M. E.; Degtiarenko, P.; Freyberger, A.; Krafft, G. A.

2012-11-01T23:59:59.000Z

257

A Look Inside the Cash Flow Opportunity Calculator: Calculations and  

NLE Websites -- All DOE Office Websites (Extended Search)

A Look Inside the Cash Flow Opportunity Calculator: Calculations A Look Inside the Cash Flow Opportunity Calculator: Calculations and Methodology Secondary menu About us Press room Contact Us Portfolio Manager Login Facility owners and managers Existing buildings Commercial new construction Industrial energy management Small business Service providers Service and product providers Verify applications for ENERGY STAR certification Design commercial buildings Energy efficiency program administrators Commercial and industrial program sponsors Associations State and local governments Federal agencies Tools and resources Training In This Section Campaigns Commercial building design Communications resources Energy management guidance Financial resources Portfolio Manager Products and purchasing Recognition Research and reports Service and product provider (SPP) resources

258

Magnetically operated beam dump for dumping high power beams in a neutral beamline  

DOE Patents (OSTI)

It is an object of this invention to provide a beam dump system for a neutral beam generator which lowers the time-averaged power density of the beam dump impingement surface. Another object of this invention is to provide a beam dump system for a neutral particle beam based on reionization and subsequent magnetic beam position modulation of the beam onto a beam dump surface to lower the time-averaged power density of the beam dump ion impingement surface.

Dagenhart, W.K.

1984-01-27T23:59:59.000Z

259

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

5 5 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN DOWN BEAM LINE 9-1 Mar. 15, 2004 Mar. 16, 2004 Mar. 17, 2004 Mar. 18, 2004 Mar. 19, 2004 Mar. 20, 2004 Mar. 21, 2004 Unscheduled CHANGE/8837 A.COHE 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN 8837 A.COHEN

260

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

1-4 1-4 Oct. 30, 2006 Oct. 31, 2006 Nov. 01, 2006 Nov. 02, 2006 Nov. 03, 2006 Nov. 04, 2006 Nov. 05, 2006 DOWN Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled BEAM LINE 2-1 Oct. 30, 2006 Oct. 31, 2006 Nov. 01, 2006 Nov. 02, 2006 Nov. 03, 2006 Nov. 04, 2006 Nov. 05, 2006 DOWN 8859 B.JOHNSON 8859 B.JOHNSON 8859 B.JOHNSON 8859 B.JOHNSON 8859 B.JOHNSON 8859 B.JOHNSON

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

LANL: Ion Beam Materials Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Materials Laboratory (IBML) is a Los Ion Beam Materials Laboratory (IBML) is a Los Alamos National Laboratory resource devoted to materi- als research through the use of ion beams. Current major research areas include surface characterization through ion beam analysis techniques, surface modification and materials synthesis through ion implantation technology, and radiation damage stud- ies in gases, liquids, and solids. The laboratory's core is a 3.2 MV tandem ion accelerator and a 200 kV ion implanter together with several beam lines. Attached to each beam line is a series of experimental stations that support various research programs. The operation of IBML and its interactions with users are organized around core facilities and experimental stations. The IBML provides and operates the core facilities as well as supports

262

Beam emittance measurements at Fermilab  

Science Conference Proceedings (OSTI)

We give short overview of various beam emittance measurement methods, currently applied at different machine locations for the Run II collider physics program at Fermilab. All these methods are based on beam profile measurements, and we give some examples of the related instrumentation techniques. At the end we introduce a multi-megawatt proton source project, currently under investigation at Fermilab, with respect to the beam instrumentation challenges.

Wendt, Manfred; Eddy, Nathan; Hu, Martin; Scarpine, Victor; Syphers, Mike; Tassotto, Gianni; Thurman-Keup, Randy; Yang, Ming-Jen; Zagel, James; /Fermilab

2008-01-01T23:59:59.000Z

263

Beam-line cryopump  

DOE Green Energy (OSTI)

A cryopumping module using metallic surfaces at liquid helium temperature for condensation of hydrogen and deuterium gas has been constructed. This pump, a prototype of four units which will provide pumping for the Livermore 200 kV test stand, will be used to verify the concept and establish engineering parameters. Upon completion of engineering tests and evaluation the pump will be installed in an operating beam line. The design point pumping capacity is 80,000 liters per second for hydrogen and deuterium at 10$sup -4$ torr based on sticking coefficients of 0.15 and 0.25, respectively. Both the liquid helium temperature pumping surface and the liquid nitrogen temperature radiation shields are constructed of quilted double wall cylindrical shells. The pumping shell dimensions are 1.5 meters dia. x 0.6 meters long. Cryogen circulation is convection current driven in both cases. Liquid helium is supplied from an overhead Dewar through bayonet coupling. In the 200 kV beam line, pumping modules will be supplied via transfer lines from a central Dewar. Voltage standoff will be accomplished in the transfer lines. (auth)

Duffy, T.J.; Oddon, L.D.

1975-11-12T23:59:59.000Z

264

Broad-band beam buncher  

DOE Patents (OSTI)

A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

Goldberg, David A. (Walnut Creek, CA); Flood, William S. (Berkeley, CA); Arthur, Allan A. (Martinez, CA); Voelker, Ferdinand (Orinda, CA)

1986-01-01T23:59:59.000Z

265

Electron Beam Melting (EBM) II  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Additive Manufacturing of Metals: Electron Beam Melting (EBM) II Sponsored by: MS&T Organization Program Organizers: Ian D. Harris, EWI; ...

266

A thermal analysis model for high power density beam stops  

SciTech Connect

The Lawrence Berkeley National Laboratory (LBNL) is presently designing and building the 2.5 MeV injector for the Spallation Neutron Source (SNS). The design includes various beam intercepting devices such as beam stops and slits. The target power densities can be as high as 500 kW/cm{sup 2} with a beam stopping range of 25 to 30 microns, producing stresses well above yield in most materials. In order to analyze the induced temperatures and stresses, a finite element model has been developed. The model has been written parametrically to allow the beam characteristics, target material, dimensions, angle of incidence and mesh densities to be easily adjusted. The heat load is applied to the model through the use of a 3-dimensional table containing the calculated volumetric heat rates. The load is based on a bi-gaussian beam shape which is absorbed by the target according to a Bragg peak distribution. The results of several analyses using the SNS Front End beam are presented.

Virostek, S.; Oshatz, D.; Staples, J.

2001-06-08T23:59:59.000Z

267

SHORT CIRCUIT CALCULATION (TEMPORARY POWER)  

SciTech Connect

The purpose and objective of this calculation is to determine the momentary and interrupting duty on the breakers, for 69kV temporary power only.

Yuri Shane

1995-07-24T23:59:59.000Z

268

Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams  

SciTech Connect

Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

Siemann, R.H.; /SLAC

2011-10-24T23:59:59.000Z

269

Heavy Oil Upgrading from Electron Beam (E-Beam) Irradiation  

E-Print Network (OSTI)

Society's growing demands for energy results in rapid increase in oil consumption and motivates us to make unconventional resources conventional resources. There are enormous amounts of heavy oil reserves in the world but the lack of cost effective technologies either for extraction, transportation, or refinery upgrading hinders the development of heavy oil reserves. One of the critical problems with heavy oil and bitumen is that they require large amounts of thermal energy and expensive catalysts to upgrade. This thesis demonstrates that electron beam (E-Beam) heavy oil upgrading, which uses unique features of E-Beam irradiation, may be used to improve conventional heavy oil upgrading. E-Beam processing lowers the thermal energy requirements and could sharply reduce the investment in catalysts. The design of the facilities can be simpler and will contribute to lowering the costs of transporting and processing heavy oil and bitumen. E-Beam technology uses the high kinetic energy of fast electrons, which not only transfer their energy but also interact with hydrocarbons to break the heavy molecules with lower thermal energy. In this work, we conducted three major stages to evaluate the applicability of E-Beam for heavy oil upgrading. First, we conducted laboratory experiments to investigate the effects of E-Beam on hydrocarbons. To do so, we used a Van de Graff accelerator, which generates the high kinetic energy of electrons, and a laboratory scale apparatus to investigate extensively how radiation effects hydrocarbons. Second, we studied the energy transfer mechanism of E-Beam upgrading to optimize the process. Third, we conducted a preliminary economic analysis based on energy consumption and compared the economics of E-Beam upgrading with conventional upgrading. The results of our study are very encouraging. From the experiments we found that E-Beam effect on hydrocarbon is significant. We used less thermal energy for distillation of n-hexadecane (n-C16) and naphtha with E-Beam. The results of experiments with asphaltene indicate that E-Beam enhances the decomposition of heavy hydrocarbon molecules and improves the quality of upgraded hydrocarbon. From the study of energy transfer mechanism, we estimated heat loss, fluid movement, and radiation energy distribution during the reaction. The results of our economic evaluation show that E-Beam upgrading appears to be economically feasible in petroleum industry applications. These results indicate significant potential for the application of E-Beam technology throughout the petroleum industry, particularly near production facilities, transportation pipelines, and refining industry.

Yang, Daegil

2009-12-01T23:59:59.000Z

270

Tuning the beam: a physics perspective on beam diagnostic instrumentation  

SciTech Connect

In a nutshell, the role of a beam diagnostic measurement is to provide information needed to get a particle beam from Point A (injection point) to Point B (a target) in a useable condition, with 'useable' meaning the right energy and size and with acceptable losses. Specifications and performance requirements of diagnostics are based on the physics of the particle beam to be measured, with typical customers of beam parameter measurements being the accelerator operators and accelerator physicists. This tutorial will be a physics-oriented discussion of the interplay between tuning evolutions and the beam diagnostics systems that support the machine tune. This will include the differences between developing a tune and maintaining a tune, among other things. Practical longitudinal and transverse tuning issues and techniques from a variety of proton and electron machines will also be discussed.

Gulley, Mark S [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

271

NEUTRAL-BEAM INJECTION  

SciTech Connect

The emphasis in the preceding chapters has been on magnetic confinement of high temperature plasmas. The question of production and heating of such plasmas has been dealt with relatively more briefly. It should not be inferred, however, that these matters must therefore be either trivial or unimportant. A review of the history reveals that in the early days all these aspects of the controlled fusion problem were considered to be on a par, and were tackled simultaneously and with equal vigor. Only the confinement problem turned out to be much more complex than initially anticipated, and richer in challenge to the plasma physicist than the questions of plasma production and heating. On the other hand, the properties of high-temperature plasmas and plasma confinement can only be studied experimentally after the problems of production and of heating to adequate temperatures are solved. It is the purpose of this and the next chapter to supplement the preceding discussions with more detail on two important subjects: neutral-beam injection and radio-frequency heating. These are the major contenders for heating in present and future tokamak and mirror fusion experiments, and even in several proposed reactors. For neutral beams we emphasize here the technology involved, which has undergone a rather remarkable development. The physics of particle and energy deposition in the plasma, and the discussion of the resulting effects on the confined plasma, have been included in previous chapters, and some experimental results are quoted there. Other heating processes of relevance to fusion are mentioned elsewhere in this book, in connection with the experiments where they are used: i.e. ohmic heating, adiabatic compression heating, and alpha-particle heating in Chapter 3 by H.P. Furth; more ohmic heating in Chapter 7, and shock-implosion heating, laser heating, and relativistic-electron beam heating in Chapter 8, both by W. E. Quinn. These methods are relatively straightforward in their physics and their technology, or in any case they are considered to be adequately covered by these other authors.

Kunkel, W.B.

1980-06-01T23:59:59.000Z

272

Four-Button BPM Coefficients in Cylindrical and Elliptic Beam Chambers  

E-Print Network (OSTI)

Beam position monitor (BPM) coefficients are calculated from induced charges on four-button BPMs in circular and elliptic beam chambers for ?>> 1. Since the beam chamber cross-section for the APS storage ring is different from an exact elliptic geometry, numerical values of the BPM coefficients and their inversions are computed from two-dimensional electrostatic field distributions inside an exact geometry of the beam chamber. Utilizing Green’s reciprocation theorem, a potential value is applied to the buttons rather than changing the beam position, and potential distributions corresponding to the beam positions are then computed. 1. Cylindrical Chamber A charged particle beam of short bunches induces charges on the beam chamber wall. Due to the Lorentz contraction, for ?>> 1, where ? is the relativistic factor, these charges have the same longitudinal intensity modulation as the beam. The electromagnetic fields associated with the beam are obtained by the Lorentz transformation from the fixed lab frame F to a moving reference frame F', where the charged beam is at rest [1, 2]. The field distribution inside the beam chamber becomes an electrostatic problem in the moving reference frame. Here we assume that the buttons are installed flush with the inner surface of the beam chamber, with the chamber having constant crosssection and the chamber wall at a uniform potential. For the charge density of a filament beam located at (xo,yo) in the transverse plane of the Cartesian coordinates and moving with a wave number k in the longitudinal direction z in the lab frame F, ? = ? ( x, y) cos k( z ? vt); (1) k

S. H. Kim

1999-01-01T23:59:59.000Z

273

A high power beam-on-target test of liquid lithium target for RIA.  

Science Conference Proceedings (OSTI)

Experiments were conducted to demonstrate the stable operation of a windowless liquid lithium target under extreme thermal loads that are equivalent to uranium beams from the proposed Rare Isotope Accelerator (RIA) driver linac. The engineering and safety issues accompanying liquid lithium systems are first discussed. The liquid metal technology knowledge base generated primarily for fast reactors, and liquid metal cooled fusion reactors, was applied to the development of these systems in a nuclear physics laboratory setting. The use of a high energy electron beam for simulating a high power uranium beam produced by the RIA driver linac is also described. Calculations were performed to obtain energy deposition profiles produced by electron beams at up to a few MeV to compare with expected uranium beam energy deposition profiles. It was concluded that an experimental simulation using a 1-MeV electron beam would be a valuable tool to assess beam-jet interaction. In the experiments, the cross section of the windowless liquid lithium target was 5 mm x 10 mm, which is a 1/3rd scale prototype target, and the velocity of the liquid lithium was varied up to 6 m/s. Thermal loads up to 20 kW within a beam spot diameter of 1mm were applied on the windowless liquid lithium target by the 1-MeV electron beam. The calculations showed that the maximum power density and total power deposited within the target, from the electron beam, was equivalent to that of a 200-kW, 400-MeV/u uranium beam. It was demonstrated that the windowless liquid lithium target flowing at velocities as low as 1.8 m/s stably operated under beam powers up to 20 kW without disruption or excessive vaporization.

Nolen, J.; Reed, C.; Novick, V.; Specht, J.; Plotkin, P.; Momozaki,Y.; Gomes, I.

2005-08-29T23:59:59.000Z

274

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

5-4 5-4 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 Unscheduled 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU CHANGE/8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU BEAM LINE 8-1 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 8821 D.Brehmer 8821 D.Brehmer 8821 D.Brehmer 3064* S.SUN 3075 M.GARNER 3075 M.GARNER 3075 M.GARNER

275

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

4, 2013 Nov. 11, 2013 Nov. 18, 2013 Nov. 25, 2013 4, 2013 Nov. 11, 2013 Nov. 18, 2013 Nov. 25, 2013 Dec. 02, 2013 Dec. 09, 2013 Dec. 16, 2013 Dec. 23, 2013 Dec. 30, 2013 Jan. 06, 2014 Jan. 13, 2014 Jan. 20, 2014 Jan. 27, 2014 Feb. 03, 2014 Back to Table of Contents WEEK OF Nov. 04, 2013 Ops Re-start Nov. 04, 2013 Nov. 05, 2013 Nov. 06, 2013 Nov. 07, 2013 Nov. 08, 2013 Nov. 09, 2013 Nov. 10, 2013 BEAM LINE 5-4 Nov. 04, 2013 Nov. 05, 2013 Nov. 06, 2013 Nov. 07, 2013 Nov. 08, 2013 Nov. 09, 2013 Nov. 10, 2013 DOWN DOWN DOWN DOWN DOWN DOWN DOWN

276

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

1-4 1-4 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02, 2005 Dec. 03, 2005 Dec. 04, 2005 MA 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE CHANGE/8840 J.POPL 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE 8840 J.POPLE BEAM LINE 2-1 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02, 2005 Dec. 03, 2005 Dec. 04, 2005 MA 8859 B.JOHNSON 8859 B.JOHNSON 8859 B.JOHNSON 8859 B.JOHNSON 8859 B.JOHNSON 8859 B.JOHNSON

277

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

5-4 5-4 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU 8820 D.LU BEAM LINE 8-1 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 Unscheduled Unscheduled Unscheduled 3269 S.SUN 3269 S.SUN 3269 S.SUN 3269 S.SUN

278

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2002 Nov. 18, 2002 Nov. 25, 2002 Dec. 02, 2002 1, 2002 Nov. 18, 2002 Nov. 25, 2002 Dec. 02, 2002 Dec. 09, 2002 Dec. 16, 2002 Dec. 23, 2002 Dec. 30, 2002 Jan. 06, 2003 Jan. 13, 2003 Jan. 20, 2003 Jan. 27, 2003 Feb. 03, 2003 Feb. 10, 2003 Feb. 17, 2003 Feb. 24, 2003 Mar. 03, 2003 Mar. 10, 2003 Mar. 17, 2003 Mar. 24, 2003 Mar. 31, 2003 Back to Table of Contents WEEK OF Nov. 11, 2002 Nov. 11, 2002 Nov. 12, 2002 Nov. 13, 2002 Nov. 14, 2002 Nov. 15, 2002 Nov. 16, 2002 Nov. 17, 2002 BEAM LINE 1-4 Nov. 11, 2002 Nov. 12, 2002 Nov. 13, 2002 Nov. 14, 2002 Nov. 15, 2002 Nov. 16, 2002 Nov. 17, 2002 Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled Unscheduled

279

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

Nov. 04, 2013 Nov. 11, 2013 Nov. 18, 2013 Nov. 25, 2013 Nov. 04, 2013 Nov. 11, 2013 Nov. 18, 2013 Nov. 25, 2013 Dec. 02, 2013 Dec. 09, 2013 Dec. 16, 2013 Dec. 23, 2013 Dec. 30, 2013 Jan. 06, 2014 Jan. 13, 2014 Jan. 20, 2014 Jan. 27, 2014 Feb. 03, 2014 Back to Table of Contents WEEK OF Nov. 04, 2013 Ops Re-start Nov. 04, 2013 Nov. 05, 2013 Nov. 06, 2013 Nov. 07, 2013 Nov. 08, 2013 Nov. 09, 2013 Nov. 10, 2013 BEAM LINE 1-4 Nov. 04, 2013 Nov. 05, 2013 Nov. 06, 2013 Nov. 07, 2013 Nov. 08, 2013 Nov. 09, 2013 Nov. 10, 2013 DOWN DOWN DOWN 8891 C.TASSONE 8891 C.TASSONE 8891 C.TASSONE 8891 C.TASSONE

280

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

1-4 1-4 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 Unscheduled Unscheduled 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY Unscheduled CHANGE/8051 M.TONE 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY Unscheduled 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY 8051 M.TONEY BEAM LINE 2-1 Nov. 05, 2007 Nov. 06, 2007 Nov. 07, 2007 Nov. 08, 2007 Nov. 09, 2007 Nov. 10, 2007 Nov. 11, 2007 8859 B.JOHNSON 8859 B.JOHNSON 8859 B.JOHNSON 8859 B.JOHNSON 3157* M.MONTERO-CA 3087 L.FUENTES-COB 3087 L.FUENTES-COB

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

1-5 1-5 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02, 2005 Dec. 03, 2005 Dec. 04, 2005 MA 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ BEAM LINE 7-1 Nov. 28, 2005 Nov. 29, 2005 Nov. 30, 2005 Dec. 01, 2005 Dec. 02, 2005 Dec. 03, 2005 Dec. 04, 2005 MA DOWN DOWN DOWN DOWN DOWN DOWN

282

Pulsed electron beam precharger  

Science Conference Proceedings (OSTI)

Florida State University is investigating the concept of pulsed electron beams for fly ash precipitation. This report describes the results and data on three of the subtasks of this project and preliminary work only on the remaining five subtasks. Described are the modification of precharger for pulsed and DC energization of anode; installation of the Q/A measurement system; and modification and installation of pulsed power supply to provide both pulsed and DC energization of the anode. The other tasks include: measurement of the removal efficiency for monodisperse simulated fly ash particles; measurement of particle charge; optimization of pulse energization schedule for maximum removal efficiency; practical assessment of results; and measurement of the removal efficiency for polydisperse test particles. 15 figs., 1 tab. (CK)

Finney, W.C. (ed.); Shelton, W.N.

1990-01-01T23:59:59.000Z

283

Molecular beam kinetics  

SciTech Connect

The design of a crossed molecular beam ''supermachine'' for neutral-- neutral collisions is discussed. The universal electron bombardment ionizer, mass filter, and ion detection system of the detector, the supersonic nozzle sources, the differential pumping arrangement for the sources and detector, the time-of-flight detection of scattered products, and the overall configuration of the apparatus are described. The elastic scattering of two systems, CH$sub 4$ + Ar and NH$sub 3$ + Ar, has been measured using the supermachine with two supersonic nozzle sources. The rainbow structure and the interference oscillations are seen in each system. The best fit to the data was found using a Morse--Spline--Van der Waals (MSV) potential. The three potential parameters epsilon, r/sub m/, and $beta$ were found to be 2.20(+-0.04) x 10$sup -14$ ergs, 3.82(+-0.04)A, and 7.05 +- 0.20 for CH$sub 4$ + Ar, and 2.21(+-0.04) x 10$sup - 14$ ergs 3.93 (+-0.05)A, and 8.45 +- 0.30 for NH$sub 3$ + Ar. A new phenomenon in crossed molecular beams of condensation of a molecule on a cluster to form a complex was observed. A bromine molecule condensed on clusters of chlorine (Cl$sub 2$)/sub chi/ and ammonia (NH$sub 3$)/sub chi/. The value of chi for measurements in these experiments ranges from 7 to 40 for chlorine clusters and from 10 to 70 ammonia clusters. (auth)

Behrens, R. Jr.

1975-11-01T23:59:59.000Z

284

On Monte Carlo modeling of megavoltage photon beams: A revisited study on the sensitivity of beam parameters  

Science Conference Proceedings (OSTI)

Purpose: To commission Monte Carlo beam models for five Varian megavoltage photon beams (4, 6, 10, 15, and 18 MV). The goal is to closely match measured dose distributions in water for a wide range of field sizes (from 2x2 to 35x35 cm{sup 2}). The second objective is to reinvestigate the sensitivity of the calculated dose distributions to variations in the primary electron beam parameters. Methods: The GEPTS Monte Carlo code is used for photon beam simulations and dose calculations. The linear accelerator geometric models are based on (i) manufacturer specifications, (ii) corrections made by Chibani and Ma [''On the discrepancies between Monte Carlo dose calculations and measurements for the 18 MV Varian photon beam,'' Med. Phys. 34, 1206-1216 (2007)], and (iii) more recent drawings. Measurements were performed using pinpoint and Farmer ionization chambers, depending on the field size. Phase space calculations for small fields were performed with and without angle-based photon splitting. In addition to the three commonly used primary electron beam parameters (E{sub AV} is the mean energy, FWHM is the energy spectrum broadening, and R is the beam radius), the angular divergence ({theta}) of primary electrons is also considered. Results: The calculated and measured dose distributions agreed to within 1% local difference at any depth beyond 1 cm for different energies and for field sizes varying from 2x2 to 35x35 cm{sup 2}. In the penumbra regions, the distance to agreement is better than 0.5 mm, except for 15 MV (0.4-1 mm). The measured and calculated output factors agreed to within 1.2%. The 6, 10, and 18 MV beam models use {theta}=0 deg., while the 4 and 15 MV beam models require {theta}=0.5 deg. and 0.6 deg., respectively. The parameter sensitivity study shows that varying the beam parameters around the solution can lead to 5% differences with measurements for small (e.g., 2x2 cm{sup 2}) and large (e.g., 35x35 cm{sup 2}) fields, while a perfect agreement is maintained for the 10x10 cm{sup 2} field. The influence of R on the central-axis depth dose and the strong influence of {theta} on the lateral dose profiles are demonstrated. Conclusions: Dose distributions for very small and very large fields were proved to be more sensitive to variations in E{sub AV}, R, and {theta} in comparison with the 10x10 cm{sup 2} field. Monte Carlo beam models need to be validated for a wide range of field sizes including small field sizes (e.g., 2x2 cm{sup 2}).

Chibani, Omar; Moftah, Belal; Ma, C.-M. Charlie [Department of Biomedical Physics, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia) and Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States); Department of Biomedical Physics, King Faisal Specialist Hospital and Research Center, Riyadh 11211 (Saudi Arabia); Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111 (United States)

2011-01-15T23:59:59.000Z

285

NUCLEAR CALCULATIONS FOR THE PNPF  

SciTech Connect

The reactivity of the Piqua Nuclear Power Facility (PNPF) was calculated at various loadings using a oneregion (with reflector savings), four-group diffusion equation. These calculations were checked with a two-region, four- group FOG calculation. The thermal group constants were obtained with the TEMPEST II-S/sub 4/ procedure, the fast group constants with FORM. The U/sup 238/ resonance integral was adjusted to make the calculations for the critical assembly fit the measurements and the adjusted parameter was used for the PNPF calculations. The minimum critical loading at 360 deg F was calculated to be 20.4 elements, with and excess reactivity of 0.22% (31 cents) for the minimum critical loading of 21 elements. The excess reactivity wss calculated for core loadings of 19, 37, 61, and 85 elements, which result as the outer rings of element positions are filled consecutively. The isothermal temperature coefficient of reactivity was estimated for several core loadings by using the calculated reactivities at 325 deg F and 585 deg F. The values of the coefficient for 21- and 61-element loadings are --4.6 and --4.9 x 10/sup -5/ delta k/ deg F, respectively. The largest coefficient is --5.0 x 10/sup -6/ delta k/ deg F at a loading of 38 elements. The kinetics parameters 1 and BETA /sub eff/ were calculated using the PERT program. The lifetime is 5.23 x 10/sup -5/ seconds at 325 deg F and 5.67 x 10/sup -6/ at 585 deg F. Beta effective ranged from 0.00689 for and 85-element loading at 325 deg F to 0.00728 for a 19-element loading at 585 deg F. A value of 0.0070 was chosen for kinetics calculations. (auth)

Mountford, L.A.; Hume, J.R.

1963-06-24T23:59:59.000Z

286

IonBeamMicroFab  

NLE Websites -- All DOE Office Websites (Extended Search)

Ion Beam Manufacture of Microscale Ion Beam Manufacture of Microscale Tools and Components Manufacturing Technologies Sandia Manufacturing Science &Technology's Focused Ion Beam (FIB) laboratory provides an opportunity for research, development and prototyping. Currently, our scientists are devel- oping methods for ion beam sculpting microscale tools, components and devices. This includes shaping of specialty tools such as end-mills, turning tools and indenters. Many of these have been used in ultra-precision machining DOE applications. Additionally, staff are developing the capability to ion mill geo- metrically-complex features and substrates. This includes the ability to sputter predeter- mined curved shapes of various symmetries and periodicities. Capabilities and Expertise * Two custom-built focused ion beam sys-

287

Laser-beam-alignment system  

DOE Patents (OSTI)

A plurality of pivotal reflectors direct a high-power laser beam onto a workpiece, and a rotatable reflector is movable to a position wherein it intercepts the beam and deflects a major portion thereof away from its normal path, the remainder of the beam passing to the pivotal reflectors through an aperture in the rotating reflector. A plurality of targets are movable to positions intercepting the path of light traveling to the pivotal reflectors, and a preliminary adjustment of the latter is made by use of a low-power laser beam reflected from the rotating reflector, after which the same targets are used to make a final adjustment of the pivotal reflectors with the portion of the high-power laser beam passed through the rotating reflector. The system was developed to cut the casings of spent nuclear fuel elements into segments as the initial step in recovering usable fuel. (WHK)

Kasner, W.H.; Racki, D.J.; Swenson, C.E.

1982-02-26T23:59:59.000Z

288

The Properties of Undulator Radiation  

E-Print Network (OSTI)

of a Dedicated Synchrotron Radiation Facility," IEEE Trans.1983), "Characteristics of Synchrotron Radiation and of itsHandbook on Synchrotron Radiation, E. -E. Koch.1A. 65-172,

Howells, M.R.

2011-01-01T23:59:59.000Z

289

The Properties of Undulator Radiation  

E-Print Network (OSTI)

l .. U5.0 _U3.9 W16.0 NSLS Sources . --- ALS Sources -. -~--,---r-"--------_, U3.9 NSLS Sources ,--- ALS Sources _. -

Howells, M.R.

2011-01-01T23:59:59.000Z

290

New aspects of beam-beam interactions in hadron colliders  

Science Conference Proceedings (OSTI)

Beam-beam phenomena have until now limited the beam currents and luminosity achievable in the Tevatron. injected proton currents are about ten times larger than the anti-proton currents so beam-beam effects have largely acted on the anti-protons and at all stages of the operational cycle. The effects of the anti-protons on the protons have until now been relatively benign but that may change at higher anti-proton currents. After 36 bunches of protons are injected and placed on the proton helix, anti-protons are injected four bunches at a time. After all bunches are injected, acceleration to top energy takes bout 85 seconds. After reaching flat top, the optics around the interaction regions (IRs) is changed to lower {beta}* from 1.6 m to 0.35 m at B0 and D0. The beams are brought into collision by collapsing the separation bumps around the IPs. During a high energy physics store each bunch experiences two head-on collisions with bunches in the opposing beam and seventy long-range interactions. At all other stages of the operational cycle, each bunch experiences only long-range interactions--seventy two in all. Performance limitations from beam-beam effects until now have been primarily due to these long-range interactions. The anti-proton losses at 150 GeV have decreased during the last year mostly due to better control of the orbits, tunes and chromaticities. During this period proton intensities have increased about 50%, thus anti-proton losses at 150 GeV have not been very dependent on proton intensities. Anti-proton and proton losses on the ramp together with proton losses at 150 GeV are the dominant contributors to the Tevatron inefficiency.

Tanaji Sen

2003-06-02T23:59:59.000Z

291

Spheromak Energy Transport Studies via Neutral Beam Injection  

SciTech Connect

Results from the SSPX spheromak experiment provide strong motivation to add neutral beam injection (NBI) heating. Such auxiliary heating would significantly advance the capability to study the physics of energy transport and pressure limits for the spheromak. This LDRD project develops the physics basis for using NBI to heat spheromak plasmas in SSPX. The work encompasses three activities: (1) numerical simulation to make quantitative predictions of the effect of adding beams to SSPX, (2) using the SSPX spheromak and theory/modeling to develop potential target plasmas suitable for future application of neutral beam heating, and (3) developing diagnostics to provide the measurements needed for transport calculations. These activities are reported in several publications.

McLean, H S; Hill, D N; Wood, R D; Jayakumar, J; Pearlstein, L D

2008-02-11T23:59:59.000Z

292

Laser beam alignment apparatus and method  

DOE Patents (OSTI)

The disclosure relates to an apparatus and method for laser beam alignment. Thermoelectric properties of a disc in a laser beam path are used to provide an indication of beam alignment and/or automatic laser alignment.

Gruhn, Charles R. (Martinez, CA); Hammond, Robert B. (Los Alamos, NM)

1981-01-01T23:59:59.000Z

293

Alaska Village Electric Load Calculator  

DOE Green Energy (OSTI)

As part of designing a village electric power system, the present and future electric loads must be defined, including both seasonal and daily usage patterns. However, in many cases, detailed electric load information is not readily available. NREL developed the Alaska Village Electric Load Calculator to help estimate the electricity requirements in a village given basic information about the types of facilities located within the community. The purpose of this report is to explain how the load calculator was developed and to provide instructions on its use so that organizations can then use this model to calculate expected electrical energy usage.

Devine, M.; Baring-Gould, E. I.

2004-10-01T23:59:59.000Z

294

SU?E?T?718: Modeling a Fast Neutron Therapy Beam with a Convolution/superposition Algorithm  

Science Conference Proceedings (OSTI)

Purpose: To determine if a photon convolution/superposition algorithm could be used to model a fast neutron therapy beam in a commercial treatment planning system. Methods: The beam to be modeled was the Clinical Neutron Therapy System (CNTS) fast neutron beam produced by 50 MeV protons on a Be target at the University of Washington(UW) Medical Center. The dose calculation model was that implemented in Pinnacle

A Kalet; M Phillips; G Sandison

2011-01-01T23:59:59.000Z

295

A Comparison Between Calculated and Measured SHGC For Complex Fenestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Comparison Between Calculated and Measured SHGC For Complex Fenestration Comparison Between Calculated and Measured SHGC For Complex Fenestration Systems Title A Comparison Between Calculated and Measured SHGC For Complex Fenestration Systems Publication Type Conference Paper LBNL Report Number LBL-37037 Year of Publication 1995 Authors Klems, Joseph H., Jeffrey L. Warner, and Guy O. Kelley Conference Name ASHRAE Transactions Volume 102, Part 1 Date Published 02/1996 Conference Location Atlanta, GA Call Number LBL-37037 Abstract Calorimetric measurements of the dynamic net heat flow through a complex fenestration system consisting of a buff venetian blind inside clear double glazing are used to derive the direction-dependent beam SHGC of the fenestration. These measurements are compared with calculations according to a proposed general method for deriving complex fenestration system SHGCs from bidirectional layer optical properties and generic calorimetric properties. Previously published optical measurements of the same venetian blind and generic inward-flowing fraction measurements are used in the calculation. The authors find satisfactory agreement between the SHGC measurements and the calculation.

296

OBSERVATION OF STRONG - STRONG AND OTHER BEAM - BEAM EFFECTS IN RHIC.  

SciTech Connect

RHIC is currently the only hadron collider in which strong-strong beam-beam effects can be seen. For the first time, coherent beam-beam modes were observed in a bunched beam hadron collider. Other beam-beam effects in RHIC were observed in operation and in dedicated experiments with gold ions, deuterons and protons. Observations include measurements of beam-beam induced tune shifts, lifetime and emittance growth measurements with and without beam-beam interaction, and background rates as a function of tunes. During ramps unequal radio frequencies in the two rings cause the crossing points to move longitudinally. Thus bunches experience beam-beam interactions only in intervals and the tunes are modulated. In this article we summarize the most important beam-beam observations made so far.

Fischer, W; Brennan, J M; Cameron, P; Connolly, R; Montag, C; Peggs, S; Pilat, F; Ptitsyn, V; Tepikian, S; Trbojevic, D

2003-05-12T23:59:59.000Z

297

LHCb Beam-Gas Imaging Results  

E-Print Network (OSTI)

The high resolution of the LHCb vertex detector makes it possible to perform precise measurements of vertices of beam-gas and beam-beam interactions and allows beam parameters such as positions, angles and widths to be determined. Using the directly measured beam properties the novel beam-gas imaging method is applied in LHCb for absolute luminosity determination. In this contribution we briefly describe the method and the preliminary results obtained with May 2010 data.

P. Hopchev

2011-07-07T23:59:59.000Z

298

On Rayleigh Optical Depth Calculations  

Science Conference Proceedings (OSTI)

Many different techniques are used for the calculation of Rayleigh optical depth in the atmosphere. In some cases differences among these techniques can be important, especially in the UV region of the spectrum and under clean atmospheric ...

Barry A. Bodhaine; Norman B. Wood; Ellsworth G. Dutton; James R. Slusser

1999-11-01T23:59:59.000Z

299

Design of An 18 MW Beam Dump for 500 GeV Electron/Positron Beams at An ILC  

SciTech Connect

This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the current status, and also the issues still to be addressed.

Amann, John; /SLAC; Arnold, Ray; /SLAC; Seryi, Andrei; /SLAC; Walz, Dieter; /SLAC; Kulkarni, Kiran; /Bhabha Atomic Res. Ctr.; Rai, Pravin; /Bhabha Atomic Res. Ctr.; Satyamurthy, Polepalle; /Bhabha Atomic Res. Ctr.; Tiwari, Vikar; /Bhabha Atomic Res. Ctr.; Vincke, Heinz; /CERN

2012-07-05T23:59:59.000Z

300

Design of an 18 MW Beam Dump for 500 GeV Electron/Positron Beams at an ILC  

E-Print Network (OSTI)

This article presents a report on the progress made in designing 18 MW water based Beam Dumps for electrons or positrons for an International Linear Collider (ILC). Multi-dimensional technology issues have to be addressed for the successful design of the Beam Dump. They include calculations of power deposition by the high energy electron/positron beam bunch trains, computational fluid dynamic analysis of turbulent water flow, mechanical design, process flow analysis, hydrogen/oxygen recombiners, handling of radioactive 7Be and 3H, design of auxiliary equipment, provisions for accident scenarios, remote window exchanger, radiation shielding, etc. The progress made to date is summarized, the current status, and also the issues still to be addressed

Amann, John; Seryi, Andrei; Walz, Dieter; Kulkarni, Kiran; Rai, Pravin; Satyamurthy, Polepalle; Tiwari, Vikar; Vincke, Heinz

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Ion Beam Modification of Materials  

SciTech Connect

This volume contains the proceedings of the 14th International Conference on Ion Beam Modification of Materials, IBMM 2004, and is published by Elsevier-Science Publishers as a special issue of Nuclear Instruments and Methods B. The conference series is the major international forum to present and discuss recent research results and future directions in the field of ion beam modification, synthesis and characterization of materials. The first conference in the series was held in Budapest, Hungary, 1978, and subsequent conferences were held every two years at locations around the Globe, most recently in Japan, Brazil, and the Netherlands. The series brings together physicists, materials scientists, and ion beam specialists from all over the world. The official conference language is English. IBMM 2004 was held on September 5-10, 2004. The focus was on materials science involving both basic ion-solid interaction processes and property changes occurring either during or subsequent to ion bombardment and ion beam processing in relation to materials and device applications. Areas of research included Nanostructures, Multiscale Modeling, Patterning of Surfaces, Focused Ion Beams, Defects in Semiconductors, Insulators and Metals, Cluster Beams, Radiation Effects in Materials, Photonic Devices, Ion Implantation, Ion Beams in Biology and Medicine including New Materials, Imaging, and Treatment.

Averback, B; de la Rubia, T D; Felter, T E; Hamza, A V; Rehn, L E

2005-10-10T23:59:59.000Z

302

Intense low energy positron beams  

Science Conference Proceedings (OSTI)

Intense positron beams are under development or being considered at several laboratories. Already today a few accelerator based high intensity, low brightness e{sup +} beams exist producing of the order of 10{sup 8} {minus} 10{sup 9} e{sup +}/sec. Several laboratories are aiming at high intensity, high brightness e{sup +} beams with intensities greater than 10{sup 9} e{sup +}/sec and current densities of the order of 10{sup 13} {minus} 10{sup 14} e{sup +} sec{sup {minus}} {sup 1}cm{sup {minus}2}. Intense e{sup +} beams can be realized in two ways (or in a combination thereof) either through a development of more efficient B{sup +} moderators or by increasing the available activity of B{sup +} particles. In this review we shall mainly concentrate on the latter approach. In atomic physics the main trust for these developments is to be able to measure differential and high energy cross-sections in e{sup +} collisions with atoms and molecules. Within solid state physics high intensity, high brightness e{sup +} beams are in demand in areas such as the re-emission e{sup +} microscope, two dimensional angular correlation of annihilation radiation, low energy e{sup +} diffraction and other fields. Intense e{sup +} beams are also important for the development of positronium beams, as well as exotic experiments such as Bose condensation and Ps liquid studies.

Lynn, K.G.; Jacobsen, F.M.

1993-12-31T23:59:59.000Z

303

Compact Alignment for Diagnostic Laser Beams  

Physicist and optical engineer Mike Rushford developed the laser beam . centering and pointing system. The laser beam . centering and pointing system

304

NIST SURF: Beamline 10: Electron beam imaging  

Science Conference Proceedings (OSTI)

Beamline 10: Electron beam imaging. Description: ... In its unperturbed state, the vertical electron beam size is quite small, in the order of a few 10 µm. ...

2012-11-19T23:59:59.000Z

305

PowerBeam Inc | Open Energy Information  

Open Energy Info (EERE)

PowerBeam, Inc. Place Sunnyvale, California Zip CA 94085 Product PowerBeam holds the patent to a power transmission technology that produces wireless electricity. Coordinates...

306

Electron beam machining using rotating and shaped beam power distribution  

DOE Patents (OSTI)

An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

Elmer, John W. (Pleasanton, CA); O' Brien, Dennis W. (Livermore, CA)

1996-01-01T23:59:59.000Z

307

Polarized positrons for the ILC - update on simulations  

E-Print Network (OSTI)

To achieve the extremely high luminosity for colliding electron-positron beams at the future International Linear Collider (ILC) an undulator-based source with about 230 meters helical undulator and a thin titanium-alloy target rim rotated with tangential velocity of about 100 meters per second are foreseen. The very high density of heat deposited in the target has to be analyzed carefully. The energy deposited by the photon beam in the target has been calculated in FLUKA. The resulting stress in the target material after one bunch train has been simulated in ANSYS.

Staufenbiel, F

2012-01-01T23:59:59.000Z

308

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

7-1 7-1 Oct. 26, 2009 Oct. 27, 2009 Oct. 28, 2009 Oct. 29, 2009 Oct. 30, 2009 Oct. 31, 2009 Nov. 01, 2009 CHANGE/8803* C.SMI 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH 8803* C.SMITH BEAM LINE 9-1 Oct. 26, 2009 Oct. 27, 2009 Oct. 28, 2009 Oct. 29, 2009 Oct. 30, 2009 Oct. 31, 2009 Nov. 01, 2009 CHANGE/8861* I.MAT 8861* I.MATHEWS 8861* I.MATHEWS 8861* I.MATHEWS 8861* I.MATHEWS 8861* I.MATHEWS 8861* I.MATHEWS

309

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

7-1 7-1 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ MC CHECKOUT/2B87 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 8845 A.GONZALEZ 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA 2B87 I.SEVRIOUKOVA BEAM LINE 9-1 Nov. 15, 2010 Nov. 16, 2010 Nov. 17, 2010 Nov. 18, 2010 Nov. 19, 2010 Nov. 20, 2010 Nov. 21, 2010 8866 T.DOUKOV 8866 T.DOUKOV 8866 T.DOUKOV 8866 T.DOUKOV 8866 T.DOUKOV FACI FACI

310

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

Feb. 14, 2005 Feb. 21, 2005 Feb. 28, 2005 Mar. 07, 2005 Feb. 14, 2005 Feb. 21, 2005 Feb. 28, 2005 Mar. 07, 2005 Mar. 14, 2005 Mar. 21, 2005 Mar. 28, 2005 Apr. 04, 2005 Apr. 11, 2005 Apr. 18, 2005 Apr. 25, 2005 May 02, 2005 May 09, 2005 May 16, 2005 May 23, 2005 May 30, 2005 Jun. 06, 2005 Jun. 13, 2005 Jun. 20, 2005 Jun. 27, 2005 Jul. 04, 2005 Jul. 11, 2005 Jul. 18, 2005 Jul. 25, 2005 Aug. 01, 2005 Back to Table of Contents WEEK OF Feb. 14, 2005 Feb. 14, 2005 Feb. 15, 2005 Feb. 16, 2005 Feb. 17, 2005 Feb. 18, 2005 Feb. 19, 2005 Feb. 20, 2005 BEAM LINE 1-5 Feb. 14, 2005 Feb. 15, 2005 Feb. 16, 2005 Feb. 17, 2005 Feb. 18, 2005 Feb. 19, 2005 Feb. 20, 2005 8858 D.HARRINGTON 8858 D.HARRIN/DOWN 8858 D.HARRINGTON 8858 D.HARRINGTON 8858 D.HARRINGTON 8858 D.HARRINGTON 8858 D.HARRINGTON

311

SSRL BEAM PORT SCHEDULE  

NLE Websites -- All DOE Office Websites (Extended Search)

1, 2013 Nov. 18, 2013 Nov. 25, 2013 Dec. 02, 2013 1, 2013 Nov. 18, 2013 Nov. 25, 2013 Dec. 02, 2013 Dec. 09, 2013 Dec. 16, 2013 Dec. 23, 2013 Dec. 30, 2013 Jan. 06, 2014 Jan. 13, 2014 Jan. 20, 2014 Jan. 27, 2014 Feb. 03, 2014 Feb. 10, 2014 Feb. 17, 2014 Feb. 24, 2014 Back to Table of Contents WEEK OF Nov. 11, 2013 Nov. 11, 2013 Nov. 12, 2013 Nov. 13, 2013 Nov. 14, 2013 Nov. 15, 2013 Nov. 16, 2013 Nov. 17, 2013 BEAM LINE 7-1 Nov. 11, 2013 Nov. 12, 2013 Nov. 13, 2013 Nov. 14, 2013 Nov. 15, 2013 Nov. 16, 2013 Nov. 17, 2013 8803 C.Smith 8803 C.Smith 8803 C.Smith 8803 C.Smith 8803 C.Smith 4B02 A.Yeh 8050 C.Smith 8803 C.Smith 8803 C.Smith 8803 C.Smith 8803 C.Smith Unscheduled MC CHECKOUT/8050 8050 C.Smith

312

The Effect of Thermal Load Configurations on Passive Chilled Beam Performance  

E-Print Network (OSTI)

This dissertation presents the findings of a study to quantify the effect of heat source configurations on the performance of passive chilled beams. Experiments in a thermally controlled test room were conducted using thermal manikins as heat sources cooled with a 0.6 m by 2.4 m beam. The thermal manikins were arranged in a symmetric and an asymmetric configuration and tested over a range of input power to simulate a low-to-high load heat distribution of an indoor space. A computational fluid dynamics (CFD) model was developed in Star CCM+ v6.06 and used for further analysis of the flow field and to predict additional spatial arrangements of the beam, interior dimensions, and heat source configurations. The CFD model implemented a calculation for the beam cooling capacity to predict the beam performance based on the room thermal conditions. The experimental data revealed an average reduction of 15% in the passive beam cooling capacity for the asymmetrically configured thermal manikins compared to the symmetric arrangement. The CFD model was validated with the experimental data and predicted the asymmetric heat source beam performance reduction to be 17%. The reduction in performance based on the heat source arrangement was found with analysis of the CFD simulations to be a result of the above-beam air velocity field. The unbalanced thermal manikin configuration generated an unbalanced flow condition at the inlet of the beam that resulted in the room air circumventing the inlet of the passive beam, as compared to the inlet velocity field of the symmetric configuration. Additional configurations were investigated with the CFD model to include the beam position, floor area, ceiling height, and thermal manikin arrangements. The simulation results were analyzed by comparing the efficiency of beam performance using the beam cooling capacity calculation for each scenario. The predictions of additional configurations found that the efficiency increased when the beam was perpendicular to a group of heat sources and the changes in beam performance with heat source configurations was not affected by the interior dimensions of the space. However, the resulting thermal conditions in the occupied zone for the beam positions of highest efficiency may negatively impact the thermal comfort of occupants.

Nelson, Ian 1982-

2012-12-01T23:59:59.000Z

313

Circular, confined distribution for charged particle beams  

DOE Patents (OSTI)

A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location. 26 figs.

Garnett, R.W.; Dobelbower, M.C.

1995-11-21T23:59:59.000Z

314

Circular, confined distribution for charged particle beams  

DOE Patents (OSTI)

A charged particle beam line is formed with magnetic optics that manipulate the charged particle beam to form the beam having a generally rectangular configuration to a circular beam cross-section having a uniform particle distribution at a predetermined location. First magnetic optics form a charged particle beam to a generally uniform particle distribution over a square planar area at a known first location. Second magnetic optics receive the charged particle beam with the generally square configuration and affect the charged particle beam to output the charged particle beam with a phase-space distribution effective to fold corner portions of the beam toward the core region of the beam. The beam forms a circular configuration having a generally uniform spatial particle distribution over a target area at a predetermined second location.

Garnett, Robert W. (Los Alamos, NM); Dobelbower, M. Christian (Toledo, OH)

1995-01-01T23:59:59.000Z

315

Confined energy distribution for charged particle beams  

SciTech Connect

A charged particle beam is formed to a relatively larger area beam which is well-contained and has a beam area which relatively uniformly deposits energy over a beam target. Linear optics receive an accelerator beam and output a first beam with a first waist defined by a relatively small size in a first dimension normal to a second dimension. Nonlinear optics, such as an octupole magnet, are located about the first waist and output a second beam having a phase-space distribution which folds the beam edges along the second dimension toward the beam core to develop a well-contained beam and a relatively uniform particle intensity across the beam core. The beam may then be expanded along the second dimension to form the uniform ribbon beam at a selected distance from the nonlinear optics. Alternately, the beam may be passed through a second set of nonlinear optics to fold the beam edges in the first dimension. The beam may then be uniformly expanded along the first and second dimensions to form a well-contained, two-dimensional beam for illuminating a two-dimensional target with a relatively uniform energy deposition.

Jason, Andrew J. (Los Alamos, NM); Blind, Barbara (Los Alamos, NM)

1990-01-01T23:59:59.000Z

316

Repetitively pumped electron beam device  

DOE Patents (OSTI)

Disclosed is an apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired. 12 figs.

Schlitt, L.G.

1979-07-24T23:59:59.000Z

317

INSTABILITIES OF RELATIVISTIC PARTICLE BEAMS  

E-Print Network (OSTI)

1965). K. W. Robinson, in SLAC Storage Ring Stumner Study,Beams, a Summary. Report, SLAC-49, L. J. Laslett, V. K.La.slett and A. M. Sessler, in SLAC-49, Sept. 1965 (see Ref.

Sessler, Andrew M.

2008-01-01T23:59:59.000Z

318

Center for Beam Physics, 1992  

Science Conference Proceedings (OSTI)

This report contains the following information on the center for beam physics: Facilities; Organizational Chart; Roster; Profiles of Staff; Affiliates; Center Publications (1991--1993); and 1992 Summary of Activities.

Not Available

1993-06-01T23:59:59.000Z

319

Repetitively pumped electron beam device  

DOE Patents (OSTI)

Apparatus for producing fast, repetitive pulses of controllable length of an electron beam by phased energy storage in a transmission line of length matched to the number of pulses and specific pulse lengths desired.

Schlitt, Leland G. (Livermore, CA)

1979-01-01T23:59:59.000Z

320

The Fermilab neutrino beam program  

Science Conference Proceedings (OSTI)

This talk presents an overview of the Fermilab Neutrino Beam Program. Results from completed experiments as well as the status and outlook for current experiments is given. Emphasis is given to current activities towards planning for a future program.

Rameika, Regina A.; /Fermilab

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Measurement of neutral beam profiles at DIII-D. Revision 1  

SciTech Connect

The neutral beam systems of DIII-D, a National Fusion Facility at General Atomics, are used both for heating the plasma, and as tools for plasma diagnostics. The spatial distribution (profile) and energy of the beam is used in the absolute calibration of both the Charge Exchange Recombination (CER) and Motional Stark Effect (MSE) diagnostics. In the past, the beam spatial profile used in these calibrations was derived from beam divergence calculations and IR camera observations on the tokamak centerpost target tiles. Two experimental methods are now available to better determine the beam profile. In one method, the Doppler shifted D{sub {alpha}} light from the energetic neutrals are measured, and the full-width at half-maximum (FWHM) of the beam can be inferred from the measured divergence of the D{sub {alpha}} light intensity. The other method for determining the beam profile uses the temperature gradients measured by the thermocouples mounted on the calorimeter. A new iterative fitting routine for the measured thermocouple data has been developed to fit theoretical models on the dispersion of the beam. The results of both methods are compared, and used to provide a new experimental verification of the beam profile.

Chiu, H.

1998-08-01T23:59:59.000Z

322

Particle beam fusion  

SciTech Connect

Today, in keeping with Sandia Laboratories` designation by the Department of Energy as the lead laboratory for the pulsed power approach to fusion, its efforts include major research activities and the construction of new facilities at its Albuquerque site. Additionally, in its capacity as lead laboratory, Sandia coordinates DOE-supported pulsed power fusion work at other government operated laboratories, with industrial contractors, and universities. The beginning of Sandia`s involvement in developing fusion power was an outgrowth of its contributions to the nation`s nuclear weapon program. The Laboratories` work in the early 1960`s emphasized the use of pulsed radiation environments to test the resistance of US nuclear weapons to enemy nuclear bursts. A careful study of options for fusion power indicated that Sandia`s expertise in the pulsed power field could provide a powerful match to ignite fusion fuel. Although creating test environments is an achieved goal of Sandia`s overall program, this work and other military tasks protected by appropriate security regulations will continue, making full use of the same pulsed power technology and accelerators as the fusion-for-energy program. Major goals of Sandia`s fusion program including the following: (1) complete a particle accelerator to deliver sufficient beam energy for igniting fusion targets; (2) obtain net energy gain, this goal would provide fusion energy output in excess of energy stored in the accelerator; (3) develop a technology base for the repetitive ignition of pellets in a power reactor. After accomplishing these goals, the technology will be introduced to the nation`s commercial sector.

1980-12-31T23:59:59.000Z

323

Beam cooling: Principles and achievements  

SciTech Connect

After a discussion of Liouville's theorem, and its implications for beam cooling, a brief description is given of each of the various methods of beam cooling: stochastic, electron, radiation, laser, ionization, etc. For each, we present the type of particle for which it is appropriate, its range of applicability, and the currently achieved degree of cooling. For each method we also discuss the present applications and, also, possible future developments and further applications.

Mohl, Dieter; Sessler, Andrew M.

2003-05-18T23:59:59.000Z

324

Beam Physics for the 12 GeV CEBAF Upgrade Project  

SciTech Connect

Beam physics aspects of the 12 GeV Upgrade of CEBAF are presented. The CEBAF Upgrade to 12 GeV is achieved via 5.5 recirculations through the linacs, and the installation of 10 new high-gradient cryomodules. A new experimental hall, Hall D, is envisioned at the end of North Linac. Simulation results for straight-through and recirculated injectors are summarized and compared. Beam transport designs are discussed and evaluated with respect to matching and beam breakup (BBU) optimization. Effects of synchrotron radiation excitation on the beam properties are calculated. BBU simulations and derived specifications for the damping of higher order modes of the new 7-cell cavities are presented. The energies that provide longitudinal polarization in multiple experimental halls simultaneously are calculated. Finally, a detailed optics design for the Hall D transport line has been obtained.

L. Merminga; J. F. Benesch; S.A. Bogacz; Y.-C. Chao; A. Freyberger; J.M. Grames; L. Harwood; R. Kazimi; G.A. Krafft; M. Spata; M. Tiefenback; M. Wiseman; B.C. Yunn; Y. Zhang

2005-05-16T23:59:59.000Z

325

Comparative Calculations of Solubility Equilibria  

Science Conference Proceedings (OSTI)

The uncertainties in calculated solubilities in the Na-F-PO{sub 4}-HPO{sub 4}-OH system. at 25 C for NaOH concentrations up to 5 mol/kg were assessed. These uncertainties were based on an evaluation of the range of values for the Gibbs energies of the solids. Comparative calculations using the Environmental Simulation Program (ESP) and SOLGASMIX indicated that the variation in activity coefficients with NaOH concentration is much greater in the ESP code than in SOLGASMIX. This resulted in ESP calculating a higher solubility in water and a lower solubility in NaOH concentrations above 1 mol/kg: There was a marked discrepancy in the solubilities of the pure components sodium fluoride and trisodium phosphate predicted by ESP and SOLGASMIX. In addition, different solubilities for these components were obtained using different options in ESP. Because of these observations, a Best Practices Guide for ESP will be assembled.

Beahm, E.C.

2000-07-25T23:59:59.000Z

326

An equivalent circuit model and power calculations for the APS SPX crab cavities.  

SciTech Connect

An equivalent parallel resistor-inductor-capacitor (RLC) circuit with beam loading for a polarized TM110 dipole-mode cavity is developed and minimum radio-frequency (rf) generator requirements are calculated for the Advanced Photon Source (APS) short-pulse x-ray (SPX) superconducting rf (SRF) crab cavities. A beam-loaded circuit model for polarized TM110 mode crab cavities was derived. The single-cavity minimum steady-state required generator power has been determined for the APS SPX crab cavities for a storage ring current of 200mA DC current as a function of external Q for various vertical offsets including beam tilt and uncontrollable detuning. Calculations to aid machine protection considerations were given.

Berenc, T. (Accelerator Systems Division (APS))

2012-03-21T23:59:59.000Z

327

Direct e-beam lithography of PDMS  

Science Conference Proceedings (OSTI)

In this paper, the viability of directly exposing thin films of liquid poly(dimethylsiloxane) (PDMS) to electron beam (e-beam) irradiation using e-beam lithographic methods for the purpose of creating permanent micro-scale components has been investigated. ... Keywords: Lithography, PDMS, Poly(dimethylsiloxane), e-Beam

J. Bowen; D. Cheneler; A. P. G. Robinson

2012-09-01T23:59:59.000Z

328

BEAM SCRUBBING FOR RHIC POLARIZED PROTON RUN.  

SciTech Connect

One of the intensity limiting factor of RHIC polarized proton beam is the electron cloud induced pressure rise. A beam scrubbing study shows that with a reasonable period of time of running high intensity 112-bunch proton beam, the pressure rise can be reduced, allowing higher beam intensity.

ZHANG,S.Y.FISCHER,W.HUANG,H.ROSER,T.

2004-07-05T23:59:59.000Z

329

Neutron time behavior for deuterium neutral beam injection into a hydrogen plasma in ORMAK  

DOE Green Energy (OSTI)

Neutrons were produced by D-D interactions when a 28-keV deuterium beam was coinjected into a hydrogen plasma in the Oak Ridge Tokamak (ORMAK). Fokker-Planck calculations, which correctly predict the time behavior of the neutron rate after beam turnon, show that the majority of the neutrons are from injected particles interacting with previously injected deuterons that have scattered to pitch angles of approximately 60 to 90/sup 0/ while slowing down.

England, A. C.; Howe, H. C.; Mihalczo, J. T.; Fowler, R. H.

1977-10-01T23:59:59.000Z

330

High-order-harmonic generation in gas with a flat-top laser beam  

Science Conference Proceedings (OSTI)

We present experimental and numerical results on high-order-harmonic generation with a flat-top laser beam. We show that a simple binary tunable phase plate, made of two concentric glass plates, can produce a flat-top profile at the focus of a Gaussian infrared beam. Both experiments and numerical calculations show that there is a scaling law between the harmonic generation efficiency and the increase of the generation volume.

Boutu, W.; Auguste, T.; Binazon, L.; Gobert, O.; Carre, B. [Service des Photons, Atomes et Molecules, CEA-Saclay, FR-91191 Gif-sur-Yvette Cedex (France); Boyko, O.; Valentin, C. [Laboratoire d'Optique Appliquee, UMR 7639 ENSTA/CNRS/Ecole Polytechnique, FR-91761 Palaiseau (France); Sola, I.; Constant, E.; Mevel, E. [Universite de Bordeaux, CEA, CNRS UMR 5107, CELIA (Centre Lasers Intenses et Applications), FR-33400 Talence (France); Balcou, Ph. [Laboratoire d'Optique Appliquee, UMR 7639 ENSTA/CNRS/Ecole Polytechnique, FR-91761 Palaiseau (France); Universite de Bordeaux, CEA, CNRS UMR 5107, CELIA (Centre Lasers Intenses et Applications), FR-33400 Talence (France); Merdji, H. [Service des Photons, Atomes et Molecules, CEA-Saclay, FR-91191 Gif-sur-Yvette Cedex (France); PULSE Institute for Ultrafast Energy Science, Stanford Linear Accelerator Center, Stanford University, 2575 Sand Hill Road, Menlo Park, California 94025 (United States)

2011-12-15T23:59:59.000Z

331

Measuring of plasma properties induced by non-vacuum electron beam welding  

Science Conference Proceedings (OSTI)

Electron beam plasma measurement was realised by means of DIABEAM system invented by ISF RWTH Aachen. The Langmuir probe method is used for measurement. The relative simplicity of the method and the possibility of dispersion of high power on the probe allow its application for the investigation of high-power electron beams. The key element of the method is a rotating thin tungsten wire, which intersects the beam transversely on its axis and collects part of the current by itself. The signals, which are registered in the DIABEAM as a voltage, were taken in the form of amplitude. The conversion of the probe current into the distribution along the beam radius was realised using the Abel's method. A voltage-current characteristic was built for the beam current. The local electron density as well as the electron temperature, the floating potential and the plasma potential were measured and calculated by means of this characteristic.

Reisgen, U.; Schleser, M.; Abdurakhmanov, A. [RWTH Aachen University ISF-Welding and Joining Institute, 52062 Aachen (Germany); Gumenyuk, A. [BAM Federal Institute for Materials Research and Testing, 12205 Berlin (Germany)

2012-01-15T23:59:59.000Z

332

Direct drive heavy-ion-beam inertial fusion at high coupling efficiency  

SciTech Connect

Issues with coupling efficiency, beam illumination symmetry, and Rayleigh-Taylor instability are discussed for spherical heavy-ion-beam-driven targets with and without hohlraums. Efficient coupling of heavy-ion beams to compress direct-drive inertial fusion targets without hohlraums is found to require ion range increasing several-fold during the drive pulse. One-dimensional implosion calculations using the LASNEX inertial confinement fusion target physics code shows the ion range increasing fourfold during the drive pulse to keep ion energy deposition following closely behind the imploding ablation front, resulting in high coupling efficiencies (shell kinetic energy/incident beam energy of 16% to 18%). Ways to increase beam ion range while mitigating Rayleigh-Taylor instabilities are discussed for future work.

Logan, B.G.; Perkins, L.J.; Barnard, J.J.

2008-05-16T23:59:59.000Z

333

Parametric Channeling Radiation and its Application to the Measurement of Electron Beam Energy  

SciTech Connect

We have proposed a method for observing parametric channeling radiation (PCR) and of applying it to the measurement of electron beam energy. The PCR process occurs if the energy of the channeling radiation coincides with the energy of the parametric X-ray radiation (PXR). The PCR process can be regarded as the diffraction of 'virtual channeling radiation'. We developed a scheme for beam energy measurement and designed an experimental setup. We also estimated the beam parameters, and calculated the angular distributions of PXR and PCR. These considerations indicate that the observation of PCR is promising.

Takabayashi, Y. [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)

2010-06-23T23:59:59.000Z

334

INTRA - BEAM SCATTERING MEASUREMENTS IN RHIC.  

DOE Green Energy (OSTI)

RHIC in gold operation shows significant intra-beam scattering due to the high charge state of the stored ions. Intra-beam scattering leads to longitudinal and transverse emittance growth. The longitudinal emittance growth causes debunching in operation; the transverse emittance growth contributes to the reduction of the beam and luminosity lifetimes. The longitudinal and transverse beam growth was measured. Beam growth measurement are compared with computations.

FISCHER,W.; CONNOLLY,R.; TEPIKIAN,S.; VAN ZEIJTS,J.; ZENO,K.

2002-06-02T23:59:59.000Z

335

LS-266 OPTIMIZATION OF FOUR-BUTTON BEAM POSITION MONITOR CONFIGURATION FOR SMALL-GAP VACUUM CHAMBERS  

NLE Websites -- All DOE Office Websites (Extended Search)

LS-266 LS-266 OPTIMIZATION OF FOUR-BUTTON BEAM POSITION MONITOR CONFIGURATION FOR SMALL-GAP VACUUM CHAMBERS S. H. Kim March 27, 1998 Summary - Induced charges on a four-button beam position monitor (BPM) system attached on a beam chamber of narrow rectangular cross sections are calculated as a 2-D electrostatic problem of image charges. The calculation shows that for a narrow chamber of width/height (2w/2h) >> 1, over 90% of the induced charges are distributed within a distance of 2h from the charged beam position in the direction of the chamber width. Therefore, a four-button system with a button diameter of (2 ~ 2.5)h and no button offset from the beam position is the most efficient configuration. The four-button BPMs used for 8-mm and 5-mm chambers in the APS have relatively low sensitivities because the button locations are outside

336

Neutronics calculation, dosimetry analysis and gas measurements of the first SINQ target irradiation experiment, STIP-I  

SciTech Connect

To precisely determine the damage, helium and hydrogen production in the specimens irradiated in SINQ Target-3, calculations with MCNPX code, dosimetry analysis and helium/hydrogen measurements have been performed. The MCNPX calculations agree well the former calculations with the LAHET code. The preliminary analysis of dosimetry foils demonstrates that the unfolded proton and neutron spectra at limited positions are close to calculated values. In general the measured He concentrations are consistent with the calculated values. Some discrepancy between the measured and the calculated is believed due to the actual proton beam geometry is different from that used for the calculation. The hydrogen concentration measured in samples irradiated at<~100C is close to the calculated. The differences between the measured and calculated values for samples irradiated at higher temperatures can be attributed largely to the effects of hydrogen diffusion. The results indicate that at>~250C, only small amount of hydrogen remains in the samples.

Dai, Yong (Paul Scherrer Institute); Foucher, Y (Paul Scherrer Institute, Switzerland); James, M R. (Los Alamos National Laboratory); Oliver, Brian M. (BATTELLE (PACIFIC NW LAB))

2003-05-15T23:59:59.000Z

337

Machine and Beam Delivery Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

MAchine and Beam delivery Updates FY13 MAchine and Beam delivery Updates FY13 Summary of Beam Delivery: FACET Summary Feb_15_22.pdf FACET Summary Feb_15_22.pdf FACET Summary Feb_23_Mar_1.pdf FACET Summary Feb_23_Mar_1.pdf FACET Summary Mar_2_8.pdf FACET Summary Mar_2_8.pdf FACET Summary Mar_9_15.pdf FACET Summary Mar_9_15.pdf FACET Summary Mar_16_22.pdf FACET Summary Mar_16_22.pdf FACET Summary Mar_23_29.pdf FACET Summary Mar_23_29.pdf FACET Summary Mar_30_Apr_5.pdf FACET Summary Mar_30_Apr_5.pdf FACET Summary Apr_6_12.pdf FACET Summary Apr_6_12.pdf FACET Summary Apr_27_May_3.pdf FACET Summary Apr_27_May_3.pdf FACET Summary May_4_10.pdf FACET Summary May_4_10.pdf Emittance Stability in Sector 2_31513.pdf Emittance Stability in Sector 2_31513.pdf FACET beam operations readiness with R56.pdf FACET beam operations readiness with R56.pdf (6/19/2013)

338

AGING FACILITY CRITICALITY SAFETY CALCULATIONS  

Science Conference Proceedings (OSTI)

The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging Facility. As the ongoing design evolution remains fluid, the results from this design calculation should be evaluated for applicability to any new or modified design. Consequently, the results presented in this document are limited to the current design. The information contained in this document was developed by Environmental and Nuclear Engineering and is intended for the use of Design and Engineering in its work regarding the various criticality related activities performed in the Aging Facility. Yucca Mountain Project personnel from Environmental and Nuclear Engineering should be consulted before the use of the information for purposes other than those stated herein or use by individuals other than authorized personnel in Design and Engineering.

C.E. Sanders

2004-09-10T23:59:59.000Z

339

Automated Calculation of DIII-D Neutral Beam Availability (A23286)  

E-Print Network (OSTI)

In The Proc. Of The 18th IEEE/NPSS Symp. On Fusion Engineering, Albuquerque, New Mexico (Institute Of Electrical And Electronics Engineers, Inc., Piscataway, 1999) P. 511; And General Atomics Report GA-A23286 (1999)18th IEEE/NPSS Symposium on Fusion Engineering Albuquerque New Mexico, US, 1999985284369

Phillips, J.C.

1999-10-01T23:59:59.000Z

340

Calculation of wakefields in a 17 GHz beam-driven photonic band-gap accelerator structure  

E-Print Network (OSTI)

We present the theoretical analysis and computer simulation of the wakefields in a 17 GHz photonic band-gap (PBG) structure for accelerator applications. Using the commercial code CST Particle Studio, the fundamental ...

Hu, Min

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Further tests on liquid-nitrogen-cooled, thin silicon-crystal monochcromators using a focused wiggler synchrotron beam  

SciTech Connect

A newly designed, cryogenically cooled, thin Si crystal monochromator was tested at the European Synchrotron Radiation Facility (ESRF) beamline BL3. It exhibited less than 1 arcsec of thermal strain up to a maximum incident power of 186 W and average power density of 521 W/mm{sup 2}. Data were collected for the thin (0.7 mm) portion of the crystal and for the thick (>25 mm) part. Rocking curves were measured as a function of incident power. With a low power beam, the Si(333) rocking curve at 30 keV for the thin and thick sections was < 1 arcsec FWHM at room temperature. The rocking curve of the thin section increased to 2.0 arcsec when cooled to 78 K, while the thick part was unaffected by the reduction in temperature. The rocking curve of the thin section broadened to 2.5 arcsec FWHM and that of the thick section broadened to 1.7 arcsec at the highest incident power. The proven range of performance for this monochromator has been extended to the power density, but not the absorbed power, expected for the Advanced Photon Source (APS) undulator A in closed-gap operation (first harmonic at 3.27 keV) at a storage-ring current of 300 mA.

Rogers, C.S.; Mills, D.M.; Fernandez, P.B. [and others

1996-01-01T23:59:59.000Z

342

Further tests on liquid-nitrogen-cooled, thin silicon-crystal monochromators using a focused wiggler synchrotron beam  

SciTech Connect

A newly designed cryogenically cooled, thin Si crystal monochromator was tested at the European Synchrotrons Radiation Facility (ESRF) beamline BL3. It exhibited less than 1 arcsec of thermal strain up to a maximum incident power of 186 W and average power density of 521 W/mm{sup 2}. Data were collected for the thin (0.7 mm) portion of the crystal and for the thick (>25 mm) part. Rocking curves were measured as a function of incident power. With a low power beam, the Si(333) rocking curve at 30 keV for the thin and thick sections was < 1 arcsec FWHM at room temperature. The rocking curve of the thin section increased to 2.0 arcsec when cooled to 78 K, while the thick part was unaffected by the reduction in temperature. The rocking curve of the this section broadened to 2.5 arcsec FWHM and that of the thick section broadened to 1.7 arcsec at the highest incident power. The proven range of performance for this monochromator has been extended to the power density, but not the absorbed power, expected for the Advanced Photon Source (APS) undulator A in closed-gap operation (first harmonic at 3.27 kev) at a storage-ring current of 300 mA.

Rogers, C. S.; Mills, D. M.; Fernandez, P. B.; Knapp, G. S.; Wulff, M.; Hanfland, M.; Freund, A.; Rossat, M.; Holmberg, J.; Yamaoka, H.

2000-05-09T23:59:59.000Z

343

Beam purification by photodetachment (invited)  

Science Conference Proceedings (OSTI)

Ion beam purity is of crucial importance to many basic and applied studies in nuclear science. Selective photodetachment has been proposed to suppress unwanted species in negative ion beams while preserving the intensity of the species of interest. A highly efficient technique based on photodetachment in a gas-filled radio frequency quadrupole ion cooler has been demonstrated. In off-line experiments with stable ions, up to 10{sup 4} times suppression of the isobar contaminants in a number of interesting radioactive negative ion beams has been demonstrated. For selected species, this technique promises new experimental possibilities in studies on exotic nuclei, accelerator mass spectrometry, and fundamental properties of negative atomic and molecular ions.

Liu, Y.; Beene, J. R.; Galindo-Uribarri, A.; Havener, C. C. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Andersson, P.; Forstner, O. [Vera Laboratory, Fakultaet fuer Physik, Universitaet Wien, AT-1090 Wien (Austria); Gottwald, T.; Wendt, K. [Institute of Physics, Johannes Gutenberg-University Mainz, D-55099 Mainz (Germany); Hanstorp, D.; Lindahl, A. O. [Department of Physics, University of Gothenburg, SE-412 96 Gothenburg (Sweden)

2012-02-15T23:59:59.000Z

344

AFRD - Center for Beam Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Center for Beam Physics Center for Beam Physics Home Organization Outreach and Diversity Highlights Safety Links Intramural Group photo of our staff CBP staff, May 2011 CBP in the News: Read about an innovation in super-precise timing and synchronization; and a look toward the next generation of electron guns with responsiveness and brightness needed by future free-electron lasers such as those in the Next Generation Light Source initiative. Who We Are and What We Do The Center for Beam Physics (CBP) is a resource for meeting the challenges of accelerator science, and a source of many innovative concepts, within the Accelerator and Fusion Research Division. We have core expertise in accelerator physics and theory, accelerator modeling using high performance computing, and instrumentation,

345

Measurement of the curvature of a surface using parallel light beams  

DOE Patents (OSTI)

Apparatus for measuring curvature of a surface wherein a beam of collimated light is passed through means for producing a plurality of parallel light beams each separated by a common distance which then reflect off the surface to fall upon a detector that measures the separation of the reflected beams of light. This means can be an etalon and the combination of a diffractive element and a converging lens. The curvature of the surface along the line onto which the multiple beams fall can be calculated from this information. A two-dimensional map of the curvature can be obtained by adding a second etalon (or a second combination of a diffractive element and a converging lens) which is rotated 90.degree. about the optical axis relative to the first etalon and inclined at the same angle. The second etalon creates an individual set of parallel light beams from each of the individual beams created by the first etalon with the sets of parallel light beams from the second etalon rotated 90.degree. relative to the line onto which the single set of parallel beams from the first etalon would have fallen.

Chason, Eric H. (Sandia Park, NM); Floro, Jerrold A. (Edgewood, NM); Seager, Carleton H. (Albuquerque, NM); Sinclair, Michael B. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

346

Photon beam quality variations of a flattening filter free linear accelerator  

Science Conference Proceedings (OSTI)

Purpose: Recently, there has been an increasing interest in operating conventional linear accelerators without a flattening filter. The aim of this study was to determine beam quality variations as a function of off-axis ray angle for unflattened beams. In addition, a comparison was made with the off-axis energy variation in flattened beams. Methods: Two Elekta Precise linear accelerators were modified in order to enable radiation delivery with and without the flattening filter in the beam line. At the Medical University Vienna (Vienna, Austria), half value layer (HVL) measurements were performed for 6 and 10 MV with an in-house developed device that can be easily mounted on the gantry. At St. Luke's Hospital (Dublin, Ireland), measurements were performed at 6 MV in narrow beam geometry with the gantry tilted around 270 deg. with pinhole collimators, an attenuator, and the chamber positioned on the table. All attenuation measurements were performed with ionization chambers and a buildup cap (2 mm brass) or a PMMA mini phantom (diameter 3 cm, measurement depth 2.5 cm). Results: For flattened 6 and 10 MV photon beams from the Elekta linac the relative HVL({theta}) varies by about 11% for an off-axis ray angle {theta}=10 deg. These results agree within {+-}2% with a previously proposed generic off-axis energy correction. For unflattened beams, the variation was less than 5% in the whole range of off-axis ray angles up to 10 deg. The difference in relative HVL data was less than 1% for unflattened beams at 6 and 10 MV. Conclusions: Off-axis energy variation is rather small in unflattened beams and less than half the one for flattened beams. Thus, ignoring the effect of off-axis energy variation for dose calculations in unflattened beams can be clinically justified.

Georg, Dietmar; Kragl, Gabriele; Wetterstedt, Sacha af; McCavana, Patrick; McClean, Brendan; Knoeoes, Tommy [Department of Radiotherapy, Division Medical Radiation Physics, Medical University of Vienna, AKH Vienna, 1090 Vienna (Austria); Department of Radiotherapy, St Luke's Hospital, Dublin 6 (Ireland); Radiation Physics, Lund University and Lund University Hospital, 22185 Lund (Sweden)

2010-01-15T23:59:59.000Z

347

BEAM DIFFUSION MEASUREMENTS AT RHIC.  

Science Conference Proceedings (OSTI)

During a store, particles from the beam core continually diffuse outwards into the halo through a variety of mechanisms. Understanding the diffusion rate as a function of particle amplitude can help discover which processes are important to halo growth. A collimator can be used to measure the amplitude growth rate as a function of the particle amplitude. In this paper we present results of diffusion measurements performed at the Relativistic Heavy Ion Collider (RHIC) with fully stripped gold ions, deuterons, and protons. We compare these results with measurements from previous years, and simulations, and discuss any factors that relate to beam growth in RHIC.

FLILLER,R.P.,IIIDREES,A.GASSNER,D.MCINTYRE,G.PEGGS,S.TRBOJEVIC,D.

2003-05-12T23:59:59.000Z

348

FEL options for power beaming  

DOE Green Energy (OSTI)

The demand for the output power of communication satellites has been increasing exponentially. The satellite power is generated from solar panels which collect the sunlight and convert it to electrical power. The power per satellite is limited due to the limit in the practical size of the solar panel. One way to meet the power demand is to employ multiple satellites (up to 10) per the internationally agreed-upon ``slot`` in the geosynchronous earth orbit (GEO). However, this approach is very expensive due to the high cost of sending a satellite into a GEO orbit. An alternative approach is power beaming, i.e., to illuminate the solar panels with high power, highly-directed laser beams from earth. The power beaming generates more power per satellite for the same area of the solar panel. The minimum optical beam power, interesting for power beaming application, is P{sub L} = 200kW. The wavelength is chosen to be {lambda} = 0.84 {micro}m, so that it is within one of the transmission windows of the air, and at the same time near the peak of the photo-voltaic conversion efficiency of Si, which is the commonly used material for the solar panels. Free electron lasers (FELs) are well suited for the power beaming application because they can provide high power with coherent wavefront, but without high energy density in media. In this article the authors discuss some principal issues, such as the choice of accelerator and electron gun, the choice of beam parameters, radiation hazards, technological availability, and overall efficiency and reliability of the installation. They also attempt to highlight the compromise between the cost of the primary installation, the operation cost, and the choice of technology, and its maturity. They then present several schemes for the accelerator-FEL systems based on RF accelerators. The initial electron beam accelerator up to the energy of a few MeV is more or less common for all these schemes.

Kim, K.J.; Zholents, A.A.; Zolotorev, M.S. [Lawrence Berkeley National Lab., CA (United States); Vinokurov, N.A. [Budker Inst. of Nuclear Physics, Novosibirsk (Russian Federation)

1997-10-01T23:59:59.000Z

349

Shimmed electron beam welding process  

DOE Patents (OSTI)

A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

Feng, Ganjiang (Clifton Park, NY); Nowak, Daniel Anthony (Alplaus, NY); Murphy, John Thomas (Niskayuna, NY)

2002-01-01T23:59:59.000Z

350

Transverse beam shape measurements of intense proton beams using optical transition radiation  

SciTech Connect

A number of particle physics experiments are being proposed as part of the Department of Energy HEP Intensity Frontier. Many of these experiments will utilize megawatt level proton beams onto targets to form secondary beams of muons, kaons and neutrinos. These experiments require transverse size measurements of the incident proton beam onto target for each beam spill. Because of the high power levels, most beam intercepting profiling techniques will not work at full beam intensity. The possibility of utilizing optical transition radiation (OTR) for high intensity proton beam profiling is discussed. In addition, previous measurements of OTR beam profiles from the NuMI beamline are presented.

Scarpine, Victor E.; /Fermilab

2012-03-01T23:59:59.000Z

351

Optimization for Single-Spike X-Ray FELs at LCLS with a Low Charge Beam  

Science Conference Proceedings (OSTI)

The Linac Coherent Light Source is an x-ray free-electron laser at the SLAC National Accelerator Laboratory, which is operating at x-ray wavelengths of 20-1.2 Angstrom with peak brightness nearly ten orders of magnitude beyond conventional synchrotron radiation sources. At the low charge operation mode (20 pC), the x-ray pulse length can be LCLS), the world's first hard x-ray Free electron laser (FEL), has started operation since 2009. With nominal operation charge of 250 pC, the generated x-ray pulse length is from 70 fs to a few hundred fs. This marks the beginning of a new era of ultrashort x-ray sciences. In addition, a low charge (20pC) operation mode has also been established. Since the collective effects are reduced at the low charge mode, we can increase the compression factor and still achieve a few kA peak current. The expected electron beam and x-ray pulses are less than 10 fs. There are growing interests in even shorter x-ray pulses, such as fs to sub-fs regime. One of the simple solutions is going to even lower charge. As discussed, single-spike x-ray pulses can be generated using 1 pC charge. However, this charge level is out of the present LCLS diagnostic range. 20 pC is a reasonable operation charge at LCLS, based on the present diagnostic system. At 20 pC in the soft x-ray wavelength regime, we have experimentally demonstrated that FEL can work at undercompression or over-compression mode, such as 1 degree off the full-compression; at full-compression, however, there is almost no lasing. In hard x-ray wavelength regime, we observed that there are reasonable photons generated even at full-compression mode, although the photon number is less than that from under-compression or over-compression mode. Since we cannot measure the x-ray pulse length at this time scale, the machine is typically optimized for generating maximum photons, not minimum pulse length. In this paper, we study the methods of producing femtosecond (or single-spike) x-ray pulses at LCLS with 20 pC charge, based on start-to-end simulations. Figure 1 shows a layout of LCLS. The compression in the second bunch compressor (BC2) determines the final e-beam bunch length. However, the laser heater, dog-leg after the main linac (DL2) and collective effects also affect the final bunch length. To adjust BC2 compression, we can either change the L2 phase or BC2 R{sub 56}. In this paper we only tune L2 phase while keep BC2 R{sub 56} fixed. For the start-to-end simulations, we used IMPACT-T and ELEGANT tracking from the photocathode to the entrance of the undulator, after that the FEL radiation was simulated with GENESIS. IMPACT-T tracks about 10{sup 6} particles in the injector part until 135 MeV, including 3D space charge force. The output particles from IMPACT-T are smoothed and increased to 12 x 10{sup 6} to reduce high-frequency numerical noise for subsequent ELEGANT simulations, which include linear and nonlinear transport effects, a 1D transient model of CSR, and longitudinal space charge effects, as well as geometric and resistive wake fields in the accelerator. In GENESIS part, the longitudinal wake field from undulator chamber and longitudinal space field are also included.

Wang, L.; Ding, Y.; Huang, Z.; /SLAC

2011-12-14T23:59:59.000Z

352

NERSC Calculations Provide Independent Confirmation of Global...  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901 NERSC Calculations Provide Independent Confirmation of Global Land Warming Since 1901...

353

Federal Energy Management Program: Energy Savings Calculator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Savings Calculator for Commercial Boilers (Closed Loop, Space Heating Applications Only) This cost calculator is a screening tool that estimates a product's lifetime energy cost...

354

Hybrid Car Calculator | Open Energy Information  

Open Energy Info (EERE)

Hybrid Car Calculator Jump to: navigation, search Tool Summary Name: Hybrid Car Calculator AgencyCompany Organization: New American Dream Phase: "Evaluate Options and Determine...

355

Radiation shielding calculations for MuCool test area at Fermilab  

DOE Green Energy (OSTI)

The MuCool Test Area (MTA) is an intense primary beam facility derived directly from the Fermilab Linac to test heat deposition and other technical concerns associated with the liquid hydrogen targets being developed for cooling intense muon beams. In this shielding study the results of Monte Carlo radiation shielding calculations performed using the MARS14 code for the MuCool Test Area and including the downstream portion of the target hall and berm around it, access pit, service building, and parking lot are presented and discussed within the context of the proposed MTA experimental configuration.

Igor Rakhno; Carol Johnstone

2004-05-26T23:59:59.000Z

356

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

357

Calculation of shielding door thicknesses for radiation therapy facilities using the ITS Monte Carlo program  

SciTech Connect

Shielding calculations for door thicknesses for megavoltage radiotherapy facilities with mazes are generally straightforward. To simplify the calculations, the standard formalism adopts several approximations relating to the average beam path, scattering coefficients, and the mean energy of the spectrum of scattered radiation. To test the accuracy of these calculations, the Monte Carlo program, ITS, was applied to this problem by determining the dose and energy spectrum of the radiation at the door for 4- and 10-MV bremsstrahlung beams incident on a phantom at isocenter. This was performed for mazes, one termed 'standard' and the other a shorter maze where the primary beam is incident on the wall adjacent to the door. The peak of the photon-energy spectrum at the door was found to be the same for both types of maze, independent of primary beam energy, and also, in the case of the conventional maze, of the primary beam orientation. The spectrum was harder for the short maze and for 10 MV vs. 4 MV. The thickness of the lead door for a short maze configuration was 1.5 cm for 10 MV and 1.2 cm for 4 MV vs. approximately less than 1 mm for a conventional maze. For the conventional maze, the Monte Carlo calculation predicts the dose at the door to be lower than given by NCRP 49 and NCRP 51 by about a factor of 2 at 4 MV but to be the same at 10 MV. For the short maze, the Monte Carlo predicts the dose to be a factor of 3 lower for 4 MV and about a factor of 1.5 lower for 10 MV. Experimental results support the Monte Carlo findings for the short maze.

Biggs, P.J. (Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston (United States))

1991-10-01T23:59:59.000Z

358

Beam Loss due to Foil Scattering in the SNS Accumulator Ring  

Science Conference Proceedings (OSTI)

In order to better understand the contribution of scattering from the primary stripper foil to losses in the SNS ring, we have carried out calculations using the ORBIT Code aimed at evaluating these losses. These calculations indicate that the probability of beam loss within one turn following a foil hit is ~1.8 10-8 , where is the foil thickness in g/cm2, assuming a carbon foil. Thus, for a typical SNS stripper foil of thickness = 390 g/cm2, the probability of loss within one turn of a foil hit is ~7.0 10-6. This note describes the calculations used to arrive at this result, presents the distribution of these losses around the SNS ring, and compares the calculated results with observed ring losses for a well-tuned production beam.

Holmes, Jeffrey A [ORNL; Plum, Michael A [ORNL

2012-01-01T23:59:59.000Z

359

G4beamline Particle Tracking in Matter Dominated Beam Lines  

Science Conference Proceedings (OSTI)

The G4beamline program is a useful and steadily improving tool to quickly and easily model beam lines and experimental equipment without user programming. It has both graphical and command-line user interfaces. Unlike most accelerator physics codes, it easily handles a wide range of materials and fields, being particularly well suited for the study of muon and neutrino facilities. As it is based on the Geant4 toolkit, G4beamline includes most of what is known about the interactions of particles with matter. We are continuing the development of G4beamline to facilitate its use by a larger set of beam line and accelerator developers. A major new feature is the calculation of space-charge effects. G4beamline is open source and freely available at http://g4beamline.muonsinc.com

T.J. Roberts, K.B. Beard, S. Ahmed, D. Huang, D.M. Kaplan

2011-03-01T23:59:59.000Z

360

APPARATUS FOR ELECTRON BEAM HEATING CONTROL  

DOE Patents (OSTI)

An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

Jones, W.H.; Reece, J.B.

1962-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Enhanced laser beam coupling to a plasma  

DOE Patents (OSTI)

Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

Steiger, Arno D. (Pleasanton, CA); Woods, Cornelius H. (Livermore, CA)

1976-01-01T23:59:59.000Z

362

IMPACT simulation and the SNS linac beam  

E-Print Network (OSTI)

dynamics studies of the SNS linac systems were performedIMPACT SIMULATION AND THE SNS LINAC BEAM * Y. Zhang 1 , J.tracking simulations for the SNS linac beam dynamics studies

Zhang, Y.

2009-01-01T23:59:59.000Z

363

Autogenerator of beams of charged particles  

DOE Patents (OSTI)

An autogenerating apparatus provides secondary intense relativistic current beam pulses in response to an injected beam pulse. One or more electromagnetic energy storage devices are provided in conjunction with gaps along a beam propagation path for the injected beam pulse. For injected beam pulses which are no longer than double the transit time of electromagnetic waves within the storage devices (which may be resonant cavities), distinct secondary beam pulses are generated by each of the energy storage devices. The beam propagation path, together with the one or more gaps provided therein, operates as a pulse forming transmission line cavity, in which the separate cavities associated with the gaps provide delays for electromagnetic waves generated at the gaps. After doubly traversing the cavity, the electromagnetic waves cause the gap to generate the secondary beam pulses, which are thus delayed by a time interval equal to the double transit time for the induced wave within the cavity.

Adler, R.J.; Mazarakis, M.G.; Miller, R.M.; Shope, S.L.; Smith, D.L.

1983-10-31T23:59:59.000Z

364

New beam instrumentation in the AGS Booster  

SciTech Connect

The AGS Booster was designed to accelerate beams from 2{times}10{sup 10} polarized protons to 1.5{times}10{sup 13} protons and heavy ions through Au{sup +33}. The range of beam parameters and the high vacuum, and radiation environment presented challenges for the beam instrumentation. Some interesting beam monitors in the Booster and transport lines, will be described. Where available, results will be presented. 21 refs., 7 figs.

Witkover, R.L.

1991-01-01T23:59:59.000Z

365

LOW ENERGY BEAM PROCESSES IN ELECTRONIC MATERIALS ...  

Science Conference Proceedings (OSTI)

LOW ENERGY BEAM PROCESSES IN ELECTRONIC MATERIALS: Session II: Shallow Junction and Low Energy Implantation. Sponsored by: EMPMD Thin ...

366

Electron Beam Melting: The New Directional Solidification  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, Materials Science & Technology 2011. Symposium, Additive Manufacturing of Metals. Presentation Title, Electron Beam Melting: ...

367

Electron-Beam Irradiation of Solar Cells  

Science Conference Proceedings (OSTI)

Electron-Beam Irradiation of Solar Cells. Summary: The Dosimetry Group operates a system capable of performing electron ...

2013-02-27T23:59:59.000Z

368

Bounding Radionuclide Inventory and Accident Consequence Calculation for the 1L Target  

Science Conference Proceedings (OSTI)

A bounding radionuclide inventory for the tungsten of the Los Alamos Neutron Science Center (LANSCE) IL Target is calculated. Based on the bounding inventory, the dose resulting from the maximum credible incident (MCI) is calculated for the maximally exposed offsite individual (MEOl). The design basis accident involves tungsten target oxidation following a loss of cooling accident. Also calculated for the bounding radionuclide inventory is the ratio to the LANSCE inventory threshold for purposes of inventory control as described in the target inventory control policy. A bounding radionuclide inventory calculation for the lL Target was completed using the MCNPX and CINDER'90 codes. Continuous beam delivery at 200 {micro}A to 2500 mA{center_dot}h was assumed. The total calculated activity following this irradiation period is 205,000 Ci. The dose to the MEOI from the MCI is 213 mrem for the bounding inventory. The LANSCE inventory control threshold ratio is 132.

Kelsey, Charles T. IV [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

369

ION BEAM FOCUSING MEANS FOR CALUTRON  

DOE Patents (OSTI)

An ion beam focusing arrangement for calutrons is described. It provides a virtual focus of origin for the ion beam so that the ions may be withdrawn from an arc plasma of considerable width providing greater beam current and accuracy. (T.R.H.)

Backus, J.G.

1959-06-01T23:59:59.000Z

370

Ion-beam Plasma Neutralization Interaction Images  

SciTech Connect

Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

2002-04-09T23:59:59.000Z

371

Light modulated electron beam driven radiofrequency emitter  

DOE Patents (OSTI)

The disclosure relates to a light modulated electron beam-driven radiofrequency emitter. Pulses of light impinge on a photoemissive device which generates an electron beam having the pulse characteristics of the light. The electron beam is accelerated through a radiofrequency resonator which produces radiofrequency emission in accordance with the electron, hence, the light pulses.

Wilson, M.T.; Tallerico, P.J.

1979-10-10T23:59:59.000Z

372

Approach for Calculating OE Benefits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Reliability Reliability U.S. Department of Energy - 1000 Independence Ave., SW Washington, DC 20585 2007 Electricity Delivery and Energy Reliability Joe Paladino October 29, 2007 Approach for Calculating OE Benefits Challenges * Established benefits methodologies (e.g., NEMS and MARKAL) do not address some of the major benefits that OE's program will provide (e.g. reliability). * Much of OE's program is about transforming the way the T&D infrastructure operates rather than replacing components: - Some technologies need a high penetration or must be deployed as an entire system to yield benefits (e.g. PMUs or Distribution Automation). - Some programs within OE are not developing "widgets" that can be easily counted. - OE is developing tools/methodologies or funding demonstrations that

373

Shielding calculations at dismantled synchrocyclotron  

SciTech Connect

The Space Radiation Effects Laboratory located in Newport News, Virginia, was operated by the College of William and Mary for the National Aeronautics and Space Administration. A synchrocyclotron which was formerly in operation in this building was removed in 1980. At several locations, the scattered radiation caused an induced radioactivity within the walls of the cyclotron room. A radiological survey has been performed to determine the amount of residual radioactivity on the walls. Calculations were performed to determine the thickness of the concrete walls and floor for shielding the residual radiation in the cyclotron room. Recommendations are made to minimize exposures from the residual radioactivity on the walls and floor of the cyclotron room to potential occupants working in the building. 19 refs., 1 fig., 2 tabs.

Yalcintas, M.G.

1987-01-01T23:59:59.000Z

374

Power Line Calculator for DOS  

Science Conference Proceedings (OSTI)

The Power Line Calculator (PLC) for DOS, version 1.0, is a program that describes the electrical characteristics of a transmission or distribution system given user-defined input. This input may consist of a combination of operating currents and phases, symmetric components, power factor, and real or reactive power. The program also allows the user to designate whether currents are present on the system neutral or in the ground. The PLC assumes that any value entered by the user remains fixed (e.g., phase current, power factor), and for underdetermined systems, basic default assumptions are incorporated: the power factor is held at or near 1.0, the net phase current is kept at or near zero, and the phase conductor currents are kept balanced. The program operates under PC/MS-DOS version 3.3 or later, and the output is available in both tabular and graphic formats.

Silva, J.M. (Enertech Consultants, Campbell, CA (United States))

1992-11-01T23:59:59.000Z

375

FLAG-SGH Sedov calculations  

SciTech Connect

We did not run with a 'cylindrically painted region'. However, we did compute two general variants of the original problem. Refinement studies where a single zone at each level of refinement contains the entire internal energy at t=0 or A 'finite' energy source which has the same physical dimensions as that for the 91 x 46 mesh, but consisting of increasing numbers of zones with refinement. Nominal mesh resolution: 91 x 46. Other mesh resolutions: 181 x 92 and 361 x 184. Note, not identical to the original specification. To maintain symmetry for the 'fixed' energy source, the mesh resolution was adjusted slightly. FLAG Lagrange or full (Eulerian) ALE was used with various options for each simulation. Observation - for either Lagrange or ALE, point or 'fixed' source, calculations converge on density and pressure with mesh resolution, but not energy, (not vorticity either).

Fung, Jimmy [Los Alamos National Laboratory; Schofield, Sam [LLNL; Shashkov, Mikhail J. [Los Alamos National Laboratory

2012-06-25T23:59:59.000Z

376

Interruption Cost Estimate Calculator | Open Energy Information  

Open Energy Info (EERE)

Interruption Cost Estimate Calculator Interruption Cost Estimate Calculator Jump to: navigation, search Tool Summary Name: Interruption Cost Estimate (ICE) Calculator Agency/Company /Organization: Freeman, Sullivan & Co. Sector: Energy Focus Area: Grid Assessment and Integration, Energy Efficiency Resource Type: Online calculator, Software/modeling tools User Interface: Website Website: icecalculator.com/ Country: United States Cost: Free Northern America References: [1] Logo: Interruption Cost Estimate (ICE) Calculator This calculator is a tool designed for electric reliability planners at utilities, government organizations or other entities that are interested in estimating interruption costs and/or the benefits associated with reliability improvements. About The Interruption Cost Estimate (ICE) Calculator is an electric reliability

377

Alternative Fuels Data Center: Vehicle Cost Calculator  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Cost Vehicle Cost Calculator to someone by E-mail Share Alternative Fuels Data Center: Vehicle Cost Calculator on Facebook Tweet about Alternative Fuels Data Center: Vehicle Cost Calculator on Twitter Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Google Bookmark Alternative Fuels Data Center: Vehicle Cost Calculator on Delicious Rank Alternative Fuels Data Center: Vehicle Cost Calculator on Digg Find More places to share Alternative Fuels Data Center: Vehicle Cost Calculator on AddThis.com... Vehicle Cost Calculator Vehicle Cost Calculator This tool uses basic information about your driving habits to calculate total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Also

378

Energy Input Output Calculator | Open Energy Information  

Open Energy Info (EERE)

Input Output Calculator Input Output Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Input-Output Calculator Agency/Company /Organization: Department of Energy Sector: Energy Focus Area: Energy Efficiency Resource Type: Online calculator User Interface: Website Website: www2.eere.energy.gov/analysis/iocalc/Default.aspx Web Application Link: www2.eere.energy.gov/analysis/iocalc/Default.aspx OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: EERE Energy Input-Output Calculator[1] The Energy Input-Output Calculator (IO Calculator) allows users to estimate the economic development impacts from investments in alternate electricity generating technologies. About the Calculator The Energy Input-Output Calculator (IO Calculator) allows users to estimate

379

HRA Calculator Version 4.2  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes a 8220toolboxapproach that uses a variety of HRA methods. The PRA Tools / HRA Calculator User Group was formed in 2000 to address the industryneed for HRA tools and to encourage consistency in HRA results. Version 4.2 adds value by expanding the HRA Calculator methods applied, overcoming past limitations on particular parameters, improving the dependency analysis features, ...

2010-11-19T23:59:59.000Z

380

HRA Calculator, Version 4.21 DEMO  

Science Conference Proceedings (OSTI)

HRA Calculator analyzes and calculates human error probabilities in support of probabilistic risk assessments. HRA Calculator takes a “toolbox” approach that uses a variety of HRA methods. The PRA Tools / HRA Calculator User Group was formed in 2000 to address the industry’s need for HRA tools and to encourage consistency in HRA results. Version 4.21 adds value by expanding the HRA Calculator methods applied, overcoming past limitations on particular parameters, improving the ...

2013-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Cerenkov and cyclotron Cerenkov instabilities in a dielectric loaded parallel plate waveguide sheet electron beam system  

SciTech Connect

A dielectric loaded parallel plate waveguide sheet electron beam system can be taken as a reliable model for the practical dielectric loaded rectangular waveguide sheet beam system that has a transverse cross section with a large width to height ratio. By using kinetic theory, the dispersion equations for Cerenkov and cyclotron Cerenkov instabilities in the parallel plate waveguide sheet beam system have been obtained rigorously. The dependences of the growth rate of both instabilities on the electric and structural parameters have also been investigated in detail through numerical calculations. It is worthwhile to point out that adopting an electron beam with transverse velocity can evidently improve the growth rate of Cerenkov instability, which seems like the case of cyclotron Cerenkov instability.

Zhao Ding; Ding Yaogen [Key Laboratory of High Power Microwave Sources and Technologies, Institute of Electronics, Chinese Academy of Sciences, Beijing 100190 (China)

2011-09-15T23:59:59.000Z

382

Beam based calibration of X-ray pinhole camera in SSRF  

E-Print Network (OSTI)

The Shanghai Synchrotron Radiation Facility (SSRF) contains a 3.5-GeV storage ring serving as a national X-ray synchrotron radiation user facility characterized by a low emittance and a low coupling. The stability and quality of the electron beams are monitored continuously by an array of diagnostics. In particular, an X-ray pinhole camera is employed in the diagnostics beamline of the ring to characterize the position, size, and emittance of the beam. The performance of the measurement of the transverse electron beam size is given by the width of the point spread function (PSF) of the X-ray pinhole camera. Typically the point spread function of the X-ray pinhole camera is calculated via analytical or numerical method. In this paper we will introduce a new beam based calibration method to derive the width of the PSF online.

Leng, Yong-Bin; Zhang, Man-Zhou; Chen, Zhi-Chu; Chen, Jie; Ye, Kai-Rong

2011-01-01T23:59:59.000Z

383

Beam based calibration of X-ray pinhole camera in SSRF  

E-Print Network (OSTI)

The Shanghai Synchrotron Radiation Facility (SSRF) contains a 3.5-GeV storage ring serving as a national X-ray synchrotron radiation user facility characterized by a low emittance and a low coupling. The stability and quality of the electron beams are monitored continuously by an array of diagnostics. In particular, an X-ray pinhole camera is employed in the diagnostics beamline of the ring to characterize the position, size, and emittance of the beam. The performance of the measurement of the transverse electron beam size is given by the width of the point spread function (PSF) of the X-ray pinhole camera. Typically the point spread function of the X-ray pinhole camera is calculated via analytical or numerical method. In this paper we will introduce a new beam based calibration method to derive the width of the PSF online.

Yong-Bin Leng; Guo-Qing Huang; Man-Zhou Zhang; Zhi-Chu Chen; Jie Chen; Kai-Rong Ye

2011-03-25T23:59:59.000Z

384

Validation of a virtual source model for Monte Carlo dose calculations of a flattening filter free linac  

SciTech Connect

Purpose: A linac delivering intensity-modulated radiotherapy (IMRT) can benefit from a flattening filter free (FFF) design which offers higher dose rates and reduced accelerator head scatter than for conventional (flattened) delivery. This reduction in scatter simplifies beam modeling, and combining a Monte Carlo dose engine with a FFF accelerator could potentially increase dose calculation accuracy. The objective of this work was to model a FFF machine using an adapted version of a previously published virtual source model (VSM) for Monte Carlo calculations and to verify its accuracy. Methods: An Elekta Synergy linear accelerator operating at 6 MV has been modified to enable irradiation both with and without the flattening filter (FF). The VSM has been incorporated into a commercially available treatment planning system (Monaco Trade-Mark-Sign v 3.1) as VSM 1.6. Dosimetric data were measured to commission the treatment planning system (TPS) and the VSM adapted to account for the lack of angular differential absorption and general beam hardening. The model was then tested using standard water phantom measurements and also by creating IMRT plans for a range of clinical cases. Results: The results show that the VSM implementation handles the FFF beams very well, with an uncertainty between measurement and calculation of <1% which is comparable to conventional flattened beams. All IMRT beams passed standard quality assurance tests with >95% of all points passing gamma analysis ({gamma} < 1) using a 3%/3 mm tolerance. Conclusions: The virtual source model for flattened beams was successfully adapted to a flattening filter free beam production. Water phantom and patient specific QA measurements show excellent results, and comparisons of IMRT plans generated in conventional and FFF mode are underway to assess dosimetric uncertainties and possible improvements in dose calculation and delivery.

Cashmore, Jason; Golubev, Sergey; Dumont, Jose Luis; Sikora, Marcin; Alber, Markus; Ramtohul, Mark [Hall-Edwards Radiotherapy Research Group, University Hospital Birmingham NHS Foundation Trust, United Kingdom, B15 2TH (United Kingdom); Elekta CMS Software, St. Louis, Missouri 63043 (United States); Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen 5021 (Norway); Section for Biomedical Physics, University Hospital for Radiation Oncology, Hoppe-Seyler-Str 3, 72076, Tuebingen (Germany); Hall-Edwards Radiotherapy Research Group, University Hospital Birmingham NHS Foundation Trust, United Kingdom, B15 2TH (United Kingdom)

2012-06-15T23:59:59.000Z

385

Thermal fatigue due to beam interruptions in a Lead-Bismuth cooled ATW blanket  

Science Conference Proceedings (OSTI)

Thermal fatigue consequences of frequent accelerator beam interruptions are quantified for both sodium and lead-bismuth cooled blankets in current designs for accelerator transmutation of waste devices. Temperature response was calculated using the SASSYS-1 systems analysis code for an immediate drop in beam current from full power to zero. Coolant temperatures from SASSYS-1 were fed into a multi-node structure temperature calculation to obtain thermal strains for various structural components. Fatigue curves from the American Society of Mechanical Engineers Boiler and Pressure Vessel Code were used to determine the number of cycles that these components could endure, based on these thermal strains. Beam interruption frequency data from a current accelerator were used to estimate design lifetimes for components. Mitigation options for reducing thermal fatigue are discussed.

Dunn, F.

2000-11-15T23:59:59.000Z

386

LS-16 S. Kim  

NLE Websites -- All DOE Office Websites (Extended Search)

S. Kim March 20, 1985 Parameters and Spectral Brilliance of the Aladdin Undulators This note shows tunable ranges of photon energies and the brilliances for different undulator periods and electron beam parameters. 1. Undulator Parameter Undulator parameters of Table 1 are generated with a minimum gap of 3.5 em and with a peak field B on the axis of the undulator where B 1.30 x 0.95 exp(- ng/A u )' undulator gap, undulator period. (1) Here a filling factor for the assembly of the undulator is assumed to be 95%. 2. Electron Beam Parameter The horizontal and vertical beam emittances are determined by a coupling constant K2 and natural emittance ÂŁxo: ~ / (1 + K2), c.. xo Parameters of beam size and beam divergence are related as = (6 ÂŁ )1/2 x,y ,

387

Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma  

SciTech Connect

Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma.

Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

2004-04-15T23:59:59.000Z

388

Accelerating polarized beams in Tevatron  

SciTech Connect

In this paper, we will examine the totality of equipment, manpower and cost necessary to obtain a polarized proton beam in the Tevatron. We will not, however, be concerned with the acquisition and acceleration of polarized /bar p/ beams. Furthermore we will consider only a planar main ring without overpass, although it is expected that Siberian snake schemes could be made to apply equally well to non-planar machines. In addition to not wanting to tackle here the task of reformulating the theory for a non-planar closed orbit, we also anticipate that as part of the Tevatron upgrade the main ring will in the not too distant future, be replaced by a planar main injector situated in a separate tunnel. 4 refs., 11 figs., 1 tab.

Teng, L.C.

1989-02-01T23:59:59.000Z

389

Beam Time Allocation Committee (BAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Time Allocation Committee (BAC) Time Allocation Committee (BAC) Charter Purpose: Allocates general user beam time by instrument to promote diverse and high- impact science and a broad-based user community to meet DOE and NSSD goals. Participants: BAC Chair (appointed by NSSD Director), Instrument Group Leaders, User Office Schedule: Tied to proposal calls - expected to meet at least 2 times/year with meetings scheduled about 6 weeks after the proposal call has closed and at least 1 month prior to scheduled operations. Process: 1. Instrument Group Leaders (with group members): a. Confirm feasibility (equipment requirements and instrument capabilities) and safe operations b. Review amount of beam time requested and adjust as needed with consideration for instrument and sample environment availability.

390

Center for Beam Physics, 1993  

Science Conference Proceedings (OSTI)

The Center for Beam Physics is a multi-disciplinary research and development unit in the Accelerator and Fusion Research Division at Lawrence Berkeley Laboratory. At the heart of the Center`s mission is the fundamental quest for mechanisms of acceleration, radiation and focusing of energy. Dedicated to exploring the frontiers of the physics of (and with) particle and photon beams, its primary mission is to promote the science and technology of the production, manipulation, storage and control systems of charged particles and photons. The Center serves this mission via conceptual studies, theoretical and experimental research, design and development, institutional project involvement, external collaborations, association with industry and technology transfer. This roster provides a glimpse at the scientists, engineers, technical support, students, and administrative staff that make up this team and a flavor of their multifaceted activities during 1993.

Not Available

1994-05-01T23:59:59.000Z

391

Carbon Fiber Damage in Accelerator Beam  

E-Print Network (OSTI)

Carbon fibers are commonly used as moving targets in Beam Wire Scanners. Because of their thermomechanical properties they are very resistant to particle beams. Their strength deteriorates with time due to radiation damage and low-cycle thermal fatigue. In case of high intensity beams this process can accelerate and in extreme cases the fiber is damaged during a single scan. In this work a model describing the fiber temperature, thermionic emission and sublimation is discussed. Results are compared with fiber damage test performed on SPS beam in November 2008. In conclusions the limits of Wire Scanner operation on high intensity beams are drawn.

Sapinski, M; Guerrero, A; Koopman, J; Métral, E

2009-01-01T23:59:59.000Z

392

BEAM STUDIES AT THE SNS LINAC  

Science Conference Proceedings (OSTI)

The most recent beam dynamics studies at the Spallation Neutron Source (SNS) linac, including major beam loss reduction efforts in the normal conducting linac and in the superconducting linac (SCL), and the simulation and measurement of longitudinal beam halo and longitudinal acceptance at the entrance of the SCL are discussed. Oscillation of the beam centroid around the linac synchronous phase and the phase adiabatic damping curves in the SNS linac are investigated with linac longitudinal models and measured with all the linac beam phase monitors.

Zhang, Yan [ORNL

2009-01-01T23:59:59.000Z

393

Scattering apodizer for laser beams  

SciTech Connect

A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

Summers, Mark A. (Livermore, CA); Hagen, Wilhelm F. (Livermore, CA); Boyd, Robert D. (Livermore, CA)

1985-01-01T23:59:59.000Z

394

Scattering apodizer for laser beams  

DOE Patents (OSTI)

A method is disclosed for apodizing a laser beam to smooth out the production of diffraction peaks due to optical discontinuities in the path of the laser beam, such method comprising introduction of a pattern of scattering elements for reducing the peak intensity in the region of such optical discontinuities, such pattern having smoothly tapering boundaries in which the distribution density of the scattering elements is tapered gradually to produce small gradients in the distribution density, such pattern of scattering elements being effective to reduce and smooth out the diffraction effects which would otherwise be produced. The apodizer pattern may be produced by selectively blasting a surface of a transparent member with fine abrasive particles to produce a multitude of minute pits. In one embodiment, a scattering apodizer pattern is employed to overcome diffraction patterns in a multiple element crystal array for harmonic conversion of a laser beam. The interstices and the supporting grid between the crystal elements are obscured by the gradually tapered apodizer pattern of scattering elements.

Summers, M.A.; Hagen, W.F.; Boyd, R.D.

1984-01-01T23:59:59.000Z

395

Beamed Energy Propulsion by Means of Target Ablation  

Science Conference Proceedings (OSTI)

This paper describes hundreds of pendulum tests examining the beamed energy conversion efficiency of different metal targets coated with multiple liquid enhancers. Preliminary testing used a local laser with photographic paper targets, with no liquid, water, canola oil, or methanol additives. Laboratory experimentation was completed at Wright-Patterson AFB using a high-powered laser, and ballistic pendulums of aluminum, titanium, or copper. Dry targets, and those coated with water, methanol and oil were repeatedly tested in laboratory conditions. Results were recorded on several high-speed digital video cameras, and the conversion efficiency was calculated. Paper airplanes successfully launched using BEP were likewise recorded.

Rosenberg, Benjamin A. [Hilton Head High School, Hilton Head Island, SC 29926 (United States)

2004-03-30T23:59:59.000Z

396

An Alternative Form of Laser Beam Characterization  

SciTech Connect

Careful characterization of laser beams used in materials processing such as welding and drilling is necessary to obtain robust, reproducible processes and products. Recently, equipment and techniques have become available which make it possible to rapidly and conveniently characterize the size, shape, mode structure, beam quality (Mz), and intensity of a laser beam (incident power/unit area) as a function of distance along the beam path. This facilitates obtaining a desired focused spot size and also locating its position. However, for a given position along the beam axis, these devices typically measure where the beam intensity level has been reduced to I/ez of maximum intensity at that position to determine the beam size. While giving an intuitive indication of the beam shape since the maximum intensity of the beam varies greatly, the contour so determined is not an iso-contour of any parameter related to the beam intensity or power. In this work we shall discuss an alternative beam shape formulation where the same measured information is plotted as contour intervals of intensity.

KNOROVSKY,GERALD A.; MACCALLUM,DANNY O.

2000-06-30T23:59:59.000Z

397

Generation of low-divergence laser beams  

DOE Patents (OSTI)

Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source. 11 figures.

Kronberg, J.W.

1993-09-14T23:59:59.000Z

398

Generation of low-divergence laser beams  

DOE Patents (OSTI)

This invention is comprised of an apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting, and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

Kronberg, J.W.

1992-12-31T23:59:59.000Z

399

Generation of low-divergence laser beams  

DOE Patents (OSTI)

Apparatus for transforming a conventional beam of coherent light, having a Gaussian energy distribution and relatively high divergence, into a beam in which the energy distribution approximates a single, non-zero-order Bessel function and which therefore has much lower divergence. The apparatus comprises a zone plate having transmitting and reflecting zones defined by the pattern of light interference produced by the combination of a beam of coherent light with a Gaussian energy distribution and one having such a Bessel distribution. The interference pattern between the two beams is a concentric array of multiple annuli, and is preferably recorded as a hologram. The hologram is then used to form the transmitting and reflecting zones by photo-etching portions of a reflecting layer deposited on a plate made of a transmitting material. A Bessel beam, containing approximately 50% of the energy of the incident beam, is produced by passing a Gaussian beam through such a Bessel zone plate. The reflected beam, also containing approximately 50% of the incident beam energy and having a Bessel energy distribution, can be redirected in the same direction and parallel to the transmitted beam. Alternatively, a filter similar to the Bessel zone plate can be placed within the resonator cavity of a conventional laser system having a front mirror and a rear mirror, preferably axially aligned with the mirrors and just inside the front mirror to generate Bessel energy distribution light beams at the laser source.

Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

1993-01-01T23:59:59.000Z

400

The HERMES Polarized Atomic Beam Source  

Science Conference Proceedings (OSTI)

The atomic beam source (ABS) provides nuclear polarized hydrogen or deuterium atoms for the HERMES target at flow rates of about 6.5 ? 1016H?/s (hydrogen in two hyperfine substates) and 6.0 ? 1016D?/s (deuterium in three hyperfine substates). The degree of dissociation of 93% for H (95% for D) at the entrance of the storage cell and the nuclear polarization of around 0.97 (H) and 0.92 (D) have been found to be constant within a a couple of percent over the whole running period of the HERMES experiment. A new dissociator (MWD) based on a microwave discharge at 2.45 GHz has been developed and installed into the HERMES?ABS in 2000. Since the velocity distribution of the MWD differs from that of the RFD the intensity could be increased further with a modified sextupole magnet system. For this purpose the way for a new start generator for sextupole tracking calculations was opened. Monte?Carlo simulations were successfully used to describe the gas expansion between nozzle

A. Nass; HERMES target group

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Integral window/photon beam position monitor and beam flux detectors for x-ray beams  

DOE Patents (OSTI)

A monitor/detector assembly in a synchrotron for either monitoring the position of a photon beam or detecting beam flux may additionally function as a vacuum barrier between the front end and downstream segment of the beamline in the synchrotron. A base flange of the monitor/detector assembly is formed of oxygen free copper with a central opening covered by a window foil that is fused thereon. The window foil is made of man-made materials, such as chemical vapor deposition diamond or cubic boron nitrate and in certain configurations includes a central opening through which the beams are transmitted. Sensors of low atomic number materials, such as aluminum or beryllium, are laid on the window foil. The configuration of the sensors on the window foil may be varied depending on the function to be performed. A contact plate of insulating material, such as aluminum oxide, is secured to the base flange and is thereby clamped against the sensor on the window foil. The sensor is coupled to external electronic signal processing devices via a gold or silver lead printed onto the contact plate and a copper post screw or alternatively via a copper screw and a copper spring that can be inserted through the contact plate and coupled to the sensors. In an alternate embodiment of the monitor/detector assembly, the sensors are sandwiched between the window foil of chemical vapor deposition diamond or cubic boron nitrate and a front foil made of similar material.

Shu, Deming (Darien, IL); Kuzay, Tuncer M. (Naperville, IL)

1995-01-01T23:59:59.000Z

402

Building Energy Software Tools Directory: Duct Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Duct Calculator Duct Calculator Duct Calculator logo. Provides access to duct calculation and sizing capabilities either as a standalone Windows program or from within the Autodesk Building Mechanical, the new HVAC-oriented version of AutoCAD. Based on the engineering data and procedures outlined in the ASHRAE Fundamentals Handbook Calculation Methods, Duct Calculator features an advanced and fully interactive user interface. Slide controls for air flow, velocity, friction and duct size provide real-time, interactive feedback; as you spin one, the others dynamically respond in real time. When used with Autodesk Building Mechanical, Duct Calculator streamlines the design process by automatically re-sizing whole branches of ductwork. Screen Shots Keywords duct-sizing, design, engineering, calculation

403

Vehicle Cost Calculator | Open Energy Information  

Open Energy Info (EERE)

Vehicle Cost Calculator Vehicle Cost Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Vehicle Cost Calculator Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Transportation Phase: Evaluate Options Resource Type: Online calculator User Interface: Website Website: www.afdc.energy.gov/calc/ Web Application Link: www.afdc.energy.gov/calc/ OpenEI Keyword(s): Energy Efficiency and Renewable Energy (EERE) Tools Language: English References: Vehicle Cost Calculator[1] Logo: Vehicle Cost Calculator Calculate the total cost of ownership and emissions for makes and models of most vehicles, including alternative fuel and advanced technology vehicles. Overview This tool uses basic information about your driving habits to calculate

404

Systematic Tendency Error in Budget Calculations  

Science Conference Proceedings (OSTI)

Atmospheric budget calculations suffer from various observational and numerical errors. This paper demonstrates that all budget calculations applied to a large number of samples suffer from additional errors originating from systematic tendency ...

Masao Kanamitsu; Suranjana Saha

1996-06-01T23:59:59.000Z

405

SPC/E Water Reference Calculations  

Science Conference Proceedings (OSTI)

SPC/E Water Reference Calculations - Ewald Summation. In ... 5. Sample Configurations of SPC/E Water Molecules. Four ...

2013-09-16T23:59:59.000Z

406

Gamma-beam propagation in the anisotropic medium  

E-Print Network (OSTI)

Propagation of gamma-beam in the anisotropic medium is considered. The simpliest example of such a medium of the general type is a combination of the two linearly polarized monochromatic laser waves with different frequencies (dichromatic wave). The optical properties of this combination are described with the use of the permittivity tensor. The refractive indices and polarization characteristics of normal electromagnetic waves propagating in the anisotropic medium are found. The relations, describing variations of gamma-beam intensity and Stokes parameters as functions of propagation length are obtained. The influence of laser wave intensity on the propagation process are calculated. The gamma-beam intensity losses in the dichromatic wave depend on the initial circular polarization of gamma-quanta. This effect is also applied to the single crystals, which are oriented in some regions of coherent pair production. In principle, the single crystal sensitivity to a circular polarization can be used for determination of polarization of high energy (in tens GeV and more) gamma-quanta and electrons.

V. A. Maisheev

1997-10-01T23:59:59.000Z

407

Status Report of NNLO QCD Calculations  

Science Conference Proceedings (OSTI)

We review recent progress in next-to-next-to-leading order (NNLO) perturbative QCD calculations with special emphasis on results ready for phenomenological applications. Important examples are new results on structure functions and jet or Higgs boson production. In addition, we describe new calculational techniques based on twistors and their potential for efficient calculations of multiparticle amplitudes.

Klasen, Michael [Institute for Nuclear Theory, University of Washington, Box 351550, Seattle, WA 98195-1550 (United States)

2005-10-06T23:59:59.000Z

408

Low Emittance Electron Beam Studies  

Science Conference Proceedings (OSTI)

We have studied the properties of a low emittance electron beam produced by laser pulses incident onto an rf gun photocathode. The experiments were carried out at the A0 photoinjector at Fermilab. Such beam studies are necessary for fixing the design of new Linear Colliders as well as for the development of Free Electron Lasers. An overview of the A0 photoinjector is given in Chapter 1. In Chapter 2 we describe the A0 photoinjector laser system. A stable laser system is imperative for reliable photoinjector operation. After the recent upgrade, we have been able to reach a new level of stability in the pulse-to-pulse fluctuations of the pulse amplitude, and of the temporal and transverse profiles. In Chapter 3 we present a study of transverse emittance versus the shape of the photo-cathode drive-laser pulse. For that purpose a special temporal profile laser shaping device called a pulse-stacker was developed. In Chapter 4 we discuss longitudinal beam dynamics studies using a two macro-particle bunch; this technique is helpful in analyzing pulse compression in the magnetic chicane, as well as velocity bunching effects in the rf-gun and the 9-cell accelerating cavity. In Chapter 5 we introduce a proposal for laser acceleration of electrons. We have developed a laser functioning on the TEM*{sub 01} mode, a mode with a longitudinal electric field component which is suitable for such a process. Using this technique at energies above 40 MeV, one would be able to observe laser-based acceleration.

Tikhoplav, Rodion; /Rochester U.

2006-04-01T23:59:59.000Z

409

Proton beam therapy control system  

DOE Patents (OSTI)

A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

Baumann, Michael A. (Riverside, CA); Beloussov, Alexandre V. (Bernardino, CA); Bakir, Julide (Alta Loma, CA); Armon, Deganit (Redlands, CA); Olsen, Howard B. (Colton, CA); Salem, Dana (Riverside, CA)

2008-07-08T23:59:59.000Z

410

Protective laser beam viewing device  

SciTech Connect

A protective laser beam viewing system or device including a camera selectively sensitive to laser light wavelengths and a viewing screen receiving images from the laser sensitive camera. According to a preferred embodiment of the invention, the camera is worn on the head of the user or incorporated into a goggle-type viewing display so that it is always aimed at the area of viewing interest to the user and the viewing screen is incorporated into a video display worn as goggles over the eyes of the user.

Neil, George R.; Jordan, Kevin Carl

2012-12-18T23:59:59.000Z

411

Proton beam therapy control system  

DOE Patents (OSTI)

A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

Baumann, Michael A. (Riverside, CA); Beloussov, Alexandre V. (San Bernardino, CA); Bakir, Julide (Alta Loma, CA); Armon, Deganit (Longmeadow, MA); Olsen, Howard B. (Irvine, CA); Salem, Dana (Riverside, CA)

2010-09-21T23:59:59.000Z

412

Proton beam therapy control system  

SciTech Connect

A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

2013-06-25T23:59:59.000Z

413

Proton beam therapy control system  

SciTech Connect

A tiered communications architecture for managing network traffic in a distributed system. Communication between client or control computers and a plurality of hardware devices is administered by agent and monitor devices whose activities are coordinated to reduce the number of open channels or sockets. The communications architecture also improves the transparency and scalability of the distributed system by reducing network mapping dependence. The architecture is desirably implemented in a proton beam therapy system to provide flexible security policies which improve patent safety and facilitate system maintenance and development.

Baumann, Michael A; Beloussov, Alexandre V; Bakir, Julide; Armon, Deganit; Olsen, Howard B; Salem, Dana

2013-12-03T23:59:59.000Z

414

Commissioning and dosimetric characteristics of TrueBeam system: Composite data of three TrueBeam machines  

Science Conference Proceedings (OSTI)

Purpose: A TrueBeam linear accelerator (TB-LINAC) is designed to deliver traditionally flattened and flattening-filter-free (FFF) beams. Although it has been widely adopted in many clinics for patient treatment, limited information is available related to commissioning of this type of machine. In this work, commissioning data of three units were measured, and multiunit comparison was presented to provide valuable insights and reliable evaluations on the characteristics of the new treatment system. Methods: The TB-LINAC is equipped with newly designed waveguide, carousel assembly, monitoring control, and integrated imaging systems. Each machine in this study has 4, 6, 8, 10, 15 MV flattened photon beams, and 6 MV and 10 MV FFF photon beams as well as 6, 9, 12, 16, 20, and 22 MeV electron beams. Dosimetric characteristics of the three new TB-LINAC treatment units are systematically measured for commissioning. High-resolution diode detectors and ion chambers were used to measure dosimetric data for a range of field sizes from 10 Multiplication-Sign 10 to 400 Multiplication-Sign 400 mm{sup 2}. The composite dosimetric data of the three units are presented in this work. The commissioning of intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT), image-guided radiation therapy, and gating systems are also illustrated. Critical considerations of P{sub ion} of FFF photon beams and small field dosimetric measurements were investigated. Results: The authors found all PDDs and profiles matched well among the three machines. Beam data were quantitatively compared and combined through average to yield composite beam data. The discrepancies among the machines were quantified using standard deviation (SD). The mean SD of the PDDs among the three units is 0.12%, and the mean SD of the profiles is 0.40% for 10 MV FFF open fields. The variations of P{sub ion} of the chamber CC13 is 1.2 {+-} 0.1% under 6 MV FFF and 2.0 {+-} 0.5% under 10 MV FFF from dmax to the 18 cm-off-axis point at 35 cm depth under 40 Multiplication-Sign 40 cm{sup 2}. The mean penumbra of crossplane flattened photon beams at collimator angle of 0 Degree-Sign is measured from 5.88 {+-} 0.09 to 5.99 {+-} 0.13 mm from 4 to 15 MV at 10 cm depth of 100 Multiplication-Sign 100 mm{sup 2}. The mean penumbra of crossplane beams at collimator angle of 0 Degree-Sign is measured as 3.70 {+-} 0.21 and 4.83 {+-} 0.04 mm for 6 MV FFF and 10 MV FFF, respectively, at 10 cm depth with a field size of 5 Multiplication-Sign 5 cm{sup 2}. The end-to-end test procedures of both IMRT and VMAT were performed for various energy modes. The mean ion chamber measurements of three units showed less than 2% between measurement and calculation; the mean MultiCube ICA measurements demonstrated over 90% pixels passing gamma analysis (3%, 3 mm, 5% threshold). The imaging dosimetric data of KV planar imaging and CBCT demonstrated improved consistency with vendor specifications and dose reduction for certain imaging protocols. The gated output verification showed a discrepancy of 0.05% or less between gating radiation delivery and nongating radiation delivery. Conclusions: The commissioning data indicated good consistency among the three TB-LINAC units. The commissioning data provided us valuable insights and reliable evaluations on the characteristics of the new treatment system. The systematically measured data might be useful for future reference.

Chang Zheng; Wu Qiuwen; Adamson, Justus; Ren Lei; Bowsher, James; Yan Hui; Thomas, Andrew; Yin Fangfang [Department of Radiation Oncology, Duke University, Durham, North Carolina 27710 (United States)

2012-11-15T23:59:59.000Z

415

Yuan T. Lee's Crossed Molecular Beam Experiment  

NLE Websites -- All DOE Office Websites (Extended Search)

Yuan T. Lee's Crossed Molecular Beam Experiment Yuan T. Lee's Crossed Molecular Beam Experiment Home | Staff | Search | Advisory Committee | User Facilities | Laboratories | Congress | Budget Yuan T. Lee's Crossed Molecular Beam Experiment http://web.archive.org/web/20000902074635/www.er.doe.gov/production/bes/YuanLee_Exp.html (1 of 4)4/7/2006 2:46:13 PM Yuan T. Lee's Crossed Molecular Beam Experiment The above illustration was drawn by Professor Yuan T. Lee, who shared the 1986 Nobel Prize in Chemistry. It shows the design for his crossed molecular beam experiment described in the story beginning on page 27 of "Basic Energy Sciences: Summary of Accomplishments" (DOE/ER-0455P, May 1990); the story is also copied below. The purpose of this experiment was to study the chemical reaction of sodium atoms with oxygen molecules. In the experiment, a beam of sodium atoms (green,

416

Rippled beam free electron laser amplifier  

DOE Patents (OSTI)

A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

Carlsten, Bruce E. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

417

Rippled beam free electron Laser Amplifier  

DOE Patents (OSTI)

A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a T{sub 0n} mode. A waveguide defines an axial centerline and . A solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

Carlsten, Bruce E.

1998-04-21T23:59:59.000Z

418

Radiation beam calorimetric power measurement system  

DOE Patents (OSTI)

A radiation beam calorimetric power measurement system for measuring the average power of a beam such as a laser beam, including a calorimeter configured to operate over a wide range of coolant flow rates and being cooled by continuously flowing coolant for absorbing light from a laser beam to convert the laser beam energy into heat. The system further includes a flow meter for measuring the coolant flow in the calorimeter and a pair of thermistors for measuring the temperature difference between the coolant inputs and outputs to the calorimeter. The system also includes a microprocessor for processing the measured coolant flow rate and the measured temperature difference to determine the average power of the laser beam.

Baker, John (Livermore, CA); Collins, Leland F. (Pleasanton, CA); Kuklo, Thomas C. (Ripon, CA); Micali, James V. (Dublin, CA)

1992-01-01T23:59:59.000Z

419

Definition: Interchange Distribution Calculator | Open Energy Information  

Open Energy Info (EERE)

Distribution Calculator Distribution Calculator Jump to: navigation, search Dictionary.png Interchange Distribution Calculator The mechanism used by Reliability Coordinators in the Eastern Interconnection to calculate the distribution of Interchange Transactions over specific Flowgates. It includes a database of all Interchange Transactions and a matrix of the Distribution Factors for the Eastern Interconnection.[1] Related Terms Reliability Coordinator, Interchange Transaction References ↑ Glossary of Terms Used in Reliability Standards An i LikeLike UnlikeLike You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Interchange_Distribution_Calculator&oldid=480261" Categories: Definitions

420

Distributed Energy Calculator | Open Energy Information  

Open Energy Info (EERE)

Distributed Energy Calculator Distributed Energy Calculator Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Energy Calculator Agency/Company /Organization: Apps for Energy Challenge Participant Sector: Energy Resource Type: Application prototype User Interface: Website Website: distributedenergycalculator.com/ OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy[1] The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. The Distributed Energy Calculator allows you to explore the potential energy savings for your community using Solar, Small Wind or Microturbines. You can upload Green Button Data to compare your utility energy costs to

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Coherence delay augmented laser beam homogenizer  

SciTech Connect

The geometrical restrictions on a laser beam homogenizer are relaxed by ug a coherence delay line to separate a coherent input beam into several components each having a path length difference equal to a multiple of the coherence length with respect to the other components. The components recombine incoherently at the output of the homogenizer, and the resultant beam has a more uniform spatial intensity suitable for microlithography and laser pantogography. Also disclosed is a variable aperture homogenizer, and a liquid filled homogenizer.

Rasmussen, Paul (Livermore, CA); Bernhardt, Anthony (Berkeley, CA)

1993-01-01T23:59:59.000Z

422

Harmonic Analysis Errors in Calculating Dipole,  

NLE Websites -- All DOE Office Websites (Extended Search)

Harmonic Analysis Errors in Calculating Dipole, Harmonic Analysis Errors in Calculating Dipole, Quadrupole, and Sextupole Magnets using POISSON Ro be rt J. La ri<::::R~ i. September 10, 1985 Introduction LS-32 The computer program POISSON was used to calculate the dipole, quadru- pole, and sextupole magnets of the 6 GeV electron storage ring. A trinagular mesh must first be generated by LATTICE. The triangle size is varied over the "universe" at the discretion of the user. This note describes a series of test calculations that were made to help the user decide on the size of the mesh to reduce the harmonic field calculation errors. A conformal transfor- mation of a multipole magnet into a dipole reduces these errors. Dipole Magnet Calculations A triangular mesh used to calculate a "perfect" dipole magnet is shown in

423

Chalmers Climate Calculator | Open Energy Information  

Open Energy Info (EERE)

Chalmers Climate Calculator Chalmers Climate Calculator Jump to: navigation, search Tool Summary Name: Chalmers Climate Calculator Agency/Company /Organization: Chalmers University of Technology Sector: Energy, Land Topics: Baseline projection, Co-benefits assessment, GHG inventory, Pathways analysis Resource Type: Software/modeling tools User Interface: Website Website: dhcp2-pc011134.fy.chalmers.se Cost: Free Chalmers Climate Calculator Screenshot References: Chalmers Climate Calculator[1] Logo: Chalmers Climate Calculator " In the Chalmers Climate Calculator the user can decide on when and how fast emissions of CO2 are reduced and what this emissions scenario implies in terms of CO2 concentration and global average surface temperature change. The climate sensitivity and the net aerosol forcing in year 2005

424

Reaction Dynamics with Exotic Beams  

E-Print Network (OSTI)

We review the new possibilities offered by the reaction dynamics of asymmetric heavy ion collisions, using stable and unstable beams. We show that it represents a rather unique tool to probe regions of highly Asymmetric Nuclear Matter ($ANM$) in compressed as well as dilute phases, and to test the in-medium isovector interaction for high momentum nucleons. The focus is on a detailed study of the symmetry term of the nuclear Equation of State ($EOS$) in regions far away from saturation conditions but always under laboratory controlled conditions. Thermodynamic properties of $ANM$ are surveyed starting from nonrelativistic and relativistic effective interactions. In the relativistic case the role of the isovector scalar $\\delta$-meson is stressed. The qualitative new features of the liquid-gas phase transition, "diffusive" instability and isospin distillation, are discussed. The results of ab-initio simulations of n-rich, n-poor, heavy ion collisions, using stochastic isospin dependent transport equations, are analysed as a function of beam energy and centrality. The isospin dynamics plays an important role in all steps of the reaction, from prompt nucleon emissions to the final fragments. The isospin diffusion is also of large interest, due to the interplay of asymmetry and density gradients. In relativistic collisions, the possibility of a direct study of the covariant structure of the effective nucleon interaction is shown. Results are discussed for particle production, collective flows and iso-transparency. Perspectives of further developments of the field, in theory as well as in experiment, are presented.

V. Baran; M. Colonna; V. Greco; M. Di Toro

2004-12-15T23:59:59.000Z

425

Novel Sources for Focused-ion Beams  

Science Conference Proceedings (OSTI)

... production techniques. This new technique uses a variety of atomic sources to produce highly focused ion beams, with tightly controlled energy. ...

2012-08-14T23:59:59.000Z

426

Beam buckling on random elastic foundations.  

E-Print Network (OSTI)

??This thesis explores the impact of the seafloor on the buckling load of an undersea pipeline via beam on elastic foundation buckling theory. Undersea pipelines… (more)

Bee, Geoffrey

2013-01-01T23:59:59.000Z

427

High power, high beam quality regenerative amplifier  

DOE Patents (OSTI)

A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

Hackel, Lloyd A. (Livermore, CA); Dane, Clifford B. (Livermore, CA)

1993-01-01T23:59:59.000Z

428

High power, high beam quality regenerative amplifier  

DOE Patents (OSTI)

A regenerative laser amplifier system generates high peak power and high energy per pulse output beams enabling generation of X-rays used in X-ray lithography for manufacturing integrated circuits. The laser amplifier includes a ring shaped optical path with a limited number of components including a polarizer, a passive 90 degree phase rotator, a plurality of mirrors, a relay telescope, and a gain medium, the components being placed close to the image plane of the relay telescope to reduce diffraction or phase perturbations in order to limit high peak intensity spiking. In the ring, the beam makes two passes through the gain medium for each transit of the optical path to increase the amplifier gain to loss ratio. A beam input into the ring makes two passes around the ring, is diverted into an SBS phase conjugator and proceeds out of the SBS phase conjugator back through the ring in an equal but opposite direction for two passes, further reducing phase perturbations. A master oscillator inputs the beam through an isolation cell (Faraday or Pockels) which transmits the beam into the ring without polarization rotation. The isolation cell rotates polarization only in beams proceeding out of the ring to direct the beams out of the amplifier. The diffraction limited quality of the input beam is preserved in the amplifier so that a high power output beam having nearly the same diffraction limited quality is produced.

Hackel, L.A.; Dane, C.B.

1993-08-24T23:59:59.000Z

429

Laser Beam Delivery [Laser Applications Laboratory] - Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Laser Glazing of Railroad Rails High Power Laser Beam Delivery Decontamination and Decommissioning Refractory Alloy Welding Robots Applications Other Facilities Other Capabilities...

430

High Flux Beam Reactor | Environmental Restoration Projects ...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reports HFBR Waste Loading Area, Soil Remediation (PDF) - July 2009 HFBR Decommissioning Project, Removal of the Control Rod Blades and Beam Plugs (PDF) - January 2010...

431

Electron Beam Imaging - Programmaster.org  

Science Conference Proceedings (OSTI)

Sep 14, 2009 ... 13th International Conference on Defects--Recognition, Imaging and Physics in Semiconductors: Electron Beam Imaging Program Organizers: ...

432

Electron Beam Ion Trap (EBIT) Facility  

Science Conference Proceedings (OSTI)

... At these temperatures, even the heaviest atoms shed most of their electrons. ... The ions are probed with an intense electron beam, and the emitted ...

2013-06-06T23:59:59.000Z

433

Produced by Selective Electron Beam Melting  

Science Conference Proceedings (OSTI)

The development of processing TiAl by additive manufacturing by using the selective electron beam melting (SEBM) provides a new approach to reach near

434

Focused Ion beam source method and Apparatus  

DOE Patents (OSTI)

A focused ion beam having a cross section of submicron diameter, a high ion current, and a narrow energy range is generated from a target comprised of particle source material by laser ablation. The method involves directing a laser beam having a cross section of critical diameter onto the target, producing a cloud of laser ablated particles having unique characteristics, and extracting and focusing a charged particle beam from the laser ablated cloud. The method is especially suited for producing focused ion beams for semiconductor device analysis and modification.

Pellin, Michael J.; Lykke, Keith R.; Lill, Thorsten B.

1998-08-17T23:59:59.000Z

435

Plasma formed ion beam projection lithography system  

DOE Patents (OSTI)

A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

Leung, Ka-Ngo (Hercules, CA); Lee, Yung-Hee Yvette (Berkeley, CA); Ngo, Vinh (San Jose, CA); Zahir, Nastaran (Greenbrae, CA)

2002-01-01T23:59:59.000Z

436

Beam Characterization at the Neutron Radiography Facility  

SciTech Connect

The quality of a neutron imaging beam directly impacts the quality of radiographic images produced using that beam. Fully characterizing a neutron beam, including determination of the beam’s effective length-to-diameter ratio, neutron flux profile, energy spectrum, image quality, and beam divergence, is vital for producing quality radiographic images. This project characterized the east neutron imaging beamline at the Idaho National Laboratory Neutron Radiography Reactor (NRAD). The experiments which measured the beam’s effective length-to-diameter ratio and image quality are based on American Society for Testing and Materials (ASTM) standards. An analysis of the image produced by a calibrated phantom measured the beam divergence. The energy spectrum measurements consist of a series of foil irradiations using a selection of activation foils, compared to the results produced by a Monte Carlo n-Particle (MCNP) model of the beamline. Improvement of the existing NRAD MCNP beamline model includes validation of the model’s energy spectrum and the development of enhanced image simulation methods. The image simulation methods predict the radiographic image of an object based on the foil reaction rate data obtained by placing a model of the object in front of the image plane in an MCNP beamline model.

Sarah Morgan; Jeffrey King

2013-01-01T23:59:59.000Z

437

Summary of the LARP Mini-Workshop on Beam-Beam Compensation 2007  

SciTech Connect

The LARP Mini-Workshop on Beam-Beam Compensation 2007 was held at SLAC, 2-4 July 2007. It was attended by 33 participants from 10 institutions in Asia, Europe, and America. 26 presentations were given, while more than one third of the time was allocated to discussions. The workshop web site is Ref. [1]. The workshop's main focus was on long-range and head-on beam-beam compensation, with a view towards application in the LHC. Other topics included the beam-beam performance of previous, existing and future circular colliders; beam-beam simulations; new operating modes, theory, and unexplained phenomena. This summary is also published as Ref. [2].

Fischer, Wolfram; /Brookhaven; Bruning, Oliver S.; Koutchouk, J.P.; Zimmermann, F.; /CERN; Sen, T.; Shiltsev, V.; /Fermilab; Ohmi, K.; /KEK, Tsukuba; Furman, M.; /LBL, Berkeley; Cai, Y.; Chao, A.; /SLAC

2011-11-07T23:59:59.000Z

438

Reversible Electron Beam Heating for Suppression of Microbunching Instabilities at Free-Electron Lasers  

SciTech Connect

The presence of microbunching instabilities due to the compression of high-brightness electron beams at existing and future x-ray free-electron lasers (FELs) results in restrictions on the attainable lasing performance and renders beam imaging with optical transition radiation impossible. The instability can be suppressed by introducing additional energy spread, i.e., heating the electron beam, as demonstrated by the successful operation of the laser heater system at the Linac Coherent Light Source. The increased energy spread is typically tolerable for self-amplified spontaneous emission FELs but limits the effectiveness of advanced FEL schemes such as seeding. In this paper, we present a reversible electron beam heating system based on two transverse deflecting radio-frequency structures (TDSs) upstream and downstream of a magnetic bunch compressor chicane. The additional energy spread is introduced in the first TDS, which suppresses the microbunching instability, and then is eliminated in the second TDS. We show the feasibility of the microbunching gain suppression based on calculations and simulations including the effects of coherent synchrotron radiation. Acceptable electron beam and radio-frequency jitter are identified, and inherent options for diagnostics and on-line monitoring of the electron beam's longitudinal phase space are discussed.

Behrens, Christopher; /DESY; Huang, Zhirong; Xiang, Dao; /SLAC

2012-05-30T23:59:59.000Z

439

Absolute energy calibration for relativistic electron beams with pointing instability from a laser-plasma accelerator  

Science Conference Proceedings (OSTI)

The pointing instability of energetic electron beams generated from a laser-driven accelerator can cause a serious error in measuring the electron spectrum with a magnetic spectrometer. In order to determine a correct electron spectrum, the pointing angle of an electron beam incident on the spectrometer should be exactly defined. Here, we present a method for absolutely calibrating the electron spectrum by monitoring the pointing angle using a scintillating screen installed in front of a permanent dipole magnet. The ambiguous electron energy due to the pointing instability is corrected by the numerical and analytical calculations based on the relativistic equation of electron motion. It is also possible to estimate the energy spread of the electron beam and determine the energy resolution of the spectrometer using the beam divergence angle that is simultaneously measured on the screen. The calibration method with direct measurement of the spatial profile of an incident electron beam has a simple experimental layout and presents the full range of spatial and spectral information of the electron beams with energies of multi-hundred MeV level, despite the limited energy resolution of the simple electron spectrometer.

Cha, H. J.; Choi, I. W.; Kim, H. T.; Kim, I J.; Nam, K. H.; Jeong, T. M.; Lee, J. [Advanced Photonics Research Institute, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

2012-06-15T23:59:59.000Z

440

Effect of beam premodulation on excitation of surface plasma waves in a magnetized plasma  

SciTech Connect

A density modulated electron beam propagating through a vacuum magnetized plasma interface drives electromagnetic surface plasma waves (SPWs) to instability via Cerenkov and fast cyclotron interaction. Numerical calculations of the growth rate and unstable mode frequencies have been carried out for the typical parameters of the SPWs. The growth rate {gamma} of the unstable wave instability increases with the modulation index ({Delta}) and is maximized for {Delta}=1. For {Delta}=0, {gamma} turns out to be {approx}4.32x10{sup 10} rad/s for Cerenkov interaction and {approx}6.81x10{sup 10} rad/s for fast cyclotron interaction. The growth rate of the instability increases with the beam density and scales as one-third power of the beam density in Cerenkov interaction and is proportional to the square root of beam density in fast cyclotron interaction. In addition, the real frequency of the unstable wave increases with the beam-energy and scales as almost one-half power of the beam-energy.

Gupta, Ruby [Department of Physics, Swami Shraddhanand College, University of Delhi, Alipur, Delhi 110036 (India); Sharma, Suresh C. [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-l, Sector-22, Rohini, Delhi 110086 (India); Prakash, Ved [India Meteorological Department, Ministry of Earth Science, Lodi Road, New Delhi 110003 (India)

2010-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The System of Nanosecond 280-KeV He+ Pulsed Beam  

SciTech Connect

At Fast Neutron Research Facility, the 150 kV-pulses neutron generator is being upgraded to a 280-kV-pulsed-He beam for time-of-flight Rutherford backscattering spectrometry. It involves replacing the existing beam line elements by a multicusp ion source, a 400-kV accelerating tube, 45{sup o}-double focusing dipole magnet and quadrupole lens. The multicusp ion source is a compact filament-driven of 2.6 cm in diameter and 8 cm in length. The current extracted is 20.4 {micro}A with 13 kV of extraction voltage and 8.8 kV of Einzel lens voltage. The beam emittance has found to vary between 6-12 mm mrad. The beam transport system has to be redesigned based on the new elements. The important part of a good pulsed beam depends on the pulsing system. The two main parts are the chopper and buncher. An optimized geometry for the 280 keV pulsed helium ion beam will be presented and discussed. The PARMELA code has been used to optimize the space charge effect, resulting in pulse width of less than 2 ns at a target. The calculated distance from a buncher to the target is 4.6 m. Effects of energy spread and phase angle between chopper and buncher have been included in the optimization of the bunch length.

Junphong, P.; Ano, V.; Lekprasert, B.; Suwannakachorn, D.; Thongnopparat, N.; Vilaithong, T.; /Chiang Mai U.; Wiedemann, H.; /SLAC /SLAC, SSRL

2006-05-01T23:59:59.000Z

442

Method and apparatus for laser-controlled proton beam radiology  

DOE Patents (OSTI)

A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H{sup {minus}} beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H{sup {minus}} beam and laser beam to produce a neutral beam therefrom within a subsection of the H{sup {minus}} beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H{sup {minus}} beam in order to form the neutral beam in subsections of the H{sup {minus}} beam. As the scanning laser moves across the H{sup {minus}} beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser. 9 figs.

Johnstone, C.J.

1998-06-02T23:59:59.000Z

443

Method and apparatus for laser-controlled proton beam radiology  

DOE Patents (OSTI)

A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

Johnstone, Carol J. (Warrenville, IL)

1998-01-01T23:59:59.000Z

444

Simulations of coherent beam-beam effects with head-on compensation  

SciTech Connect

Electron lenses are under construction for installation in RHIC in order to mitigate the head-on beam-beam effects. This would allow operation with higher bunch intensity and result in a significant increase in luminosity. We report on recent strong-strong simulations and experiments that were carried out using the RHIC upgrade parameters to assess the impact of coherent beam-beam effects in the presence of head-on compensation.

White S.; Fischer, W.; Luo. Y.

2012-05-20T23:59:59.000Z

445

Radiation environment simulations at the Tevatron, studies of the beam profile and measurement of the Bc meson mass  

Science Conference Proceedings (OSTI)

The description of a computer simulation of the CDF detector at Fermilab and the adjacent accelerator parts is detailed, with MARS calculations of the radiation background in various elements of the model due to the collision of beams and machine-related losses. Three components of beam halo formation are simulated for the determination of the principal source of radiation background in CDF due to beam losses. The effect of a collimator as a protection for the detector is studied. The simulation results are compared with data taken by a CDF group. Studies of a 150 GeV Tevatron proton beam are performed to investigate the transverse diffusion growth and distribution. A technique of collimator scan is used to scrape the beam under various experimental conditions, and computer programs are written for the beam reconstruction. An average beam halo growth speed is given and the potential of beam tail reconstruction using the collimator scan is evaluated. A particle physics analysis is conducted in order to detect the B{sub c} {yields} J/{psi}{pi} decay signal with the CDF Run II detector in 360 pb{sup -1} of data. The cut variables and an optimization method to determine their values are presented along with a criterion for the detection threshold of the signal. The mass of the B{sub c} meson is measured with an evaluation of the significance of the signal.

Nicolas, Ludovic Y.; /Glasgow U.

2005-09-01T23:59:59.000Z

446

The effect of beam intensity on the estimation bias of beam position  

SciTech Connect

For the signals of the beam position monitor (BPM), the signal-to-noise ratio (SNR) is directly related to the beam intensity. Low beam intensity results in poor SNR. The random noise has a modulation effect on both the amplitude and phase of the BPM signals. Therefore, the beam position measurement has a certain random error. In the currently used BPM, time-averaging and waveform clipping are used to improve the measurement. The nonlinear signal processing results in a biased estimate of beam position. A statistical analysis was made to examine the effect of the SNR, which is determined by the beam intensity, on the estimation bias. The results of the analysis suggest that the estimation bias has a dependence not only on the beam position but also on beam intensity. Specifically, the dependence gets strong as the beam intensity decreases. This property has set a lower limit of the beam intensity range which the BPM`s can handle. When the beam intensity is below that limit the estimation bias starts to vary dramatically, resulting in the BPMs failure. According to the analysis, the lowest beam intensity is that at which the SNR of the generated BPM signal is about 15 dB. The limit for NSEP BPM, for instance, is about 6Ell. The analysis may provide the BPM designers with some idea about the potential of the current BPM`S.

Ma, H.

1994-09-01T23:59:59.000Z

447

Simulating relativistic beam and plasma systems using an optimal boosted frame  

E-Print Network (OSTI)

beam; (b) the average energy history of the electron beams.frame. The average beam energy history reveals agreement at

Vay, J.-L.

2009-01-01T23:59:59.000Z

448

Reaction Dynamics with Exotic Beams  

E-Print Network (OSTI)

We review the new possibilities offered by the reaction dynamics of asymmetric heavy ion collisions, using stable and unstable beams. We show that it represents a rather unique tool to probe regions of highly Asymmetric Nuclear Matter ($ANM$) in compressed as well as dilute phases, and to test the in-medium isovector interaction for high momentum nucleons. The focus is on a detailed study of the symmetry term of the nuclear Equation of State ($EOS$) in regions far away from saturation conditions but always under laboratory controlled conditions. Thermodynamic properties of $ANM$ are surveyed starting from nonrelativistic and relativistic effective interactions. In the relativistic case the role of the isovector scalar $\\delta$-meson is stressed. The qualitative new features of the liquid-gas phase transition, "diffusive" instability and isospin distillation, are discussed. The results of ab-initio simulations of n-rich, n-poor, heavy ion collisions, using stochastic isospin dependent transport equations, are ...

Baran, V; Greco, V; Di Toro, M

2004-01-01T23:59:59.000Z

449

Some Calculations for Cold Fusion Superheavy Elements  

E-Print Network (OSTI)

The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.

X. H. Zhong; L. Li; P. Z. Ning

2004-10-18T23:59:59.000Z

450

Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Group Members Accelerator Magnets Insertion Devices Facilities Presentations & Publications Internal Magnetic Devices Group The primary mission of the Magnetic Devices (MD) Group is to design, build, and maintain Insertion Devices (IDs) that are reliable and transparent to the electron beam at the Advanced Photon Source (APS). The majority of IDs at the APS are conventional planar hybrid undulators, but an essential part of the mission is to develop novel IDs, such as short-period superconducting undulators and long-period electromagnetic undulators. The capabilities of APS IDs are matched to users' experimental needs. The mission also includes magnetic tuning of the IDs to ensure their near-ideal performance as x-ray sources and calculations to predict the radiation

451

Application of Phase Diagram Calculation to Accelerated ...  

Science Conference Proceedings (OSTI)

Presentation Title, Application of Phase Diagram Calculation to Accelerated Development of Mo-Si-B Based Alloys. Author(s), Ying Yang, H Bei, Shuanglin ...

452

Multilevel acceleration of neutron transport calculations.  

E-Print Network (OSTI)

??Nuclear reactor design requires the calculation of integral core parameters and power and radiation profiles. These physical parameters are obtained by the solution of the… (more)

Marquez Damian, Jose Ignacio

2007-01-01T23:59:59.000Z

453

NREL: Power Technologies Energy Data Book - Calculators  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Analysis Center Energy Analysis Newsletter Power Technologies Energy Data Book Home Table of Contents Browse by Technology Calculators Renewable Energy Conversion...

454

Using Bayes' Theorem for Free Energy Calculations.  

E-Print Network (OSTI)

??Statistical mechanics is fundamentally based on calculating the probabilities of molecular-scaleevents. Although Bayes’ theorem has generally been recognized as providing key guiding principals for setup… (more)

Rogers, David M.

2009-01-01T23:59:59.000Z

455

Drag calculations improve efficiency of hydraulic jars  

Science Conference Proceedings (OSTI)

Using drag calculations helps accurately determine the maximum hook load for optimal over-pull force during jarring operations. The driller then has a better chance of freeing stuck pipe on the first jarring attempt. Several operational situations demonstrate how these calculations allow the over pull force on the jar during operation to be increased by 40 % compared to calculations involving the weight of the drillstring only. The drag calculation method significantly increases the probability of successful jarring operations. This article concentrates on upward jarring; the results and procedures are applicable, however, for downward jarring as well.

Aarrestad, T.V. (Den norske stats oljeselskap AS, Statoil (Norway))

1993-03-29T23:59:59.000Z

456

Lennard-Jones Fluid Reference Calculations  

Science Conference Proceedings (OSTI)

... The definition of these energetic terms are given ... calculations given here, the following definitions are relevant: ... D. The pair internal energy is given ...

2013-07-12T23:59:59.000Z

457

Design Calculations For APS Safety Shutters  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Design Calculations for the Advanced Photon Source Safety Shutters P. K. Job, Advanced Photon Source B. J. Micklich, Intense Pulsed Neutron Source Argonne National Laboratory,...

458

Building Technologies Office: 179D DOE Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy simulations are required to show compliance with the energy and power cost savings requirements. View more detailed information. What is the 179D DOE Calculator? The...

459

The Materials Project: Combining Quantum Chemistry Calculations...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Materials Project: Combining Quantum Chemistry Calculations with Supercomputing Centers for New Materials Discovery Speaker(s): Anubhav Jain Date: December 18, 2012 - 12:00pm...

460

MatCalc - The Materials Calculator  

Science Conference Proceedings (OSTI)

Oct 12, 2007 ... MatCalc is supported on Windows, Linux, and Mac OSX systems. Citation: " MatCalc - The Materials Calculator." © MatCalc (2008).

Note: This page contains sample records for the topic "undulator beam calculated" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Building Technologies Office: Qualified Software for Calculating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

you'll find a list of qualified computer software for calculating commercial building energy and power cost savings that meet federal tax incentive requirements. To submit...

462

Calculating Cyclotomic Polynomials - CECM - Simon Fraser University  

E-Print Network (OSTI)

algorithm calculates ?n(z) as a quotient of products of sparse power series. ... polynomials and their coefficients available at the Sloane On-Line Encyclopedia  ...