Powered by Deep Web Technologies
Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Underground test area subproject waste management plan. Revision No. 1  

SciTech Connect (OSTI)

The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS.

NONE

1996-08-01T23:59:59.000Z

2

Hydrologic resources management program and underground test area operable unit fy 1997  

SciTech Connect (OSTI)

This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

Smith, D. F., LLNL

1998-05-01T23:59:59.000Z

3

Corrective action unit modeling approach for the underground test area, Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

The modeling approach serves as a template for the development, application, and interpretation of the Corrective Action Unit (CAU) - scale saturated groundwater flow and transport model (herein called the CAU model) to be used for forecasting radionuclide migration in all Nevada Test Site (NTS) CAUs, consistent with the Federal Facility Agreement and Consent Order (FFACO) and Underground Test Area (UGTA) strategy. A summary of the project background, the FFACO and strategy, and the roles of participating agencies, is provided followed by a description of the contents of the document.

NONE

1998-03-01T23:59:59.000Z

4

ENVIRONMENTAL IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS  

Office of Legacy Management (LM)

IlONITORING REPORT FOR THE NEVADA TEST SITE IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1975 Nonitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of Understanding No. AT(26-1)-539 for the U . S . ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION EMSL-LV-5 39-4 May 1976 ENVIRONMENTAL 14ONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December I975 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of

5

Hydrologic Resources Management Program and Underground Test Area Project FY 2000 Progress Report  

SciTech Connect (OSTI)

This report highlights the results of FY 2000 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) Project. This is the latest in a series of annual reports published by LLNL-ANCD to document recent investigations of radionuclide migration and transport processes at the Nevada Test Site (NTS). The HRMP is sponsored by Defense Programs (DP) at the U.S. Department of Energy, Nevada Operations Office (DOENV), and supports DP operations at the NTS through studies of radiochemical and hydrologic processes that are relevant to the DP mission. Other organizations that support the HRMP include Los Alamos National Laboratory (LANL), the U.S. Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the U.S. Environmental Protection Agency (EPS), and Bechtel Nevada (BN). The UGTA Project is sponsored by the Environmental Management (EM) program at DOENV; its goal is to determine the extent of radionuclide contamination in groundwater resulting from underground nuclear testing at the NTS. The project strategy follows guidelines set forth in a Federal Facilities Agreement and Consent Order between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Participating contractors include LLNL (both ANCD and the Energy and Environmental Sciences Directorate), LANL, USGS, DRI, BN, and IT Corporation (with subcontract support from Geotrans Inc.).

Davisson, M L; Eaton, G F; Hakemi, N L; Hudson, G B; Hutcheon, I D; Lau, C A; Kersting, A B; Kenneally, J M; Moran, J E; Phinney, D L; Rose, T P; Smith, D K; Sylwester, E R; Wang, L; Williams, R; Zavarin, M

2001-07-01T23:59:59.000Z

6

Focused evaluation of selected remedial alternatives for the underground test area  

SciTech Connect (OSTI)

The Nevada Test Site (NTS), located in Nye County in southern Nevada, was the location of 928 nuclear tests conducted between 1951 and 1992. Of the total tests, 824 were nuclear tests performed underground. This report describes the approach taken to determine whether any specific, proven, cost-effective technologies currently exist to aid in the removal of the radioactive contaminants from the groundwater, in the stabilization of these contaminants, and in the removal of the source of the contaminants.

NONE

1997-04-01T23:59:59.000Z

7

Comprehensive baseline environmental audit of former underground test areas in Colorado, Nevada, and New Mexico  

SciTech Connect (OSTI)

This report documents the results of the Comprehensive Baseline Environmental Audit of Former Underground Test Areas (FUTAS) in the States of Colorado, Nevada, and New Mexico. DOE and contractor systems for management of environmental protection activities on the Nevada Test Site (NTS) were not within the scope of the audit. The audit was conducted May 16-May 26, 1994, by the Office of Environmental Audit (EH-24). DOE 5482.1 B, {open_quotes}Environment, Safety, and Health Appraisal Program{close_quotes}, establishes the mission of EH-24, which is to provide comprehensive, independent oversight of Department-wide environmental programs on behalf of the Secretary of Energy. The ultimate goal of EH-24 is to enhance environmental protection and minimize risk to public health and the environment. EH-24 accomplishes its mission using systematic and periodic evaluations of DOE`s environmental programs within line organizations and supplemental activities that strengthen self-assessment and oversight functions within program, field, and contractor organizations. These evaluations function as a vehicle through which the Secretary and program managers are apprised of the status and vulnerabilities of Departmental environmental activities and environmental management systems. Several types of evaluations are conducted, including: (1) comprehensive baseline environmental audits; (2) routine environmental audits; (3) environmental management assessments; and (4) special issue reviews.

Not Available

1994-05-01T23:59:59.000Z

8

Hydrologic Resources Management Program and Underground Test Area Project FY 2006 Progress Report  

SciTech Connect (OSTI)

This report describes FY 2006 technical studies conducted by the Chemical Biology and Nuclear Science Division (CBND) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrologic Resources Management Program (HRMP) and the Underground Test Area Project (UGTA). These programs are administered by the U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office (NNSA/NSO) through the Defense Programs and Environmental Restoration Divisions, respectively. HRMP-sponsored work is directed toward the responsible management of the natural resources at the Nevada Test Site (NTS), enabling its continued use as a staging area for strategic operations in support of national security. UGTA-funded work emphasizes the development of an integrated set of groundwater flow and contaminant transport models to predict the extent of radionuclide migration from underground nuclear testing areas at the NTS. The report is organized on a topical basis and contains four chapters that highlight technical work products produced by CBND. However, it is important to recognize that most of this work involves collaborative partnerships with the other HRMP and UGTA contract organizations. These groups include the Energy and Environment Directorate at LLNL (LLNL-E&E), Los Alamos National Laboratory (LANL), the Desert Research Institute (DRI), the U.S. Geological Survey (USGS), Stoller-Navarro Joint Venture (SNJV), and National Security Technologies (NSTec). Chapter 1 is a summary of FY 2006 sampling efforts at near-field 'hot' wells at the NTS, and presents new chemical and isotopic data for groundwater samples from four near-field wells. These include PM-2 and U-20n PS 1DDh (CHESHIRE), UE-7ns (BOURBON), and U-19v PS No.1ds (ALMENDRO). Chapter 2 is a summary of the results of chemical and isotopic measurements of groundwater samples from three UGTA environmental monitoring wells. These wells are: ER-12-4 and U12S located in Area 12 on Rainier Mesa and USGS HGH No.2 WW2 located in Yucca Flat. In addition, three springs were sampled White Rock Spring and Captain Jack Spring in Area 12 on Rainier Mesa and Topopah Spring in Area 29. Chapter 3 is a compilation of existing noble gas data that has been reviewed and edited to remove inconsistencies in presentation of total vs. single isotope noble gas values reported in the previous HRMP and UGTA progress reports. Chapter 4 is a summary of the results of batch sorption and desorption experiments performed to determine the distribution coefficients (Kd) of Pu(IV), Np(V), U(VI), Cs and Sr to zeolitized tuff (tuff confining unit, TCU) and carbonate (lower carbonate aquifer, LCA) rocks in synthetic NTS groundwater Chapter 5 is a summary of the results of a series of flow-cell experiments performed to examine Np(V) and Pu(V) sorption to and desorption from goethite. Np and Pu desorption occur at a faster rate and to a greater extent than previously reported. In addition, oxidation changes occurred with the Pu whereby the surface-sorbed Pu(IV) was reoxidized to aqueous Pu(V) during desorption.

Culham, H W; Eaton, G F; Genetti, V; Hu, Q; Kersting, A B; Lindvall, R E; Moran, J E; Blasiyh Nuno, G A; Powell, B A; Rose, T P; Singleton, M J; Williams, R W; Zavarin, M; Zhao, P

2008-04-08T23:59:59.000Z

9

Development and Testing of a Groundwater Management Model for the Faultless Underground Nuclear Test, Central Nevada Test Area  

SciTech Connect (OSTI)

This document describes the development and application of a user-friendly and efficient groundwater management model of the Central Nevada Test Area (CNTA) and surrounding areas that will allow the U.S. Department of Energy and state personnel to evaluate the impact of future proposed scenarios. The management model consists of a simple hydrologic model within an interactive groundwater management framework. This framework is based on an object user interface that was developed by the U.S. Geological Survey and has been used by the Desert Research Institute researchers and others to couple disparate environmental resource models, manage the necessary temporal and spatial data, and evaluate model results for management decision making. This framework was modified and applied to the CNTA and surrounding Hot Creek Valley. The utility of the management model was demonstrated through the application of hypothetical future scenarios including mineral mining, regional expansion of agriculture, geothermal energy production, and export of water to large urban areas outside the region. While the results from some of the scenarios indicated potential impacts to the region near CNTA and others did not, together they demonstrate the usefulness of the management tool for managers who need to evaluate the impact proposed changes in groundwater use in or near CNTA may have on radionuclide migration.

Douglas P. Boyle; Gregg Lamorey; Scott Bassett; Greg Pohll; Jenny Chapman

2006-01-25T23:59:59.000Z

10

Underground Test Area Fiscal Year 2013 Annual Quality Assurance Report Nevada National Security Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This report is required by the Underground Test Area (UGTA) Quality Assurance Plan (QAP) and identifies the UGTA quality assurance (QA) activities for fiscal year (FY) 2013. All UGTA organizations—U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO); Desert Research Institute (DRI); Lawrence Livermore National Laboratory (LLNL); Los Alamos National Laboratory (LANL); Navarro-Intera, LLC (N-I); National Security Technologies, LLC (NSTec); and the U.S. Geological Survey (USGS)—conducted QA activities in FY 2013. The activities included conducting assessments, identifying findings and completing corrective actions, evaluating laboratory performance, and publishing documents. In addition, integrated UGTA required reading and corrective action tracking was instituted.

Krenzien, Susan; Marutzky, Sam

2014-01-01T23:59:59.000Z

11

Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 135, Area 25 Underground Storage Tanks (USTs), which is located on the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada.

U.S. Department of Energy, Nevada Operations Office

1999-05-05T23:59:59.000Z

12

Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This CAIP presents a plan to investigate the nature and extent of the contaminants of potential concern (COPCs) at CAU 135. The purpose of the corrective action investigation described in this CAIP is to: (1) Identify the presence and nature of COPCs; (2) Determine the location of radiological contamination within the vault and determine the extent of COPCs in the sump area and on the floor; and (3) Provide sufficient information and data to develop and evaluate appropriate corrective actions for CAS 25-02-01. This CAIP was developed using the U.S. Environmental Protection Agency's (EPA) Data Quality Objectives (DQOs) (EPA, 1994) process to clearly define the goals for collecting environmental data, to determine data uses, and to design a data collection program that will satisfy these uses. A DQO scoping meeting was held prior to preparation of this plan; a brief summary of the DQOs is presented in Section 3.4. A more detailed summary of the DQO process and results is included in Appendix A.

DOE/NV

1999-05-01T23:59:59.000Z

13

Key tests set for underground coal gasification  

SciTech Connect (OSTI)

Underground coal gasification (UCG) is about to undergo some tests. The tests will be conducted by Lawrence Livermore National Laboratory (LLNL) in a coal seam owned by Washington Irrigation and Development Co. A much-improved UCG system has been developed by Stephens and his associates at LLNL - the controlled retracting injection point (CRIP) method. Pritchard Corp., Kansas City, has done some conceptual process design and has further studied the feasibility of using the raw gas from a UCG burn as a feedstock for methanol synthesis and/or MTG gasoline. Each method was described. (DP)

Haggin, J.

1983-07-18T23:59:59.000Z

14

200-Area plateau inactive miscellaneous underground storage tanks locations  

SciTech Connect (OSTI)

Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years.

Brevick, C.H.

1997-12-01T23:59:59.000Z

15

Underground facility area requirements for a radioactive waste repository at Yucca Mountain  

SciTech Connect (OSTI)

The Nevada Nuclear Waste Storage Investigations Project, managed by the US Department of Energy`s Nevada Operations Office, is examining the feasibility of siting a repository for high-level radioactive waste at Yucca Mountain on and adjacent to the Nevada Test Site. Preliminary waste descriptions and preliminary areal power density calculations have been completed, and the Topopah Spring Member has been recommended as the emplacement unit. Using these data, an effort has begun to determine the area needed for the underground facility. This report describes work performed to determine the area needed to emplace waste equivalent to 70,000 metric tons of uranium (MTU) initially loaded in commercial power reactors. The area needed for support functions is also described. The total area of the underground facility depends on the types of waste received, the amount of each type of waste received, the areal power density assumed, and the emplacement configuration chosen (horizontal or vertical emplacement). The areas range from about 1240 acres to about 1520 acres. For vertical emplacement of the reference inventory of spent fuel, 1520 acres are required. A significant finding of this report is the importance of low-heat-producing wastes (defense high-level waste, West Valley high-level waste, cladding hulls, transuranic waste, and spent fuel hardware) when calculating the area required for the underground facility. If other wastes are included and the spent fuel capacity is reduced consistent with a total capacity of 70,000 MTU, the area required will be smaller.

Mansure, A.J.

1985-11-01T23:59:59.000Z

16

GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa.

Grasso, D.N.

2001-11-02T23:59:59.000Z

17

Corrective Action Investigation Plan for Corrective Action Unit 406: Area 3 Building 03-74 and Building 03-58 Under ground Discharge Points and Corrective Action Unit 429: Area 3 Building 03-55 and Area 9 Building 09-52 Underground Discharge Points, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Underground Discharge Points (UDPs) included in both CAU 406 and CAU 429. The CAUs are located in Area 3 and Area 9 of the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (km) (140 miles [mi]) northwest of Las Vegas, Nevada.

DOE/NV

1999-05-20T23:59:59.000Z

18

Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report  

SciTech Connect (OSTI)

Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

1998-07-01T23:59:59.000Z

19

Evaluating the Effects of Underground Nuclear Testing Below the Water Table on Groundwater and Radionuclide Migration in the  

E-Print Network [OSTI]

Evaluating the Effects of Underground Nuclear Testing Below the Water Table on Groundwater, using FEHM, evaluate perturbed groundwater behavior associated with underground nuclear tests to an instantaneous pressurization event caused by a nuclear test when different permeability and porosity

20

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

National Nuclear Security Administration (NNSA)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

22

Test plan: Gas-threshold-pressure testing of the Salado Formation in the WIPP underground facility  

SciTech Connect (OSTI)

Performance assessment for the disposal of radioactive waste from the United States defense program in the WIPP underground facility must assess the role of post-closure was generation by waste degradation and the subsequent pressurization of the facility. be assimilated by the host formation will Whether or not the generated gas can be assimilated by the host formation will determine the ability of the gas to reach or exceed lithostatic pressure within the repository. The purpose of this test plan is (1) to present a test design to obtain realistic estimates of gas-threshold pressure for the Salado Formation WIPP underground facility including parts of the formation disturbed by the underground of the Salado, and (2) to provide a excavations and in the far-field or undisturbed part framework for changes and amendments to test objectives, practices, and procedures. Because in situ determinations of gas-threshold pressure in low-permeability media are not standard practice, the methods recommended in this testplan are adapted from permeability-testing and hydrofracture procedures. Therefore, as the gas-threshold-pressure testing program progresses, personnel assigned to the program and outside observers and reviewers will be asked for comments regarding the testing procedures. New and/or improved test procedures will be documented as amendments to this test plan, and subject to similar review procedures.

Saulnier, G.J. Jr. (INTERA, Inc., Austin, TX (United States))

1992-03-01T23:59:59.000Z

23

Staff Technical Position on geological repository operations area underground facility design: Thermal loads  

SciTech Connect (OSTI)

The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff`s position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design.

Nataraja, M.S. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Brandshaug, T. [Itasca Consulting Group, Inc., Minneapolis, MN (United States)

1992-12-01T23:59:59.000Z

24

Staff Technical Position on geological repository operations area underground facility design: Thermal loads  

SciTech Connect (OSTI)

The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff's position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design.

Nataraja, M.S. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management); Brandshaug, T. (Itasca Consulting Group, Inc., Minneapolis, MN (United States))

1992-12-01T23:59:59.000Z

25

NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the 20th Anniversary of the Last Underground Nuclear Test the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > NNSA Commemorates the 20th Anniversary of the ... NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test

26

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

27

NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test  

National Nuclear Security Administration (NNSA)

the 20th Anniversary of the Last Underground Nuclear Test the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > NNSA Commemorates the 20th Anniversary of the ... NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test

28

Design and Field Testing of an Autonomous Underground Tramming System  

E-Print Network [OSTI]

-haul-dump (LHD) machine is often used to excavate fragmented rock, haul it to an assigned location, and then dump, the hazardous nature of underground envi- ronments, driver safety and fatigue, labor costs, and the cyclic" attempts worked by outfitting the mine with signal- emitting cables [2], light-emitting ropes [1

Paris-Sud XI, Université de

29

Migration in alluvium of chlorine-36 and tritium from an underground nuclear test  

SciTech Connect (OSTI)

This article describes a field experiment studying the migration in alluvium of radioactive elements away from an underground nuclear explosion at the Nevada Test Site in the United States. Nuclides detected in the pumped water are tritium, chlorine-36, iodine-129, and krypton-85 - all at levels below the maximum permissible concentration for drinking water in controlled areas. The chlorine-36 elution curve precedes that of tritium, and is due to an anion exclusion process. A conventional two-dimensional convection-diffusion equation does not fully describe the elution curves for tritium and chlorine-36; the tailing of the curves is longer than predicted. Successful modeling of this experiment will be important for validating codes and models to be used in the high-level nuclear waste program.

Ogard, A.E.; Thompson, J.L.; Rundberg, R.S.; Wolfsberg, K.; Kubik, P.W.; Elmore, D.; Bentley, H.W.

1987-01-01T23:59:59.000Z

30

Underground exploration and testing at Yucca Mountain: A report to Congress and the Secretary of Energy  

SciTech Connect (OSTI)

Underground exploration and testing are major components of the DOE`s site-characterization efforts at Yucca Mountain, Nevada. During the past four years, the DOE`s plans for exploration and testing in an underground facility have evolved substantially, and many improvements have been made. The report reviews the status of the DOE`s underground exploration and testing project at Yucca Mountain, Nevada; it suggests strategies to improve both the exploration and testing program and the approach to designing and excavating the exploratory facility. The Board makes several recommendations it believes will speed progress and improve cost-effectiveness. The Board believes the changes it is recommending can and should be made without slowing the momentum of important site-characterization activities currently under way at Yucca Mountain.

NONE

1993-10-01T23:59:59.000Z

31

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network [OSTI]

Helms Underground Powerhouse - Pumped storage project Figurelayout of underground powerhouse complex—Helms Pumped57. Helms Underground Powerhouse Pumped Storage Project

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

32

Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, {sup 90}Sr, and {sup 137}Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test.

Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

1996-09-01T23:59:59.000Z

33

Underground Exploration  

E-Print Network [OSTI]

Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste Technical Review Board October 1993 Yucca Mountain at #12;Nuclear Waste Technical Review Board Dr. John E and Testing #12;Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction

34

CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

r r r r r t r r t r r r * r r r r r r CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY COMMlSSION NEVADA OPERATIONS OFFICE LAS VEGAS, NEVADA September 1970 Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, Nevada 338592 ...._- _._--_ .. -- - - - - - - .. .. - .. - - .. - - - CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA FACILITY RECORDS 1970 This page intentionally left blank - - .. - - - PURPOSE This facility study has been prepared in response to a request of the AEC/NVOO Property Management Division and confirmed by letter, W. D. Smith to L. E. Rickey, dated April 14, 1970, STS Program Administrative Matters. The purpose is to identify each facility, including a brief description, the acquisition cost either purchase and/or construction, and the AE costs if identi- fiable. A narrative review of the history of the subcontracts

35

Center for Theoretical Underground Physics and Related Areas - CETUP*2013 Summer Program  

SciTech Connect (OSTI)

In response to an increasing interest in experiments conducted at deep underground facilities around the world, in 2010 the theory community has proposed a new initiative - a Center for Theoretical Underground Physics and Related Areas (CETUP*). The main goal of CETUP* is to bring together people with different talents and skills to address the most exciting questions in particle and nuclear physics, astrophysics, geosciences, and geomicrobiology. Scientists invited to participate in the program do not only provide theoretical support to the underground science, they also examine underlying universal questions of the 21st century including: What is dark matter?, What are the masses of neutrinos?, How have neutrinos shaped the evolution of the universe?, How were the elements from iron to uranium made?, What is the origin and thermal history of the Earth? The mission of the CETUP* is to promote an organized research in physics, astrophysics, geoscience, geomicrobiology and other fields related to the underground science via individual and collaborative research in dynamic atmosphere of intense scientific interactions. Our main goal is to bring together scientists scattered around the world, promote the deep underground science and provide a stimulating environment for creative thinking and open communication between researches of varying ages and nationalities. CETUP*2014 included 5 week long program (June 24 – July 26, 2013) covering various theoretical and experimental aspects of Dark Matter, Neutrino Physics and Astrophysics. Two week long session focused on Dark Matter (June 24-July 6) was followed by two week long program on Neutrino Physics and Astrophysics (July 15-26). The VIIth International Conference on Interconnections between Particle Physics and Cosmology (PPC) was sandwiched between these sessions (July 8-13) covering the subjects of dark matter, neutrino physics, gravitational waves, collider physics and other from both theoretical end experimental aspects. PPC was initiated at Texas A&M University in 2007 and travelled to many places which include Geneva, Turin, Seoul (S. Korea) etc. during the last 5 years before coming back to USA. The objectives of CETUP* and PPC were to analyze the connection between dark matter and particle physics models, discuss the connections among dark matter, grand unification models and recent neutrino results and predictions for possible experiments, develop a theoretical understanding of the three-neutrino oscillation parameters, provide a stimulating venue for exchange of scientific ideas among experts in neutrino physics and unification, connect with venues for public education outreach to communicate the importance of dark matter, neutrino research, and support of investment in science education, support mission of the Snowmass meeting and allow for extensive discussions of the ideas crucial for the future of high energy physics. The selected subjects represented the forefront of research topics in particle and nuclear physics, for example: recent precise measurements of all the neutrino mixing angles (that necessitate a theoretical roadmap for future experiments) or understanding of the nature of dark matter (that allows us to comprehend the composition of the cosmos better). All the covered topics are considered as a base for new physics beyond the Standard Model of particle physics.

Szczerbinska, Barbara

2014-06-01T23:59:59.000Z

36

Commercial-Scale Tests Demonstrate Secure CO2 Storage in Underground Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CommerCial-SCale TeSTS DemonSTraTe CommerCial-SCale TeSTS DemonSTraTe SeCure Co 2 STorage in unDergrounD FormaTionS Two industry-led commercial-scale projects, the Sleipner Project off the coast of Norway and the Weyburn Project in Ontario, Canada, have enhanced the option of sequestering carbon dioxide (CO 2 ) in underground geologic formations. The United States Department of Energy (DOE) collaborated in both projects, primarily by providing rigorous monitoring of the injected CO 2 and studying CO 2 behavior to a greater extent than the project operators would have pursued on their own - creating a mutually beneficial public/private partnership. The most significant outcome from both field projects is that CO 2 leakage has not been observed, nor is there any indication that CO 2 will leak in the future.

37

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010  

SciTech Connect (OSTI)

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

Pawloski, G A

2011-01-03T23:59:59.000Z

38

PHYSICAL OCEANOGRAPHY OF THE TEST AREA  

Science Journals Connector (OSTI)

PHYSICAL OCEANOGRAPHY OF TIIE TEST AREA. PAUL L. HORRER. PROCEDURE. Current Measurements. Methods of determining currents arc varied.

1999-12-23T23:59:59.000Z

39

Reclamation of abandoned coal refuse piles and underground adit entries in the Big South Fork National River and Recreation Area  

SciTech Connect (OSTI)

This paper reviews reclamation activities conducting during 1984-85 in the Big South Fork National River and Recreational Area, Kentucky, and Tennessee. Under this integrated reclamation project, four sites comprising 14 acres of highly acidic abandoned coal refuse were treated and 43 abandoned adit underground mine entries were closed. The techniques used were cost-effective and could be applied in reclaiming other coal minesites in Appalachia. 9 references, 4 figures, 1 table.

Muncy, J.A.; Buckner, E.R.

1985-12-01T23:59:59.000Z

40

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect (OSTI)

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States`s defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL`s Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. [Intera Technologies, Inc., Austin, TX (United States)

1988-08-09T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Field operations plan for permeability testing in the WIPP-site underground facility  

SciTech Connect (OSTI)

This Field Operations Plan (FOP) describes the objectives, design, equipment, and methodology for permeability tests to be conducted in boreholes drilled from the underground facility currently under construction at the 655-meter depth level at the Waste Isolation Pilot Plant (WIPP) site in southeastern New Mexico into relatively undisturbed portions of the Salado formation. The WIPP is a U. S. Department of Energy research and development facility designed to demonstrate safe disposal of transuranic radioactive wastes resulting from the United States's defense programs. The testing described in this FOP will be conducted by INTERA Technologies, Inc., under contract to the Earth Sciences Division of Sandia National Laboratories (SNL). The testing program is part of the WIPP-site Hydrogeologic Characterization and Plugging and Sealing programs being conducted by SNL's Earth Sciences and Experimental Programs Divisions, respectively.

Saulnier, G.J. Jr. (Intera Technologies, Inc., Austin, TX (United States))

1988-08-09T23:59:59.000Z

42

Hanna, Wyoming underground coal gasification data base. Volume 3. The Hanna II, Phase I field test  

SciTech Connect (OSTI)

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project, and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phase I was conducted during the spring and summer of 1975, at a site about 700 feet up dip (to the southwest) of the Hanna I test. The test was conducted in two stages - Phase IA and IB. Phase IA consisted of linking and gasification operations between Wells 1 and 3 and Phase IB of linking from the 1-3 gasification zone to Well 2, followed by a short period of gasification from Well 2 to Well 3 over a broad range of air injection rates, in order to determine system turndown capabilities and response times. This report covers: (1) site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operational testing; (5) test operations summary; and (6) post-test activity. 7 refs., 11 figs., 8 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

43

DOEIJEA-1219 ENVIRONMENTAL ASSESSMENT HOE CREEK UNDERGROUND COAL GASIFICATION TEST SITE REMEDIATION  

Broader source: Energy.gov (indexed) [DOE]

DOEIJEA-1219 DOEIJEA-1219 ENVIRONMENTAL ASSESSMENT HOE CREEK UNDERGROUND COAL GASIFICATION TEST SITE REMEDIATION CAMPBELL COUNTY, WYOMING October 1997 U.S. DEPARTMENT OF ENERGY FEDERAL ENERGY TECHNOLOGY CENTER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or use- fulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any spe- cific commercial product, process. or service by trade name, trademark, manufac-

44

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01T23:59:59.000Z

45

Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines  

SciTech Connect (OSTI)

This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

Hicks, H.G.

1981-11-01T23:59:59.000Z

46

Underground tank vitrification: A pilot-scale in situ vitrification test of a tank containing a simulated mixed waste sludge  

SciTech Connect (OSTI)

This report documents research on sludge vitrification. The first pilot scale in-situ vitrification test of a simulated underground tank was successfully completed by researchers at Pacific Northwest Laboratory. The vitrification process effectively immobilized the vast majority of radionuclides simulants and toxic metals were retained in the melt and uniformly distributed throughout the monolith.

Thompson, L.E.; Powell, T.D.; Tixier, J.S.; Miller, M.C. [Pacific Northwest Lab., Richland, WA (United States); Owczarski, P.C. [Science Applications International Corp., Richland, WA (United States)

1993-09-01T23:59:59.000Z

47

Approaches to Quantify Potential Contaminant Transport in the Lower Carbonate Aquifer from Underground Nuclear Testing at Yucca Flat, Nevada National Security Site, Nye County, Nevada - 12434  

SciTech Connect (OSTI)

Quantitative modeling of the potential for contaminant transport from sources associated with underground nuclear testing at Yucca Flat is an important part of the strategy to develop closure plans for the residual contamination. At Yucca Flat, the most significant groundwater resource that could potentially be impacted is the Lower Carbonate Aquifer (LCA), a regionally extensive aquifer that supplies a significant portion of the water demand at the Nevada National Security Site, formerly the Nevada Test Site. Developing and testing reasonable models of groundwater flow in this aquifer is an important precursor to performing subsequent contaminant transport modeling used to forecast contaminant boundaries at Yucca Flat that are used to identify potential use restriction and regulatory boundaries. A model of groundwater flow in the LCA at Yucca Flat has been developed. Uncertainty in this model, as well as other transport and source uncertainties, is being evaluated as part of the Underground Testing Area closure process. Several alternative flow models of the LCA in the Yucca Flat/Climax Mine CAU have been developed. These flow models are used in conjunction with contaminant transport models and source term models and models of contaminant transport from underground nuclear tests conducted in the overlying unsaturated and saturated alluvial and volcanic tuff rocks to evaluate possible contaminant migration in the LCA for the next 1,000 years. Assuming the flow and transport models are found adequate by NNSA/NSO and NDEP, the models will undergo a peer review. If the model is approved by NNSA/NSO and NDEP, it will be used to identify use restriction and regulatory boundaries at the start of the Corrective Action Decision Document Corrective Action Plan (CADD/CAP) phase of the Corrective Action Strategy. These initial boundaries may be revised at the time of the Closure Report phase of the Corrective Action Strategy. (authors)

Andrews, Robert W.; Birdie, Tiraz [Navarro-INTERA LLC, Las Vegas, Nevada 89030 (United States); Wilborn, Bill; Mukhopadhyay, Bimal [National Nuclear Security Administration/Nevada Site Office, Las Vegas, Nevada 89030 (United States)

2012-07-01T23:59:59.000Z

48

Subsurface Completion Report for Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin, Rev. No.: 1  

SciTech Connect (OSTI)

Three underground nuclear tests were conducted on Amchitka Island, Alaska, in 1965, 1969, and 1971. The effects of the Long Shot, Milrow, and Cannikin tests on the environment were extensively investigated during and following the detonations, and the area continues to be monitored today. This report is intended to document the basis for the Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin (hereafter referred to as ''Amchitka Site'') subsurface completion recommendation of No Further Remedial Action Planned with Long-Term Surveillance and Maintenance, and define the long-term surveillance and maintenance strategy for the subsurface. A number of factors were considered in evaluating and selecting this recommendation for the Amchitka Site. Historical studies and monitoring data, ongoing monitoring data, the results of groundwater modeling, and the results of an independent stakeholder-guided scientific investigation were also considered in deciding the completion action. Water sampling during and following the testing showed no indication that radionuclides were released to the near surface, or marine environment with the exception of tritium, krypton-85, and iodine-131 found in the immediate vicinity of Long Shot surface ground zero. One year after Long Shot, only tritium was detectable (Merritt and Fuller, 1977). These tritium levels, which were routinely monitored and have continued to decline since the test, are above background levels but well below the current safe drinking water standard. There are currently no feasible means to contain or remove radionuclides in or around the test cavities beneath the sites. Surface remediation was conducted in 2001. Eleven drilling mud pits associated with the Long Shot, Milrow and Cannikin sites were remediated. Ten pits were remediated by stabilizing the contaminants and constructing an impermeable cap over each pit. One pit was remediated by removing all of the contaminated mud for consolidation in another pit. In addition to the mud pits, the hot mix plant was also remediated. Ongoing monitoring data does not indicate that radionuclides are currently seeping into the marine environment. Additionally, the groundwater modeling results indicate no seepage is expected for tens to thousands of years. If seepage does occur in the future, however, the rich, diverse ecosystems around the island could be at risk, as well as people eating foods from the area. An independent science study was conducted by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in accordance with the Amchitka Independent Science Plan (2003). The study report was published on August 1, 2005. The CRESP study states ''our geophysical and biological analyses did not find evidence of risk from radionuclides from the consumption of marine foods, nor indication of any current radionuclide contaminated migration into the marine environment from the Amchitka test shots''. The study also found evidence supporting the groundwater modeling conclusions of very slow contaminant transport (CRESP, 2005). While no further action is recommended for the subsurface of the Amchitka Site, long-term stewardship of Amchitka Island will be instituted and will continue into the future. This will include institutional controls management and enforcement, post-completion monitoring, performance of five-year reviews, public participation, and records management. Long-term stewardship will be the responsibility of the U.S. Department of Energy Office of Legacy Management. The Department of Energy is recommending completion of the investigation phase of the Amchitka Sites. The recommended remedy for the Amchitka Site is No Further Action with Long-Term Monitoring and Surveillance. The future long-term stewardship actions will be governed by a Long-Term Surveillance and Maintenance Plan. This Plan is currently being developed with input from the State, landowner, and other interested or affected stakeholders.

Echelard, Tim

2006-09-01T23:59:59.000Z

49

TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada  

SciTech Connect (OSTI)

Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa; Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; ,; Guy Roemer

2002-09-01T23:59:59.000Z

50

Neptunium Transport Behavior in the Vicinity of Underground Nuclear Tests at the Nevada Test Site  

SciTech Connect (OSTI)

We used short lived {sup 239}Np as a yield tracer and state of the art magnetic sector ICP-MS to measure ultra low levels of {sup 237}Np in a number of 'hot wells' at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site (NTS). The results indicate that {sup 237}Np concentrations at the Almendro, Cambric, Dalhart, Cheshire and Chancellor sites, are in the range of 3 x 10{sup -5} to 7 x 10{sup -2} pCi/L and well below the MCL for alpha emitting radionuclides (15 pCi/L) (EPA, 2009). Thus, while Np transport is believed to occur at the NNSS, activities are expected to be well below the regulatory limits for alpha-emitting radionuclides. We also compared {sup 237}Np concentration data to other radionuclides, including tritium, {sup 14}C, {sup 36}Cl, {sup 99}Tc, {sup 129}I, and plutonium, to evaluate the relative {sup 237}Np transport behavior. Based on isotope ratios relative to published unclassified Radiologic Source Terms (Bowen et al., 1999) and taking into consideration radionuclide distribution between melt glass, rubble and groundwater (IAEA, 1998), {sup 237}Np appears to be substantially less mobile than tritium and other non-sorbing radionuclides, as expected. However, this analysis also suggests that {sup 237}Np mobility is surprisingly similar to that of plutonium. The similar transport behavior of Np and Pu can be explained by one of two possibilities: (1) Np(IV) and Pu(IV) oxidation states dominate under mildly reducing NNSS groundwater conditions resulting in similar transport behavior or (2) apparent Np transport is the result of transport of its parent {sup 241}Pu and {sup 241}Am isotopes and subsequent decay to {sup 237}Np. Finally, measured {sup 237}Np concentrations were compared to recent Hydrologic Source Term (HST) models. The 237Np data collected from three wells in Frenchman Flat (RNM-1, RNM-2S, and UE-5n) are in good agreement with recent HST transport model predictions (Carle et al., 2005). The agreement provides confidence in the results of the predictive model. The comparison to Cheshire HST model predictions (Pawloski et al, 2001) is somewhat ambiguous due to the low concentration resolution of the particle transport model.

Zhao, P; Tinnacher, R M; Zavarin, M; Williams, R W; Kersting, A B

2010-12-03T23:59:59.000Z

51

Flow Test At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Wister Area (DOE GTP) Exploration Activity...

52

Flow Test At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Colrado Area (DOE GTP) Exploration Activity...

53

Flow Test At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Alum Area (DOE GTP) Exploration Activity Details...

54

100 Area Hanford soil washing treatability tests  

SciTech Connect (OSTI)

Soil washing laboratory tests performed at Hanford in support of 100 Area Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) feasibility studies included characterization of soils, physical separation, chemical extraction, and water treatment. Results to date show that < 20 % of the soil is finer than 0.25 mm ({minus}40 mesh). The highest concentration of {sup 60}Co, {sup 152}Eu, and {sup 137}Cs contaminants is generally associated with fine soil particles. However, measurable concentrations of contaminants were found in all sizes of soil particles. In initial testing, attrition scrubbing was generally sufficient to treat soils to meet selected performance levels for {sup 60}Co and {sup 152}Eu. However, more intense attrition scrubbing, autogenous grinding, or chemical extraction was required to enhance removal of {sup 137}Cs. Additional tests and assessment of the feasibility of using soil washing techniques are in progress.

Field, J.G.; Belden, R.D. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Mattigod, S.V.; Freeman, H.D. [Pacific Northwest Lab., Richland, WA (United States); Scheck, R.W. [Mactec/Dames and Moore (United States); Goller, E.D. [USDOE Richland Operations Office, WA (United States)

1993-09-01T23:59:59.000Z

55

2012 SG Peer Review - Wide Area Wireless Distribution Grid Sensor & Faulted Circuit Indicator System for Underground Assets - Jason Wilson, On-Ramp Wireless  

Broader source: Energy.gov (indexed) [DOE]

Wide Area Wireless Distribution Grid Sensor Wide Area Wireless Distribution Grid Sensor for Underground Assets Jason Wilson On-Ramp Wireless June 7, 2012 December 2008 Wide Area Wireless Distribution Grid Sensor for Underground Assets Objective Life-cycle Funding Summary ($K) Prior to FY 12 FY12, authorized FY13, requested Out-year(s) $1,046 $580 $39 $0 Technical Scope Develop and demonstrate a wireless network solution for distribution automation, including fault circuit indicators and transformer monitoring, capable of secure and reliable communication with below ground and hard to reach utility assets at a TCO that is commercially viable for utilities to deploy at large scale. Enable utilities throughout the US to improve critical grid reliability metrics including SAIDI. * Conceptual design and trade studies including sensor system interfaces, augmenting FCI with

56

100 area excavation treatability test plan  

SciTech Connect (OSTI)

This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Development and screening of remedial alternatives for the 100 Area, using existing data, have been completed and are documented in the 100 Area Feasibility Study, Phases 1 and 2 (DOE-RL 1992a). Based on the results of the FS, the Treatability Study Program Plan (DOE-RL 1992b) identifies and prioritizes treatability studies for the 100 Area. The data from the treatability study program support future focused FS, interim remedial measures (IRM) selection, operable unit final remedy selection, remedial design, and remedial actions. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992b). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications.

Not Available

1993-05-01T23:59:59.000Z

57

Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443  

SciTech Connect (OSTI)

This report presents the 2007 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. Requirements for CAU 443 are specified in the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada and includes groundwater monitoring in support of site closure. This is the first groundwater monitoring report prepared by DOE-LM for the CNTA The CNTA is located north of U.S. Highway 6, approximately 30 miles north of Warm Springs in Nye County, Nevada (Figure 1). Three emplacement boreholes, UC-1, UC-3, and UC-4, were drilled at the CNTA for underground nuclear weapons testing. The initial underground nuclear test, Project Faultless, was conducted in borehole UC-1 at a depth of 3,199 feet (ft) (975 meters) below ground surface on January 19, 1968. The yield of the Project Faultless test was estimated to be 0.2 to 1 megaton (DOE 2004). The test resulted in a down-dropped fault block visible at land surface (Figure 2). No further testing was conducted at the CNTA, and the site was decommissioned as a testing facility in 1973.

None

2008-04-01T23:59:59.000Z

58

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network [OSTI]

of 1400 The mineralized area is 3000 feet The feet, and athe 3000 foot extent of contact in the mine area; however,3000 journals, as well as conferences, symposia and monographs, in the areas

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

59

Hanna, Wyoming underground coal gasification data base. Volume 4. Hanna II, Phases II and III field test research report  

SciTech Connect (OSTI)

This report is part of a seven-volume series on the Hanna, Wyoming, underground coal gasification field tests. Volume 1 is a summary of the project and each of Volumes 2 through 6 describes a particular test. Volume 7 is a compilation of all the data for the tests in Volumes 2 through 6. Hanna II, Phases II and III, were conducted during the winter of 1975 and the summer of 1976. The two phases refer to linking and gasification operations conducted between two adjacent well pairs as shown in Figure 1 with Phase II denoting operations between Wells 5 and 6 and Phase III operations between Wells 7 and 8. All of the other wells shown were instrumentation wells. Wells 7 and 8 were linked in November and December 1975. This report covers: (1) specific site selection and characteristics; (2) test objectives; (3) facilities description; (4) pre-operation tests; (5) test operations summary; and (6) post-test activity. 16 refs., 21 figs., 17 tabs.

Bartke, T.C.; Fischer, D.D.; King, S.B.; Boyd, R.M.; Humphrey, A.E.

1985-08-01T23:59:59.000Z

60

Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin  

SciTech Connect (OSTI)

Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized masses to avoid presenting classified information. As only linear processes are modeled, the results can be readily scaled by the true classified masses for use in the risk assessment. The modeling timeframe for the risk assessment was set at 1,000 years, though some calculations are extended to 2,000 years. This first section of the report endeavors to orient the reader with the environment of Amchitka and the specifics of the underground nuclear tests. Of prime importance are the geologic and hydrologic conditions of the subsurface. A conceptual model for groundwater flow beneath the island is then developed and paired with an appropriate numerical modeling approach in section 2. The parameters needed for the model, supporting data for them, and data uncertainties are discussed at length. The calibration of the three flow models (one for each test) is then presented. At this point the conceptual radionuclide transport model is introduced and its numerical approach described in section 3. Again, the transport parameters and their supporting data and uncertainties are the focus. With all of the processes and parameters in place, the first major modeling phase can be discussed in section 4. In this phase, a parametric uncertainty analysis is performed to determine the sensitivity of the transport modeling results to the uncertainties present in the parameters. This analysis is motivated by the recognition of substantial uncertainty in the subsurface conditions on the island and the need to incorporate that uncertainty into the modeling. The conclusion of the first phase determines the parameters to hold as uncertain through the main flow and transport modeling. This second, main phase of modeling is presented in section 5, with the contaminant breakthrough behavior of each test site addressed. This is followed by a sensitivity analysis in section 6, regarding the importance of additional processes that could not be supported in the main modeling effort due to lack of data. Finally, the results for the individual sites are compared, the sensitivities discussed,

Ahmed Hassan; Karl Pohlmann; Jenny Chapman

2002-11-19T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Borehole closure and test zone volume determination program for brine-permeability test results within the Waste Isolation Pilot Plant underground facility  

SciTech Connect (OSTI)

Until recently, hydrologic characterization in closed sections of boreholes at the Waste Isolation Pilot Plant (WIPP) has relied on measurements of pressure and temperature to establish the permeability of the host geological formations. There were no provisions for monitoring tool compliance and salt creep resulting from borehole closure. The new permeability test tool used to characterize the WIPP underground facility has been equipped with a series of sensors to measure the movement of the tool with respect to the borehole and borehole wall movement. A FORTRAN program can interpret the output data from each test and calculate the change in borehole radius, test zone length, and test zone volume. These values provide a correlation of fluid compressibility and tool compliance with the permeability results derived from the test data. 4 figs., 3 tabs.

Jensen, A.L.

1990-05-01T23:59:59.000Z

62

Seismic yield determination of Soviet underground nuclear explosions at the Shagan River test site  

Science Journals Connector (OSTI)

......1986a, Yield estimates of Nevada test site explosions obtained from seismic...Nuttli's method to estimate yield of Nevada test site explosions recorded on Lawrence...magnitude and explosion yield for Nevada Test Site explosions. He also applied......

Frode Ringdal; Peter D. Marshall; Ralph W. Alewine

1992-04-01T23:59:59.000Z

63

Injectivity Test At Long Valley Caldera Geothermal Area (Morin...  

Open Energy Info (EERE)

Test At Long Valley Caldera Geothermal Area (Morin, Et Al., 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley...

64

Flow Test At Valles Caldera - Sulphur Springs Geothermal Area...  

Open Energy Info (EERE)

Flow Test At Valles Caldera - Sulphur Springs Geothermal Area (Musgrave, Et Al., 1989) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test...

65

Modeling the thermal-hydrologic processes in a large-scale underground heater test in partially saturated fractured tuff  

SciTech Connect (OSTI)

The Drift Scale Test (DST) is being conducted in an underground facility at Yucca Mountain, Nevada, to probe the coupled thermal, hydrological, mechanical, and chemical processes likely to occur in the fractured rock mass around a potential high-level nuclear waste repository. Thermal-hydrological processes in the DST have been simulated using a three-dimensional numerical model. The model incorporates the realistic test configuration and all available site-specific measurements pertaining to the thermal and hydrological properties of the unsaturated fractured tuff of the test block. The modeled predictions were compared to the extensive set of measured data collected in the first year of this 8-year-long test. The mean error between the predictions and measurement at 12 months of heating for over 1600 temperature sensors is about 2 degrees C. Heat-pipe signature in the temperature data, indicating two-phase regions of liquid-vapor counterflow, is seen in both the measurements and simulated results. The redistribution of moisture content in the rock mass (resulting from vaporization and condensation) was probed by periodic air-injection testing and geophysical measurements. Good agreement also occurred between the model predictions and these measurements. The general agreement between predictions from the numerical simulations and the measurements of the thermal test indicates that our fundamental understanding of the coupled thermal-hydrologic processes at Yucca Mountain is sound. However, effects of spatial heterogeneity from discrete fractures that are observed in the temperature data are not matched by simulations from the numerical model, which treat the densely spaced fractures as a continuum.

Birkholzer, J.T.; Tsang, Y.W.

1999-06-24T23:59:59.000Z

66

Nevada Test And Training Range Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Nevada Test And Training Range Geothermal Area Nevada Test And Training Range Geothermal Area (Redirected from Nevada Test And Training Range Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Nevada Test And Training Range Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

67

Nevada Test And Training Range Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Nevada Test And Training Range Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Nevada Test And Training Range Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (5) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

68

Tiltrotor Acoustic Flight Test: Terminal Area Operations  

Science Journals Connector (OSTI)

This paper provides a comprehensive description of an acoustic flight test of the XV-15 Tiltrotor Aircraft with Advanced Technology Blades (ATB) conducted in August and September 1991 at Crows Landing, California. The purpose of this cooperative research ...

Maria O. L. Santa; Wellman J. B.; Conner D. A.; Rutledge C. K.

1992-06-01T23:59:59.000Z

69

Corrective Action Decision Document for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada Appendix D - Corrective Action Investigation Report, Central Nevada Test Area, CAU 417  

SciTech Connect (OSTI)

This Corrective Action Decision Document (CADD) identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 417: Central Nevada Test Area Surface, Nevada, under the Federal Facility Agreement and Consent Order. Located in Hot Creek Valley in Nye County, Nevada, and consisting of three separate land withdrawal areas (UC-1, UC-3, and UC-4), CAU 417 is comprised of 34 corrective action sites (CASs) including 2 underground storage tanks, 5 septic systems, 8 shaker pad/cuttings disposal areas, 1 decontamination facility pit, 1 burn area, 1 scrap/trash dump, 1 outlier area, 8 housekeeping sites, and 16 mud pits. Four field events were conducted between September 1996 and June 1998 to complete a corrective action investigation indicating that the only contaminant of concern was total petroleum hydrocarbon (TPH) which was found in 18 of the CASs. A total of 1,028 samples were analyzed. During this investigation, a statistical approach was used to determine which depth intervals or layers inside individual mud pits and shaker pad areas were above the State action levels for the TPH. Other related field sampling activities (i.e., expedited site characterization methods, surface geophysical surveys, direct-push geophysical surveys, direct-push soil sampling, and rotosonic drilling located septic leachfields) were conducted in this four-phase investigation; however, no further contaminants of concern (COCs) were identified. During and after the investigation activities, several of the sites which had surface debris but no COCs were cleaned up as housekeeping sites, two septic tanks were closed in place, and two underground storage tanks were removed. The focus of this CADD was to identify CAAs which would promote the prevention or mitigation of human exposure to surface and subsurface soils with contaminant concentrations above preliminary action levels. Based on the potential exposure pathways, several risk-based CAAs were developed and evaluated against the individual CAS requirements. It was determined that a combination of the CAAs would be recommended to meet all applicable state and federal regulations for closure of these sites and to eliminate potential future exposure pathways to the TPH-contaminated soils.

U.S. Department of Energy, Nevada Operations office

1999-04-02T23:59:59.000Z

70

Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) |...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) Exploration Activity Details Location...

71

Flow Test At Fenton Hill HDR Geothermal Area (Callahan, 1996...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Callahan, 1996) Exploration Activity Details...

72

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity Details...

73

Tracer Testing At East Mesa Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At East Mesa Geothermal Area (1984) Exploration Activity Details Location East Mesa...

74

Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan,...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan, 1996) Exploration Activity Details...

75

Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et Al., 2000) Exploration Activity Details...

76

Flow Test At Chena Geothermal Area (Holdmann, Et Al., 2006) ...  

Open Energy Info (EERE)

Exploration Activity Details Location Chena Geothermal Area Exploration Technique Flow Test Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration Basis...

77

Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) |...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) Exploration Activity Details Location...

78

Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) Exploration Activity Details Location...

79

Geodetic Survey At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Geodetic Survey At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At...

80

Geothermometry At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At...

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

82

Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

83

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1994) Exploration Activity Details...

84

Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity...

85

Aerial Photography At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location...

86

Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium  

SciTech Connect (OSTI)

The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.

Taylor, S.R.; Kamm, J.R. [eds.

1993-11-01T23:59:59.000Z

87

Injectivity Test At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

Injectivity Test At Raft River Geothermal Area (1979) Injectivity Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Injectivity Test Activity Date 1979 Usefulness useful DOE-funding Unknown Notes Quantification of the pressure response prior to 600 minutes is not always possible. Short-duration (< 24-hour) injection or pump tests are conducted with the drilling rig equipment, and long-duration (21-day) injection and pump tests are then conducted with the permanent pumping facilities. References Allman, D. W.; Goldman, D.; Niemi, W. L. (1 January 1979) Evaluation of testing and reservoir parameters in geothermal wells at Raft

88

Geographic Information System At Nevada Test And Training Range Area  

Open Energy Info (EERE)

Geographic Information System At Nevada Test And Training Range Area Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes Nellis Air Force Range (NAFR) occupies over 3 million acres in southern Nevada (Figure 1). We recently assessed potential utility-grade geothermal resources and possible target areas for exploration by constructing a GIS of this area and applying the occurrence model ideas outlined above (ITSI, 2003; Sabin et al., 2004). We list below many of the factors considered.

89

Tracer Testing At East Mesa Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

Tracer Testing At East Mesa Geothermal Area (1983) Tracer Testing At East Mesa Geothermal Area (1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At East Mesa Geothermal Area (1983) Exploration Activity Details Location East Mesa Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the

90

Analysis of the Variability of Classsified and Unclassified Radiological Source term Inventories in the Frenchman Flat Area, Nevada test Site  

SciTech Connect (OSTI)

It has been proposed that unclassified source terms used in the reactive transport modeling investigations at NTS CAUs should be based on yield-weighted source terms calculated using the average source term from Bowen et al. (2001) and the unclassified announced yields reported in DOE/NV-209. This unclassified inventory is likely to be used in unclassified contaminant boundary calculations and is, thus, relevant to compare to the classified inventory. They have examined the classified radionuclide inventory produced by 10 underground nuclear tests conducted in the Frenchman Flat (FF) area of the Nevada Test Site. The goals were to (1) evaluate the variability in classified radiological source terms among the 10 tests and (2) compare that variability and inventory uncertainties to an average unclassified inventory (e.g. Bowen 2001). To evaluate source term variability among the 10 tests, radiological inventories were compared on two relative scales: geometric mean and yield-weighted geometric mean. Furthermore, radiological inventories were either decay corrected to a common date (9/23/1992) or the time zero (t{sub 0}) of each test. Thus, a total of four data sets were produced. The date of 9/23/1992 was chosen based on the date of the last underground nuclear test at the Nevada Test Site.

Zhao, P; Zavarin, M

2008-06-04T23:59:59.000Z

91

Stress Test At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Stress Test At Coso Geothermal Area (2004) Stress Test At Coso Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Stress Test At Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Stress Test Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis EGS potential of Coso Geothermal Region Notes A hydraulic fracturing stress test at 3,703 feet TVD was used to constrain a normal faulting and strike-slip faulting stress tensor for this reservoir. The shear and normal stresses resolved on the fracture and fault planes were calculated and used to identify the subset of critically stressed planes that act to maintain permeability within the Coso Geothermal Field. References

92

Underground waste barrier structure  

DOE Patents [OSTI]

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

93

Flow Test At Coso Geothermal Area (1978) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Coso Geothermal Area (1978) Flow Test At Coso Geothermal Area (1978) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Flow Test Activity Date 1978 Usefulness not indicated DOE-funding Unknown Notes Flow tests of well CGEH No. 1 were conducted. LBL performed eight temperature surveys after completion of the well to estimate equilibrium reservoir temperatures. Downhole fluid samples were obtained by the U.S. Geological Survey (USGS) and Lawrence Berkeley Laboratory (LBL), and a static pressure profile was obtained. The first test began September 5, 1978 using nitrogen stimulation to initiate flow; this procedure resulted in small flow and subsequent filling of the bottom hole with drill cuttings. The second test, on November 2, 1978, utilized a nitrogen-foam-water mixture to clean residual particles from bottom hole,

94

Tracer Testing At Coso Geothermal Area (1993) | Open Energy Information  

Open Energy Info (EERE)

Tracer Testing At Coso Geothermal Area (1993) Tracer Testing At Coso Geothermal Area (1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Coso Geothermal Area (1993) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 1993 Usefulness useful DOE-funding Unknown Exploration Basis To determine the steam and water mass flow rate Notes The method involves precisely metered injection of liquid and vapor phase tracers into the two-phase production pipeline and concurrent sampling of each phase downstream of the injection point. Subsequent chemical analysis of the steam and water samples for tracer content enables the calculation of mass flowrate for each phase given the known mass injection rates of

95

Tracer Testing At Coso Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Tracer Testing At Coso Geothermal Area (2006) Tracer Testing At Coso Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Coso Geothermal Area (2006) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 2006 Usefulness useful DOE-funding Unknown Exploration Basis To characterize the flow patterns of fluid injected into well 68-20RD. Notes A conservative liquid phase tracer, 2-naphthalene sulfonate, and a two-phase tracer, ethanol, were injected into well 68-20RD. Surrounding production wells were sampled over the subsequent 125 days and analyzed for the two tracers. The results demonstrate the efficacy of the simultaneous use of liquid-phase and two-phase tracers in fluid-depleted geothermal

96

Tracer Testing At Raft River Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

84 Usefulness not indicated DOE-funding Unknown Notes Tracer testing was undertaken at Raft River geothermal area. References Kroneman, R. L.; Yorgason, K. R.; Moore, J. N. (1...

97

Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979  

SciTech Connect (OSTI)

This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography.

Glanzman, V.M.

1980-01-01T23:59:59.000Z

98

Tracer Testing At Raft River Geothermal Area (1983) | Open Energy  

Open Energy Info (EERE)

3) 3) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Tracer Testing Activity Date 1983 Usefulness not indicated DOE-funding Unknown Exploration Basis To develop chemical tracing procedures for geothermal areas. Notes Two field experiments were conducted to develop chemical tracer procedures for use with injection-backflow testing, one on the fracture-permeability Raft River reservoir and the other on the matrix-permeability East Mesa reservoir. Results from tests conducted with incremental increases in the injection volume at both East Mesa and Raft River suggests that, for both reservoirs, permeability remained uniform with increasing distance from the well bore. Increased mixing during quiescent periods, between injection and

99

GIS-based pre-mining land damage assessment for underground coal mines in high groundwater area  

Science Journals Connector (OSTI)

Coal mining cause different degrees of damage to both land and ecosystems. Evaluation of disturbed land is a fundamental and prerequisite work for land reclamation and rehabilitation. However, most of those evaluations were carried out when mining was under process or after it cease. This paper proposes an innovative assessment model for pre-evaluation which could be implemented before mining activity begins. A geographic information system (GIS) was constructed to evaluate land damage. Three natural condition factors and three geological condition factors were chosen for evaluation. The results show that: land damage was categorised as five degrees, which are negligible, slight, moderate, severe, and very severe. Furthermore, very severely damaged areas are mainly concentrated in the northwest part of the coal mine, whereas slight damaged areas are mainly concentrated in the southwest. The developed coupling technique was used to forecast land damage, and provide reference for reclamation work.

Wu Xiao; Zhenqi Hu

2014-01-01T23:59:59.000Z

100

Marysville Test Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Test Well Geothermal Area Test Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Test Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.75333333,"lon":-112.3766667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Saving an Underground Reservoir  

E-Print Network [OSTI]

significant part of the region?s agricultural economy. Though the area has few rivers and lakes, underneath it lies a supply of water that has provided groundwater for developing this economy. This underground water, the Ogallala Aquifer, is a finite.... ?We have already seen isolat- ed areas that have no irrigation water remaining and the economy has been crushed.? The region produces about 4 percent of the nation?s corn, 25 percent of the hard red winter wheat, 23 per- cent of the grain sorghum...

Wythe, Kathy

2006-01-01T23:59:59.000Z

102

100 Area soil washing bench-scale test procedures  

SciTech Connect (OSTI)

This document describes methodologies and procedures for conducting soil washing treatability tests in accordance with the 100 Area Soil Washing Treatability Test Plan (DOE-RL 1992, Draft A). The objective of this treatability study is to evaluate the use of physical separation systems and chemical extraction methods as a means of separating chemically and radioactively contaminated soil fractions from uncontaminated soil fractions. These data will be primarily used for determining feasibility of the individual unit operations and defining the requirements for a system, or systems, for pilot-scale testing.

Freeman, H.D.; Gerber, M.A.; Mattigod, S.V.; Serne, R.J.

1993-03-01T23:59:59.000Z

103

Corrective Action Decision Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada, Rev. No. 0  

SciTech Connect (OSTI)

This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the subsurface at the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443, CNTA - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). CAU 443 is located in Hot Creek Valley in Nye County, Nevada, north of U.S. Highway 6, about 48 kilometers north of Warm Springs, Nevada. The CADD/CAP combines the decision document (CADD) with the corrective action plan (CAP) and provides or references the specific information necessary to recommend corrective actions for the UC-1 Cavity (Corrective Action Site 58-57-001) at CAU 443, as provided in the FFACO. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at CNTA. To achieve this, the following tasks were required: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend a preferred corrective action alternative for the subsurface at CNTA. A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites (Corrective Action Unit No. 443)'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first involved the gathering and interpretation of geologic and hydrogeologic data into a three-dimensional numerical model of groundwater flow, and use of the output of the flow model for a transport model of radionuclide release and migration behavior (Pohlmann et al., 2000). The second modeling phase (known as a Data Decision Analysis [DDA]) occurred after the Nevada Division of Environmental Protection reviewed the first model and was designed to respond to concerns regarding model uncertainty (Pohll and Mihevc, 2000). The third modeling phase updated the original flow and transport model to incorporate the uncertainty identified in the DDA, and focused the model domain on the region of interest to the transport predictions. This third phase culminated in the calculation of contaminant boundaries for the site (Pohll et al., 2003).

Susan Evans

2004-11-01T23:59:59.000Z

104

Tracer Testing At Coso Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Coso Geothermal Area (2004) Coso Geothermal Area (2004) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Tracer Testing Activity Date 2004 Usefulness not indicated DOE-funding Unknown Exploration Basis To determine the EGS potential of the Coso Geothermal Field Notes A dramatic decrease in the ratio of chloride to boron was observed in the liquid discharge of a well proposed for EGS development. The decrease appears to be related to the transformation of some feed zones in the well from liquid-dominated to vapor-dominated. High concentrations of boron are transported to the wellbore in the steam, where it fractionates to the liquid phase flowing in from liquid-dominated feed zones. The high-boron steam is created when the reservoir liquid in some of the feed zones boils

105

Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Hot Pot Area (DOE GTP) Exploration Activity...

106

Flow Test At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At New River Area (DOE GTP) Exploration Activity...

107

Flow Test At Gabbs Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Gabbs Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Gabbs Valley Area (DOE GTP) Exploration...

108

Flow Test At Mcgee Mountain Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Mcgee Mountain Area (DOE GTP) Exploration...

109

Flow Test At San Emidio Desert Area (DOE GTP) | Open Energy Informatio...  

Open Energy Info (EERE)

Flow Test At San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At San Emidio Desert Area (DOE GTP)...

110

Flow Test At Black Warrior Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Black Warrior Area (DOE GTP) Exploration...

111

Flow Test At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Glass Buttes Area (DOE GTP) Exploration...

112

Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

113

An X-Band Gun Test Area at SLAC  

SciTech Connect (OSTI)

The X-Band Test Area (XTA) is being assembled in the NLCTA tunnel at SLAC to serve as a test facility for new RF guns. The first gun to be tested will be an upgraded version of the 5.6 cell, 200 MV/m peak field X-band gun designed at SLAC in 2003 for the Compton Scattering experiment run in ASTA. This new version includes some features implemented in 2006 on the LCLS gun such as racetrack couplers, increased mode separation and elliptical irises. These upgrades were developed in collaboration with LLNL since the same gun will be used in an injector for a LLNL Gamma-ray Source. Our beamline includes an X-band acceleration section which takes the electron beam up to 100 MeV and an electron beam measurement station. Other X-Band guns such as the UCLA Hybrid gun will be characterized at our facility.

Limborg-Deprey, C.; Adolphsen, C.; Chu, T.S.; Dunning, M.P.; Jobe, R.K.; Jongewaard, E.N.; Hast, C.; Vlieks, A.E.; Wang, F.; Walz, D.R.; /SLAC; Marsh, R.A.; Anderson, S.G.; Hartemann, F.V.; Houck, T.L.; /LLNL, Livermore

2012-09-07T23:59:59.000Z

114

An update for the MuCool test area  

SciTech Connect (OSTI)

Construction of a new facility known as the MuCool Test Area (MTA) has been completed at Fermi National Accelerator Laboratory. This facility supports research in new accelerator technologies for future endeavors such as a Neutrino Factory or Muon Collider. During the summer of 2004, an initial set of tests was completed for the filling of a convection-style liquid hydrogen absorber designed by KEK. The absorber contained 6.2 liquid liters of hydrogen and was tested for a range of heating conditions to quantify the absorber's heat exchanger performance. Future work at Fermilab includes the design, construction, and installation of a forced-flow absorber to be used with other components built to investigate the properties of a muon ionization cooling channel. A Tevatron-style refrigerator/compressor building is to be operational by spring of 2006 in support of the absorber tests and also to provide 5-K helium and liquid nitrogen to a 5-T solenoid magnet, an active element of the future test apparatus. The refrigerator will be configured in such a manner as to meet the 5 K and 14-20-K helium needs of the MTA. This paper reviews the challenges and successes of the past KEK absorber tests as well as looks into the future cryogenic capabilities and intentions of the site.

Bross, A.; Cummings, M.A.; Darve, C.; Ishimoto, S.; Klebaner, A.; Martinez, A.; Norris, B.; Pei, L.; /Fermilab /KEK, Tsukuba /Northern Illinois U.

2006-01-01T23:59:59.000Z

115

100 Area excavation treatability test plan. Revision 1  

SciTech Connect (OSTI)

This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992f). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications. The most recent applications are excavation of the 618-9 burial ground and partial remediation of the 316-5 process trenches (DOE-RL 1992a, 1992b). Both projects included excavation of soil and dust control (using water sprays). Excavation is a well-developed technology and equipment is readily available; however, certain aspects of the excavation process require testing before use in full-scale operations. These include the following: Measurement and control of excavation-generated dust and airborne contamination; verification of field analytical system capabilities; demonstration of soil removal techniques specific to the 100 Area waste site types and configurations. The execution of this treatability test may produce up to 500 yd{sub 3} of contaminated soil, which will be used for future treatability tests. These tests may include soil washing with vitrification of the soil washing residuals. Other tests will be conducted if soil washing is not a viable alternative.

Not Available

1993-08-01T23:59:59.000Z

116

Hanford 100-D Area Biostimulation Treatability Test Results  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory conducted a treatability test designed to demonstrate that in situ biostimulation can be applied to help meet cleanup goals in the Hanford Site 100-D Area. In situ biostimulation has been extensively researched and applied for aquifer remediation over the last 20 years for various contaminants. In situ biostimulation, in the context of this project, is the process of amending an aquifer with a substrate that induces growth and/or activity of indigenous bacteria for the purpose of inducing a desired reaction. For application at the 100-D Area, the purpose of biostimulation is to induce reduction of chromate, nitrate, and oxygen to remove these compounds from the groundwater. The in situ biostimulation technology is intended to provide supplemental treatment upgradient of the In Situ Redox Manipulation (ISRM) barrier previously installed in the Hanford 100-D Area and thereby increase the longevity of the ISRM barrier. Substrates for the treatability test were selected to provide information about two general approaches for establishing and maintaining an in situ permeable reactive barrier based on biological reactions, i.e., a biobarrier. These approaches included 1) use of a soluble (miscible) substrate that is relatively easy to distribute over a large areal extent, is inexpensive, and is expected to have moderate longevity; and 2) use of an immiscible substrate that can be distributed over a reasonable areal extent at a moderate cost and is expected to have increased longevity.

Truex, Michael J.; Vermeul, Vincent R.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Elmore, Rebecca P.; Mitroshkov, Alexandre V.; Sklarew, Deborah S.; Johnson, Christian D.; Oostrom, Martinus; Newcomer, Darrell R.; Brockman, Fred J.; Bilskis, Christina L.; Hubbard, Susan S.; Peterson, John E.; Williams, Kenneth H.; Gasperikova, E.; Ajo-Franklin, J.

2009-09-30T23:59:59.000Z

117

Logistics background study: underground mining  

SciTech Connect (OSTI)

Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

Hanslovan, J. J.; Visovsky, R. G.

1982-02-01T23:59:59.000Z

118

Analysis of the Variability of Classified and Unclassified Radiological Source term Inventories in the Rainier Mesa/Shoshone Mountain Area, Nevada Test Site  

SciTech Connect (OSTI)

It has been proposed that unclassified source terms used in RM/SM reactive transport modeling investigations should be based on yield-weighted source terms calculated using the RM/SM average source term from Bowen et al. (2001) and the unclassified announced yields reported in DOE/NV-209. This unclassified inventory is likely to be used in unclassified contaminant boundary calculations and is, thus, relevant to compare to the classified inventory. They have examined the classified radionuclide inventory produced by 73 underground nuclear tests conducted in the Rainier Mesa/Shoshone Mountain (RM/SM) area of the Nevada Test Site. The goals were to (1) evaluate the variability in classified radiological source terms among the 73 tests and (2) and compare that variability and inventory uncertainties to an average unclassified inventory (e.g. Bowen 2001). To evaluate source term variability among the 73 tests, radiological inventories were compared on two relative scales: geometric mean and yield-weighted geometric mean. Furthermore, radiological inventories were either decay corrected to a common date (9/23/1992) or the time zero (t{sub 0}) of each test. Thus, a total of four data sets were produced. The date of 9/23/1992 was chosen based on the date of the last underground nuclear test at the Nevada Test Site.

Zhao, P; Zavarin, M

2008-06-04T23:59:59.000Z

119

PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY  

SciTech Connect (OSTI)

The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

HALGREN DL

2010-03-12T23:59:59.000Z

120

Underground Layout Configuration  

SciTech Connect (OSTI)

The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

A. Linden

2003-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Environmental Assessment -- Test Area North pool stabilization project update  

SciTech Connect (OSTI)

The purpose of this Environmental Assessment (EA) is to update the ``Test Area North Pool Stabilization Project`` EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped from the EA/FONSI issued May 6, 1996. A new drying process was subsequently developed and is analyzed in Section 2.1.2 of this document. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN.

NONE

1997-08-01T23:59:59.000Z

122

Draft environmental assessment -- Test Area North pool stabilization project update  

SciTech Connect (OSTI)

The purpose of this Environmental Assessment (EA) is to update the ``Test Area North Pool Stabilization Project`` EA (DOE/EA-1050) and finding of no significant impact (FONSI) issued May 6, 1996. This update analyzes the environmental and health impacts of a drying process for the Three Mile Island (TMI) nuclear reactor core debris canisters now stored underwater in a facility on the Idaho National Engineering and Environmental Laboratory (INEEL). A drying process was analyzed in the predecision versions of the EA released in 1995 but that particular process was determined to be ineffective and dropped form the Ea/FONSI issued May 6, 1996. The origin and nature of the TMI core debris and the proposed drying process are described and analyzed in detail in this EA. As did the 1996 EA, this update analyzes the environmental and health impacts of removing various radioactive materials from underwater storage, dewatering these materials, constructing a new interim dry storage facility, and transporting and placing the materials into the new facility. Also, as did the 1996 EA, this EA analyzes the removal, treatment and disposal of water from the pool, and placement of the facility into a safe, standby condition. The entire action would take place within the boundaries of the INEEL. The materials are currently stored underwater in the Test Area North (TAN) building 607 pool, the new interim dry storage facility would be constructed at the Idaho Chemical Processing Plant (ICPP) which is about 25 miles south of TAN.

NONE

1997-06-01T23:59:59.000Z

123

Massive Hanford Test Reactor Removed- Plutonium Recycle Test Reactor removed from Hanford’s 300 Area  

Broader source: Energy.gov [DOE]

RICHLAND, WA – Hanford’s River Corridor contractor, Washington Closure Hanford, has met a significant cleanup challenge on the U.S. Department of Energy’s (DOE) Hanford Site by removing a 1,082-ton nuclear test reactor from the 300 Area.

124

Cryogenics for the MuCool Test Area (MTA)  

SciTech Connect (OSTI)

MuCool Test Area (MTA) is a complex of buildings at Fermi National Accelerator Laboratory, which are dedicated to operate components of a cooling cell to be used for Muon Collider and Neutrino Factory R and D. The long-term goal of this facility is to test ionization cooling principles by operating a 25-liter liquid hydrogen (LH2) absorber embedded in a 5 Tesla superconducting solenoid magnet. The MTA solenoid magnet will be used with RF cavities exposed to a high intensity beam. Cryogens used at the MTA include LHe, LN2 and LH2. The latter dictates stringent system design for hazardous locations. The cryogenic plant is a modified Tevatron refrigerator based on the Claude cycle. The implementation of an in-house refrigerator system and two 300 kilowatt screw compressors is under development. The helium refrigeration capacity is 500 W at 14 K. In addition the MTA solenoid magnet will be batch-filled with LHe every 2 days using the same cryo-plant. This paper reviews cryogenic systems used to support the Muon Collider and Neutrino Factory R and D programs and emphasizes the feasibility of handling cryogenic equipment at MTA in a safe manner.

Darve, Christine; Norris, Barry; Pei, Liujin [Fermilab, Cryogenics department, MS347 Batavia, Illinois, 60510 (United States)

2006-03-20T23:59:59.000Z

125

Test Area North Pool Stabilization Project: Environmental assessment  

SciTech Connect (OSTI)

The Test Area North (TAN) Pool is located within the fenced TAN facility boundaries on the Idaho National Engineering Laboratory (INEL). The TAN pool stores 344 canisters of core debris from the March, 1979, Three Mile Island (TMI) Unit 2 reactor accident; fuel assemblies from Loss-of-Fluid Tests (LOFT); and Government-owned commercial fuel rods and assemblies. The LOFT and government owned commercial fuel rods and assemblies are hereafter referred to collectively as {open_quotes}commercial fuels{close_quotes} except where distinction between the two is important to the analysis. DOE proposes to remove the canisters of TMI core debris and commercial fuels from the TAN Pool and transfer them to the Idaho Chemical Processing Plant (ICPP) for interim dry storage until an alternate storage location other than at the INEL, or a permanent federal spent nuclear fuel (SNF) repository is available. The TAN Pool would be drained and placed in an industrially and radiologically safe condition for refurbishment or eventual decommissioning. This environmental assessment (EA) identifies and evaluates environmental impacts associated with (1) constructing an Interim Storage System (ISS) at ICPP; (2) removing the TMI and commercial fuels from the pool and transporting them to ICPP for placement in an ISS, and (3) draining and stabilizing the TAN Pool. Miscellaneous hardware would be removed and decontaminated or disposed of in the INEL Radioactive Waste Management Complex (RWMC). This EA also describes the environmental consequences of the no action alternative.

NONE

1996-05-01T23:59:59.000Z

126

Vitrification testing of soil fines from contaminated Hanford 100 Area and 300 Area soils  

SciTech Connect (OSTI)

The suitability of Hanford soil for vitrification is well known and has been demonstrated extensively in other work. The tests reported here were carried out to confirm the applicability of vitrification to the soil fines (a subset of the Hanford soil potentially different in composition from the bulk soil) and to provide data on the performance of actual, vitrified soil fines. It was determined that the soil fines were generally similar in composition to the bulk Hanford soil, although the fraction <0.25 mm in the 100 Area soil sample appears to differ somewhat from the bulk soil composition. The soil fines are readily melted into a homogeneous glass with the simple additions of CaO and/or Na{sub 2}O. The vitrified waste (plus additives) occupies only 60% of the volume of the initial untreated waste. Leach testing has shown the glasses made from the soil fines to be very durable relative to natural and man-made glasses and has demonstrated the ability of the vitrified waste to greatly reduce the release of radionuclides to the environment. Viscosity and electrical conductivity measurements indicate that the soil fines will be readily processable, although with levels of additives slightly greater than used in the radioactive melts. These tests demonstrate the applicability of vitrification to the contaminated soil fines and the exceptional performance of the waste form resulting from the vitrification of contaminated Hanford soils.

Ludowise, J.D.

1994-05-01T23:59:59.000Z

127

Flow Test At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area...

128

Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area...

129

High Temperature Superconducting Underground Cable  

SciTech Connect (OSTI)

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

130

Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

Flow Test At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Neal Hot...

131

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation...

132

Science @WIPP: Underground Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

133

Underground Injection Control (Louisiana)  

Broader source: Energy.gov [DOE]

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

134

STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITYNEVADA TEST SITE, NEVADA  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada.

NONE

2006-07-01T23:59:59.000Z

135

Seismic verification of underground explosions  

SciTech Connect (OSTI)

The first nuclear test agreement, the test moratorium, was made in 1958 and lasted until the Soviet Union unilaterally resumed testing in the atmosphere in 1961. It was followed by the Limited Test Ban Treaty of 1963, which prohibited nuclear tests in the atmosphere, in outer space, and underwater. In 1974 the Threshold Test Ban Treaty (TTBT) was signed, limiting underground tests after March 1976 to a maximum yield of 250 kt. The TTBT was followed by a treaty limiting peaceful nuclear explosions and both the United States and the Soviet Union claim to be abiding by the 150-kt yield limit. A comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, has also been discussed. However, a verifiable CTBT is a contradiction in terms. No monitoring technology can offer absolute assurance that very-low-yield illicit explosions have not occurred. The verification process, evasion opportunities, and cavity decoupling are discussed in this paper.

Glenn, L.A.

1985-06-01T23:59:59.000Z

136

Underground Power Cables  

Science Journals Connector (OSTI)

...1973 research-article Underground Power Cables J. D. Endacott Up to the present, effectively...particular, in recent years, the oil-filled cable system using cellulose paper impregnated...design of supertension underground power cable systems are considered. The limitations...

1973-01-01T23:59:59.000Z

137

Long-term Monitoring Plan for the Central Nevada Test Area  

SciTech Connect (OSTI)

The groundwater flow and transport model of the Faultless underground nuclear test conducted at the Central Nevada Test Area (CNTA) was accepted by the state regulator and the environmental remediation efforts at the site have progressed to the stages of model validation and long-term monitoring design. This report discusses the long-term monitoring strategy developed for CNTA. Subsurface monitoring is an expensive and time-consuming process, and the design approach should be based on a solid foundation. As such, a thorough literature review of monitoring network design is first presented. Monitoring well networks can be designed for a number of objectives including aquifer characterization, parameter estimation, compliance monitoring, detection monitoring, ambient monitoring, and research monitoring, to name a few. Design methodologies also range from simple hydrogeologic intuition-based tools to sophisticated statistical- and optimization-based tools. When designing the long-term monitoring well network for CNTA, a number of issues are carefully considered. These are the uncertainty associated with the subsurface environment and its implication for monitoring design, the cost associated with monitoring well installation and operation, the design criteria that should be used to select well locations, and the potential conflict between different objectives such as early detection versus impracticality of placing wells in the vicinity of the test cavity. Given these considerations and the literature review of monitoring design studies, a multi-staged approach for development of the long-term monitoring well network for CNTA is proposed. This multi-staged approach will proceed in parallel with the validation efforts for the groundwater flow and transport model of CNTA. Two main stages are identified as necessary for the development of the final long-term monitoring well network for the site. The first stage is to use hydrogeologic expertise combined with model simulations and probability based approaches to select the first set of monitoring wells that will serve two purposes. The first is to place the wells in areas likely to encounter migration pathways thereby enhancing the probability of detecting radionuclide migration in the long run. The second objective is crucial in the short run and is aimed at using this set of wells to collect validation data for the model. The selection criteria should thus balance these two objectives. Based on the results of the validation process that progresses concurrently with the first monitoring stage, either more wells will be needed in this first stage or the second stage will be initiated. The second monitoring design stage will be based on an optimum design methodology that uses a suitable statistical approach, combined with an optimization approach, to augment the initial set of wells and develop the final long-term monitoring network. The first-stage probabilistic analysis conducted using the CNTA model indicates that the likelihood of migration away from the test cavity is very low and the probability of detecting radionuclides in the next 100 years is extremely low. Therefore, it is recommended to place one well in the downstream direction along the model longitudinal centerline (i.e., directly north of the working point), which is the location with the highest probability of encountering the plume. Lack of significant plume spreading, coupled with the extremely low velocities, suggests that this one well is sufficient for the first stage. Data from this well, and from additional wells located with validation as the prime objective, will benefit the model validation process. In the long run, this first monitoring well is going to be crucial for the long-term monitoring of the site (assuming that the flow model is validated), as it will be the most likely place to detect any plume migration away from the cavity.

A. Hassan

2003-09-02T23:59:59.000Z

138

Flow Test At Raft River Geothermal Area (2008) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2008) Flow Test At Raft River Geothermal Area (2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2008) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2008 Usefulness not indicated DOE-funding Unknown Exploration Basis To confirm resource using flow tests Notes Both production and injection wells were flow tested. Aslo includes interference testing across the well field. References Glaspey, Douglas J. (30 January 2008) Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Raft_River_Geothermal_Area_(2008)&oldid=473856

139

Microsoft Word - Sludge Test Area CX Determination Form12172012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sludge Test Facility at the Transuranic (TRU) Waste Processing Center (TWPC) [CX-TWPC-13-0001] Sludge Test Facility at the Transuranic (TRU) Waste Processing Center (TWPC) [CX-TWPC-13-0001] Program or Field Office: Environmental Management - Oak Ridge Location(s) (City/County/State): Oak Ridge, Tennessee Proposed Action Description: The proposed action is to construct and operate a sludge test facility at the Transuranic (TRU) Waste Processing Center (TWPC) to conduct testing activities for sludge mobilization, mixing, and removal from the Melton Valley Storage Tanks (MVST). The testing is needed to develop appropriate, compliant treatment to a final waste form that will meet the Nevada National Security Site (NNSS) Waste Acceptance Criteria (WAC). This testing is needed for the mobilization, removal, and treatment of the sludge regardless of

140

Flow Test At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgw...

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Tracer Testing At Dixie Valley Geothermal Area (Reed, 2007) ...  

Open Energy Info (EERE)

Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Peter E. Rose, Stuart D. Johnson, Phaedra Kilbourn (2001) Tracer Testing at Dixie Valley, Nevada, Using 2-Naphthalene...

142

Addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 452: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: • 25-25-09, Spill H940825C (from UST 25-3101-1) • 25-25-14, Spill H940314E (from UST 25-3102-3) • 25-25-15, Spill H941020E (from UST 25-3152-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Grant Evenson

2009-05-01T23:59:59.000Z

143

Addendum 2 to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This document constitutes an addendum to the Streamlined Approach for Environmental Restoration Closure Report for Corrective Action Unit 454: Historical Underground Storage Tank Release Sites, Nevada Test Site, Nevada, April 1998 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the URs for CASs: • 12-25-08, Spill H950524F (from UST 12-B-1) • 12-25-10, Spill H950919A (from UST 12-COMM-1) These URs were established as part of Federal Facility Agreement and Consent Order (FFACO) corrective actions and were based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since these URs were established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, these URs were re-evaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the URs) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove these URs because contamination is not present at these sites above the risk-based FALs. Requirements for inspecting and maintaining these URs will be canceled, and the postings and signage at each site will be removed. Fencing and posting may be present at these sites that are unrelated to the FFACO URs such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at these sites.

Grant Evenson

2009-05-01T23:59:59.000Z

144

Assessment of seawater intrusion into underground oil storage cavern and prediction of its sustainability  

Science Journals Connector (OSTI)

Operation of underground oil (gas) storage cavern in coastal area can induce seawater intrusion because excavation of underground storage cavern causes the groundwater level decrease of coastal aquifer. Seawater ...

Eunhee Lee; Jeong-Won Lim; Hee Sun Moon; Kang-Kun Lee

2014-07-01T23:59:59.000Z

145

SRF Test Areas Cryogenic System Controls Graphical User Interface  

SciTech Connect (OSTI)

Fermi National Accelerator Laboratory has constructed a superconducting 1.3 GHz cavity test facility at Meson Detector Building (MDB) and a superconducting 1.3 GHz cryomodule test facility located at the New Muon Lab Building (NML). The control of these 2K cryogenic systems is accomplished by using a Synoptic graphical user interface (GUI) to interact with the underlying Fermilab Accelerator Control System. The design, testing and operational experience of employing the Synoptic client-server system for graphical representation will be discussed. Details on the Synoptic deployment to the MDB and NML cryogenic sub-systems will also be discussed. The implementation of the Synoptic as the GUI for both NML and MDB has been a success. Both facilities are currently fulfilling their individual roles in SCRF testing as a result of successful availability of the cryogenic systems. The tools available for creating Synoptic pages will continue to be developed to serve the evolving needs of users.

DeGraff, B.D.; Ganster, G.; Klebaner, A.; Petrov, A.D.; Soyars, W.M.; /Fermilab

2011-06-09T23:59:59.000Z

146

Underground pumped hydroelectric storage  

SciTech Connect (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

147

Results of Electric Survey in the Area of Hawaii Geothermal Test...  

Open Energy Info (EERE)

Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey in the Area of Hawaii...

148

Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A  

Open Energy Info (EERE)

Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Abstract N/A Authors James Kauahikaua and Douglas Klein Published Journal Geothermal Resources Council, TRANSACTIONS, 1978 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A Citation James Kauahikaua,Douglas Klein. 1978. Results of Electric Survey in the Area of Hawaii Geothermal Test Well HGP-A. Geothermal Resources Council, TRANSACTIONS. 2:363-366. Retrieved from "http://en.openei.org/w/index.php?title=Results_of_Electric_Survey_in_the_Area_of_Hawaii_Geothermal_Test_Well_HGP-A&oldid=682499

149

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) | Open Energy  

Open Energy Info (EERE)

Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes Core holes enabled injection and flow testing up to 70 gpm. References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake City, California Geothermal Field Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Lake_City_Hot_Springs_Area_(Benoit_Et_Al.,_2005)&oldid=386872" Category: Exploration Activities What links here Related changes

150

The MuCool Test Area and RF Program  

SciTech Connect (OSTI)

The MuCool RF Program focuses on the study of normal conducting RF structures operating in high magnetic field for applications in muon ionization cooling for Neutrino Factories and Muon Colliders. This paper will give an overview of the program, which will include a description of the test facility and its capabilities, the current test program, and the status of a cavity that can be rotated in the magnetic field which allows for a more detailed study of the maximum stable operating gradient vs. magnetic field strength and angle.

Bross, A D; Jansson, A; Moretti, A; Yonehara, K; Huang, D; Torun, Y; Li, D; Norem, J; Palmer, R B; Stratakis, D

2010-05-01T23:59:59.000Z

151

Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554.

David A. Strand

2004-10-01T23:59:59.000Z

152

Flow Test At Fenton Hill HDR Geothermal Area (Grigsby, Et Al...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details...

153

Tracer Testing At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Neal Hot Springs Geothermal Area (U.S. Geothermal Inc., 2012) Exploration Activity...

154

Flow Test At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Flow Test At Mccoy Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration...

155

Flow Test At Jemez Pueblo Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Exploration Activity Details Location Jemez Pueblo Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

156

Flow Test At Crump's Hot Springs Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Details Location Crump's Hot Springs Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

157

Flow Test At Steamboat Springs Area (Combs, Et Al., 1999) | Open...  

Open Energy Info (EERE)

Exploration Activity Details Location Steamboat Springs Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References Jim Combs, John...

158

Flow Test At Newberry Caldera Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Exploration Activity Details Location Newberry Caldera Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011)...

159

Oil shale retorted underground  

Science Journals Connector (OSTI)

Oil shale retorted underground ... Low-temperature underground retorting of oil shale produces a crude oil with many attractive properties, Dr. George R. Hill of the University of Utah told a meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers last week in Los Angeles. ... Typical above-ground retorting of oil shale uses temperatures of 900° to 1100° F. because of the economic need ... ...

1967-02-27T23:59:59.000Z

160

Infiltration Testing of Homes in the Houston Gulf Coast Area  

E-Print Network [OSTI]

Air Changes per Hour (ACH) are determined by construction and weather conditions. In this test, it was found that the ACH is equal to .59 plus .07 for every year of age the home has. The higher ACH values for age are due to deterioration...

Howel, E. S.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

E-Print Network 3.0 - area field test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

field test Search Powered by Explorit Topic List Advanced Search Sample search results for: area field test Page: << < 1 2 3 4 5 > >> 1 FIELD STUDIES IN NEOTROPICAL ECOSYSTEMS...

162

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) |  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Dash, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes Fenton Hill HDR site. References Z. V. Dash, H. D. Murphy, R. L. Aamodt, R. G. Aguilar, D. W. Brown, D. A. Counce, H. N. Fisher, C. O. Grigsby, H. Keppler, A. W. Laughlin, R. M. Potter, J. W. Tester, P. E. Trujillo Jr, G. Zyvoloski (1983) Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Dash,_Et_Al.,_1983)&oldid=511316"

163

P-wave Spectra from Underground Nuclear Explosions  

Science Journals Connector (OSTI)

......three underground explosions at the Nevada Test Site and three earthquakes recorded...nuclear explosions detonated in Nevada (Jorum and Handley) and for a...spectra from two explosions at the Nevada Test Site (Jorum and Handley) and a presumed......

Peter Molnar

1971-08-01T23:59:59.000Z

164

Cotton Performance Tests in the Texas High Plains and Trans-Pecos Areas of Texas 20081/  

E-Print Network [OSTI]

Cotton Performance Tests in the Texas High Plains and Trans-Pecos Areas of Texas 20081/ J.K. Dever; Area Agronomist-Cotton, Extension Entomologist, Texas AgriLife Extension, Lubbock; Research Scientist......................................................................................................................... 6 Table UNIFORM COTTON VARIETY TESTS - IRRIGATED Lubbock 1 Production Information

Mukhtar, Saqib

165

Cotton Performance Tests in the Texas High Plains and Trans-Pecos Areas of Texas 20071/  

E-Print Network [OSTI]

Cotton Performance Tests in the Texas High Plains and Trans-Pecos Areas of Texas 20071/ J, Lubbock; Area Agronomist-Cotton, Extension Program Specialist, Texas AgriLife Extension, Lubbock; Research......................................................................................................................... 6 Table COTTON VARIETY TESTS - IRRIGATED Lamesa 1 Production Information

Mukhtar, Saqib

166

EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho |  

Broader source: Energy.gov (indexed) [DOE]

50: Test Area North Pool Stabilization Project, Idaho Falls, 50: Test Area North Pool Stabilization Project, Idaho Falls, Idaho EA-1050: Test Area North Pool Stabilization Project, Idaho Falls, Idaho SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Idaho National Engineering Laboratory's proposal to remove 344 canisters of Three Mile Island core debris and commercial fuels from the Test Area North Pool and transfer them to the Idaho Chemical Processing Plant for interim dry storage until an alternate storage location other than INEL, or a permanent federal spent nuclear fuel repository is available. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 1996 EA-1050: Finding of No Significant Impact Test Area North Pool Stabilization Project

167

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983)  

Open Energy Info (EERE)

Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Injectivity Test Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Injectivity_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511318

168

Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) | Open Energy  

Open Energy Info (EERE)

Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes After the Welaco temperature survey was completed for TG52-7, preparations were completed for a controlled airlift test. This test was completed in the period from 19-20 September 2003 for some 23 hours. The well produced steady state flow of about 320-325 gpm at a wellhead temperature of 126.7degrees C (260degreesF). This production rate is equivalent to about 162,000 pounds per hour, with the production temperature producing usable

169

Flow Test At Raft River Geothermal Area (2004) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2004) Flow Test At Raft River Geothermal Area (2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2004) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2004 Usefulness useful DOE-funding GRED II Notes Geothermal Resource Exploration and Definition Projects Raft River (GRED II): Re-assessment and testing of previously abandoned production wells. The objective of the U.S. Geothermal effort is to re-access the available wellbores, assess their condition, perform extensive testing of the reservoir to determine its productive capacity, and perform a resource utilization assessment. At the time of this paper, all five wells had been

170

Flow Test At Coso Geothermal Area (1985-1986) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Coso Geothermal Area (1985-1986) Flow Test At Coso Geothermal Area (1985-1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Coso Geothermal Area (1985-1986) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Flow Test Activity Date 1985 - 1986 Usefulness not indicated DOE-funding Unknown Exploration Basis Understand the connectivity of the production and injection wells. Notes A long-term flow test was conducted involving one producing well (well 43-7), one injector (well 88-1), and two observation wells (well 66-6 and California Energy Co's well 71A-7). The flow test included a well production metering system and a water injection metering system. References Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.; Gentner, R.

171

Flow Test At Raft River Geothermal Area (2006) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (2006) Flow Test At Raft River Geothermal Area (2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (2006) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 2006 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine field hydraulic conductivity using borehole impeller flowmeter data Notes A quantitative evaluation of borehole-impeller flowmeter data leads to estimated field hydraulic conductivity. Data were obtained during an injection test of a geothermal well at the Raft River geothermal test site in Idaho. Both stationary and trolling calibrations of the flowmeter were made in the well. Methods were developed to adjust for variations in hole

172

Flow Test At Chena Area (Benoit, Et Al., 2007) | Open Energy Information  

Open Energy Info (EERE)

Chena Area (Benoit, Et Al., 2007) Chena Area (Benoit, Et Al., 2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Chena Area (Benoit, Et Al., 2007) Exploration Activity Details Location Chena Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References Dick Benoit, Gwen Holdmann, David Blackwell (2007) Low Cost Exploration, Testing, And Development Of The Chena Geothermal Resource Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Chena_Area_(Benoit,_Et_Al.,_2007)&oldid=387083" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

173

Construction of MV-6 Well Pad at the Central Nevada Test Area Completed |  

Broader source: Energy.gov (indexed) [DOE]

Construction of MV-6 Well Pad at the Central Nevada Test Area Construction of MV-6 Well Pad at the Central Nevada Test Area Completed Construction of MV-6 Well Pad at the Central Nevada Test Area Completed October 22, 2013 - 6:10pm Addthis What does this project do? Goal 1. Protect human health and the environment A new groundwater monitoring/validation (MV) well was installed at the Central Nevada Test Area (CNTA) in September 2013. LM proposed this well to the Nevada Division of Environmental Protection (NDEP) to enhance the existing monitoring network and to expedite the Federal Facility Agreement and Consent Order (FFACO) closure process for the CNTA Subsurface Corrective Action Unit. CNTA is located in Hot Creek Valley in Nye County, Nevada, adjacent to U.S. Highway 6, about 30 miles north of Warm Springs, Nevada. CNTA was the site of "Project Faultless," a test site where a

174

Construction of MV-6 Well Pad at the Central Nevada Test Area Completed |  

Broader source: Energy.gov (indexed) [DOE]

Construction of MV-6 Well Pad at the Central Nevada Test Area Construction of MV-6 Well Pad at the Central Nevada Test Area Completed Construction of MV-6 Well Pad at the Central Nevada Test Area Completed October 22, 2013 - 6:10pm Addthis What does this project do? Goal 1. Protect human health and the environment A new groundwater monitoring/validation (MV) well was installed at the Central Nevada Test Area (CNTA) in September 2013. LM proposed this well to the Nevada Division of Environmental Protection (NDEP) to enhance the existing monitoring network and to expedite the Federal Facility Agreement and Consent Order (FFACO) closure process for the CNTA Subsurface Corrective Action Unit. CNTA is located in Hot Creek Valley in Nye County, Nevada, adjacent to U.S. Highway 6, about 30 miles north of Warm Springs, Nevada. CNTA was the site of "Project Faultless," a test site where a

175

Flow Test At Raft River Geothermal Area (1979) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Raft River Geothermal Area (1979) Flow Test At Raft River Geothermal Area (1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Flow Test Activity Date 1979 Usefulness useful DOE-funding Unknown Exploration Basis To allow for the lateral and vertical extrapolation of core and test data and bridged the gap between surface geophysical data and core analyses. Notes Temperature and flowmeter logs provide evidence that these fractures and faults are conduits that conduct hot water to the wells. One of the intermediate depth core holes penetrated a hydrothermally altered zone that includes several fractures producing hot water. This altered production

176

Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

NONE

1997-05-14T23:59:59.000Z

177

Animals that Hide Underground  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Animals that Hide Underground Animals that Hide Underground Nature Bulletin No. 733 November 23, 1963 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist ANIMALS THAT HIDE UNDERGROUND A hole in the ground has an air of mystery about it that rouses our curiosity. No matter whether it is so small that only a worm could squeeze into it, or large enough for a fox den, our questions are much the same. What animal dug the hole? Is it down there now? What is it doing? When will it come out? An underground burrow has several advantages for an animal. In it, many kinds find safety from enemies for themselves and their young. For others, it is an air-conditioned escape from the burning sun of summer and a snug retreat away from the winds and cold of winter. The moist atmosphere of a subterranean home allows the prolonged survival of a wide variety of lower animals which, above the surface, would soon perish from drying.

178

Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al.,  

Open Energy Info (EERE)

2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Aerial Photography Activity Date Usefulness not indicated DOE-funding Unknown Notes We re-examined most of the area using newer orthophotography, SPOT, and Thematic Mapper images, and identified several areas of possible late Quaternary surface faulting (Figure 3). References A. E. Sabin, J. D. Walker, J. Unruh, F. C. Monastero (2004) Toward The Development Of Occurrence Models For Geothermal Resources In The Western United States Retrieved from "http://en.openei.org/w/index.php?title=Aerial_Photography_At_Nevada_Test_And_Training_Range_Area_(Sabin,_Et_Al.,_2004)&oldid=386843

179

Flow Test At Pilgrim Hot Springs Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Area (DOE GTP) Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Pilgrim Hot Springs Area (DOE GTP) Exploration Activity Details Location Pilgrim Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Pilgrim_Hot_Springs_Area_(DOE_GTP)&oldid=402456" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation: XID: 1863028959 Varnish cache server

180

Geodetic Survey At Nevada Test And Training Range Area (Sabin, Et Al.,  

Open Energy Info (EERE)

Nevada Test And Training Range Area (Sabin, Et Al., Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geodetic Survey At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geodetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes NAFR straddles the boundary of the Walker Lane belt and the Basin and Range extensional province. Neotectonic motions are inferred from GPS and seismic observations. GPS velocities indicate that the strain field changes from the east-west extension typical of the Basin and Range to the northwest-southeast-directed transtension characteristic of the Walker Lane belt across the region.

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) | Open  

Open Energy Info (EERE)

Newberry Caldera Area (Combs, Et Al., 1999) Newberry Caldera Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Newberry Caldera Area (Combs, Et Al., 1999) Exploration Activity Details Location Newberry Caldera Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes After circulating the mud out of the hole and replacing it with clear water, we attempted two injection tests; one into the open hole section (51 16'- 5360') below the HQ liner, and one into the annulus outside the uncemented part (2748' - -4800') of the liner. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration

182

Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) |  

Open Energy Info (EERE)

Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown Notes Water samples were collected during nitrogen-stimulated flow tests in 1978, but no information was provided on sampling conditions. The well was flowed again for the last time in 1982, but the flow test lasted only 1 h (Thompson, 1985). References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

183

You've got that Sinking Feeling: Measuring Subsidence above Abandoned Underground Mines in Ohio, USA.  

E-Print Network [OSTI]

??As a result of more than 200 years of underground coal mining, many urbanized areas throughout Ohio, USA, are susceptible to land subsidence. Approximately 6,000… (more)

Siemer, Kyle W

2013-01-01T23:59:59.000Z

184

DOE - Office of Legacy Management -- Los Alamos Underground Med Pipelines -  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Los Alamos Underground Med Los Alamos Underground Med Pipelines - NM 02 FUSRAP Considered Sites Site: Los Alamos Underground Med Pipelines ( NM.02 ) Eliminated - Remedial action being performed by the Los Alamos Area Office of the DOE Albuquerque Operations Office Designated Name: Not Designated Alternate Name: Los Alamos County Industrial Waste Lines NM.02-1 Location: Los Alamos , New Mexico NM.02-1 Evaluation Year: 1986 NM.02-1 Site Operations: From 1952 to 1965, underground pipelines or industrial waste lines were used at Los Alamos Scientific Laboratory to transport liquid wastes from Technical Areas 1, 3, 48, and 43 to a chemical waste treatment plant (Technical Area 45). NM.02-1 Site Disposition: Eliminated - Remedial action being performed by another DOE office NM.02-1

185

GOING UNDERGROUND IN FINLAND: DESIGN OF ONKALO IN PROGRESS  

SciTech Connect (OSTI)

The long-term program aimed at selection of a site for a deep repository was initiated in Finland in 1983. This program has come to end in 2001 and a new phase aimed at implementation of the geological disposal of spent fuel has been started. In this new phase the first milestone is the application for a construction license for the disposal facility around 2010. To fulfill the needs for detailed design of the disposal system, an underground rock characterization facility (URCF) will be constructed at the representative depth at Olkiluoto. The excavation of this facility will start the work for underground characterization, testing and demonstration, which is planned to be a continuous activity throughout the whole life cycle of the deep repository. The overall objectives for the underground site characterization are (1) verification of the present conclusions on site suitability, (2) definition and identification of suitable rock volumes for repository space and (3) characterization of planned host rock for detailed design, safety assessment and construction planning. The objective for verification aims at assessing that the Olkiluoto site meets the basic criteria for long-term safety and as well the basic requirements for construction and thus justifies the site selection. The two other main objectives are closely related to design of the repository and assessing the long-term safety of the site-specific disposal system. The most important objective of ONKALO should allow an in-depth investigation of the geological environment and to provide the opportunity to allow validation of models at more appropriate scales and conditions than can be achieved from the surface. In some areas, such as in demonstrating operational safety, in acquiring geological information at a repository scale and in constructional and operational feasibility, the ONKALO will provide the only reliable source of in situ data. The depth range envisaged for URCF called ONKALO is between 400 and 600 m. The location and underground geometry of access ramp is of significance. Development of ONKALO will begin in 2003 and it consists of surface facilities, access ramp and vertical shaft to the depth of 500 meters and characterization and demonstration facilities. Total volume of the ONKALO underground facilities is approximately 250 000 m3. The development will be completed around 2010. The reconciliation of construction and investigations plays an important role through the project. Other major issues will be the management of groundwater conditions, workplace safety and documentation of the work.

Dikds, T.; Ikonen, A.; Niiranen, S.; Hansen, J.

2003-02-27T23:59:59.000Z

186

Injectivity Test At Steamboat Springs Area (Combs, Et Al., 1999) | Open  

Open Energy Info (EERE)

Steamboat Springs Area (Combs, Et Steamboat Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location Steamboat Springs Area Exploration Technique Injectivity Test Activity Date Usefulness not indicated DOE-funding Unknown Notes Part of the injection testing used downhole packers for isolating various zones and evaluating their permeability. By running the packers into the hole on N-rod ( 2.75"+K610 OD), the annulus was roughly the same cross-sectional area as the inside of the pipe. It was then possible to inject into either the zone above the packer or the one below, and compare the infectivity of those intervals. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr., Ronald D. Jacobsen, Gene Polik (1999) Slimhole Handbook- Procedures And Recommendations For Slimhole Drilling And Testing In Geothermal Exploration

187

Injectivity Test At Reese River Area (Henkle & Ronne, 2008) | Open Energy  

Open Energy Info (EERE)

Reese River Area (Henkle & Ronne, Reese River Area (Henkle & Ronne, 2008) Exploration Activity Details Location Reese River Area Exploration Technique Injectivity Test Activity Date Usefulness not indicated DOE-funding Unknown Notes On March 22, 2007 a brief injectivity test was preformed after the slotted liner had been installed. Water was injected at flow rates of 6.3 l/s, 13 l/s and 19 l/s and the pressure and temperature was recorded down hole at a depth of 926 m. At the higher flow rate, the test was interrupted several times to repair leaks at the surface. From the recorded pressure an approximate injectivity index of 10 l/s/MPa was calculated. References William R. Henkle, Joel Ronne (2008) Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing Retrieved from

188

Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Flow Test Activity Date Usefulness useful DOE-funding Unknown Notes The pressure data collected during a 50-h-long flow test at LVEW in September 2001 are best matched using solutions for a flow system consisting of a steeply dipping fracture with infinite hydraulic conductivity, surrounded by a finite-conductivity rock matrix. At shallow

189

Injectivity Test At Vale Hot Springs Area (Combs, Et Al., 1999) | Open  

Open Energy Info (EERE)

Vale Hot Springs Area (Combs, Et Vale Hot Springs Area (Combs, Et Al., 1999) Exploration Activity Details Location Vale Hot Springs Area Exploration Technique Injectivity Test Activity Date Usefulness useful DOE-funding Unknown Notes Analysis of the two injection tests performed at the exploration slimhole site during May, 1995 yielded estimates for the permeability-thickness product (transmissivity) kh of 0.25 and 0.23 Da-fi, based on pressure fall off after injection (see Section IV-a). Using the pressure buildup for the second test, a transmissivity of 0.610 Da-ft was estimated. These estimates are approximately an order of magnitude smaller than the kh values estimated for the nearby A-Alt well which was tested in 1994. References Jim Combs, John T. Finger, Colin Goranson, Charles E. Hockox Jr.,

190

Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

K. B. Campbell

2002-04-01T23:59:59.000Z

191

Coalbed methane production enhancement by underground coal gasification  

SciTech Connect (OSTI)

The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

1997-12-31T23:59:59.000Z

192

Flow Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) | Open  

Open Energy Info (EERE)

Grigsby, Et Al., 1983) Grigsby, Et Al., 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill Hdr Geothermal Area (Grigsby, Et Al., 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References C. O. Grigsby, J. W. Tester, P. E. Trujillo, D. A. Counce, J. Abbott, C. E. Holley, L. A. Blatz (1983) Rock-Water Interactions In Hot Dry Rock Geothermal Systems- Field Investigations Of In Situ Geochemical Behavior Retrieved from "http://en.openei.org/w/index.php?title=Flow_Test_At_Fenton_Hill_Hdr_Geothermal_Area_(Grigsby,_Et_Al.,_1983)&oldid=511312" Category: Exploration Activities What links here Related changes

193

Modeling-Computer Simulations At Nevada Test And Training Range Area  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Modeling-Computer Simulations At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Nellis Air Force Range (NAFR) occupies over 3 million acres in southern Nevada (Figure 1). We recently assessed potential utility-grade geothermal

194

Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lake City Hot Springs Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown Notes The Lake City site, which is located in far northeastern California, consists of a previously identified geothermal site that has been explored with both geophysics and drilling (Hedel, 1981), but has not been

195

Plutonium-aerosol emission rates and potential inhalation exposure during cleanup and treatment test at Area 11, Nevada Test Site  

SciTech Connect (OSTI)

A Cleanup and Treatment (CAT) test was conducted in 1981 at Area 11, Nevada Test Site. Its purpose was to evaluate the effectiveness of using a large truck-mounted vacuum cleaner similar to those used to clean paved streets for cleaning radiological contamination from the surface of desert soils. We found that four passes with the vehicle removed 97% of the alpha contamination and reduced resuspension by 99.3 to 99.7%. Potential exposure to cleanup workers was slight when compared to natural background exposure. 7 refs., 1 fig., 2 tabs.

Shinn, J.H.; Homan, D.N.

1985-08-13T23:59:59.000Z

196

May 2010 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on June 7-9, 2010, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

None

2011-02-01T23:59:59.000Z

197

June 2012 Groundwater Sampling at the Central Nevada Test Area (Data Validation Package)  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Legacy Management conducted annual sampling at the Central Nevada Test Area (CNTA) on June 26-27, 2012, in accordance with the 2004 Correction Action Decision Document/Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area (CNTA)-Subsurface and the addendum to the "Corrective Action Decision Document/Corrective Action Plan" completed in 2008. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351), continually updated).

None

2013-03-01T23:59:59.000Z

198

Underground Injection Control Rule (Vermont)  

Broader source: Energy.gov [DOE]

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

199

Underground Storage Tank Program (Vermont)  

Broader source: Energy.gov [DOE]

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

200

Underground Injection Control Regulations (Kansas)  

Broader source: Energy.gov [DOE]

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

202

Regulated underground storage tanks  

SciTech Connect (OSTI)

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

203

Underground Gasification of Coal Reported  

Science Journals Connector (OSTI)

Underground Gasification of Coal Reported ... RESULTS of a first step taken toward determining the feasibility of the underground gasification of coal were reported recently to the Interstate Oil Compact Commission by Milton H. Fies, manager of coal operations for the Alabama Power Co. ...

1947-05-12T23:59:59.000Z

204

Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

Emission Testing of Washington Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Technical Report NREL/TP-540-36355 December 2005 Emission Testing of Washington Metropolitan Area Transit Authority (WMATA) Natural Gas and Diesel Transit Buses M. Melendez, J. Taylor, and J. Zuboy National Renewable Energy Laboratory W.S. Wayne West Virginia University D. Smith U.S. Department of Energy Prepared under Task No. FC05-9000 Technical Report NREL/TP-540-36355 December 2005 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov

205

Prince George's County Underground Storage Act (Maryland) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Prince George's County Underground Storage Act (Maryland) Prince George&#039;s County Underground Storage Act (Maryland) Prince George's County Underground Storage Act (Maryland) < Back Eligibility Commercial Retail Supplier Tribal Government Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the surface of a maximum of 12,000 acres of land, and may be owned by a public body. A permit from the Department of the Environment, along with an order from the Public Service Commission, is required prior to the use of eminent domain. The Act contains further information on eminent domain, landowner, and property

206

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

207

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

208

Sensitivity analysis for joint inversion of ground-penetrating radar and thermal-hydrological data from a large-scale underground heater test  

E-Print Network [OSTI]

investigations at Yucca Mountain, Nevada, the potentialin the Unsaturated Zone, Yucca Mountain, Nevada,” U.S. Geol.with the Drift Scale Test at Yucca Mountain, Nevada,” J. of

Kowalsky, M.B.; Birkholzer, J.; Peterson, J.; Finsterle, S.; Mukhopadhya y, S.; Tsang, Y.T.

2008-01-01T23:59:59.000Z

209

Tectonic Strain Release by Underground Nuclear Explosions and its Effect on Seismic Discrimination  

Science Journals Connector (OSTI)

......patterns to geologic structure in Yucca Flats Nevada Test Site, in Nevada Test Site, ed. Eckel E. B., Geol. Soc. Am. Mem...of the Benham underground nuclear explosion, Nevada Test Site, Bull. seism. Soc. Am., 59, 2209-2220......

M. Nafi Toksöz; Harold H. Kehrer

1972-12-01T23:59:59.000Z

210

In Situ Redox Manipulation Field Injection Test Report - Hanford 100-H Area  

SciTech Connect (OSTI)

This report presents results of an In Situ Redox Manipulation (ISRM) Field Injection Withdrawal Test performed at the 100-H Area of the US. Department of Energy`s (DOE`s) Hanford Site in Washington State in Fiscal Year 1996 by researchers at Pacific Northwest National Laboratory (PNNL). The test is part of the overall ISRM project, the purpose of which is to determine the potential for remediating contaminated groundwater with a technology based on in situ manipulation of subsurface reduction-oxidation (redox) conditions. The ISRM technology would be used to treat subsurface contaminants in groundwater zones at DOE sites.

Fruchter, J.S.; Amonette, J.E.; Cole, C.R. [and others

1996-11-01T23:59:59.000Z

211

Sensitivity analysis for the GIS-based mapping of the ground subsidence hazard near abandoned underground coal mines  

Science Journals Connector (OSTI)

Ground subsidence around abandoned underground coal mines can cause much loss of life ... by sensitivity analysis in geographic information system (GIS). Spatial data for the subsidence area,...

Hyun-Joo Oh; Seung-Chan Ahn; Jong-Kuk Choi; Saro Lee

2011-09-01T23:59:59.000Z

212

Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004)  

Open Energy Info (EERE)

2004) 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location Nevada Test And Training Range Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater data are limited to a portion of NAFR; data are more plentiful beyond the range boundaries. Geothermometry yields calculated groundwater temperatures generally ranging from 30 to 105degrees C, with a rough correlation between the SiO2-chalcedony and the Na-K-Na (Mg-corrected) geothermometers. References A. E. Sabin, J. D. Walker, J. Unruh, F. C. Monastero (2004) Toward The Development Of Occurrence Models For Geothermal Resources In The

213

Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection  

SciTech Connect (OSTI)

The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

2007-06-01T23:59:59.000Z

214

AREA  

Broader source: Energy.gov (indexed) [DOE]

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

215

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

216

Radiation monitoring around United States nuclear test areas, calendar year 1989  

SciTech Connect (OSTI)

This report describes the Offsite Radiation Safety Program conducted during 1989 by the Environmental Protection Agency's (EPA's) Environmental Monitoring Systems Laboratory-Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels, and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether the testing is in compliance with existing radiation protection standards, and to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of both animals and humans. To implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any release of radioactivity, personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each test. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to NTS activities. Trends were evaluated in the Noble Gas and Tritium, Milk Surveillance, TLD, and PIC networks, and the Long-Term Hydrological Monitoring Program. 35 refs., 68 figs., 32 tabs.

Not Available

1990-05-01T23:59:59.000Z

217

Investigating leaking underground storage tanks  

E-Print Network [OSTI]

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

218

Underground Facilities, Technological Challenges  

E-Print Network [OSTI]

This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

Spooner, N

2010-01-01T23:59:59.000Z

219

Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1991  

SciTech Connect (OSTI)

This report describes the Offsite Radiation Safety Program conducted during 1991 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory-Las Vegas. This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ion chambers (PICs); and by biological monitoring of animals, food crops, and humans. Personnel with mobile monitoring equipment are placed in areas downwind from the test site prior to each nuclear weapons test to implement protective actions, provide immediate radiation monitoring, and obtain environmental samples rapidly after any occurrence of radioactivity release. Comparison of the measurements and sample analysis results with background levels and with appropriate standards and regulations indicated that there was no radioactivity detected offsite by the various EPA monitoring networks and no exposure above natural background to the population living in the vicinity of the NTS that could be attributed to current NTS activities. Annual and long-term trends were evaluated in the Noble Gas, Tritium, Milk Surveillance, Biomonitoring, TLD, PIC networks, and the Long-Term Hydrological Monitoring Program.

Chaloud, D.J.; Dicey, B.B.; Mullen, A.A.; Neale, A.C.; Sparks, A.R.; Fontana, C.A.; Carroll, L.D.; Phillips, W.G.; Smith, D.D.; Thome, D.J.

1992-01-01T23:59:59.000Z

220

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect (OSTI)

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

website and in print publications. website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT â—† PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004.

222

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

223

Underground Storage Technology Consortium  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

U U U N N D D E E R R G G R R O O U U N N D D G G A A S S S S T T O O R R A A G G E E T T E E C C H H N N O O L L O O G G Y Y C C O O N N S S O O R R T T I I U U M M R R & & D D P P R R I I O O R R I I T T Y Y R R E E S S E E A A R R C C H H N N E E E E D D S S WORKSHOP PROCEEDINGS February 3, 2004 Atlanta, Georgia U U n n d d e e r r g g r r o o u u n n d d G G a a s s S S t t o o r r a a g g e e T T e e c c h h n n o o l l o o g g y y C C o o n n s s o o r r t t i i u u m m R R & & D D P P r r i i o o r r i i t t y y R R e e s s e e a a r r c c h h N N e e e e d d s s OVERVIEW As a follow up to the development of the new U.S. Department of Energy-sponsored Underground Gas Storage Technology Consortium through Penn State University (PSU), DOE's National Energy Technology Center (NETL) and PSU held a workshop on February 3, 2004 in Atlanta, GA to identify priority research needs to assist the consortium in developing Requests for Proposal (RFPs). Thirty-seven

224

Closure Report for Corrective Action Unit 326: Areas 6 and 27 Release Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Closure Report (CR) documents the activities undertaken to close Corrective Action Unit (CAU) 326, Areas 6 and 27 Release Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO) of 1996. Site closure was performed in accordance with the Nevada Division of Environmental Protection (NDEP)-approved Streamlined Approach for Environmental Restoration Plan (SAFER) Plan for CAU 326 (US Department of Energy, Nevada Operations Office [DOE/NV, 2001]). CAU 326 consists of four Corrective Action Sites (CASs), 06-25-01, 06-25-02, 06-25-04, and 27-25-01. CAS 06-25-01 is a release site associated with an underground pipeline that carried heating oil from the heating oil underground storage tank (UST), Tank 6-CP-1, located to the west of Building CP-70 to the boiler in Building CP-1 located in the Area 6 Control Point (CP) compound. This site was closed in place administratively by implementing use restrictions. CAS 06-25-02 is a hydrocarbon release associated with an active heating oil UST, Tank 6-DAF-5, located west of Building 500 at the Area 6 Device Assembly Facility. This site was closed in place administratively by implementing use restrictions. CAS 06-25-04 was a hydrocarbon release associated with Tank 6-619-4. This site was successfully remediated when Tank 6-619-4 was removed. No further action was taken at this site. CAS 27-25-01 is an excavation that was created in an attempt to remove hydrocarbon-impacted soil from the Site Maintenance Yard in Area 27. Approximately 53 cubic meters (m{sup 3}) (70 cubic yards [yd{sup 3}]) of soil impacted by total petroleum hydrocarbons (TPH) and polychlorinated biphenyls (PCBs) was excavated from the site in August of 1994. Clean closure of this site was completed in 2002 by the excavation and disposal of approximately 160 m{sup 3} (210 yd{sup 3}) of PCB-impacted soil.

K. B. Campbell

2002-12-01T23:59:59.000Z

225

A Hydrostratigraphic System for Modeling Groundwater Flow and Radionuclide Migration at the Corrective Action Unit Scale, Nevada Test Site and Surrounding Areas, Clark, Lincoln, and Nye Counties, Nevada  

SciTech Connect (OSTI)

Underground Test Area (UGTA) corrective action unit (CAU) groundwater flow and contaminant transport models of the Nevada Test Site (NTS) and vicinity are built upon hydrostratigraphic framework models (HFMs) that utilize the hydrostratigraphic unit (HSU) as the fundamental modeling component. The delineation and three-dimensional (3-D) modeling of HSUs within the highly complex geologic terrain that is the NTS requires a hydrostratigraphic system that is internally consistent, yet flexible enough to account for overlapping model areas, varied geologic terrain, and the development of multiple alternative HFMs. The UGTA CAU-scale hydrostratigraphic system builds on more than 50 years of geologic and hydrologic work in the NTS region. It includes 76 HSUs developed from nearly 300 stratigraphic units that span more than 570 million years of geologic time, and includes rock units as diverse as marine carbonate and siliciclastic rocks, granitic intrusives, rhyolitic lavas and ash-flow tuffs, and alluvial valley-fill deposits. The UGTA CAU-scale hydrostratigraphic system uses a geology-based approach and two-level classification scheme. The first, or lowest, level of the hydrostratigraphic system is the hydrogeologic unit (HGU). Rocks in a model area are first classified as one of ten HGUs based on the rock’s ability to transmit groundwater (i.e., nature of their porosity and permeability), which at the NTS is mainly a function of the rock’s primary lithology, type and degree of postdepositional alteration, and propensity to fracture. The second, or highest, level within the UGTA CAU-scale hydrostratigraphic system is the HSU, which is the fundamental mapping/modeling unit within UGTA CAU-scale HFMs. HSUs are 3-D bodies that are represented in the finite element mesh for the UGTA groundwater modeling process. HSUs are defined systematically by stratigraphically organizing HGUs of similar character into larger HSUs designations. The careful integration of stratigraphic information in the development of HSUs is important to assure individual HSUs are internally consistent, correlatable, and mappable throughout all the model areas.

Lance Prothro, Sigmund Drellack Jr., Jennifer Mercadante

2009-01-31T23:59:59.000Z

226

The large-area hybrid-optics CLAS12 RICH detector: Tests of innovative components  

SciTech Connect (OSTI)

A large area ring-imaging Cherenkov detector has been designed to provide clean hadron identification capability in the momentum range from 3 GeV/c to 8 GeV/c for the CLAS12 experiments at the upgraded 12 GeV continuous electron beam accelerator facility of Jefferson Lab to study the 3D nucleon structure in the yet poorly explored valence region by deep-inelastic scattering, and to perform precision measurements in hadronization and hadron spectroscopy. The adopted solution foresees a novel hybrid optics design based on an aerogel radiator, composite mirrors and densely packed and highly segmented photon detectors. Cherenkov light will either be imaged directly (forward tracks) or after two mirror reflections (large angle tracks). The preliminary results of individual detector component tests and of the prototype performance at test-beams are reported here.

Contalbrigo, M.; Baltzell, N.; Benmokhtar, F.; Barion, L.; Cisbani, E.; El Alaoui, A.; Hafidi, K.; Hoek, M.; Kubarovsky, V.; Lagamba, L.; Lucherini, V.; Malaguti, R.; Mirazita, M.; Montgomery, R.; Movsisyan, A.; Musico, P.; Orecchini, D.; Orlandi, A.; Pappalardo, L.L.; Pereira, S.; Perrino, R.; Phillips, J.; Pisano, S.; Rossi, P.; Squerzanti, S.; Tomassini, S.; Turisini, M.; Viticchiè, A.

2014-07-01T23:59:59.000Z

227

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network [OSTI]

s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

228

Application of 3D electrical resistivity imaging in an underground potash mine Robert A. Eso and Douglas W. Oldenburg, University of British ColumbiaGeophysical Inversion Facility  

E-Print Network [OSTI]

Application of 3D electrical resistivity imaging in an underground potash mine Robert A. Eso it possible to explore for water infiltrated areas in underground salt mines using electrical resistivity the application of 3D electrical resistivity imaging (ERI) in an underground potash mine located in Saskatchewan

Oldenburg, Douglas W.

229

AND OTHER TEST AREAS USED FOR U N D E R G R O U N  

Office of Legacy Management (LM)

AND OTHER TEST AREAS USED FOR U AND OTHER TEST AREAS USED FOR U N D E R G R O U N D NUCLEAR .DETONATIONS -9.\c January through December 1996 by the Monitoring Applications Laboratory National Enviscnmental Research Center LT . S . EFTtPlgRO%RIENFA& PROTECTIQN AGENCY LPS Vegas, Nevada -"& -% ~d*.".::. Published Hay 1975 This work p e r f o w e d under a Memorandum o f Understanding No. AT(26-1)-539) for the U. S. ENERGY RESEARCH B D E V E L O P M E X T ABMINISTRATIQN d ~ P v . a - r . . . - . -.. . . . . * . "+ . - : I - : : - ... 1-11.; ~ ~ ~ % ~ ! ~ $ ' ; : L : ; ~ : ~ ~ ~ ~ . . T h i s r e p o r t was prepared a s an account of work sponsored by t h e United S t a t e s Government. N e i t h e r t h e United S t a t e s nor t h e United S t a t e s Energy Research and Development A d m i n i s t r a t i o n , n o r any of t h e i r employees, nor any of t h e i r c o n

230

2003 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site, Nevada Test Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2003 groundwater sampling results from the Area 5 Radioactive Waste Management Site, Nevada Test Site. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semi-annually for the required analytes: pH, specific conductance, total organic carbon (TOC), total organic halides (TOX), tritium, and major cations/anions. Results from all samples collected in 2003 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 Radioactive Waste Management Site and confirm that any previous detections of TOC and TOX were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevations. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes a Cumulative Chronology for the Area 5 Radioactive Waste Management Site Groundwater Monitoring Program, a brief description of the site hydrogeology, and the current groundwater sampling procedure.

Bechtel Nevada

2004-02-01T23:59:59.000Z

231

Offsite environmental monitoring report: Radiation monitoring around United States nuclear test areas, calendar year 1993  

SciTech Connect (OSTI)

This report describes the Offsite Radiation Safety Program conducted during 1993 by the Environmental Protection Agency`s (EPA`s) Environmental Monitoring Systems Laboratory - Las Vegas (EMSL-LV). This laboratory operates an environmental radiation monitoring program in the region surrounding the Nevada Test Site (NTS) and at former test sites in Alaska, Colorado, Mississippi, Nevada, and New Mexico. The surveillance program is designed to measure levels and trends of radioactivity, if present, in the environment surrounding testing areas to ascertain whether current radiation levels and associated doses to the general public are in compliance with existing radiation protection standards. The surveillance program additionally has the responsibility to take action to protect the health and well being of the public in the event of any accidental release of radioactive contaminants. Offsite levels of radiation and radioactivity are assessed by sampling milk, water, and air; by deploying thermoluminescent dosimeters (TLDs) and using pressurized ionization chambers (PICs); by biological monitoring of foodstuffs including animal tissues and food crops; and by measurement of radioactive material deposited in humans.

Chaloud, D.J; Daigler, D.M.; Davis, M.G. [and others

1996-06-01T23:59:59.000Z

232

Solubility testing of actinides on breathing-zone and area air samples  

SciTech Connect (OSTI)

A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS{reg_sign}) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U{sub 3}O{sub 8}. Profiles developed for U{sub 3}O{sub 8} samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills.

Metzger, R.L.; Jessop, B.H.; McDowell, B.L. [Radiation Safety Engineering, Inc., Chandler, AZ (United States)

1996-02-01T23:59:59.000Z

233

INDUCED SEISMICITY MONITORING OF AN UNDERGROUND SALT CAVITY UNDER A TRANSIENT PRESSURE EXPERIMENT  

E-Print Network [OSTI]

to 125 m in cemented boreholes drilled in thé vicinity of thé study area. The underground cavity under and Monitoring, Seismic Introduction A large research project within thé GISOS1 program has been launched

Paris-Sud XI, Université de

234

Underground Storage Tanks: New Fuels and Compatibility  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

235

2008 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443  

SciTech Connect (OSTI)

This report presents the 2008 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of the CNTA was transferred from the DOE Office of Environmental Management (DOE-EM) to DOE-LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order (FFACO 2005) entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site during fiscal year 2008. This is the second groundwater monitoring report prepared by DOE-LM for the CNTA.

None

2009-03-01T23:59:59.000Z

236

Underground storage tank 511-D1U1 closure plan  

SciTech Connect (OSTI)

This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

237

Underground Storage Tanks (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

238

THE WIDE-AREA ENERGY STORAGE AND MANAGEMENT SYSTEM PHASE II Final Report - Flywheel Field Tests  

SciTech Connect (OSTI)

This research was conducted by Pacific Northwest National Laboratory (PNNL) operated for the U.S. department of Energy (DOE) by Battelle Memorial Institute for Bonneville Power Administration (BPA), California Institute for Energy and Environment (CIEE) and California Energy Commission (CEC). A wide-area energy management system (WAEMS) is a centralized control system that operates energy storage devices (ESDs) located in different places to provide energy and ancillary services that can be shared among balancing authorities (BAs). The goal of this research is to conduct flywheel field tests, investigate the technical characteristics and economics of combined hydro-flywheel regulation services that can be shared between Bonneville Power Administration (BPA) and California Independent System Operator (CAISO) controlled areas. This report is the second interim technical report for Phase II of the WAEMS project. This report presents: 1) the methodology of sharing regulation service between balancing authorities, 2) the algorithm to allocate the regulation signal between the flywheel and hydro power plant to minimize the wear-and-tear of the hydro power plants, 3) field results of the hydro-flywheel regulation service (conducted by the Beacon Power), and 4) the performance metrics and economic analysis of the combined hydro-flywheel regulation service.

Lu, Ning; Makarov, Yuri V.; Weimar, Mark R.; Rudolph, Frank; Murthy, Shashikala; Arseneaux, Jim; Loutan, Clyde; Chowdhury, S.

2010-08-31T23:59:59.000Z

239

Value of information analysis for Corrective Action Unit Nos. 101 and 102: Central and western Pahute Mesa, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The purpose of this report is to describe the basis for and present the results of a value of information analysis (VOIA) for the Pahute Mesa underground test area of the Nevada Test Site (NTS), one of several areas of the Nevada Test Site used for underground nuclear testing in the past. The value of information analysis was used to evaluate and compare potential characterization options at the Pahute Mesa underground test area for site remediation purposes. Thirty six characterization options were evaluated, ranging from a single, inexpensive study using existing data and intended to address a single question or uncertainty, to a forty-million-dollar suite of activities designed to collect and analyze new information to address multiple uncertainties. The characterization options were compared and ranked based on how effective the experts though the information collection would be in reducing uncertainties, how this effected the distance to contaminant boundary, and the cost of the option.

NONE

1998-09-01T23:59:59.000Z

240

Complete Bouguer gravity map of the Nevada Test Site and vicinity, Nevada  

SciTech Connect (OSTI)

About 15,000 gravity stations were used to create the gravity map. Gravity studies at the Nevada Test Site were undertaken to help locate geologically favorable areas for underground nuclear tests and to help characterize potential high-level nuclear waste storage sites. 48 refs. (TEM)

Healey, D.L.; Harris, R.N.; Ponce, D.A.; Oliver, H.W.

1987-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Corrective Action Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 151, Septic Systems and Discharge Area, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 151 consists of eight Corrective Action Sites (CASs) located in Areas 2, 12, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada.

NSTec Environmental Restoration

2007-03-01T23:59:59.000Z

242

HISTORICAL AMERICAN ENGINEERING RECORD - IDAHO NATIONAL ENGINEERING AND ENVIRONMENTAL LABORATORY, TEST AREA NORTH, HAER NO. ID-33-E  

SciTech Connect (OSTI)

Test Area North (TAN) was a site of the Aircraft Nuclear Propulsion (ANP) Project of the U.S. Air Force and the Atomic Energy Commission. Its Cold War mission was to develop a turbojet bomber propelled by nuclear power. The project was part of an arms race. Test activities took place in five areas at TAN. The Assembly & Maintenance area was a shop and hot cell complex. Nuclear tests ran at the Initial Engine Test area. Low-power test reactors operated at a third cluster. The fourth area was for Administration. A Flight Engine Test facility (hangar) was built to house the anticipated nuclear-powered aircraft. Experiments between 1955-1961 proved that a nuclear reactor could power a jet engine, but President John F. Kennedy canceled the project in March 1961. ANP facilities were adapted for new reactor projects, the most important of which were Loss of Fluid Tests (LOFT), part of an international safety program for commercial power reactors. Other projects included NASA's Systems for Nuclear Auxiliary Power and storage of Three Mile Island meltdown debris. National missions for TAN in reactor research and safety research have expired; demolition of historic TAN buildings is underway.

Susan Stacy; Hollie K. Gilbert

2005-02-01T23:59:59.000Z

243

CLOSURE REPORT FOR CORRECTIVE ACTION UNIT165: AREA 25 AND 26 DRY WELL AND WASH DOWN AREAS, NEVADA TEST SITE, NEVADA  

SciTech Connect (OSTI)

This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CAS 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.

BECHTEL NEVADA

2005-12-01T23:59:59.000Z

244

Corrective Action Investigation Plan for Corrective Action Unit 34: Area 3 Contaminated Waste Site, Nevada Test Site, Nevada (Rev. 0, March 2001)  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 34 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 34 consists of four Corrective Action Sites (CASs). The CAU is located within the Area 3 Compound at the Nevada Test Site (NTS) in the vicinity of the Mud Plant Facility in Yucca Valley. Historically, CAS 03-09-07, Mud Pit, was used for disposal of excess mud from washing drilling equipment from 1968 to 1974, at which time it began to be used for excess mud disposal (currently inactive); CAS 03-44-01, Chromium Contamination Spill, was used to store additives used in the formulation of drilling mud from the early 1960s to the mid-1990s; CAS 03-47-02, Area 3 Mud Plant Pond, was used as a freshwater storage reservoir for the mud plant as well as supplied water for a number of activities including the mixing of mud, the rinsing and cleaning of tanks, and various washdowns from the 1960s through 1990s; and CAS 03-09-06, Mud Disposal Crater, was created in 1962 by an underground nuclear detonation (i.e., Chinchilla test) and was used to mix and store mud, dispose of receiving waste from the mud plant floor drains and excess drilling mud, and clean/flush mix tanks through the mid-1990s. Based on site history, the scope of this plan is to identify potentially contaminated ground soil at each of the four CASs and determine the quantity, nature, and extent of contaminants of potential concern (COPCs). The investigation will include systematic and biased surface and subsurface soil and mud sampling using hand-auguring and direct-push techniques; visual, video, and/or electromagnetic surveys of pipes; field screening for volatile organic compounds (VOCs) and alpha/beta-emitting radionuclides; and laboratory analysis to characterize any investigation-derived waste for disposal both on site at NTS and at off-site locations. Historical information provided by former NTS employees indicates that COPCs include VOCs, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, gamma-emitting radionuclides, isotopic plutonium, and strontium-90. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

2001-03-27T23:59:59.000Z

245

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 425, Area 9 Main Lake Construction Debris Disposal Area. This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). This site will be cleaned up under the SAFER process since the volume of waste exceeds the 23 cubic meters (m{sup 3}) (30 cubic yards [yd{sup 3}]) limit established for housekeeping sites. CAU 425 is located on the Tonopah Test Range (TTR) and consists of one Corrective Action Site (CAS) 09-08-001-TA09, Construction Debris Disposal Area (Figure 1). CAS 09-08-001-TA09 is an area that was used to collect debris from various projects in and around Area 9. The site is located approximately 81 meters (m) (265 feet [ft]) north of Edwards Freeway northeast of Main Lake on the TTR. The site is composed of concrete slabs with metal infrastructure, metal rebar, wooden telephone poles, and concrete rubble from the Hard Target and early Tornado Rocket sled tests. Other items such as wood scraps, plastic pipes, soil, and miscellaneous nonhazardous items have also been identified in the debris pile. It is estimated that this site contains approximately 2280 m{sup 3} (3000 yd{sup 3}) of construction-related debris.

K. B. Campbell

2002-04-01T23:59:59.000Z

246

Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater  

DOE Patents [OSTI]

A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

1995-09-12T23:59:59.000Z

247

300-Area VOC Program Slug Test Characterization Results for Selected Test/Depth Intervals Conducted During the Drilling of Well 399-3-21  

SciTech Connect (OSTI)

This report presents brief test descriptions and analysis results for multiple, stress-level slug tests that were performed at selected test/depth intervals within well 399-3-21 as part of the 300-Area volatile organic compound characterization program. The test intervals were characterized as the borehole was advanced to its final drill depth (45.7 m) and before its completion as a monitor-well facility. The primary objective of the slug tests was to provide information pertaining to the vertical distribution of hydraulic conductivity with depth at this location and to select the final screen-depth interval for the monitor well. This type of characterization information is important for predicting/simulating contaminant migration (i.e., numerical flow/transport modeling) and designing proper monitor-well strategies within this area.

Spane, Frank A.

2007-07-19T23:59:59.000Z

248

Surface effects of underground nuclear explosions  

SciTech Connect (OSTI)

The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

1997-06-01T23:59:59.000Z

249

Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada  

SciTech Connect (OSTI)

This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

K. Campbell

2000-04-01T23:59:59.000Z

250

Underground coal gasification using oxygen and steam  

SciTech Connect (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

251

Closure Report for Corrective Action Unit 214: Bunkers and Storage Areas, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 214 is located in Areas 5, 11, and 25 of the Nevada Test Site (NTS). CAU 214 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as ''Corrective Action Unit 214: Bunkers and Storage Areas,'' and is comprised of nine Corrective Action Sites (CASs): {sm_bullet} CAS 05-99-01, Fallout Shelters {sm_bullet} CAS 11-22-03, Drum {sm_bullet} CAS 25-23-01, Contaminated Materials {sm_bullet} CAS 25-23-19, Radioactive Material Storage {sm_bullet} CAS 25-34-03, Motor Dr/Gr Assembly (Bunker) {sm_bullet} CAS 25-34-04, Motor Dr/Gr Assembly (Bunker) {sm_bullet} CAS 25-34-05, Motor Dr/Gr Assembly (Bunker) {sm_bullet} CAS 25-99-12, Fly Ash Storage {sm_bullet} CAS 25-99-18, Storage Area The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 11-22-03, 25-34-03, 25-34-04, 25-34-05, 25-99-12, and 25-99-18 is No Further Action. Closure activities included: {sm_bullet} Removing and disposing of the fly ash and surrounding wooden structure at CAS 25-99-12 as a best management practice The NDEP-approved corrective action alternative for CAS 05-99-01 in CAU 214 is Clean Closure. Closure activities included: {sm_bullet} Removing and disposing of soil contaminated with the pesticide dieldrin The NDEP-approved corrective action alternative for CASs 25-23-01 and 25-23-19 is Closure in Place with Administrative Controls. Closure activities included: {sm_bullet} Removing and disposing of soil contaminated with chromium and soil impacted with the pesticides chlordane and heptachlor {sm_bullet} Implementing use restrictions (UR) at both CASs as detailed in the CAU 214 Corrective Action Plan (CAP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005) {sm_bullet} Posting UR warning signs around CASs 25-23-01 and 25-23-19 on the existing chain link fence

NSTec Environmental Restoration

2006-09-01T23:59:59.000Z

252

Baseline risk assessment of the perched water system at the INEL test reactor area  

SciTech Connect (OSTI)

A baseline health risk assessment (HRA) was prepared to evaluate potential risks to human health and the environment posed by the Perched Water System (PWS) at the Test Reactor Area (TRA). The PWS has been designated Operable Unit 2-12, one of the 13 operable units identified at TRA. During the period from 1962 to 1990, a total of 6770 million gal of water were discharged from the TRA to unlined surface ponds. Wastewater discharged to the surface ponds at TRA percolates downward through the surficial alluvium and the underlying basalt bedrock. A resulting shallow perched water zone has formed at the interface between the surficial sediments and the underlying basalt. Further downward movement of groundwater is again impeded by a low-permeability layer of silt, clay, and sand encountered at a depth of [approximately]150 ft. The deep perched water zone occurs on top of this low-permeability interbed. An evaluation was made as to whether potential risks for the PWS could justify implementing a remedial action. The risk evaluation consisted of two parts, the human health evaluation and the ecological evaluation.

Gordon, J.W.; Sinton, P.O. (Dames Moore, Denver, CO (United States)); Jensen, N. (DOE, Idaho Falls, ID (United States)); McCormick, S. (Idaho National Engineering Lab., Idaho Falls, ID (United States))

1993-01-01T23:59:59.000Z

253

2009 Groundwater Monitoring Report Central Nevada Test Area, Corrective Action Unit 443  

SciTech Connect (OSTI)

This report presents the 2009 groundwater monitoring results collected by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) for the Central Nevada Test Area (CNTA) Subsurface Corrective Action Unit (CAU) 443. Responsibility for the environmental site restoration of CNTA was transferred from the DOE Office of Environmental Management to LM on October 1, 2006. The environmental restoration process and corrective action strategy for CAU 443 are conducted in accordance with the Federal Facility Agreement and Consent Order entered into by DOE, the U.S. Department of Defense, and the State of Nevada. The corrective action strategy for the site includes proof-of-concept monitoring in support of site closure. This report summarizes investigation activities associated with CAU 443 that were conducted at the site from October 2008 through December 2009. It also represents the first year of the enhanced monitoring network and begins the new 5-year proof-of-concept monitoring period that is intended to validate the compliance boundary

None

2010-09-01T23:59:59.000Z

254

An investigation into the knowledge and attitudes towards radon testing among residents in a high radon area  

Science Journals Connector (OSTI)

The aim of this study was to investigate the knowledge and attitudes of residents in the Castleisland area to radon. Castleisland in Co. Kerry was described as a high radon area following the discovery of a house in the area with radon levels 245 times that of the national reference level. Residents in this area were then asked to measure their homes for radon in the Castleisland radon survey. The uptake of this measurement was 17%. In order to investigate this response rate further, a questionnaire was designed and distributed to residents in the Castleisland area. This questionnaire measured the testing history of the participants, the reasons for testing/not testing, the factors important to them when considering having their home tested, radon knowledge and finally intentions to measure their home for radon. It was found that the main reason people do not test their home for radon is that they believe their home does not have a problem. Optimistic bias was thought to play a role here. The subjective norm component of the theory of planned behaviour was found to have a significant independent contribution in the variation in intentions to measure one's home for radon and this in turn could be targeted to increase uptake of radon measurement in the future.

Susan Clifford; David Hevey; Gerard Menezes

2012-01-01T23:59:59.000Z

255

Case study of groundwater impact caused by underground mining  

SciTech Connect (OSTI)

An investigative methodology is presented to assist mining and regulatory personnel in determining the effect underground mining can have on local aquifers in the Appalachian coal region. The impact of underground mining on groundwater may be more extensive than first realized by the mining industry and regulatory agencies. The primary reason for this possible under-assessment of deep mining's influence on groundwater is the methods used to calculate groundwater movement. Since groundwater calculations are based on primary hydraulic conductivity, i.e. the conductivity through solid rock measured from rock core samples, erroneous results may be expected. In many cases, groundwater flow times and the corresponding areas of influence are much greater than those assumed since water is rapidly moved through fractured zones that commonly occur throughout Appalachia. A case study illustrating this phenomenon is drawn from underground mining operations in Pike County. A survey of 144 wells was conducted to determine if any loss of water supply and/or quality was found. This was correlated to the extent and time progression of underground mining operations. Other parameters qualified are water level fluctuations, groundwater quality, precipitation, seasonal effects, geology, and mine dewatering. The analysis includes a comprehensive compilation of a well inventory of domestic water supplies. The case study draws conclusions regarding cause and effect relationships.

Sloan, P.; Warner, R.C.

1984-12-01T23:59:59.000Z

256

Explanation of Significant Differences for the Record of Decision for the Test Area North Operable Unit 1-10  

SciTech Connect (OSTI)

This Explanation of Significant Differences (ESD) applies to the remedial actions performed under the Final Record of Decision for Test Area North, Operable Unit 1-1 0, Idaho National Engineering and Environmental Laboratory (DOE-ID 1999) as amended by the Explanation of Significant Differences for the Record of Decision for the Test Area North Operable Unit 1-10 (DOE-ID 2003), the Record of Decision Amendment for the V-Tanks (TSF-09 and TSF-18) and Explanation of Significant Differences for the PM-2A Tanks (TSF-26) and TSF-06, Area IO, at Test Area North, Operable Unit 1-1 0 (DOE-ID 2004a), and the Explanation of Significant Differences for the Record of Decision for the Test Area North Operable Unit 1-10 (DOE-ID 2005). The U.S. Department of Energy (DOE) Idaho Operations Office; U.S. Environmental Protection Agency (EPA), Region 10; and the Idaho Department of Health and Welfare-now identified as the Idaho Department of Environmental Quality (DEQ)-signed the Record of Decision (ROD) in December 1999, the 2003 ESD in April 2003, the ROD Amendment/ESD in February 2004, and the 2005 ESD in January 2005. The EPA and DEQ support the need for this ESD.

D. L. Eaton

2007-01-18T23:59:59.000Z

257

Midwest Underground Technology | Open Energy Information  

Open Energy Info (EERE)

Underground Technology Underground Technology Jump to: navigation, search Name Midwest Underground Technology Facility Midwest Underground Technology Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Midwest Underground Technology Energy Purchaser Midwest Underground Technology Location Champaign IL Coordinates 40.15020987°, -88.29149723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15020987,"lon":-88.29149723,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

258

Might underground waste repositories blow up?  

SciTech Connect (OSTI)

Some writers have presented possible scenarios in which a subcritical underground deposit of plutonium or other fissile material might be changed into a critical configuration. The underground criticalities that occurred in Gabon some 1.7 billion years ago in deposits of natural uranium is cited. Other scientists assert that it is virtually impossible that such a configuration could develop in an underground repository. The author presents the pros and cons of these views. 5 refs.

Hippel, F. von [Princeton Univ., NJ (United States)

1996-03-01T23:59:59.000Z

259

Closure Report for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Closure Report (CR) describes the remediation activities performed and the results of verification sampling conducted at Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons and CAU 320, Area 22 Desert Rock Airport Strainer Box. The CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO, 1996). The CAU is located in Area 22 of the Nevada Test Site (NTS) (Figure 1) and consists of the following Corrective Action Sites (CASs): 22-03-01- Sewage Lagoon (CAU 230); and 22-99-01- Strainer Box (CAU 320). Included with CAS 22-99-01 is a buried Imhoff tank and a sludge bed. These CAUs will be collectively referred to in this plan as the Area 22 Sewage Lagoons site. Site characterization activities were done during September 1999. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization presented in the Corrective Action Decision Document (CADD) indicated that only the sludge bed (CAS 22-99-01) contained constituents of concern (COC) above action levels and required remediation (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 2000a).

D. S. Tobiason

2001-07-01T23:59:59.000Z

260

Sub-crop geologic map of pre-Tertiary rocks in the Yucca Flat and northern Frenchman Flat areas, Nevada Test Site, southern Nevada  

SciTech Connect (OSTI)

This map displays interpreted structural and stratigraphic relations among the Paleozoic and older rocks of the Nevada Test Site region beneath the Miocene volcanic rocks and younger alluvium in the Yucca Flat and northern Frenchman Flat basins. These interpretations are based on a comprehensive examination and review of data for more than 77 drillholes that penetrated part of the pre-Tertiary basement beneath these post-middle Miocene structural basins. Biostratigraphic data from conodont fossils were newly obtained for 31 of these holes, and a thorough review of all prior microfossil paleontologic data is incorporated in the analysis. Subsurface relationships are interpreted in light of a revised regional geologic framework synthesized from detailed geologic mapping in the ranges surrounding Yucca Flat, from comprehensive stratigraphic studies in the region, and from additional detailed field studies on and around the Nevada Test Site. All available data indicate the subsurface geology of Yucca Flat is considerably more complicated than previous interpretations have suggested. The western part of the basin, in particular, is underlain by relics of the eastward-vergent Belted Range thrust system that are folded back toward the west and thrust by local, west-vergent contractional structures of the CP thrust system. Field evidence from the ranges surrounding the north end of Yucca Flat indicate that two significant strike-slip faults track southward beneath the post-middle Miocene basin fill, but their subsurface traces cannot be closely defined from the available evidence. In contrast, the eastern part of the Yucca Flat basin is interpreted to be underlain by a fairly simple north-trending, broad syncline in the pre-Tertiary units. Far fewer data are available for the northern Frenchman Flat basin, but regional analysis indicates the pre-Tertiary structure there should also be relatively simple and not affected by thrusting. This new interpretation has implications for ground water flow through pre-Tertiary rocks beneath the Yucca Flat and northern Frenchman Flat areas, and has consequences for ground water modeling and model validation. Our data indicate that the Mississippian Chainman Shale is not laterally extensive confining unit in the western part of the basin because it is folded back onto itself by the convergent structures of the Belted Range and CP thrust systems. Early and Middle Paleozoic limestone and dolomite are present beneath most of both basins and, regardless of structural complications, are interpreted to form a laterally continuous and extensive carbonate aquifer. Structural culmination that marks the French Peak accommodation zone along the topographic divide between the two basins provides a lateral pathway through highly fractured rock between the volcanic aquifers of Yucca Flat and the regional carbonate aquifer. This pathway may accelerate the migration of ground-water contaminants introduced by underground nuclear testing toward discharge areas beyond the Nevada Test Site boundaries. Predictive three-dimensional models of hydrostratigraphic units and ground-water flow in the pre-Tertiary rocks of subsurface Yucca Flat are likely to be unrealistic due to the extreme structural complexities. The interpretation of hydrologic and geochemical data obtained from monitoring wells will be difficult to extrapolate through the flow system until more is known about the continuity of hydrostratigraphic units. 1 plate

Cole, J.C.; Harris, A.G.; Wahl, R.R.

1997-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE  

SciTech Connect (OSTI)

This project evaluated the technical, economic and environmental feasibility of filling abandoned underground mine voids with coal combustion byproducts. Success was measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). Phase 1 of the project was completed in September 1995 and was concerned with the development of the grout and a series of predictive models. These models were verified through the Phase II field phase and will be further verified fin the large scale field demonstration of Phase III. The verification allows the results to be packaged in such a way that the technology can be easily adapted to different site conditions. Phase II was successfully completed with 1000 cubic yards of grout being injected into Anker Energy's Fairfax mine. The grout flowed over 600 feet from a single injection borehole. The grout achieved a compressive strength of over 1000 psi (twice the level that is needed to guarantee subsidence control). Phase III was a full scale test at Anker's eleven acre Longridge mine site. The CCB grout replaced what was an open mine void with a solid so that the groundwater tends to flow around and through the pillars rather than through the previously mined areas. The project has demonstrated that CCBs can be successfully disposed in underground mines. Additionally, the project has shown that filling an abandoned underground mine with CCBs can lead to the reduction and elimination of environmental problems associated with underground mining such as acid mine drainage and subsidence. The filling of the Longridge Mine with 43,000 cubic yards of CCB grout resulted in a 97% reduction in acid mine drainage coming from the mine.

Unknown

2000-10-01T23:59:59.000Z

262

Thermal characterisation of a lightweight mortar containing expanded perlite for underground insulation  

Science Journals Connector (OSTI)

This paper aims to investigate the use of expanded perlite in mortar, for further application of shotcrete to thermal insulation of underground mines. Mixes were designed according to the typical proportions of underground shotcrete, with the sand volumetrically substituted by expanded perlite. Tests of samples were conducted at four ages. Transient plane source technique was utilised to measure the thermal properties. The results showed reduced weight, decreased thermal conductivity, deteriorated thermal diffusivity, and sacrificed mechanical strength with perlite addition. Experimental data analysis and explanation in this paper would establish useful fundamentals for further application of expanded perlite to underground shotcrete.

W.V. Liu; D.B. Apel; V. Bindiganavile

2011-01-01T23:59:59.000Z

263

Underground Storage Tank Regulations | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

264

Unsteady heat losses of underground pipelines  

Science Journals Connector (OSTI)

Analytic expressions are presented for the unsteady temperature distribution of the ground and heat losses of an underground pipeline for an arbitrary...

B. L. Krivoshein; V. M. Agapkin

1977-08-01T23:59:59.000Z

265

,"Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - All Operators",8,"Monthly","102014","1151973" ,"Release...

266

Pipelines and Underground Gas Storage (Iowa)  

Broader source: Energy.gov [DOE]

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

267

,"California Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967"...

268

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

269

Cryogenic slurry for extinguishing underground fires  

DOE Patents [OSTI]

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

270

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

271

Hawaii Underground Injection Control Permitting Webpage | Open...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Permitting Webpage Author State of Hawaii Department of...

272

2006 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (National Security Technologies, LLC, 2006) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, with the results submitted as an annual summary report to the U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (DOE, 2000; 2002). The DOE, National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2006 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs results. This annual summary report presents data and conclusions from the FY 2006 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, and closure plans, as well as monitoring results and research and development (R&D) activities, were reviewed in FY 2006 for determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for determination of the adequacy of the CAs.

Gregory J, Shott, Vefa Yucel

2007-03-01T23:59:59.000Z

273

2004 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (Bechtel Nevada, 2000) requires an annual review to assess the adequacy of the performance assessments (PAs) and composite analyses (CAs) for each of the facilities, and reports the results in an annual summary report to the U.S. Department of Energy Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan (U.S. Department of Energy [DOE]). The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office performed annual reviews in fiscal year (FY) 2004 by evaluating operational factors and research results that impact the continuing validity of the PA and CA results. This annual summary report presents data and conclusions from the FY 2004 review, and determines the adequacy of the PAs and CAs. Operational factors, such as the waste form and containers, facility design, waste receipts, closure plans, as well as monitoring results and research and development (R&D) activities were reviewed in FY 2004 for the determination of the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed for the determination of the adequacy of the CAs.

Vefa Yucel

2005-01-01T23:59:59.000Z

274

ERRATA SHEET for Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

Section 2.1.1.3 of the Table of Contents reference on Page v and on Page 12 of the Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada erroneously refers to the Nevada Environmental Policy Act Determination. The correct title of the referenced document is the National Environmental Policy Act Determination.

K. B. Campbell

2002-04-01T23:59:59.000Z

275

Corrective action plan for corrective action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The Mercury Fire Training Pit is a former fire training area located in Area 23 of the Nevada Test Site (NTS). The Mercury Fire Training Pit was used from approximately 1965 to the early 1990s to train fire-fighting personnel at the NTS, and encompasses an area approximately 107 meters (m) (350 feet [ft]) by 137 m (450 ft). The Mercury Fire Training Pit formerly included a bermed burn pit with four small burn tanks, four large above ground storage tanks an overturned bus, a telephone pole storage area, and areas for burning sheds, pallets, and cables. Closure activities will include excavation of the impacted soil in the aboveground storage tank and burn pit areas to a depth of 1.5 m (5 ft), and excavation of the impacted surface soil downgradient of the former ASTs and burnpit areas to a depth of 0.3 m (1 ft). Excavated soil will be disposed in the Area 6 Hydrocarbon Landfill at the NTS.

Nacht, S.

1999-08-01T23:59:59.000Z

276

E-Print Network 3.0 - area tonopah test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Range Manager. CI36 - REQUIREMENTS FOR ACCESS TO GOVERNMENT SITES Permission to enter... Security Division at Livermore; Tonopah ... Source: Fuerschbach, Phillip - Joining...

277

Flow Test At Silver Peak Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgw...

278

Flow Test At Fish Lake Valley Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Additional References Retrieved from "http:en.openei.orgw...

279

Nevada Test Site 2000 Annual Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2000 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (IL) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

Y. E.Townsend

2001-02-01T23:59:59.000Z

280

2007 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

This report summarizes the results of an annual review of conditions affecting the operation of the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) and a determination of the continuing adequacy of the performance assessments (PAs) and composite analyses (CAs). The Area 5 RWMS PA documentation consists of the original PA (Shott et al., 1998), referred to as the 1998 Area 5 RWMS PA and supporting addenda (Bechtel Nevada [BN], 2001b; 2006a). The Area 5 RWMS CA was issued as a single document (BN, 2001a) and has a single addendum (BN, 2001c). The Area 3 PA and CA were issued in a single document (Shott et al., 2000). The Maintenance Plan for the PAs and CAs (National Security Technologies, LLC [NSTec], 2006) and the Disposal Authorization Statements (DASs) for the Area 3 and 5 RWMSs (U.S. Department of Energy [DOE], 2000; 2002) require preparation of an annual summary and a determination of the continuing adequacy of the PAs and CAs. The annual summary report is submitted to DOE Headquarters. Following the annual report format in the DOE PA/CA Maintenance Guide (DOE, 1999), this report presents the annual summary for the PAs in Section 2.0 and the CAs in Section 3.0. The annual summary for the PAs includes the following: Section 2.1 summarizes changes in waste disposal operations; Section 2.1.5 provides an evaluation of the new estimates of the closure inventories derived from the actual disposals through fiscal year (FY) 2007; Section 2.2 summarizes the results of the monitoring conducted under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's (NNSA/NSO's) Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site (BN, 2005), and the research and development (R&D) activities; Section 2.4 is a summary of changes in facility design, operation, or expected future conditions; monitoring and R&D activities; and the maintenance program; and Section 2.5 discusses the recommended changes in disposal facility design and operations, monitoring and R&D activities, and the maintenance program. Similarly, the annual summary for the CAs (presented in Section 3.0) includes the following: Section 3.1 presents the assessment of the adequacy of the CAs, with a summary of the relevant factors reviewed in FY 2007; Section 3.2 presents an assessment of the relevant site activities at the Nevada Test Site (NTS) that would impact the sources of residual radioactive material considered in the CAs; Section 3.3 summarizes the monitoring and R&D results that were reviewed in FY 2007; Section 3.4 presents a summary of changes in relevant site programs (including monitoring, R&D, and the maintenance program) that occurred since the CAs were prepared; and Section 3.5 summarizes the recommended changes to these programs.

NSTec Environmental Management

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Colorado Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030CO2","N5010CO2","N5020CO2","N5070CO2","N5050CO2","N5060CO2" "Date","Colorado Natural Gas Underground Storage Volume (MMcf)","Colorado Natural Gas in Underground...

282

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

283

Carbon Allocation in Underground Storage Organs  

E-Print Network [OSTI]

Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

284

Safer Work Plan for CAUs 452, 454, 456, and 464 Closure of Historical UST Release Sites Nevada Test Site  

SciTech Connect (OSTI)

This plan addresses characterization and closure of nine underground storage tank petroleum hydrocarbon release sites. The sites are located at the Nevada Test Site in Areas 2, 9, 12, 23, and 25. The underground storage tanks associated with the release sites and addressed by this plan were closed between 1990 and 1996 by the U. S. Department of Energy, Nevada Operations Office. One underground storage tank was closed in place (23-111-1) while the remaining eight were closed by removal. Hydrocarbon releases were identified at each of the sites based upon laboratory analytical data samples collected below the tank bottoms. The objective of this plan is to provide a method for implementing characterization and closure of historical underground storage tank hydrocarbon release sites.

Jerry Bonn

1997-08-01T23:59:59.000Z

285

DOE to host workshop to explore use of WIPP as 'next generation' underground laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Workshop to Explore Use of WIPP Workshop to Explore Use of WIPP As 'Next Generation' Underground Laboratory CARLSBAD, N.M., June 9, 2000 - The U.S. Department of Energy's (DOE) Carlsbad Area Office is sponsoring the "Workshop on the Next Generation U.S. Underground Science Facility" June 12-14 at the Pecos River Village Conference Center, 711 Muscatel, in Carlsbad. The purpose of the workshop is to explore the potential use of the DOE's Waste Isolation Pilot Plant (WIPP) underground as a next generation laboratory for conducting nuclear and particle astrophysics and other basic science research, and how that might be accomplished. "WIPP's underground environment represents one of only a few choices open to the research community for siting experiments that require shielding from cosmic rays," said Dr.

286

Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Corrective Action Unit (CAU) 375 is located in Areas 25 and 30 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 375 comprises the two corrective action sites (CASs) listed below: • 25-23-22, Contaminated Soils Site • 30-45-01, U-30a, b, c, d, e Craters Existing information on the nature and extent of potential contamination present at the CAU 375 CASs is insufficient to evaluate and recommend corrective action alternatives (CAAs). This document details an investigation plan that will provide for the gathering of sufficient information to evaluate and recommend CAAs. Corrective Action Site 25-23-22 is composed of the releases associated with nuclear rocket testing at Test Cell A (TCA). Test Cell A was used to test and develop nuclear rocket motors as part of the Nuclear Rocket Development Station from its construction in 1958 until 1966, when rocket testing began being conducted at Test Cell C. The rocket motors were built with an unshielded nuclear reactor that produced as much as 1,100 kilowatts (at full power) to heat liquid hydrogen to 4,000 degrees Fahrenheit, at which time the expanded gases were focused out a nozzle to produce thrust. The fuel rods in the reactor were not clad and were designed to release fission fragments to the atmosphere, but due to vibrations and loss of cooling during some operational tests, fuel fragments in excess of planned releases became entrained in the exhaust and spread in the immediate surrounding area. Cleanup efforts have been undertaken at times to collect the fuel rod fragments and other contamination. Previous environmental investigations in the TCA area have resulted in the creation of a number of use restrictions. The industrial area of TCA is encompassed by a fence and is currently posted as a radioactive material area. Corrective Action Site 30-45-01 (releases associated with the Buggy Plowshare test) is located in Area 30 on Chukar Mesa. It was a Plowshare test where five nuclear devices were buried 140 feet (ft) deep in a row at 150-ft intervals. These devices were detonated on March 12, 1968, to produce a trench 254 ft wide, 865 ft long, and 70 ft deep. The mesa where the test was conducted is surrounded on three sides by ravines, and the entire end of the mesa is fenced and posted as a contamination area. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend CAAs. Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 2, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 375.

Patrick Matthews

2010-03-01T23:59:59.000Z

287

Analysis of Teleseismic Signals from Underground Nuclear Explosions Originating in Four Geological Environments  

Science Journals Connector (OSTI)

......from the E. Kazakh site and the Nevada Test Site lie in between these two values...to an underground explosion at Nevada test site, Can. J. earth Sci., 6...from the E. Kazakh site and the Nevada Test Site lie in between these two values......

H. S. Hasegawa

1971-12-01T23:59:59.000Z

288

Utah Underground Storage Tank Installation Permit | Open Energy...  

Open Energy Info (EERE)

Underground Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type...

289

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

290

Progress Continues Toward Closure of Two Underground Waste Tanks...  

Office of Environmental Management (EM)

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site...

291

The Simulation Analysis of Fire Feature on Underground Substation  

Science Journals Connector (OSTI)

Underground transformer substations constructed with non-dwelling buildings have a ... out simulation analysis of fire feature on underground substation. The corresponding fire protection strategy is also...

Xin Han; Xie He; Beihua Cong

2012-01-01T23:59:59.000Z

292

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

293

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

294

Post-Closure Monitoring Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The Area 12 Fleet Operations Steam Cleaning site is located in the southeast portion of the Area 12 Camp at the Nevada Test Site (Figure 1). This site is identified in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 23, 2001. Because of questionable representativeness and precision of the results, the site was resampled on June 12, 2001. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the December 1997 Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1997). If after six years the rate of degradation appears to be so slow that the greatest concentration of total petroleum hydrocarbons (TPH) present at the site would not decay within 30 years of the site closure, the site will be reevaluated with consideration to enriching the impacted soil at the site to enhance the degradation process. A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report, samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in TPH concentrations at the site. Sampling results from 2000 revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, the data results from 2000 were not directly correlated with previous results. Post-closure monitoring activities for 2001 consisted of the following: Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2); Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]); Site inspection to evaluate the condition of the fencing and signs; and Preparation and submittal of the Post-Closure Monitoring Report.

A. T. Urbon

2001-08-01T23:59:59.000Z

295

ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST S I T E  

Office of Legacy Management (LM)

ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST S ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST S I T E AND OTIIER TEST AREAS USED FOR UNDERGROUND NUCLEAR DnONATIONS ' , '. L , January-December 1 9 7 2 This work performed under a Memorandum o f / : : - ' : L Understanding N o . A T ( 2 6 - 1 ) - 5 3 9 . for the U. S . ATOMIC ENERGY COMMISSION I ENVIRONMENTAL MONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January-December 1972 by the National Environmental Research Center U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada This Published May 1973 work performed under a Memorandum of Understanding No. AT(26-1)-539 for the U. S . ATOMIC ENERGY COMMISSION PREFACE The Atomic Energy Commission (AEC) has used t h e Nevada Test S i t e (NTS) s i n c e January 1951 a s an a r

296

EXPERIMENTS, CONCEPTUAL DESIGN, PRELIMINARY COST ESTIMATES AND SCHEDULES FOR AN UNDERGROUND RESEARCH FACILITY  

E-Print Network [OSTI]

surface and underground facilities as we11 as operation andconstruction of the underground facility. However, because

Korbin, G.

2010-01-01T23:59:59.000Z

297

Depleted Argon from Underground Sources  

SciTech Connect (OSTI)

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

298

Offsite environmental monitoring report. Radiation monitoring around United States nuclear test areas, calendar year 1981  

SciTech Connect (OSTI)

This report, prepared in accordance with the guidelines in DOE/E-0023 (DOE 1981), covers the program activities conducted around Nevada Test Site (NTS) for calendar year 1981. It contains descriptions of pertinent features of the NTS and its environs, summaries of the dosimetry and sampling methods, analytical procedures, and the analytical results from environmental measurements. Where applicable, dosimetry and sampling data are compared to appropriate guides for external and internal exposures of humans to ionizing radiation. The monitoring networks detected no radioactivity in the various media which could be attributed to US nuclear testing. Small amounts of fission products were detected in air samples as a result of the People's Republic of China nuclear test and atmospheric krypton-85 increased, following the trend beginning in 1960, due to increased use of nuclear technology. Strontium-90 in milk and cesium-137 in meat samples continued the slow decline as observed for the last several years.

Black, S.C.; Grossman, R.F.; Mullen, A.A.; Potter, G.D.; Smith, D.D.; Hopper, J.L. (comps.)

1982-08-01T23:59:59.000Z

299

Confirmative laboratory tests and one example of forensic application of the probabilistic approach to the area of convergence in BPA  

E-Print Network [OSTI]

One of the most important results in Bloodstain Pattern Analysis (BPA) is the determination of the area of convergence of blood-drop trajectories. This area is directly related to the point of origin of the projections and is often indicative of the point where the main action of a crime has occurred. One of us has recently proposed a method to statistically characterize this area by mean of a probabilistic approach based on the uncertainties of the angles of impact of the stains in the pattern. In our work we present some laboratory tests that confirm the validity of the method, returning good agreement between the empirical and the theoretical data. By comparing the results of different operators, we also show the robustness of the method, in that the results are independent of the analytical approach of the single experimenter. Finally, we describe an example of application to a real forensic case.

Camana, Francesco; Gravina, Nicola; Quintarelli, Marco

2013-01-01T23:59:59.000Z

300

Nevada Test Site 2009 Data Report: Groundwater Monitoring Program, Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). The data have been collected since 1993 and include calendar year 2009 results. During 2009, groundwater at each of the three pilot wells was sampled on March 10, 2009, and August 18, 2009, and water levels at each of the three pilot wells were measured on February 17, May 6, August 17, and November 10, 2009. Groundwater samples were analyzed for the following indicators of contamination: pH, specific conductance, total organic carbon, total organic halides, and tritium. Indicators of general water chemistry (cations and anions) were also measured. Results from all samples collected in 2009 were within the limits established by agreement with the Nevada Division of Environmental Protection for each analyte. These data indicate that there has been no measurable impact to the uppermost aquifer from the Area 5 RWMS. There were no significant changes in measured groundwater parameters compared to previous years. The report contains an updated cumulative chronology for the Area 5 RWMS Groundwater Monitoring Program and a brief description of the site hydrogeology.

NSTec Environmental Management

2010-01-19T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Nevada Test Site 2001 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2001 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure. Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Due to detections of TOC and TOX in some samples collected in 2000, a plan, as approved by the Nevada Division of Environmental Protection (NDEP), was executed to collect an increased number and type of samples in 2001. Results from all samples collected in 2001 were below ILs. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act (RCRA) regulated unit within the Area 5 RWMS and confirm that the detections of TOC and TOX in 2000 were false positives. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year.

Y. E. Townsend

2002-02-01T23:59:59.000Z

302

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect (OSTI)

Bechtel Nevada (BN) manages two low-level Radioactive Waste Management Sites (RWMSs) (one site is in Area 3 and the other is in Area 5) at the Nevada Test Site (NTS) for the U.S. Department of Energy's (DOE's) National Nuclear Security Administration Nevada Operations Office (NNSA/NV). The current DOE Order governing management of radioactive waste is 435.1. Associated with DOE Order 435.1 is a Manual (DOE M 435.1-1) and Guidance (DOE G 435.1-1). The Manual and Guidance specify that preliminary closure and monitoring plans for a low-level waste (LLW) management facility be developed and initially submitted with the Performance Assessment (PA) and Composite Analysis (CA) for that facility. The Manual and Guidance, and the Disposal Authorization Statement (DAS) issued for the Area 3 RWMS further specify that the preliminary closure and monitoring plans be updated within one year following issuance of a DAS. This Integrated Closure and Monitoring Plan (ICMP) fulfills both requirements. Additional updates will be conducted every third year hereafter. This document is an integrated plan for closing and monitoring both RWMSs, and is based on guidance issued in 1999 by the DOE for developing closure plans. The plan does not follow the format suggested by the DOE guidance in order to better accommodate differences between the two RWMSs, especially in terms of operations and site characteristics. The modification reduces redundancy and provides a smoother progression of the discussion. The closure and monitoring plans were integrated because much of the information that would be included in individual plans is the same, and integration provides efficient presentation and program management. The ICMP identifies the regulatory requirements, describes the disposal sites and the physical environment where they are located, and defines the approach and schedule for both closing and monitoring the sites.

S. E. Rawlinson

2001-09-01T23:59:59.000Z

303

Performance test of personal RF monitor for area monitoring at magnetic confinement fusion facility  

Science Journals Connector (OSTI)

......fusion test facilities. INTRODUCTION For the realisation of a nuclear fusion reactor, high-temperature, high-density plasma must...range Up to 1 GHz Impedance 50 omega10 % Maximum allowable input power 200 W Uniformity of electric field distribution 4 dB......

Masahiro Tanaka; Tatsuhiko Uda; Jianqing Wang; Osamu Fujiwara

2012-02-01T23:59:59.000Z

304

Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

This report summarizes the results of a Composite Analysis (CA) for the Area 5 Radioactive Waste Management Site (RWMS). The Area 5 RWMS is a US Department of Energy (DOE)-operated low-level radioactive waste (LLW) management site located in northern Frenchman Flat on the Nevada Test Site (NTS). The Area 5 RWMS has disposed of low-level radioactive waste in shallow unlined pits and trenches since 1960. Transuranic waste (TRU) and high-specific activity waste was disposed in Greater Confinement Disposal (GCD) boreholes from 1983 to 1989. The purpose of this CA is to determine if continuing operation of the Area 5 RWMS poses an acceptable or unacceptable risk to the public considering the total waste inventory and all other interacting sources of radioactive material in the vicinity. Continuing operation of the Area 5 RWMS will be considered acceptable if the total effective dose equivalent (TEDE) is less than 100 mrem in a year. If the TEDE exceeds 30 mrem in a year, a cost-benefit options analysis must be performed to determine if cost-effective management options exist to reduce the dose further. If the TEDE is found to be less than 30 mrem in a year, an analysis may be performed if warranted to determine if doses are as low as reasonably achievable (ALARA).

V. Yucel

2001-09-01T23:59:59.000Z

305

Nevada Test Site 2002 Data Report: Groundwater Monitoring Program Area 5 Radioactive Waste Management Site  

SciTech Connect (OSTI)

This report is a compilation of the calendar year 2002 groundwater sampling results from the Area 5 Radioactive Waste Management Site (RWMS). Wells Ue5PW-1, Ue5PW-2, and Ue5PW-3 were sampled semiannually for the required analytes: pH, specific conductance, major cations/anions, metals, tritium, total organic carbon (TOC), and total organic halogen (TOX). Results from all samples collected in 2002 were within established criteria. These data indicate that there has been no measurable impact to the uppermost aquifer from the Resource Conservation and Recovery Act(RCRA) regulated unit within the RWMS-5 and confirm that the detections of TOC and TOX in 2000 were false positives. Contamination indicator data are presented in control chart and tabular form with investigation levels (ILs) indicated. Gross water chemistry data are presented in graphical and tabular form. There were no major changes noted in the monitored groundwater elevation. There continues to be an extremely small gradient to the northeast with an average flow velocity of less than one foot per year. Other information in the report includes, the Cumulative Chronology for Area 5 RWMS Groundwater Monitoring Program, a brief description of the site hydrogeology, and the groundwater sampling procedure.

Y. E. Townsend

2003-02-01T23:59:59.000Z

306

Corrective Action Investigation Plan for Corrective Action Unit 252: Area 25 Engine Test Stand 1 Decontamination Pad, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 252 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 252 consists of Corrective Action Site (CAS) 25-07-02, Engine Test Stand-1 (ETS-1) Decontamination Pad. Located in Area 25 at the intersection of Road H and Road K at the Nevada Test Site, ETS-1 was designed for use as a mobile radiation checkpoint and for vehicle decontamination. The CAS consists of a concrete decontamination pad with a drain, a gravel-filled sump, two concrete trailer pads, and utility boxes. Constructed in 1966, the ETS-1 facility was part of the Nuclear Rocket Development Station (NRDS) complex and used to test nuclear rockets. The ETS-1 Decontamination Pad and mobile radiation check point was built in 1968. The NRDS complex ceased primary operations in 1973. Based on site history, the focus of the field investigation activities will be to determine if any primary contaminants of potential concern (COPCs) (including radionuclides, total volatile organic compounds, total semivolatile organic compounds, total petroleum hydrocarbons as diesel-range organics, Resource Conservation and Recovery Act metals, total pesticides, and polychlorinated biphenyls) are present at this site. Vertical extent of migration of suspected vehicle decontamination effluent COPCs is expected to be less than 12 feet below ground surface. Lateral extent of migration of COPCs is expected to be limited to the sump area or near the northeast corner of the decontamination pad. Using a biased sampling approach, near-surface and subsurface sampling will be conducted at the suspected worst-case areas including the sump and soil near the northeast corner of the decontamination pad. The results of this field investigation will support a defensible e valuation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, Nevada Operations Office

1999-08-20T23:59:59.000Z

307

Geologic and hydrologic records of observation wells, test holes, test wells, supply wells, springs, and surface water stations in the Los Alamos area  

SciTech Connect (OSTI)

Hundreds of holes have been drilled into the Pajarito Plateau and surrounding test areas of the Los Alamos National Laboratory since the end of World War II. They range in depth from a few feet to more than 14,000 ft. The holes were drilled to provide geologic, hydrologic, and engineering information related to development of a water supply, to provide data on the likelihood or presence of subsurface contamination from hazardous and nuclear materials, and for engineering design for construction. The data contained in this report provide a basis for further investigations into the consequences of our past, present, and future interactions with the environment.

Purtymun, W.D.

1995-01-01T23:59:59.000Z

308

Test in a beam of large-area Micromegas chambers for sampling calorimetry  

E-Print Network [OSTI]

Application of Micromegas for sampling calorimetry puts specific constraints on the design and performance of this gaseous detector. In particular, uniform and linear response, low noise and stability against high ionisation density deposits are prerequisites to achieving good energy resolution. A Micromegas-based hadronic calorimeter was proposed for an application at a future linear collider experiment and three technologically advanced prototypes of 1$\\times$1 m$^{2}$ were constructed. Their merits relative to the above-mentioned criteria are discussed on the basis of measurements performed at the CERN SPS test-beam facility.

C. Adloff; M. Chefdeville; A. Dalmaz; C. Drancourt; R. Gaglione; N. Geffroy; J. Jacquemier; Y. Karyotakis; I. Koletsou; F. Peltier; J. Samarati; G. Vouters

2014-05-03T23:59:59.000Z

309

Test in a beam of large-area Micromegas chambers for sampling calorimetry  

E-Print Network [OSTI]

Application of Micromegas for sampling calorimetry puts specific constraints on the design and performance of this gaseous detector. In particular, uniform and linear response, low noise and stability against high ionisation density deposits are prerequisites to achieving good energy resolution. A Micromegas-based hadronic calorimeter was proposed for an application at a future linear collider experiment and three technologically advanced prototypes of 1$\\times$1 m$^{2}$ were constructed. Their merits relative to the above-mentioned criteria are discussed on the basis of measurements performed at the CERN SPS test-beam facility.

Adloff, C; Dalmaz, A; Drancourt, C; Gaglione, R; Geffroy, N; Jacquemier, J; Karyotakis, Y; Koletsou, I; Peltier, F; Samarati, J; Vouters, G

2014-01-01T23:59:59.000Z

310

Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches  

SciTech Connect (OSTI)

As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

1989-01-01T23:59:59.000Z

311

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

312

Underground Coal Gasification in the USSR  

Science Journals Connector (OSTI)

By accomplishing in a single operation the extraction of coal and its conversion into a gaseous fuel, underground gasification makes it possible to avoid the heavy capital investments required for coal gasification

1983-01-01T23:59:59.000Z

313

Best practices for underground diesel emissions  

SciTech Connect (OSTI)

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

314

Underground Storage of Natural Gas (Kansas)  

Broader source: Energy.gov [DOE]

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

315

UEME : the underground electronic music experience  

E-Print Network [OSTI]

The global electronic music scene has remained underground for its entire lifespan, momentarily materializing during an event, a place defined by the music performed and the people who desire the experience. As festivals ...

Ciraulo, Christopher Samuel

2005-01-01T23:59:59.000Z

316

Addendum to the Closure Report for Corrective Action Unit 339: Area 12 Fleet Operations Steam Cleaning Discharge Area, Nevada Test Site, Revision 0  

SciTech Connect (OSTI)

This document constitutes an addendum to the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Discharge Area Nevada Test Site, December 1997 as described in the document Supplemental Investigation Report for FFACO Use Restrictions, Nevada Test Site, Nevada (SIR) dated November 2008. The SIR document was approved by NDEP on December 5, 2008. The approval of the SIR document constituted approval of each of the recommended UR removals. In conformance with the SIR document, this addendum consists of: • This page that refers the reader to the SIR document for additional information • The cover, title, and signature pages of the SIR document • The NDEP approval letter • The corresponding section of the SIR document This addendum provides the documentation justifying the cancellation of the UR for CAS 12-19-01, A12 Fleet Ops Steam Cleaning Efflu. This UR was established as part of a Federal Facility Agreement and Consent Order (FFACO) corrective action and is based on the presence of contaminants at concentrations greater than the action levels established at the time of the initial investigation (FFACO, 1996). Since this UR was established, practices and procedures relating to the implementation of risk-based corrective actions (RBCA) have changed. Therefore, this UR was reevaluated against the current RBCA criteria as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006). This re-evaluation consisted of comparing the original data (used to define the need for the UR) to risk-based final action levels (FALs) developed using the current Industrial Sites RBCA process. The re-evaluation resulted in a recommendation to remove the UR because contamination is not present at the site above the risk-based FALs. Requirements for inspecting and maintaining this UR will be canceled, and the postings and signage at this site will be removed. Fencing and posting may be present at this site that are unrelated to the FFACO UR such as for radiological control purposes as required by the NV/YMP Radiological Control Manual (NNSA/NSO, 2004). This modification will not affect or modify any non-FFACO requirements for fencing, posting, or monitoring at this site.

Grant Evenson

2009-05-01T23:59:59.000Z

317

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the activities necessary to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites. CAU 398, located in Area 25 of the Nevada Test Site, is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996), and consists of the following 13 Corrective Action Sites (CASs) (Figure 1): (1) CAS 25-44-01 , a fuel spill on soil that covers a concrete pad. The origins and use of the spill material are unknown, but the spill is suspected to be railroad bedding material. (2) CAS 25-44-02, a spill of liquid to the soil from leaking drums. (3) CAS 25-44-03, a spill of oil from two leaking drums onto a concrete pad and surrounding soil. (4) CAS 25-44-04, a spill from two tanks containing sulfuric acid and sodium hydroxide used for a water demineralization process. (5) CAS 25-25-02, a fuel or oil spill from leaking drums that were removed in 1992. (6) CAS 25-25-03, an oil spill adjacent to a tipped-over drum. The source of the drum is not listed, although it is noted that the drum was removed in 1991. (7) CAS 25-25-04, an area on the north side of the Engine-Maintenance, Assembly, and Disassembly (E-MAD) facility, where oils and cooling fluids from metal machining operations were poured directly onto the ground. (8) CAS 25-25-05, an area of oil and/or hydraulic fluid spills beneath the heavy equipment once stored there. (9) CAS 25-25-06, an area of diesel fuel staining beneath two generators that have since been removed. (10) CAS 25-25-07, an area of hydraulic oil spills associated with a tunnel-boring machine abandoned inside X-Tunnel. (11) CAS 25-25-08, an area of hydraulic fluid spills associated with a tunnel-boring machine abandoned inside Y-Tunnel. (12) CAS 25-25-16, a diesel fuel spill from an above-ground storage tank located near Building 3320 at Engine Test Stand-1 (ETS-1) that was removed in 1998. (13) CAS 25-25-17, a hydraulic oil spill associated with the historical operations of a vacuum pump oil recovery system at the E-MAD facility.

K. B. Campbell

2001-11-01T23:59:59.000Z

318

Cleanup and treatment (CAT) test: a land-area decontamination project utilizing a vacuum method of soil removal  

SciTech Connect (OSTI)

Areas 11 and 13 of the Nevada Test Site (NTS) are contaminated with varying concentrations of Pu-239, 240 and Am-241. An investigation of a vacuum method of soil removal, the Cleanup and Treatment (CAT) test, was conducted over a 3-month period in the plutonium safety shot or Plutonium Valley portion of Area 11. Soil in Plutonium Valley is of the Aridisol Order. The surface 0 to 10 cm is a gravelly loam, and is strongly alkaline (pH 8.8). A large truck-mounted vacuum unit, rather than conventional earth-moving equipment, was used as the primary soil collection unit. Effectiveness of the vacuum method of soil removal was evaluated in relation to conventional earthmoving procedures, particularly in terms of volume reduction of removed soil achieved over conventional techniques. Radiological safety considerations associated with use of the vacuum unit were evaluated in relation to their impact on a full-scale land decontamination program. Environmental and operational impacts of devegetation with retention of root crowns or root systems were investigated. It is concluded that the CAT test was successful under difficult environmental conditions.

Orcutt, J.A.

1982-08-01T23:59:59.000Z

319

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

320

Depleted argon from underground sources  

SciTech Connect (OSTI)

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Underground ventilation remote monitoring and control system  

SciTech Connect (OSTI)

This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system.

Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

1995-12-31T23:59:59.000Z

322

Superconducting gravity gradiometers for underground target recognition. Final report  

SciTech Connect (OSTI)

One of the most formidable intelligence challenges existing in the non-proliferation community is the detection of buried targets. The physical parameter that all buried targets share, whether the target is buried armaments, a tunnel or a bunker, is mass. In the case of buried armaments, there is an excess mass (higher density) compared to the surrounding area; for a tunnel or bunker, the mass is missing. In either case, this difference in mass generates a distinct gravitational signature. The Superconducting Gravity Gradiometer project at Sandia worked toward developing an airborne device for the detection of these underground structures.

Adriaans, M.J.

1998-01-01T23:59:59.000Z

323

Nevada Test Site Sensor Test Facility  

SciTech Connect (OSTI)

A Sensor Test Facility (STF) was recently established at the Department of Energy`s Nevada Test Site (NTS). It has been used for a series of sensor tests that have demonstrated the usefulness of the testbed. The facility consists of a cut-and-cover bunker complex and the two square mile surrounding area. The STF was developed as a scientific testbed optimized for the development and evaluation of advanced sensor systems, including ground sensor systems designed to identify and detect hardened underground facilities. This was accomplished by identifying a facility in a remote location where seismic, acoustic, and electromagnetic interference would be minimal, establishing a testbed that would be accommodating to field testing, and conducting a thorough geophysical characterization of the area surrounding the facility in order to understand the local geology and its effects on geophysical signals emanating from the facility. The STF is representative of a number of cut-and-cover bunkers around the world that are used for the manufacture and/or storage of weapons of mass destruction. This paper provides a general description of the Nevada Test Site, the Sensor Test Facility, and the Geophysical Site Characterization.

Gomez, B.J.; Boyer, W.B.

1996-12-01T23:59:59.000Z

324

Bibliography of reports on studies of the geology, hydrogeology and hydrology at the Nevada Test Site, Nye County, Nevada, from 1951--1996  

SciTech Connect (OSTI)

The Nevada Test Site (NTS) was established in 1951 as a proving ground for nuclear weapons. The site had formerly been part of an Air Force bombing and gunnery range during World War II. Sponsor-directed studies of the geology, hydrogeology, and hydrology of the NTS began about 1956 and were broad based in nature, but were related mainly to the effects of the detonation of nuclear weapons. These effects included recommending acceptable media and areas for underground tests, the possibility of off-site contamination of groundwater, air blast and surface contamination in the event of venting, ground-shock damage that could result from underground blasts, and studies in support of drilling and emplacement. The studies were both of a pure scientific nature and of a practical applied nature. The NTS was the site of 828 underground nuclear tests and 100 above-ground tests conducted between 1951 and 1992 (U.S. Department of Energy, 1994a). After July 1962, all nuclear tests conducted in the United States were underground, most of them at the NTS. The first contained underground nuclear explosion was detonated on September 19, 1957, following extensive study of the underground effect of chemical explosives. The tests were performed by U.S. Department of Energy (DOE) and its predecessors, the U.S. Atomic Energy Commission and the Energy Research and Development Administration. As part of a nationwide complex for nuclear weapons design, testing and manufacturing, the NTS was the location for continental testing of new and stockpiled nuclear devices. Other tests, including Project {open_quotes}Plowshare{close_quotes} experiments to test the peaceful application of nuclear explosives, were conducted on several parts of the site. In addition, the Defense Nuclear Agency tested the effect of nuclear detonations on military hardware.

Seaber, P.R.; Stowers, E.D.; Pearl, R.H.

1997-04-01T23:59:59.000Z

325

Closure Report for Corrective Action Unit 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The corrective action sites (CASs) within CAU 553 are located within Areas 19 and 20 of the Nevada Test Site. Corrective Action Unit 553 is comprised of the following CASs: •19-99-01, Mud Spill •19-99-11, Mud Spill •20-09-09, Mud Spill •20-99-03, Mud Spill The purpose of this CR is to provide documentation supporting the completed corrective actions and provide data confirming that the closure objectives for CASs within CAU 553 were met. To achieve this, the following actions were or will be performed: •Review the current site conditions including the concentration and extent of contamination. •Implement any corrective actions necessary to protect human health and the environment. •Properly dispose of corrective action and investigation wastes. •Document the Notice of Completion and closure of CAU 553 to be issued by Nevada Division of Environmental Protection.

Al Wickline

2007-08-01T23:59:59.000Z

326

OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE  

Office of Legacy Management (LM)

F F O R THE NEVADA TEST SITE ' i A N D OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1978 Nuclear Radiation Assessment D i v i s i o n Environmental Monitoring Systems Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 October 1979 This work performed under a Memorandum o f Understanding No. EY-76-A-08-0539 for t h e U.S. DEPARTMENT O F ENERGY OFF-SITE ENVIRONMENTAL MONITORING REPORT F O R THE NEVADA TEST SITE A N D OTHER TEST AREAS USED F O R UNDERGROUND NUCLEAR DETONATIONS January through December 1978 by R. F. Grossman Nuclear Radi a t i o n Assessment D i v i s i o n Environmental Monitoring Systems Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 This work performed under a Memorandum o f Understanding No. EY-76-A-08-0539

327

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 408, Bomblet Target Area. CAU 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. One Corrective Action Site (CAS) is included in CAU 408: {lg_bullet} CAS TA-55-002-TAB2, Bomblet Target Areas Based on historical documentation, personnel interviews, process knowledge, site visits, aerial photography, multispectral data, preliminary geophysical surveys, and the results of data quality objectives process (Section 3.0), clean closure will be implemented for CAU 408. CAU 408 closure activities will consist of identification and clearance of bomblet target areas, identification and removal of depleted uranium (DU) fragments on South Antelope Lake, and collection of verification samples. Any soil containing contaminants at concentrations above the action levels will be excavated and transported to an appropriate disposal facility. Based on existing information, contaminants of potential concern at CAU 408 include explosives. In addition, at South Antelope Lake, bomblets containing DU were tested. None of these contaminants is expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results. The corrective action investigation and closure activities have been planned to include data collection and hold points throughout the process. Hold points are designed to allow decision makers to review the existing data and decide which of the available options are most suitable. Hold points include the review of radiological, geophysical, and analytical data and field observations.

NSTec Environmental Management

2006-10-01T23:59:59.000Z

328

Corrective action investigation plan for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 342, the Area 23 Mercury Fire Training Pit (FTP), which is located in Area 23 at the Nevada Test Site (NTS). The NTS is approximately 88 km (55 mi) northwest of Las Vegas, Nevada. Corrective Action Unit 342 is comprised of CAS 23-56-01. The FTP is an area approximately 100 m by 140 m (350 ft by 450 ft) located west of the town of Mercury, Nevada, which was used between approximately 1965 and 1990 to train fire-fighting personnel (REECo, 1991; Jacobson, 1991). The surface and subsurface soils in the FTP have likely been impacted by hydrocarbons and other contaminants of potential concern (COPC) associated with burn activities and training exercises in the area.

NONE

1998-03-01T23:59:59.000Z

329

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network [OSTI]

Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

330

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network [OSTI]

Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

331

E-Print Network 3.0 - amchitka underground nuclear Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

underground nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: amchitka underground nuclear Page: << < 1 2 3 4 5 > >> 1 Underground Nuclear...

332

Preliminary evaluation of the subsurface area available for a potential nuclear-waste repository at Yucca Mountain  

SciTech Connect (OSTI)

The Nevada Nuclear Waste Storage Investigations (NNWSI) Project, managed by the Nevada Operations Office of the US Department of Energy, is examining the feasibility of siting a repository for high-level radioactive waste at Yucca Mountain on and adjacent to the Nevada Test Site. The Topopah Spring Member of the Paintbrush Tuff has been recommended as the target geologic formation. One purpose of this study was to determine whether adequate area for the underground facility exists within the portion of the devitrified, densely welded Topopah Spring Member that contains less than 15 to 20% lithophysae. Areas were considered where the underground facility would be above the water table and at least 200 m below the surface. The thickness required for the repository zone was assumed to be 45 m. An area significantly larger than the area estimated to be required to accommodate the underground facility appears to be potentially useable from this study. However, because the primary area of exploration has been the central portion of north Yucca Mountain, adjacent areas are less well characterized. Portions of the areas identified in this study may not meet all of the above criteria. Additional exploration is required to determine tha acreage of the useable area. Another purpose of this study was to identify a preliminary location within the primary area of exploration, where conditions are favorable for the proposed underground facility. Using available information, this study has identified a slab that meets the above criteria. The slab dips 5{sup 0}6`NE from a strike direction of N11{sup 0}18`W. The area of the slab is about 1850 acres (7.49 km{sup 2}).

Mansure, A.J.; Ortiz, T.S.

1984-12-01T23:59:59.000Z

333

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

334

Phase II Transport Model of Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nye County, Nevada, Revision 1  

SciTech Connect (OSTI)

This document, the Phase II Frenchman Flat transport report, presents the results of radionuclide transport simulations that incorporate groundwater radionuclide transport model statistical and structural uncertainty, and lead to forecasts of the contaminant boundary (CB) for a set of representative models from an ensemble of possible models. This work, as described in the Federal Facility Agreement and Consent Order (FFACO) Underground Test Area (UGTA) strategy (FFACO, 1996; amended 2010), forms an essential part of the technical basis for subsequent negotiation of the compliance boundary of the Frenchman Flat corrective action unit (CAU) by Nevada Division of Environmental Protection (NDEP) and National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Underground nuclear testing via deep vertical shafts was conducted at the Nevada Test Site (NTS) from 1951 until 1992. The Frenchman Flat area, the subject of this report, was used for seven years, with 10 underground nuclear tests being conducted. The U.S. Department of Energy (DOE), NNSA/NSO initiated the UGTA Project to assess and evaluate the effects of underground nuclear tests on groundwater at the NTS and vicinity through the FFACO (1996, amended 2010). The processes that will be used to complete UGTA corrective actions are described in the “Corrective Action Strategy” in the FFACO Appendix VI, Revision No. 2 (February 20, 2008).

Gregg Ruskuaff

2010-01-01T23:59:59.000Z

335

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

336

Method for making generally cylindrical underground openings  

DOE Patents [OSTI]

A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

Routh, J.W.

1983-05-26T23:59:59.000Z

337

Addendum 1 Composite Analysis for the Area 5 Radioactive Waste Management Site at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

A disposal authorization statement (DAS) was issued by the U.S. Department of Energy/Headquarters (DOE/HQ) on December 5, 2000, authorizing the DOE's National Nuclear Security Administration Nevada Operations Office to continue the operation of the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada Test Site for the disposal of low-level waste and mixed low-level waste. Prior to the issuance of the DAS, the Low-Level Waste Disposal Facility Federal Review Group (LFRG) had conducted reviews of the performance assessment (PA) and the composite analysis (CA) for the Area 5 RWMS, in accordance with the requirements of the DOE Radioactive Waste Management Order DOE O 435.1. A brief history of the reviews is as follows. (The reviews were conducted by independent review teams chartered by the LFRG; the review findings and recommendations were issued in review team reports to the LFRG.) The LFRG accepted the initial PA, with conditions, on August 30, 1996. Revision 2.1 to the PA was issued in January 1998, implementing the conditions of acceptance of the 1996 PA. The LFRG reviewed Revision 2.1 as part of the Area 5 RWMS CA review during 2000, and found it acceptable. The CA and the Supplemental Information provided in response to issues identified during the initial review of the CA were accepted by the LFRG. The Supplemental Information (including the responses to four key issues) is included in the Review Team Report to the LFRG, which recommends that it be incorporated into the CA and issued to all known holders of the CA. The Area 5 RWMS DAS requires that the Supplemental Information generated during the DOE/HQ review of the CA be incorporated into the CA within one year of the date of issuance of the DAS. This report, the first addendum to the Area 5 CA, is prepared to fulfill that requirement. The Supplemental Information includes the following: Issues Identified in the Review Team Report; Crosswalk Presentation; and Maintaining Doses As Low As Reasonably Achievable. A summary of this information is included in this report, with the complete text presented in the appendices.

Vefa Yucel

2001-11-01T23:59:59.000Z

338

Cultural Resource Assessment of the Test Area North Demolition Landfill at the Idaho National Engineering and Environmental Laboratory  

SciTech Connect (OSTI)

The proposed new demolition landfill at Test Area North on the Idaho National Engineering and Environmental Laboratory (INEEL) will support ongoing demolition and decontamination within the facilities on the north end of the INEEL. In June of 2003, the INEEL Cultural Resource Management Office conducted archival searches, field surveys, and coordination with the Shoshone-Bannock Tribes to identify all cultural resources that might be adversely affected by the project and to provide recommendations to protect those listed or eligible for listing on the National Register of Historic Places. These investigations showed that landfill construction and operation would affect two significant cultural resources. This report outlines protective measures to ensure that these effects are not adverse.

Brenda R. Pace

2003-07-01T23:59:59.000Z

339

Corrective Action Decision Document for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Decision Document has been prepared for the Nevada Test Site's Area 23 Mercury Fire Training Pit (Corrective Action Unit 342) in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996). Corrective Action Unit 342 is comprised of Corrective Action Site 23-56-01. The purpose of this Corrective Action Decision Document is to identify and provide a rationale for the selection of a recommended corrective action alternative for Corrective Action Unit 342. The scope of this document consists of the following: Develop corrective action objectives; Identify corrective action alternative screening criteria; Develop corrective action alternatives; Perform detailed and comparative evaluations of corrective action alternatives in relation to corrective action objectives and screening criteria; and Recommend and justify a preferred corrective action alternative for the Corrective Action Unit.

DOE /NV

1999-05-26T23:59:59.000Z

340

Corrective Action Investigation plan for Corrective Action Unit 263: Area 25 Building 4839 Leachfield, Nevada Test Site, Nevada, March 1999  

SciTech Connect (OSTI)

The Corrective Action Investigation Plan for Corrective Action Unit 263, the Area 25 Building 4839 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the US Department of Energy, Nevada Operations Office; the Nevada Division of Environmental Protection; and the US Department of Defense. Corrective Action Unit 263 is comprised of the Corrective Action Site 25-05-04 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). The Leachfield Work Plan was developed to streamline investigations at Leachfield Corrective Action Units by incorporating management, technical, quality assurance, health and safety, public involvement, field sampling, and waste management information common to a set of Corrective Action Units with similar site histories and characteristics into a single document that can be referenced. This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 263. Corrective Action Unit 263 is located southwest of Building 4839, in the Central Propellant Storage Area. Operations in Building 4839 from 1968 to 1996 resulted in effluent releases to the leachfield and associated collection system. In general, effluent released to the leachfield consisted of sanitary wastewater from a toilet, urinal, lavatory, and drinking fountain located within Building 4839. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with the Building 4839 operations.

ITLV

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, burn Pits, and Storage Area, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

Record of Technical Change for Corrective Action Plan for Corrective Action Unit 140: Waste Dumps, Burn Pits, and Storage Area, Nevada Test Site, Nevada (DOE/NV--963-Rev 2, dated November 2004).

U.S. Department of Energy, National Nuclear Security Administration, Nevada Site Office; Bechtel Nevada

2005-01-05T23:59:59.000Z

342

Corrective Action Investigation Plan for Corrective Action Unit 374: Area 20 Schooner Unit Crater Nevada Test Site, Nevada, Revision 0  

SciTech Connect (OSTI)

Corrective Action Unit 374 is located in Areas 18 and 20 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 374 comprises the five corrective action sites (CASs) listed below: • 18-22-05, Drum • 18-22-06, Drums (20) • 18-22-08, Drum • 18-23-01, Danny Boy Contamination Area • 20-45-03, U-20u Crater (Schooner) These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on October 20, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 374.

Patrick Matthews

2010-02-01T23:59:59.000Z

343

Underground Facilities Information (Iowa) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

344

Underground Injection Control Permits and Registrations (Texas) |  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

345

Integrated Closure and Monitoring Plan for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site  

SciTech Connect (OSTI)

This document is an integrated plan for closing and monitoring two low-level radioactive waste disposal sites at the Nevada Test Site.

Bechtel Nevada

2005-06-01T23:59:59.000Z

346

Notification for Underground Storage Tanks (EPA Form 7530-1)...  

Open Energy Info (EERE)

Notification for Underground Storage Tanks (EPA Form 7530-1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Notification for Underground Storage Tanks...

347

Visit to the Deep Underground Science and Engineering Laboratory  

ScienceCinema (OSTI)

U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

None

2010-01-08T23:59:59.000Z

348

Ground Motions from and House Response to Underground Aggregate Mining  

E-Print Network [OSTI]

interest because many urban quarries have gone underground or are considering doing so. Three cracks were to determine future blasting controls for a underground aggregate quarry near Franklin, KY (Revey, 2005

349

Fiscal Year 2005 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada  

SciTech Connect (OSTI)

The Performance Assessment (PA) maintenance plan requires an annual review to determine if current operations and conditions at the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) remain consistent with PA and composite analysis (CA) assumptions and models. This report summarizes the fiscal year (FY) 2005 annual review findings for the Area 3 RWMS PA only. The PA Maintenance Plan states that no annual review or summary reporting will be carried out in years that a PA or CA revision is undertaken (Bechtel Nevada [BN], 2002). Updated PA results for the Area 5 RWMS were published in an addendum to the Area 5 RWMS PA report in September 2005. A federal review of the draft addendum report took place in early FY 2006 (October November 2005). The review team found the addendum acceptable without conditions. The review team's recommendation will be presented to the Low-Level Waste Disposal Facility Federal Review Group in early 2006. The addendum was revised in January 2006 and incorporated comments from the review team (BN, 2006). Table 1 summarizes the updated Area 5 RWMS PA results presented in the addendum.

Vefa Yucel

2006-01-01T23:59:59.000Z

350

Underground engineering at the Basalt Waste Isolation Project  

SciTech Connect (OSTI)

A special task group was organized by the US National Committee for Rock Mechanics and the Board on Radioactive Waste Management of the National Research Council to address issues relating to the geotechnical site characterization program for an underground facility to house high-level radioactive waste of the Basalt Waste Isolation Project (BWIP). Intended to provide an overview of the geotechnical program, the study was carried out by a task group consisting of ten members with expertise in the many disciplines required to successfully complete such a project. The task group recognized from the outset that the short time frame of this study would limit its ability to address all geotechnical issues in detail. Geotechnical issues were considered to range from specific technical aspects such as in-situ testing for rock mass permeability; rock hardness testing in the laboratory; or geologic characterizations and quantification of joints, to broader aspects of design philosophy, data collection, and treatment of uncertainty. The task group chose to focus on the broader aspects of underground design and construction, recognizing that the BWIP program utilizes a peer review group on a regular basis which reviews the specific technical questions related to geotechnical engineering. In this way, it was hoped that the review provided by the task group would complement those prepared by the BWIP peer review group.

Not Available

1987-01-01T23:59:59.000Z

351

Corrective Action Investigation Plan for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD). Corrective Action Unit 309 is located in Area 12 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 mi beyond the main gate to the NTS. Corrective Action Unit 309 is comprised of the three Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: CAS 12-06-09, Muckpile; CAS 12-08-02, Contaminated Waste Dump (CWD); and CAS 12-28-01, I, J, and K-Tunnel Debris. Corrective Action Sites 12-06-09 and 12-08-02 will be collectively referred to as muckpiles in this document. Corrective Action Site 12-28-01 will be referred to as the fallout plume because of the extensive lateral area of debris and fallout contamination resulting from the containment failures of the J-and K-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and media sampling, where appropriate. Data will also be obtained to support waste management decisions. The CASs in CAU 309 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and/or the environment. Existing information on the nature and extent of potential contamination at these sites are insufficient to evaluate and recommend corrective action alternatives for the CASs. Therefore, additional information will be obtained by conducting a CAI prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS.

David A. Strand

2004-12-01T23:59:59.000Z

352

Rectifiers used on the London Underground Railways  

Science Journals Connector (OSTI)

... Lunn to the Institution of Electrical Engftieers on November 7, a description of the rectifier substations is given and also much useful information of the working of these rectifiers for traction ... there is little vibration; but in these respects the rectifier is much superior. The substation buildings for operating the traction system of the London Underground are in very densely populated ...

1935-11-30T23:59:59.000Z

353

Underground natural gas storage reservoir management  

SciTech Connect (OSTI)

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

354

The Public Perceptions of Underground Coal Gasification (UCG)  

E-Print Network [OSTI]

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

355

Detection of Underground Marlpit Quarries Using High Resolution Seismic  

E-Print Network [OSTI]

Detection of Underground Marlpit Quarries Using High Resolution Seismic B. Piwakowski* (Ecole of high resolution reflection seismic for the detection and location of underground marlpit quarries of the geological structure, the results show that the detection of marlpit underground quarries, often considered

Boyer, Edmond

356

Corrective Action Investigation Plan for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No. 0  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) for Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 309 is comprised of the following three corrective action sites (CASs) in Area 12 of the NTS: (1) CAS 12-06-09, Muckpile; (2) CAS 12-08-02, Contaminated Waste Dump (CWD); and (3) CAS 12-28-01, I-, J-, and K-Tunnel Debris. Corrective Action Site 12-06-09 consists of a muckpile and debris located on the hillside in front of the I-, J-, and K-Tunnels on the eastern slopes of Rainier Mesa in Area 12. The muckpile includes mining debris (muck) and debris generated during the excavation and construction of the I-, J-, and K-Tunnels. Corrective Action Site 12-08-02, CWD, consists of a muckpile and debris and is located on the hillside in front of the re-entry tunnel for K-Tunnel. For the purpose of this investigation CAS 12-28-01 is defined as debris ejected by containment failures during the Des Moines and Platte Tests and the associated contamination that is not covered in the two muckpile CASs. This site consists of debris scattered south of the I-, J-, and K-Tunnel muckpiles and extends down the hillside, across the valley, and onto the adjacent hillside to the south. In addition, the site will cover the potential contamination associated with ''ventings'' along the fault, fractures, and various boreholes on the mesa top and face. One conceptual site model was developed for all three CASs to address possible contamination migration pathways associated with CAU 309. The data quality objective (DQO) process was used to identify and define the type, quantity, and quality of data needed to complete the investigation phase of the corrective action process. The DQO process addresses the primary problem that sufficient information is not available to determine the appropriate corrective action for the CAU. Due to the practical constraints posed by steep slopes on and around the CAU 309 muckpiles, a conservative, simplifying strategy was developed to resolve the presence and nature of contaminants. This strategy includes the use of historical data from similar sites (i.e., previously investigated NTS muckpiles) and the collection of samples from accessible areas of the muckpiles. Based on site history, process knowledge, and previous investigations of similar sites, contaminants of potential concern for CAU 309 collectively include radionuclides, total petroleum hydrocarbons (diesel range only), polychlorinated biphenyls, ''Resource Conservation and Recovery Act'' metals, volatile organic compounds, and semivolatile organic compounds.

Robert F. Boehlecke

2004-12-01T23:59:59.000Z

357

RCRA closure plan for underground storage tank 105-C  

SciTech Connect (OSTI)

A Reactor Department program for repairing heat exchangers created a low level radioactive waste, which was held in underground storage tank (UST) 105-C, hereafter referred to as the tank. According to Procedures used at the facility, the waste`s pH was adjusted to the 8.0--12.0 range before shipping it to the SRS Waste Management Department. For this reason, area personnel did not anticipate that the waste which is currently contained in the tank would have corrosive hazardous characteristic. However, recent analysis indicates that waste contained in the tank has a pH of greater than 12.5, thereby constituting a hazardous waste. Because the Department of Energy-Savannah River Office (DOE-SR) could not prove that the hazardous waste had been stored in the tank for less than 90 days, the State of South Carolina Department of Health and Environmental Control (SCDHEC) alleged that DOE-SR was in violation of the 1976 Code of Laws of South Carolina. As agreed in Settlement Agreement 90-74-SW between the DOE and SCDHEC, this is the required closure plan for Tank 105-C. The purpose of this document is to present SCDHEC with an official plan for closing the underground storage tank. Upon approval by SCDHEC, the schedule for closure will be an enforceable portion of this agreement.

Miles, W.C. Jr.

1990-10-01T23:59:59.000Z

358

Corrective Action Investigation Plan for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 335, Area 6 Injection Well and Drain Pit, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 335 consists of three Corrective Action Sites (CASs). The CAU is located in the Well 3 Yard in Area 6 at the Nevada Test Site. Historical records indicate that the Drain Pit (CAS 06-23-03) received effluent from truck-washing; the Drums/Oil Waste/Spill (CAS 06-20-01) consisted of four 55-gallon drums containing material removed from the Cased Hole; and the Cased Hole (CAS 06-20-02) was used for disposal of used motor oil, wastewater, and debris. These drums were transported to the Area 5 Hazardous Waste Accumulation Site in July 1991; therefore, they are no longer on site and further investigation or remediation efforts are not required. Consequently, CAS 06-20-01 will be closed with no further action and details of this decision will be described in the Closure Report for this CAU. Any spills that may have been associated with this CAS will be investigated and addressed under CAS 06-20-02. Field investigation efforts will be focused on the two remaining CASs. The scope of the investigation will center around identifying any contaminants of potential concern (COPCs) and, if present, determining the vertical and lateral extent of contamination. The COPCs for the Drain Pit include: total volatile/ semivolatile organic compounds, total petroleum hydrocarbons (gasoline-and diesel-range organics), ethylene glycol monobutyl ether, polychlorinated biphenyls, total Resource Conservation and Recovery Act metals, and radionuclides. The COPCs for the Cased Hole include: total volatile/ semivolatile organic compounds, total petroleum hydrocarbons (diesel-range organics only), and total Resource Conservation an d Recovery Act metals. Both biased surface and subsurface soil sampling will be conducted, augmented by visual inspection, video surveys, and electromagnetic surveys. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

DOE/NV

2000-12-01T23:59:59.000Z

359

Corrective Action Plan for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 22 Sewage Lagoons site. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during September 1999, Soil samples were collected using a direct-push method and a backhoe. Soil samples were collected from the sludge bed, sewage lagoons, strainer box, and Imhoff tank areas. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Soil sample results indicated that the only constituent of concern (COC) detected above Preliminary Action Levels (PALs) was total petroleum hydrocarbons (TPH) as diesel-range organics. This COC was detected in three samples from the sludge bed at concentrations up to 580 milligrams per kilogram (mg/kg). This exceeds the Nevada Division of Environmental Protection (NDEP) regulatory action level for TPH of 100 mg/kg (Nevada Administrative Code, 1996). Excavation of the area during characterization uncovered asphalt debris, four safety poles, and strands of barbed wire. The TPH-impacted soil and debris will be removed and disposed in the NTS Area 6 Hydrocarbon Landfill.

D. S. Tobiason

2000-09-01T23:59:59.000Z

360

100-D Area In Situ Redox Treatability Test for Chromate-Contaminated Groundwater: FY 1998 Year-End Report  

SciTech Connect (OSTI)

A treatability test was conducted for the In Situ Redox Manipulation (ISRM) technology at the US Department of Energy's Hanford, Washington 100D Area. The target contaminant was dissolved chromate [Cr(VI)] in groundwater. The ISRM technology involves creating a permeable subsurface treatment zone to reduce mobile chromate in groundwater to an insoluble form. The ISRM permeable treatment zone is created by reducing ferric iron [Fe(III)] to ferrous iron [Fe(II)] within the aquifer sediments. This is accomplished by injecting aqueous sodium dithionite into the aquifer and withdrawing the reaction products. The goal of the treatability test was to create a linear ISRM barrier by injecting sodium dithionite into five wells. Well installation and site characterization activities began in the spring of 1997. The first dithionite injection took place in September 1997. The results of this first injection were monitored through the spring of 1998; the remaining four dithionite injections were carried out in May through July of 1998. These five injections created a reduced zone in the Hanford unconfined aquifer 150 feet in length (perpendicular to groundwater flow) by 50 feet wide. The reduced zone extended over the thickness of the unconfined zone, which is approximately 15 feet. Analysis of recent groundwater sampling events shows that the concentrations of chromate [Cr(VI)] in groundwater in the reduced zone have been decreased from starting concentrations of approximately 900 ppb to below analytical detection limits (<7 ppb). Chromate concentrations are also declining in some downgradient monitoring wells. Laboratory analysis of iron in the soil indicates that the barrier should remain in place for approximately 20 to 25 years. These measurements will be confirmed by analysis of sediment cores in FY 1999.

Williams, M.D.; Vermeul, V.R.; Szecsody, J.E.; Fruchter, J.S.; Cole, C.R.

1999-04-15T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Proceedings of the ninth annual underground coal gasification symposium  

SciTech Connect (OSTI)

The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

1983-12-01T23:59:59.000Z

362

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

363

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

364

Underground Storage Tank Regulations for the Certification of Persons Who  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

365

Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 240, Area 25 Vehicle Washdown, which is located on the Nevada Test Site (NTS).

DOE/NV

1999-01-25T23:59:59.000Z

366

The field test and optimization of a solar assisted heat pump system for space heating in extremely cold area  

Science Journals Connector (OSTI)

Abstract As a kind of sustainable energy source, solar energy is becoming highly valued. Especially in extremely cold areas, the amount of energy consumed for space heating is huge, and the conventional coal heating has polluted the environment seriously, therefore solar heating is significant on both energy and environment conservation. In this study, a solar assisted heat pump (SAHP) system was investigated for space heating under extremely cold climatic condition. The system principle and operation modes was presented, and then the project profile and design procedure were introduced, and finally the system performance was evaluated by field test on typical winter days and modeling via TRNSYS simulation environment. The results show that the solar collector efficiency was 51%, and the solar fraction can reach 66% in December. Economic analysis was also performed and the heating expenses for the present SAHP system was 18 RMB/m2. Finally, the temperatures of solar energy for both direct heating and storage and only for direct heating (T1A and T1B) were simulated and optimized, which have important significance on the operation time of different operation modes.

Huifang Liu; Yiqiang Jiang; Yang Yao

2014-01-01T23:59:59.000Z

367

Evaluation of energy system analysis techniques for identifying underground facilities  

SciTech Connect (OSTI)

This report describes the results of a study to determine the feasibility and potential usefulness of applying energy system analysis techniques to help detect and characterize underground facilities that could be used for clandestine activities. Four off-the-shelf energy system modeling tools were considered: (1) ENPEP (Energy and Power Evaluation Program) - a total energy system supply/demand model, (2) ICARUS (Investigation of Costs and Reliability in Utility Systems) - an electric utility system dispatching (or production cost and reliability) model, (3) SMN (Spot Market Network) - an aggregate electric power transmission network model, and (4) PECO/LF (Philadelphia Electric Company/Load Flow) - a detailed electricity load flow model. For the purposes of most of this work, underground facilities were assumed to consume about 500 kW to 3 MW of electricity. For some of the work, facilities as large as 10-20 MW were considered. The analysis of each model was conducted in three stages: data evaluation, base-case analysis, and comparative case analysis. For ENPEP and ICARUS, open source data from Pakistan were used for the evaluations. For SMN and PECO/LF, the country data were not readily available, so data for the state of Arizona were used to test the general concept.

VanKuiken, J.C.; Kavicky, J.A.; Portante, E.C. [and others

1996-03-01T23:59:59.000Z

368

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

Bechel Nevada

2004-05-01T23:59:59.000Z

369

Effects of reduced voltage on the operation and efficiency of electric systems. Volume 3. Field tests in a northern utility service area. Final report  

SciTech Connect (OSTI)

Volume 3 of this three-volume report for RP1419-1 describes the tests on selected residential, commercial, and small industry areas of the Detroit Edison Company system and the statistical analysis performed on the test data gathered. The purpose of the field testing was to provide data to analyze changes in energy consumption due to changes in feeder voltage levels. Detroit Edison was chosen to represent a winter peaking load area. Original intent was to present these results simultaneously with results from a summer peaking load area, Texas Electric Service Company (TESCO). Unavoidable delays retarded the Detroit study results to this Volume 3. TESCO results were reported in Volume 1, and the Distribution System Analysis and Simulation (DSAS) program for these studies was presented in Volume 2 in the form of a User's Manual.

Chen, M.S.; Shoults, R.R.

1985-07-01T23:59:59.000Z

370

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

371

The Sanford underground research facility at Homestake  

SciTech Connect (OSTI)

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

2014-06-24T23:59:59.000Z

372

Corrective Action Decision Document for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 254, R-MAD Decontamination Facility, under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 254 is comprised of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. A corrective action investigation for this CAS as conducted in January 2000 as set forth in the related Corrective Action Investigation Plan. Samples were collected from various media throughout the CAS and sent to an off-site laboratory for analysis. The laboratory results indicated the following: radiation dose rates inside the Decontamination Facility, Building 3126, and in the storage yard exceeded the average general dose rate; scanning and static total surface contamination surveys indicated that portions of the locker and shower room floor, decontamination bay floor, loft floor, east and west decon pads, north and south decontamination bay interior walls, exterior west and south walls, and loft walls were above preliminary action levels (PALs). The investigation-derived contaminants of concern (COCs) included: polychlorinated biphenyls, radionuclides (strontium-90, niobium-94, cesium-137, uranium-234 and -235), total volatile and semivolatile organic compounds, total petroleum hydrocarbons, and total Resource Conservation and Recovery Act (Metals). During the investigation, two corrective action objectives (CAOs) were identified to prevent or mitigate human exposure to COCs. Based on these CAOs, a review of existing data, future use, and current operations at the Nevada Test Site, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Unrestricted Release Decontamination and Verification Survey; and Alternative 3 - Unrestricted Release Decontamination and Verification Survey and Dismantling of Building 3126. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors, and the preferred CAA chosen on technical merit was Alternative 2. This CAA was judged to meet all requirements for the technical components evaluated and applicable state and federal regulations for closure of the site, and reduce the potential for future exposure pathways.

U.S. Department of Energy, Nevada Operations Office

2000-06-01T23:59:59.000Z

373

Corrective Action Decision Document/Closure Report for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Decision Document/Closure Report (CADD/CR) has been prepared for Corrective Action Unit (CAU) 232, Area 25 Sewage Lagoons, in accordance with the Federal Facility Agreement and Consent Order. Located at the Nevada Test Site in Nevada, approximately 65 miles northwest of Las Vegas, CAU 232 is comprised of Corrective Action Site 25-03-01, Sewage Lagoon. This CADD/CR identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) recommendation that no corrective action is deemed necessary for CAU 232. The Corrective Action Decision Document and Closure Report have been combined into one report because sample data collected during the July 1999 corrective action investigation (CAI) activities disclosed no evidence of contamination at the site. Contaminants of potential concern (COPCs) addressed during the CAI included total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, total pesticides, total herbicides, total petroleum hydrocarbons (gasoline and diesel/oil range), polychlorinated biphenyls, isotopic uranium, isotopic plutonium, strontium-90, and gamma-emitting radionuclides. The data confirmed that none of the COPCs identified exceeded preliminary action levels outlined in the CAIP; therefore, no corrective actions were necessary for CAU 232. After the CAI, best management practice activities were completed and included installation of a fence and signs to limit access to the lagoons, cementing Manhole No. 2 and the diverter box, and closing off influent and effluent ends of the sewage lagoon piping. As a result of the CAI, the DOE/NV recommended that: (1) no further actions were required; (2) no Corrective Action Plan would be required; and (3) no use restrictions were required to be placed on the CAU.

US Department of Energy Nevada Operations Office

1999-12-23T23:59:59.000Z

374

A summary of chemical and biological testing of proposed disposal of sediment from Richmond Harbor relative to the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area  

SciTech Connect (OSTI)

The US Army Corps of Engineers was authorized to dredge Richmond Harbor to accomodate large, deep-draft vessels. An ecological evaluation of the Harbor sediments was performed describing the physical characteristics, toxic substances, effects on aquatic organisms,and potential for bioaccumulation of chemical contaminants. The objective of this report is to compare the sediment chemistry, acute toxicity, and bioaccumulation results of the Richmond Harbor sediments to each of the reference areas; i.e., the Deep Off-Shelf Reference Area, the Bay Farm Borrow Area, and the Alcatraz Environs Reference Area. This report will enable the US Army Corps of Engineers to determine whether disposal at a reference area is appropriate for all or part of the dredged material from Richmond Harbor. Chemical analyses were performed on 30 sediment samples; 28 of those samples were then combined to form 7 composites. The seven composites plus sediment from two additional stations received both chemical and biological evaluations.

Mayhew, H.L.; Karle, L.M.; Gruendell, B.D.; Pinza, M.R. [Battelle/Marine Sciences Lab., Sequim, WA (United States)

1993-12-01T23:59:59.000Z

375

E-Print Network 3.0 - advanced components test facility Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of components for the new de- signs being tested underground at the Nevada Test Site. Small- scale recycling... Alam- os. Finally there was a modest capability to design,...

376

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 1  

SciTech Connect (OSTI)

This Streamlined Approach for Environmental Restoration Plan addresses the actions needed to achieve closure of Corrective Action Unit (CAU) 408, Bomblet Target Area (TTR). Corrective Action Unit 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. Corrective Action Unit 408 comprises Corrective Action Site TA-55-002-TAB2, Bomblet Target Areas. Clean closure of CAU 408 will be accomplished by removal of munitions and explosives of concern within seven target areas and potential disposal pits. The target areas were used to perform submunitions related tests for the U.S. Department of Energy (DOE). The scope of CAU 408 is limited to submunitions released from DOE activities. However, it is recognized that the presence of other types of unexploded ordnance and munitions may be present within the target areas due to the activities of other government organizations. The CAU 408 closure activities consist of: • Clearing bomblet target areas within the study area. • Identifying and remediating disposal pits. • Collecting verification samples. • Performing radiological screening of soil. • Removing soil containing contaminants at concentrations above the action levels. Based on existing information, contaminants of potential concern at CAU 408 include unexploded submunitions, explosives, Resource Conservation Recovery Act metals, and depleted uranium. Contaminants are not expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results.

Mark Krauss

2010-03-01T23:59:59.000Z

377

Type B Accident Investigation of the Serious Personal Injury while Doble Testing at the Western Area Power Administration Hayden Substation, May 19, 1999  

Broader source: Energy.gov [DOE]

On May 19, 1999, at 10:31 a.m., four Western Area Power Administration (Western) employees were performing Doble testing on a circuit breaker at Hayden Substation in Routt County, Colorado. Three electricians were injured when the high-voltage lead (HVL) of the Doble test set encroached on the minimum approach distance to an energized part outside clearance boundaries, drawing arcing faults.

378

Arkansas Underground Injection Control Code (Arkansas) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) < Back Eligibility Commercial Construction Industrial Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the purpose of this UIC Code to adopt underground injection control (UIC) regulations necessary to qualify the State of Arkansas to retain authorization for its Underground Injection Control Program pursuant to the Safe Drinking Water Act of 1974, as amended; 42 USC 300f et seq. In order

379

Field studies of the potential for wind transport of plutonium- contaminated soils at sites in Areas 6 and 11, Nevada Test Site  

SciTech Connect (OSTI)

This report describes and documents a series of field experiments carried out in Areas 6 and 11 of the Nevada Test Site in June and July 1994 to determine parameters of boundary layer winds, surface characteristics, and vegetation cover that can be used to predict dust emissions from the affected sites. Aerodynamic roughness of natural sites is determined largely by the lateral cover of the larger and more permanent roughness elements (shrubs). These provide a complete protection of the surface from wind erosion. Studies using a field-portable wind tunnel demonstrated that natural surfaces in the investigated areas of the Nevada Test Site are stable except at very high wind speeds (probably higher than normally occur, except perhaps in dust devils). However, disturbance of silty-clay surfaces by excavation devices and vehicles reduces the entrainment threshold by approximately 50% and makes these areas potentially very susceptible to wind erosion and transport of sediments.

Lancaster, N.; Bamford, R.; Metzger, S. [University and Community Coll. System of Nevada, Reno, NV (United States). Quaternary Sciences Center, Desert Research Institute

1995-07-01T23:59:59.000Z

380

Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. CAU 105 comprises the following five corrective action sites (CASs): -02-23-04 Atmospheric Test Site - Whitney Closure In Place -02-23-05 Atmospheric Test Site T-2A Closure In Place -02-23-06 Atmospheric Test Site T-2B Clean Closure -02-23-08 Atmospheric Test Site T-2 Closure In Place -02-23-09 Atmospheric Test Site - Turk Closure In Place The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

Matthews, Patrick

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

A review of the factors influencing the physicochemical characteristics of underground coal gasification  

SciTech Connect (OSTI)

In this article, the physicochemical characteristics of the oxidation zone, the reduction zone, and the destructive distillation and dry zone in the process of underground coal gasification (UCG) were explained. The effect of such major factors as temperature, coal type, water-inrush or -intake rate, the quantity and quality of wind blasting, the thickness of coal seams, operational pressure, the length, and the section of gasification gallery on the quality of the underground gas and their interrelationship were discussed. Research showed that the temperature conditions determined the underground gas compositions; the appropriate water-inrush or -intake rate was conducive to the improvement in gas heat value; the properties of the gasification agent had an obvious effect on the compositions and heat value of the product gas. Under the cyclically changing pressure, heat losses decreased by 60%, with the heat efficiency and gasification efficiency being 1.4 times and 2 times those of constant pressure, respectively. The test research further proved that the underground gasifier with a long channel and a big cross-section, to a large extent, improved the combustion-gasification conditions.

Yang, L.H. [China University of Mining and Technology, Jiangsu (China)

2008-07-01T23:59:59.000Z

382

Radiological survey and evaluation of the fallout area from the Trinity test: Chupadera Mesa and White Sands Missile Range, New Mexico  

SciTech Connect (OSTI)

Current radiological conditions were evaluated for the site of the first nuclear weapons test, the Trinity test, and the associated fallout zone. The test, located on White Sands Missile Range, was conducted as part of the research with nuclear materials for the World War II Manhattan Engineer District atomic bomb project. Some residual radioactivity attributable to the test was found in the soils of Ground Zero on White Sands Missile Range and the areas that received fallout from the test. The study considered relevant information including historical records, environmental data extending back to the 1940s, and new data acquired by field sampling and measurements. Potential exposures to radiation were evaluated for current land uses. Maximum estimated doses on Chupadera Mesa and other uncontrolled areas are less than 3% of the DOE Radiation Protection Standards (RPSs). Radiation exposures during visits to the US Army-controlled Ground Zero area are less than 1 mrem per annual visit or less than 0.2% of the RPS for a member of the public. Detailed data and interpretations are provided in appendixes. 14 figs., 45 tabs.

Hansen, W.R.; Rodgers, J.C.

1985-06-01T23:59:59.000Z

383

Lagoon Seepage Testing Procedures for Central Facilities Area (CFA) Sewage Lagoons at Idaho National Laboratory Butte County, Idaho April 2014  

SciTech Connect (OSTI)

The lagoon seepage testing procedures are documented herein as required by the Wastewater Rules (IDAPA 58.01.16.493). The Wastewater Rules and Wastewater Reuse Permit LA-000141-03 require that the procedure used for performing a seepage test be approved by IDEQ prior to conducting the seepage test. The procedures described herein are based on a seepage testing plan that was developed by J-U-B ENGINEERS, Inc. (J-U-B) and has been accepted by several IDEQ offices for lagoons in Idaho.

Alan Giesbrecht

2014-05-01T23:59:59.000Z

384

COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES  

E-Print Network [OSTI]

Waste Storage in Mined Caverns in Crystalline Rock, LBL-Waste Storage in Mined Caverns in Crystalline Rock, LBL-for additional shaft and cavern support and stabilization.

Lamb, D.W.

2013-01-01T23:59:59.000Z

385

Wells, Borings, and Underground Uses (Minnesota) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits for proposed activities,

386

Utah Division of Environmental Response and Remediation Underground...  

Open Energy Info (EERE)

Division of Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah...

387

Idaho Underground Injection Control Program Webpage | Open Energy...  

Open Energy Info (EERE)

Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Underground Injection Control Program Webpage Author Idaho Department of...

388

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

389

All of Hanford's underground waste tanks generate hydrogen gas...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Hanford's underground waste tanks generate hydrogen gas to some degree since the radioactivity in the waste releases hydrogen from basic nuclear reactions. The routine release...

390

Title 18 Alaska Administrative Code Chapter 78 Underground Storage...  

Open Energy Info (EERE)

Underground Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 78...

391

Hawaii Department of Health Underground Storage Tank Webpage...  

Open Energy Info (EERE)

Abstract This webpage provides information on the regulation of underground storage tanks. Author State of Hawaii Department of Health Published State of Hawaii, Date Not...

392

Hawaii Underground Injection Control Program Webpage | Open Energy...  

Open Energy Info (EERE)

Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Program Webpage Author State of Hawaii...

393

,"New York Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967" ,"Release...

394

Underground coal gasification : overview of an economic and environmental evaluation.  

E-Print Network [OSTI]

??This paper examines an overview of the economic and environmental aspects of Underground Coal Gasification (UCG) as a viable option to the above ground Surface… (more)

Kitaka, Richard Herbertson

2012-01-01T23:59:59.000Z

395

EPA - Ground Water Discharges (EPA's Underground Injection Control...  

Open Energy Info (EERE)

EPA - Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

396

Underground Storage Tanks (New Jersey) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

397

2008 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analyses  

SciTech Connect (OSTI)

The Maintenance Plan for the Performance Assessments and Composite Analyses for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site requires an annual review to assess the adequacy of the Performance Assessments (PAs) and Composite Analyses (CAs) for each of the facilities, with the results submitted annually to U.S. Department of Energy (DOE) Headquarters. The Disposal Authorization Statements for the Area 3 and Area 5 Radioactive Waste Management Sites (RWMSs) also require that such reviews be made and that secondary or minor unresolved issues be tracked and addressed as part of the maintenance plan. The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) performed an annual review in fiscal year (FY) 2008 by evaluating operational factors and research results that impact the continuing validity of the PAs and CAs. This annual summary report presents data and conclusions from the FY 2008 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

NSTec Environmental Management

2009-03-30T23:59:59.000Z

398

Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary  

SciTech Connect (OSTI)

The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

Not Available

1994-02-01T23:59:59.000Z

399

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

400

The Testing of a Limited-Data Corn Yield Model for Large-Area Corn Yield Predictions  

Science Journals Connector (OSTI)

A general philosophy of examining models used in agriculture is outlined in four steps: 1) the examination of the assumptions of the model, 2) sensitivity analysis, 3) tests of reasonableness using available data, and 4) designing of an ...

M. E. Keener; E. C. A. Runge; B. F. Klugh Jr.

1980-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Corrective Action Investigation Plan for Corrective Action Unit 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 151: Septic Systems and Discharge Area, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental corrective action alternatives. Corrective Action Unit 151 is located in Areas 2, 12, 18, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 151 is comprised of the nine Corrective Action Sites (CAS) listed below: (1) 02-05-01, UE-2ce Pond; (2) 12-03-01, Sewage Lagoons (6); (3) 12-04-01, Septic Tanks; (4) 12-04-02, Septic Tanks; (5) 12-04-03, Septic Tank; (6) 12-47-01, Wastewater Pond; (7) 18-03-01, Sewage Lagoon; (8) 18-99-09, Sewer Line (Exposed); and (9) 20-19-02, Photochemical Drain. The CASs within CAU 151 are discharge and collection systems. Corrective Action Site 02-05-01 is located in Area 2 and is a well-water collection pond used as a part of the Nash test. Corrective Action Sites 12-03-01, 12-04-01, 12-04-02, 12-04-03, and 12-47-01 are located in Area 12 and are comprised of sewage lagoons, septic tanks, associated piping, and two sumps. The features are a part of the Area 12 Camp housing and administrative septic systems. Corrective Action Sites 18-03-01 and 18-99-09 are located in the Area 17 Camp in Area 18. These sites are sewage lagoons and associated piping. The origin and terminus of CAS 18-99-09 are unknown; however, the type and configuration of the pipe indicates that it may be a part of the septic systems in Area 18. Corrective Action Site 20-19-02 is located in the Area 20 Camp. This site is comprised of a surface discharge of photoprocessing chemicals.

David A. Strand

2004-06-01T23:59:59.000Z

402

Effects of network-average magnitude bias on yield estimates for underground nuclear explosions  

Science Journals Connector (OSTI)

......yield estimates for underground nuclear explosions R. A. Clark Department...ISC, of presumed underground nuclear explosions in Kazakhstan...on estimates for underground nuclear explosions 553 explosions...utilizing a more extensive dataset, including more sources and......

R. A. Clark

1983-11-01T23:59:59.000Z

403

Seasonal thermal signatures of heat transfer by water exchange in an underground vault  

Science Journals Connector (OSTI)

......also to the long-term temperature...underground waste storage and contaminant...underground nuclear waste storage sites is...2000), the long-term impact and...Concerning the long-term temperature...underground waste storage, underlying......

Frédéric Perrier; Pierre Morat; Toshio Yoshino; Osam Sano; Hisashi Utada; Olivier Gensane; Jean-Louis Le Mouël

2004-07-01T23:59:59.000Z

404

Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0  

SciTech Connect (OSTI)

Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for the CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The site will be investigated based on the data quality objectives (DQOs) developed on July 6, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for the Baneberry site. The primary release associated with Corrective Action Unit 365 was radiological contamination from the Baneberry nuclear test. Baneberry was an underground weapons-related test that vented significant quantities of radioactive gases from a fissure located in close proximity to ground zero. A crater formed shortly after detonation, which stemmed part of the flow from the fissure. The scope of this investigation includes surface and shallow subsurface (less than 15 feet below ground surface) soils. Radionuclides from the Baneberry test with the potential to impact groundwater are included within the Underground Test Area Subproject. Investigations and corrective actions associated with the Underground Test Area Subproject include the radiological inventory resulting from the Baneberry test.

Patrick Matthews

2010-12-01T23:59:59.000Z

405

Evaluating the feasibility of underground coal gasification in Thailand  

SciTech Connect (OSTI)

Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south of Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.

Young, B.C.; Harju, J.A.; Schmit, C.R.; Solc, J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuehnel, R.A. [International Inst. for Aerospace Survey and Earth Sciences, Delft (Netherlands)

1996-12-31T23:59:59.000Z

406

An assessment of underground and aboveground steam system failures in the SRS waste tank farms  

SciTech Connect (OSTI)

Underground steam system failures in waste tank farms at the Savannah River Site (SRS) increased significantly in the 3--4 year period prior to 1995. The primary safety issues created by the failures were the formation of sub-surface voids in soil and the loss of steam jet transfer and waste evaporation capability, and the loss of heating and ventilation to the tanks. The average annual cost for excavation and repair of the underground steam system was estimated to be several million dollars. These factors prompted engineering personnel to re-consider long-term solutions to the problem. The primary cause of these failures was the inadequate thermal insulation utilized for steam lines associated with older tanks. The failure mechanisms were either pitting or localized general corrosion on the exterior of the pipe beneath the thermal insulation. The most realistic and practical solution is to replace the underground lines by installing aboveground steam systems, although this option will incur significant initial capital costs. Steam system components, installed aboveground in other areas of the tank farms have experienced few failures, while in continuous use. As a result, piecewise installation of temporary aboveground steam systems have been implemented in F-area whenever opportunities, i.e., failures, present themselves.

Hsu, T.C.; Shurrab, M.S.; Wiersma, B.J. [Westinghouse Savannah River Co., Aiken, SC (United States)

1997-12-01T23:59:59.000Z

407

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect (OSTI)

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

408

Corrective Action Decision Document for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (Rev. No.: 0, February 2001)  

SciTech Connect (OSTI)

This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended Corrective Action Alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 490, Station 44 Burn Area, Tonopah Test Range (TTR), Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 490 is located on the Nellis Air Force Range and the Tonopah Test Range and is approximately 140 miles northwest of Las Vegas, Nevada. This CAU is comprised of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (located southwest of Area 3); RG-56-001-RGBA, Station 44 Burn Area (located west of Main Lake); 03-58-001-03FN, Sandia Service Yard (located north of the northwest corner of Area 3); and 09-54-001-09L2, Gun Propellant Burn Area (located south of the Area 9 Compound on the TTR). A Corrective Action Investigation was performed in July and August 2000, and analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine contaminants of concern (COCs). There were no COCs identified in soil at the Gun Propellant Burn Area or the Station 44 Burn Area; therefore, there is no need for corrective actions at these two sites. Five soil samples at the Fire Training Area and seven at the Sandia Service Yard exceeded PALs for total petroleum hydrocarbons-diesel. Upon the identification of COCs specific to CAU 490, Corrective Action Objectives were developed based on a review of existing data, future use, and current operations at the TTR, with the following three CAAs under consideration: Alternative 1 - No Further Action, Alternative 2 - Closure In Place - No Further Action With Administrative Controls, and Alternative 3 - Clean Closure by Excavation and Disposal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Based on the results of this evaluation, the preferred choice for CAU 490 was Alternative 3. This alternative was judged to meet all requirements for the technical components evaluated, all applicable state and federal regulations for closure of the site, and will eliminate potential future exposure pathways to the contaminated soils at this site.

DOE /NV

2001-02-23T23:59:59.000Z

409

Emergency Response Planning at the Nevada Test Site  

Science Journals Connector (OSTI)

......Dosimetry Article Emergency Response Planning at the Nevada Test Site D. Randerson A robust emergency response plan was...underground testing of nuclear weapons at the United States Nevada Test Site (NTS). This plan was designed to help protect the......

D. Randerson

1997-09-01T23:59:59.000Z

410

Assessment of Geothermal Resource Potential at a High-Priority Area on the Utah Testing and Training Range–South (UTTR–S)  

SciTech Connect (OSTI)

Field investigations conducted during 2011 support and expand the conclusion of the original Preliminary Report that discovery of a viable geothermal system is possible in the northwestern part of the Utah Testing and Training Range-South (UTTR-S), referred to henceforth as Focus Area 1. The investigations defined the southward extent of the Wendover graben into and near Focus Area 1, enhanced the understanding of subsurface conditions, and focused further geothermal exploration efforts towards the northwestern-most part of Focus Area 1. Specifically, the detailed gravity survey shows that the Wendover graben, first defined by Cook et al. (1964) for areas north of Interstate Highway 80, extends and deepens southwest-ward to the northwest corner of Focus Area 1. At its deepest point, the intersection with a northwest-trending graben there is favorable for enhanced permeability associated with intersecting faults. Processing and modeling of the gravity data collected during 2011 provide a good understanding of graben depth and distribution of faults bounding the graben and has focused the interest area of the study. Down-hole logging of temperatures in wells made available near the Intrepid, Inc., evaporation ponds, just north of Focus Area 1, provide a good understanding of the variability of thermal gradients in that area and corroborate the more extensive temperature data reported by Turk (1973) for the depth range of 300-500 m. Moderate temperature gradients in the northern part of the Intrepid area increase to much higher gradients and bottom-hole temperatures southeastward, towards graben-bounding faults, suggesting upwelling geothermal waters along those faults. Water sampling, analysis, and temperature measurements of Blue Lakes and Mosquito Willey's springs, on the western boundary of Focus Area 1, also show elevated temperatures along the graben-bounding fault system. In addition, water chemistry suggests origin of those waters in limestone rocks beneath the graben in areas with temperatures as high as 140 C (284 F). In conclusion, all of the field data collected during 2011 and documented in the Appendices of this report indicate that there is reasonable potential for a viable geothermal resource along faults that bound the Wendover graben. Prospects for a system capable of binary electrical generation are especially good, and the possibility of a flash steam system is also within reason. The next steps should focus on securing the necessary funding for detailed geophysical surveys and for drilling a set of temperature gradient wells to further evaluate the resource, and to focus deep exploration efforts in the most promising areas.

Richard P. Smith, PhD., PG; Robert P. Breckenridge, PhD.; Thomas R. Wood, PhD.

2012-04-01T23:59:59.000Z

411

Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) |  

Broader source: Energy.gov (indexed) [DOE]

Alabama Underground Storage Tank And Wellhead Protection Act Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations The department, acting through the commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental Protection Agency to operate the state underground storage tank program in lieu of the federal program. In addition to specific authorities provided by this chapter, the department is authorized, acting through the commission, to

412

The Strip and Underground Mine Reclamation Act (Montana) | Department of  

Broader source: Energy.gov (indexed) [DOE]

The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources from strip and underground mining. This Act imposes permitting and operating restrictions on strip and underground mining activities for coal and uranium, and authorizes the Department of Environmental Quality to administer a

413

Gravel bulkheads for confining hydraulic backfilling of abandoned underground coal mines  

SciTech Connect (OSTI)

In this work the author describes the use of gravel bulkheads for confining hydraulic backfilling of abandoned underground coal mines that are simply refilled or, as in the case of the Portal Park swimming pool in Colorado Springs, rebuilt in the area over the abandoned mine. Hydraulic backfilling was the void filling method favored when the Portal Park pool began to tip, and gravel bulkheads confining walls were developed to confine the backfilling effort to areas under the pool. This work describes these bulkheads.

Van Dyke, M.W.

1985-01-01T23:59:59.000Z

414

2009 Annual Summary Report for the Area 3 and Area 5 Radioactive Waste Management Sites at the Nevada Test Site, Nye County, Nevada: Review of the Performance Assessments and Composite Analysis  

SciTech Connect (OSTI)

The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office performed an annual review of the Area 3 and Area 5 Radioactive Wate Management Site (RWMS) Performance Assessments (PAs) and Composite Analyses (CAs) in fiscal year (FY) 2009. This annual summary report presents data and conclusions from the FY 2009 review, and determines the adequacy of the PAs and CAs. Operational factors (e.g., waste forms and containers, facility design, and waste receipts), closure plans, monitoring results, and research and development (R&D) activities were reviewed to determine the adequacy of the PAs. Likewise, the environmental restoration activities at the Nevada Test Site relevant to the sources of residual radioactive material that are considered in the CAs, the land-use planning, and the results of the environmental monitoring and R&D activities were reviewed to determine the adequacy of the CAs.

NSTec Environmental Management

2010-03-15T23:59:59.000Z

415

Head of EM Visits Waste Isolation Pilot Plant for First Underground...  

Office of Environmental Management (EM)

Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since...

416

E-Print Network 3.0 - advanced underground gas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mulder1 Summary: where all current underground activities take place except for oil and gas extraction and mining... with reluctant public perception still hamper such underground...

417

The Remote Video Monitoring System Design and Development for Underground Substation Construction Process  

Science Journals Connector (OSTI)

From the current situation of underground substation construction in China, we design and development ... image enhancement technology, the construction of underground substation can be clearly and accurately tra...

Siguo Zheng; Yugan You; Fanguang Li; Gang Liu

2012-01-01T23:59:59.000Z

418

E-Print Network 3.0 - american underground science Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

underground science Search Powered by Explorit Topic List Advanced Search Sample search results for: american underground science Page: << < 1 2 3 4 5 > >> 1 Studying the Universe...

419

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

420

Corrective Action Decision Document for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box, Nevada Test Site, Nevada, Rev. 0  

SciTech Connect (OSTI)

This Corrective Action Decision Document identifies and rationalizes the U.S. Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 230, Area 22 Sewage Lagoons, and CAU 320, Area 22 Desert Rock Airport Strainer Box, under the Federal Facility Agreement and Consent Order. Referred to as CAU 230/320, both CAUs are located at the Nevada Test Site (NTS) and comprise two Corrective Action Sites (CASs), 22-03-01 (Sewage Lagoons) and 22-99-01 (Strainer Box). The Area 22 Sewage Lagoons site also includes a buried Imhoff Tank, sludge bed, and associated sewer piping. A September 1999 corrective action investigation identified the only contaminant of concern above preliminary action levels at this CAU (i.e., total petroleum hydrocarbons as diesel-range organics). During this same investigation, three Corrective Action Objectives (CAOs) were identified to prevent or mitigate exposure to subsurface debris and contaminated soil. Based on these CAOs, a review of existing data, future use, and current operations in Area 22 of the NTS, three CAAs were developed for consideration: Alternative 1 - No Further Action, Alternative 2 - Closure in Place with Administrative Controls, and Alternative 3 - Excavation and Removal. These alternatives were evaluated based on four general corrective action standards and five remedy selection decision factors. Alternative 3 was chosen on technical merit as the preferred alternative for CAU 230/320. This alternative was judged to meet all applicable state and federal regulations for closure of the site and will eliminate potential future exposure pathways to the buried debris and contaminated soils at both of the CASs within Area 22.

U.S. Department of Energy, Nevada Operations Office

2000-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Thermal single-well injection-withdrawal tracer tests for determining fracture-matrix heat transfer area  

SciTech Connect (OSTI)

Single-well injection-withdrawal (SWIW) tracer tests involve injection of traced fluid and subsequent tracer recovery from the same well, usually with some quiescent time between the injection and withdrawal periods. SWIW are insensitive to variations in advective processes that arise from formation heterogeneities, because upon withdrawal, fluid parcels tend to retrace the paths taken during injection. However, SWIW are sensitive to diffusive processes, such as diffusive exchange of conservative or reactive solutes between fractures and rock matrix. This paper focuses on SWIW tests in which temperature itself is used as a tracer. Numerical simulations demonstrate the sensitivity of temperature returns to fracture-matrix interaction. We consider thermal SWIW response to the two primary reservoir improvements targeted with stimulation, (1) making additional fractures accessible to injected fluids, and (2) increasing the aperture and permeability of pre-existing fractures. It is found that temperature returns in SWIW tests are insensitive to (2), while providing a strong signal of more rapid temperature recovery during the withdrawal phase for (1).

Pruess, K.; Doughty, C.

2010-01-15T23:59:59.000Z

422

HEROICA: an Underground Facility for the Fast Screening of Germanium Detectors  

E-Print Network [OSTI]

An infrastructure to characterize germanium detectors has been designed and constructed at the HADES Underground Research Laboratory, located in Mol (Belgium). Thanks to the 223m overburden of clay and sand, the muon flux is lowered by four orders of magnitude. This natural shield minimizes the exposure of radio-pure germanium material to cosmic radiation resulting in a significant suppression of cosmogenic activation in the germanium detectors. The project has been strongly motivated by a special production of germanium detectors for the GERDA experiment. GERDA, currently collecting data at the Laboratori Nazionali del Gran Sasso of INFN, is searching for the neutrinoless double beta decay of 76Ge. In the near future, GERDA will increase its mass and sensitivity by adding new Broad Energy Germanium (BEGe) detectors. The production of the BEGe detectors is done at Canberra in Olen (Belgium), located about 30km from the underground test site. Therefore, HADES is used both for storage of the crystals over night...

Andreotti, E; Maneschg, W; Barros, N; Benato, G; Brugnera, R; Costa, F; Falkenstein, R; Guthikonda, K K; Hegai, A; Hemmer, S; Hult, M; Jaenner, K; Kihm, T; Lehnert, B; Liao, H; Lubashevskiy, A; Lutter, G; Marissens, G; Modenese, L; Pandola, L; Reissfelder, M; Sada, C; Salathe, M; Schmitt, C; Schulz, O; Schwingenheuer, B; Turcato, M; Ur, C; von Sturm, K; Wagner, V; Westermann, J

2013-01-01T23:59:59.000Z

423

Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines  

Science Journals Connector (OSTI)

Abstract Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events.

Saro Lee; Inhye Park

2013-01-01T23:59:59.000Z

424

Environmental Restoration of Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada (Funded by the American Reinvestment and Recovery Act)  

SciTech Connect (OSTI)

The mission of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Environmental Restoration Program is to address the environmental impacts of weapons testing conducted on the Nevada National Security Site and the Nevada Test and Training Range. The large physical size of these sites, along with limits on funding and other resources available for remediation efforts, means that environmental restoration activities must be prioritized and accomplished incrementally over time. The remediation of a bomblet target area on the Tonopah Test Range (TTR), which is located within the Nevada Test and Training Range, was originally planned in 2007 but was not carried out until funding became available in the summer of 2009 through the American Reinvestment and Recovery Act. This activity was implemented in accordance with the Federal Facility Agreement and Consent Order established between NNSA/NSO and the Nevada Division of Environmental Protection. This activity which was complete by the end of Fiscal Year 2010, involved the excavation of disposal pits suspected of containing submunitions and the surface clearance of submunitions on seven target areas amounting to approximately 6.7 square kilometers of land at the TTR. The TTR was used by Sandia National Laboratories from the late 1960s through the mid-1980s to conduct research into the deployment of submunitions. Although there were efforts to identify, collect, and dispose various amounts of unexploded ordnance on the TTR in the past, no comprehensive effort to remediate the entire flightline area for submunitions was undertaken before this project.

Kevin Cabble (NSO), Mark Burmeister and Mark Krauss (N-I)

2011-03-03T23:59:59.000Z

425

Closure Report for Corrective Action Unit 342: Area 23 Mercury Fire Training Pit Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The purpose of this Closure Report (CR) is to provide documentation of the completed corrective action and to provide data confirming the corrective action. The corrective action was performed following the approved Corrective Action Plan (CAP) (U.S. Department of Energy [DOE], 1999b) and consisted of closure-in-place with partial excavation, disposal, backfilling, administrative controls, and post-closure monitoring. Soil with petroleum hydrocarbon concentrations above the Nevada Division of Environmental Protection (NDEP) Action Level of 100 milligrams per kilogram (mg/kg) (Nevada Administrative Code, 1996) was removed to a depth of 1.5 meters (m) (5 feet [ft]). The excavations were backfilled with clean fill to restore the site and to prevent contact with deeper, closed-in-place soil that exceeded the NDEP Action Level. According to the Corrective Action Investigation Plan (CAIP) (DOE, 1998), the Mercury Fire Training Pit was used from approximately 1965 to the early 1990s to train fire-fighting and emergency response personnel at the NTS and encompasses an area approximately 85 by 115 m (280 by 380 ft). The location of the Mercury Fire Training Pit is shown in Figure 1 and a site plan is shown in Figure 2. The Mercury Fire Training Pit formerly included a bermed bum pit with four small bum tanks; four large above ground storage tanks (ASTS); an overturned bus, a telephone pole storage area; and several areas for burning sheds, pallets, and cables. During the active life of the Mercury Fire Training Pit, training events were conducted at least monthly and sometimes as often as weekly. Fuels burned during these events included off-specification or rust-contaminated gasoline, diesel, and aviation fuel (JP-4). Other items burned during these events included paint, tires, a pond liner, wood, paper, cloth, and copper cable. Approximately 570 liters (L) (150 gallons [gal]) of fuel were used for each training event resulting in an approximate total of 136,000 L (36,000 gal) of fuel used over the life of the Mercury Fire Training Pit. Unburned fuel was allowed to pool on the ground and was left to eventually volatilize or soak into the soil. In addition, fuels from the ASTS and fuels and fluids from the overturned bus leaked or spilled onto the ground. Approximately 19 L to 38 L (5 to 10 gal) of paint were also burned monthly until sometime in the 1970s.

C. M. Obi

2000-04-01T23:59:59.000Z

426

Corrective Action Investigation Plan for Corrective Action Unit 165: Areas 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada (including Record of Technical Change Nos. 1, 2, and 3) (January 2002, Rev. 0)  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 165 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 165 consists of eight Corrective Action Sites (CASs): CAS 25-20-01, Lab Drain Dry Well; CAS 25-51-02, Dry Well; CAS 25-59-01, Septic System; CAS 26-59-01, Septic System; CAS 25-07-06, Train Decontamination Area; CAS 25-07-07, Vehicle Washdown; CAS 26-07-01, Vehicle Washdown Station; and CAS 25-47-01, Reservoir and French Drain. All eight CASs are located in the Nevada Test Site, Nevada. Six of these CASs are located in Area 25 facilities and two CASs are located in Area 26 facilities. The eight CASs at CAU 165 consist of dry wells, septic systems, decontamination pads, and a reservoir. The six CASs in Area 25 are associated with the Nuclear Rocket Development Station that operated from 1958 to 1973. The two CASs in Area 26 are associated with facilities constructed for Project Pluto, a series of nuclear reactor tests conducted between 1961 to 1964 to develop a nuclear-powered ramjet engine. Based on site history, the scope of this plan will be a two-phased approach to investigate the possible presence of hazardous and/or radioactive constituents at concentrations that could potentially pose a threat to human health and the environment. The Phase I analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. If laboratory data obtained from the Phase I investigation indicates the presence of contaminants of concern, the process will continue with a Phase II investigation to define the extent of contamination. Based on the results of Phase I sampling, the analytical program for Phase II investigation may be reduced. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

2002-01-09T23:59:59.000Z

427

Characterization of Sediments from the Soil Desiccation Pilot Test (SDPT) Site in the BC Cribs and Trenches Area  

SciTech Connect (OSTI)

This technical report documents the results of laboratory geochemical and hydrologic measurements of sediments collected from new borehole 299-E13-65 (C7047) and comparison of the results with those of nearby borehole 299-13E-62 (C5923) both drilled in the BC Cribs and Trenches Area. The total and water-leachable concentrations of key contaminants will be used to update contaminant-distribution conceptual models and to provide more data for improving baseline risk predictions and remedial alternative selections. Improved understanding of subsurface conditions and methods to remediate these principal contaminants can be also used to evaluate the application of specific technologies to other contaminants across the Hanford Site.

Um, Wooyong; Truex, Michael J.; Valenta, Michelle M.; Iovin, Cristian; Kutnyakov, Igor V.; Chang, Hyun-shik; Clayton, Ray E.; Serne, R. Jeffrey; Ward, Anderson L.; Brown, Christopher F.; Geiszler, Keith N.; Clayton, Eric T.; Baum, Steven R.; Smith, David M.

2009-09-25T23:59:59.000Z

428

Test Area for Remedial Actions (TARA) site characterization and dynamic compaction of low-level radioactive waste trenches. FY 1988 progress report  

SciTech Connect (OSTI)

As part of a low-level radioactive waste burial ground stabilization and closure technology demonstration project, a group of five burial trenches in Oak Ridge National Laboratory (ORNL) Solid Waste Storage Area (SWSA) 6 was selected as a demonstration site for testing trench compaction, trench grouting, and trench cap installation and performance. This report focuses on site characterization, trench compaction, and grout-trench leachate compatibility. Trench grouting and cap design and construction will be the subject of future reports. The five trenches, known as the Test Area for Remedial Actions (TARA) site, are contained within a hydrologically isolated area of SWSA 6; for that reason, any effects of stabilization activities on site performance and groundwater quality will be separable from the influence of other waste disposal units in SWSA 6. To obviate the chronic problem of burial trench subsidence and to provide support for an infiltration barrier cap, these five trenches were dynamically compacted by repeated dropping of a 4-ton weight onto each trench from heights of approximately 7 m.

Davis, E.C.; Spalding, B.P.; Lee, S.Y.; Hyder, L.K.

1989-01-01T23:59:59.000Z

429

Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update  

SciTech Connect (OSTI)

The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

L. V. Street

2007-04-01T23:59:59.000Z

430

Systems engineering approach to environmental risk management: A case study of depleted uranium at test area C-64, Eglin Air Force Base, Florida. Master`s thesis  

SciTech Connect (OSTI)

Environmental restoration is an area of concern in an environmentally conscious world. Much effort is required to clean up the environment and promote environmentally sound methods for managing current land use. In light of the public consciousness with the latter topic, the United States Air Force must also take an active role in addressing these environmental issues with respect to current and future USAF base land use. This thesis uses the systems engineering technique to assess human health risks and to evaluate risk management options with respect to depleted uranium contamination in the sampled region of Test Area (TA) C-64 at Eglin Air Force Base (AFB). The research combines the disciplines of environmental data collection, DU soil concentration distribution modeling, ground water modeling, particle resuspension modeling, exposure assessment, health hazard assessment, and uncertainty analysis to characterize the test area. These disciplines are required to quantify current and future health risks, as well as to recommend cost effective ways to increase confidence in health risk assessment and remediation options.

Carter, C.M.; Fortmann, K.M.; Hill, S.W.; Latin, R.M.; Masterson, E.J.

1994-12-01T23:59:59.000Z

431

Underground Storage Tank Act (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

432

The commercial feasibility of underground coal gasification in southern Thailand  

SciTech Connect (OSTI)

Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A project to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.

Solc, J.; Young, B.C.; Harju, J.A.; Schmit, C.R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J.E. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuhnel, R.A. [IIASES, Delft (Netherlands)

1996-12-31T23:59:59.000Z

433

Lateral distribution of muon pairs in deep underground muon showers  

Science Journals Connector (OSTI)

The lateral distribution of muon showers deep underground in the Utah muon detector has been studied. The results are presented in the form of a decoherence curve, which is defined to be the rate of pairs of coincident muons in two small detectors (as a function of their separation) divided by the product of the areas of the detectors. Rates are measured for separations from 1 to greater than 60 m for depths ranging from 2.4 × 105 gcm-2 to 5.6 × 105 gcm-2 and zenith angles ranging from 42.5 to 62.5 degrees. Significant improvements on previously reported data have been made due to increased detector-memory size, improved triggering efficiency, longer running time and better statistical analysis. When the decoherence curve is parameterized by the function R(x)=R0e-xx0 the value of the mean separation x0 at 47.5°, 2.4 × 105 gcm-2 is 11.21 ± 0.38 m. In a modified scaling model this separation suggests an average transverse momentum of roughly 0.65 GeV/c for muons from hadron-air collisions with energy > 10 TeV.

G. H. Lowe; H. E. Bergeson; J. W. Keuffel; M. O. Larson; J. L. Morrison; W. J. West

1976-06-01T23:59:59.000Z

434

Southwest Virginia underground coal mine map database and base maps - synopsis of an ongoing coalfield project  

SciTech Connect (OSTI)

In September 1991, the Department of Mines, Minerals, and Energy of the Commonwealth of Virginia entered into an agreement with the office of Surface Mining to prepare a coal mine map database and to produce 1:24,000 scale individual coal-bed base maps showing documented underground mined areas throughout the Southwest Virginia coal field. The project results are to provide public, industry, and all levels of government a much-needed means of initial evaluation of many coalfield related concerns. The completed maps will be incorporated into an integrated geographic information system (GIS). Evaluating the entire coalfield involved a preliminary review of 48 quadrangles. Ongoing detailed, accurate information gathering of extensive underground mine map files was necessary to provide a needed organized map database. Construction of coalfield index maps of information gathered to date provide insight into coalfield-wide outcrop patterns, mine distributions, and coal-bed trends. A completed set of individual maps, referenced to the underground mine map database, showing the types of mining applicable per coal bed quadrangle is the designated project output.

Sites, R.S.; Hostettler, K.K. (Division of Mineral Resources, Charlottesville, VA (United States))

1993-08-01T23:59:59.000Z

435

Corrective Action Investigation Plan for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Air port Strainer Box, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the US Department of Energy, Nevada Operation Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 230/320 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 230 consists of Corrective Action Site (CAS) 22-03-01, Sewage Lagoon; while CAU 320 consists of CAS 22-99-01, Strainer Box. These CAUs are referred to as CAU 230/320 or the Sewage Lagoons Site. The Sewage Lagoons Site also includes an Imhoff tank, sludge bed, and associated buried sewer piping. Located in Area 22, the site was used between 1951 to 1958 for disposal of sanitary sewage effluent from the historic Camp Desert Rock Facility at the Nevada Test Site in Nevada. Based on site history, the contaminants of potential concern include volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPH), and radionuclides. Vertical migration is estimated to be less than 12 feet below ground surface, and lateral migration is limited to the soil immediately adjacent to or within areas of concern. The proposed investigation will involve a combination of field screening for VOCs and TPH using the direct-push method and excavation using a backhoe to gather soil samples for analysis. Gamma spectroscopy will also be conducted for waste management purposes. Sampling locations will be biased to suspected worst-case areas including the nearby sludge bed, sewage lagoon inlet(s) and outlet(s), disturbed soil surrounding the lagoons, surface drainage channel south of the lagoons, and the area near the Imhoff tank. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, Nevada Operations Office

1999-06-10T23:59:59.000Z

436

Corrective Action Investigation Plan for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operation Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 230/320 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 230 consists of Corrective Action Site (CAS) 22-03-01, Sewage Lagoon; while CAU 320 consists of CAS 22-99-01, Strainer Box. These CAUs are referred to as CAU 230/320 or the Sewage Lagoons Site. The Sewage Lagoons Site also includes an Imhoff tank, sludge bed, and associated buried sewer piping. Located in Area 22, the site was used between 1951 to 1958 for disposal of sanitary sewage effluent from the historic Camp Desert Rock Facility at the Nevada Test Site in Nevada. Based on site history, the contaminants of potential concern include volatile organic compounds (VOCs), semivolatile organic compounds, total petroleum hydrocarbons (TPH), and radionuclides. Vertical migration is estimated to be less than 12 feet below ground surface, and lateral migration is limited to the soil immediately adjacent to or within areas of concern. The proposed investigation will involve a combination of field screening for VOCs and TPH using the direct-push method and excavation using a backhoe to gather soil samples for analysis. Gamma spectroscopy will also be conducted for waste management purposes. Sampling locations will be biased to suspected worst-case areas including the nearby sludge bed, sewage lagoon inlet(s) and outlet(s), disturbed soil surrounding the lagoons, surface drainage channel south of the lagoons, and the area near the Imhoff tank. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

US DOE/Nevada Operations Office

1999-06-10T23:59:59.000Z

437

Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0  

SciTech Connect (OSTI)

CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) to the dose-based final action level (FAL). The presence of TED exceeding the FAL is considered a radiological contaminant of concern (COC). Anything identified as a COC will require corrective action. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters will be used to measure external radiological dose. Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plume, it was determined that the releases from the nuclear tests are co-located and will be investigated concurrently. A field investigation will be performed to define areas where TED exceeds the FAL and to determine whether other COCs are present at the site. The investigation will also collect information to determine the presence and nature of contamination associated with migration and excavation, as well as any potential releases discovered during the investigation. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

Patrick Matthews

2011-08-01T23:59:59.000Z

438

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern  

E-Print Network [OSTI]

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern

Stella, Carlo

439

A study of the feasibility of construction of underground storage structures in soft soil  

E-Print Network [OSTI]

Introduction Page 44 46 Construction Procedure for an Underground Storage Structure for Liquid Materials Construction Procedure for an Underground Storage Structure for Solid Materials 46 48 Geotechnical Considerations in the Construction Procedure... Introduction Page 44 46 Construction Procedure for an Underground Storage Structure for Liquid Materials Construction Procedure for an Underground Storage Structure for Solid Materials 46 48 Geotechnical Considerations in the Construction Procedure...

Rosner, Stephen Anthony

2012-06-07T23:59:59.000Z

440

Corrective Action Decision Document/Closure Report for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0  

SciTech Connect (OSTI)

This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.

Matthews, Patrick

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground test area" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.