Powered by Deep Web Technologies
Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

The Strip and Underground Mine Reclamation Act (Montana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources from strip and underground mining. This Act imposes permitting and operating restrictions on strip and underground mining activities for coal and uranium, and authorizes the Department of Environmental Quality to administer a

2

The Strip and Underground Mine Siting Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Strip and Underground Mine Siting Act (Montana) The Strip and Underground Mine Siting Act (Montana) The Strip and Underground Mine Siting Act (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources from strip and underground mining. This Act grants the Department of Environmental Quality the authority to review and approve or disapprove new strip-mine and new underground-mine site locations and reclamation plans and to adopt relevant

3

Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater  

DOE Patents (OSTI)

A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

1995-09-12T23:59:59.000Z

4

E-Print Network 3.0 - accidents dus aux Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

dus aux Search Powered by Explorit Topic List Advanced Search Sample search results for: accidents dus aux Page: << < 1 2 3 4 5 > >> 1 DCLARATION RELATIVE AUX ACCIDENTS JOINDRE AUX...

5

U.S. Department of Energy Categorical Exclusion ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abandonment of the Western Sector Dynamic Underground Stripping (DUS) Project Steam Injection Wells Savannah River Site AikenAikenSouth Carolina The steam injection phase at the...

6

Underground Exploration  

E-Print Network (OSTI)

Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste Technical Review Board October 1993 Yucca Mountain at #12;Nuclear Waste Technical Review Board Dr. John E and Testing #12;Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction

7

U.S. Department of Energy Categorical Exclusion Determination Form  

NLE Websites -- All DOE Office Websites (Extended Search)

Dismantlement and Removal of 321-M Solvent Storage Tank Area Dynamic Underground Stripping (DUS I) Remnants Dismantlement and Removal of 321-M Solvent Storage Tank Area Dynamic Underground Stripping (DUS I) Remnants Savannah River Site Aiken/Aiken/South Carolina Dynamic Underground Stripping (DUS) at SRS was first deployed at the 321-M Solvent Storage Tank Area (west of the former Building 321-M) to remediate solvent source zone contamination in the vadose zone. The deployment was successful and the DUS equipment has been removed. However, the wells associated with the deployment, as well as the operating header of a portable soil vapor extraction unit (SVEU) and assorted debris remain at the site. The purpose of this activity is to abandon the wells per Manual 3Q1 requirements, dismantle and remove for disposal assorted equipment that is no longer required, and to perform general housekeeping at the site of the original DUS deployment.

8

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dismantlement and Removal of 321-M Solvent Storage Tank Area Dynamic Underground Stripping (DUS I) Remnants Dismantlement and Removal of 321-M Solvent Storage Tank Area Dynamic Underground Stripping (DUS I) Remnants Savannah River Site Aiken/Aiken/South Carolina Dynamic Underground Stripping (DUS) at SRS was first deployed at the 321-M Solvent Storage Tank Area (west of the former Building 321-M) to remediate solvent source zone contamination in the vadose zone. The deployment was successful and the DUS equipment has been removed. However, the wells associated with the deployment, as well as the operating header of a portable soil vapor extraction unit (SVEU) and assorted debris remain at the site. The purpose of this activity is to abandon the wells per Manual 3Q1 requirements, dismantle and remove for disposal assorted equipment that is no longer required, and to perform general housekeeping at the site of the original DUS deployment.

9

Underground Layout Configuration  

SciTech Connect

The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

A. Linden

2003-09-25T23:59:59.000Z

10

Strip Mine Law (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

This law authorizes the Land Reclamation Commission of the Department of Natural Resources to adopt and promulgate rules and regulations pertaining to strip mining of coal and reclamation, review...

11

Geometrical deuteron stripping revisited  

SciTech Connect

We investigate the reality of the idea of geometrical deuteron stripping originally envisioned by Serber. By taking into account of realistic deuteron wavefunction, nuclear density, and nucleon stopping mean free path, we are able to estimate inclusive deuteron stripping cross section for deuteron energy up to before pion production. Our semiclassical model contains only one global parameter constant for all nuclei which can be approximated by Woods-Saxon or any other spherically symmetric density distribution.

Neoh, Y. S.; Yap, S. L. [Plasma Research Technology Center, University of Malaya, 50603 Kuala Lumpur (Malaysia)

2014-03-05T23:59:59.000Z

12

Science @WIPP: Underground Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

13

Underground Injection Control (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

14

Underground Power Cables  

Science Journals Connector (OSTI)

...1973 research-article Underground Power Cables J. D. Endacott Up to the present, effectively...particular, in recent years, the oil-filled cable system using cellulose paper impregnated...design of supertension underground power cable systems are considered. The limitations...

1973-01-01T23:59:59.000Z

15

Oil shale retorted underground  

Science Journals Connector (OSTI)

Oil shale retorted underground ... Low-temperature underground retorting of oil shale produces a crude oil with many attractive properties, Dr. George R. Hill of the University of Utah told a meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers last week in Los Angeles. ... Typical above-ground retorting of oil shale uses temperatures of 900° to 1100° F. because of the economic need ... ...

1967-02-27T23:59:59.000Z

16

Spray Rolling Aluminum Strip  

SciTech Connect

Spray forming is a competitive low-cost alternative to ingot metallurgy for manufacturing ferrous and non-ferrous alloy shapes. It produces materials with a reduced number of processing steps, while maintaining materials properties, with the possibility of near-net-shape manufacturing. However, there are several hurdles to large-scale commercial adoption of spray forming: 1) ensuring strip is consistently flat, 2) eliminating porosity, particularly at the deposit/substrate interface, and 3) improving material yield. Through this program, a new strip/sheet casting process, termed spray rolling, has been developed, which is an innovative manufacturing technique to produce aluminum net-shape products. Spray rolling combines the benefits of twin-roll casting and conventional spray forming, showing a promising potential to overcome the above hurdles associated with spray forming. Spray rolling requires less energy and generates less scrap than conventional processes and, consequently, enables the development of materials with lower environmental impacts in both processing and final products. Spray Rolling was developed as a collaborative project between the University of California-Davis, the Colorado School of Mines, the Idaho National Engineering and Environmental Laboratory, and an industry team. The following objectives of this project were achieved: (1) Demonstration of the feasibility of the spray rolling process at the bench-scale level and evaluation of the materials properties of spray rolled aluminum strip alloys; and (2) Demonstration of 2X scalability of the process and documentation of technical hurdles to further scale up and initiate technology transfer to industry for eventual commercialization of the process.

Lavernia, E.J.; Delplanque, J-P; McHugh, K.M.

2006-05-10T23:59:59.000Z

17

Animals that Hide Underground  

NLE Websites -- All DOE Office Websites (Extended Search)

Animals that Hide Underground Animals that Hide Underground Nature Bulletin No. 733 November 23, 1963 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist ANIMALS THAT HIDE UNDERGROUND A hole in the ground has an air of mystery about it that rouses our curiosity. No matter whether it is so small that only a worm could squeeze into it, or large enough for a fox den, our questions are much the same. What animal dug the hole? Is it down there now? What is it doing? When will it come out? An underground burrow has several advantages for an animal. In it, many kinds find safety from enemies for themselves and their young. For others, it is an air-conditioned escape from the burning sun of summer and a snug retreat away from the winds and cold of winter. The moist atmosphere of a subterranean home allows the prolonged survival of a wide variety of lower animals which, above the surface, would soon perish from drying.

18

Strip casting apparatus and method  

DOE Patents (OSTI)

Strip casting apparatus including a molten-metal-holding container and a nozzle to deposit molten metal onto a moving chill drum to directly cast continuous metallic strip. The nozzle body includes a slot bounded between a back and a front lip. The slot width exceeds about 20 times the gap distance between the nozzle and the chill drum surface. Preferably, the slot width exceeds 0.5 inch. This method of strip casting minimizes pressure drop, insuring better metal-to-chill-drum contact which promotes heat transfer and results in a better quality metallic strip. 6 figs.

Williams, R.S.; Baker, D.F.

1988-09-20T23:59:59.000Z

19

Underground waste barrier structure  

DOE Patents (OSTI)

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

20

Underground Injection Control Rule (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

22

Underground Injection Control Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

23

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

24

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

25

Saving an Underground Reservoir  

E-Print Network (OSTI)

significant part of the region?s agricultural economy. Though the area has few rivers and lakes, underneath it lies a supply of water that has provided groundwater for developing this economy. This underground water, the Ogallala Aquifer, is a finite.... ?We have already seen isolat- ed areas that have no irrigation water remaining and the economy has been crushed.? The region produces about 4 percent of the nation?s corn, 25 percent of the hard red winter wheat, 23 per- cent of the grain sorghum...

Wythe, Kathy

2006-01-01T23:59:59.000Z

26

Underground Gasification of Coal Reported  

Science Journals Connector (OSTI)

Underground Gasification of Coal Reported ... RESULTS of a first step taken toward determining the feasibility of the underground gasification of coal were reported recently to the Interstate Oil Compact Commission by Milton H. Fies, manager of coal operations for the Alabama Power Co. ...

1947-05-12T23:59:59.000Z

27

CX-008633: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Categorical Exclusion Determination 3: Categorical Exclusion Determination CX-008633: Categorical Exclusion Determination Dismantlement and Removal of 321-M Solvent Storage Tank Area Dynamic Underground Stripping (DUS I) Remnants CX(s) Applied: B3.1 Date: 06/04/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office Dynamic Underground Stripping (DUS) at Savannah River Site was first deployed at the 321-M Solvent Storage Tank Area (west of the former Building 321-M) to remediate solvent source zone contamination in the vadose zone. The deployment was successful and the DUS equipment has been removed. However, the wells associated with the deployment, as well as the operating header of a portable soil vapor extraction unit (SVEU) and assorted debris remain at the site. The purpose of this activity is to

28

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

29

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

30

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

31

Investigating leaking underground storage tanks  

E-Print Network (OSTI)

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

32

Underground pumped hydroelectric storage  

SciTech Connect

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

33

Underground Facilities, Technological Challenges  

E-Print Network (OSTI)

This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

Spooner, N

2010-01-01T23:59:59.000Z

34

Strip Mining: Congress Moves toward "Tough" Regulation  

Science Journals Connector (OSTI)

...decades the strip mining of coal has blighted...mountains of Appalachia. Many states...regard strip mining as a scourge...than it is in Appalachia, the west-erners...near-surface coal deposits are exploited 513 Strip Mining: Congress Moves...

Luther J. Carter

1974-08-09T23:59:59.000Z

35

Underground Coal Thermal Treatment  

SciTech Connect

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

36

Underground Storage Technology Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

U U U N N D D E E R R G G R R O O U U N N D D G G A A S S S S T T O O R R A A G G E E T T E E C C H H N N O O L L O O G G Y Y C C O O N N S S O O R R T T I I U U M M R R & & D D P P R R I I O O R R I I T T Y Y R R E E S S E E A A R R C C H H N N E E E E D D S S WORKSHOP PROCEEDINGS February 3, 2004 Atlanta, Georgia U U n n d d e e r r g g r r o o u u n n d d G G a a s s S S t t o o r r a a g g e e T T e e c c h h n n o o l l o o g g y y C C o o n n s s o o r r t t i i u u m m R R & & D D P P r r i i o o r r i i t t y y R R e e s s e e a a r r c c h h N N e e e e d d s s OVERVIEW As a follow up to the development of the new U.S. Department of Energy-sponsored Underground Gas Storage Technology Consortium through Penn State University (PSU), DOE's National Energy Technology Center (NETL) and PSU held a workshop on February 3, 2004 in Atlanta, GA to identify priority research needs to assist the consortium in developing Requests for Proposal (RFPs). Thirty-seven

37

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network (OSTI)

s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

38

Logistics background study: underground mining  

SciTech Connect

Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

Hanslovan, J. J.; Visovsky, R. G.

1982-02-01T23:59:59.000Z

39

Underground Storage Tanks: New Fuels and Compatibility  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

40

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Adsorptive Stripping Voltammetric Measurements of Trace Uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of Trace Uranium at the Bismuth Film Electrode. Abstract: Bismuth-coated carbon-fiber electrodes have been successfully applied for adsorptive-stripping...

42

Metal nano-strip optical resonators  

Science Journals Connector (OSTI)

Rectangular gold and silver nano-strips embedded in glass or water are considered as optical resonators. Their scattering cross section and field enhancements in the case of...

Søndergaard, Thomas; Bozhevolnyi, Sergey I

2007-01-01T23:59:59.000Z

43

Removing a small quantity of THT from gas storage groundwater through air stripping and gas-phase carbon adsorption  

SciTech Connect

This paper deals with the response to a case of contaminated groundwater located in France. The natural gas is stored during summer in porous underground rocks. When energy requirements increase (particularly in winter), gas is drawn off, but water is also pumped during this operation. The water has a strong characteristic odour of the TetraHydroThiophene (THT), which has been used by Gaz de France as an additive in order to detect gas leakages because of its strong odour. Unfortunately, the presence of THT in medium other than natural gas can be responsible for safety problems. Gas stripping combined with adsorption on granular activated carbon was chosen to obtain removal of THT from the groundwater. The gas to water ratio for stripping column is higher than usual and the gas used for stripping was recycled in order to prevent air pollution. Carbon consumption is approximately 3 tons a year. 8 refs., 5 figs., 2 tabs.

Girod, J.F.; Leclerc, J.P.; Muhr, H. [CNRS, Nancy (France)] [and others

1996-12-31T23:59:59.000Z

44

Strip Mining (II): TVA in Middle in Reclamation Controversy  

Science Journals Connector (OSTI)

...sponsored by the coal industry, Robert...the Appalachian coal fields." Opponents of strip mining will con-tinue...to write. The Appalachia Act, which has...economics of strip mining-particularly...Ap-praisal of Coal Strip Mining...

John Walsh

1965-10-08T23:59:59.000Z

45

Reference Buildings by Building Type: Strip mall | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strip mall Reference Buildings by Building Type: Strip mall In addition to the ZIP file for each building type, you can directly view the "scorecard" spreadsheet that summarizes...

46

Midwest Underground Technology | Open Energy Information  

Open Energy Info (EERE)

Underground Technology Underground Technology Jump to: navigation, search Name Midwest Underground Technology Facility Midwest Underground Technology Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Midwest Underground Technology Energy Purchaser Midwest Underground Technology Location Champaign IL Coordinates 40.15020987°, -88.29149723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15020987,"lon":-88.29149723,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

47

Ram Pressure Stripping in Clusters and Groups  

E-Print Network (OSTI)

Ram pressure stripping is an important process in the evolution of both dwarf galaxies and large spirals. Large spirals are severely stripped in rich clusters and may be mildly stripped in groups. Dwarf galaxies can be severely stripped in both clusters and groups. A model is developed that describes the stripping of a satellite galaxy's outer H \\textsc{i} disk and hot galactic halo. The model can be applied to a wide range of environments and satellite galaxy masses. Whether ram pressure stripping of the outer disk or hot galactic halo occurs is found to depend primarily on the ratio of the satellite galaxy mass to the mass of the host group or cluster. How the effectiveness of ram pressure stripping depends on the density of the inter-group gas, the dark matter halo concentrations, and the scale lengths and masses of the satellite components is explored. The predictions of the model are shown to be well matched to H \\textsc{i} observations of spirals in a sample of nearby clusters. The model is used to predict the range of H \\textsc{i} gas fractions a satellite of mass $M_{v,sat}$ can lose orbiting in a cluster of mass $M_{v,gr}$.

J. A. Hester

2006-10-03T23:59:59.000Z

48

Might underground waste repositories blow up?  

SciTech Connect

Some writers have presented possible scenarios in which a subcritical underground deposit of plutonium or other fissile material might be changed into a critical configuration. The underground criticalities that occurred in Gabon some 1.7 billion years ago in deposits of natural uranium is cited. Other scientists assert that it is virtually impossible that such a configuration could develop in an underground repository. The author presents the pros and cons of these views. 5 refs.

Hippel, F. von [Princeton Univ., NJ (United States)

1996-03-01T23:59:59.000Z

49

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

50

Unsteady heat losses of underground pipelines  

Science Journals Connector (OSTI)

Analytic expressions are presented for the unsteady temperature distribution of the ground and heat losses of an underground pipeline for an arbitrary...

B. L. Krivoshein; V. M. Agapkin

1977-08-01T23:59:59.000Z

51

,"Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - All Operators",8,"Monthly","102014","1151973" ,"Release...

52

Pipelines and Underground Gas Storage (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

53

,"California Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967"...

54

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

55

Cryogenic slurry for extinguishing underground fires  

DOE Patents (OSTI)

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

56

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

57

Hawaii Underground Injection Control Permitting Webpage | Open...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Permitting Webpage Author State of Hawaii Department of...

58

Möbius Graphene Strip as Topological Insulator  

E-Print Network (OSTI)

We study the electronic properties of M\\"{o}bius graphene strip with a zigzag edge. We show that such graphene strip behaves as a topological insulator with a gapped bulk and a robust metallic surface, which enjoys some features due to its nontrivial topology of the spatial configuration, such as the existence of edge states and the non-Abelian induced gauge field. We predict that the topological properties of the M\\"{o}bius graphene strip can be experimentally displayed by the destructive interference in the transmission spectrum, and the robustness of edge states under certain perturbations.

Z. L. Guo; Z. R. Gong; H. Dong; C. P. Sun

2009-06-09T23:59:59.000Z

59

Coplanar strip analysis and component development  

E-Print Network (OSTI)

attractive. Accurate transmission line characterization is needed in order to guarantee accurate designs. The finite difference method along with newly developed absorbing boundary conditions was used to characterize the coplanar strip (CPS) transmission line...

Tilley, Keith Andrew

2012-06-07T23:59:59.000Z

60

Process development of thin strip steel casting  

SciTech Connect

An important new frontier is being opened in steel processing with the emergence of thin strip casting. Casting steel directly to thin strip has enormous benefits in energy savings by potentially eliminating the need for hot reduction in a hot strip mill. This has been the driving force for numerous current research efforts into the direct strip casting of steel. The US Department of Energy initiated a program to evaluate the development of thin strip casting in the steel industry. In earlier phases of this program, planar flow casting on an experimental caster was studied by a team of engineers from Westinghouse Electric corporation and Armco Inc. A subsequent research program was designed as a fundamental and developmental study of both planar and melt overflow casting processes. This study was arranged as several separate and distinct tasks which were often completed by different teams of researchers. An early task was to design and build a water model to study fluid flow through different designs of planar flow casting nozzles. Another important task was mathematically modeling of melt overflow casting process. A mathematical solidification model for the formation of the strip in the melt overflow process was written. A study of the material and conditioning of casting substrates was made on the small wheel caster using the melt overflow casting process. This report discusses work on the development of thin steel casting.

Sussman, R.C.; Williams, R.S.

1990-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

,"Colorado Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030CO2","N5010CO2","N5020CO2","N5070CO2","N5050CO2","N5060CO2" "Date","Colorado Natural Gas Underground Storage Volume (MMcf)","Colorado Natural Gas in Underground...

62

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

63

Carbon Allocation in Underground Storage Organs  

E-Print Network (OSTI)

Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

64

Utah Underground Storage Tank Installation Permit | Open Energy...  

Open Energy Info (EERE)

Underground Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type...

65

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2012 (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

66

Progress Continues Toward Closure of Two Underground Waste Tanks...  

Office of Environmental Management (EM)

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site...

67

The Simulation Analysis of Fire Feature on Underground Substation  

Science Journals Connector (OSTI)

Underground transformer substations constructed with non-dwelling buildings have a ... out simulation analysis of fire feature on underground substation. The corresponding fire protection strategy is also...

Xin Han; Xie He; Beihua Cong

2012-01-01T23:59:59.000Z

68

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

69

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

70

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Dense Non-Aqueous Phase Liquid (DNAPL) Characterization at the M-Area Settling Basin Western Sector Treatment System (WSTS) Dense Non-Aqueous Phase Liquid (DNAPL) Characterization at the M-Area Settling Basin Western Sector Treatment System (WSTS) Savannah River Site Aiken/Aiken/South Carolina Soil bores will be advanced with a Rotosonic drilling rig to confirm the effectiveness of the Western Sector Dynamic Underground Stripping (DUS) project at the M-Area Settling Basin. Replacement monitoring wells will also be installed as part of this effort. These groundwater monitoring wells will replace wells that were abandoned due to the installation and / or operation of the DUS system. Now that the heating phase has ended the DUS is transitioning to the Western Sector Treatment System (WSTS). B3.1 - Site characterization and environmental monitoring Andrew R. Grainger

71

EXPERIMENTS, CONCEPTUAL DESIGN, PRELIMINARY COST ESTIMATES AND SCHEDULES FOR AN UNDERGROUND RESEARCH FACILITY  

E-Print Network (OSTI)

surface and underground facilities as we11 as operation andconstruction of the underground facility. However, because

Korbin, G.

2010-01-01T23:59:59.000Z

72

Seismic verification of underground explosions  

SciTech Connect

The first nuclear test agreement, the test moratorium, was made in 1958 and lasted until the Soviet Union unilaterally resumed testing in the atmosphere in 1961. It was followed by the Limited Test Ban Treaty of 1963, which prohibited nuclear tests in the atmosphere, in outer space, and underwater. In 1974 the Threshold Test Ban Treaty (TTBT) was signed, limiting underground tests after March 1976 to a maximum yield of 250 kt. The TTBT was followed by a treaty limiting peaceful nuclear explosions and both the United States and the Soviet Union claim to be abiding by the 150-kt yield limit. A comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, has also been discussed. However, a verifiable CTBT is a contradiction in terms. No monitoring technology can offer absolute assurance that very-low-yield illicit explosions have not occurred. The verification process, evasion opportunities, and cavity decoupling are discussed in this paper.

Glenn, L.A.

1985-06-01T23:59:59.000Z

73

Depleted Argon from Underground Sources  

SciTech Connect

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

74

Category:StripMall | Open Energy Information  

Open Energy Info (EERE)

StripMall StripMall Jump to: navigation, search Go Back to PV Economics By Building Type Media in category "StripMall" The following 77 files are in this category, out of 77 total. SVStripMall Bismarck ND Montana-Dakota Utilities Co (North Dakota).png SVStripMall Bismarck N... 69 KB SVStripMall International Falls MN Northern States Power Co (Minnesota) Excel Energy.png SVStripMall Internatio... 89 KB SVStripMall LA CA City of Los Angeles California (Utility Company).png SVStripMall LA CA City... 89 KB SVStripMall Memphis TN City of Memphis Tennessee (Utility Company).png SVStripMall Memphis TN... 64 KB SVStripMall Minneapolis MN Northern States Power Co (Minnesota) Excel Energy.png SVStripMall Minneapoli... 91 KB SVStripMall Minot ND Montana-Dakota Utilities Co (North Dakota).png

75

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

76

Underground Coal Gasification in the USSR  

Science Journals Connector (OSTI)

By accomplishing in a single operation the extraction of coal and its conversion into a gaseous fuel, underground gasification makes it possible to avoid the heavy capital investments required for coal gasification

1983-01-01T23:59:59.000Z

77

Best practices for underground diesel emissions  

SciTech Connect

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

78

Underground Storage of Natural Gas (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

79

UEME : the underground electronic music experience  

E-Print Network (OSTI)

The global electronic music scene has remained underground for its entire lifespan, momentarily materializing during an event, a place defined by the music performed and the people who desire the experience. As festivals ...

Ciraulo, Christopher Samuel

2005-01-01T23:59:59.000Z

80

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Depleted argon from underground sources  

SciTech Connect

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

82

Underground ventilation remote monitoring and control system  

SciTech Connect

This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system.

Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

1995-12-31T23:59:59.000Z

83

Determination of Selenium in Nuts by Cathodic Stripping Potentiometry (CSP)  

Science Journals Connector (OSTI)

Determination of Selenium in Nuts by Cathodic Stripping Potentiometry (CSP) ... In this work, cathodic stripping potentiometry (CSP) (14) is used to determine the selenium content of nuts that were studied. ... CSP Analysis. ...

Giacomo Dugo Lara La Pera; Vincenzo Lo Turco; Ekaterini Mavrogeni; Maria Alfa

2003-05-20T23:59:59.000Z

84

Radiation hardness of si strip detectors with integrated coupling capacitors  

SciTech Connect

Si strip detectors with integrated coupling capacitors between diode and metallization and with separate bias resistors for each strip have been exposed to ionising radiation. Results from measurements of detector response before and after irradiation are presented.

Dijkstra, H.; Horisberger, R.; Hubbeling, L.; Maehlum, G.; Peisert, A.; Weilhammer, P.; Tuuva, T.; Evensen, L.

1989-02-01T23:59:59.000Z

85

Surface-integral formalism of deuteron stripping  

E-Print Network (OSTI)

The purpose of this paper is to develop an alternative theory of deuteron stripping to resonance states based on the surface integral formalism of Kadyrov et al. [Ann. Phys. 324, 1516 (2009)] and continuum-discretized coupled channels (CDCC). First we demonstrate how the surface integral formalism works in the three-body model and then we consider a more realistic problem in which a composite structure of target nuclei is taken via optical potentials. We explore different choices of channel wave functions and transition operators and show that a conventional CDCC volume matrix element can be written in terms of a surface-integral matrix element, which is peripheral, and an auxiliary matrix element, which determines the contribution of the nuclear interior over the variable $r_{nA}$. This auxiliary matrix element appears due to the inconsistency in treating of the $n-A$ potential: this potential should be real in the final state to support bound states or resonance scattering and complex in the initial state to describe $n-A$ scattering. Our main result is formulation of the theory of the stripping to resonance states using the prior form of the surface integral formalism and CDCC method. It is demonstrated that the conventional CDCC volume matrix element coincides with the surface matrix element, which converges for the stripping to the resonance state. Also the surface representation (over the variable $r_{nA}$ of the stripping matrix element enhances the peripheral part of the amplitude although the internal contribution doesn't disappear and increases with increase of the deuteron energy. We present calculations corroborating our findings for both stripping to the bound state and the resonance.

A. M. Mukhamedzhanov; D. Y. Pang; C. A. Bertulani; A. S. Kadyrov

2014-08-24T23:59:59.000Z

86

Strip Mining: Kentucky Begins To Close the Reclamation Gap  

Science Journals Connector (OSTI)

...ad-vocated a federal strip-mining law. He is also working...reclamation by strip-mining states. Until recently...in dealing with strip mining. The good offices of...new regulations. The Appalachia Act pro-vides for a...mandatory rec-lamation by coal operators. The im-plications...

John Walsh

1965-10-01T23:59:59.000Z

87

Resolution Studies on Silicon Strip Sensors with fine Pitch  

E-Print Network (OSTI)

In June 2008 single-sided silicon strip sensors with 50 $\\mu$m readout pitch were tested in a highly energetic pion beam at the SPS at CERN. The purpose of the test was to evaluate characteristic detector properties by varying the strip width and the number of intermediate strips. The experimental setup and first results for the spatial resolution are discussed.

S. Haensel; T. Bergauer; Z. Dolezal; M. Dragicevic; Z. Drasal; M. Friedl; J. Hrubec; C. Irmler; W. Kiesenhofer; M. Krammer; P. Kvasnicka

2009-01-30T23:59:59.000Z

88

Macroscopic Distribution of Residual Elements As, S, and P in Steel Strips Produced by Compact Strip Production (CSP) Process  

Science Journals Connector (OSTI)

A novel method has been used successfully to measure the macroscopic distribution of minor arsenic, sulfur, and phosphorous in steel strips produced by the compact strip production (CSP) process. This process inv...

Yuanzhi Zhu; Junchao Li; Jianping Xu

2012-07-01T23:59:59.000Z

89

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network (OSTI)

Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

90

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network (OSTI)

Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

91

E-Print Network 3.0 - amchitka underground nuclear Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

underground nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: amchitka underground nuclear Page: << < 1 2 3 4 5 > >> 1 Underground Nuclear...

92

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network (OSTI)

Helms Underground Powerhouse - Pumped storage project Figurelayout of underground powerhouse complex—Helms Pumped57. Helms Underground Powerhouse Pumped Storage Project

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

93

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

94

List of Caulking/Weather-stripping Incentives | Open Energy Information  

Open Energy Info (EERE)

stripping Incentives stripping Incentives Jump to: navigation, search The following contains the list of 289 Caulking/Weather-stripping Incentives. CSV (rows 1 - 289) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active AEP (Central and North) - Residential Energy Efficiency Programs (Texas) Utility Rebate Program Texas Construction Installer/Contractor Multi-Family Residential Building Insulation Caulking/Weather-stripping Comprehensive Measures/Whole Building Custom/Others pending approval Duct/Air sealing Unspecified technologies Yes AEP (SWEPCO) - Residential Energy Efficiency Programs (Texas) Utility Rebate Program Texas Construction Installer/Contractor Multi-Family Residential Building Insulation Caulking/Weather-stripping Comprehensive Measures/Whole Building

95

U.S. Department of Energy Categorical Exclusion Determination Form  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sampling of Soil Vapor Extraction Wells at the Western Sector Dynamic Underground Stripping System Sampling of Soil Vapor Extraction Wells at the Western Sector Dynamic Underground Stripping System Savannah River Site Aiken/Aiken/South Carolina Sampling of the soil vapor extraction (SVE) wells at the Western Sector Dynamic Underground Stripping System (DUS) has been routinely performed by Area Completion Projects (ACP) Operations personnel since 2005. The purpose of the present sampling is to identify candidates for abandonment or to switch from active to passive SVE operation. B3.1 - Site characterization and environmental monitoring Andrew R. Grainger Digitally signed by Andrew R. Grainger DN: cn=Andrew R. Grainger, o=DOE-SR, ou=EQMD, email=drew.grainger@srs.gov, c=US Date: 2012.06.11 16:58:37 -04'00' 06/04/2012 Submit by E-mail CBU-M-2012-0025

96

Perpendicular stripping pays in hilly northern Appalachia  

SciTech Connect

The topography and thin-seam coal reserves in Appalachia have always been conducive to contour mining. In western Pennsylavnia, in fact, even with the growing popularity of mountaintop mining, contour mining is as prevalent as it was many years ago. In the past few years, however, a significant change has occurred in this region in the use of draglines in contour mining. Some operators, such as C and K Coal Co., Clarion, Penn., have begun orienting the dragline cuts perpendicular to the surface contours rather than the traditional approach of stripping parallel to them. Although this change has sometimes been due to necessity, C and K Coal and other operators have found that the advantages of the perpendicular-stripping technique often outweigh the formidable disadvantages normally associated with the technique. The primary disadvantage to be faced is the considerable pre-mining planning necessary in laying out the cuts and the scheduling of supporting equipment.

Chironis, N.

1986-11-01T23:59:59.000Z

97

Superconducting strip in an oblique magnetic field  

Science Journals Connector (OSTI)

As an example for a seemingly simple but actually intricate problem, we study the Bean critical state in a superconducting strip of finite thickness d and width 2w?d placed in an oblique magnetic field. The analytical solution is obtained to leading order in the small parameter d?w. The critical state depends on how the applied magnetic field is switched on, e.g., at a constant tilt angle, or first the perpendicular and then the parallel field component. For these two basic scenarios we obtain the distributions of current density and magnetic field in the critical states. In particular, we find the shapes of the flux-free core and of the lines separating regions with opposite direction of the critical currents, the detailed magnetic field lines (along the vortex lines), and both components of the magnetic moment. The component of the magnetic moment parallel to the strip plane is a nonmonotonic function of the applied magnetic field.

G. P. Mikitik; E. H. Brandt; M. Indenbom

2004-07-30T23:59:59.000Z

98

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

99

Method for making generally cylindrical underground openings  

DOE Patents (OSTI)

A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

Routh, J.W.

1983-05-26T23:59:59.000Z

100

Effective design for absorption and stripping  

SciTech Connect

Absorption and stripping transfer one or more constituents from a gas stream to a liquid stream (absorption) or from a liquid stream to a gas stream (strippling). Both are widely used in the process industries, for product manufacture and environmental protection alike. They are most often carried out counter currently in packed towers. The aim here is not to reproduce absorption and stripping theory, adequately given elsewhere. Instead, the authors offer practical, often overlooked guidelines and key equations for effective design of packed absorption or stripping towers. The design task consists mainly of two interrelated parts: the hydraulic design and the mass transfer design. Hydraulic design determines the tower diameter; the mass transfer design sets the packed height within the tower. A third basic consideration is the type and size of packing. If these are not given beforehand, the designer should select a packing for which hydraulic and mass-transfer data are available, and which falls in the 1-to-2-in. nominal size range for random packing (which includes over 90% of all applications) or has nominal 1/2-in. crimp height for structured packing.

McNulty, K.J. (Koch Engineering Co., Wilmington, MA (United States))

1994-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Underground Facilities Information (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

102

Underground Injection Control Permits and Registrations (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

103

Noise analysis due to strip resistance in the ATLAS SCT silicon strip module  

SciTech Connect

The module is made out of four 6 cm x 6 cm single sided Si microstrip detectors. Two detectors are butt glued to form a 12 cm long mechanical unit and strips of the two detectors are electrically connected to form 12 cm long strips. The butt gluing is followed by a back to back attachment. The module in this note is the R{phi} module where the electronics is oriented parallel to the strip direction and bonded directly to the strips. This module concept provides the maximum signal-to-noise ratio, particularly when the front-end electronics is placed near the middle rather than at the end. From the noise analysis, it is concluded that the worst-case {Delta}ENC (far-end injection) between end- and center-tapped modules will be 120 to 210 el. rms (9 to 15%) for a non-irradiated detector and 75 to 130 el. rms (5 to 9%) for an irradiated detector, for a metal strip resistance of 10 to 20 {Omega}/cm.

Kipnis, I.

1996-08-01T23:59:59.000Z

104

Notification for Underground Storage Tanks (EPA Form 7530-1)...  

Open Energy Info (EERE)

Notification for Underground Storage Tanks (EPA Form 7530-1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Notification for Underground Storage Tanks...

105

Visit to the Deep Underground Science and Engineering Laboratory  

ScienceCinema (OSTI)

U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

None

2010-01-08T23:59:59.000Z

106

Ground Motions from and House Response to Underground Aggregate Mining  

E-Print Network (OSTI)

interest because many urban quarries have gone underground or are considering doing so. Three cracks were to determine future blasting controls for a underground aggregate quarry near Franklin, KY (Revey, 2005

107

Rectifiers used on the London Underground Railways  

Science Journals Connector (OSTI)

... Lunn to the Institution of Electrical Engftieers on November 7, a description of the rectifier substations is given and also much useful information of the working of these rectifiers for traction ... there is little vibration; but in these respects the rectifier is much superior. The substation buildings for operating the traction system of the London Underground are in very densely populated ...

1935-11-30T23:59:59.000Z

108

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

109

The Public Perceptions of Underground Coal Gasification (UCG)  

E-Print Network (OSTI)

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

110

Detection of Underground Marlpit Quarries Using High Resolution Seismic  

E-Print Network (OSTI)

Detection of Underground Marlpit Quarries Using High Resolution Seismic B. Piwakowski* (Ecole of high resolution reflection seismic for the detection and location of underground marlpit quarries of the geological structure, the results show that the detection of marlpit underground quarries, often considered

Boyer, Edmond

111

Stripped electron collection at the Spallation Neutron Source  

Science Journals Connector (OSTI)

One of the main sources of electrons in the Spallation Neutron Source’s Accumulator Ring is the stripped electrons in the injection region. A magnetic field guides the stripped electrons to the bottom of the beam pipe, where an electron catcher with overhanging surface traps them. This paper describes the stripped electrons’ motion, the optimization of the catcher, and the build up of an electron cloud in this region.

L. Wang; Y. Y. Lee; G. Mahler; W. Meng; D. Raparia; J. Wei; S. Henderson

2005-09-13T23:59:59.000Z

112

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

113

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

114

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

115

Land reclamation and strip-mined coal production in appalachia  

Science Journals Connector (OSTI)

This study quantifies the short-run impacts of reclamation on strip mining costs, coal prices, production, and employment in Appalachia. A process analysis model is developed and used to estimate short-run strip-mined coal supply functions under conditions of alternative reclamation requirements. Then, an econometric model is developed and used to estimate coal demand relations. Our results show that full reclamation has rather minor impacts. In 1972, full reclamation would have increased strip-mined coal production costs an average of $0.35 per ton, reduced strip-mined coal production by 10 million tons, and cost approximately 1600 jobs in Appalachia.

William Lin; Robert L Spore; Edmund A Nephew

1976-01-01T23:59:59.000Z

116

Stripped elliptical galaxies as probes of ICM physics: I. Tails, wakes, and flow patterns in and around stripped ellipticals  

E-Print Network (OSTI)

(abridged) Elliptical cluster galaxies are successively stripped of their gaseous atmospheres due to their motion through the ICM. The stripped galactic gas forms a 'tail' in the galaxy's wake. Deep X-ray observations reveal the fine-structure of the gas tail and of the interface between galactic gas and ICM. This fine-structure depends on dynamic conditions (galaxy potential, initial gas contents, orbit in the host cluster), stripping stage (early infall, pre-/post-pericenter passage), and on the still ill-constrained ICM plasma properties (thermal conductivity, viscosity, magnetic field structure). In a series of papers, we aim at disentangling dynamic and plasma effects in order to use observed stripped ellipticals as probes of the ICM plasma properties. This first paper determines flow phases and flow patterns of successive gas stripping by means of hydrodynamical simulations. During quasi-steady stripping, the flow of ICM around the remnant atmosphere is similar to the flow around solid bodies, including...

Roediger, E; Nulsen, P E J; Forman, W R; Machacek, M; Randall, S; Jones, C; Churazov, E; Kokotanekova, R

2014-01-01T23:59:59.000Z

117

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

118

The Sanford underground research facility at Homestake  

SciTech Connect

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

2014-06-24T23:59:59.000Z

119

Detection of Bacteria Using Inkjet-Printed Enzymatic Test Strips  

Science Journals Connector (OSTI)

Detection of Bacteria Using Inkjet-Printed Enzymatic Test Strips ... We report the use of inkjet printing to co-pattern an enzyme-nanoparticle sensor complex and enzymatic substrate on a paper-based test strip for rapid detection of bacteria. ...

Brian Creran; Xiaoning Li; Bradley Duncan; Chang Soo Kim; Daniel F. Moyano; Vincent M. Rotello

2014-10-15T23:59:59.000Z

120

Optimization of in-vacuo template-stripped Pt surfaces via UHV STM  

Science Journals Connector (OSTI)

A recently demonstrated [1] in-vacuo template-stripping process is applied to the study of platinum films stripped from ultra-flat silicon-oxide surfaces. Template-stripped (TS) Pt surfaces, prepared with a range...

D. Ohlberg; J.J. Blackstock; R. Ragan; S. Kim; R. Stanley Williams

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Arkansas Underground Injection Control Code (Arkansas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) < Back Eligibility Commercial Construction Industrial Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the purpose of this UIC Code to adopt underground injection control (UIC) regulations necessary to qualify the State of Arkansas to retain authorization for its Underground Injection Control Program pursuant to the Safe Drinking Water Act of 1974, as amended; 42 USC 300f et seq. In order

122

Wells, Borings, and Underground Uses (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits for proposed activities,

123

Utah Division of Environmental Response and Remediation Underground...  

Open Energy Info (EERE)

Division of Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah...

124

Idaho Underground Injection Control Program Webpage | Open Energy...  

Open Energy Info (EERE)

Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Underground Injection Control Program Webpage Author Idaho Department of...

125

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

126

All of Hanford's underground waste tanks generate hydrogen gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Hanford's underground waste tanks generate hydrogen gas to some degree since the radioactivity in the waste releases hydrogen from basic nuclear reactions. The routine release...

127

Title 18 Alaska Administrative Code Chapter 78 Underground Storage...  

Open Energy Info (EERE)

Underground Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 78...

128

Hawaii Department of Health Underground Storage Tank Webpage...  

Open Energy Info (EERE)

Abstract This webpage provides information on the regulation of underground storage tanks. Author State of Hawaii Department of Health Published State of Hawaii, Date Not...

129

Hawaii Underground Injection Control Program Webpage | Open Energy...  

Open Energy Info (EERE)

Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Program Webpage Author State of Hawaii...

130

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation...

131

,"New York Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967" ,"Release...

132

Underground coal gasification : overview of an economic and environmental evaluation.  

E-Print Network (OSTI)

??This paper examines an overview of the economic and environmental aspects of Underground Coal Gasification (UCG) as a viable option to the above ground Surface… (more)

Kitaka, Richard Herbertson

2012-01-01T23:59:59.000Z

133

EPA - Ground Water Discharges (EPA's Underground Injection Control...  

Open Energy Info (EERE)

EPA - Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

134

Underground Storage Tanks (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

135

Key tests set for underground coal gasification  

SciTech Connect

Underground coal gasification (UCG) is about to undergo some tests. The tests will be conducted by Lawrence Livermore National Laboratory (LLNL) in a coal seam owned by Washington Irrigation and Development Co. A much-improved UCG system has been developed by Stephens and his associates at LLNL - the controlled retracting injection point (CRIP) method. Pritchard Corp., Kansas City, has done some conceptual process design and has further studied the feasibility of using the raw gas from a UCG burn as a feedstock for methanol synthesis and/or MTG gasoline. Each method was described. (DP)

Haggin, J.

1983-07-18T23:59:59.000Z

136

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

137

Underground coal gasification using oxygen and steam  

SciTech Connect

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

138

Effects of network-average magnitude bias on yield estimates for underground nuclear explosions  

Science Journals Connector (OSTI)

......yield estimates for underground nuclear explosions R. A. Clark Department...ISC, of presumed underground nuclear explosions in Kazakhstan...on estimates for underground nuclear explosions 553 explosions...utilizing a more extensive dataset, including more sources and......

R. A. Clark

1983-11-01T23:59:59.000Z

139

Seasonal thermal signatures of heat transfer by water exchange in an underground vault  

Science Journals Connector (OSTI)

......also to the long-term temperature...underground waste storage and contaminant...underground nuclear waste storage sites is...2000), the long-term impact and...Concerning the long-term temperature...underground waste storage, underlying......

Frédéric Perrier; Pierre Morat; Toshio Yoshino; Osam Sano; Hisashi Utada; Olivier Gensane; Jean-Louis Le Mouël

2004-07-01T23:59:59.000Z

140

Re-defining the Empirical ZZ Ceti Instability Strip  

E-Print Network (OSTI)

We use the new ZZ Ceti stars (hydrogen atmosphere white dwarf variables; DAVs) discovered within the Sloan Digital Sky Survey (Mukadam et al. 2004) to re-define the empirical ZZ Ceti instability strip. This is the first time since the discovery of white dwarf variables in 1968 that we have a homogeneous set of spectra acquired using the same instrument on the same telescope, and with consistent data reductions, for a statistically significant sample of ZZ Ceti stars. The homogeneity of the spectra reduces the scatter in the spectroscopic temperatures and we find a narrow instability strip of width ~950K, from 10850--11800K. We question the purity of the DAV instability strip as we find several non-variables within. We present our best fit for the red edge and our constraint for the blue edge of the instability strip, determined using a statistical approach.

Anjum S. Mukadam; D. E. Winget; Ted von Hippel; M. H. Montgomery; S. O. Kepler; A. F. M. Costa

2004-05-28T23:59:59.000Z

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Dynamic response of guardrail systems encased in pavement mow strips  

E-Print Network (OSTI)

Strong post guardrail systems have long been employed to keep misguided vehicles on the roadway. In order to combat vegetation growth around the posts, many new guardrail installations are being encased in pavement mow strips. By increasing...

Seckinger, Nathaniel Ryan

2012-06-07T23:59:59.000Z

142

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

143

Costs and benefits of federal regulation of coal strip mining. Report E-82-08  

SciTech Connect

This study has attempted to assess the aggregate costs and benefits of Surface Mining Control and Reclamation ACt of 1977 (SMCRA). This has required a model of the US coal market, as well as disaggregated estimates of the costs of satisfying SMCRA's standards and the values of the environmental amenities yielded by coal-bearing land areas. Both the costs and benefits of strip mining regulation increase as policy moves from the West through the Midwest to Appalachia. SMCRA is least cost-effective in Appalachia, where stringent regulatory requirements produce a high level of environmental benefits at an even higher level of costs. SMCRA performs better relative to economic criteria of efficient resource use in the Midwest and West, although it apparently fails the overall national cost-benefit test and imposes aggregate dead-weight losses on the nation's economy in the range of $100 million per year. It does this while transferring significant amounts of income from coal consumers ($400 million per year) and surface coal producers ($980 million per year) to underground coal producers ($130 million per year) and the consumers of environmental amentities ($1.1 billion per year).

Kalt, J.P.

1982-08-01T23:59:59.000Z

144

Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Underground Storage Tank And Wellhead Protection Act Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations The department, acting through the commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental Protection Agency to operate the state underground storage tank program in lieu of the federal program. In addition to specific authorities provided by this chapter, the department is authorized, acting through the commission, to

145

Development of a thin steel strip casting process. Final report  

SciTech Connect

This is a comprehensive effort to develop direct strip casting to the point where a pilot scale program for casting carbon steel strip could be initiated. All important aspects of the technology were being investigated, however the program was terminated early due to a change in the business strategy of the primary contractor, Armco Inc. (focus to be directed at specialty steels, not low carbon steel). At termination, the project was on target on all milestones and under budget. Major part was casting of strip at the experiment casting facility. A new caster, capable of producing direct cast strip of up to 12 in. wide in heats of 1000 and 3000 lb, was used. A total of 81 1000-1200 lb heats were cast as well as one test heat of 3000 lb. Most produced strip of from 0.016 to 0.085 in. thick. Process reliability was excellent for short casting times; quality was generally poor from modern hot strip mill standards, but the practices necessary for good surface quality were identified.

Williams, R.S.

1994-04-01T23:59:59.000Z

146

Head of EM Visits Waste Isolation Pilot Plant for First Underground...  

Office of Environmental Management (EM)

Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since...

147

E-Print Network 3.0 - advanced underground gas Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mulder1 Summary: where all current underground activities take place except for oil and gas extraction and mining... with reluctant public perception still hamper such underground...

148

The Remote Video Monitoring System Design and Development for Underground Substation Construction Process  

Science Journals Connector (OSTI)

From the current situation of underground substation construction in China, we design and development ... image enhancement technology, the construction of underground substation can be clearly and accurately tra...

Siguo Zheng; Yugan You; Fanguang Li; Gang Liu

2012-01-01T23:59:59.000Z

149

E-Print Network 3.0 - american underground science Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

underground science Search Powered by Explorit Topic List Advanced Search Sample search results for: american underground science Page: << < 1 2 3 4 5 > >> 1 Studying the Universe...

150

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

151

Surface effects of underground nuclear explosions  

SciTech Connect

The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

1997-06-01T23:59:59.000Z

152

Underground Storage Tank Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

153

Environmental technology transfer and commercial viability: a synthesis of three case studies  

Science Journals Connector (OSTI)

Based on a ''Model for Preparing Case Studies of Environmental Technology Transfer'', three case studies are developed to contribute insights on the development and commercialisation of environmental technology. Two cases address soil and groundwater contamination: Dynamic Underground Stripping (DUS) developed by Lawrence Livermore National Laboratory and Gravity Pressure Vessel (GPV) by GeneSyst International. The third case: Biodiesel Fuel (BIO), produced by Biodiesel Industries and Pacific Biodiesel, is a diesel fuel substitute. A synthesis across the research model above is provided, along with critical success factors for these examples of environmental technology commercialisation.

Willard Price

2005-01-01T23:59:59.000Z

154

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern  

E-Print Network (OSTI)

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern

Stella, Carlo

155

A study of the feasibility of construction of underground storage structures in soft soil  

E-Print Network (OSTI)

Introduction Page 44 46 Construction Procedure for an Underground Storage Structure for Liquid Materials Construction Procedure for an Underground Storage Structure for Solid Materials 46 48 Geotechnical Considerations in the Construction Procedure... Introduction Page 44 46 Construction Procedure for an Underground Storage Structure for Liquid Materials Construction Procedure for an Underground Storage Structure for Solid Materials 46 48 Geotechnical Considerations in the Construction Procedure...

Rosner, Stephen Anthony

2012-06-07T23:59:59.000Z

156

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

157

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

158

Prince George's County Underground Storage Act (Maryland) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prince George's County Underground Storage Act (Maryland) Prince George&#039;s County Underground Storage Act (Maryland) Prince George's County Underground Storage Act (Maryland) < Back Eligibility Commercial Retail Supplier Tribal Government Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the surface of a maximum of 12,000 acres of land, and may be owned by a public body. A permit from the Department of the Environment, along with an order from the Public Service Commission, is required prior to the use of eminent domain. The Act contains further information on eminent domain, landowner, and property

159

DOE - Office of Legacy Management -- Los Alamos Underground Med Pipelines -  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos Underground Med Los Alamos Underground Med Pipelines - NM 02 FUSRAP Considered Sites Site: Los Alamos Underground Med Pipelines ( NM.02 ) Eliminated - Remedial action being performed by the Los Alamos Area Office of the DOE Albuquerque Operations Office Designated Name: Not Designated Alternate Name: Los Alamos County Industrial Waste Lines NM.02-1 Location: Los Alamos , New Mexico NM.02-1 Evaluation Year: 1986 NM.02-1 Site Operations: From 1952 to 1965, underground pipelines or industrial waste lines were used at Los Alamos Scientific Laboratory to transport liquid wastes from Technical Areas 1, 3, 48, and 43 to a chemical waste treatment plant (Technical Area 45). NM.02-1 Site Disposition: Eliminated - Remedial action being performed by another DOE office NM.02-1

160

Georgia Underground Gas Storage Act of 1972 (Georgia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and provide for more economical distribution of gas to the domestic, commercial, and industrial consumers of the State. Any gas utility desiring to utilize or operate an

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

162

Rules and Regulations for Underground Storage Facilities Used for Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rules and Regulations for Underground Storage Facilities Used for Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to underground storage facilities for petroleum and

163

Appendix E: Underground Storage Annual Site Environmental Report  

E-Print Network (OSTI)

Appendix E: Underground Storage Tank Data #12;Annual Site Environmental Report Appendix E identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

Pennycook, Steve

164

NM Underground Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NM Underground Storage Tank RegistrationLegal Published NA Year Signed or Took Effect 2012 Legal Citation...

165

Colorado Natural Gas in Underground Storage (Base Gas) (Million...  

Annual Energy Outlook 2012 (EIA)

Base Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 39,062 39,062...

166

,"Colorado Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:57:42 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CO2"...

167

ARM 17-56 - Underground Storage Tanks Petroleum and Chemical...  

Open Energy Info (EERE)

Underground Storage Tanks Petroleum and Chemical Substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-56 -...

168

Alaska Underground Storage Tanks Website | Open Energy Information  

Open Energy Info (EERE)

Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill Prevention and Response...

169

30 TAC, part 1, chapter 334 Underground storage tanks general...  

Open Energy Info (EERE)

Underground storage tanks general provisions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 30 TAC, part 1, chapter 334...

170

Investigating dynamic underground coal fires by means of numerical simulation  

Science Journals Connector (OSTI)

......available within the combustion centre. Combustion will only proceed whenever...controls the overall combustion rate. For numerical...transport-only and a chemistry-only part. Common...rate of underground coal fires by oxygen transport......

S. Wessling; W. Kessels; M. Schmidt; U. Krause

2008-01-01T23:59:59.000Z

171

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:33 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

172

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:32 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

173

Underground helium travels to the Earth's surface via aquifers...  

NLE Websites -- All DOE Office Websites (Extended Search)

carried to the surface with the flow of water. The only place where helium is made on Earth is underground, where deep veins of uranium and thorium give off atoms of helium as...

174

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network (OSTI)

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

175

Physical security of cut-and-cover underground facilities  

SciTech Connect

To aid designers, generic physical security objectives and design concepts for cut-and-cover underground facilities are presented. Specific aspects addressing overburdens, entryways, security doors, facility services, emergency egress, security response force, and human elements are discussed.

Morse, W.D.

1998-08-01T23:59:59.000Z

176

Microsoft Word - WIPP Updates_Underground Recovery Process Begins  

NLE Websites -- All DOE Office Websites (Extended Search)

5DR0314 002NWPR0314 NWP Media Contacts: Donavan Mager Nuclear Waste Partnership LLC (575) 234-7586 www.wipp.energy.gov For Immediate Release WIPP UPDATES: Underground Recovery...

177

P-wave Spectra from Underground Nuclear Explosions  

Science Journals Connector (OSTI)

......three underground explosions at the Nevada Test Site and three earthquakes recorded...nuclear explosions detonated in Nevada (Jorum and Handley) and for a...spectra from two explosions at the Nevada Test Site (Jorum and Handley) and a presumed......

Peter Molnar

1971-08-01T23:59:59.000Z

178

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:28 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

179

,"New York Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:06:47 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

180

,"New York Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:06:48 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:27 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

182

Underground Salt Haul Truck Fire at the Waste Isolation Pilot...  

Office of Environmental Management (EM)

Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the...

183

One-man video verite: thoughts on Scenes from underground  

E-Print Network (OSTI)

This thesis considers the making of a documentary videotape on the Red Line Subway Extension project in Cambridge and Somerville, Massachusetts entitled Scenes From Underground. It traces my initial plans for an expository ...

Strongin, Barry

1984-01-01T23:59:59.000Z

184

Strip casting with fluxing agent applied to casting roll  

DOE Patents (OSTI)

A strip caster (10) for producing a continuous strip (24) includes a tundish (12) for containing a melt (14), a pair of horizontally disposed water cooled casting rolls (22) and devices (29) for electrostatically coating the outer peripheral chill surfaces (44) of the casting rolls with a powder flux material (56). The casting rolls are juxtaposed relative to one another for forming a pouting basin (18) for receiving the melt through a teeming tube (16) thereby establishing a meniscus (20) between the rolls for forming the strip. The melt is protected from the outside air by a non-oxidizing gas passed through a supply line (28) to a sealing chamber (26). A preferred flux is boron oxide having a melting point of about 550.degree. C. The flux coating enhances wetting of the steel melt to the casting roll and dissolves any metal oxide formed on the roll.

Williams, Robert S. (Fairfield, OH); O'Malley, Ronald J. (Miamisburg, OH); Sussman, Richard C. (West Chester, OH)

1997-01-01T23:59:59.000Z

185

Waste package and underground facility design  

SciTech Connect

The design of the waste package and the underground facility for radioactive waste disposal presents many challenges never before addressed in an engineering design effort. The designs must allow for handling and emplacement of the waste and must ensure that the waste will be isolated over time periods that extend beyond those normally dealt with in engineering solutions. Once developed, these designs must be defended in a licensing arena to allow construction and operation of the disposal system. The design of the waste package and the repository is being conducted iteratively. Each iteration of the design is accompanied by an assessment of the performance of the design and an assessment of remaining design issues. These assessments are used to establish the basis for the next design phase. Design requirements are assessed and revised as necessary before the initiation of each design phase. In addition, the design effort is being closely integrated with the siting effort through the application of an issue identification and resolution strategy.

Frei, M.W.; Dayem, N.J.

1988-01-01T23:59:59.000Z

186

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 4, 2012 June 4, 2012 CX-008633: Categorical Exclusion Determination Dismantlement and Removal of 321-M Solvent Storage Tank Area Dynamic Underground Stripping (DUS I) Remnants CX(s) Applied: B3.1 Date: 06/04/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 4, 2012 CX-008632: Categorical Exclusion Determination Sampling of Soil Vapor Extraction Wells at the Western Sector Dynamic Underground Stripping System CX(s) Applied: B3.1 Date: 06/04/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 4, 2012 CX-008482: Categorical Exclusion Determination Composite Riser for Ultra-Deepwater High Pressure Wells CX(s) Applied: A9, A11 Date: 06/04/2012 Location(s): Texas Offices(s): National Energy Technology Laboratory June 4, 2012

187

CX-003953: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

53: Categorical Exclusion Determination 53: Categorical Exclusion Determination CX-003953: Categorical Exclusion Determination Dynamic Underground Stripping (Solvent Storage Tank Area) and Dense Nonaqeous Phase Liquid Characterization Soil Borings CX(s) Applied: B3.1 Date: 09/15/2010 Location(s): Aiken, South Carolina Office(s): Savannah River Operations Office There will be 1 soil boring drilled to support post closure of the dynamic underground stripping (DUS) project at the 321-M solvent storage tank area (SSTA) and 7 soil borings to support dense nonaqueous phase liquid (DNAPL) characterization near the A-014 Outfall. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-003953.pdf More Documents & Publications CX-006393: Categorical Exclusion Determination CX-006394: Categorical Exclusion Determination CX-006410

188

CX-008632: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2: Categorical Exclusion Determination 2: Categorical Exclusion Determination CX-008632: Categorical Exclusion Determination Sampling of Soil Vapor Extraction Wells at the Western Sector Dynamic Underground Stripping System CX(s) Applied: B3.1 Date: 06/04/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office Sampling of the soil vapor extraction (SVE) wells at the Western Sector Dynamic Underground Stripping System (DUS) has been routinely performed by Area Completion Projects (ACP) Operations personnel since 2005. The purpose of the present sampling is to identify candidates for abandonment or to switch from active to passive SVE operation. CX-008632.pdf More Documents & Publications CX-008633: Categorical Exclusion Determination CX-010657: Categorical Exclusion Determination

189

Graded pitch electromagnetic pump for thin strip metal casting systems  

DOE Patents (OSTI)

A metal strip casing system is provided with an electromagnetic pump which includes a pair of primary blocks having a graded pole pitch, polyphase ac winding and being arranged on opposite sides of a movable heat sink. A nozzle is provided for depositing liquid metal on the heat sink such that the resulting metal strip and heat sink combination is subjected to a longitudinal electromagnetic field which increases in wavelength in the direction of travel of the heat sink, thereby subjecting the metal and heat sink to a longitudinal force having a magnitude which increases in the direction of travel. 4 figs.

Kuznetsov, S.B.

1986-04-01T23:59:59.000Z

190

Experiences and prospects of nuclear astrophysics in underground laboratories  

SciTech Connect

Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

Junker, M. [INFN - Laboratori Nazionali del Gran Sasso, Via Acitelli, 22, 67100 L'Aquila, Località Assergi (Italy)

2014-05-09T23:59:59.000Z

191

Strip-Mining: House, Senate Gird for Renewed Debate  

Science Journals Connector (OSTI)

...than half the nation's coal. Superimposed on these...nation's low-sulfur coal lies rela-tively close...unit trains" of 100 coal cars and more are already...in March that strip-mining, which began in earnest...million acres, mostly in Appalachia, only half of which...

Robert Gillette

1973-08-10T23:59:59.000Z

192

Ram Pressure Stripping in Groups: Comparing Theory and Observations  

E-Print Network (OSTI)

Ram pressure stripping may be the dominant mechanisms driving the evolution of galaxy colors in groups and clusters. In this paper, an analytic model of ram pressure stripping is confronted with observations of galaxy colors and star formation rates in groups using a group catalog drawn from the Sloan Digital Sky Survey. An observed increase in the fraction of galaxies residing on the red sequence, the red fraction, with both increasing group mass, $M_{gr}$, and decreasing satellite luminosity, $L_{sat}$, is predicted by the model. The size of the differences in the red fraction can be understood in terms of the effect of the scatter in satellite and cluster morphologies and satellite orbits on the relationship between $M_{gr}$ and $L_{sat}$ and the stripped gas fraction. Observations of the group galaxies' H$\\delta$ and 4000\\AA break spectral measures and a comparison of the distribution of $SFR/M_{\\ast}$ for star forming galaxies in the groups and in isolation both indicate that the color differences observed in the groups are the result of slowly declining SFRs, as expected if the color change is driven by stripping of the outer H \\textsc{i} disk.

J. A. Hester

2006-10-03T23:59:59.000Z

193

Geologists call for desalination of Gaza Strip's water  

Science Journals Connector (OSTI)

... water drawn from the aquifer in Gaza would lower salt levels, the researchers say. Desalination plants could convert the salty water to fresh water to make up for the reduction ... just ten wells near the border between Israel and the Gaza Strip and two small desalination facilities could do the job. ...

Betsy Mason

2003-11-13T23:59:59.000Z

194

Case studies on Route 1 : how the perceived identity of local commercial strips affects zoning  

E-Print Network (OSTI)

Designers, planners, and new urbanists have often argued that highway strips, replete with big box retail and countless strip malls, are essentially placeless. It has also been argued that generic local zoning is largely ...

Pollans, Lily Baum

2005-01-01T23:59:59.000Z

195

Underground physics without underground labs: large detectors in solution-mined salt caverns  

E-Print Network (OSTI)

A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

Benjamin Monreal

2014-09-30T23:59:59.000Z

196

Underground physics without underground labs: large detectors in solution-mined salt caverns  

E-Print Network (OSTI)

A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

Monreal, Benjamin

2014-01-01T23:59:59.000Z

197

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Oil Project Will Help Keep Carbon Dioxide Underground Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

198

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

199

Underground Injection Control (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control (West Virginia) Injection Control (West Virginia) Underground Injection Control (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by 5 classes of wells. All owners

200

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Western Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 341 1994-Jan 01/07 331 01/14 316 01/21 303 01/28 290 1994-Feb 02/04 266 02/11 246 02/18 228 02/25 212 1994-Mar 03/04 206 03/11 201 03/18 205 03/25 202 1994-Apr 04/01 201 04/08 201 04/15 202 04/22 210 04/29 215 1994-May 05/06 225 05/13 236 05/20 242 05/27 256

202

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage of natural gas, liquid hydrocarbons, and carbon storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the storage of natural gas and prior to the exercise of eminent domain by any person, firm, or corporation having such right under laws of the state of Louisiana, the commissioner, shall have found all of the following:

203

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

204

Office of Enforcement Final Notice of Violation to Pacific Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Final Notice of Violation to Pacific Enforcement Final Notice of Violation to Pacific Underground Construction, Inc. September 3, 2009 Office of Enforcement Final Notice of Violation to Pacific Underground Construction, Inc. September 3, 2009 Pursuant to section 234C of the Atomic Energy Act, as amended, 42 U.S.C. § 2282c, and the Department of Energy's (DOE) regulations at 10 C.F.R. Part 851, Worker Safety and Health Program, DOE is issuing this Final Notice of Violation (FNOV) to Pacific Underground Construction, Inc. (PUC). The FNOV finds PUC liable for violating DOE's worker safety and health requirements. The FNOV is based upon the Office of Enforcement's July 23, 2008, Investigation Report and a careful and thorough review of all evidence presented to DOE by PUC, including your response to the Preliminary Notice

205

Underground radio technology saves miners and emergency response personnel  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground radio technology saves miners and emergency response Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital Alert Technologies, Inc. (Vital Alert) has launched a wireless, two-way real-time voice communication system that is effective through 1,000+ feet of solid rock. April 3, 2012 Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock strata and other solid media. Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock

206

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

207

Underground Storage Tanks (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

208

Underground Gas Storage Reservoirs (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Reservoirs (West Virginia) Gas Storage Reservoirs (West Virginia) Underground Gas Storage Reservoirs (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider West Virginia Department of Commerce Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas

209

Control Surveys for Underground Construction of the Superconducting Super Collider  

SciTech Connect

Particular care had to be taken in the design and implementation of the geodetic control systems for the Superconducting Super Collider (SSC) due to stringent accuracy requirements, the demanding tunneling schedule, long duration and large size of the construction effort of the project. The surveying requirements and the design and implementation of the surface and underground control scheme for the precise location of facilities which include approximately 120 km of bored tunnel are discussed. The methodology used for the densification of the surface control networks, the technique used for the transfer of horizontal and vertical control into the underground facilities, and the control traverse scheme employed in the tunnels is described.

Greening, W.J.Trevor; Robinson, Gregory L.; /Measurment Science Inc.; Robbins, Jeffrey S.; Ruland, Robert E.; /SLAC

2005-08-16T23:59:59.000Z

210

Sudden stratospheric warmings seen in MINOS deep underground muon data  

SciTech Connect

The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere.

Osprey, S.; /Oxford U.; Barnett, J.; /Oxford U.; Smith, J.; /Oxford U.; Adamson, P.; /Fermilab; Andreopoulos, C.; /Rutherford; Arms, K.E.; /Minnesota U.; Armstrong, R.; /Indiana U.; Auty, D.J.; /Sussex U.; Ayres, D.S.; /Argonne; Baller, B.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore /Oxford U.

2009-01-01T23:59:59.000Z

211

Architecture of a Silicon Strip Beam Position Monitor  

SciTech Connect

A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12 x 10 cm{sup 2}. Readout of the strips is provided through the use of VA1 ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout and temperature data from triggered events to an analysis computer over gigabit Ethernet links.

Angstadt, R.; /Fermilab; Cooper, W.; /Fermilab; Demarteau, M.; /Fermilab; Green, J.; /Fermilab; Jakubowski, S.; /Fermilab; Prosser, A.; /Fermilab; Rivera, R.; /Fermilab; Turqueti, M.; /Fermilab; Utes, M.; /Fermilab; Cai, X.; /Beijing, Inst. High Energy Phys.

2010-10-01T23:59:59.000Z

212

Architecture of a Silicon Strip Beam Position Monitor  

E-Print Network (OSTI)

A collaboration between Fermilab and the Institute for High Energy Physics (IHEP), Beijing, has developed a beam position monitor for the IHEP test beam facility. This telescope is based on 5 stations of silicon strip detectors having a pitch of 60 microns. The total active area of each layer of the detector is about 12x10 cm2. Readout of the strips is provided through the use of VA1` ASICs mounted on custom hybrid printed circuit boards and interfaced to Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards amplify and level-shift the signal for input to the Fermilab CAPTAN data acquisition nodes for data readout and channel configuration. These nodes deliver readout and temperature data from triggered events to an analysis computer over gigabit Ethernet links.

R. Angstadt; W. Cooper; M. Demarteau; J. Green; S. Jakubowski; A. Prosser; R. Rivera; M. Turqueti; M. Utes; Xiao Cai

2010-10-28T23:59:59.000Z

213

H.A.R. 11-281 - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

1 - Underground Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-281 - Underground Storage...

214

Horizontal Hydraulic Conductivity Estimates for Intact Coal Barriers Between Closed Underground Mines  

Science Journals Connector (OSTI)

...discharges were obtained from industry reports stored at the Consol...mining beneath surface water and waste impoundments: In Proceedings...associated with underground coal gasification: Canadian Geotechnical Journal...underground mining United States waste disposal water quality West...

KURT J. McCOY; JOSEPH J. DONOVAN; BRUCE R. LEAVITT

215

C.R.S. 37-90 - Underground Water | Open Energy Information  

Open Energy Info (EERE)

StatuteStatute: C.R.S. 37-90 - Underground WaterLegal Abstract This article governs the management of underground water in Colorado. Published NA Year Signed or Took Effect 2014...

216

Assessment of seawater intrusion into underground oil storage cavern and prediction of its sustainability  

Science Journals Connector (OSTI)

Operation of underground oil (gas) storage cavern in coastal area can induce seawater intrusion because excavation of underground storage cavern causes the groundwater level decrease of coastal aquifer. Seawater ...

Eunhee Lee; Jeong-Won Lim; Hee Sun Moon; Kang-Kun Lee

2014-07-01T23:59:59.000Z

217

Managing expert-information uncertainties for assessing collapse susceptibility of abandoned underground structures  

E-Print Network (OSTI)

by the vast number of quarries and marl pits, but also for various other reasons resulting in underground be sufficiently violent to cause human loss. Thus, in 1961, the collapse of an underground chalk quarry

Boyer, Edmond

218

Commercial Reference Building: Strip Mall | OpenEI  

Open Energy Info (EERE)

Strip Mall Strip Mall Dataset Summary Description Commercial reference buildings provide complete descriptions for whole building energy analysis using EnergyPlus simulation software. Included here is data pertaining to the reference building type Strip Mall for each of the 16 climate zones, and each of three construction categories: new construction, post-1980 construction existing buildings, pre-1980 construction existing buildings.The dataset includes four key components: building summary, zone summary, location summary and a picture. Building summary includes details about: form, fabric, and HVAC. Zone summary includes details such as: area, volume, lighting, and occupants for all types of zones in the building. Location summary includes key building information as it pertains to each climate zone, including: fabric and HVAC details, utility costs, energy end use, and peak energy demand.In total, DOE developed 16 reference building types that represent approximately 70% of commercial buildings in the U.S.; for each type, building models are available for the three construction categories. The commercial reference buildings (formerly known as commercial building benchmark models) were developed by the U.S. Department of Energy (DOE), in conjunction with three of its national laboratories.Additional data is available directly from DOE's Energy Efficiency & Renewable Energy (EERE) Website, including EnergyPlus software input files (.idf) and results of the EnergyPlus simulations (.html).

219

Lower 48 States Natural Gas Underground Storage Withdrawals (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) Lower 48 States Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 849,115 666,248 313,952 100,096 58,314 80,472 115,649 125,989 55,418 51,527 183,799 473,674 2012 619,332 515,817 205,365 126,403 73,735 90,800 129,567 133,919 66,652 85,918 280,933 489,707 2013 791,849 646,483 480,032 134,680 48,945 68,117 98,141 101,568 66,273 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Withdrawals of Natural Gas from Underground Storage - All Operators

220

Appendix C: Underground Storage Annual Site Environmental Report  

E-Print Network (OSTI)

Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

Pennycook, Steve

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Coal properties and system operating parameters for underground coal gasification  

SciTech Connect

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

222

Effect of repository underground ventilation on emplacement drift temperature control  

SciTech Connect

The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

1996-02-01T23:59:59.000Z

223

Case study of groundwater impact caused by underground mining  

SciTech Connect

An investigative methodology is presented to assist mining and regulatory personnel in determining the effect underground mining can have on local aquifers in the Appalachian coal region. The impact of underground mining on groundwater may be more extensive than first realized by the mining industry and regulatory agencies. The primary reason for this possible under-assessment of deep mining's influence on groundwater is the methods used to calculate groundwater movement. Since groundwater calculations are based on primary hydraulic conductivity, i.e. the conductivity through solid rock measured from rock core samples, erroneous results may be expected. In many cases, groundwater flow times and the corresponding areas of influence are much greater than those assumed since water is rapidly moved through fractured zones that commonly occur throughout Appalachia. A case study illustrating this phenomenon is drawn from underground mining operations in Pike County. A survey of 144 wells was conducted to determine if any loss of water supply and/or quality was found. This was correlated to the extent and time progression of underground mining operations. Other parameters qualified are water level fluctuations, groundwater quality, precipitation, seasonal effects, geology, and mine dewatering. The analysis includes a comprehensive compilation of a well inventory of domestic water supplies. The case study draws conclusions regarding cause and effect relationships.

Sloan, P.; Warner, R.C.

1984-12-01T23:59:59.000Z

224

Underground test area subproject waste management plan. Revision No. 1  

SciTech Connect

The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS.

NONE

1996-08-01T23:59:59.000Z

225

Underground—and the City of the Future  

Science Journals Connector (OSTI)

... , warehouses and other public service buildings, as well as traffic routes for vehicles and pedestrians, would be constructed in this way. Already there exists a plan for the diversion ... in the well-known École spéciale d'Architecture, on the lighting of underground traffic and pedestrian routes. He reviews the practice exemplified in some of the short subways in Paris, ...

1940-01-06T23:59:59.000Z

226

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations  

E-Print Network (OSTI)

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations Ignasi category includes all step- up and step-down transmission substations, as well as a number of distribution substations indeed. Nevertheless, the current trend in electric power Engineering moves in another direction

Colominas, Ignasi

227

,"New York Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030NY2","N5010NY2","N5020NY2","N5070NY2","N5050NY2","N5060NY2" "Date","New York Natural Gas Underground Storage Volume (MMcf)","New York Natural Gas in...

228

Radon concentrations in three underground lignite mines in Turkey  

Science Journals Connector (OSTI)

......being operated by the Aegean Lignite Enterprise (Ege Linyitleri...determined in three underground lignite mines, namely Tuncbilek...which is the main state body of lignite coal production, processing...of TKi. GLi Tuncbilek coal reserve, which is located on the mid-west......

S. Çile; N. Altinsoy; N. Çelebi

2010-01-01T23:59:59.000Z

229

EARLY DEVELOPMENT OF THE UNDERGROUND SNO LABORATORY IN CANADA  

E-Print Network (OSTI)

EARLY DEVELOPMENT OF THE UNDERGROUND SNO LABORATORY IN CANADA by G.T. Ewan and W.F. Davidson Council of Canada, Ottawa, Ontario Fundamental physics measurements can be made by many different of high energy cos- mic rays, solar neutrino measure- ments, and searches for rare process- es

Abolmaesumi, Purang

230

Lower 48 States Total Natural Gas Injections into Underground Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,592 41,680 99,330 270,106 465,787 438,931 372,458 370,471 418,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Injections of Natural Gas into Underground Storage - All Operators

231

Design and Field Testing of an Autonomous Underground Tramming System  

E-Print Network (OSTI)

-haul-dump (LHD) machine is often used to excavate fragmented rock, haul it to an assigned location, and then dump, the hazardous nature of underground envi- ronments, driver safety and fatigue, labor costs, and the cyclic" attempts worked by outfitting the mine with signal- emitting cables [2], light-emitting ropes [1

Paris-Sud XI, Université de

232

Underground storage tank 511-D1U1 closure plan  

SciTech Connect

This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

233

Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water?Gas Shift Reactors, and CO2 Absorption/Stripping  

Science Journals Connector (OSTI)

Integrated Gasification Combined Cycle Dynamic Model: H2S Absorption/Stripping, Water?Gas Shift Reactors, and CO2 Absorption/Stripping ... Future chemical plants may be required to have much higher flexibility and agility than existing process facilities in order to be able to handle new hybrid combinations of power and chemical units. ...

Patrick J. Robinson; William L. Luyben

2010-04-26T23:59:59.000Z

234

Choose the Right Advanced Power Strip for You | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Choose the Right Advanced Power Strip for You Choose the Right Advanced Power Strip for You Choose the Right Advanced Power Strip for You October 28, 2013 - 11:33am Addthis Choose the right advanced power strip based on your habits to reduce the electricity wasted when your electronic devices are idle. Choose the right advanced power strip based on your habits to reduce the electricity wasted when your electronic devices are idle. Lieko Earle, Ph.D. Senior Engineer, Residential Buildings, National Renewable Energy Laboratory Bethany Sparn, M.S. Engineer, Residential Buildings, National Renewable Energy Laboratory What are the key facts? Advanced power strips (APS) can help reduce the electricity wasted when electronics are idle, without changing habits or how you use devices Choose the right APS based on your habits and the devices you want

235

GRR/Section 14-HI-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-HI-c - Underground Injection Control Permit GRR/Section 14-HI-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-HI-c - Underground Injection Control Permit 14HIC - UndergroundInjectionControlPermit (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Safe Drinking Water Branch Regulations & Policies Hawaii Administrative Rules Title 11, Chapter 23 Triggers None specified Click "Edit With Form" above to add content 14HIC - UndergroundInjectionControlPermit (1).pdf 14HIC - UndergroundInjectionControlPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The developer must receive an Underground Injection Control Permit from the

236

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

SciTech Connect

To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

Yamamoto, Hajime; Pruess, Karsten

2004-09-01T23:59:59.000Z

237

Container lid gasket protective strip for double door transfer system  

DOE Patents (OSTI)

An apparatus and a process for forming a protective barrier seal along a "ring of concern" of a transfer container used with double door systems is provided. A protective substrate is supplied between a "ring of concern" and a safety cover in which an adhesive layer of the substrate engages the "ring of concern". A compressive foam strip along an opposite side of the substrate engages a safety cover such that a compressive force is maintained between the "ring of concern" and the adhesive layer of the substrate.

Allen, Jr., Burgess M

2013-02-19T23:59:59.000Z

238

Cryogenic fractionator gas as stripping gas of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a scrubbing process and wherein the resulting solids-liquid slurry is stripped with a stripping gas to remove acidic gases, at least a portion of the stripping gas comprises a gas comprising hydrogen, nitrogen and methane separated from the coker products.

DeGeorge, Charles W. (Chester, NJ)

1981-01-01T23:59:59.000Z

239

E-Print Network 3.0 - alice silicon strip Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

results for: alice silicon strip Page: << < 1 2 3 4 5 > >> 1 Department of Physics & Astronomy Experimental Particle Physics Group Summary: functions of the ALICE silicon system...

240

E-Print Network 3.0 - automated skull-stripping methods Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

approach to skull-strip the images. This had the ... Source: Columbia University, Pediatric Brain Imaging Laboratory; Davatzikos, Christos - Departments of Bioengineering &...

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Integration of stripping of fines slurry in a coking and gasification process  

DOE Patents (OSTI)

In an integrated fluid coking and gasification process wherein a stream of fluidized solids is passed from a fluidized bed coking zone to a second fluidized bed and wherein entrained solid fines are recovered by a wet scrubbing process and wherein the resulting solids-liquid slurry is stripped to remove acidic gases, the stripped vapors of the stripping zone are sent to the gas cleanup stage of the gasification product gas. The improved stripping integration is particularly useful in the combination coal liquefaction process, fluid coking of bottoms of the coal liquefaction zone and gasification of the product coke.

DeGeorge, Charles W. (Chester, NJ)

1980-01-01T23:59:59.000Z

242

Department of Energy Announces 15 Projects Aimed at Secure Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Projects Aimed at Secure 15 Projects Aimed at Secure Underground Storage of CO2 Department of Energy Announces 15 Projects Aimed at Secure Underground Storage of CO2 August 11, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the selection of 15 projects to develop technologies aimed at safely and economically storing carbon dioxide (CO2) in geologic formations. Funded at $21.3 million over three years, today's selections will complement existing DOE initiatives to help develop the technology and infrastructure to implement large-scale CO2 storage in different geologic formations across the Nation. The projects selected today will support the goals of helping reduce U.S. greenhouse gas emissions, developing and deploying near-zero-emission coal technologies, and making the U.S. a leader in

243

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

244

one mile underground into a deep saline formation. The injection  

NLE Websites -- All DOE Office Websites (Extended Search)

mile underground into a deep saline formation. The injection, mile underground into a deep saline formation. The injection, which will occur over a three-year period and is slated to start in early 2010, will compress up to 1 million metric tonnes of CO 2 from the ADM ethanol facility into a liquid-like, dense phase. The targeted rock formation, the Mt. Simon Sandstone, is the thickest and most widespread saline reservoir in the Illinois Basin, with an estimated CO 2 storage capacity of 27 to 109 billion metric tonnes. A comprehensive monitoring program, which will be evaluated yearly, will be implemented after the injection to ensure the injected CO 2 is stored safely and permanently. The RCSP Program was launched by the Office of Fossil Energy (FE)

245

Westinghouse Earns Mine Safety Award for Exceptional Underground Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Westinghouse Earns Mine Safety Award Westinghouse Earns Mine Safety Award For Exceptional Underground Operations CARLSBAD, N.M., October 5, 2000 - For the 14 th consecutive year, the Westinghouse Waste Isolation Division (WID) has been recognized for "excellence in underground operations" at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). On September 19, New Mexico State Inspector of Mines Gilbert Miera and the New Mexico Mining Association presented Westinghouse with the "Mine Operator of the Year" award. The presentation took place at the New Mexico Mining Association's annual convention in Farmington. The "Mine Operator of the Year" award recognizes Westinghouse's close attention to safety in a mining environment. WID received the award in the category of "non-producing

246

Advanced Underground Gas Storage Concepts Refrigerated-Mined Cavern Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

UNDERGROUND GAS STORAGE CONCEPTS UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE FINAL REPORT DOE CONTRACT NUMBER DE-AC26-97FT34349 SUBMITTED BY: PB-KBB INC. 11757 KATY FREEWAY, SUITE 600 HOUSTON, TX 77079 SEPTEMBER 1998 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

247

Underground coal gasification: a brief review of current status  

SciTech Connect

Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

2009-09-15T23:59:59.000Z

248

DIANA - A deep underground accelerator for nuclear astrophysics experiments  

SciTech Connect

DIANA (Dakota Ion Accelerator for Nuclear Astrophysics) is a proposed facility designed to be operated deep underground. The DIANA collaboration includes nuclear astrophysics groups from Lawrence Berkeley National Laboratory, Michigan State University, Western Michigan University, Colorado School of Mines, and the University of North Carolina, and is led by the University of Notre Dame. The scientific goals of the facility are measurements of low energy nuclear cross-sections associated with sun and pre-supernova stars in a laboratory setup at energies that are close to those in stars. Because of the low stellar temperatures associated with these environments, and the high Coulomb barrier, the reaction cross-sections are extremely low. Therefore these measurements are hampered by small signal to background ratios. By going underground the background due to cosmic rays can be reduced by several orders of magnitude. We report on the design status of the DIANA facility with focus on the 3 MV electrostatic accelerator.

Winklehner, Daniel; Leitner, Daniela [Michigan State University, 640 S Shaw Lane, East Lansing MI 48824 (United States); Lemut, Alberto; Hodgkinson, Adrian [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720 (United States); Couder, Manoel; Wiescher, Michael [University of Notre Dame, Notre Dame, IN 46556 (United States)

2013-04-19T23:59:59.000Z

249

200-Area plateau inactive miscellaneous underground storage tanks locations  

SciTech Connect

Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years.

Brevick, C.H.

1997-12-01T23:59:59.000Z

250

Light weight underground pipe or cable installing device  

SciTech Connect

This invention pertains to a light weight underground pipe or cable installing device adapted for use in a narrow and deep operating trench. More particularly this underground pipe installing device employs a pair of laterally movable gates positioned adjacent the bottom of the operating trench where the earth is more solid to securely clamp the device in the operating trench to enable it to withstand the forces exerted as the actuating rod is forced through the earth from the so-called operating trench to the target trench. To accommodate the laterally movable gates positioned adjacent the bottom of the narrow pipe installing device, a pair of top operated double-acting rod clamping jaws, operated by a hydraulic cylinder positioned above the actuating rod are employed.

Schosek, W. O.

1985-01-08T23:59:59.000Z

251

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

252

Underground Injection Control Fee Schedule (West Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control Fee Schedule (West Virginia) Injection Control Fee Schedule (West Virginia) Underground Injection Control Fee Schedule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Fees Provider Department of Environmental Protection This rule establishes schedules of permit fees for state under-ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is required to apply for and

253

Methodology for EIA Weekly Underground Natural Gas Storage Estimates  

Weekly Natural Gas Storage Report (EIA)

Methodology for EIA Weekly Underground Natural Gas Storage Estimates Methodology for EIA Weekly Underground Natural Gas Storage Estimates Latest Update: November 25, 2008 This report consists of the following sections: Survey and Survey Processing - a description of the survey and an overview of the program Sampling - a description of the selection process used to identify companies in the survey Estimation - how the regional estimates are prepared from the collected data Computing the 5-year Averages, Maxima, Minima, and Year-Ago Values for the Weekly Natural Gas Storage Report - the method used to prepare weekly data to compute the 5-year averages, maxima, minima, and year-ago values for the weekly report Derivation of the Weekly Historical Estimates Database - a description of the process used to generate the historical database for the

254

Rating underground pipeline tape and shrink sleeve coating systems  

SciTech Connect

A rating system was developed for several coating types used for underground pipeline systems. Consideration included soil stress, adhesion, surface preparation, cathodic protection (CP) shielding, CP requirements, handling and construction, repair, field joint system, bends and other components, and the application process. Polyethylene- and polyvinyl chloride-backed tapes, woven polyolefin geotextile fabric (WGF)-backed tapes, hot-applied tapes, petrolatum- and wax-based tapes, and shrink sleeves were evaluated. WGF-backed tapes had the highest rating.

Norsworthy, R.

1999-11-01T23:59:59.000Z

255

Iowa Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Iowa Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 228,019 220,410 215,229 215,377 219,838 224,572 230,226 236,154 239,871 243,782 241,829 227,519 1991 225,964 215,495 211,852 213,588 218,084 228,720 234,297 240,868 252,335 263,855 255,740 241,570 1992 221,741 209,087 205,548 208,105 217,022 225,236 236,833 247,704 258,372 267,472 258,308 237,797 1993 218,826 208,027 205,378 210,868 217,693 225,793 236,688 247,032 259,649 265,238 258,580 240,957 1994 222,694 213,205 210,208 212,114 217,678 224,185 234,433 245,426 257,120 266,215 261,645 243,875 1995 223,356 212,480 208,011 207,340 211,295 219,417 229,558 244,448 256,135 263,260 252,590 237,557

256

Utah Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Utah Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,806 56,937 55,229 54,606 57,328 55,249 67,314 75,921 83,365 86,778 66,668 58,461 1991 61,574 54,369 50,745 51,761 54,314 60,156 66,484 70,498 74,646 75,367 70,399 63,453 1992 59,541 59,119 59,059 60,896 64,403 67,171 70,690 75,362 78,483 79,756 74,021 67,181 1993 61,308 56,251 52,595 52,028 58,713 65,349 69,968 75,120 80,183 85,406 79,818 75,184 1994 70,826 63,733 66,678 68,028 74,061 78,089 83,551 89,773 98,223 102,035 99,841 94,306 1995 86,450 83,059 79,507 80,647 84,154 90,012 97,005 100,430 101,993 102,510 103,779 93,925

257

New York Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) New York Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 124,150 116,994 113,349 121,215 131,103 139,757 148,861 155,592 158,419 160,981 150,947 1991 127,051 118,721 114,190 117,571 124,275 132,029 140,317 149,058 157,799 163,054 158,736 151,036 1992 146,171 131,831 119,880 122,969 132,698 142,107 153,543 163,508 169,298 172,708 169,361 158,828 1993 145,521 129,184 118,756 122,771 133,838 144,835 154,895 162,969 172,642 174,589 171,253 161,801 1994 143,310 129,129 120,675 129,563 138,273 150,582 159,688 168,628 173,584 174,977 172,352 163,470 1995 149,768 135,478 129,570 130,077 138,659 150,010 156,744 165,026 173,947 175,635 165,945 148,196

258

Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Injections into Underground Storage (Million Cubic Feet) Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,740 243 1,516 3,236 5,817 8,184 5,657 5,928 4,903 4,971 1,423 854 1991 1,166 155 231 1,829 4,897 8,985 6,518 8,058 11,039 10,758 2,782 860 1992 488 43 1,246 3,184 7,652 7,568 11,453 11,281 11,472 9,000 1,228 1,203 1993 0 0 733 5,547 6,489 7,776 10,550 10,150 12,351 8,152 2,437 0 1994 0 75 1,162 3,601 7,153 7,638 11,999 12,405 13,449 10,767 2,678 0 1995 0 0 251 1,041 5,294 9,889 12,219 17,805 13,756 8,855 1,283 391 1996 2 2 0 40 1,921 7,679 12,393 13,168 12,537 10,556 2,760 0

259

Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 296,629 281,511 286,917 279,978 298,202 307,083 317,720 325,432 332,591 338,392 353,804 327,277 1991 283,982 278,961 284,515 298,730 313,114 323,305 324,150 328,823 338,810 342,711 317,072 306,300 1992 288,415 280,038 276,287 282,263 290,192 301,262 318,719 326,705 339,394 346,939 330,861 299,990 1993 275,054 253,724 246,989 257,844 277,833 296,860 311,870 325,201 341,207 348,646 330,986 316,146 1994 285,115 259,794 257,148 273,797 298,007 311,154 327,281 340,312 349,174 353,630 350,671 334,502 1995 310,835 297,169 287,302 291,768 308,245 320,842 327,910 326,131 338,685 351,385 343,918 320,269

260

Montana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Montana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 293,785 290,491 289,197 288,193 293,815 288,808 290,947 293,015 295,663 296,921 295,421 290,602 1991 289,270 287,858 286,548 286,491 287,718 288,959 290,667 292,107 292,226 290,844 288,112 284,559 1992 281,148 279,325 278,909 279,042 280,038 280,751 281,777 282,543 282,117 280,760 277,412 271,811 1993 266,711 262,291 259,532 257,822 256,665 255,940 257,149 257,450 257,904 257,816 253,710 250,503 1994 246,679 239,940 238,777 237,993 238,931 240,738 242,090 243,176 244,948 245,981 244,275 241,603 1995 238,103 236,109 235,420 236,218 237,498 239,637 242,554 245,760 246,856 246,301 243,255 238,004

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

AGA Western Consuming Region Natural Gas Underground Storage Volume  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 888,010 816,597 813,746 830,132 876,457 908,444 941,985 966,686 1,002,402 1,021,144 997,644 956,234 1995 902,782 884,830 865,309 860,012 897,991 945,183 975,307 986,131 1,011,948 1,032,357 1,033,363 982,781 1996 896,744 853,207 837,980 849,221 885,715 916,778 929,559 928,785 946,748 949,983 939,649 899,689 1997 833,239 796,139 788,601 801,955 844,880 890,703 923,845 947,277 969,170 980,388 967,286 880,627 1998 828,658 780,476 768,264 773,053 823,311 872,913 900,181 925,287 965,846 1,001,548 1,009,978 953,379

262

Indiana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Indiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 96,943 93,233 91,600 91,945 93,696 95,361 97,632 101,323 105,497 108,028 108,772 105,317 1991 99,409 90,625 87,381 86,706 88,659 89,700 93,022 97,673 102,161 119,470 106,066 101,121 1992 94,379 89,893 85,767 85,259 86,457 88,999 94,154 98,267 103,478 106,422 103,871 100,288 1993 95,109 90,016 87,368 88,414 89,388 91,515 95,971 100,516 104,709 106,058 104,160 101,505 1994 95,846 92,274 90,200 89,473 89,417 91,870 97,002 101,310 105,300 109,518 110,149 107,215 1995 101,661 95,902 93,464 92,724 93,156 94,955 97,862 101,470 106,201 110,610 111,401 106,609

263

Illinois Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Illinois Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 806,109 754,941 721,785 717,863 749,618 782,498 812,054 847,731 881,760 900,526 903,640 870,265 1991 801,635 753,141 727,699 720,275 751,641 781,883 810,535 844,477 877,485 904,206 885,341 851,258 1992 791,129 743,484 716,909 709,150 742,812 774,578 805,097 843,543 878,334 905,597 887,454 844,108 1993 783,875 735,236 710,377 713,214 746,899 779,762 810,546 844,320 882,456 907,957 898,655 854,691 1994 781,826 737,719 723,108 722,735 746,576 776,189 808,832 843,372 880,762 907,622 898,872 866,846 1995 803,422 745,457 721,311 716,886 745,970 774,803 804,912 837,002 868,941 899,868 885,665 841,580

264

Ohio Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Ohio Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 439,384 418,280 409,494 412,498 435,089 454,844 474,266 493,301 510,714 521,774 518,006 489,515 1991 477,781 454,923 439,191 448,258 461,362 490,259 505,168 523,544 538,399 546,343 533,483 506,672 1992 463,200 428,363 392,474 394,514 420,383 452,412 478,259 500,938 516,378 527,568 522,419 491,542 1993 452,510 407,121 368,376 371,641 401,431 433,291 462,741 490,248 515,994 522,961 510,471 470,120 1994 413,475 378,216 361,279 377,103 406,526 438,293 471,603 498,156 519,996 530,505 526,490 498,597 1995 448,479 410,867 391,082 385,953 413,796 445,322 472,162 495,448 513,913 522,766 498,715 455,782

265

Kansas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Kansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 245,145 234,971 229,066 227,002 227,589 232,695 244,279 256,395 272,036 278,715 307,106 283,959 1991 247,980 246,067 240,702 238,606 244,878 254,222 257,114 260,728 271,373 282,551 273,225 274,836 1992 267,254 254,115 244,632 239,589 241,818 244,415 248,599 260,231 270,362 273,183 262,414 247,855 1993 229,148 213,533 208,832 213,112 235,850 247,585 253,023 261,780 276,136 278,233 268,816 259,719 1994 243,371 229,217 228,379 229,034 240,066 245,355 256,229 268,820 278,655 283,143 276,402 266,198 1995 251,176 239,135 228,409 230,202 239,892 252,703 252,472 252,461 269,034 280,066 272,406 255,483

266

Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,899 166,624 167,576 172,320 177,680 185,467 192,473 199,674 202,983 198,545 192,581 1991 183,697 180,169 176,535 181,119 183,491 186,795 192,143 195,330 198,776 198,351 191,831 189,130 1992 189,866 188,587 183,694 182,008 180,781 182,342 185,893 187,501 191,689 202,391 200,871 197,857 1993 192,736 181,774 172,140 171,465 177,888 185,725 193,275 198,075 204,437 205,524 199,683 188,970 1994 170,283 157,974 153,378 158,141 167,847 177,200 186,856 193,717 197,308 200,665 200,993 192,700 1995 179,376 166,756 162,223 165,687 178,354 185,982 192,799 196,645 203,357 205,882 196,585 185,704

267

Salt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 101 2007-Jan 01/05 109 01/12 107 01/19 96 01/26 91 2007-Feb 02/02 78 02/09 63 02/16 52 02/23 54 2007-Mar 03/02 59 03/09 58 03/16 64 03/23 70 03/30 78 2007-Apr 04/06 81 04/13 80 04/20 80 04/27 83 2007-May 05/04 85 05/11 88 05/18 92 05/25 97 2007-Jun 06/01 100 06/08 101 06/15 102 06/22 102 06/29 102

268

AGA Eastern Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 7,862 17,834 34,190 160,946 247,849 262,039 269,285 244,910 208,853 134,234 47,094 16,471 1995 13,614 4,932 36,048 85,712 223,991 260,731 242,718 212,493 214,385 160,007 37,788 12,190 1996 12,276 39,022 32,753 130,232 233,717 285,798 303,416 270,223 247,897 166,356 39,330 28,875 1997 16,058 14,620 25,278 93,501 207,338 258,086 250,776 252,129 233,730 152,913 53,097 10,338 1998 21,908 13,334 48,068 139,412 254,837 234,427 234,269 207,026 178,129 144,203 52,518 28,342

269

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 2,322 1994-Jan 01/07 2,186 01/14 2,019 01/21 1,782 01/28 1,662 1994-Feb 02/04 1,470 02/11 1,303 02/18 1,203 02/25 1,149 1994-Mar 03/04 1,015 03/11 1,004 03/18 952 03/25 965 1994-Apr 04/01 953 04/08 969 04/15 1,005 04/22 1,085 04/29 1,161 1994-May 05/06 1,237 05/13 1,325 05/20 1,403 05/27 1,494

270

Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 79,285 79,603 80,373 85,161 89,985 93,156 99,475 104,348 108,323 111,705 112,191 106,545 1991 91,368 86,763 86,679 92,641 96,297 98,701 100,991 103,104 108,211 112,270 104,184 98,741 1992 89,008 87,873 85,498 85,665 89,979 94,898 99,555 100,116 106,504 107,770 107,015 100,433 1993 94,466 86,908 80,802 83,305 90,316 94,786 99,933 103,264 109,076 109,790 108,869 101,774 1994 92,881 89,305 92,689 97,058 101,796 102,770 109,298 114,566 116,697 120,326 121,207 115,933 1995 107,126 102,620 98,569 103,285 110,250 111,888 116,039 116,791 123,081 125,717 116,280 109,906

271

Texas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Texas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 456,385 449,625 443,662 508,009 518,658 531,197 544,212 538,450 539,191 556,768 562,961 526,092 1991 444,671 436,508 436,440 453,634 468,302 487,953 491,758 497,878 513,315 517,099 502,004 486,831 1992 455,054 440,895 435,515 438,408 456,948 469,532 491,515 508,950 511,787 516,598 496,232 459,458 1993 414,216 388,921 376,731 396,804 423,544 444,755 453,961 466,560 450,853 457,581 445,059 431,719 1994 381,924 342,046 350,039 374,226 407,219 419,997 446,215 462,725 485,146 495,417 500,640 478,036 1995 465,108 443,908 434,564 455,756 479,313 497,829 498,982 490,940 510,646 520,173 509,944 463,202

272

Colorado Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Colorado Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 66,554 61,757 56,567 52,684 52,375 56,614 62,829 68,028 73,035 74,259 80,053 1991 71,524 69,768 62,807 61,367 62,448 66,425 70,705 75,800 80,506 82,065 83,134 82,145 1992 78,319 74,888 68,199 64,030 63,685 65,682 69,830 76,095 82,007 84,134 81,041 78,303 1993 73,838 68,733 66,224 62,799 65,511 70,157 73,322 77,155 81,457 81,981 79,475 78,303 1994 72,798 67,880 65,147 60,034 65,538 67,050 71,639 76,943 82,093 82,347 80,736 77,356 1995 73,047 69,545 64,567 59,852 62,142 70,945 73,047 77,326 80,150 81,357 82,831 77,475

273

Maryland Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Maryland Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 50,980 47,820 48,924 49,656 52,214 53,271 55,370 58,030 60,465 61,702 59,577 58,586 1991 55,450 52,159 50,537 51,458 52,941 54,594 55,998 58,233 60,342 61,017 61,304 61,207 1992 56,350 51,413 48,752 47,855 51,162 53,850 55,670 58,057 60,123 61,373 61,882 59,775 1993 56,503 52,155 50,240 49,746 51,939 53,114 54,206 55,924 58,423 61,103 61,504 58,605 1994 52,059 49,590 50,127 51,375 53,420 54,885 56,985 58,443 59,992 61,761 60,987 59,854 1995 57,642 53,398 53,293 53,049 55,049 57,080 56,891 58,074 60,121 61,273 60,740 57,798

274

Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,878 27,848 27,810 27,846 27,946 28,419 28,946 29,427 29,707 29,734 29,656 29,429 1991 27,498 27,132 26,811 26,616 26,747 27,086 27,573 27,587 27,587 27,587 26,958 26,294 1992 25,642 25,124 24,681 24,523 24,507 25,016 25,868 26,532 26,966 26,770 26,404 25,781 1993 25,148 24,276 23,798 23,676 22,852 22,866 22,856 22,856 22,856 22,731 22,096 21,239 1994 19,771 18,729 17,426 17,116 17,647 18,199 18,762 19,566 19,776 19,712 19,354 18,757 1995 17,752 16,999 16,460 16,330 16,541 17,854 19,348 20,738 20,895 20,815 20,197 18,048

275

Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 516,257 477,783 453,124 462,399 511,406 619,401 671,431 711,942 717,828 719,002 665,421 1991 543,808 501,265 471,608 482,628 527,550 545,866 569,927 607,093 651,148 669,612 658,358 627,857 1992 559,416 497,895 441,187 445,158 485,227 535,829 579,713 622,943 665,414 690,920 692,280 650,707 1993 580,189 479,149 417,953 444,095 494,680 547,289 592,762 632,195 680,452 695,718 689,050 639,761 1994 532,216 455,494 434,081 475,107 527,242 583,595 634,007 677,221 700,758 716,066 696,721 656,431 1995 590,100 497,162 469,515 481,690 525,118 578,640 611,291 648,080 695,988 713,882 669,744 594,750

276

Eastern Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 1,411 1994-Jan 01/07 1,323 01/14 1,199 01/21 1,040 01/28 958 1994-Feb 02/04 838 02/11 728 02/18 665 02/25 627 1994-Mar 03/04 529 03/11 531 03/18 462 03/25 461 1994-Apr 04/01 465 04/08 475 04/15 494 04/22 541 04/29 593 1994-May 05/06 636 05/13 690 05/20 731 05/27 795

277

Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 377,554 379,627 371,519 372,188 379,245 393,418 407,240 421,000 435,705 450,886 459,955 452,883 1991 405,740 373,892 361,085 367,797 387,769 411,591 425,349 435,719 453,303 477,425 464,906 433,184 1992 387,456 358,639 345,049 348,097 369,129 388,728 403,713 413,375 432,171 452,989 447,115 411,919 1993 365,128 321,651 298,841 302,181 340,366 375,731 402,638 430,431 466,345 481,609 468,227 421,634 1994 376,035 357,247 343,892 365,948 400,035 421,714 451,504 474,085 497,428 506,525 502,477 463,847 1995 412,075 372,991 364,320 374,312 392,968 420,738 441,510 442,655 466,060 480,119 455,669 408,882

278

California Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) California Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 369,842 350,519 355,192 376,146 401,513 414,633 418,894 421,696 426,235 440,326 397,785 1991 376,267 376,879 359,926 380,826 407,514 431,831 445,387 448,286 448,383 448,081 441,485 417,177 1992 374,166 357,388 341,665 355,718 382,516 404,547 418,501 431,069 445,438 455,642 446,085 390,868 1993 357,095 337,817 348,097 356,320 385,972 399,994 423,027 433,552 448,573 461,473 446,120 411,943 1994 372,605 328,438 327,546 346,463 374,574 394,821 412,465 421,818 438,754 450,997 434,260 408,636 1995 377,660 373,010 365,068 362,271 388,641 414,650 428,646 426,927 442,131 460,286 462,316 436,346

279

Tennessee Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Tennessee Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 799 683 623 539 539 539 673 807 919 1,022 1,126 1,127 1999 996 872 741 661 658 802 909 985 1,089 1,194 1,251 1,195 2000 1,031 855 792 729 711 711 711 711 711 760 874 959 2001 963 903 830 761 865 978 1,009 1,072 1,118 1,180 938 937 2002 987 988 990 990 965 962 949 945 942 940 852 852 2003 744 634 566 519 554 630 705 800 803 848 848 787 2004 684 633 621 652 685 731 794 849 854 879 867 826 2005 784 704 605 524 483 466 466 466 428 419 413 400

280

Nebraska Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Nebraska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 82,538 81,491 81,181 82,095 83,472 85,002 83,477 83,923 85,020 84,918 81,317 1991 79,407 78,372 77,653 78,788 81,843 83,985 83,721 83,657 84,562 84,253 83,847 81,475 1992 79,888 78,880 78,837 79,448 81,080 83,708 85,758 86,968 88,154 87,853 85,260 81,824 1993 78,414 76,448 75,412 76,380 79,328 82,649 85,226 87,084 88,593 88,564 86,793 84,418 1994 81,833 79,100 79,242 80,202 82,339 83,239 85,362 85,709 87,835 88,765 88,935 86,932 1995 84,820 83,825 82,895 82,697 83,340 84,206 35,388 35,566 35,950 35,183 33,585 31,992

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

GOING UNDERGROUND IN FINLAND: DESIGN OF ONKALO IN PROGRESS  

SciTech Connect

The long-term program aimed at selection of a site for a deep repository was initiated in Finland in 1983. This program has come to end in 2001 and a new phase aimed at implementation of the geological disposal of spent fuel has been started. In this new phase the first milestone is the application for a construction license for the disposal facility around 2010. To fulfill the needs for detailed design of the disposal system, an underground rock characterization facility (URCF) will be constructed at the representative depth at Olkiluoto. The excavation of this facility will start the work for underground characterization, testing and demonstration, which is planned to be a continuous activity throughout the whole life cycle of the deep repository. The overall objectives for the underground site characterization are (1) verification of the present conclusions on site suitability, (2) definition and identification of suitable rock volumes for repository space and (3) characterization of planned host rock for detailed design, safety assessment and construction planning. The objective for verification aims at assessing that the Olkiluoto site meets the basic criteria for long-term safety and as well the basic requirements for construction and thus justifies the site selection. The two other main objectives are closely related to design of the repository and assessing the long-term safety of the site-specific disposal system. The most important objective of ONKALO should allow an in-depth investigation of the geological environment and to provide the opportunity to allow validation of models at more appropriate scales and conditions than can be achieved from the surface. In some areas, such as in demonstrating operational safety, in acquiring geological information at a repository scale and in constructional and operational feasibility, the ONKALO will provide the only reliable source of in situ data. The depth range envisaged for URCF called ONKALO is between 400 and 600 m. The location and underground geometry of access ramp is of significance. Development of ONKALO will begin in 2003 and it consists of surface facilities, access ramp and vertical shaft to the depth of 500 meters and characterization and demonstration facilities. Total volume of the ONKALO underground facilities is approximately 250 000 m3. The development will be completed around 2010. The reconciliation of construction and investigations plays an important role through the project. Other major issues will be the management of groundwater conditions, workplace safety and documentation of the work.

Dikds, T.; Ikonen, A.; Niiranen, S.; Hansen, J.

2003-02-27T23:59:59.000Z

282

386 Anal. Chem. 1987, 59,386-389 Square Wave Anodic Stripping Voltammetry at the Mercury  

E-Print Network (OSTI)

386 Anal. Chem. 1987, 59,386-389 Square Wave Anodic Stripping Voltammetry at the Mercury Film treatment of square wave anodic stripping voltammetry at a mercury film electrode Is presented. Nu- merlcal) frequency ( f ) and amount of metal depostted In the mercury layer (9R) and glves a response 6 tlmes

Kounaves, Samuel P.

283

Development of an immunochromatographic strip test for the rapid detection of Zearalenone in corn  

Science Journals Connector (OSTI)

Development of an immunochromatographic strip test for the rapid detection of Zearalenone in corn ... A rapid immunochromatographic test strip had been developed for the detection of zearalenone (ZEN) residues in corn. ... The test could be accomplished within 5–10 min. ...

Ya ning Sun; Xiao fei Hu; Yong Zhang; Ji fei Yang; Fang yu Wang; Yao Wang; Rui guang Deng; Gai ping Zhang

2014-10-24T23:59:59.000Z

284

Revitalized Board Lays Out New Path amid EM's Recent Underground Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalized Board Lays Out New Path amid EM's Recent Underground Revitalized Board Lays Out New Path amid EM's Recent Underground Tank Waste Successes Revitalized Board Lays Out New Path amid EM's Recent Underground Tank Waste Successes August 20, 2012 - 12:00pm Addthis Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures. Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures. A view of the interior of the Integrated Waste Treatment Unit at the Idaho site. A view of the interior of the Integrated Waste Treatment Unit at the Idaho site. Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures.

285

GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection  

Open Energy Info (EERE)

- Does the DOGGR Approve the Underground Injection - Does the DOGGR Approve the Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project After the end of the comment period and after reviewing any proposed revisions furnished by the Regional Board, the State Board decides whether to approve the Underground Injection Project. Logic Chain No Parents \V/ GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-c.12_-_Does_the_DOGGR_Approve_the_Underground_Injection_Project&oldid=539630

286

GRR/Section 14-WA-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-WA-c - Underground Injection Control Permit GRR/Section 14-WA-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-WA-c - Underground Injection Control Permit 14-WA-c - Underground Injection Control Permit.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Chapter 173-218 WAC Non-endangerment Standard Triggers None specified The Safe Drinking Water Act requires Washington to implement technical criteria and standards to protect underground sources of drinking water from contamination. Under Chapter 173-218 WAC, the Washington State Department of Ecology (WSDE) regulates and permits underground injection control (UIC) wells in Washington. The Environmental Protection Agency

287

GRR/Section 18-WA-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-WA-a - Underground Storage Tank Process GRR/Section 18-WA-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-WA-a - Underground Storage Tank Process 18-WA-a - Underground Storage Tank Process.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington Chapter 90.76 Washington Administrative Code Chapter 173-360 Triggers None specified Washington has a federally-approved state Underground Storage Tank (UST) program regulated by the Washington State Department of Ecology (WSDE) under Revised Code of Washington Chapter 90.76 and Washington Administrative Code Chapter 173-360. Washington defines an "Underground

288

GRR/Section 18-OR-a - State Underground Storage Tank | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-OR-a - State Underground Storage Tank GRR/Section 18-OR-a - State Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-OR-a - State Underground Storage Tank 18ORAStateUndergroundStorageTank (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-150: Underground Storage Tank Rules Triggers None specified Click "Edit With Form" above to add content 18ORAStateUndergroundStorageTank (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 18-OR-a.1 - Application for General Permit Registration Certificate, EPA

289

E-Print Network 3.0 - aging underground reinforced Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

University Summary: -Infrastructure Developments in Southeast Asia: Case Study of Thailand Underground Suchatvee Suwansawat Dean of Engineering... is the second phase...

290

Site Characterization, Sustainability Evaluation and Life Cycle Emissions Assessment of Underground Coal Gasification.  

E-Print Network (OSTI)

??Underground Coal Gasification (UCG), although not a new concept, is now attracting considerable global attention as a viable process to provide a âcleanâ and economic… (more)

Hyder, Zeshan

2012-01-01T23:59:59.000Z

291

You've got that Sinking Feeling: Measuring Subsidence above Abandoned Underground Mines in Ohio, USA.  

E-Print Network (OSTI)

??As a result of more than 200 years of underground coal mining, many urbanized areas throughout Ohio, USA, are susceptible to land subsidence. Approximately 6,000… (more)

Siemer, Kyle W

2013-01-01T23:59:59.000Z

292

A system with a tracking concentrating heliostat for lighting underground spaces with beams of sunlight  

Science Journals Connector (OSTI)

The results of the introduction of a solar-power installation for lighting and creating light effects in an underground room using mirror-concentrating systems are described.

Zh. Z. Akhadov; A. A. Abdurakhmanov; Yu. B. Sobirov; Sh. R. Kholov…

2014-04-01T23:59:59.000Z

293

Electromagnetic full wave modal analysis of frequency-dependent underground cables.  

E-Print Network (OSTI)

??In this thesis, a new method has been proposed for calculating the frequencydependent parameters of underground cables. The method uses full wave formulation for calculating… (more)

Habib, Md. Shahnoor

2011-01-01T23:59:59.000Z

294

Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 1,377 1,113 1,113 1,140 1,182 1,218 1,436 2,028 1,955 1,766 1,365 1996 1,311 1,014 852 1,006 1,373 2,042 2,247 2,641 3,081 3,198 3,069 2,309 1997 1,778 1,594 1,619 1,749 2,020 2,113 2,156 2,443 2,705 2,956 2,713 2,713 1998 1,963 1,775 1,527 1,772 1,917 2,540 2,531 2,730 2,329 2,942 2,943 2,805 1999 1,992 1,878 1,566 1,703 2,173 2,383 2,618 2,699 3,101 3,024 3,158 2,969 2000 2,055 2,053 2,368 2,302 2,392 2,999 3,080 3,080 2,970 2,828 2,624 2,539 2001 2,210 2,451 1,847 2,041 1,997 2,574 2,728 2,841 2,859 2,739 5,527 5,538

295

Michigan Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Michigan Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 706,889 648,325 624,515 616,656 665,124 729,161 807,726 878,119 930,596 949,922 938,864 867,940 1991 743,402 679,102 654,930 682,092 729,387 786,753 845,224 891,823 911,554 952,843 894,499 818,602 1992 733,877 658,347 592,859 592,608 637,515 705,740 780,590 849,043 917,537 946,090 899,631 810,348 1993 710,139 607,908 543,589 559,454 637,732 723,706 807,040 889,450 955,444 989,143 937,100 847,136 1994 702,694 613,074 582,416 623,584 696,448 770,914 845,328 922,211 987,829 1,019,096 999,421 936,290 1995 830,235 717,515 666,164 665,004 718,094 783,569 857,995 914,295 966,578 998,665 931,432 813,622

296

West Virginia Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) West Virginia Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 406,358 395,084 390,792 397,000 415,841 433,111 451,251 467,272 480,567 484,278 484,868 464,807 1991 434,160 413,996 410,940 418,771 433,924 450,027 464,274 474,984 483,421 487,004 475,927 453,446 1992 423,942 396,889 367,681 369,328 393,606 411,353 433,399 452,065 465,496 478,316 472,378 449,402 1993 417,527 374,171 344,142 349,414 388,771 415,925 435,814 454,993 475,298 482,458 468,770 435,687 1994 379,825 347,246 330,957 352,059 377,614 406,195 433,763 456,009 476,854 482,830 475,145 450,055 1995 406,251 364,959 352,876 358,628 383,018 407,328 422,458 431,357 449,075 463,546 440,460 401,144

297

AGA Western Consuming Region Natural Gas Underground Storage Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 58,880 70,469 16,774 11,878 2,078 1,522 2,158 2,524 1,024 3,314 29,483 47,719 1995 56,732 27,801 27,857 15,789 4,280 2,252 3,265 11,858 5,401 6,025 14,354 53,469 1996 89,320 52,624 24,847 9,346 4,785 4,298 12,886 21,661 6,866 14,578 24,096 48,438 1997 73,240 41,906 22,756 15,182 4,297 3,613 5,381 8,030 7,770 12,343 22,625 88,975 1998 54,800 50,704 27,864 16,746 3,265 2,619 6,278 6,049 5,822 4,599 14,013 62,377 1999 54,762 45,467 35,081 31,196 7,773 3,792 4,982 14,342 6,642 10,488 15,128 54,531

298

AGA Western Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Western Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,449 542 13,722 29,089 48,055 33,801 35,146 27,858 45,903 22,113 5,766 6,401 1995 2,960 9,426 8,840 10,680 42,987 47,386 37,349 22,868 31,053 25,873 15,711 3,003 1996 2,819 8,696 9,595 20,495 41,216 36,086 25,987 20,787 24,773 17,795 13,530 9,122 1997 6,982 4,857 15,669 28,479 47,040 49,438 38,542 31,080 29,596 23,973 10,066 1,975 1998 5,540 1,847 14,429 21,380 49,816 48,423 30,073 34,243 31,710 34,744 26,456 6,404 1999 4,224 3,523 10,670 17,950 41,790 42,989 40,381 26,942 30,741 20,876 18,806 4,642

299

Virginia Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Virginia Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 3,654 3,215 2,903 3,108 3,416 3,720 3,906 4,241 4,507 4,731 4,691 4,330 1999 4,004 3,548 3,215 3,397 3,666 3,872 4,078 4,280 4,691 4,792 4,599 4,118 2000 3,398 3,283 3,289 3,456 3,735 3,941 4,160 4,366 4,357 4,785 4,434 3,720 2001 3,183 3,135 2,844 3,275 3,788 4,180 4,424 4,728 4,988 5,013 5,073 4,875 2002 4,401 3,728 3,339 3,462 4,014 4,285 4,568 4,709 5,017 5,225 4,945 4,451 2003 3,429 2,933 2,754 3,047 3,494 3,969 4,381 5,469 6,083 6,035 6,003 5,458 2004 4,324 3,958 3,647 3,806 4,539 4,866 5,121 5,915 6,379 7,223 7,191 6,185

300

Oregon Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Oregon Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 6,996 5,657 4,959 6,140 7,648 8,892 9,656 10,292 10,664 10,853 10,808 10,057 1991 8,982 8,017 6,250 5,271 5,985 7,539 8,997 10,089 10,763 11,102 11,125 10,638 1992 9,070 7,530 5,944 5,502 7,074 8,614 9,809 10,819 11,272 11,445 10,346 9,766 1993 7,848 6,452 5,724 5,298 6,942 8,240 9,421 10,463 11,041 11,531 10,800 9,697 1994 8,436 7,309 6,364 5,544 6,754 8,253 9,449 10,524 11,208 11,462 11,025 10,388 1995 8,710 8,325 7,885 8,752 9,932 10,965 11,661 11,661 12,147 12,147 12,090 11,268 1996 10,016 9,076 8,424 8,293 9,015 10,188 11,321 11,758 11,862 11,655 11,103 9,863

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

AGA Producing Region Natural Gas Underground Storage Withdrawals (Million  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 201,567 147,250 61,339 23,149 9,789 29,178 13,371 19,352 10,151 24,102 52,809 137,962 1995 166,242 120,089 100,955 31,916 17,279 19,712 35,082 62,364 16,966 33,762 102,735 181,097 1996 223,932 157,642 141,292 36,788 27,665 26,393 32,861 27,599 20,226 34,000 116,431 142,519 1997 204,601 103,715 43,894 54,285 24,898 34,122 65,631 42,757 30,579 32,257 113,422 180,582 1998 143,042 69,667 97,322 25,555 30,394 38,537 33,314 37,034 51,903 17,812 60,078 168,445 1999 189,816 77,848 104,690 44,930 22,829 26,085 58,109 60,549 25,888 43,790 66,980 165,046

302

AGA Eastern Consuming Region Natural Gas Underground Storage Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 530,741 349,007 159,102 30,353 9,093 4,218 8,493 5,462 6,537 22,750 119,120 256,340 1995 419,951 414,116 196,271 76,470 8,845 14,449 13,084 9,496 3,715 25,875 247,765 398,851 1996 435,980 333,314 236,872 66,149 12,958 4,261 2,804 5,141 5,152 24,515 213,277 269,811 1997 474,777 267,717 218,640 76,956 11,974 4,401 7,277 5,503 5,269 39,662 165,807 309,399 1998 339,858 244,813 256,560 37,278 8,764 11,317 14,830 15,207 16,026 23,854 94,110 287,801 1999 437,182 261,305 244,041 43,642 13,904 11,738 17,499 14,984 9,984 37,822 122,731 385,958

303

AGA Producing Region Natural Gas Injections into Underground Storage  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375 48,353 1997 45,327 35,394 89,625 83,137 107,821 99,742 71,360 95,278 116,634 117,497 49,750 33,170 1998 41,880 59,324 73,582 119,021 128,323 96,261 107,136 94,705 87,920 129,117 58,026 47,924 1999 35,830 50,772 49,673 80,879 110,064 100,132 72,348 67,286 103,587 79,714 66,465 32,984

304

New Mexico Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) New Mexico Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 32,289 31,416 31,096 32,921 25,403 33,699 37,281 40,474 42,033 45,200 46,210 43,675 1991 40,230 38,226 36,059 39,127 42,052 45,061 46,102 44,144 46,786 46,696 46,457 47,414 1992 45,395 44,683 43,948 42,349 42,253 42,795 40,695 42,640 43,838 46,401 45,364 45,776 1993 43,130 38,966 38,843 35,916 38,621 39,842 40,111 37,793 38,782 40,310 37,597 37,680 1994 34,718 33,061 33,341 31,698 33,727 34,304 34,155 34,287 38,474 40,591 40,040 39,500 1995 37,356 37,353 37,790 38,013 39,236 40,341 40,358 39,269 39,788 39,823 38,746 37,256

305

AGA Eastern Consuming Region Natural Gas Underground Storage Volume  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 3,605,263 3,281,694 3,164,033 3,297,696 3,531,074 3,786,195 4,043,225 4,279,875 4,477,279 4,588,167 4,522,088 4,292,649 1995 3,905,789 3,514,201 3,360,765 3,369,823 3,576,559 3,812,014 3,968,751 4,159,006 4,362,855 4,483,271 4,279,539 3,905,710 1996 3,483,209 3,190,123 2,987,233 3,052,606 3,272,105 3,557,334 3,859,973 4,122,060 4,364,848 4,508,821 4,334,814 4,094,033 1997 3,630,708 3,381,047 3,190,271 3,205,661 3,398,322 3,660,850 3,905,985 4,151,456 4,379,374 4,493,802 4,383,068 4,084,339 1998 3,774,740 3,544,699 3,335,505 3,436,983 3,680,419 3,909,517 4,166,130 4,309,452 4,461,762 4,580,963 4,542,742 4,295,021

306

Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Minnesota Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 6,363 5,796 5,866 6,343 6,672 6,784 6,916 6,964 7,025 7,052 7,050 6,662 1991 6,206 5,968 5,862 6,017 6,274 6,586 6,878 6,869 6,962 6,928 6,846 6,789 1992 6,341 6,211 5,883 5,675 6,064 6,371 6,668 6,848 6,974 6,970 6,962 6,759 1993 6,363 5,945 5,527 5,479 5,796 6,140 6,549 6,678 6,916 6,999 6,923 6,612 1994 6,085 5,890 5,700 5,543 5,892 6,265 6,634 6,836 6,985 6,983 6,979 6,907 1995 6,394 5,917 5,660 5,613 5,944 6,207 6,513 6,744 6,985 6,991 6,988 6,733 1996 5,952 5,692 5,470 5,558 5,924 6,219 6,506 6,716 6,918 6,951 6,920 6,693

307

AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,433,462 1,329,400 1,322,914 1,388,877 1,498,496 1,553,493 1,643,445 1,714,361 1,785,350 1,819,344 1,810,791 1,716,773 1995 1,601,428 1,510,175 1,467,414 1,509,666 1,586,445 1,662,195 1,696,619 1,688,515 1,768,189 1,818,098 1,757,160 1,613,046 1996 1,436,765 1,325,994 1,223,139 1,264,513 1,334,894 1,395,779 1,443,970 1,525,797 1,631,006 1,686,652 1,614,154 1,519,539 1997 1,379,108 1,303,888 1,356,678 1,385,616 1,461,221 1,536,339 1,542,480 1,596,011 1,683,987 1,770,002 1,707,810 1,559,636 1998 1,456,136 1,442,993 1,420,644 1,515,050 1,610,474 1,666,304 1,739,745 1,803,097 1,840,984 1,950,772 1,945,897 1,807,163

308

Time correlations of high energy muons in an underground detector  

E-Print Network (OSTI)

We present the result of a search for correlations in the arrival times of high energy muons collected from 1995 till 2000 with the streamer tube system of the complete MACRO detector at the underground Gran Sasso Lab. Large samples of single muons (8.6 million), double muons (0.46 million) and multiple muons with multiplicities from 3 to 6 (0.08 million) were selected. These samples were used to search for time correlations of cosmic ray particles coming from the whole upper hemisphere or from selected space cones. The results of our analyses confirm with high statistics a random arrival time distribution of high energy cosmic rays.

Y. Becherini; S. Cecchini; T. Chiarusi; M. Cozzi; H. Dekhissi; J. Derkaoui; L. S. Esposito; G. Giacomelli; M. Giorgini; N. Giglietto; F. Maaroufi; G. Mandrioli; A. Margiotta; S. Manzoor; A. Moussa; L. Patrizii; V. Popa; M. Sioli; G. Sirri; M. Spurio; V. Togo

2005-02-12T23:59:59.000Z

309

Cosmic Ray Sun Shadow in Soudan 2 Underground Muon Flux  

E-Print Network (OSTI)

The absorption of cosmic rays by the sun produces a shadow at the earth. The angular offset and broadening of the shadow are determined by the magnitude and structure of the interplanetary magnetic field (IPMF) in the inner solar system. We report the first measurement of the solar cosmic ray shadow by detection of deep underground muon flux in observations made during the entire ten-year interval 1989 to 1998. The sun shadow varies significantly during this time, with a $3.3\\sigma$ shadow observed during the years 1995 to 1998.

Soudan 2 Collaboration

1999-05-24T23:59:59.000Z

310

SUNLAB - The Project of a Polish Underground Laboratory  

SciTech Connect

The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedz S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector - GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

Kisiel, J.; Dorda, J.; Konefall, A.; Mania, S.; Szeglowski, T. [Institute of Physics, University of Silesia, Universytecka 4, 40-007 Katowice (Poland); Budzanowski, M.; Haranczyk, M.; Kozak, K.; Mazur, J.; Mietelski, J. W.; Puchalska, M.; Szarska, M.; Tomankiewicz, E.; Zalewska, A. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow (Poland); Chorowski, M.; Polinski, J. [Wroclaw University of Technology, Wroclaw (Poland); Cygan, S.; Hanzel, S.; Markiewicz, A.; Mertuszka, P. [KGHM CUPRUM CBR, Wroclaw (Poland)

2010-11-24T23:59:59.000Z

311

Method for maximizing shale oil recovery from an underground formation  

DOE Patents (OSTI)

A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

Sisemore, Clyde J. (Livermore, CA)

1980-01-01T23:59:59.000Z

312

Superconducting gravity gradiometers for underground target recognition. Final report  

SciTech Connect

One of the most formidable intelligence challenges existing in the non-proliferation community is the detection of buried targets. The physical parameter that all buried targets share, whether the target is buried armaments, a tunnel or a bunker, is mass. In the case of buried armaments, there is an excess mass (higher density) compared to the surrounding area; for a tunnel or bunker, the mass is missing. In either case, this difference in mass generates a distinct gravitational signature. The Superconducting Gravity Gradiometer project at Sandia worked toward developing an airborne device for the detection of these underground structures.

Adriaans, M.J.

1998-01-01T23:59:59.000Z

313

Coalbed methane production enhancement by underground coal gasification  

SciTech Connect

The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

1997-12-31T23:59:59.000Z

314

Characterization of radiolytically generated degradation products in the strip section of a TRUEX flowsheet  

SciTech Connect

This report presents a summary of the work performed to meet the FCRD level 2 milestone M3FT-13IN0302053, “Identification of TRUEX Strip Degradation.” The INL radiolysis test loop has been used to identify radiolytically generated degradation products in the strip section of the TRUEX flowsheet. These data were used to evaluate impact of the formation of radiolytic degradation products in the strip section upon the efficacy of the TRUEX flowsheet for the recovery of trivalent actinides and lanthanides from acidic solution. The nominal composition of the TRUEX solvent used in this study is 0.2 M CMPO and 1.4 M TBP dissolved in n-dodecane and the nominal composition of the TRUEX strip solution is 1.5 M lactic acid and 0.050 M diethylenetriaminepentaacetic acid. Gamma irradiation of a mixture of TRUEX process solvent and stripping solution in the test loop does not adversely impact flowsheet performance as measured by stripping americium ratios. The observed increase in americium stripping distribution ratios with increasing absorbed dose indicates the radiolytic production of organic soluble degradation compounds.

Dean R. Peterman; Lonnie G. Olson; Gary S. Groenewold; Rocklan G. McDowell; Richard D. Tillotson; Jack D. Law

2013-08-01T23:59:59.000Z

315

Evaluation of energy system analysis techniques for identifying underground facilities  

SciTech Connect

This report describes the results of a study to determine the feasibility and potential usefulness of applying energy system analysis techniques to help detect and characterize underground facilities that could be used for clandestine activities. Four off-the-shelf energy system modeling tools were considered: (1) ENPEP (Energy and Power Evaluation Program) - a total energy system supply/demand model, (2) ICARUS (Investigation of Costs and Reliability in Utility Systems) - an electric utility system dispatching (or production cost and reliability) model, (3) SMN (Spot Market Network) - an aggregate electric power transmission network model, and (4) PECO/LF (Philadelphia Electric Company/Load Flow) - a detailed electricity load flow model. For the purposes of most of this work, underground facilities were assumed to consume about 500 kW to 3 MW of electricity. For some of the work, facilities as large as 10-20 MW were considered. The analysis of each model was conducted in three stages: data evaluation, base-case analysis, and comparative case analysis. For ENPEP and ICARUS, open source data from Pakistan were used for the evaluations. For SMN and PECO/LF, the country data were not readily available, so data for the state of Arizona were used to test the general concept.

VanKuiken, J.C.; Kavicky, J.A.; Portante, E.C. [and others

1996-03-01T23:59:59.000Z

316

Active control of underground stresses through rock pressurization  

SciTech Connect

To significantly increase the stability of underground excavations while exploiting the full advantages of confined rock strength, methods must be developed to actively control the distribution of stresses near the excavation. This US Bureau of Mines study examines theoretical and practical aspects of rock pressurization, an active stress control concept that induces compressive stress in the wall rock through repeated hydraulic fracturing with a settable fluid. Numerical analyses performed by incorporating the rock pressurization concept into a variety of boundary-element models indicate that rock pressurization has the potential to improve underground excavation stability in three ways: (1) by relocating stress concentrations away from the weak opening surface to stronger, confined wall rock; (2) by inducing additional stresses in a biaxial stress field to reduce the difference between the principal stress components near the surface of the opening, and (3) by counteracting the tensile stresses induced in the rock around internally loaded openings. Practical aspects of the rock pressurization concept were investigated through a series of hydraulic fracturing experiments. The use of sulfur as a settable fluid for hydraulic fracturing was demonstrated, although problems related to sulfur viscosity suggest that other molten materials, such as wax, may be better suited to practical field application of the rock pressurization concept.

Vandergrift, T.L.

1995-06-01T23:59:59.000Z

317

Underground engineering at the Basalt Waste Isolation Project  

SciTech Connect

A special task group was organized by the US National Committee for Rock Mechanics and the Board on Radioactive Waste Management of the National Research Council to address issues relating to the geotechnical site characterization program for an underground facility to house high-level radioactive waste of the Basalt Waste Isolation Project (BWIP). Intended to provide an overview of the geotechnical program, the study was carried out by a task group consisting of ten members with expertise in the many disciplines required to successfully complete such a project. The task group recognized from the outset that the short time frame of this study would limit its ability to address all geotechnical issues in detail. Geotechnical issues were considered to range from specific technical aspects such as in-situ testing for rock mass permeability; rock hardness testing in the laboratory; or geologic characterizations and quantification of joints, to broader aspects of design philosophy, data collection, and treatment of uncertainty. The task group chose to focus on the broader aspects of underground design and construction, recognizing that the BWIP program utilizes a peer review group on a regular basis which reviews the specific technical questions related to geotechnical engineering. In this way, it was hoped that the review provided by the task group would complement those prepared by the BWIP peer review group.

Not Available

1987-01-01T23:59:59.000Z

318

RCRA closure plan for underground storage tank 105-C  

SciTech Connect

A Reactor Department program for repairing heat exchangers created a low level radioactive waste, which was held in underground storage tank (UST) 105-C, hereafter referred to as the tank. According to Procedures used at the facility, the waste`s pH was adjusted to the 8.0--12.0 range before shipping it to the SRS Waste Management Department. For this reason, area personnel did not anticipate that the waste which is currently contained in the tank would have corrosive hazardous characteristic. However, recent analysis indicates that waste contained in the tank has a pH of greater than 12.5, thereby constituting a hazardous waste. Because the Department of Energy-Savannah River Office (DOE-SR) could not prove that the hazardous waste had been stored in the tank for less than 90 days, the State of South Carolina Department of Health and Environmental Control (SCDHEC) alleged that DOE-SR was in violation of the 1976 Code of Laws of South Carolina. As agreed in Settlement Agreement 90-74-SW between the DOE and SCDHEC, this is the required closure plan for Tank 105-C. The purpose of this document is to present SCDHEC with an official plan for closing the underground storage tank. Upon approval by SCDHEC, the schedule for closure will be an enforceable portion of this agreement.

Miles, W.C. Jr.

1990-10-01T23:59:59.000Z

319

Results from a beam test of silicon strip sensors manufactured by Infineon Technologies AG  

E-Print Network (OSTI)

Most modern particle physics experiments use silicon based sensors for their tracking systems. These sensors are able to detect particles generated in high energy collisions with high spatial resolution and therefore allow the precise reconstruction of particle tracks. So far only a few vendors were capable of producing silicon strip sensors with the quality needed in particle physics experiments. Together with the European-based semiconductor manufacturer Infineon Technologies AG (Infineon) the Institute of High Energy Physics of the Austrian Academy of Sciences (HEPHY) developed planar silicon strip sensors in p-on-n technology. This work presents the first results from a beam test of strip sensors manufactured by Infineon.

Dragicevic, M; Bartl, U; Bergauer, T; Gamerith, S; Hacker, J; König, A; Kröner, F; Kucher, E; Moser, J; Neidhart, T; Schulze, H-J; Schustereder, W; Treberspurg, W; Wübben, T

2014-01-01T23:59:59.000Z

320

Chemical and physical controls on waters discharged from abandoned underground coal mines  

Science Journals Connector (OSTI)

...abandoned underground coal mines D. L. Lopez M...mines in high-sulphur coal are a major source of acid mine drainage in Appalachia. Studies of mines in...abandoned underground coal mines, tailing deposits...1995, with records of mining dating to as early as...

D. L. López; M. W. Stoertz

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

AHIGHLY INSTRUMENTED UNDERGROUND RESEARCH GALLERY AS A MONITORING CONCEPT FOR RADIOACTIVE WASTE CELLS -DATA  

E-Print Network (OSTI)

AHIGHLY INSTRUMENTED UNDERGROUND RESEARCH GALLERY AS A MONITORING CONCEPT FOR RADIOACTIVE WASTE monitoring system of underground disposal for the French long-lived, intermediate and high level radioactive is a concrete liner in a tunnel aiming at support the mechanical pressure of the host rock. A 3.6 meter long

Boyer, Edmond

322

Permanent Closure of MFC Biodiesel Underground Storage Tank 99ANL00013  

SciTech Connect

This closure package documents the site assessment and permanent closure of the Materials and Fuels Complex biodiesel underground storage tank 99ANL00013 in accordance with the regulatory requirements established in 40 CFR 280.71, “Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.”

Kerry L. Nisson

2012-10-01T23:59:59.000Z

323

Hydrologic resources management program and underground test area operable unit fy 1997  

SciTech Connect

This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

Smith, D. F., LLNL

1998-05-01T23:59:59.000Z

324

Supersonic Air Jets Preserve Tree Roots in Underground Pipeline Installation1  

E-Print Network (OSTI)

Supersonic Air Jets Preserve Tree Roots in Underground Pipeline Installation1 Rob Gross 2 trenching operations for pipeline installation. Although mechanical soil excavation using heavy equipment are routinely installed, repaired, and replaced underground. During soil excavation, tree and other plant roots

Standiford, Richard B.

325

State of the art analysis of online fault location on AC cables in underground transmission systems  

E-Print Network (OSTI)

, such as 400 kV transmission lines, will also be undergrounded gradually as more experience is gath- ered of underground cables for the transmission level. In Denmark, as a leading country, the entire 150 kV and 132 kV on transmission level fault location methods have been focused on overhead lines. Because of the very different

Bak, Claus Leth

326

Stripped elliptical galaxies as probes of ICM physics: II. Stirred, but mixed? Viscous and inviscid gas stripping of the Virgo elliptical M89  

E-Print Network (OSTI)

(abridged) Elliptical cluster galaxies moving through the ICM are successively stripped of their gaseous atmospheres. Deep X-ray observations reveal the detailed structure of galactic tails and wakes and of the interface between the galactic gas and the ICM. This fine-structure depends on dynamic conditions (galaxy potential, initial gas contents, orbit in the host cluster), stripping stage (early infall, pre-/post-pericenter passage), as well as on the still ill-constrained ICM plasma properties (thermal conductivity, viscosity, magnetic field structure). The first paper of this series describes flow patterns and stages of inviscid gas stripping. Here we study the effect of a Spitzer-like temperature dependent viscosity corresponding to Reynolds numbers, Re, of 50 to 5000 w.r.t. the ICM flow around the remnant atmosphere. Global flow patterns are independent of viscosity in this range. Viscosity suppresses Kelvin-Helmholtz instabilities (KHIs) at the sides of the remaining atmosphere and prevents mixing of c...

Roediger, E; Nulsen, P E J; Forman, W R; Machacek, M; Randall, S; Jones, C; Churazov, E; Kokotanekova, R

2014-01-01T23:59:59.000Z

327

A life cycle comparison of greenhouse emissions for power generation from coal mining and underground coal gasification  

Science Journals Connector (OSTI)

For the emissions from energy and equipment use of underground coal mining, the data from the office of Energy Efficiency and Renewable Energy’s (EERE) hypothetical eastern U.S. underground coalmine is used (EERE

Zeshan Hyder; Nino S. Ripepi…

2014-05-01T23:59:59.000Z

328

Evaluating the Effects of Underground Nuclear Testing Below the Water Table on Groundwater and Radionuclide Migration in the  

E-Print Network (OSTI)

Evaluating the Effects of Underground Nuclear Testing Below the Water Table on Groundwater, using FEHM, evaluate perturbed groundwater behavior associated with underground nuclear tests to an instantaneous pressurization event caused by a nuclear test when different permeability and porosity

329

GRR/Section 18-UT-a - Underground Storage Tank | Open Energy Information  

Open Energy Info (EERE)

GRR/Section 18-UT-a - Underground Storage Tank GRR/Section 18-UT-a - Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-UT-a - Underground Storage Tank 18UTAUndergroundStorageTank (1).pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies Utah Underground Storage Tank Act Triggers None specified Click "Edit With Form" above to add content 18UTAUndergroundStorageTank (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative Utah Department of Environmental Quality Division of Environmental Response and Remediation oversees the underground storage tank (UST) program in

330

GRR/Section 18-TX-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

TX-a - Underground Storage Tank Process TX-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-TX-a - Underground Storage Tank Process 18TXAUndergroundStorageTanks (1).pdf Click to View Fullscreen Contact Agencies Texas Commission on Environmental Quality Regulations & Policies 30 Texas Administrative Code 334 - Underground and Aboveground Storage Tanks 30 Texas Administrative Code 37 - Financial Assurance for Petroleum Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18TXAUndergroundStorageTanks (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

331

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

332

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

National Nuclear Security Administration (NNSA)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

333

A Large Underground Liquid Argon Detector without a Cryostat? Kirk T McDonald (kirkmcd@princeton.edu)  

E-Print Network (OSTI)

, fabrication of this type of tank in an underground cavern is likely to be prohibitively expensive. Here, we

McDonald, Kirk

334

Evaluation of rumble strips at rural stop-controlled intersections in Texas  

E-Print Network (OSTI)

in mitigating these occurrences by warning drivers of upcoming decision points. One such device is transverse rumble strips, which act to provide motorists with an audible and tactile warning that their vehicle is approaching a decision point of critical...

Thompson, Tyrell D.

2005-11-01T23:59:59.000Z

335

Regeneration of an aqueous solution from an acid gas absorption process by matrix stripping  

DOE Patents (OSTI)

Carbon dioxide and other acid gases are removed from gaseous streams using aqueous absorption and stripping processes. By replacing the conventional stripper used to regenerate the aqueous solvent and capture the acid gas with a matrix stripping configuration, less energy is consumed. The matrix stripping configuration uses two or more reboiled strippers at different pressures. The rich feed from the absorption equipment is split among the strippers, and partially regenerated solvent from the highest pressure stripper flows to the middle of sequentially lower pressure strippers in a "matrix" pattern. By selecting certain parameters of the matrix stripping configuration such that the total energy required by the strippers to achieve a desired percentage of acid gas removal from the gaseous stream is minimized, further energy savings can be realized.

Rochelle, Gary T. (Austin, TX); Oyenekan, Babatunde A. (Katy, TX)

2011-03-08T23:59:59.000Z

336

Alternating Current Loss of Strip Arrays as a Model for Resistive Fault Current Limiters  

Science Journals Connector (OSTI)

Hysteretic alternating current (ac) loss P...in arrays of superconducting strip lines are calculated on the bases of the critical state model. For a simplified model of a film-type fault current limiter, we consi...

Yasunori Mawatari; Hirofumi Yamasaki

2000-01-01T23:59:59.000Z

337

Rapid determination of trace concentrations of lead in gasoline by anodic stripping voltammetry  

Science Journals Connector (OSTI)

Anodic stripping voltammetry can be used for the determination of ?g/l concentrations of lead in gasoline. A gasoline sample is extracted with iodine monochloride reagent solution. An aliquot of the aqueous ph...

Pentti Laukkanen

338

Effect of acid decontamination on the microbiological and sensory characteristics of beef strip loin steaks  

E-Print Network (OSTI)

EFFECT OF ACID DECONTAMINATION ON THE MICROBIOLOGICAL AND SENSORY CHARACTERISTICS OF BEEF STRIP LOIN STEAKS A Thesis by Z IS CA DIXON Submitted to the Graduate College of Texas A & M University in partial fullfillment of the requirement... for the degree of MASTER OF SCIENCE August 19B7 Major Subject: Food Scienc and Technology / / / EFFECT OF ACID DECONTAMINATION ON THE MICROBIOLOGICAL AND SENSORY CHARACTERISTICS OF BEEF STRIP LOIN STEAKS A Thesis by ZISCA DIXON Approved as to style...

Dixon, Zisca

2012-06-07T23:59:59.000Z

339

STRIP-PET: a novel detector concept for the TOF-PET scanner  

E-Print Network (OSTI)

We briefly present a design of a new PET scanner based on strips of polymer scintillators arranged in a barrel constituting a large acceptance detector. The solution proposed is based on the superior timing properties of the polymer scintillators. The position and time of the reaction of the gamma quanta in the detector material will be determined based on the time of arrival of light signals to the edges of the scintillator strips.

P. Moskal; T. Bednarski; P. Bia?as; M. Ciszewska; E. Czerwi?ski; A. Heczko; M. Kajetanowicz; ?. Kap?on; A. Kochanowski; G. Konopka-Cupia?; G. Korcyl; W. Krzemie?; K. ?ojek; J. Majewski; W. Migda?; M. Molenda; Sz. Nied?wiecki; M. Pa?ka; Z. Rudy; P. Salabura; M. Silarski; A. S?omski; J. Smyrski; J. Zdebik; M. Zieli?ski

2013-05-23T23:59:59.000Z

340

Experiment Profile: COUPP NAME: Chicagoland Observatory for Underground Particle  

NLE Websites -- All DOE Office Websites (Extended Search)

COUPP COUPP NAME: Chicagoland Observatory for Underground Particle Physics, or COUPP WHAT WILL THIS TELL US ABOUT THE WORLD? Everything you see, visible matter, makes up 4 percent of the universe. Dark matter and dark energy makes up the rest of the universe. Physicists understand that dark matter acts as an invisible source of gravity, but little more. COUPP seeks to pinpoint what particles make up dark matter, which will help explain how the universe came to exist. Without the added gravitational attraction of dark matter, stars and galaxies would never have formed. The expansion of the universe after the Big Bang would have dispersed visible matter too quickly. WHY IS THIS EXPERIMENT NEEDED NOW? Physicists have narrowed the hunt for what particles constitute dark

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Thermophysical models of underground coal gasification and FEM analysis  

SciTech Connect

In this study, mathematical models of the coupled thermohydromechanical process of coal rock mass in an underground coal gasification panel are established. Combined with the calculation example, the influence of heating effects on the observed values and simulated values for pore water pressure, stress, and displacement in the gasification panel are fully discussed and analyzed. Calculation results indicate that 38, 62, and 96 days after the experiment, the average relative errors for the calculated values and measured values for the temperature and water pressure were between 8.51-11.14% and 3-10%, respectively; with the passage of gasification time, the calculated errors for the vertical stress and horizontal stress gradually declined, but the simulated errors for the horizontal and vertical displacements both showed a rising trend. On the basis of the research results, the calculated values and the measured values agree with each other very well.

Yang, L.H. [China University of Mining & Technology, Xuzhou (China)

2007-11-15T23:59:59.000Z

342

Diesel exhaust emissions from engines for use in underground mines  

SciTech Connect

Experimental data were obtained from two medium-duty diesel engines derated to qualify for use in underground mines. Gaseous and particulate emissions from these engines were measured and results provide information on the effect of exhaust treatment devices on the emissions. The devices in the study were a catalyst, a particulate trap, and an exhaust gas cooler of the water scrubber type. Emission levels of carbon monoxide and hydrocarbons were observed to be very low in comparison with emission levels of comparable engines in full-rated operation. Oxides of nitrogen and benzo(a)pyrene content of the exhaust also were found to be somewhat low in comparison with previous findings. For particulate reduction, the combination of a particulate trap and a scrubber was observed to be the most effective combination tried; in some cases, over 60% particulate reduction was effected by the trap-scrubber combination.

Eccleston, B.H.; Seizinger, D.E.; Clingenpeel, J.M.

1981-04-01T23:59:59.000Z

343

Proceedings of the ninth annual underground coal gasification symposium  

SciTech Connect

The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

1983-12-01T23:59:59.000Z

344

Underground Storage Tank Integrated Demonstration (UST-ID). Technology summary  

SciTech Connect

The DOE complex currently has 332 underground storage tanks (USTs) that have been used to process and store radioactive and chemical mixed waste generated from weapon materials production. Very little of the over 100 million gallons of high-level and low-level radioactive liquid waste has been treated and disposed of in final form. Two waste storage tank design types are prevalent across the DOE complex: single-shell wall and double-shell wall designs. They are made of stainless steel, concrete, and concrete with carbon steel liners, and their capacities vary from 5000 gallons (19 m{sup 3}) to 10{sup 6} gallons (3785 m{sup 3}). The tanks have an overburden layer of soil ranging from a few feet to tens of feet. Responding to the need for remediation of tank waste, driven by Federal Facility Compliance Agreements (FFCAs) at all participating sites, the Underground Storage Tank Integrated Demonstration (UST-ID) Program was created by the US DOE Office of Technology Development in February 1991. Its mission is to focus the development, testing, and evaluation of remediation technologies within a system architecture to characterize, retrieve, treat to concentrate, and dispose of radioactive waste stored in USTs at DOE facilities. The ultimate goal is to provide safe and cost-effective solutions that are acceptable to the public and the regulators. The UST-ID has focused on five DOE locations: the Hanford Site, which is the host site, in Richland, Washington; the Fernald Site in Fernald, Ohio; the Idaho National Engineering Laboratory near Idaho Falls, Idaho; the Oak Ridge Reservation in Oak Ridge, Tennessee, and the Savannah River Site in Savannah River, South Carolina.

Not Available

1994-02-01T23:59:59.000Z

345

,"AGA Producing Region Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Region Natural Gas Underground Storage Volume (MMcf)" Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Producing Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5030872m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5030872m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

346

,"AGA Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)" Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Eastern Consuming Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5030882m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5030882m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

347

,"AGA Western Consuming Region Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Western Consuming Region Natural Gas Underground Storage Volume (MMcf)" Western Consuming Region Natural Gas Underground Storage Volume (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","AGA Western Consuming Region Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5030892m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5030892m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

348

Thermal characterisation of a lightweight mortar containing expanded perlite for underground insulation  

Science Journals Connector (OSTI)

This paper aims to investigate the use of expanded perlite in mortar, for further application of shotcrete to thermal insulation of underground mines. Mixes were designed according to the typical proportions of underground shotcrete, with the sand volumetrically substituted by expanded perlite. Tests of samples were conducted at four ages. Transient plane source technique was utilised to measure the thermal properties. The results showed reduced weight, decreased thermal conductivity, deteriorated thermal diffusivity, and sacrificed mechanical strength with perlite addition. Experimental data analysis and explanation in this paper would establish useful fundamentals for further application of expanded perlite to underground shotcrete.

W.V. Liu; D.B. Apel; V. Bindiganavile

2011-01-01T23:59:59.000Z

349

,"U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Underground Storage Capacity (MMcf)" Total Underground Storage Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacw0_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacw0_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

350

Development Of Chemical Reduction And Air Stripping Processes To Remove Mercury From Wastewater  

SciTech Connect

This study evaluates the removal of mercury from wastewater using chemical reduction and air stripping using a full-scale treatment system at the Savannah River Site. The existing water treatment system utilizes air stripping as the unit operation to remove organic compounds from groundwater that also contains mercury (C ~ 250 ng/L). The baseline air stripping process was ineffective in removing mercury and the water exceeded a proposed limit of 51 ng/L. To test an enhancement to the existing treatment modality a continuous dose of reducing agent was injected for 6-hours at the inlet of the air stripper. This action resulted in the chemical reduction of mercury to Hg(0), a species that is removable with the existing unit operation. During the injection period a 94% decrease in concentration was observed and the effluent satisfied proposed limits. The process was optimized over a 2-day period by sequentially evaluating dose rates ranging from 0.64X to 297X stoichiometry. A minimum dose of 16X stoichiometry was necessary to initiate the reduction reaction that facilitated the mercury removal. Competing electron acceptors likely inhibited the reaction at the lower 1 doses, which prevented removal by air stripping. These results indicate that chemical reduction coupled with air stripping can effectively treat large-volumes of water to emerging part per trillion regulatory standards for mercury.

Jackson, Dennis G.; Looney, Brian B.; Craig, Robert R.; Thompson, Martha C.; Kmetz, Thomas F.

2013-07-10T23:59:59.000Z

351

Evaluation of absorption/stripping for second phase expansion of KG gas cracker  

SciTech Connect

This report addresses technology evaluation for a second phase expansion of BP Chemical Ltd.`s (BPCL) KG cracker. Its primary objective was to determine if the absorption/stripping technology being developed by BPCL is competitive with cryogenic demethanization technology. The expansion basis for this evaluation is a 150,000 MTA ethylene increment. This increment represents an increase in KG`s capacity from 450,000 MTA after the current expansion to an ultimate capacity of 600,000 MTA. Two recovery systems for a 150,000 MTA expansion are compared: (1) Case A - Absorption/Stripping Expansion; and (2) Case B - ARS Expansion. Another objective of this report was to confirm the magnitude of the economic advantages of the absorption/stripping technology for grass roots applications. For that evaluation, absorption/stripping was compared with the original 350,000 MTA KG recovery system. The two additional 350,000 MTA grass roots cases evaluated are: (1) Case C - Absorption/Stripping - Grass Roots Design; (2) Case D - Conventional Cryogenic Recovery (Original KG 350,000 MTA design).

NONE

1995-12-01T23:59:59.000Z

352

GRR/Elements/14-CA-c.3 - Application For Proposed Underground Injection  

Open Energy Info (EERE)

CA-c.3 - Application For Proposed Underground Injection CA-c.3 - Application For Proposed Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.3 - Application For Proposed Underground Injection Project Under the Memorandum of Agreement Between State Water Resources Control Board and DOGGR geothermal operators must file an application for underground geothermal wastewater injection with the appropriate DOGGR district office. The application must include: A chemical analysis to characterize the proposed injection fluid; A chemical analysis from the proposed zone of injection considering the characteristics of the zone; and The depth, location, and injection formation of the proposed well. Logic Chain

353

GRR/Section 18-CO-a - Underground Storage Tank Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-CO-a - Underground Storage Tank Permit GRR/Section 18-CO-a - Underground Storage Tank Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-CO-a - Underground Storage Tank Permit 18COAUndergroundStorageTankPermit (1).pdf Click to View Fullscreen Contact Agencies Colorado Department of Labor and Employment Regulations & Policies Solid Waste Disposal Act 7 CCR 1101-14 Article 2 Underground Storage Tanks Triggers None specified Click "Edit With Form" above to add content 18COAUndergroundStorageTankPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The design, installation, registration, construction, and operation of

354

Underground Storage of Carbon Dioxide-as a Solid | U.S. DOE Office of  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground Storage of Carbon Dioxide-as a Solid Underground Storage of Carbon Dioxide-as a Solid Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) News & Resources Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-7486 F: (301) 903-4846 E: sc.ascr@science.doe.gov More Information » July 2012 Underground Storage of Carbon Dioxide-as a Solid Nanoscale features in rocks enable more carbon dioxide to be trapped as a solid carbonate material underground. Print Text Size: A A A Subscribe FeedbackShare Page Click to enlarge photo. Enlarge Photo Image courtesy of Lawrence Berkeley National Laboratory

355

NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test  

NLE Websites -- All DOE Office Websites (Extended Search)

the 20th Anniversary of the Last Underground Nuclear Test the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > NNSA Commemorates the 20th Anniversary of the ... NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test

356

GRR/Section 18-NV-a - Underground Storage Tank | Open Energy Information  

Open Energy Info (EERE)

a - Underground Storage Tank a - Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-NV-a - Underground Storage Tank 18NVAUndergroundStorageTank.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 18NVAUndergroundStorageTank.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Nevada Division of Environmental Protection (NDEP) administers the Underground Storage Tank (UST) Program for the State of Nevada.

357

DOE to host workshop to explore use of WIPP as 'next generation' underground laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop to Explore Use of WIPP Workshop to Explore Use of WIPP As 'Next Generation' Underground Laboratory CARLSBAD, N.M., June 9, 2000 - The U.S. Department of Energy's (DOE) Carlsbad Area Office is sponsoring the "Workshop on the Next Generation U.S. Underground Science Facility" June 12-14 at the Pecos River Village Conference Center, 711 Muscatel, in Carlsbad. The purpose of the workshop is to explore the potential use of the DOE's Waste Isolation Pilot Plant (WIPP) underground as a next generation laboratory for conducting nuclear and particle astrophysics and other basic science research, and how that might be accomplished. "WIPP's underground environment represents one of only a few choices open to the research community for siting experiments that require shielding from cosmic rays," said Dr.

358

,"U.S. Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

3,"Monthly","9/2013","1/15/1989" 3,"Monthly","9/2013","1/15/1989" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_cap_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_cap_dcu_nus_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:03:21 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage Capacity" "Sourcekey","N5290US2","NGA_EPG0_SACW0_NUS_MMCF","NA1394_NUS_8" "Date","U.S. Total Natural Gas Underground Storage Capacity (MMcf)","U.S. Working Natural Gas Total Underground Storage Capacity (MMcf)","U.S. Natural Gas Count of Underground Storage Capacity (Count)"

359

GRR/Section 18-MT-a - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

MT-a - Underground Storage Tanks MT-a - Underground Storage Tanks < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-MT-a - Underground Storage Tanks 18MTAUndergroundStorageTanks (2).pdf Click to View Fullscreen Contact Agencies Montana Department of Environmental Quality Regulations & Policies Montana Code Annotated 75-11-501 Administrative Rules of Montana 17-56 Triggers None specified Click "Edit With Form" above to add content 18MTAUndergroundStorageTanks (2).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A developer must obtain an Underground Storage Tank Installation Permit

360

GRR/Section 18-ID-a - Underground Storage Tank Systems | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-ID-a - Underground Storage Tank Systems GRR/Section 18-ID-a - Underground Storage Tank Systems < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-ID-a - Underground Storage Tank Systems 18IDAUndergroundStorageTankSystems.pdf Click to View Fullscreen Contact Agencies Idaho Department of Environmental Quality Regulations & Policies IDAPA 58.01.07 Rules Regulating Underground Storage Tank Systems Triggers None specified Click "Edit With Form" above to add content 18IDAUndergroundStorageTankSystems.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The Idaho Department of Environmental Quality (DEQ) requires notification

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

IDAPA 58.01.07 - Rules Regulating Underground Storage Tank Systems...  

Open Energy Info (EERE)

Rules Regulating Underground Storage Tank Systems Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: IDAPA 58.01.07 - Rules...

362

UC 19-6-401 et seq. - Utah Underground Storage Tank Act | Open...  

Open Energy Info (EERE)

UC 19-6-401 et seq. - Utah Underground Storage Tank Act Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: UC 19-6-401 et seq. -...

363

Field Study on PM1 Air Pollution in a Residential Underground Parking Lot  

Science Journals Connector (OSTI)

PM1 (fine particles with a diameter smaller than 1 ?m) number concentrations are more straightforward compared with particle mass concentrations for air quality assessment in underground parking lots. PM1 ... PM1...

Yu Zhao; Jianing Zhao

2014-01-01T23:59:59.000Z

364

Preliminary Notice of Violation, Pacific Underground Construction, Inc.- WEA-2009-02  

Energy.gov (U.S. Department of Energy (DOE))

Issued to Pacific Underground Construction, Inc. related to a polyvinyl chloride (PVC) pipe explosion that occurred in Sector 30 of the linear accelerator facility at the SLAC National Accelerator Laboratory (SLAC).

365

MCA 75-11-501 et seq. - Montana Underground Storage Tank Act...  

Open Energy Info (EERE)

ActLegal Abstract Sets forth statutory requirements for regulating underground storage tanks. Published NA Year Signed or Took Effect 1997 Legal Citation 75-11-501 et seq., MCA...

366

7 C.C.R. 1101-14 - Underground Storage Tanks and Aboveground...  

Open Energy Info (EERE)

1101-14 - Underground Storage Tanks and Aboveground Storage tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 7 C.C.R....

367

OAR 340-150 - DEQ Underground Storage Tank Rules | Open Energy...  

Open Energy Info (EERE)

Storage Tank RulesLegal Abstract Provide for the regulation of underground storage tanks. Published NA Year Signed or Took Effect 2003 Legal Citation OAR 340-150 (1990) DOI...

368

Modelling rock–water interactions in flooded underground coal mines, Northern Appalachian Basin  

Science Journals Connector (OSTI)

...Office of Surface Mining 3 Parkway Center...flooded underground coal mines in northern Appalachia, USA. In early...the Effects of Coal Mining, Greene County...Seam of Northern Appalachia. In: Proceedings Eastern Coal Mine Geomechanics...

Eric F. Perry

369

Head of EM Visits Waste Isolation Pilot Plant for First Underground...  

Office of Environmental Management (EM)

Secretary Mark Whitney today visited the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., where he became the first non-WIPP employee to tour the underground facility...

370

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

371

Thermal Imaging of Vegetation to Detect CO2 Gas Leaking From Underground  

Science Journals Connector (OSTI)

Thermal imaging of vegetation has been used to detect CO2 gas leaking from an underground gas reservoir. Plant stress caused by increased soil gas concentration results in warmer...

Shaw, Joseph A; Johnson, Jennifer E; Lawrence, Rick; Nugent, Paul W

372

Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS  

Science Journals Connector (OSTI)

This study constructs a hazard map for ground subsidence around abandoned underground coal mines (AUCMs) at Samcheok City in ... ) model, and a Geographic Information System (GIS). To evaluate the factors related...

Ki-Dong Kim; Saro Lee; Hyun-Joo Oh; Jong-Kuk Choi; Joong-Sun Won

2006-09-01T23:59:59.000Z

373

INDUCED SEISMICITY MONITORING OF AN UNDERGROUND SALT CAVITY UNDER A TRANSIENT PRESSURE EXPERIMENT  

E-Print Network (OSTI)

to 125 m in cemented boreholes drilled in thé vicinity of thé study area. The underground cavity under and Monitoring, Seismic Introduction A large research project within thé GISOS1 program has been launched

Paris-Sud XI, Université de

374

Tectonic Strain Release by Underground Nuclear Explosions and its Effect on Seismic Discrimination  

Science Journals Connector (OSTI)

......patterns to geologic structure in Yucca Flats Nevada Test Site, in Nevada Test Site, ed. Eckel E. B., Geol. Soc. Am. Mem...of the Benham underground nuclear explosion, Nevada Test Site, Bull. seism. Soc. Am., 59, 2209-2220......

M. Nafi Toksöz; Harold H. Kehrer

1972-12-01T23:59:59.000Z

375

SURVEY OF EXISTING UNDERGROUND OPENINGS FOR IN-SITU EXPERIMENTAL FACILITIES  

E-Print Network (OSTI)

layouts of underground powerhouse Figure 2. Figure 3. FigureG' adit accessible fro? powerhouse deck, through 4 x 7 f tU.S. Corps of Engineers powerhouse facilities offer possible

Wollenberg, H.

2010-01-01T23:59:59.000Z

376

Measurement of Cosmic Ray Flux in China JinPing underground Laboratory  

E-Print Network (OSTI)

China JinPing underground Laboratory (CJPL) is the deepest underground laboratory presently running in the world. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic ray on the ground laboratory near CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in CJPL, which has effective live time of 171 days, the cosmic ray muon flux in CJPL is measured to be (2.0+-0.4)*10^(-10)/(cm^2)/(s). The ultra-low cosmic ray background guarantees CJPL's ideal environment for dark matter experiment.

Wu, Yu-Cheng; Yue, Qian; LI, Yuan-Jing; Cheng, Jian-Ping; Kang, Ke-Jun; Chen, Yun-Hua; Li, Jin; Li, Jian-Min; Li, Yu-Lan; Liu, Shu-Kui; Ma, Hao; Ren, Jin-Bao; Shen, Man-Bin; Wang, Ji-Min; Wu, Shi-Yong; Xue, Tao; YI, Nan; Zeng, Xiong-Hui; Zeng, Zhi; Zhu, Zhong-Hua

2013-01-01T23:59:59.000Z

377

Measurement of cosmic ray flux in the China JinPing underground laboratory  

Science Journals Connector (OSTI)

The China JinPing underground Laboratory (CJPL) is the deepest underground laboratory running in the world at present. In such a deep underground laboratory, the cosmic ray flux is a very important and necessary parameter for rare-event experiments. A plastic scintillator telescope system has been set up to measure the cosmic ray flux. The performance of the telescope system has been studied using the cosmic rays on the ground laboratory near the CJPL. Based on the underground experimental data taken from November 2010 to December 2011 in the CJPL, which has an effective live time of 171 days, the cosmic ray muon flux in the CJPL is measured to be (2.0±0.4)?10?10/(cm2s). The ultra-low cosmic ray background guarantees an ideal environment for dark matter experiments at the CJPL.

Wu Yu-Cheng (???); Hao Xi-Qing (???); Yue Qian (??); Li Yuan-Jing (???); Cheng Jian-Ping (???); Kang Ke-Jun (???); Chen Yun-Hua (???); Li Jin (??); Li Jian-Min (???); Li Yu-Lan (???); Liu Shu-Kui (???); Ma Hao (??); Ren Jin-Bao (???); Shen Man-Bin (???); Wang Ji-Min (???); Wu Shi-Yong (???); Xue Tao (??); Yi Nan (??); Zeng Xiong-Hui (???); Zeng Zhi (??); Zhu Zhong-Hua (???)

2013-01-01T23:59:59.000Z

378

U.S. Underground Natural Gas Storage Developments: 1998-2005  

U.S. Energy Information Administration (EIA) Indexed Site

S. Underground Natural Gas Storage Developments: 1998-2005 S. Underground Natural Gas Storage Developments: 1998-2005 Energy Information Administration, Office of Oil and Gas, October 2006 1 This special report examines the current status of the underground natural gas storage sector in the United States and how it has changed since 1998, particularly in regards to deliverability from storage, working gas capacity, ownership, and operational capabilities. In addition, it includes a discussion and an analysis of underground natural gas storage expansions in 2005 and an examination of the level of proposed additional storage expansions over the next several years. Questions or comments on the contents of this article should be directed to James Tobin at james.tobin@eia.doe.gov or (202) 586-4835.

379

NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test  

National Nuclear Security Administration (NNSA)

the 20th Anniversary of the Last Underground Nuclear Test the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > NNSA Commemorates the 20th Anniversary of the ... NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test

380

Characterizing a lignite formation before and after an underground coal gasification experiment  

E-Print Network (OSTI)

CHARACTERIZING A LIGNITE FORMATION BEFORE AND AFTER AN UNDERGROUND COAL GASIFICATION EXPERIMENT A Thesis by USMAN AHMED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE Nay, 1981 Major Subject: Petrol eum Engineering CHARACTERIZING A LIGNITE FORMATION BEFORE AND AFTER AN UNDERGROUND COAL GASIFICATION EXPERIMENT A Thesis by USMAN AHMED approved as to sty1e and content by: airma o i ee Head f...

Ahmed, Usman

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

California Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 1991 243,944 243,944 243,944 243,944 243,944 243,944 243,944 243,944 248,389 248,389 248,389 248,389 1992 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 248,389 250,206 1993 250,206 250,206 247,228 246,345 247,699 247,950 247,109 248,215 248,944 251,050 247,420 247,425 1994 251,384 251,384 251,384 251,384 251,384 251,384 251,384 251,384 247,435 247,435 247,435 247,435 1995 247,419 247,419 247,419 247,419 247,419 247,419 247,419 247,419 247,419 247,419 247,419 247,419

382

Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Montana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 184,212 180,918 178,620 181,242 179,235 181,374 183,442 187,348 185,848 181,029 1991 179,697 178,285 176,975 176,918 178,145 179,386 181,094 182,534 182,653 181,271 178,539 174,986 1992 111,256 109,433 109,017 109,150 110,146 110,859 111,885 112,651 112,225 110,868 107,520 101,919 1993 96,819 92,399 89,640 87,930 86,773 86,048 87,257 87,558 88,012 87,924 85,137 81,930 1994 78,106 72,445 71,282 70,501 71,440 73,247 74,599 75,685 77,456 78,490 76,784 74,111 1995 70,612 68,618 67,929 68,727 70,007 72,146 75,063 78,268 79,364 78,810 75,764 70,513

383

Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Indiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22,371 18,661 17,042 17,387 20,796 23,060 26,751 30,924 33,456 34,200 30,588 1991 24,821 19,663 16,425 15,850 17,767 18,744 22,065 26,710 31,199 37,933 35,015 30,071 1992 23,328 18,843 14,762 14,340 15,414 17,948 23,103 27,216 32,427 35,283 32,732 29,149 1993 23,702 18,626 15,991 17,160 18,050 20,109 24,565 29,110 33,303 34,605 32,707 30,052 1994 23,623 20,052 18,102 17,396 17,194 19,647 24,780 29,088 33,077 35,877 36,408 33,424 1995 27,732 21,973 19,542 18,899 19,227 21,026 23,933 27,541 31,972 36,182 36,647 31,830

384

Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 33,234 33,553 34,322 39,110 43,935 47,105 53,425 58,298 62,273 65,655 66,141 60,495 1991 43,838 39,280 39,196 45,157 48,814 50,833 52,841 54,954 60,062 64,120 56,034 50,591 1992 40,858 39,723 37,350 37,516 41,830 46,750 51,406 51,967 58,355 59,621 59,164 52,385 1993 46,427 38,859 32,754 35,256 42,524 46,737 51,884 55,215 61,028 60,752 38,314 31,086 1994 21,838 17,503 20,735 25,099 29,837 30,812 37,339 42,607 44,739 47,674 48,536 43,262 1995 32,938 27,069 23,018 27,735 34,699 36,337 40,488 41,240 47,530 50,166 40,729 32,224

385

Pennsylvania Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 352,686 352,686 352,686 351,920 352,686 352,686 353,407 353,407 353,407 353,407 359,236 358,860 1991 349,459 348,204 334,029 335,229 353,405 349,188 350,902 352,314 353,617 354,010 353,179 355,754 1992 358,198 353,313 347,361 341,498 344,318 347,751 357,498 358,432 359,300 359,504 359,321 362,275 1993 362,222 358,438 351,469 354,164 360,814 359,349 359,455 359,510 359,530 361,433 360,977 360,971 1994 360,026 357,906 358,611 360,128 361,229 361,294 361,339 361,335 361,335 361,335 361,238 362,038 1995 357,538 357,538 357,538 356,900 357,006 356,909 357,848 357,895 357,967 357,994 357,994 358,094

386

Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Kansas Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 65,683 55,509 49,604 47,540 48,128 53,233 64,817 76,933 92,574 99,253 115,704 93,290 1991 59,383 54,864 49,504 47,409 53,752 61,489 64,378 67,930 78,575 89,747 80,663 82,273 1992 76,311 63,152 53,718 48,998 51,053 53,700 57,987 69,653 79,756 82,541 73,094 61,456 1993 44,893 33,024 27,680 26,796 46,806 58,528 64,198 75,616 89,955 92,825 87,252 76,184 1994 52,998 41,644 39,796 40,779 49,519 55,059 64,664 77,229 86,820 91,309 84,568 74,364 1995 59,292 47,263 37,998 39,071 48,761 60,148 65,093 65,081 81,654 93,880 90,905 73,982

387

Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Alabama Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 499 497 233 233 260 302 338 556 1,148 1,075 886 485 1996 431 364 202 356 493 971 1,164 1,553 1,891 2,008 1,879 1,119 1997 588 404 429 559 830 923 966 1,253 1,515 1,766 1,523 1,523 1998 773 585 337 582 727 1,350 1,341 1,540 1,139 1,752 1,753 1,615 1999 802 688 376 513 983 1,193 1,428 1,509 1,911 1,834 1,968 1,779 2000 865 863 1,178 1,112 1,202 1,809 1,890 1,890 1,780 1,638 1,434 1,349 2001 1,020 1,261 657 851 807 1,384 1,538 1,651 1,669 1,549 2,837 2,848 2002 2,435 2,119 1,849 2,106 2,206 2,076 2,326 2,423 2,423 1,863 2,259 2,117

388

Washington Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 21,300 21,300 21,300 21,300 0 21,300 21,300 21,300 21,300 21,300 21,300 1991 21,300 21,300 21,300 21,300 21,300 21,300 21,300 21,300 21,300 18,800 18,800 18,800 1992 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 1993 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 1994 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 1995 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 18,800 21,123

389

Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,491 22,694 17,504 13,313 17,552 23,767 28,965 33,972 35,196 34,955 34,660 1991 26,266 24,505 17,544 16,115 17,196 21,173 25,452 30,548 35,254 36,813 37,882 36,892 1992 33,082 29,651 22,962 18,793 18,448 20,445 24,593 30,858 36,770 38,897 35,804 33,066 1993 28,629 23,523 21,015 17,590 20,302 24,947 28,113 31,946 36,247 34,224 30,426 29,254 1994 24,249 19,331 16,598 11,485 16,989 18,501 23,590 28,893 34,044 34,298 32,687 29,307 1995 24,948 21,446 16,467 12,090 14,043 19,950 25,757 29,774 32,507 33,707 35,418 30,063

390

Pennsylvania Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Million Cubic Feet) Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 -2,863 -1,902 -2,297 -1,134 -1,671 -1,997 -907 -144 629 992 2,290 1,354 1991 30,778 27,964 37,141 36,920 15,424 -18,322 -46,969 -63,245 -61,004 -48,820 -54,587 -34,458 1992 6,870 -8,479 -43,753 -43,739 -33,236 -8,601 3,190 9,732 8,583 15,815 27,780 16,330 1993 16,748 -23,871 -27,342 -13,729 -7,043 -138 11,093 8,174 14,808 2,868 -4,885 -9,642 1994 -45,776 -23,124 8,987 25,048 32,148 34,360 39,360 43,202 18,502 20,447 7,409 15,602 1995 60,371 42,037 36,507 9,811 2,098 -569 -19,226 -25,702 -1,403 1,156 -23,733 -57,737

391

Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Mississippi Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 46,050 1991 47,530 47,483 47,483 47,483 47,483 47,868 48,150 48,150 48,150 48,150 48,150 48,150 1992 48,150 48,150 48,149 48,149 48,149 48,149 48,149 48,149 48,149 48,149 47,851 48,049 1993 48,039 48,049 48,049 48,049 47,792 48,049 48,049 48,049 48,049 49,038 70,555 70,688 1994 71,043 71,801 71,955 71,959 71,959 71,959 71,959 71,959 71,959 72,652 72,671 72,671 1995 74,188 75,551 75,551 75,551 75,551 75,551 75,551 75,551 75,551 75,551 75,551 77,682

392

Louisiana Natural Gas in Underground Storage (Base Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Base Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 262,136 1991 264,324 264,324 264,304 264,497 265,121 265,448 265,816 266,390 262,350 266,030 267,245 267,245 1992 267,245 267,245 265,296 262,230 262,454 263,788 266,852 260,660 257,627 258,575 259,879 262,144 1993 261,841 255,035 251,684 252,604 253,390 254,839 253,518 254,115 254,299 254,043 254,646 251,132 1994 263,981 263,749 263,836 264,541 265,702 266,435 266,702 266,702 266,702 266,702 266,702 266,702 1995 266,702 266,702 266,643 266,702 266,702 266,702 266,702 266,702 266,702 266,702 266,702 267,311

393

California Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) California Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 125,898 106,575 111,248 132,203 157,569 170,689 174,950 177,753 182,291 196,681 196,382 153,841 1991 132,323 132,935 115,982 136,883 163,570 187,887 201,443 204,342 199,994 199,692 193,096 168,789 1992 125,777 109,000 93,277 107,330 134,128 156,158 170,112 182,680 197,049 207,253 197,696 140,662 1993 106,890 87,612 100,869 109,975 138,272 152,044 175,917 185,337 199,629 210,423 198,700 164,518 1994 121,221 77,055 76,162 95,079 123,190 143,437 161,081 170,434 191,319 203,562 186,826 161,202 1995 130,241 125,591 117,650 114,852 141,222 167,231 181,227 179,508 194,712 212,867 214,897 188,927

394

Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Louisiana Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 115,418 117,492 109,383 110,052 117,110 131,282 145,105 158,865 173,570 188,751 197,819 190,747 1991 141,417 109,568 96,781 103,300 122,648 146,143 159,533 169,329 190,953 211,395 197,661 165,940 1992 120,212 91,394 79,753 85,867 106,675 124,940 136,861 152,715 174,544 194,414 187,236 149,775 1993 103,287 66,616 47,157 49,577 86,976 120,891 149,120 176,316 212,046 227,566 213,581 170,503 1994 112,054 93,499 80,056 101,407 134,333 155,279 184,802 207,383 230,726 239,823 235,775 197,145 1995 145,373 106,289 97,677 107,610 126,266 154,036 174,808 175,953 199,358 213,417 188,967 141,572

395

AGA Western Consuming Region Natural Gas in Underground Storage (Working  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Western Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 280,414 208,968 200,997 216,283 261,894 293,909 326,049 349,274 387,670 405,477 381,931 342,394 1995 288,908 270,955 251,410 246,654 284,291 328,371 362,156 372,718 398,444 418,605 419,849 366,944 1996 280,620 236,878 221,371 232,189 268,812 299,619 312,736 313,747 330,116 333,134 322,501 282,392 1997 216,113 179,067 171,563 184,918 227,756 273,507 306,641 330,075 351,975 363,189 350,107 263,455 1998 211,982 163,084 150,923 155,766 206,048 254,643 281,422 305,746 346,135 379,917 388,380 330,906

396

Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Wyoming Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 53,604 51,563 52,120 53,225 54,581 56,980 58,990 61,428 62,487 60,867 1991 54,085 53,423 53,465 53,581 54,205 56,193 58,416 60,163 61,280 61,366 59,373 57,246 1992 30,371 28,356 27,542 27,461 27,843 28,422 29,588 29,692 30,555 29,505 27,746 23,929 1993 20,529 18,137 17,769 18,265 19,253 21,322 23,372 24,929 26,122 27,044 24,271 21,990 1994 21,363 18,661 19,224 20,115 21,689 22,447 23,568 25,072 26,511 27,440 26,978 25,065 1995 22,086 20,762 19,352 18,577 19,027 20,563 22,264 23,937 25,846 27,025 26,298 24,257

397

Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Tennessee Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 459 343 283 199 199 199 333 467 579 682 786 787 1999 656 532 401 321 318 462 569 645 749 854 911 855 2000 691 515 452 389 371 371 371 371 371 420 534 619 2001 623 563 490 421 525 638 669 732 778 840 598 597 2002 647 648 650 650 625 622 609 605 602 600 512 512 2003 404 294 226 179 214 290 365 460 463 508 508 447 2004 344 293 281 312 345 391 454 509 514 539 527 486 2005 444 364 265 184 143 126 126 126 88 79 73 60 2006 52 52 44 44 44 44 44 44 44 44 44 44

398

Simulation of neutrons produced by high-energy muons underground  

Science Journals Connector (OSTI)

This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 ± 0.06)×10?3 neutrons/muon/(g/cm2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (?1-year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

A. Lindote; H.M. Araújo; V.A. Kudryavtsev; M. Robinson

2009-01-01T23:59:59.000Z

399

Overall requirements for an advanced underground coal extraction system  

SciTech Connect

This report presents overall requirements on underground mining systems suitable for coal seams exploitable in the year 2000, with particular relevance to the resources of Central Appalachia. These requirements may be summarized as follows: (1) Production Cost: demonstrate a return on incremental investment of 1.5 to 2.5 times the value required by a low-risk capital project. (2) Miner Safety: achieve at least a 50% reduction in deaths and disabling injuries per million man-hours. (3) Miner Health: meet the intent of all applicable regulations, with particular attention to coal dust, carcinogens, and mutagens; and with continued emphasis on acceptable levels of noise and vibration, lighting, humidity and temperature, and adequate work space. (4) Environmental Impact: maintain the value of mined and adjacent lands at the pre-mining value following reclamation; mitigation of off-site impacts should not cost more than the procedures used in contemporary mining. (5) Coal Conservation: the recovery of coal from the seam being mined should be at least as good as the best available contemporary technology operating in comparable conditions. No significant trade-offs between production cost and other performance indices were found.

Goldsmith, M.; Lavin, M.L.

1980-10-15T23:59:59.000Z

400

Calculations on seismic coupling of underground explosions in salt  

SciTech Connect

This report details the results of a theoretical study of seismic coupling and decoupling of underground explosions in a salt medium. A series of chemical and nuclear explosions was carried out years ago in salt domes for the Cowboy and the Dribble programs to provide experimental data on seismic coupling for both tamped explosions and explosions in cavities. The Cowboy program consisted of a series of chemical explosions, and the Dribble program consisted of the tamped nuclear Salmon event, the Sterling nuclear event in the Salmon cavity, and an associated site calibration effort. This report presents the results of extensive computer calculations, which are in satisfactory agreement with the experimental data. The calculations were extended to give general results on seismic coupling in salt. The measure of seismic coupling for most of this work was the residual reduced displacement potential (residual RDP). The decoupling associated with a shot in a cavity was expressed as the ratio of the resulting residual RDP to that of an equal-sized tamped shot.

Heusinkveld, M.E.

1981-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The commercial feasibility of underground coal gasification in southern Thailand  

SciTech Connect

Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A project to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.

Solc, J.; Young, B.C.; Harju, J.A.; Schmit, C.R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J.E. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuhnel, R.A. [IIASES, Delft (Netherlands)

1996-12-31T23:59:59.000Z

402

Evaluating the feasibility of underground coal gasification in Thailand  

SciTech Connect

Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south of Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.

Young, B.C.; Harju, J.A.; Schmit, C.R.; Solc, J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuehnel, R.A. [International Inst. for Aerospace Survey and Earth Sciences, Delft (Netherlands)

1996-12-31T23:59:59.000Z

403

Underground storage tank compliance activities at the Hanford Site  

SciTech Connect

The Hanford Site covers 560 mi{sup 2} of semi-arid land that is owned by the US Government and managed by the US Department of Energy-Richland Operations Office (DOE-RL). It is located in the Columbia Basin and northwest of the City of Richland, Washington, which lies approximately 5 mi from the southernmost portion of the Hanford Site boundary and is the nearest population center. In early 1943, the US Army Corps of Engineers selected the Hanford Site for the production and purification of plutonium. The purpose of this report is fourfold: it describes the underground storage tanks (UST) at the Hanford Site regulated by title 40 Code of Federal Regulations (CFR) 280 (EPA 1988a); it defines the compliance programs completed, underway, or planned by the affected Hanford Site contractors; it provides costs of program compliance; and it defines long-range planning to comply with 40 CFR 280 after 1998. 5 refs., 1 fig., 2 tabs.

Morton, M.R.; Mihalic, M.A.

1990-08-01T23:59:59.000Z

404

Lateral distribution of muon pairs in deep underground muon showers  

Science Journals Connector (OSTI)

The lateral distribution of muon showers deep underground in the Utah muon detector has been studied. The results are presented in the form of a decoherence curve, which is defined to be the rate of pairs of coincident muons in two small detectors (as a function of their separation) divided by the product of the areas of the detectors. Rates are measured for separations from 1 to greater than 60 m for depths ranging from 2.4 × 105 gcm-2 to 5.6 × 105 gcm-2 and zenith angles ranging from 42.5 to 62.5 degrees. Significant improvements on previously reported data have been made due to increased detector-memory size, improved triggering efficiency, longer running time and better statistical analysis. When the decoherence curve is parameterized by the function R(x)=R0e-xx0 the value of the mean separation x0 at 47.5°, 2.4 × 105 gcm-2 is 11.21 ± 0.38 m. In a modified scaling model this separation suggests an average transverse momentum of roughly 0.65 GeV/c for muons from hadron-air collisions with energy > 10 TeV.

G. H. Lowe; H. E. Bergeson; J. W. Keuffel; M. O. Larson; J. L. Morrison; W. J. West

1976-06-01T23:59:59.000Z

405

Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Pennsylvania Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 163,571 125,097 100,438 110,479 158,720 215,000 265,994 318,024 358,535 364,421 359,766 306,561 1991 194,349 153,061 137,579 147,399 174,145 196,678 219,025 254,779 297,531 315,601 305,179 272,103 1992 201,218 144,582 93,826 103,660 140,908 188,078 222,215 264,511 306,113 331,416 332,959 288,433 1993 217,967 120,711 66,484 89,931 133,866 187,940 233,308 272,685 320,921 334,285 328,073 278,791 1994 172,190 97,587 75,470 114,979 166,013 222,300 272,668 315,887 339,424 354,731 335,483 294,393 1995 232,561 139,624 111,977 124,790 168,112 221,731 253,442 290,185 338,021 355,887 311,749 236,656

406

Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Michigan Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 311,360 252,796 228,986 221,127 269,595 333,981 410,982 481,628 534,303 553,823 542,931 472,150 1991 348,875 285,217 262,424 287,946 315,457 372,989 431,607 478,293 498,086 539,454 481,257 405,327 1992 320,447 244,921 179,503 179,306 224,257 292,516 367,408 435,817 504,312 532,896 486,495 397,280 1993 296,403 194,201 133,273 148,416 222,106 303,407 386,359 468,790 534,882 568,552 516,491 426,536 1994 282,144 193,338 162,719 203,884 276,787 351,286 425,738 502,577 568,235 599,504 579,874 516,887 1995 410,946 298,325 247,016 245,903 299,050 364,569 438,995 492,773 545,157 577,585 511,573 392,896

407

Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Oklahoma Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 129,245 118,053 119,532 116,520 130,817 139,698 150,336 158,048 165,206 171,008 180,706 154,515 1991 111,225 106,204 111,759 125,973 140,357 150,549 151,393 156,066 166,053 169,954 144,316 133,543 1992 115,658 107,281 103,919 109,690 117,435 128,505 145,962 153,948 166,637 174,182 154,096 123,225 1993 46,462 26,472 19,429 30,902 49,259 67,110 82,104 95,435 111,441 118,880 101,220 86,381 1994 56,024 35,272 32,781 49,507 73,474 86,632 102,758 115,789 124,652 129,107 126,148 109,979 1995 86,312 72,646 62,779 67,245 83,722 96,319 103,388 101,608 113,587 126,287 116,265 92,617

408

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6/30/1935" U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6/30/1935" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_sum_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_sum_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:04:06 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage - All Operators" "Sourcekey","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Net Withdrawals (MMcf)","U.S. Total Natural Gas Injections into Underground Storage (MMcf)","U.S. Natural Gas Underground Storage Withdrawals (MMcf)"

409

The stripping foil test stand in the Linac4 transfer line  

E-Print Network (OSTI)

The 160 MeV H? beam from the Linac4 (L4) linear accelerator at CERN will be injected into the proton synchrotron booster (PSB) with a new H? charge-exchange injection system. It will include a stripping foil, to convert H? into protons by stripping off the electrons. To gain experience with these very fragile foils, prior to the installation in the PSB, and test different foil materials and thicknesses, lifetimes of the foils, the foil changing mechanism and interlocking functions, a stripping foil test stand will be installed in the L4 transfer line in 2015. This paper describes the mechanical design of the system and discusses the test possibilities and parameters.

Weterings, W; Noulibos, R; Sillanoli, Y; van Trappen, P

2015-01-01T23:59:59.000Z

410

Sample Results From The Next Generation Solvent Program Real Waste Extraction-Scrub-Strip Testing  

SciTech Connect

Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

Peters, T. B.; Washington, A. L. II

2013-08-08T23:59:59.000Z

411

SAMPLE RESULTS FROM THE NEXT GENERATION SOLVENT PROGRAM REAL WASTE EXTRACTION-SCRUB-STRIP TESTING  

SciTech Connect

Savannah River National Laboratory (SRNL) performed multiple Extraction-Scrub-Strip (ESS) testing using real waste solutions, and three Next Generation Solvent (NGS) variations, which included radiologically clean pure NGS, a blend of radiologically clean NGS and radiologically clean BOBCalixC6 (NGS-MCU), and a blend of radiologically clean NGS and radiologically contaminated BOBCalixC6 from the MCU Solvent system. The results from the tests indicate that both the NGS and the NGS-MCU blend exhibit adequate extraction, scrub and strip behavior.

Peters, T.; Washington, A.

2013-06-03T23:59:59.000Z

412

Dual initiation strip charge apparatus and methods for making and implementing the same  

DOE Patents (OSTI)

A Dual Initiation Strip Charge (DISC) apparatus is initiated by a single initiation source and detonates a strip of explosive charge at two separate contacts. The reflection of explosively induced stresses meet and create a fracture and breach a target along a generally single fracture contour and produce generally fragment-free scattering and no spallation. Methods for making and implementing a DISC apparatus provide numerous advantages over previous methods of creating explosive charges by utilizing steps for rapid prototyping; by implementing efficient steps and designs for metering consistent, repeatable, and controlled amount of high explosive; and by utilizing readily available materials.

Jakaboski, Juan-Carlos (Albuquerque, NM); Todd,; Steven N. (Rio Rancho, NM); Polisar, Stephen (Albuquerque, NM); Hughs, Chance (Tijeras, NM)

2011-03-22T23:59:59.000Z

413

Papers Based Electrochemical Biosensors: From Test Strips to Paper-Based Microfluidics  

SciTech Connect

Papers based biosensors such as lateral flow test strips and paper-based microfluidic devices (or paperfluidics) are inexpensive, rapid, flexible, and easy-to-use analytical tools. An apparent trend in their detection is to interpret sensing results from qualitative assessment to quantitative determination. Electrochemical detection plays an important role in quantification. This review focuses on electrochemical (EC) detection enabled biosensors. The first part provides detailed examples in paper test strips. The second part gives an overview of paperfluidics engaging EC detections. The outlook and recommendation of future directions of EC enabled biosensors are discussed in the end.

Liu, Bingwen; Du, Dan; Hua, Xin; Yu, Xiao-Ying; Lin, Yuehe

2014-05-08T23:59:59.000Z

414

Ising model on nonorientable surfaces: Exact solution for the Möbius strip and the Klein bottle  

Science Journals Connector (OSTI)

Closed-form expressions are obtained for the partition function of the Ising model on an M×N simple-quartic lattice embedded on a Möbius strip and a Klein bottle. The solutions all lead to the same bulk free energy, but for finite M and N the expressions are different depending on whether the strip width M is odd or even. Finite-size corrections at criticality are analyzed and compared with those under cylindrical and toroidal boundary conditions. Our results are consistent with the conformal field prediction of a central charge c=1/2, provided that the twisted Möbius boundary condition is regarded as a free or fixed boundary.

Wentao T. Lu and F. Y. Wu

2001-01-22T23:59:59.000Z

415

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

21 - 11630 of 29,416 results. 21 - 11630 of 29,416 results. Download CX-007076: Categorical Exclusion Determination Install New Power Poles in A & B Areas CX(s) Applied: B1.3 Date: 08/22/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office http://energy.gov/nepa/downloads/cx-007076-categorical-exclusion-determination Download CX-007077: Categorical Exclusion Determination Remove Soil Vapor Extraction (SVE) Unit #2 Equipment from the 321-M Solvent Storage Tank Area (SSTA) Dynamic Underground Stripping (DUS) Location CX(s) Applied: B6.1 Date: 08/19/2011 Location(s): Aiken, South Carolina Office(s): Environmental Management, Savannah River Operations Office http://energy.gov/nepa/downloads/cx-007077-categorical-exclusion-determination

416

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

20, 2012 20, 2012 CX-008626: Categorical Exclusion Determination Replace 607-6A Sanitary Sewer Lift Station CX(s) Applied: B1.3 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 20, 2012 CX-008625: Categorical Exclusion Determination Abandonment of M-Area Oil Injection Wells CX(s) Applied: B3.1 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 20, 2012 CX-008624: Categorical Exclusion Determination Abandonment of the Western Sector Dynamic Underground Stripping (DUS) Project Steam Injection Wells CX(s) Applied: B3.1 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 20, 2012 CX-008623: Categorical Exclusion Determination Perform Thermal Analysis and Thermal Exposures (TG-DTA)

417

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0, 2012 0, 2012 CX-008625: Categorical Exclusion Determination Abandonment of M-Area Oil Injection Wells CX(s) Applied: B3.1 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 20, 2012 CX-008624: Categorical Exclusion Determination Abandonment of the Western Sector Dynamic Underground Stripping (DUS) Project Steam Injection Wells CX(s) Applied: B3.1 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 20, 2012 CX-008623: Categorical Exclusion Determination Perform Thermal Analysis and Thermal Exposures (TG-DTA) CX(s) Applied: B3.6 Date: 06/20/2012 Location(s): South Carolina Offices(s): Savannah River Operations Office June 20, 2012 CX-008546: Categorical Exclusion Determination National Open-ocean Energy Laboratory

418

Categorical Exclusion Determinations: B6.1 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 CX-006758: Categorical Exclusion Determination Versailles Borough Stray Gas Mitigation - Continuation CX(s) Applied: B2.3, B2.5, B6.1 Date: 09/13/2011 Location(s): Versailles, Pennsylvania Office(s): Fossil Energy, National Energy Technology Laboratory August 23, 2011 CX-006599: Categorical Exclusion Determination Environmental Restoration and Waste Management Activities, Fiscal Year 2012-2013 CX(s) Applied: B6.1, B6.2 Date: 08/23/2011 Location(s): Amarillo, Texas Office(s): NNSA-Headquarters, Pantex Site Office August 19, 2011 CX-007077: Categorical Exclusion Determination Remove Soil Vapor Extraction (SVE) Unit #2 Equipment from the 321-M Solvent Storage Tank Area (SSTA) Dynamic Underground Stripping (DUS) Location CX(s) Applied: B6.1 Date: 08/19/2011

419

Estimating Residual Solids Volume In Underground Storage Tanks  

SciTech Connect

The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.

Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

2014-01-08T23:59:59.000Z

420

Pennsylvania Natural Gas in Underground Storage - Change in Working Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Percent) Pennsylvania Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 18.8 22.4 37.0 33.4 9.7 -8.5 -17.7 -19.9 -17.0 -13.4 -15.2 -11.2 1992 3.5 -5.5 -31.8 -29.7 -19.1 -4.4 1.5 3.8 2.9 5.0 9.1 6.0 1993 8.3 -16.5 -29.1 -13.2 -5.0 -0.1 5.0 3.1 4.8 0.9 -1.5 -3.3 1994 -21.0 -19.2 13.5 27.9 24.0 18.3 16.9 15.8 5.8 6.1 2.3 5.6 1995 35.1 43.1 48.4 8.5 1.3 -0.3 -7.1 -8.1 -0.4 0.3 -7.1 -19.6 1996 -32.3 -32.6 -49.9 -39.0 -28.4 -18.3 -0.5 4.4 0.7 -0.2 3.9 26.8 1997 31.1 63.7 89.6 41.7 24.2 9.7 -4.5 -6.2 -2.2 -2.4 -0.3 -8.7 1998 5.7 9.8 22.4 52.3 49.3 32.7 23.0 11.1 3.1 4.1 12.5 17.6

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

AGA Producing Region Natural Gas Underground Storage Capacity (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Producing Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,026,828 2,068,220 2,068,220 2,068,428 2,068,428 2,068,428 2,074,428 2,082,928 2,082,928 2,082,928 2,082,928 2,082,928 1995 2,082,928 2,096,611 2,096,611 2,096,176 2,096,176 2,096,176 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 2,090,331 1996 2,095,131 2,106,116 2,110,116 2,108,116 2,110,116 2,127,294 2,126,618 2,134,784 2,140,284 2,140,284 2,144,784 2,144,784 1997 2,143,603 2,149,088 2,170,288 2,170,288 2,170,178 2,170,178 2,189,642 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 1998 2,194,242 2,194,242 2,194,242 2,194,242 2,194,242 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,205,540 2,197,859

422

Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Nebraska Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 55,226 54,179 53,869 54,783 56,160 57,690 56,165 56,611 57,708 58,012 57,606 54,005 1991 52,095 51,060 50,341 51,476 54,531 56,673 56,409 56,345 57,250 56,941 56,535 54,163 1992 52,576 51,568 51,525 52,136 53,768 56,396 58,446 59,656 60,842 60,541 57,948 54,512 1993 51,102 49,136 48,100 49,069 52,016 55,337 57,914 59,772 61,281 10,707 8,936 6,562 1994 3,476 743 886 1,845 3,983 4,882 6,505 6,852 8,978 9,908 10,078 8,075 1995 6,063 5,068 4,138 3,940 4,583 5,449 3,881 4,059 4,443 3,676 2,078 485 1996 - - - - - 806 1,938 3,215 3,960 3,389 2,932 1,949

423

Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Washington Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,882 5,257 3,304 2,365 1,893 5,005 7,942 10,880 11,949 12,154 12,235 9,008 1991 6,557 6,453 3,509 6,342 7,864 10,580 12,718 12,657 12,652 14,112 15,152 14,694 1992 12,765 9,785 9,204 8,327 9,679 10,854 11,879 13,337 14,533 13,974 13,312 9,515 1993 6,075 2,729 3,958 4,961 9,491 10,357 12,505 13,125 15,508 13,348 9,567 11,274 1994 9,672 5,199 4,765 6,867 9,471 11,236 13,045 13,496 14,629 14,846 14,458 12,884 1995 10,750 8,520 8,267 8,500 11,070 12,622 14,035 13,764 16,258 16,158 16,224 12,869 1996 6,547 5,488 4,672 4,780 6,742 10,060 11,344 15,100 14,244 12,391 11,634 9,724

424

AGA Western Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 1,226,103 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1,232,392 1995 1,232,392 1,233,637 1,233,637 1,233,637 1,233,637 1,243,137 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1996 1,237,446 1,237,446 1,237,446 1,237,446 1,237,446 1,228,208 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1,270,505 1997 1,228,395 1,228,395 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1998 1,228,076 1,228,076 1,228,076 1,228,076 1,228,076 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586 1,122,586

425

Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Minnesota Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,708 1,141 1,211 1,688 2,017 2,129 2,261 2,309 2,370 2,397 2,395 2,007 1991 1,551 1,313 1,207 1,362 1,619 1,931 2,222 2,214 2,307 2,273 2,191 2,134 1992 1,685 1,556 1,228 1,019 1,409 1,716 2,013 2,193 2,319 2,315 2,307 2,104 1993 1,708 1,290 872 824 1,141 1,485 1,894 2,022 2,260 2,344 2,268 1,957 1994 1,430 1,235 1,045 888 1,237 1,642 2,011 2,213 2,362 2,360 2,356 2,284 1995 1,771 1,294 1,037 990 1,321 1,584 1,890 2,121 2,362 2,368 2,365 2,110 1996 1,329 1,069 847 935 1,301 1,596 1,883 2,093 2,295 2,328 2,297 2,070

426

Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Missouri Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 8,081 5,796 6,047 7,156 7,151 7,146 7,140 7,421 7,927 8,148 8,157 7,869 1991 7,671 5,875 4,819 6,955 7,638 7,738 8,033 8,335 8,547 8,765 8,964 8,952 1992 7,454 6,256 5,927 7,497 7,924 8,071 8,337 8,555 8,763 8,954 8,946 8,939 1993 7,848 6,037 4,952 6,501 7,550 8,001 8,104 8,420 8,627 8,842 8,720 8,869 1994 7,602 7,073 6,794 4,640 6,094 7,449 7,765 8,072 8,341 8,548 8,778 8,783 1995 8,200 7,921 7,879 7,608 8,230 8,221 8,210 8,559 9,022 9,145 9,311 8,981 1996 7,558 7,658 7,225 6,931 8,250 8,511 8,751 8,958 9,162 9,372 9,067 8,993

427

AGA Eastern Consuming Region Natural Gas in Underground Storage (Working  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 905,018 584,386 467,210 599,207 831,273 1,086,355 1,342,894 1,578,648 1,775,994 1,885,465 1,819,517 1,589,500 1995 1,206,116 814,626 663,885 674,424 850,290 1,085,760 1,300,439 1,487,188 1,690,456 1,811,013 1,608,177 1,232,901 1996 812,303 520,053 341,177 397,770 612,572 890,243 1,192,952 1,456,355 1,695,873 1,838,842 1,664,539 1,423,793 1997 965,310 711,444 521,508 539,750 735,527 985,803 1,230,970 1,474,855 1,702,601 1,816,709 1,706,526 1,416,580 1998 1,108,737 878,420 669,205 772,790 1,017,260 1,248,564 1,462,360 1,644,247 1,797,048 1,918,157 1,878,225 1,630,559

428

AGA Eastern Consuming Region Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Capacity (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 4,737,921 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,501 4,727,446 4,727,446 4,727,446 4,727,509 1995 4,730,109 4,647,791 4,647,791 4,647,791 4,647,791 4,647,791 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 4,593,948 1996 4,593,948 4,600,548 4,603,048 4,603,048 4,607,048 4,740,509 4,740,509 4,742,309 4,743,309 4,743,309 4,743,309 4,743,309 1997 4,681,090 4,574,740 4,586,024 4,578,486 4,586,024 4,582,146 4,582,146 4,582,146 4,585,702 4,585,702 4,585,702 4,585,702 1998 4,585,702 4,585,702 4,585,702 4,585,702 4,585,702 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,799,753 4,805,622

429

Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 1,309 844 534 742 1,055 1,364 1,553 1,894 2,218 2,349 2,255 1,897 1999 1,519 1,070 745 929 1,202 1,413 1,641 1,830 2,248 2,357 2,175 1,708 2000 998 843 814 1,063 1,642 1,848 2,066 2,215 2,223 2,594 2,242 1,529 2001 991 823 532 963 1,477 1,869 2,113 2,416 2,677 2,651 2,711 2,503 2002 2,029 1,356 968 1,090 1,627 1,899 2,181 2,322 2,631 2,838 2,559 2,065 2003 1,042 546 367 660 1,107 1,582 1,994 2,710 3,247 3,281 3,167 2,621 2004 1,570 1,195 865 1,024 1,706 1,990 2,188 2,925 3,253 4,115 4,082 3,077

430

Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) Oregon Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,705 2,366 1,668 2,849 4,357 5,601 6,365 7,001 7,373 7,562 7,517 6,766 1991 5,691 4,726 2,959 1,980 2,694 4,248 5,706 6,798 7,472 7,811 7,834 7,347 1992 5,779 4,239 2,653 2,211 3,783 5,323 6,518 7,528 7,981 8,154 7,055 6,475 1993 4,557 3,161 2,433 2,007 3,651 4,949 6,130 7,172 7,750 8,240 7,509 6,406 1994 5,145 4,018 3,073 648 1,858 3,357 4,553 5,628 6,312 6,566 6,129 5,491 1995 3,814 3,429 2,989 3,856 5,035 6,069 6,765 6,765 7,251 7,251 7,193 6,371 1996 5,120 4,179 3,528 3,396 4,119 5,292 6,425 6,862 6,965 6,759 6,206 4,967

431

AGA Producing Region Natural Gas in Underground Storage (Working Gas)  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) AGA Producing Region Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 393,598 297,240 289,617 356,360 461,202 516,155 604,504 678,168 747,928 783,414 775,741 673,670 1995 549,759 455,591 416,294 457,969 533,496 599,582 638,359 634,297 713,319 766,411 700,456 552,458 1996 369,545 263,652 195,447 224,002 279,731 339,263 391,961 474,402 578,991 638,500 562,097 466,366 1997 314,140 248,911 297,362 326,566 401,514 471,824 478,925 532,982 617,733 705,879 642,254 494,485 1998 391,395 384,696 362,717 457,545 550,232 610,363 684,086 748,042 784,567 893,181 888,358 768,239 1999 611,978 585,458 530,610 568,307 653,498 728,071 744,307 750,460 826,493 858,836 849,011 718,513

432

West Virginia Natural Gas in Underground Storage (Working Gas) (Million  

U.S. Energy Information Administration (EIA) Indexed Site

Working Gas) (Million Cubic Feet) Working Gas) (Million Cubic Feet) West Virginia Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 95,718 84,444 80,152 86,360 105,201 122,470 139,486 155,506 168,801 172,513 172,198 155,477 1991 102,542 81,767 79,042 86,494 101,636 117,739 132,999 142,701 151,152 154,740 143,668 121,376 1992 87,088 60,200 32,379 33,725 57,641 75,309 97,090 115,537 128,969 141,790 135,853 143,960 1993 112,049 69,593 41,670 46,361 84,672 111,540 131,113 150,292 170,597 176,189 162,821 129,738 1994 71,547 38,973 20,662 41,766 67,235 97,887 125,442 147,683 168,538 174,514 166,920 140,377 1995 96,574 55,283 43,199 48,420 72,781 96,991 120,021 128,965 146,728 161,226 138,140 98,925

433

Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models  

E-Print Network (OSTI)

Analysis of roll gap heat transfers in hot steel strip rolling through roll temperature sensors and heat transfer models N. Legrand1,a , N. Labbe1,b D. Weisz-Patrault2,c , A. Ehrlacher2,d , T. Luks3,e heat transfers during pilot hot steel strip rolling. Two types of temperature sensors (drilled and slot

Paris-Sud XI, Université de

434

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Energy.gov (U.S. Department of Energy (DOE))

The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

435

ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks FPS 12.1, 1/9/01  

Energy.gov (U.S. Department of Energy (DOE))

 The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required.  These surveillance activities...

436

Sensitivity analysis for the GIS-based mapping of the ground subsidence hazard near abandoned underground coal mines  

Science Journals Connector (OSTI)

Ground subsidence around abandoned underground coal mines can cause much loss of life ... by sensitivity analysis in geographic information system (GIS). Spatial data for the subsidence area,...

Hyun-Joo Oh; Seung-Chan Ahn; Jong-Kuk Choi; Saro Lee

2011-09-01T23:59:59.000Z

437

Characterizing excavation damaged zone and stability of pressurized lined rock caverns for underground compressed air energy storage  

E-Print Network (OSTI)

for Underground Compressed Air Energy Storage Hyung-Mok Kimperformance of compressed air energy storage (CAES) in linedcavern (LRC); Compressed air energy storage (CAES); TOUGH-

Kim, H.M.

2014-01-01T23:59:59.000Z

438

Effect of geometry on void formation in commercial electroplating of thin strips to copper  

E-Print Network (OSTI)

. Other methods to attach dissimilar metals include diffusion bonding [1­4], ultrasonic welding [5: Electroplating; Defects; Voids; Metal embedding; Coating failure; Thin film microsensors 1. Introduction Electroplating is one method to attach a thin strip to a metal substrate by embedding it into the coating layer

Thomas, Brian G.

439

ATLAS ID Upgrade R&D Plan: Development of a Short-Strip Silicon Detector Module  

E-Print Network (OSTI)

ATLAS ID Upgrade R&D Plan: Development of a Short-Strip Silicon Detector Module and a Frontend of the optimum technology and layout of the tracking detectors for the upgraded ATLAS ID. The goal for the intermediate tracking region in the upgraded ATLAS ID. We anticipate that much of the work would then also

California at Santa Cruz, University of

440

ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC  

E-Print Network (OSTI)

ATLAS Tracker Upgrade: Silicon Strip Detectors for the sLHC Sergey Burdin (University of Liverpool) for ATLAS Collaboration 13th ISTC SAC Seminar "New Perspectives of High Energy Physics" 1-5 September, 2010 2021 Commission new detectors Apr 2021 - Jun 2021 Take data July 2021 3 Sep 2010 2S.Burdin / Atlas

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A modified in vitro stripping method to automate the calculation of geometry of corneocytes imaged with  

E-Print Network (OSTI)

and Materials: In the first stage, an adhesive tape is used to collect corneocytes as in the regular stripping populated sample, in which more individual corneocytes can be observed with the help of fluorescent: The method described is suitable for the auto- mated data processing. It allows for the reliable detection

Sokolov, Igor

442

Strip, Bind, and Search: A Method for Identifying Abnormal Energy Consumption in Buildings  

E-Print Network (OSTI)

Strip, Bind, and Search: A Method for Identifying Abnormal Energy Consumption in Buildings Romain usage that leads to energy waste. The av- erage waste uncovered is as high as 2500 kWh per device; Energy Consumption; Anomaly Detection 1. INTRODUCTION Buildings are one of the prime targets to reduce

California at Berkeley, University of

443

Incineration of Residue from Paint Stripping Operations Using Plastic Media Blasting  

E-Print Network (OSTI)

i INCINERATION OF RESIDUE FROH PAINT STRIPPING OPERATIONS USING PLASTIC MEDIA BLASTING J. E. HELT N. MALLYA Group Leader Chemist Chemical Technology Division Chemical Technology Division Argonne National Laboratory Argonne National... Laboratory Argonne, Illinois Argonne, Illinois ABSTRACT A preliminary investigation has been performed on the environmental consequences of incinerating plastic-media-blasting (PHB) wastes from paint removal operations. PHB is similar to sandblasting...

Helt, J. E.; Mallya, N.

444

J. Phycol. 39, 253258 (2003) AN IMPROVED STRIPPING TECHNIQUE FOR LIGHTLY ARMORED DINOFLAGELLATES1  

E-Print Network (OSTI)

organisms or stripping off the outer membranes with ethanol to expose the underlying cellulose plates. Both morphology and develop plate tabulations: swell- ing the sutures between the cellulose plates of intact-like dinoflagellates involves removal of the outer membranes to expose the underlying cellulose plates. These plates

445

Drawing from past experience to improve the management of future underground projects  

SciTech Connect

The high-energy physics community is currently developing plans to build underground facilities as part of its continuing investigation into the fundamental nature of matter. The tunnels and caverns are being designed to house a new generation of particle accelerators and detectors. For these projects, the cost of constructing the underground facility will constitute a major portion of the told capital cost and project viability can be greatly enhanced by paying careful attention to design and construction practices. A review of recently completed underground physics facilities and related literature has been undertaken to identify some management principles that have proven successful in underground practice. Projects reviewed were constructed in the United States of America and Europe using both Design-Build and more traditional Engineer-Procure-Construct contract formats. Although the physics projects reviewed tend to place relatively strict tolerances on alignment, stability and dryness, their overall requirements are similar to those of other tunnels and it is hoped that some of the principles promoted in this paper will be of value to the owner of any underground project.

Laughton, Christopher; /Fermilab

2004-01-01T23:59:59.000Z

446

Ray-Strips: A Compact Mesh Representation for Interactive Ray Tracing Christian Lauterbach1 Sung-Eui Yoon2 Dinesh Manocha1  

E-Print Network (OSTI)

Ray-Strips: A Compact Mesh Representation for Interactive Ray Tracing Christian Lauterbach1 Sung-Eui

North Carolina at Chapel Hill, University of

447

Thermal-Hydrological Sensitivity Analysis of Underground Coal Gasification  

SciTech Connect

This paper presents recent work from an ongoing project at Lawrence Livermore National Laboratory (LLNL) to develop a set of predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (natural and engineered) affecting underground coal gasification (UCG). We discuss the application of coupled thermal-hydrologic simulation capabilities required for predicting UCG cavity growth, as well as for predicting potential environmental consequences of UCG operations. Simulation of UCG cavity evolution involves coupled thermal-hydrological-chemical-mechanical (THCM) processes in the host coal and adjoining rockmass (cap and bedrock). To represent these processes, the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) code is being customized to address the influence of coal combustion on the heating of the host coal and adjoining rock mass, and the resulting thermal-hydrological response in the host coal/rock. As described in a companion paper (Morris et al. 2009), the ability to model the influence of mechanical processes (spallation and cavity collapse) on UCG cavity evolution is being developed at LLNL with the use of the LDEC (Livermore Distinct Element Code) code. A methodology is also being developed (Morris et al. 2009) to interface the results of the NUFT and LDEC codes to simulate the interaction of mechanical and thermal-hydrological behavior in the host coal/rock, which influences UCG cavity growth. Conditions in the UCG cavity and combustion zone are strongly influenced by water influx, which is controlled by permeability of the host coal/rock and the difference between hydrostatic and cavity pressure. In this paper, we focus on thermal-hydrological processes, examining the relationship between combustion-driven heat generation, convective and conductive heat flow, and water influx, and examine how the thermal and hydrologic properties of the host coal/rock influence those relationships. Specifically, we conducted a parameter sensitivity analysis of the influence of thermal and hydrological properties of the host coal, caprock, and bedrock on cavity temperature and steam production.

Buscheck, T A; Hao, Y; Morris, J P; Burton, E A

2009-10-05T23:59:59.000Z

448

GRR/Section 14-CA-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

14-CA-c - Underground Injection Control Permit 14-CA-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-c - Underground Injection Control Permit 14CACUndergroundInjectionControl.pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Regulations & Policies Division 3, Chapter 4 of the California Public Resources Code Title 14, Division 2, Chapter 4 of the California Code of Regulations Title 40, Code of Federal Regulations, Part 144 Title 40, Code of Federal Regulations, Part 146 Triggers None specified Click "Edit With Form" above to add content 14CACUndergroundInjectionControl.pdf Error creating thumbnail: Page number not in range.

449

GRR/Section 14-TX-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

TX-c - Underground Injection Control Permit TX-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-c - Underground Injection Control Permit Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 27 16 TAC 3.9 46 TAC 3.46 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

450

Surveillance Guide - ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS 1.0 Objective The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities provide a basis for evaluating the effectiveness of the contractor's program for implementation of appropriate controls and compliance with DOE requirements. 2.0 References 1. DOE O 440.1A, Worker Protection Management For DOE Federal And Contractor Employees [http://www.explorer.doe.gov:1776/cgi-bin/w3vdkhgw?qryBGD07_rSj;doe- 1261] 1. 29CFR1910.1200, Subpart Z, Hazard Communication [Access http://www.osha-slc.gov/OshStd_data/1910_1200.html ] 2. 29CFR1910.106, Subpart H, Flammable And Combustible Liquids [Access at

451

,"Illinois Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5060il2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5060il2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:21 PM"

452

GRR/Section 14-OR-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-OR-c - Underground Injection Control Permit GRR/Section 14-OR-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-OR-c - Underground Injection Control Permit 14ORCUndergroundInjectionControlPermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies 40 CFR 144.26: Federal UIC Regulations 40 CFR 144.83: Notification OAR 340-044: State UIC Regulations Triggers None specified Click "Edit With Form" above to add content 14ORCUndergroundInjectionControlPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

453

GRR/Section 14-NV-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

4-NV-c - Underground Injection Control Permit 4-NV-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-c - Underground Injection Control Permit 14NVCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Nevada Division of Minerals Nevada Division of Water Resources Bureau of Land Management Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 14NVCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

454

DOE Completes Disposal Operations In Panel 5 of the WIPP Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal Operations In Panel 5 of the WIPP Disposal Operations In Panel 5 of the WIPP Underground DOE Completes Disposal Operations In Panel 5 of the WIPP Underground August 15, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) announced that disposal operations in Panel 5 of the Waste Isolation Pilot Plant (WIPP) underground repository are complete. Last month, the final contact-handled transuranic (CH-TRU) waste shipment was emplaced in the panel, which took just over two years to fill. "All TRU waste management employees at WIPP and at the generator sites deserve the credit for this accomplishment," National TRU Program Director J.R. Stroble said. "It is through their dedication to performing their jobs safely, compliantly and timely that WIPP and the TRU Waste

455

DOE Completes Disposal Operations In Panel 5 of the WIPP Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Completes Disposal Operations In Panel 5 of the WIPP DOE Completes Disposal Operations In Panel 5 of the WIPP Underground DOE Completes Disposal Operations In Panel 5 of the WIPP Underground August 15, 2011 - 12:00pm Addthis Media Contact Deb Gill www.wipp.energy.gov 575-234-7270 CARLSBAD, N.M. - The U.S. Department of Energy (DOE) announced that disposal operations in Panel 5 of the Waste Isolation Pilot Plant (WIPP) underground repository are complete. Last month, the final contact-handled transuranic (CH-TRU) waste shipment was emplaced in the panel, which took just over two years to fill. "All TRU waste management employees at WIPP and at the generator sites deserve the credit for this accomplishment," National TRU Program Director J.R. Stroble said. "It is through their dedication to performing

456

GRR/Section 14-ID-c - Underground Injection Control | Open Energy  

Open Energy Info (EERE)

4-ID-c - Underground Injection Control 4-ID-c - Underground Injection Control < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-ID-c - Underground Injection Control 14IDCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies Idaho Department of Water Resources Regulations & Policies IDAPA 37.03.04 IDAPA 37.03.03 Triggers None specified Click "Edit With Form" above to add content Potential Roadblocks Extensive public comments can stretch the timeline since IDWR must respond to all comments, potentially hold a Fact Finding Hearing, and thoroughly review the input received in these processes prior to making a decision to issue or deny the permit. 14IDCUndergroundInjectionControlPermit.pdf

457

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Total Underground Storage",6,"Monthly","9/2013","1/15/1973" Total Underground Storage",6,"Monthly","9/2013","1/15/1973" ,"Data 2","Change in Working Gas from Same Period Previous Year",2,"Monthly","9/2013","1/15/1973" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_sum_dcu_nus_m.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_sum_dcu_nus_m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:04:07 PM" "Back to Contents","Data 1: Total Underground Storage"

458

EIA - Natural Gas Pipeline Network - Regional/State Underground Natural Gas  

U.S. Energy Information Administration (EIA) Indexed Site

Regional/State Underground Natural Gas Storage Table Regional/State Underground Natural Gas Storage Table About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Regional Underground Natural Gas Storage, Close of 2007 Depleted-Reservoir Storage Aquifer Storage Salt-Cavern Storage Total Region/ State # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) # of Sites Working Gas Capacity (Bcf) Daily Withdrawal Capability (MMcf) Central Region Colorado 8 42 1,088 0 0 0 0 0 0 8 42 1,088 Iowa 0 0 0 4 77 1,060 0 0 0 4 77 1,060

459

GRR/Section 14-UT-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-UT-c - Underground Injection Control Permit GRR/Section 14-UT-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-c - Underground Injection Control Permit 14UTCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies Utah Administrative Code R317-7 Triggers None specified Click "Edit With Form" above to add content Potential Roadblocks If the permit application does not adequately demonstrate that geothermal re-injection wells will be constructed and operated to be protective of any USDWs the issuance of a permit may be denied or delayed. 14UTCUndergroundInjectionControlPermit.pdf 14UTCUndergroundInjectionControlPermit.pdf

460

Staff Technical Position on geological repository operations area underground facility design: Thermal loads  

SciTech Connect

The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff`s position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design.

Nataraja, M.S. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Brandshaug, T. [Itasca Consulting Group, Inc., Minneapolis, MN (United States)

1992-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Underground exploration and testing at Yucca Mountain: A report to Congress and the Secretary of Energy  

SciTech Connect

Underground exploration and testing are major components of the DOE`s site-characterization efforts at Yucca Mountain, Nevada. During the past four years, the DOE`s plans for exploration and testing in an underground facility have evolved substantially, and many improvements have been made. The report reviews the status of the DOE`s underground exploration and testing project at Yucca Mountain, Nevada; it suggests strategies to improve both the exploration and testing program and the approach to designing and excavating the exploratory facility. The Board makes several recommendations it believes will speed progress and improve cost-effectiveness. The Board believes the changes it is recommending can and should be made without slowing the momentum of important site-characterization activities currently under way at Yucca Mountain.

NONE

1993-10-01T23:59:59.000Z

462

Staff Technical Position on geological repository operations area underground facility design: Thermal loads  

SciTech Connect

The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff's position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design.

Nataraja, M.S. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management); Brandshaug, T. (Itasca Consulting Group, Inc., Minneapolis, MN (United States))

1992-12-01T23:59:59.000Z

463

Additions to natural gas in underground storage to be nearly 50% higher this summer  

U.S. Energy Information Administration (EIA) Indexed Site

Additions to natural gas in underground storage to be nearly Additions to natural gas in underground storage to be nearly 50% higher this summer Although it's still spring, natural gas supply companies and utilities are already preparing for next winter and are building their inventories of natural gas to meet future heating demand. About 2.1 trillion cubic feet of natural gas will be added to gas inventories in underground storage over the summer months to get ready for the winter heating season, which starts November 1. That is significantly higher than the roughly 1.5 trillion cubic feet of gas added during last summer, according to the U.S. Energy Information Administration's new monthly forecast. Higher natural prices this year will lead to lower gas use by power plants to generate electricity, which will contribute to the higher build in gas inventories

464

,"Iowa Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5060ia2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5060ia2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:20 PM"

465

Deformation of underground deep cavities in rock salts at their long-term operations  

SciTech Connect

The underground deep cavities are created in rock salts of various morphological types with the purpose of storage of petroleum, gas and nuclear wastes. It is well known that the rock salt has rheological properties, which can result in closure of caverns and loss of their stability. In the evaporitic rocks, especially those containing halite, time-dependent deformation is pronounced even at comparatively low stress levels. At high stress levels this creep becomes a dominant feature of the mechanical behavior of salt rocks. So the knowledge of creep behavior of rock salt is of paramount importance in underground storage application of gas, petroleum products and nuclear wastes.

Zhuravleva, T.; Shafarenko, E. [Podzemgasprom, STC, Moscow (Russian Federation)

1995-12-01T23:59:59.000Z

466

Low-background underground facilities for the direct detection of dark matter  

SciTech Connect

This is the report of a working group formed to discuss the requirements of an underground facility for experiments trying to detect directly dark matter particles. There is a brief discussion of the general properties of underground facilities, focusing on the levels of muon induced backgrounds that are tolerable. Then the authors review the scientific motivation of the search for dark matter particles, and the existing experimental limits. There is a short description of the shielding necessary to reach the desired background levels. Finally, they report the results of their preliminary study of muon induced backgrounds in dark matter experiments, and the implications for the required depth of the facilities for such experiments.

Barnes, P.D. Jr. [Univ. of California, Berkeley, CA (United States); [Center for Particle Astrophysics, Berkeley, CA (United States); Caldwell, D. [Univ. of California, Santa Barbara, CA (United States); DaSilva, A. [Center for Particle Astrophysics, Berkeley, CA (United States)] [and others

1992-12-31T23:59:59.000Z

467

Effect of arc discharge on wear rate of Cu-impregnated carbon strip in unlubricated sliding against Cu trolley under electric current  

Science Journals Connector (OSTI)

The wear of contact strip on the pantograph of electric railway vehicle is mainly governed by arc discharge occurring simultaneously with contact break between strip and trolley wire. Sliding wear tests were carried out under electric current for the combination of Cu-impregnated baked carbon strip and Cu trolley at a sliding speed of 100 km/h. Voltage drop and current were measured at a frequency of 48 kHz and electric power, total time duration and accumulated energy of discharge were evaluated for each test strip. Plot of wear rate of strip against arc discharge energy shows a proportional relationship between them.

Shunichi Kubo; Koji Kato

1998-01-01T23:59:59.000Z

468

90.1 Prototype Building Models Strip Mall | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Strip Mall Strip Mall The ASHRAE Standard 90.1 prototype building models were developed by Pacific Northwest National Laboratory in support of the U.S. Department of Energy's (DOE's) Building Energy Codes Program. These prototype buildings were derived from DOE's Commercial Reference Building Models. This suite of ASHRAE Standard 90.1 prototype buildings covers all the Reference Building types except supermarket, and also adds a new building prototype representing high-rise apartment buildings.The prototype models include 16 building types in 17 climate locations for ASHRAE Standards 90.1-2004, 90.1-2007 and 90.1-2010. This combination leads to a set of 816 building models (in EnergyPlus Version 6.0). Also included is a scorecard for each prototype building. The scorecard is a spreadsheet that summarizes the

469

Determining the mechanisms of catonic contamination of PEMFCs using a strip cell configuration  

SciTech Connect

Cationic contamination of polymer electrolyte fuel cells has been shown to cause serious performance degradation but the exact mechanisms of this degradation are not fully understood. A strip cell configuration was devised to study the mechanisms of performance degradation due to cationic contamination by changing the time and length scales of traditional fuel cells while providing a suitable reference electrode. This 'strip cell' configuration utilizes traditional Nafion{reg_sign} membranes in an inplane configuration with electrodes painted on each end. Using this cell it was determined that cationic contaminants collect near the cathode of the fuel cell under load and that this profile leads to increased losses primarily in the cathode region. These results can be directly related to performance losses in a typical PEMFC contaminated by foreign cations.

Kienitz, Brian L [Los Alamos National Laboratory; Pivovar, Bryan S [Los Alamos National Laboratory; Fernando, Garzon [Los Alamos National Laboratory; Zawodzinski, Thomas A [CWRU

2008-01-01T23:59:59.000Z

470

Interaction of Josephson Junction and Distant Vortex in Narrow Thin-Film Superconducting Strips  

SciTech Connect

The phase difference between the banks of an edge-type planar Josephson junction crossing the narrow thin-film strip depends on wether or not vortices are present in the junction banks. For a vortex close to the junction this effect has been seen by Golod, Rydh, and Krasnov [Phys. Rev. Lett. 104, 227003 (2010)], who showed that the vortex may turn the junction into ? type. It is shown here that even if the vortex is far away from the junction, it still changes the 0 junction to a ? junction when situated close to the strip edges. Within the approximation used, the effect is independent of the vortex-junction separation, a manifestation of the topology of the vortex phase which extends to macroscopic distances of superconducting coherence.

Kogan, V. G. [Ames Laboratory; Mints, R. G. [Tel Aviv University

2014-01-31T23:59:59.000Z

471

Determining the Mechanisms of Cationic Contamination Affecting PEMFCs Using a Strip Cell Configuration  

SciTech Connect

Cationic contamination of polymer electrolyte fuel cells has been shown to cause serious performance degradation but the exact mechanisms of this degradation are not fully understood. A strip cell configuration was devised to study the mechanisms of performance degradation due to cationic contamination by changing the time and length scales of traditional fuel cells while providing a suitable reference electrode. This 'strip cell' configuration utilizes traditional Nafion{reg_sign} membranes in an in-plane configuration with electrodes painted on each end. Using this cell it was determined that cationic contaminants collect near the cathode of the fuel cell under load and that this profile leads to increased losses primarily in the cathode region. These results can be directly related to performance losses in a typical PEMFC contaminated by foreign cations.

Kienitz, B. L.; Zawodzinski, T. A.; Pivovar, B. S.; Garzon, F. H.

2008-01-01T23:59:59.000Z

472

Stripping of organic compounds from wastewater as an auxiliary fuel of regenerative thermal oxidizer  

Science Journals Connector (OSTI)

Organic solvents with different volatilities are widely used in various processes and generate air and water pollution problems. In the cleaning processes of electronics industries, most volatile organic compounds (VOCs) are vented to air pollution control devices while most non-volatile organic solvents dissolve in the cleaning water and become the major sources of COD in wastewater. Discharging a high-COD wastewater stream to wastewater treatment facility often disturbs the treatment performance. A pretreatment of the high-COD wastewater is therefore highly desirable. This study used a packed-bed stripping tower in combination with a regenerative thermal oxidizer to remove the COD in the wastewater from a printed circuit board manufacturing process and to utilize the stripped organic compounds as the auxiliary fuel of the RTO. The experimental results showed that up to 45% of the COD could be removed and 66% of the RTO fuel could be saved by the combined treatment system.

Meng-Wen Chang; Jia-Ming Chern

2009-01-01T23:59:59.000Z

473

Multimedia sampling for dioxin at a strip mine reclaimed with sludge from bleached kraft wastewater treatment  

SciTech Connect

This paper reports that mead conducted a two-year dioxin testing program on strip-mined land being reclaimed with sludge from the wastewater treatment plant of its bleached kraft mill. Many different samples were analyzed for both 2,3,7,8-TCDD (or dioxin) and 2,3,7,8-TCDF (or furan). The study included biodiversity studies to determine the total environmental impact. The results indicate that the sludge is an excellent reclamation material that improves the biodiversity at the site. The tracer dioxin in the sludge does not exhibit any significant migration or bioavailability when used for reclaiming strip mines. These findings differ from assumptions sometimes used in assessing the environmental risks of dioxin.

Krouskop, D.J.; Ayers, K.C. (Metal Corp. (US)); Proctor, J.L. (Ohio Univ., Chillicothe, OH (US))

1991-04-01T23:59:59.000Z

474

Stripping ethanol from ethanol-blended fuels for use in NO.sub.x SCR  

DOE Patents (OSTI)

A method to use diesel fuel alchohol micro emulsions (E-diesel) to provide a source of reductant to lower NO.sub.x emissions using selective catalytic reduction. Ethanol is stripped from the micro emulsion and entered into the exhaust gasses upstream of the reducing catalyst. The method allows diesel (and other lean-burn) engines to meet new, lower emission standards without having to carry separate fuel and reductant tanks.

Kass, Michael Delos (Oak Ridge, TN); Graves, Ronald Lee (Knoxville, TN); Storey, John Morse Elliot (Oak Ridge, TN); Lewis, Sr., Samuel Arthur (Andersonville, TN); Sluder, Charles Scott (Knoxville, TN); Thomas, John Foster (Powell, TN)

2007-08-21T23:59:59.000Z

475

A review of the factors influencing the physicochemical characteristics of underground coal gasification  

SciTech Connect

In this article, the physicochemical characteristics of the oxidation zone, the reduction zone, and the destructive distillation and dry zone in the process of underground coal gasification (UCG) were explained. The effect of such major factors as temperature, coal type, water-inrush or -intake rate, the quantity and quality of wind blasting, the thickness of coal seams, operational pressure, the length, and the section of gasification gallery on the quality of the underground gas and their interrelationship were discussed. Research showed that the temperature conditions determined the underground gas compositions; the appropriate water-inrush or -intake rate was conducive to the improvement in gas heat value; the properties of the gasification agent had an obvious effect on the compositions and heat value of the product gas. Under the cyclically changing pressure, heat losses decreased by 60%, with the heat efficiency and gasification efficiency being 1.4 times and 2 times those of constant pressure, respectively. The test research further proved that the underground gasifier with a long channel and a big cross-section, to a large extent, improved the combustion-gasification conditions.

Yang, L.H. [China University of Mining and Technology, Jiangsu (China)

2008-07-01T23:59:59.000Z

476

Notice of Violation, Pacific Underground Construction, Inc- WEA-2009-02  

Energy.gov (U.S. Department of Energy (DOE))

Issued a Final Notice of Violation (WEA-2009-02) to Pacific Underground Construction, Inc. for violations of 10 C.F.R. 851 associated with a polyvinyl chloride pipe explosion that occurred in Sector 30 of the linear accelerator facility at the SLAC National Accelerator Laboratory on September 13, 2007.

477

North American climate of the last millennium: Underground temperatures and model comparison  

E-Print Network (OSTI)

. The gridded output from the three distinct integrations of the GCM ECHO-g were similarly averaged by region, the externally forced runs from ECHO-g are in better agreement with underground temperature anomalies than with the control run, suggesting that boreholes are sensitive to external forcing. Not only do ECHO-g simulations

Beltrami, Hugo

478

IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY  

E-Print Network (OSTI)

1 IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY Susan T. Bagley1, Winthrop-1295 2 Department of Mechanical Engineering, Center for Diesel Research, University of Minnesota, 111 Church St, S.E., Minneapolis, MN 55455 3 Department of Mechanical Engineering and Engineering Mechanics

Minnesota, University of

479

Thermal Economic Analysis of an Underground Water Source Heat Pump System  

E-Print Network (OSTI)

The paper presents the thermal economic analysis of an underground water source heat pump system in a high school building based on usage per exergy cost as an evaluation standard, in which the black box model has been used and the cost...

Zhang, W.; Lin, B.

2006-01-01T23:59:59.000Z

480

Analysis of Teleseismic Signals from Underground Nuclear Explosions Originating in Four Geological Environments  

Science Journals Connector (OSTI)

......from the E. Kazakh site and the Nevada Test Site lie in between these two values...to an underground explosion at Nevada test site, Can. J. earth Sci., 6...from the E. Kazakh site and the Nevada Test Site lie in between these two values......

H. S. Hasegawa

1971-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground stripping dus" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents  

Energy.gov (U.S. Department of Energy (DOE))

CARLBAD, N.M. – EM Acting Assistant Secretary Mark Whitney today visited the Waste Isolation Pilot Plant (WIPP) near Carlsbad, N.M., where he became the first non-WIPP employee to tour the underground facility since a truck fire and unrelated radiological release temporarily closed the facility in February.

482

Degradation of transuranic waste drums in underground storage at the Hanford Site  

SciTech Connect

In situ inspections were performed on tarp-covered 55-gallon drums of transuranic (TRU) waste stored underground at the Hanford Site. These inspections were part of a task to characterize TRU drums for extent of corrosion degradation and uncertainty in TRU designation (inaccuracy in earlier assay determinations may have led to drums that actually were low-level waste to be termed TRU), and to attempt to correlate accuracy of existing records with actual drum contents. Two separate storage trench sites were investigated; a total of 90 drums were inspected with ultrasonic techniques and 104 additional drums were visually inspected. A high-humidity environment in the underground storage trenches had been reported in earlier investigations and was expected to result in substantial corrosion degradation. However, corrosion was much less than expected. Only a small percentage of drums had significant corrosion (with one breach) and the maximum rate was estimated at 0.051 mm/yr (2 mils/yr). The corrosion time of underground exposure was 14 to 15 years. These inspection results should be applicable to other similar environments (this applicability should be restricted to arid climates such as the Hanford Site) where drums are stored underground but shielded from direct soil contact by a tarp or other means. Soil contact would lead to more rapid corrosion.

Duncan, D.R.

1996-05-07T23:59:59.000Z

483

NETL: Development of a Novel Gas Pressurized Stripping Process-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO2 Capture Development of a Novel Gas Pressurized Stripping Process-Based Technology for CO2 Capture Project No.: DE-FE0007567 Carbon Capture Scientific is developing and testing a novel, proprietary, Gas Pressurized Stripping (GPS) process-based technology for CO2 capture from post-combustion flue gases. GPS process-based technology has many advantages. For the solvent based process it will be able to: Reduce the energy penalty associated with solvent regeneration Increase the CO2 desorption pressure Integrate CO2 capture and compression into one step Reduce CO2 compression needs Reduce solvent degradation These advantages could potentially eliminate CO2 compression entirely, hence reducing the total parasitic power load of a CO2 capture process to about 0.14kWh/kgCO2. This power load is a 60 percent reduction compared to the baseline case of 0.38kWh/kgCO2. The economic impact of this parasitic power reduction is a reduction in the incremental cost of electricity (COE) by about 21 mills/kWh.

484

Electroslag surfacing of steel shafting with Ni alloy 625 and 70Cu-30Ni strip  

SciTech Connect

A comprehensive study of electroslag surfacing (ESS) of steel with Ni Alloy 625 and 70Cu-30Ni strip electrodes was conducted to establish the feasibility of replacing forged bearing sleeves on propulsion shafting with integral weld surfacing. The base material was MIL-S-23284, Class 1 steel in the form of 41--66 cm (16--26 in.) diameter shafting and 76 mm (3 in.) thick flat plate. All ESS was carried out at a heat input level of approximately 5.9kJ/mm (150 kJ/in.) using 30 x 0.5 mm (1.2 x 0.02 in.) strip electrodes. Assessments of mechanical properties and microstructure of Ni Alloy 625 surfacing and 70Cu-30Ni surfacing were conducted to establish the structure-property relationships in these complex alloy systems. In addition, a solidification cracking test was developed to determine the relative cracking susceptibilities of these strip surfacing alloys. Although the Ni Alloy 625 surfacing contained small islands of interdendritic MC type carbides and Laves phase, the mechanical properties of this surfacing were satisfactory. The 70Cu-30Ni surfacing required a buttering layer of 30Cu-70Ni or pure Ni to prevent solidification cracking. The inherent ductility-dip sensitivity of 70Cu-30Ni surfacing was overcome by the development of a suitable ESS procedure.

Devletian, J.H.; Gao, Y.P.; Wood, W.E. [Oregon Graduate Inst. of Science and Technology, Portland, OR (United States)

1996-12-31T23:59:59.000Z

485

Problems Found Using a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples  

SciTech Connect

An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion of anthropogenic activity estimates with the relative bias being small compared to the dispersion, indicating that the system would not give false positive indications for an appropriately set decision level. By also measuring environmental air sample filters simultaneously with electroplated alpha filters, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations from calibrated values indicating that the system would give false negative indications. Use of the current algorithm is, therefore, not recommended for general assay applications. Use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve-fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha activities on air sample filters (not due to radon progeny) around the 200 disintegrations per minute level.

Robert Hayes

2008-04-01T23:59:59.000Z

486

Use of a Radon Stripping Algorithm for Retrospective Assessment of Air Filter Samples  

SciTech Connect

An evaluation of a large number of air sample filters was undertaken using a commercial alpha and beta spectroscopy system employing a passive implanted planar silicon (PIPS) detector. Samples were only measured after air flow through the filters had ceased. Use of a commercial radon stripping algorithm was implemented to discriminate anthropogenic alpha and beta activity on the filters from the radon progeny. When uncontaminated air filters were evaluated, the results showed that there was a time-dependent bias in both average estimates and measurement dispersion with the relative bias being small compared to the dispersion. By also measuring environmental air sample filters simultaneously with electroplated alpha and beta sources, use of the radon stripping algorithm demonstrated a number of substantial unexpected deviations. Use of the current algorithm is therefore not recommended for assay applications and so use of the PIPS detector should only be utilized for gross counting without appropriate modifications to the curve fitting algorithm. As a screening method, the radon stripping algorithm might be expected to see elevated alpha and beta activities on air sample filters (not due to radon progeny) around the 200 dpm level.

Robert Hayes

2009-01-23T23:59:59.000Z

487

Application of 3D electrical resistivity imaging in an underground potash mine Robert A. Eso and Douglas W. Oldenburg, University of British ColumbiaGeophysical Inversion Facility  

E-Print Network (OSTI)

Application of 3D electrical resistivity imaging in an underground potash mine Robert A. Eso it possible to explore for water infiltrated areas in underground salt mines using electrical resistivity the application of 3D electrical resistivity imaging (ERI) in an underground potash mine located in Saskatchewan

Oldenburg, Douglas W.

488

Sample Results From The Extraction, Scrub, And Strip Test For The Blended NGS Solvent  

SciTech Connect

This report summarizes the results of the extraction, scrub, and strip testing for the September 2013 sampling of the Next Generation Solvent (NGS) Blended solvent from the Modular Caustic Side-Solvent Extraction Unit (MCU) Solvent Hold Tank. MCU is in the process of transitioning from the BOBCalixC6 solvent to the NGS Blend solvent. As part of that transition, MCU has intentionally created a blended solvent to be processed using the Salt Batch program. This sample represents the first sample received from that blended solvent. There were two ESS tests performed where NGS blended solvent performance was assessed using either the Tank 21 material utilized in the Salt Batch 7 analyses or a simulant waste material used in the V-5/V-10 contactor testing. This report tabulates the temperature corrected cesium distribution, or DCs values, step recovery percentage, and actual temperatures recorded during the experiment. This report also identifies the sample receipt date, preparation method, and analysis performed in the accumulation of the listed values. The calculated extraction DCs values using the Tank 21H material and simulant are 59.4 and 53.8, respectively. The DCs values for two scrub and three strip processes for the Tank 21 material are 4.58, 2.91, 0.00184, 0.0252, and 0.00575, respectively. The D-values for two scrub and three strip processes for the simulant are 3.47, 2.18, 0.00468, 0.00057, and 0.00572, respectively. These values are similar to previous measurements of Salt Batch 7 feed with lab-prepared blended solvent. These numbers are considered compatible to allow simulant testing to be completed in place of actual waste due to the limited availability of feed material.

Washington, A. L. II; Peters, T. B.

2014-03-03T23:59:59.000Z

489

,"Tennessee Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","12/2012" Monthly","12/2012" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tn2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tn2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:23 PM" "Back to Contents","Data 1: Tennessee Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TN2" "Date","Tennessee Natural Gas Underground Storage Capacity (MMcf)" 37271,1200 37302,1200 37330,1200 37361,1200

490

,"U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5460us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5460us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:31 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)" "Sourcekey","N5460US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Net (MMcf)" 34515,-19376 34880,5419 35246,-12622 35611,6367

491

,"Texas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290tx2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290tx2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:24 PM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290TX2" "Date","Texas Natural Gas Underground Storage Capacity (MMcf)" 32324,590248 32689,589780 33054,586502 33419,589018 33785,595229 34150,598782

492

,"Pennsylvania Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290pa2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290pa2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:22 PM" "Back to Contents","Data 1: Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290PA2" "Date","Pennsylvania Natural Gas Underground Storage Capacity (MMcf)" 32324,805394 32689,805393 33054,640938 33419,640938

493

,"Arkansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ar2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ar2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:08 PM" "Back to Contents","Data 1: Arkansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290AR2" "Date","Arkansas Natural Gas Underground Storage Capacity (MMcf)" 32324,36147 32689,31447 33054,31277 33419,31277 33785,31277 34150,31277

494

,"Colorado Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290co2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290co2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:10 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CO2" "Date","Colorado Natural Gas Underground Storage Capacity (MMcf)" 37271,100227 37302,100227 37330,100227 37361,100227

495

,"Louisiana Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290la2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290la2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:14 PM" "Back to Contents","Data 1: Louisiana Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290LA2" "Date","Louisiana Natural Gas Underground Storage Capacity (MMcf)" 37271,580037 37302,580037 37330,580037 37361,580037

496

,"Kansas Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ks2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ks2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:12 PM" "Back to Contents","Data 1: Kansas Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KS2" "Date","Kansas Natural Gas Underground Storage Capacity (MMcf)" 32324,334925 32689,334925 33054,301199 33419,301199 33785,290571

497

,"Kentucky Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ky2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ky2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:13 PM" "Back to Contents","Data 1: Kentucky Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290KY2" "Date","Kentucky Natural Gas Underground Storage Capacity (MMcf)" 37271,219914 37302,219914 37330,219914 37361,219914

498

,"Ohio Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290oh2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290oh2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:21 PM" "Back to Contents","Data 1: Ohio Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290OH2" "Date","Ohio Natural Gas Underground Storage Capacity (MMcf)" 37271,573784 37302,573784 37330,573784 37361,573784 37391,573784

499

,"Mississippi Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290ms2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290ms2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:17 PM" "Back to Contents","Data 1: Mississippi Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MS2" "Date","Mississippi Natural Gas Underground Storage Capacity (MMcf)" 37271,134012 37302,134012 37330,134012

500

,"Minnesota Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5290mn2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5290mn2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:15 PM" "Back to Contents","Data 1: Minnesota Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290MN2" "Date","Minnesota Natural Gas Underground Storage Capacity (MMcf)" 32324,7000 32689,7000 33054,7000 33419,7000 33785,7000 34150,7000