Sample records for underground nuclear explosions

  1. Glass produced by underground nuclear explosions. [Rainier

    SciTech Connect (OSTI)

    Schwartz, L.; Piwinskii, A.; Ryerson, F.; Tewes, H.; Beiriger, W.

    1983-01-01T23:59:59.000Z

    Detonation of an underground nuclear explosive produces a strong shock wave which propagates spherically outward, vaporizing the explosive and nearby rock and melting, the surrounding rock. The vaporized material expands adiabatically, forming a cavity. As the energy is dissipated during the cavity formation process, the explosive and rock debris condense and mix with the melted rock. The melt flows to the bottom of the cavity where it is quenched by fractured rock fragments falling from above as the cavity collapses. Measurements indicate that about 740 tonnes of rock and/or soil are melted for every kiloton (10/sup 12/ calories) of explosive energy, or about 25% of the explosive energy goes to melting rock. The resulting glass composition reflects the composition of the unaltered rock with explosive debris. The appearance ranges from white pumice to dense, dark lava. The bulk composition and color vary with the amount of explosive iron incorporated into the glass. The refractory explosion products are mixed with the solidified melt, although the degree of mixing is variable. Electron microprobe studies of glasses produced by Rainier in welded tuff have produced the following results: glasses are dehydrated relative to the host media, glasses are extremely heterogeneous on a 20 ..mu..m scale, a ubiquitous feature is the presence of dark marble-cake regions in the glass, which were locally enriched in iron and may be related to the debris, optically amorphous regions provide evidence of shock melting, only limited major element redistribution and homogenization occur within the cavity.

  2. Surface effects of underground nuclear explosions

    SciTech Connect (OSTI)

    Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

    1997-06-01T23:59:59.000Z

    The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

  3. The science case for 37Ar as a monitor for underground nuclear explosions

    SciTech Connect (OSTI)

    Haas, Derek A.; Orrell, John L.; Bowyer, Ted W.; McIntyre, Justin I.; Miley, Harry S.; Aalseth, Craig E.; Hayes, James C.

    2010-06-04T23:59:59.000Z

    A new calculation of the production of 37Ar from nuclear explosion neutron interactions on 40Ca in a suite of common sub-surface materials (rock, etc) is presented. Even in mineral structures that are relatively low in Ca, the resulting 37Ar signature is large enough for detection in cases of venting or gaseous diffusion driven by barometric pumping. Field and laboratory detection strategies and projected sensitivities are presented.

  4. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  5. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-07-10T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

  6. TOWARD END-TO-END MODELING FOR NUCLEAR EXPLOSION MONITORING: SIMULATION OF UNDERGROUND NUCLEAR EXPLOSIONS AND EARTHQUAKES USING HYDRODYNAMIC AND ANELASTIC SIMULATIONS, HIGH-PERFORMANCE COMPUTING AND THREE-DIMENSIONAL EARTH MODELS

    SciTech Connect (OSTI)

    Rodgers, A; Vorobiev, O; Petersson, A; Sjogreen, B

    2009-07-06T23:59:59.000Z

    This paper describes new research being performed to improve understanding of seismic waves generated by underground nuclear explosions (UNE) by using full waveform simulation, high-performance computing and three-dimensional (3D) earth models. The goal of this effort is to develop an end-to-end modeling capability to cover the range of wave propagation required for nuclear explosion monitoring (NEM) from the buried nuclear device to the seismic sensor. The goal of this work is to improve understanding of the physical basis and prediction capabilities of seismic observables for NEM including source and path-propagation effects. We are pursuing research along three main thrusts. Firstly, we are modeling the non-linear hydrodynamic response of geologic materials to underground explosions in order to better understand how source emplacement conditions impact the seismic waves that emerge from the source region and are ultimately observed hundreds or thousands of kilometers away. Empirical evidence shows that the amplitudes and frequency content of seismic waves at all distances are strongly impacted by the physical properties of the source region (e.g. density, strength, porosity). To model the near-source shock-wave motions of an UNE, we use GEODYN, an Eulerian Godunov (finite volume) code incorporating thermodynamically consistent non-linear constitutive relations, including cavity formation, yielding, porous compaction, tensile failure, bulking and damage. In order to propagate motions to seismic distances we are developing a one-way coupling method to pass motions to WPP (a Cartesian anelastic finite difference code). Preliminary investigations of UNE's in canonical materials (granite, tuff and alluvium) confirm that emplacement conditions have a strong effect on seismic amplitudes and the generation of shear waves. Specifically, we find that motions from an explosion in high-strength, low-porosity granite have high compressional wave amplitudes and weak shear waves, while an explosion in low strength, high-porosity alluvium results in much weaker compressional waves and low-frequency compressional and shear waves of nearly equal amplitude. Further work will attempt to model available near-field seismic data from explosions conducted at NTS, where we have accurate characterization of the sub-surface from the wealth of geological and geophysical data from the former nuclear test program. Secondly, we are modeling seismic wave propagation with free-surface topography in WPP. We have model the October 9, 2006 and May 25, 2009 North Korean nuclear tests to investigate the impact of rugged topography on seismic waves. Preliminary results indicate that the topographic relief causes complexity in the direct P-waves that leads to azimuthally dependent behavior and the topographic gradient to the northeast, east and southeast of the presumed test locations generate stronger shear-waves, although each test gives a different pattern. Thirdly, we are modeling intermediate period motions (10-50 seconds) from earthquakes and explosions at regional distances. For these simulations we run SPECFEM3D{_}GLOBE (a spherical geometry spectral element code). We modeled broadband waveforms from well-characterized and well-observed events in the Middle East and central Asia, as well as the North Korean nuclear tests. For the recent North Korean test we found that the one-dimensional iasp91 model predicts the observed waveforms quite well in the band 20-50 seconds, while waveform fits for available 3D earth models are generally poor, with some exceptions. Interestingly 3D models can predict energy on the transverse component for an isotropic source presumably due to surface wave mode conversion and/or multipathing.

  7. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

  8. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

  9. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

  10. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

  11. Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-06-12T23:59:59.000Z

    The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

  12. Nuclear explosive safety study process

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  13. Multinational underground nuclear parks

    SciTech Connect (OSTI)

    Myers, C.W. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, MS F650, Los Alamos, NM 87544 (United States); Giraud, K.M. [Wolf Creek Nuclear Operating Corporation, 1550 Oxen Lane NE, P.O. Box 411, Burlington, KS 66839-0411 (United States)

    2013-07-01T23:59:59.000Z

    Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

  14. Nuclear Explosive Safety Evaluation Processes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

  15. Nuclear Explosive Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

  16. Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site

    SciTech Connect (OSTI)

    Foxall, W; Vincent, P; Walter, W

    1999-07-23T23:59:59.000Z

    We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.

  17. Nuclear Explosive Safety Evaluation Processes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Manual provides supplemental details to support the nuclear explosive safety (NES) evaluation requirement of Department of Energy (DOE) Order (O) 452.2D, Nuclear Explosive Safety, dated 4/14/09. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-2.

  18. Security and Use Control of Nuclear Explosives and Nuclear Weapons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4C, Security and Use Control of Nuclear Explosives and Nuclear Weapons by LtCol Karl Basham Functional areas: Nuclear Explosives, Nuclear Weapons, Security The Order establishes...

  19. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-08-05T23:59:59.000Z

    The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  20. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-01-26T23:59:59.000Z

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  1. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Phillips, J.S.

    1991-12-01T23:59:59.000Z

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  2. Nuclear Explosive Safety Manual - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1A Admin Chg 1, Nuclear Explosive Safety Manual by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Nuclear Safety,...

  3. Safety of Nuclear Explosive Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-07T23:59:59.000Z

    This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

  4. Nuclear Explosive Safety Evaluation Processes - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Admin Chg 1, Nuclear Explosive Safety Evaluation Processes by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

  5. Simulation of Seismic Waves from Underground Explosions in Geologic Media: FY2009 Progress Report

    SciTech Connect (OSTI)

    Rodgers, A; Vorobiev, O; Sjogreen, B; Petersson, N A

    2009-11-09T23:59:59.000Z

    This report summarizes work done after one year on project LL09-Sim-NDD-02 entitled 'Exploratory Research: Advanced Simulation of Low Yield Underground Nuclear Explosions To Improve Seismic Yield Estimation and Source Identification'. Work on this effort proceeded in two thrusts: (1) parametric studies of underground explosion generated motions with GEODYN; and (2) coupling of GEODYN to WPP. GEODYN is a code for modeling hydrodynamic (shock-wave) motions in a wide variety of materials, including earth materials. WPP is an anelastic finite difference code for modeling seismic motions. The sensitivity of seismic motions to emplacement conditions was investigated with a series of parametric studies of low-yield (0.2-4 kiloton) chemical high-explosive shots at a range of burial depths in four canonical geologic media (granite, limestone, tuff and alluvium). Results indicate that the material has a strong impact on the seismic motions consistent with previous reports. Motions computed with GEODYN in realistically complex material models are very consistent with reported motions from nuclear tests by Perret and Bass (1975). The amplitude, frequency content and cavity size resulting from explosions are all strongly sensitive to the material strength. Explosions in high-strength (granite) resulted in the highest amplitude, shortest duration pulse and smallest cavities, whereas explosions in low-strength material (alluvium) resulted in the lowest amplitudes, longest duration pulse and larger cavities. The corner frequencies of P-wave motions at take-off angles corresponding to propagation to teleseismic distances show corresponding behavior, with high-strength materials having the highest corner frequency and low-strength materials having low corner frequency. Gravity has an important effect on the cavity size and outgoing motions due work done against lithostatic stress. In fact without gravity the cavity radius and elastic motions are largely insensitive to depth of burial. We investigated the effects of depth of burial for a given yield and material model in the presence of gravity and found that the cavity radius is slightly smaller for deeper shots and the resulting motions have shorter duration and higher corner frequency compared to shallower shots. On the second thrust, progress has been made on one-way coupling of GEODYN to WPP. Early in the project we demonstrated this capability from one-dimensional (1D) GEODYN calculations. We have now completed the capability to pass motions computed in 2D or 3D with GEODYN to WPP and propagated (in 3D) to large distances.

  6. Nuclear Explosive Safety Study Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-05-27T23:59:59.000Z

    A Nuclear Explosive Safety Study (NESS) is performed on all DOE Nuclear Explosive Operations (NEOs) in accordance with DOE O 452.1D, Nuclear Explosive and Weapon Surety Program; DOE O 452.2D, Nuclear Explosive Safety; and DOE M 452.2-2, Nuclear Explosive Safety Evaluation Processes.

  7. Nuclear explosives testing readiness evaluation

    SciTech Connect (OSTI)

    Valk, T.C.

    1993-09-01T23:59:59.000Z

    This readiness evaluation considers hole selection and characterization, verification, containment issues, nuclear explosive safety studies, test authorities, event operations planning, canister-rack preparation, site preparation, diagnostic equipment setup, device assembly facilities and processes, device delivery and insertion, emplacement, stemming, control room activities, readiness briefing, arming and firing, test execution, emergency response and reentry, and post event analysis to include device diagnostics, nuclear chemistry, and containment. This survey concludes that the LLNL program and its supporting contractors could execute an event within six months of notification, and a second event within the following six months, given the NET group`s evaluation and the following three restraints: (1) FY94 (and subsequent year) funding is essentially constant with FY93, (2) Preliminary work for the initial event is completed to the historical sic months status, (3) Critical personnel, currently working in dual use technologies, would be recallable as needed.

  8. Prediction of Fire Spread Following Nuclear Explosions

    E-Print Network [OSTI]

    Standiford, Richard B.

    Prediction of Fire Spread Following Nuclear Explosions Craig C. Chandler, Theodore G. Storey of Agriculture #12;Chandler, Craig C., Storey, Theodore G., and Tangren, Charles D. 1963. Prediction of fire spread following nuclear explosions. Berkeley, Calif., Pacific SW. Forest & Range Expt Sta. 110 pp

  9. NEW - DOE O 452.2E, Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  10. Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2D Admin Chg 1, Nuclear Explosive Safety by Carl Sykes This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of...

  11. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-06T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

  12. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-01-17T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

  13. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-09-20T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B. Canceled by DOE O 452.1D

  14. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Canceled by DOE O 452.1D Admin Chg 1.

  15. NUCLEAR ASPECTS OF STELLAR AND EXPLOSIVE NUCLEOSYNTHESIS

    E-Print Network [OSTI]

    Rauscher, Thomas

    NUCLEAR ASPECTS OF STELLAR AND EXPLOSIVE NUCLEOSYNTHESIS Thomas Rauscher 1 , Friedrich. of Astron. and Astroph., Univ. of California, Santa Cruz, CA 95064 Abstract The majority of nuclear­Feshbach). The global parametrizations of the nuclear properties needed for predictions far off stability probe our

  16. Security and Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-12-17T23:59:59.000Z

    This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

  17. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-01-22T23:59:59.000Z

    This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A.

  18. Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-19T23:59:59.000Z

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  19. Nuclear Explosive and Weapon Surety Program - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1E, Nuclear Explosive and Weapon Surety Program by Angela Chambers Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons...

  20. Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-04-14T23:59:59.000Z

    This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

  1. Regional Seismic Signals from Chemical Explosions, Nuclear Explosions and Earthquakes: Results from the Arizona Source Phenomenology Experiment

    SciTech Connect (OSTI)

    Walter, W R; Gok, R; Mayeda, K; Sicherman, A; Bonner, J; Leidig, M

    2005-09-02T23:59:59.000Z

    Routine industrial mining explosions play two important roles in seismic nuclear monitoring research: (1) they are a source of background events that need to be discriminated from potential nuclear explosions; (2) as some of the only explosions occurring in the current de facto global moratoria on nuclear testing, their signals should be exploited to improve the calibration of seismic m monitoring systems. A common issue monitoring arising in both of these roles is our limited physical understanding of the causes behind observed differences and similarities in the seismic signals produced by routine industrial mining blasts and small underground nuclear tests. In 2003 a consortium (Weston, SMU, LLNL, LANL and UTEP) carried out a Source Phenomenology Experiment (SPE), a series of dedicated explosions designed to improve this physical understanding, particularly as it relates to seismic methods of discriminating between signals from three different source types: earthquakes, industrial blasts, and nuclear tests. Here we very briefly review prior field experimental work that examined the seismic relationships between these source types.

  2. Nuclear Explosive and Weapon Surety Program - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1D Admin Chg 1, Nuclear Explosive and Weapon Surety Program by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

  3. Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    52.2E, Nuclear Explosive Safety by Angela Chambers Functional areas: Safety, Security This Department of Energy (DOE) Order establishes requirements to implement the nuclear...

  4. Nuclear Explosive Safety Study Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|WorkNationalNuclear Energyi

  5. An underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, V.E.

    1988-05-17T23:59:59.000Z

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

  6. Underground nuclear power station using self-regulating heat-pipe controlled reactors

    DOE Patents [OSTI]

    Hampel, Viktor E. (Pleasanton, CA)

    1989-01-01T23:59:59.000Z

    A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

  7. Characteristics of seismic waves from Soviet peaceful nuclear explosions in salt

    SciTech Connect (OSTI)

    Adushkin, V.V.; Kaazik, P.B.; Kostyuchenko, V.N.; Kuznetsov, O.P.; Nedoshivin, N.I.; Rubinshtein, K.D.; Sultanov, D.D. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres

    1995-04-01T23:59:59.000Z

    The report is carried out by the Institute for Dynamics of the Geospheres, Russian Academy of Sciences under contract NB280344 with Lawrence Livermore National Laboratory, University of California. The work includes investigation of seismic waves generation and propagation from Soviet peaceful underground nuclear explosions in salt based on the data from temporary and permanent seismic stations. The explosions were conducted at the sites Azgir and Vega within the territory of the Caspian depression of the Russian platform. The data used were obtained in the following conditions of conduction: epicentral distance range from 0 to 60 degrees, yields from 1 to 65 kt and depths of burial from 160 to 1500 m.

  8. Program to Prevent Accidental or Unauthorized Nuclear Explosive Detonations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1980-12-18T23:59:59.000Z

    The order establishes the DOE program to prevent accidental or unauthorized nuclear explosive detonations, and to define responsibilities for DOE participation in the Department of Defense program for nuclear weapon and nuclear weapon system safety. Does not cancel other directives.

  9. EPIDEMIOLOGICAL STUDIES ON RADIATION CARCINOGENESIS IN HUMAN POPULATIONS FOLLOWING ACUTE EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION

    E-Print Network [OSTI]

    Fabrikant, J.I.

    2010-01-01T23:59:59.000Z

    EXPOSURE: NUCLEAR EXPLOSIONS AND MEDICAL RADIATION . Jacobexposed to nuclear explosions and medical radiation. Sinceto nuclear explo ions or medical radiation, describes the

  10. Underground nuclear energy complexes - technical and economic advantages

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

    2010-01-01T23:59:59.000Z

    Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

  11. Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY...

    Energy Savers [EERE]

    Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY...

  12. NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

  13. Nuclear Explosion Monitoring Research and Engineering Program - Strategic Plan

    SciTech Connect (OSTI)

    Casey, Leslie A. [DOE/NNSA

    2004-09-01T23:59:59.000Z

    The Department of Energy (DOE)/National Nuclear Security Administration (NNSA) Nuclear Explosion Monitoring Research and Engineering (NEM R&E) Program is dedicated to providing knowledge, technical expertise, and products to US agencies responsible for monitoring nuclear explosions in all environments and is successful in turning scientific breakthroughs into tools for use by operational monitoring agencies. To effectively address the rapidly evolving state of affairs, the NNSA NEM R&E program is structured around three program elements described within this strategic plan: Integration of New Monitoring Assets, Advanced Event Characterization, and Next-Generation Monitoring Systems. How the Program fits into the National effort and historical accomplishments are also addressed.

  14. REGIONAL THERMOHYDROLOGICAL EFFECTS OF AN UNDERGROUND REPOSITORY FOR NUCLEAR WASTES IN HARD ROCK

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2014-01-01T23:59:59.000Z

    underground repository for nuclear waste in hard rock, LBL-and Vath, J.E. , Nuclear waste projections and source-termthe Scientific Basis for Nuclear Waste Management, Material

  15. Packaging and Transporting of Nuclear Explosives, Nuclear Components and Special Assemblies

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1979-09-09T23:59:59.000Z

    The order establishes Department of Energy (DOE) policy and assigns responsibilities and authorities for the packaging and transporting of nuclear explosives, nuclear components, and special assemblies. Cancels ERDA directive 0561, dated 9-15-75

  16. Contaminant Boundary at the Faultless Underground Nuclear Test

    SciTech Connect (OSTI)

    Greg Pohll; Karl Pohlmann; Jeff Daniels; Ahmed Hassan; Jenny Chapman

    2003-04-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) and the Nevada Division of Environmental Protection (NDEP) have reached agreement on a corrective action strategy applicable to address the extent and potential impact of radionuclide contamination of groundwater at underground nuclear test locations. This strategy is described in detail in the Federal Facility Agreement and Consent Order (FFACO, 2000). As part of the corrective action strategy, the nuclear detonations that occurred underground were identified as geographically distinct corrective action units (CAUs). The strategic objective for each CAU is to estimate over a 1,000-yr time period, with uncertainty quantified, the three-dimensional extent of groundwater contamination that would be considered unsafe for domestic and municipal use. Two types of boundaries (contaminant and compliance) are discussed in the FFACO that will map the three-dimensional extent of radionuclide contamination. The contaminant boundary will identify the region wi th 95 percent certainty that contaminants do not exist above a threshold value. It will be prepared by the DOE and presented to NDEP. The compliance boundary will be produced as a result of negotiation between the DOE and NDEP, and can be coincident with, or differ from, the contaminant boundary. Two different thresholds are considered for the contaminant boundary. One is based on the enforceable National Primary Drinking Water Regulations for radionuclides, which were developed as a requirement of the Safe Drinking Water Act. The other is a risk-based threshold considering applicable lifetime excess cancer-risk-based criteria The contaminant boundary for the Faultless underground nuclear test at the Central Nevada Test Area (CNTA) is calculated using a newly developed groundwater flow and radionuclide transport model that incorporates aspects of both the original three-dimensional model (Pohlmann et al., 1999) and the two-dimensional model developed for the Faultless data decision analysis (DDA) (Pohll and Mihevc, 2000). This new model includes the uncertainty in the three-dimensional spatial distribution of lithology and hydraulic conductivity from the 1999 model as well as the uncertainty in the other flow and transport parameters from the 2000 DDA model. Additionally, the new model focuses on a much smaller region than was included in the earlier models, that is, the subsurface within the UC-1 land withdrawal area where the 1999 model predicted radionuclide transport will occur over the next 1,000 years. The purpose of this unclassified document is to present the modifications to the CNTA groundwater flow and transport model, to present the methodology used to calculate contaminant boundaries, and to present the Safe Drinking Water Act and risk-derived contaminant boundaries for the Faultless underground nuclear test CAU.

  17. Regional analysis of Former Soviet Union peaceful nuclear explosions recorded in the Former Soviet Union. Final report

    SciTech Connect (OSTI)

    Adushkin, V.C.

    1995-11-11T23:59:59.000Z

    Until the late 80`s information on Soviet underground nuclear explosions, let alone seismic recording on Soviet soil, were not generally available to the seismological community. The dramatic changes since then have resulted in access to a wide variety of seismic data from Soviet explosions. In this report the author presents a data set, unique to the field of seismic verification. The data includes a large number of waveforms from in-country seismological station Borovoye for the Soviet peaceful nuclear explosions with announced yields and origin times, some with physical and mechanical conditions at the test site. The waveforms were recorded by digital station of different types. In this report the author has summarized and reviewed information on 122 explosions, and 55 waveforms in this data set, which contains recordings obtained in the course of more than 15 years. As the characteristics of recording instruments were changing during this period of time available information on instrument calibrations is also described and reviewed. The author also has attempted to describe the observed peculiarities of P-wave by using a simple source function and magnitude correction which take in attention such parameters as the velocity of longitudinal wave, density, moisture, gas content and depth of explosion. More detail analysis was conducted for the explosions conducted in salt as there is representative sample and they were observed on local distances.

  18. SciTech Connect: Some past and present uses of nuclear-explosion...

    Office of Scientific and Technical Information (OSTI)

    Some past and present uses of nuclear-explosion sources in physics Citation Details In-Document Search Title: Some past and present uses of nuclear-explosion sources in physics...

  19. High Explosives Application Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office ofDepartmentAdministration Explosives Application

  20. High Explosives Application Facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    and counterterrorism. Examples include the following: Stockpile Stewardship, assuring the reliability and safety of our nuclear weapons; Conventional weapon development, including...

  1. Identification of process controls for nuclear explosive operations

    SciTech Connect (OSTI)

    Fischer, S.R.; Konkel, H.; Houghton, K.; Wilson, M.

    1998-12-01T23:59:59.000Z

    Nuclear explosive assembly/disassembly operations that are carried out under United States Department of Energy (DOE) purview are characterized by activities that primarily involve manual tasks. These process activities are governed by procedural and administrative controls that traditionally have been developed without a formal link to process hazards. This work, which was based on hazard assessment (HA) activities conducted as part of the W69 Integrated Safety Process (ISP), specifies an approach to identifying formal safety controls for controlling (i.e., preventing or mitigating) hazards associated with nuclear explosive operations. Safety analysis methods are used to identify controls, which then are integrated into a safety management framework to provide assurance to the DOE that hazardous activities are managed properly. As a result of the work on the W69 ISP dismantlement effort, the authors have developed an approach to identify controls and safety measures to improve the safety of nuclear explosive operations. The methodology developed for the W69 dismantlement effort is being adapted to the W76 ISP effort. Considerable work is still ongoing to address issues such as the adequacy or effectiveness of controls. DOE nuclear explosive safety orders and some historical insights are discussed briefly in this paper. The safety measure identification methodology developed as part of the W69 ISP dismantlement process then is summarized.

  2. The detection of bulk explosives using nuclear-based techniques

    SciTech Connect (OSTI)

    Morgado, R.E.; Gozani, T.; Seher, C.C.

    1988-01-01T23:59:59.000Z

    In 1986 we presented a rationale for the detection of bulk explosives based on nuclear techniques that addressed the requirements of civil aviation security in the airport environment. Since then, efforts have intensified to implement a system based on thermal neutron activation (TNA), with new work developing in fast neutron and energetic photon reactions. In this paper we will describe these techniques and present new results from laboratory and airport testing. Based on preliminary results, we contended in our earlier paper that nuclear-based techniques did provide sufficiently penetrating probes and distinguishable detectable reaction products to achieve the FAA operational goals; new data have supported this contention. The status of nuclear-based techniques for the detection of bulk explosives presently under investigation by the US Federal Aviation Administration (FAA) is reviewed. These include thermal neutron activation (TNA), fast neutron activation (FNA), the associated particle technique, nuclear resonance absorption, and photoneutron activation. The results of comprehensive airport testing of the TNA system performed during 1987-88 are summarized. From a technical point of view, nuclear-based techniques now represent the most comprehensive and feasible approach for meeting the operational criteria of detection, false alarms, and throughput. 9 refs., 5 figs., 2 tabs.

  3. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28T23:59:59.000Z

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  4. Nuclear Engineering and Design 189 (1999) 757 Lower head integrity under steam explosion loads

    E-Print Network [OSTI]

    Yuen, Walter W.

    Nuclear Engineering and Design 189 (1999) 7­57 Lower head integrity under steam explosion loads T Received 24 August 1998; accepted 24 November 1998 Abstract Lower head integrity under steam explosion is `physically unreasonable'. © 1999 Elsevier Science S.A. All rights reserved. Keywords: Steam explosions

  5. amchitka underground nuclear: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    searches, with a 20 kiloton liquid scintillator detector of unprecedented 3% energy resolution (at 1 MeV) at 700-meter deep underground and to have other rich scientific...

  6. The strengthening and repair of underground structures: A new approach to the management of nuclear waste

    SciTech Connect (OSTI)

    Colgate, S.A.

    1991-01-01T23:59:59.000Z

    This paper presents three closely related ideas and technologies: (1) The secure, repairable, long time confinement of nuclear radioactive waste underground by a large surrounding region of compressive overstress; (2) The inherent tectonic weakness and vulnerability of the normal underground environment and its modification by overstress; (3) The process of creating overstress by the sequential periodic high pressure injection of a finite gel strength rapid setting grout. 12 refs., 6 figs.

  7. The Soviet program for peaceful uses of nuclear explosions

    SciTech Connect (OSTI)

    Nordyke, M.D.

    1996-07-24T23:59:59.000Z

    The concept of utilizing the weapons of war to serve the peaceful pursuits of mankind is as old as civilization itself. Perhaps the most famous reference to this basic desire is recorded in the Book of Micah where the great prophet Isiah called upon his people `to turn your spears into pitchforks and your swords into plowshares.` As the scientists at Los Alamos worked on developing the world`s first atomic bomb, thoughts of how this tremendous new source of energy could be used for peaceful purposes generally focused on using the thermal energy generated by the slow fission of uranium in a reactor, such as those being used to produce Plutonium to drive electric power stations. However, being scientists in a new, exciting field, it was impossible to avoid letting their minds wander from the task at hand to other scientific or non-military uses for the bombs themselves. During the Manhattan Project, Otto Frisch, one of the pioneers in the development of nuclear fission process in the 1930s, first suggested using an atomic explosion as a source for a large quantities of neutrons which could used in scientific experiments designed to expand their understanding of nuclear physics. After the war was over, many grandiose ideas appeared in the popular press on how this new source of energy should be to serve mankind. Not to be left out of the growing enthusiasm for peaceful uses of atomic energy, the Soviet Union added their visions to the public record. This document details the Soviet program for using nuclear explosions in peacetime pursuits.

  8. DRAFT - DOE O 452.2C, Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  9. Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28T23:59:59.000Z

    This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

  10. Nuclear winter: global consequences of multiple nuclear explosions

    SciTech Connect (OSTI)

    Turco, R.P.; Toon, O.B.; Ackerman, T.P.; Pollack, J.B.; Sagan, C.

    1983-12-23T23:59:59.000Z

    The potential global atmospheric and climatic consequences of nuclear war are investigated using models previously developed to study the effects of volcanic eruptions. Although the results are necessarily imprecise, the most probable first-order effects are serious. Significant hemispherical attenuation of the solar radiation flux and subfreezing land temperatures may be caused by fine dust raised in high-yield nuclear surface bursts and by smoke from fires. For many simulated exchanges of several thousand megatons, in which dust and smoke are generated and encircle the earth within 1 to 2 weeks, average light levels can be reduced to a few percent of ambient and land temperatures can reach -15/sup 0/ to -25/sup 0/C. The yield threshold for major optical and climatic consequences may be very low: only about 100 megatons detonated over major urban centers can create average hemispheric smoke optical depths greater than 2 for weeks and, subfreezing land temperatures for months. In a 5000-megaton war, at northern mid-latitude sites remote from targets, radioactive fallout on time scales of days to weeks can lead to chronic mean doses of up to 50 rads from external whole-body gamma-ray exposure, with a likely equal or greater internal dose from biologically active radionuclides. Large horizontal and vertical temperature gradients caused by adsorption of sunlight in smoke and dust clouds may greatly accelerate transport of particles and radioactivity from the Northern Hemisphere to the Southern Hemisphere. When combined with the prompt destruction from nuclear blast, fires, and fallout and the later enhancement of solar ultraviolet radiation due to ozone depletion, long-term exposure to cold, dark, and radioactivity could pose a serious threat to human survivors and to other species.

  11. The Stimulation of Hydrocarbon Reservoirs with Subsurface Nuclear Explosions

    SciTech Connect (OSTI)

    LORENZ,JOHN C.

    2000-12-08T23:59:59.000Z

    Between 1965 and 1979 there were five documented and one or more inferred attempts to stimulate the production from hydrocarbon reservoirs by detonating nuclear devices in reservoir strata. Of the five documented tests, three were carried out by the US in low-permeability, natural-gas bearing, sandstone-shale formations, and two were done in the USSR within oil-bearing carbonates. The objectives of the US stimulation efforts were to increase porosity and permeability in a reservoir around a specific well by creating a chimney of rock rubble with fractures extending beyond it, and to connect superimposed reservoir layers. In the USSR, the intent was to extensively fracture an existing reservoir in the more general vicinity of producing wells, again increasing overall permeability and porosity. In both countries, the ultimate goals were to increase production rates and ultimate recovery from the reservoirs. Subsurface explosive devices ranging from 2.3 to about 100 kilotons were used at depths ranging from 1208 m (3963 ft) to 2568 m (8427 ft). Post-shot problems were encountered, including smaller-than-calculated fracture zones, formation damage, radioactivity of the product, and dilution of the BTU value of tie natural gas with inflammable gases created by the explosion. Reports also suggest that production-enhancement factors from these tests fell short of expectations. Ultimately, the enhanced-production benefits of the tests were insufficient to support continuation of the pro-grams within increasingly adversarial political, economic, and social climates, and attempts to stimulate hydrocarbon reservoirs with nuclear devices have been terminated in both countries.

  12. Radionuclide Partitioning in an Underground Nuclear Test Cavity

    SciTech Connect (OSTI)

    Rose, T P; Hu, Q; Zhao, P; Conrado, C L; Dickerson, R; Eaton, G F; Kersting, A B; Moran, J E; Nimz, G; Powell, B A; Ramon, E C; Ryerson, F J; Williams, R W; Wooddy, P T; Zavarin, M

    2009-01-09T23:59:59.000Z

    In 2004, a borehole was drilled into the 1983 Chancellor underground nuclear test cavity to investigate the distribution of radionuclides within the cavity. Sidewall core samples were collected from a range of depths within the re-entry hole and two sidetrack holes. Upon completion of drilling, casing was installed and a submersible pump was used to collect groundwater samples. Test debris and groundwater samples were analyzed for a variety of radionuclides including the fission products {sup 99}Tc, {sup 125}Sb, {sup 129}I, {sup 137}Cs, and {sup 155}Eu, the activation products {sup 60}Co, {sup 152}Eu, and {sup 154}Eu, and the actinides U, Pu, and Am. In addition, the physical and bulk chemical properties of the test debris were characterized using Scanning Electron Microscopy (SEM) and Electron Microprobe measurements. Analytical results were used to evaluate the partitioning of radionuclides between the melt glass, rubble, and groundwater phases in the Chancellor test cavity. Three comparative approaches were used to calculate partitioning values, though each method could not be applied to every nuclide. These approaches are based on: (1) the average Area 19 inventory from Bowen et al. (2001); (2) melt glass, rubble, and groundwater mass estimates from Zhao et al. (2008); and (3) fission product mass yield data from England and Rider (1994). The U and Pu analyses of the test debris are classified and partitioning estimates for these elements were calculated directly from the classified Miller et al. (2002) inventory for the Chancellor test. The partitioning results from this study were compared to partitioning data that were previously published by the IAEA (1998). Predictions of radionuclide distributions from the two studies are in agreement for a majority of the nuclides under consideration. Substantial differences were noted in the partitioning values for {sup 99}Tc, {sup 125}Sb, {sup 129}I, and uranium. These differences are attributable to two factors: chemical volatility effects that occur during the initial plasma condensation, and groundwater remobilization that occurs over a much longer time frame. Fission product partitioning is very sensitive to the early cooling history of the test cavity because the decay of short-lived (t{sub 1/2} < 1 hour) fission-chain precursors occurs on the same time scale as melt glass condensation. Fission product chains that include both volatile and refractory elements, like the mass 99, 125, and 129 chains, can show large variations in partitioning behavior depending on the cooling history of the cavity. Uranium exhibits similar behavior, though the chemical processes are poorly understood. The water temperature within the Chancellor cavity remains elevated (75 C) more than two decades after the test. Under hydrothermal conditions, high solubility chemical species such as {sup 125}Sb and {sup 129}I are readily dissolved and transported in solution. SEM analyses of melt glass samples show clear evidence of glass dissolution and secondary hydrothermal mineral deposition. Remobilization of {sup 99}Tc is also expected during hydrothermal activity, but moderately reducing conditions within the Chancellor cavity appear to limit the transport of {sup 99}Tc. It is recommended that the results from this study should be used together with the IAEA data to update the range in partitioning values for contaminant transport models at the Nevada National Security Site (formerly known as the Nevada Test Site).

  13. A Safer Nuclear Enterprise - Application to Nuclear Explosive Safety (NES)(U)

    SciTech Connect (OSTI)

    Morris, Tommy J. [Los Alamos National Laboratory

    2012-07-05T23:59:59.000Z

    Activities and infrastructure that support nuclear weapons are facing significant challenges. Despite an admirable record and firm commitment to make safety a primary criterion in weapons design, production, handling, and deployment - there is growing apprehension about terrorist acquiring weapons or nuclear material. At the NES Workshop in May 2012, Scott Sagan, who is a proponent of the normal accident cycle, presented. Whether a proponent of the normal accident cycle or High Reliability Organizations - we have to be diligent about our safety record. Constant vigilance is necessary to maintain our admirable safety record and commitment to Nuclear Explosive Safety.

  14. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  15. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  16. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    SciTech Connect (OSTI)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  17. An underground characterization program for a nuclear fuel waste disposal vault in plutonic rock

    SciTech Connect (OSTI)

    Thompson, P.M.; Everitt, R.A. [AECL Research, Pinawa, Manitoba (Canada). Whiteshell Labs.

    1993-12-31T23:59:59.000Z

    The Canadian Nuclear Fuel Waste Management Program (CNFWMP) is developing a concept for disposing of nuclear fuel waste that involves placing and sealing it in a disposal vault excavated 500 to 1,000 m deep in the stable plutonic rock of the Canadian Shield. In this concept, engineered and natural barriers serve to isolate the waste from the biosphere. Since 1983, underground characterization and testing in support of the CNFWMP has been ongoing at the Underground Research Laboratory (URL) in southeastern Manitoba. This paper draws on experience gained at the URL to recommend an approach to underground characterization that would provide the necessary information to make design decisions for a disposal vault in plutonic rock.

  18. A Model-Based Signal Processing Approach to Nuclear Explosion Monitoring

    SciTech Connect (OSTI)

    Rodgers, A; Harris, D; Pasyanos, M

    2007-03-14T23:59:59.000Z

    This report describes research performed under Laboratory Research and Development Project 05-ERD-019, entitled ''A New Capability for Regional High-Frequency Seismic Wave Simulation in Realistic Three-Dimensional Earth Models to Improve Nuclear Explosion Monitoring''. A more appropriate title for this project is ''A Model-Based Signal Processing Approach to Nuclear Explosion Monitoring''. This project supported research for a radically new approach to nuclear explosion monitoring as well as allowed the development new capabilities in computational seismology that can contribute to NNSA/NA-22 Programs.

  19. Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines

    SciTech Connect (OSTI)

    Hicks, H.G.

    1981-11-01T23:59:59.000Z

    This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

  20. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect (OSTI)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01T23:59:59.000Z

    The purpose of this work is to characterize groundwater flow and contaminant transport at the Shoal underground nuclear test through numerical modeling using site-specific hydrologic data. The ultimate objective is the development of a contaminant boundary, a model-predicted perimeter defining the extent of radionuclide-contaminated groundwater from the underground test throughout 1,000 years at a prescribed level of confidence. This boundary will be developed using the numerical models described here, after they are approved for that purpose by DOE and NDEP.

  1. Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices

    E-Print Network [OSTI]

    Cizelj, Leon

    Vulnerability Analysis of a Nuclear Power Plant Considering Detonations of Explosive Devices Marko threats to a nuclear power plant in the year 1991 and after the 9/11 events in 2001. The methodology which strength and injuries of human beings with nuclear power plant models used in probabilistic safety

  2. Metadata of the chapter that will be visualized online Chapter Title Seismic Monitoring of Nuclear Explosions

    E-Print Network [OSTI]

    Foulger, G. R.

    Administration, Beijing, China 6 Introduction 7 The original development of nuclear weapons, and their 8 first,000 10 nuclear test explosions were conducted. About 500 of 11 these were carried out in the atmosphere with some regional concentra- 14 tions, and aroused widespread public opposition to 15 nuclear testing

  3. Underground infrastructure damage for a Chicago scenario

    SciTech Connect (OSTI)

    Dey, Thomas N [Los Alamos National Laboratory; Bos, Rabdall J [Los Alamos National Laboratory

    2011-01-25T23:59:59.000Z

    Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

  4. Electromagnetic pulse - the fifth factor in the impact of a nuclear explosion

    SciTech Connect (OSTI)

    Not Available

    1986-01-16T23:59:59.000Z

    Three ionization zones form during high-altitude nuclear explosions: 1) a short-lived ionization zone in the area of the nuclear explosion; 2) radioactive cloud hovering over the center of the explosion. The cloud consists of ionized volatile products from the explosion and lingers for several hours or even days; and 3) a large zone of increased ionization resulting from gamma and x-ray radiation as well as from neutrons. The zone forms at an altitude of 40 to 70 kilometers and remains for several days. Increased ionization zones have an impact on radio wave propagation and interfere with radio communication as well as the operation of radar stations. Radiation emitted from the increased ionization zone can have an impact on changing the parameters of elements in electronic devices, especially semiconductors. This can in turn interfere with the operation of other equipment, including radio stations, radars, and infrared telescopes, and can also damage this equipment.

  5. Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium

    SciTech Connect (OSTI)

    Taylor, S.R.; Kamm, J.R. [eds.

    1993-11-01T23:59:59.000Z

    The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.

  6. Underground Facility at Nevada National Security Site | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian Nuclear Warheads Arrives in United States and Will

  7. Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power

    SciTech Connect (OSTI)

    Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

  8. A study of small explosions and earthquakes during 1961--1989 near the Semipalatinsk Test Site, Kazakhstan

    SciTech Connect (OSTI)

    Khalturin, V.I.; Rautian, T.G. [Russian Academy of Sciences, Moscow (Russian Federation). Inst. of Physics of the Earth; Richards, P.G. [Lamont-Doherty Earth Observatory, Palisades, NY (United States)]|[Columbia Univ., New York, NY (United States). Dept. of Geological Sciences

    1994-03-01T23:59:59.000Z

    Several Russian sources have stated that 343 underground nuclear explosions were conducted during 1961--1989 at the Semipalatinsk Test Site. However, only 282 of them appear to have been described, in the openly available technical literature, with well-determined coordinates; and only 272 have both good locations and magnitudes. The authors have used regional data from 52 stations to study 65 seismic sources initially thought to be in or near the Semipalatinsk region, additional to the 272 underground nuclear explosions with known locations and magnitudes. Of these 65 events, the authors believe 8 are not explosions on the test site, namely: two earthquakes close to the test site; three earthquakes or chemical explosions 100--300 km from the test site; and three events at greater distances from Semipalatinsk. Of the remaining 57 events: 10 were known to be underground nuclear explosions with known locations and the authors have supplied magnitudes where none were previously available; one was a chemical explosion at Degelen; they believe 21 were underground nuclear explosions; 13 were chemical explosions at Balapan; 8 were chemical explosions elsewhere on the test site; three were either nuclear or chemical explosions; and one was either a chemical explosion or a cavity collapse. The largest magnitude of their 44 possible underground nuclear explosions is around 5 (February 4, 1965, obscured at many teleseismic stations by a large Aleutian earthquake). Others lie in the magnitude range 3.5--4.5, and clearly most have sub kiloton yields. Their data set of small events is important for purposes of evaluating the detection capability of teleseismic arrays, and the detection and identification capability of regional stations.

  9. Modeling to Support Groundwater Contaminant Boundaries for the Shoal Underground Nuclear Test

    SciTech Connect (OSTI)

    K. Pohlmann; G. Pohll; J. Chapman; A. Hassan; R. Carroll; C. Shirley

    2004-03-01T23:59:59.000Z

    Groundwater flow and radionuclide transport at the Shoal underground nuclear test are characterized using three-dimensional numerical models, based on site-specific hydrologic data. The objective of this modeling is to provide the flow and transport models needed to develop a contaminant boundary defining the extent of radionuclide-contaminated groundwater at the site throughout 1,000 years at a prescribed level of confidence. This boundary will then be used to manage the Project Shoal Area for the protection of the public and the environment.

  10. Proceedings of the 24th Seismic Research Review: Nuclear Explosion

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,Speeding access toExplosion Monitoring Technologies

  11. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,Speeding access toExplosion Monitoring TechnologiesMonitoring:

  12. Fire and the related effects of nuclear explosions. 1982 Asilomar Conference

    SciTech Connect (OSTI)

    Martin, S.B.; Alger, R.S. (eds.)

    1982-11-01T23:59:59.000Z

    This report summarizes the proceedings of a Federal Emergency Management Agency-sponsored Conference on fire and the related effects of nuclear explosions (with passing attention to earthquakes and other nonnuclear mishaps). This conference, the fifth of an annual series (formally called Blast/Fire Interaction Conferences), was held during the week of April 25, 1982, again at Asilomar, California.

  13. Whistleblower litigation: A potential explosion in the nuclear industry

    SciTech Connect (OSTI)

    Kowitt, A.J.; Panich, D. (Mayer, Brown, Platt, Chicago, IL (United States))

    1990-07-05T23:59:59.000Z

    This article examines the protection offered nuclear employees and the limits of a nuclear employer's liability under section 210 of the Energy Reorganization Act. The author's warn that review by the US Supreme Court is not necessary but could only serve to expose the nuclear industry to an onslaught of litigation resulting from the assertion by an employee subjected to an adverse employment decision that the employee was engaged in a protected activity and as a result has a right to protection from retaliation by the employer.

  14. Proceedings of the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2007-09-25T23:59:59.000Z

    These proceedings contain papers prepared for the 29th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 25-27 September, 2007 in Denver, Colorado. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  15. Proceedings of the 2010 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor

    2010-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2010: Ground-Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2010 in Orlando, Florida,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, National Science Foundation (NSF), Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  16. Proceedings of the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    SciTech Connect (OSTI)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar-chang, Julio [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Revelle, Douglas [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning [Los Alamos National Laboratory

    2008-09-23T23:59:59.000Z

    These proceedings contain papers prepared for the 30th Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 23-25 September, 2008 in Portsmouth, Virginia. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  17. Proceedings of the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2006-09-19T23:59:59.000Z

    These proceedings contain papers prepared for the 28th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 19-21 September, 2006 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  18. Proceedings of the 2011 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Patterson, Eileen F. [Editor; Sandoval, Marisa N. [Editor

    2011-09-13T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2011: Ground-Based Nuclear Explosion Monitoring Technologies, held 13-15 September, 2011 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO), National Science Foundation (NSF), and other invited sponsors. The scientific objectives of the research are to improve the United States' capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  19. Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment

    SciTech Connect (OSTI)

    Bos, Randall J. [Los Alamos National Laboratory; Dey, Thomas N. [Los Alamos National Laboratory; Runnels, Scott R. [Los Alamos National Laboratory

    2012-07-03T23:59:59.000Z

    Investigation of the effects of a nuclear device exploded in a urban environment such as the Chicago studied for this particular report have shown the importance on the effects from the urban canyons so typical of today's urban environment as compared to nuclear test event effects observed at the Nevada Test Site (NTS) and the Pacific Testing Area on which many of the typical legacy empirical codes are based on. This report first looks at the some of the data from nuclear testing that can give an indication of the damage levels that might be experienced due to a nuclear event. While it is well known that a above ground blast, even a ground burst, very poorly transmits energy into the ground ( < 1%) and the experimental results discussed here are for fully coupled detonations, these results do indicate a useful measure of the damage that might be expected. The second part of the report looks at effects of layering of different materials that typically would make up the near ground below surface environment that a shock would propagate through. As these simulations support and is widely known in the community, the effects of different material compositions in these layers modify the shock behavior and especially modify the energy dispersal and coupling into the basement structures. The third part of the report looks at the modification of the underground shock effects from a surface burst 1 KT device due to the presence of basements under the Chicago buildings. Without direct knowledge of the basement structure, a simulated footprint of a uniform 20m depth was assumed underneath each of the NGI defined buildings in the above ground environment. In the above ground case, the underground basement structures channel the energy along the line of site streets keeping the shock levels from falling off as rapidly as has been observed in unobstructed detonations. These simulations indicate a falloff of factors of 2 per scaled length as compared to 10 for the unobstructed case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

  20. Proceedings of the seventh symposium on containment of underground nuclear explosions. Volume 1

    SciTech Connect (OSTI)

    Olsen, C.W. [ed.] [ed.

    1993-12-31T23:59:59.000Z

    This is Volume 1 of two unclassified volumes of a meeting of workers at all levels in the science and technology of containment. Papers on containment and related geological, geophysical, engineering, chemical, and computational topics were included. Particular topics included in this volume are: General containment,tunnel and LOS topics, cavity conditions, and LYNER and chemical kiloton. Individual papers are indexed separately on the data base.

  1. Title The Containment of Underground Nuclear Explosions OTA-1SC-414

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilAElectronic Input Options Gary L. Hirsch SNLMay 20102 Hourto theContainment of

  2. Proceedings of the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration

    SciTech Connect (OSTI)

    Warren, N. Jill [Editor

    2002-09-17T23:59:59.000Z

    These proceedings contain papers prepared for the 24th Seismic Research Review: Nuclear Explosion Monitoring: Innovation and Integration, held 17-19 September, 2002 in Ponte Vedra Beach, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  3. Proceedings of the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring

    SciTech Connect (OSTI)

    Chavez, Francesca C. [Editor; Benson, Jody [Editor; Hanson, Stephanie [Editor; Mark, Carol [Editor; Wetovsky, Marvin A. [Editor

    2004-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the 26th Seismic Research Review: Trends in Nuclear Explosion Monitoring, held 21-23 September, 2004 in Orlando, Florida. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  4. Proceedings of the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base

    SciTech Connect (OSTI)

    Chavez, Francesca C. [Editor; Mendius, E. Louise [Editor

    2003-09-23T23:59:59.000Z

    These proceedings contain papers prepared for the 25th Seismic Research Review -- Nuclear Explosion Monitoring: Building the Knowledge Base, held 23-25 September, 2003 in Tucson, Arizona. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  5. Proceedings of the 2009 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marv A [Los Alamos National Laboratory; Aguilar - Chang, Julio [Los Alamos National Laboratory; Anderson, Dale [Los Alamos National Laboratory; Arrowsmith, Marie [Los Alamos National Laboratory; Arrowsmith, Stephen [Los Alamos National Laboratory; Baker, Diane [Los Alamos National Laboratory; Begnaud, Michael [Los Alamos National Laboratory; Harste, Hans [Los Alamos National Laboratory; Maceira, Monica [Los Alamos National Laboratory; Patton, Howard [Los Alamos National Laboratory; Phillips, Scott [Los Alamos National Laboratory; Randall, George [Los Alamos National Laboratory; Rowe, Charlotte [Los Alamos National Laboratory; Stead, Richard [Los Alamos National Laboratory; Steck, Lee [Los Alamos National Laboratory; Whitaker, Rod [Los Alamos National Laboratory; Yang, Xiaoning ( David ) [Los Alamos National Laboratory

    2009-09-21T23:59:59.000Z

    These proceedings contain papers prepared for the Monitoring Research Review 2009: Ground -Based Nuclear Explosion Monitoring Technologies, held 21-23 September, 2009 in Tucson, Arizona,. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, Comprehensive Test Ban Treaty Organization (CTBTO), and other invited sponsors. The scientific objectives of the research are to improve the United States’ capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  6. Proceedings of the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies

    SciTech Connect (OSTI)

    Wetovsky, Marvin A. [Editor; Benson, Jody [Editor; Patterson, Eileen F. [Editor

    2005-09-20T23:59:59.000Z

    These proceedings contain papers prepared for the 27th Seismic Research Review: Ground-Based Nuclear Explosion Monitoring Technologies, held 20-22 September, 2005 in Rancho Mirage, California. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Air Force Technical Applications Center (AFTAC), Air Force Research Laboratory (AFRL), US Army Space and Missile Defense Command, and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

  7. Smoke production from multiple nuclear explosions in nonurban areas

    SciTech Connect (OSTI)

    Small, R.D.; Bush, B.W.

    1985-08-02T23:59:59.000Z

    The amount of smoke that may be produced by wildland or rural fires as a consequence of a large-scale nuclear exchange is estimated. The calculation is based on a compilation of rural military facilities, identified from a wide variety of unclassified sources, together with data on their geographic positions, surrounding vegetation (fuel), and weather conditions. The ignition area (corrected for fuel moisture) and the amount of fire spread are used to calculate the smoke production. The results show a substantially lower estimated smoke production (from wildland fires) than in earlier nuclear winter studies. The amount varies seasonally and at its peak is less by an order of magnitude than the estimated threshold level necessary for a major attenuation of solar radiation. 32 references, 6 figures, 2 tables.

  8. Nuclear Explosive Safety Study Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|WorkNationalNuclear Energyi NOT

  9. Nuclear Explosives Safety Study Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|WorkNationalNuclear

  10. Underground Exploration

    E-Print Network [OSTI]

    Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste . . . . . . . . . . . . . . . . . . . . . . . . 14 Use rail to support tunnel boring machine operation . . . . . . . . . 14 Excavate smaller diameter tunnels outside the portal-to-portal loop . 15 Use a tunnel boring machine to excavate the core test area

  11. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices

    SciTech Connect (OSTI)

    Taylor, L.L.; Wilson, J.R. (INEEL); Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K. (SNL); Rath, J.S. (New Mexico Engineering Research Institute)

    1998-10-01T23:59:59.000Z

    The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  12. Los Alamos Explosives Performance Key to Stockpile Stewardship

    ScienceCinema (OSTI)

    Dattelbaum, Dana

    2015-01-05T23:59:59.000Z

    As the U.S. Nuclear Deterrent ages, one essential factor in making sure that the weapons will continue to perform as designed is understanding the fundamental properties of the high explosives that are part of a nuclear weapons system. As nuclear weapons go through life extension programs, some changes may be advantageous, particularly through the addition of what are known as "insensitive" high explosives that are much less likely to accidentally detonate than the already very safe "conventional" high explosives that are used in most weapons. At Los Alamos National Laboratory explosives research includes a wide variety of both large- and small-scale experiments that include small contained detonations, gas and powder gun firings, larger outdoor detonations, large-scale hydrodynamic tests, and at the Nevada Nuclear Security Site, underground sub-critical experiments.

  13. Comparison of Radionuclide Ratios in Atmospheric Nuclear Explosions and Nuclear Releases from Chernobyl and Fukushima seen in Gamma Ray Spectormetry

    SciTech Connect (OSTI)

    Friese, Judah I.; Kephart, Rosara F.; Lucas, Dawn D.

    2013-05-01T23:59:59.000Z

    The Comprehensive Nuclear Test Ban Treaty (CTBT) has remote radionuclide monitoring followed by an On Site Inspection (OSI) to clarify the nature of a suspect event. An important aspect of radionuclide measurements on site is the discrimination of other potential sources of similar radionuclides such as reactor accidents or medical isotope production. The Chernobyl and Fukushima nuclear reactor disasters offer two different reactor source term environmental inputs that can be compared against historical measurements of nuclear explosions. The comparison of whole-sample gamma spectrometry measurements from these three events and the analysis of similarities and differences are presented. This analysis is a step toward confirming what is needed for measurements during an OSI under the auspices of the Comprehensive Test Ban Treaty.

  14. Radioactivity pollution and protection of underground waters within the location of nuclear power plants in Jaslovske Bohunice

    SciTech Connect (OSTI)

    Plsko, J.; Kostolansky, M. [EKOSUR, Trnava (Slovakia); Polak, R. [HYDROPOL, Bratislava (Slovakia)

    1993-12-31T23:59:59.000Z

    As a result of research conducted at the Nuclear Power Plant (NPP) A-1 in connection with the decommissioning of the A-1 reactor, tritium contamination has been found in the ground water. A program has been undertaken for the monitoring and protection of underground waters, both onsite and offsite. The paper describes the present level of knowledge on the actual hydrogeological and radiological status of the area.

  15. TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada

    SciTech Connect (OSTI)

    Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa; Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; ,; Guy Roemer

    2002-09-01T23:59:59.000Z

    Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

  16. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  17. The Soviet program for peaceful uses of nuclear explosions. Revision 1

    SciTech Connect (OSTI)

    Nordyke, M.D.

    1996-10-01T23:59:59.000Z

    An extensive review is given of the US and Russian efforts on peaceful uses of nuclear explosions (PNE). The Soviet PNE program was many times larger than the US Plowshare program in terms of both the number of applications explored with field experiments and the extent to which they were introduced into industrial use. Several PNE applications, such as deep seismic sounding and oil stimulation, have been explored in depth and appear to have had a positive cost benefit at minimal public risk. Closure of runaway gas wells is another possible application where all other techniques fail. However, the fundamental problem with PNEs is the fact that, if they are to be economically significant, there must be widespread use of the technology, involving large numbers of sites, each of which presents a potential source of radioactivity to the environment and nearby communities. Russia now has more than 100 sites where significant high-level radioactivity has been buried. Experience over the last 20 years in US and in today`s Russia shows that it is virtually impossible to gain public acceptance of such applications of nuclear energy. In addition, PNEs also pose a difficult problem in the arms control area. Under a comprehensive test ban, any country conducting PNEs would, in appearance if not in fact, receive information useful for designing new nuclear weapons or maintaining an existing nuclear stockpile, information denied to the other parties to the treaty. 6 tabs, 10 figs.

  18. Comprehensive Nuclear-Test-Ban Treaty seismic monitoring: 2012 USNAS report and recent explosions, earthquakes, and other seismic sources

    SciTech Connect (OSTI)

    Richards, Paul G. [Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964 (United States)

    2014-05-09T23:59:59.000Z

    A comprehensive ban on nuclear explosive testing is briefly characterized as an arms control initiative related to the Non-Proliferation Treaty. The work of monitoring for nuclear explosions uses several technologies of which the most important is seismology-a physics discipline that draws upon extensive and ever-growing assets to monitor for earthquakes and other ground-motion phenomena as well as for explosions. This paper outlines the basic methods of seismic monitoring within that wider context, and lists web-based and other resources for learning details. It also summarizes the main conclusions, concerning capability to monitor for test-ban treaty compliance, contained in a major study published in March 2012 by the US National Academy of Sciences.

  19. Impact hazard mitigation: understanding the effects of nuclear explosive outputs on comets and asteroids

    SciTech Connect (OSTI)

    Clement, Ralph R C [Los Alamos National Laboratory; Plesko, Catherine S [Los Alamos National Laboratory; Bradley, Paul A [Los Alamos National Laboratory; Conlon, Leann M [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The NASA 2007 white paper ''Near-Earth Object Survey and Deflection Analysis of Alternatives'' affirms deflection as the safest and most effective means of potentially hazardous object (PHO) impact prevention. It also calls for further studies of object deflection. In principle, deflection of a PHO may be accomplished by using kinetic impactors, chemical explosives, gravity tractors, solar sails, or nuclear munitions. Of the sudden impulse options, nuclear munitions are by far the most efficient in terms of yield-per-unit-mass launched and are technically mature. However, there are still significant questions about the response of a comet or asteroid to a nuclear burst. Recent and ongoing observational and experimental work is revolutionizing our understanding of the physical and chemical properties of these bodies (e.g ., Ryan (2000) Fujiwara et al. (2006), and Jedicke et al. (2006)). The combination of this improved understanding of small solar-system bodies combined with current state-of-the-art modeling and simulation capabilities, which have also improved dramatically in recent years, allow for a science-based, comprehensive study of PHO mitigation techniques. Here we present an examination of the effects of radiation from a nuclear explosion on potentially hazardous asteroids and comets through Monte Carlo N-Particle code (MCNP) simulation techniques. MCNP is a general-purpose particle transport code commonly used to model neutron, photon, and electron transport for medical physics reactor design and safety, accelerator target and detector design, and a variety of other applications including modeling the propagation of epithermal neutrons through the Martian regolith (Prettyman 2002). It is a massively parallel code that can conduct simulations in 1-3 dimensions, complicated geometries, and with extremely powerful variance reduction techniques. It uses current nuclear cross section data, where available, and fills in the gaps with analytical models where data are not available. MCNP has undergone extensive verification and validation and is considered the gold-standard for particle transport. (Forrest B. Brown, et al., ''MCNP Version 5,'' Trans. Am. Nucl. Soc., 87, 273, November 2002.) Additionally, a new simulation capability using MCNP has become available to this collaboration. The first results of this new capability will also be presented.

  20. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring DOENA27323-1

    SciTech Connect (OSTI)

    Hull, E.L.

    2006-07-28T23:59:59.000Z

    Compact maintenance free mechanical cooling systems are being developed to operate large volume germanium detectors for field applications. To accomplish this we are utilizing a newly available generation of Stirling-cycle mechanical coolers to operate the very largest volume germanium detectors with no maintenance. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~ 1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed 5 years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring. The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be reliably utilized.

  1. Request to Cancel DOE M 452.2-2 Admin Chg 1, Nuclear Explosive Safety Evaluation Process

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-21T23:59:59.000Z

    NNSA has completed a top down review of four directives that address nuclear explosives operations and is developing a revision to clarify the purpose of conducting NES evaluations, the nature and categorization of findings, and timing of reviews for ongoing operations.

  2. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011, Part 2

    SciTech Connect (OSTI)

    Pawloski, G A

    2012-01-30T23:59:59.000Z

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done to support several different programs that desire access to the ground surface above expended underground nuclear tests. The programs include: the Borehole Management Program, the Environmental Restoration Program, and the National Center for Nuclear Security Gas-Migration Experiment. Safety decisions must be made before a crater area, or potential crater area, can be reentered for any work. Evaluation of cavity collapse and crater formation is input into the safety decisions. Subject matter experts from the LLNL Containment Program who participated in weapons testing activities perform these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, ground motion, and radiological release information. Both classified and unclassified data were reviewed. The evaluations do not include the effects of erosion that may modify the collapse craters over time. They also do not address possible radiation dangers that may be present. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2011 was published on March 2, 2011. This report, considered Part 2 of work undertaken in calendar year 2011, compiles evaluations requested after the March report. The following unclassified summary statements describe collapse evolution and crater stability in response to a recent request to review 6 LLNL test locations in Yucca Flat, Rainier Mesa, and Pahute Mesa. They include: Baneberry in U8d; Clearwater in U12q; Wineskin in U12r, Buteo in U20a and Duryea in nearby U20a1; and Barnwell in U20az.

  3. Estimation of scalar moments from explosion-generated surface waves

    SciTech Connect (OSTI)

    Stevens, J.L.

    1985-04-01T23:59:59.000Z

    Rayleigh waves from underground nuclear explosions are used to estimate scaler moments for 40 Nevada Test Site (NTS) explosions and 18 explosions at the Soviet East Kazakh test site. The Rayleigh wave spectrum is written as a product of functions that depend on the elastic structure of the travel path, the elastic structure of the source region and the Q structure of the path. Results are used to examine the worldwide variability of each factor and the resulting variability of surface wave amplitudes. The path elastic structure and Q structure are found by inversion of Rayleigh wave phase and group velocities and spectral amplitudes. The Green's function derived from this structure is used to estimate the moments of explosions observed along the same path. This procedure produces more consistent amplitude estimates than conventional magnitude measurements. Network scatter in log moment is typically 0.1. In contrast with time-domain amplitudes, the elastic structure of the travel path causes little variability in spectral amplitudes. When the mantle Q is constrained to a value of approximately 100 at depths greater than 120 km, the inversion for Q and moment produces moments that remain constant with distance. Based on the best models available, surface waves from NTS explosions should be larger than surface waves from East Kazakh explosions with the same moment. Estimated scaler moments for the largest East Kazakh explosions since 1976 are smaller than the estimated moments for the largest NTS explosions for the same time period.

  4. Nuclear data evaluation for explosive hydrogen burning on A = 30-50 nuclei.

    SciTech Connect (OSTI)

    Smith, D. L.

    1998-02-17T23:59:59.000Z

    A research program to develop a reaction-rate (RR) data base for stellar explosive hydrogen burning via (p,{gamma}) and (p,{alpha}) reactions involving stable-isotope target elements in the mass range A = 30-50 (phosphorus to titanium) is described. This project includes: (1) a survey of the literature; (2) preparation of written summaries for pertinent contributions; (3) compilation of alpha-numeric information into computer-platform-independent data files; (4) tabulation of reaction resonance parameters (and uncertainties); (5) determination of resonance RRs (and uncertainties) for Maxwellian-distributed reactant energies corresponding to temperatures in the range T{sub 9}=0.01-10 GK (1 GK=10{sup 9} degrees Kelvin); (6) fitting of these calculated RRs with an empirical formula, thereby converting the basic data into a form that is convenient for astrophysical network calculations; (7) examination of deviations between fitted curves and these RRs in the context of the uncertainties. The results of this work are made available to the nuclear astrophysics community through formal laboratory reports and computer files which are distributed to data centers. The procedures used in this work are discussed and some representative examples of products from the activity are given.

  5. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2008-06-01T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.

  6. Mechanically Cooled Large-Volume Germanium Detector Systems for Nuclear Explosion Monitoring

    SciTech Connect (OSTI)

    Hull, Ethan L.; Pehl, Richard H.; Lathrop, James R.; Martin, Gregory N.; Mashburn, R. B.; Miley, Harry S.; Aalseth, Craig E.; Hossbach, Todd W.; Bowyer, Ted W.

    2006-09-21T23:59:59.000Z

    Compact maintenance free mechanical cooling systems are being developed to operate large volume (~570 cm3, ~3 kg, 140% or larger) germanium detectors for field applications. We are using a new generation of Stirling-cycle mechanical coolers for operating the very largest volume germanium detectors with absolutely no maintenance or liquid nitrogen requirements. The user will be able to leave these systems unplugged on the shelf until needed. The flip of a switch will bring a system to life in ~1 hour for measurements. The maintenance-free operating lifetime of these detector systems will exceed five years. These features are necessary for remote long-duration liquid-nitrogen free deployment of large-volume germanium gamma-ray detector systems for Nuclear Explosion Monitoring (NEM). The Radionuclide Aerosol Sampler/Analyzer (RASA) will greatly benefit from the availability of such detectors by eliminating the need for liquid nitrogen at RASA sites while still allowing the very largest available germanium detectors to be utilized. These mechanically cooled germanium detector systems being developed here will provide the largest, most sensitive detectors possible for use with the RASA. To provide such systems, the appropriate technical fundamentals are being researched. Mechanical cooling of germanium detectors has historically been a difficult endeavor. The success or failure of mechanically cooled germanium detectors stems from three main technical issues: temperature, vacuum, and vibration. These factors affect one another. There is a particularly crucial relationship between vacuum and temperature. These factors will be experimentally studied both separately and together to insure a solid understanding of the physical limitations each factor places on a practical mechanically cooled germanium detector system for field use. Using this knowledge, a series of mechanically cooled germanium detector prototype systems are being designed and fabricated. Our collaborators at Pacific Northwest National Laboratory (PNNL) will evaluate these detector systems on the bench top and eventually in RASA systems to insure reliable and practical operation.

  7. Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository--Volume 2: Methodology and Results

    SciTech Connect (OSTI)

    Taylor, L.L.; Wilson, J.R.; Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K.; Rath, J.S.

    1998-10-01T23:59:59.000Z

    The US Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

  8. Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010

    SciTech Connect (OSTI)

    Pawloski, G A

    2011-01-03T23:59:59.000Z

    This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

  9. Challenges in defining a radiologic and hydrologic source term for underground nuclear test centers, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    Smith, D.K.

    1995-06-01T23:59:59.000Z

    The compilation of a radionuclide inventory for long-lived radioactive contaminants residual from nuclear testing provides a partial measure of the radiologic source term at the Nevada Test Site. The radiologic source term also includes potentially mobile short-lived radionuclides excluded from the inventory. The radiologic source term for tritium is known with accuracy and is equivalent to the hydrologic source term within the saturated zone. Definition of the total hydrologic source term for fission and activation products that have high activities for decades following underground testing involves knowledge and assumptions which are presently unavailable. Systematic investigation of the behavior of fission products, activation products and actinides under saturated or Partially saturated conditions is imperative to define a representative total hydrologic source term. This is particularly important given the heterogeneous distribution of radionuclides within testing centers. Data quality objectives which emphasize a combination of measurements and credible estimates of the hydrologic source term are a priority for near-field investigations at the Nevada Test Site.

  10. Madelyn Creedon visits NNSS U1a underground complex | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.govSecurity AdministrationNuclearMC&ASecurity

  11. EMMA a new underground cosmic-ray experiment T. Enqvista

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    and Nuclear Safety Authority ­ STUK, Helsinki, Finland d Centre for Underground Physics at Pyh¨asalmi (CUPP

  12. NNSA Commemorates the 20th Anniversary of the Last Underground...

    National Nuclear Security Administration (NNSA)

    Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

  13. Explosives tester

    DOE Patents [OSTI]

    Haas, Jeffrey S. (San Ramon, CA); Howard, Douglas E. (Livermore, CA); Eckels, Joel D. (Livermore, CA); Nunes, Peter J. (Danville, CA)

    2011-01-11T23:59:59.000Z

    An explosives tester that can be used anywhere as a screening tool by non-technical personnel to determine whether a surface contains explosives. First and second explosives detecting reagent holders and dispensers are provided. A heater is provided for receiving the first and second explosives detecting reagent holders and dispensers.

  14. A STUDY OF REGIONAL TEMPERATURE AND THERMOHYDROLOGICAL EFFECTS OF AN UNDERGROUND REPOSITORY FOR NUCLEAR WASTES IN HARD ROCK

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2010-01-01T23:59:59.000Z

    generated by the stored nuclear wastes. Spent fuel 10-yeartask force for review of nuclear waste manage­ ment, DOE/ER-Review Group on Nuclear Waste Management. Subground report

  15. A STUDY OF REGIONAL TEMPERATURE AND THERMOHYDROLOGICAL EFFECTS OF AN UNDERGROUND REPOSITORY FOR NUCLEAR WASTES IN HARD ROCK

    E-Print Network [OSTI]

    Wang, J.S.Y.

    2010-01-01T23:59:59.000Z

    of heat generated by the stored nuclear wastes. Spent fuelmode of heat transfer from the nuclear waste to the rockdensity of heat generated by the stored nuclear wastes Fig.

  16. Explosive nucleosynthesis: nuclear physics impact using neutrino-driven wind simulations

    E-Print Network [OSTI]

    A. Arcones; G. Martinez-Pinedo

    2010-12-14T23:59:59.000Z

    We present nucleosynthesis studies based on hydrodynamical simulations of core-collapse supernovae and their subsequent neutrino-driven winds. Although the conditions found in these simulations are not suitable for the rapid neutron capture (r-process) to produce elements heavier than A$\\sim$130, this can be solved by artificially increasing the wind entropy. In this way one can mimic the general behavior of an ejecta where the r-process occurs. We study the impact of the long-time dynamical evolution and of the nuclear physics input on the final abundances and show that different nuclear mass models lead to significant variations in the abundances. These differences can be linked to the behavior of nuclear masses far from stability. In addition, we have analyzed in detail the effect of neutron capture and beta-delayed neutron emission when matter decays back to stability. In all our studied cases, freeze out effects are larger than previously estimated and produce substantial changes in the post freeze out abundances.

  17. An evaluation of the effectiveness of the US Department of Energy Integrated Safety Process (SS-21) for Nuclear Explosive Operations using quantitative hazard analysis

    SciTech Connect (OSTI)

    Fischer, S.R.; Konkel, H.; Bott, T.; Eisenhawer, S.; Auflick, J.; Houghton, K.; Maloney, K.; DeYoung, L.; Wilson, M. [Los Alamos National Lab., NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States)

    1996-03-01T23:59:59.000Z

    This paper evaluates the effectiveness of the US Department of Energy Integrated Safety Process or ``Seamless Safety (SS-21)`` program for reducing risk associated with nuclear explosive operations. A key element in the Integrated Safety Process is the use of hazard assessment techniques to evaluate process design changes in parallel or concurrently with process design and development. This concurrent hazard assessment method recently was employed for the B61-0, 2 & 5 and W69 nuclear explosive dismantlement activities. This paper reviews the SS-21 hazard assessment process and summarizes the results of the concurrent hazard assessments performed for the B61 and W69 dismantlement programs. Comparisons of quantitative hazard assessment results before and after implementation of the SS-21 design process shed light on the effectiveness of the SS-21 program for achieving risk reduction.

  18. Critical assessment of seismic and geomechanics literature related to a high-level nuclear waste underground repository

    SciTech Connect (OSTI)

    Kana, D.D.; Vanzant, B.W.; Nair, P.K. [Southwest Research Inst., San Antonio, TX (USA). Center for Nuclear Waste Regulatory Analyses; Brady, B.H.G. [ITASCA Consulting Group, Inc., Minneapolis, MN (USA)

    1991-06-01T23:59:59.000Z

    A comprehensive literature assessment has been conducted to determine the nature and scope of technical information available to characterize the seismic performance of an underground repository and associated facilities. Significant deficiencies were identified in current practices for prediction of seismic response of underground excavations in jointed rock. Conventional analytical methods are based on a continuum representation of the host rock mass. Field observations and laboratory experiments indicate that, in jointed rock, the behavior of the joints controls the overall performance of underground excavations. Further, under repetitive seismic loading, shear displacement develops progressively at block boundaries. Field observations correlating seismicity and groundwater conditions have provided significant information on hydrological response to seismic events. However, lack of a comprehensive model of geohydrological response to seismicity has limited the transportability conclusions from field observations. Based on the literature study, matters requiring further research in relation to the Yucca Mountain repository are identified. The report focuses on understanding seismic processes in fractured tuff, and provides a basis for work on the geohydrologic response of a seismically disturbed rock mass. 220 refs., 43 figs., 11 tabs.

  19. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2007-09-16T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  20. Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyof EnergyOokie MaStateDOE O 452.2D, NUCLEAR

  1. Nuclear Explosives Safety Evaluation Process (DOE-STD-3015-2004)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB O|WorkNationalNuclear Energyi

  2. Nuclear Instruments and Methods in Physics Research A 518 (2004) 775798 CUORE: a cryogenic underground observatory for rare events

    E-Print Network [OSTI]

    -67010 Assergi (L'Aquila), Italy f Laboratorio de Fisica Nuclear y Altas Energias, Universid"ad de of 130 Te (33.8% abundance), cold dark matter, solar axions, and rare nuclear decays. A preliminary

  3. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

  4. Explosive Nucleosynthesis: Prospects

    E-Print Network [OSTI]

    David Arnett

    1999-08-16T23:59:59.000Z

    Explosive nucleosynthesis is a combination of the nuclear physics of thermonuclear reactions, and the hydrodynamics of the plasma in which the reactions occur. It depends upon the initial conditions---the stellar evolution up to the explosive instability, and the nature of the explosion mechanism. Some key issues for explosive nucleosynthesis are the interaction of burning with hydrodynamics, the degree of microscopic mixing in convective zones, and the breaking of spherical symmetry by convection and rotation. Recent experiments on high intensity lasers provides new opportunities for laboratory testing of astrophysical hydrodynamic codes. Implications of SN1987A, SN1998bw (GRB980425?), and eta Carina are discussed, as well as the formation of black holes or neutron stars.

  5. HEAT TRANSFER IN UNDERGROUND HEATING EXPERIMENTS IN GRANITE, STRIPA, SWEDEN

    E-Print Network [OSTI]

    Chan, T.

    2010-01-01T23:59:59.000Z

    Session on Heat Transfer in Nuclear Waste Disposal, C'.heat transfer processes associated with underground nuclear wasteheat transfer and related processes in an un­ derground environment similar to that expected in a mined nuclear waste

  6. Air Activation Following an Atmospheric Explosion

    SciTech Connect (OSTI)

    Lowrey, Justin D.; McIntyre, Justin I.; Prichard, Andrew W.; Gesh, Christopher J.

    2013-03-13T23:59:59.000Z

    In addition to thermal radiation and fission products, nuclear explosions result in a very high flux of unfissioned neutrons. Within an atmospheric nuclear explosion, these neutrons can activate the various elemental components of natural air, potentially adding to the radioactive signature of the event as a whole. The goal of this work is to make an order-of-magnitude estimate of the total amount of air activation products that can result from an atmospheric nuclear explosion.

  7. Seismic signals from underground cavity collapses and other mining-related failures

    SciTech Connect (OSTI)

    Walter, W.R.; Heuze, F.; Dodge, D.

    1997-07-01T23:59:59.000Z

    The sudden collapse of man-made underground cavities have generated seismic signals as large as magnitude 5.4. Collapses are just one of the many types of mining associated seismicity including coalbumps and rockbursts which need to be identified and distinguished from potential clandestine nuclear explosions under the recently signed Comprehensive Test Ban Treaty (CTBT). Collapses, coalbumps and rockbursts are of concern for seismically monitoring a CTBT for a number of reasons. First, they can look like explosions when using some seismic discriminant measures, such M{sub s}:m{sub b}, M{sub o}: m{sub b}, regional P/S ratios and depth. Second, underground nuclear explosions themselves produce cavities that might collapse, possibly aiding in the detection of a clandestine event. Finally, because all mine-related events occur in the vicinity of underground cavities, they may come under special scrutiny because of the concern that very large, specially constructed cavities could be used to evasively decouple a clandestine test. For these reasons mine-related seismicity in both active and former mining regions have the potential to be false alarms under a CTBT. We are investigating techniques to identify collapses, either directly via waveform modeling, or indirectly by combining several seismic discriminants. We are also investigating the source mechanisms of coalbumps and collapses to better understand the performance of seismic discriminants for these events. In particular we have found similarities in point source models of some longwall coalbumps, room- and-pillar mine collapses and NTS nuclear explosion cavity collapses. In order to understand coalbumps we are analyzing events from central Utah recorded at regional distances in Utah and Nevada including at the auxiliary station ELK. Some of these have anomalous, explosion- like high frequency P/S ratios. We are combining this new study with results from previous field work done in 1995 at a Colorado long-wall coal mining operation. Similarly to longwall coal mines in Utah and elsewhere, this Colorado mine completely excavates a 3m high coal seam in 250 m wide panels leaving the material above unsupported. The roof material above the excavated seam eventually collapses resulting in seismic events.

  8. Nuclear Explosives Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-10-16T23:59:59.000Z

    This draft has been scheduled for final review before the Directives Review Board on 10/16/14. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-1014). All major comments and concerns should be submitted by COB 10/16/2014.

  9. THE GROOVE MORTAR, A REUABLE METHOD FOR TESTING THE FLAMEPROOFNESS OF CERTAIN EXPLOSIVES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    explosives, such äs slurries and emulsions, is somewhat problematical. Taking into aecount the Polish and a summary of the results obtained so far. Explosives in French coal mines Under French regulations, explosives designed for use in Underground coal mines can be divided into three groups : - group l (in French

  10. Method for making generally cylindrical underground openings

    DOE Patents [OSTI]

    Routh, J.W.

    1983-05-26T23:59:59.000Z

    A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

  11. Preliminary Notice of Violation, Pacific Underground Construction, Inc.- WEA-2009-02

    Broader source: Energy.gov [DOE]

    Issued to Pacific Underground Construction, Inc. related to a polyvinyl chloride (PVC) pipe explosion that occurred in Sector 30 of the linear accelerator facility at the SLAC National Accelerator Laboratory (SLAC).

  12. Underground Storage Tank Regulations

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

  13. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-03-29T23:59:59.000Z

    This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

  14. Explosive complexes

    DOE Patents [OSTI]

    Huynh, My Hang V. (Los Alamos, NM)

    2011-08-16T23:59:59.000Z

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  15. Explosive complexes

    DOE Patents [OSTI]

    Huynh, My Hang V. (Los Alamos, NM)

    2009-09-22T23:59:59.000Z

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  16. H. R. 5051: a bill to authorize funding for research on the potential atmospheric, climatic, biological, health, and environmental consequences of nuclear explosions and nuclear exchanges. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, June 18, 1986

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    The Nuclear Winter Research Act of 1986 authorizes funding to study the potential consequences of nuclear explosions. The research will cover possible atmospheric, climatic, biological, health, or environmental changes to see if the nuclear winter theory is plausible. The bill authorizes $8.5 million over a five-year period for the Department of Defense study. It also establishes a Nuclear Winter Study Commission to determine and evaluate what implications these potential effects have for defense policy.

  17. Hydrophone investigations of earthquake and explosion generated high-frequency seismic phases. Final report, October 1983-September 1985

    SciTech Connect (OSTI)

    Walker, D.A.

    1986-04-30T23:59:59.000Z

    Data from the Wake Island Hydrophone Array was used in studies related to the detection and discrimination of underground nuclear explosions. These include: (1) comparative studies of explosion phases from sites at comparable epicentral distances in the highly efficient propagational distance range of 60 to 90/sup 0/; (2) some preliminary estimates of detection level thresholds; (3) estimates of deep ocean noise levels and comparisons to quiet continental sites; (4) determinations of the stability of yield estimates; and (5) the location of significant earthquakes unreported by both the NEIS and ISC, but well-recorded at great distances by elements of the Wake array, in the interior and along the subducting margins of the Western Pacific Basin. The unreported earthquakes in the southwest Pacific have led, in part, to the discovery of a new subduction zone - the Micronesian Trench. Unreported earthquakes in the interior of the basin and along its subducting margins may also have associated gravitational effects of Air Force relevance. Finally, data from the Wake array has been useful in a partial resolution of the reported mystery cloud of 9 April 1984 and in the analysis of T-phases from underground explosions in the Tuamotus.

  18. Quantification of explosion source characteristics from near-source, regional and teleseismic distances. Final report, 23 February 1987-31 July 1989

    SciTech Connect (OSTI)

    Stump, B.; Reamer, S.; Anderson, D.; Olsen, K.; Reinke, R.

    1989-07-31T23:59:59.000Z

    Work over the contract period is summarized in four papers: (1) Source Parameter Estimation for Large, Bermed, Surface Chemical Explosions; (2) Seismic Wave Generation by Mine Blasts; (3) Pomona Quarry Seismic Experiment, Near-Source Data; and (4) MISTY ECHO, The Seismic Source Physics Experiment. The first paper attempts to qualify source differences between large surface chemical explosions ranging in yields from 0.075 to 1.65 kilotons. The second paper documents millisecond delay blasting practices in the mining industry and illustrates the effects of these practices on near-source seismic observations. The effects of scatter in design blasting times is illustrated. A set of experiments designed to begin the comparison between single and production mining explosions are described in the third paper. The multiple explosion production shot was documented with high speed photography so that the design and actual firing times of the individual explosions could be compared. The final paper is a preliminary data report describing the first of a series of free field and free surface seismic experiments designed to document the effects of the free surface on seismic radiation from underground nuclear explosions. The particular experiment, MISTY ECHO, was detonated in Rainier Mesa at the Nevada Test Site.

  19. Explosive simulants for testing explosive detection systems

    DOE Patents [OSTI]

    Kury, John W. (Danville, CA); Anderson, Brian L. (Lodi, CA)

    1999-09-28T23:59:59.000Z

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  20. Today and Future Neutrino Experiments at Krasnoyarsk Nuclear Reactor

    E-Print Network [OSTI]

    Yu. V. Kozlov; S. V. Khalturtsev; I. N. Machulin; A. V. Martemyanov; V. P. Martemyanov; A. A. Sabelnikov; V. G. Tarasenkov; E. V. Turbin; V. N. Vyrodov; L. A. Popeko; A. V. Cherny; G. A. Shishkina

    1999-12-22T23:59:59.000Z

    The results of undergoing experiments and new experiment propositions at Krasnoyarsk underground nuclear reactor are presented

  1. Underground Injection Control (Louisiana)

    Broader source: Energy.gov [DOE]

    The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

  2. Summary of a joint US-Japan study of potential approaches to reduce the attractiveness of various nuclear materials for use in a nuclear explosive device by a terrorist group

    SciTech Connect (OSTI)

    Bathke, C.G. [Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM (United States); Inoue, N.; Kuno, Y.; Mihara, T.; Sagara, H. [Japan Atomic Energy Agency, 4-49 Muramatsu, Tokai-mura, Naka-gun, Ibaraki 319-1184 (Japan); Ebbinghaus, B.B. [Lawrence Livermore National Laboratory, P.O. Box L-168, Livermore, CA 94551 (United States); Murphy, J.; Dalton, D. [National Nuclear Security Administration, Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585 (United States); Nagayama, Y. [Ministry of Education, Culture, Sports, Science and Technology, 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan)

    2013-07-01T23:59:59.000Z

    This paper summarizes the results of a joint US-Japan study to establish a mutual understanding, through scientific-based study, of potential approaches to reduce the attractiveness of various nuclear materials for use in a terrorist nuclear explosive device (NED). 4 approaches that can reduce materials attractiveness with a very high degree of effectiveness are: -) diluting HEU with natural or depleted U to an enrichment of less than 10% U-235; -) storing Pu in nuclear fuel that is not man portable and with a dose rate greater or equal to 10 Gy/h at 1 m; -) storing Pu or HEU in heavy items, i.e. not transportable, provided the removal of the Pu or HEU from the item requires a purification/processing capability; and -) converting Pu and HEU to very dilute forms (such as wastes) that, without any security barriers, would require very long acquisition times to acquire a Category I quantity of Pu or of HEU. 2 approaches that can reduce materials attractiveness with a high degree of effectiveness are: -) converting HEU-fueled research reactors into LEU-fueled research reactors or dilute HEU with natural or depleted U to an enrichment of less than 20% U-235; -) converting U/Al reactor fuel into U/Si reactor fuel. Other approaches have been assessed as moderately or totally inefficient to reduce the attractiveness of nuclear materials.

  3. Explosives Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA) /EmailMolecular Solids1spectroscopies |Explosives

  4. Underground pumped hydroelectric storage

    SciTech Connect (OSTI)

    Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

    1984-07-01T23:59:59.000Z

    Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

  5. Insensitive Extrudable Explosive

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Feynman Center (505) 665-9090 Email Insensitive Extrudable Explosive Applications: Plastic and extrudable explosive replacement Demolition Seismic prospecting Geographical...

  6. Morphology and dynamics of explosive vents through cohesive rock formations

    E-Print Network [OSTI]

    Galland, Olivier

    to test the effects of these parameters. The experiments were used to test the effect of 2 on vent simulations were used to test the effect of 3 on vent morphology and dynamics. In the numerical models we see to underground explosions that blast the overlaying rock formations [e.g., Gisler, 2009]. This phenomenon occurs

  7. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, Kenneth J. (Livermore, CA)

    1985-01-01T23:59:59.000Z

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  8. National Center for Nuclear Security - NCNS

    SciTech Connect (OSTI)

    None

    2014-11-12T23:59:59.000Z

    As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.

  9. National Center for Nuclear Security - NCNS

    ScienceCinema (OSTI)

    None

    2015-01-09T23:59:59.000Z

    As the United States embarks on a new era of nuclear arms control, the tools for treaty verification must be accurate and reliable, and must work at stand-off distances. The National Center for Nuclear Security, or NCNS, at the Nevada National Security Site, is poised to become the proving ground for these technologies. The center is a unique test bed for non-proliferation and arms control treaty verification technologies. The NNSS is an ideal location for these kinds of activities because of its multiple environments; its cadre of experienced nuclear personnel, and the artifacts of atmospheric and underground nuclear weapons explosions. The NCNS will provide future treaty negotiators with solid data on verification and inspection regimes and a realistic environment in which future treaty verification specialists can be trained. Work on warhead monitoring at the NCNS will also support future arms reduction treaties.

  10. Development of enclosed life support system for underground rescue employing a photocatalytic metal oxide thin film to generate oxygen from water and reduce carbon dioxide

    E-Print Network [OSTI]

    Trivedi, Meghna S

    2006-01-01T23:59:59.000Z

    Despite major improvements in technology and safety regulations, coal mining continues to be a hazardous industry. Catastrophic accidents, related largely to underground explosions and generation of toxic gases, commonly ...

  11. Underground Injection Control (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by...

  12. Inspection tester for explosives

    DOE Patents [OSTI]

    Haas, Jeffrey S. (San Ramon, CA); Simpson, Randall L. (Livermore, CA); Satcher, Joe H. (Patterson, CA)

    2010-10-05T23:59:59.000Z

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  13. Inspection tester for explosives

    DOE Patents [OSTI]

    Haas, Jeffrey S. (San Ramon, CA); Simpson, Randall L. (Livermore, CA); Satcher, Joe H. (Patterson, CA)

    2007-11-13T23:59:59.000Z

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  14. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, K.J.

    1985-11-26T23:59:59.000Z

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  15. Extrusion cast explosive

    DOE Patents [OSTI]

    Scribner, K.J.

    1985-01-29T23:59:59.000Z

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  16. Plastic explosives Mike Hopkins

    E-Print Network [OSTI]

    Ravenel, Douglas

    Plastic explosives Mike Hill Mike Hopkins Doug Ravenel What this talk is about The poster The HHRH The reduced E4 -term 1.1 Plastic explosives: A C4 analog of the Kervaire invariant calculation Conference of Virginia Mike Hopkins Harvard University Doug Ravenel University of Rochester #12;Plastic explosives Mike

  17. DOE Explosives Safety Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-01-09T23:59:59.000Z

    The Manual describes the Departments explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. Cancels DOE M 440.1-1. Canceled by DOE O 440.1B Chg 1.

  18. SciTech Connect: The Soviet program for peaceful uses of nuclear...

    Office of Scientific and Technical Information (OSTI)

    The Soviet program for peaceful uses of nuclear explosions Citation Details In-Document Search Title: The Soviet program for peaceful uses of nuclear explosions You are...

  19. Nuclear Celebrations

    E-Print Network [OSTI]

    Hacker, Randi; Tsutsui, William

    2006-11-01T23:59:59.000Z

    Broadcast Transcript: The North Korean situation is frightening for many reasons but none, perhaps, more eerily disturbing than images of North Koreans celebrating in brightly colored costumes just days after the nation's underground nuclear test...

  20. Type Ia Supernova Explosion Models

    E-Print Network [OSTI]

    W. Hillebrandt; J. C. Niemeyer

    2000-06-21T23:59:59.000Z

    Because calibrated light curves of Type Ia supernovae have become a major tool to determine the local expansion rate of the Universe and also its geometrical structure, considerable attention has been given to models of these events over the past couple of years. There are good reasons to believe that perhaps most Type Ia supernovae are the explosions of white dwarfs that have approached the Chandrasekhar mass, M_ch ~ 1.39 M_sun, and are disrupted by thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such accreting carbon-oxygen white dwarfs explode continues to be uncertain. Recent progress in modeling Type Ia supernovae as well as several of the still open questions are addressed in this review. Although the main emphasis will be on studies of the explosion mechanism itself and on the related physical processes, including the physics of turbulent nuclear combustion in degenerate stars, we also discuss observational constraints.

  1. Underground reactor containments: An option for the future?

    SciTech Connect (OSTI)

    Forsberg, C.W. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.; Kress, T.

    1997-02-18T23:59:59.000Z

    Changing world conditions and changing technologies suggest that serious consideration should be given to siting of nuclear power plants underground. Underground siting is not a new concept. Multiple research reactors, several weapons production reactors, and one power reactor have been built underground. What is new are the technologies and incentives that may now make underground siting a preferred option. The conditions and technologies, along with their implications, are discussed herein. Underground containments can be constructed in mined cavities or pits that are then backfilled with thick layers of rock and soil. Conventional above-ground containments resist assaults and accidents because of the strength of their construction materials and the effectiveness of their safety features that are engineered to reduce loads. However, underground containments can provide even more resistance to assaults and accidents because of the inertia of the mass of materials over the reactor. High-technology weapons or some internal accidents can cause existing strong-material containments to fail, but only very-high energy releases can move large inertial masses associated with underground containments. New methods of isolation may provide a higher confidence in isolation that is independent of operator action.

  2. Underground waste barrier structure

    DOE Patents [OSTI]

    Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

    1988-01-01T23:59:59.000Z

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  3. Underground and under scrutiny

    E-Print Network [OSTI]

    Lee, Leslie

    2014-01-01T23:59:59.000Z

    2 txH2O Summer 2014 Story by Leslie Lee The Frio River, located in the Texas Hill Country, is spring-fed and therefore affected by groundwater pumping. Photo from istock.com. Underground and under scrutiny A changing state increasingly... their geological features is more multifaceted. Consider that each aquifer in Texas has different geological and hydrological character- istics, and therefore varying recharge rates, water quality and regional needs, and the complexity heightens. From a legal...

  4. The Sanford Underground Research Facility at Homestake

    E-Print Network [OSTI]

    J. Heise

    2014-01-05T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  5. The Sanford underground research facility at Homestake

    SciTech Connect (OSTI)

    Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

    2014-06-24T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

  6. Modeling of buried explosions

    SciTech Connect (OSTI)

    Gaffney, E.S.; Wohletz, K.H.; House, J.W.; Brown, J.A.

    1987-01-01T23:59:59.000Z

    Los Alamos National Laboratory has been and continues developing techniques for modeling buried explosions using a large geotechnical centrifuge. When fully developed, the techniques should permit the accurate modeling of large explosions in complex geometries. Our intentional application is to study the phenomena of explosive cavity formation and collapse. However, the same methods should also be applicable to simulation of bursts shallow enough to produce craters, and perhaps even of airbursts in situations where soil overburden is important. We have placed primary emphasis on test bed construction methods and on accurate measurement of the ground shock produced by the explosions. 8 refs., 7 figs.

  7. Underground Storage Tanks (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

  8. Underground Storage Tanks (New Jersey)

    Broader source: Energy.gov [DOE]

    This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

  9. Underground Storage Tank Program (Vermont)

    Broader source: Energy.gov [DOE]

    These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

  10. Underground Injection Control Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

  11. Underground Injection Control Rule (Vermont)

    Broader source: Energy.gov [DOE]

    This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

  12. Simulation of turbulent explosion of hydrogen-air mixtures

    E-Print Network [OSTI]

    Ahmed, I.; Swaminathan, N.

    2014-04-27T23:59:59.000Z

    ]. Also, fundamental understanding of hydrogen combustion is important from safety view points, for example generation and accumulation of hydrogen in nuclear reactors [7] and rupturing of a pressurised hydrogen storage tank can lead to explosions. A...

  13. Saving an Underground Reservoir 

    E-Print Network [OSTI]

    Wythe, Kathy

    2006-01-01T23:59:59.000Z

    significant part of the region?s agricultural economy. Though the area has few rivers and lakes, underneath it lies a supply of water that has provided groundwater for developing this economy. This underground water, the Ogallala Aquifer, is a finite... resource. The amount of water seeping back into the aquifer is much less than the water taken out, especially in the southern half of the aquifer, which spreads out from western Kansas to the High Plains of Texas. ?Water levels are declining 2 to 4...

  14. Underground coal gasification. Presentations

    SciTech Connect (OSTI)

    NONE

    2007-07-01T23:59:59.000Z

    The 8 presentations are: underground coal gasification (UCG) and the possibilities for carbon management (J. Friedmann); comparing the economics of UCG with surface gasification technologies (E. Redman); Eskom develops UCG technology project (C. Gross); development and future of UCG in the Asian region (L. Walker); economically developing vast deep Powder River Basin coals with UCG (S. Morzenti); effectively managing UCG environmental issues (E. Burton); demonstrating modelling complexity of environmental risk management; and UCG research at the University of Queensland, Australia (A.Y. Klimenko).

  15. Explosively pumped laser light

    DOE Patents [OSTI]

    Piltch, Martin S. (Los Alamos, NM); Michelotti, Roy A. (Los Alamos, NM)

    1991-01-01T23:59:59.000Z

    A single shot laser pumped by detonation of an explosive in a shell casing. The shock wave from detonation of the explosive causes a rare gas to luminesce. The high intensity light from the gas enters a lasing medium, which thereafter outputs a pulse of laser light to disable optical sensors and personnel.

  16. The Sanford Underground Research Facility at Homestake

    E-Print Network [OSTI]

    Heise, Jaret

    2015-01-01T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-sea...

  17. The Sanford Underground Research Facility at Homestake

    E-Print Network [OSTI]

    Jaret Heise

    2015-03-05T23:59:59.000Z

    The former Homestake gold mine in Lead, South Dakota has been transformed into a dedicated facility to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e.) and currently hosts two main physics projects: the LUX dark matter experiment and the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment. In addition, two low-background counters currently operate at the Davis Campus in support of current and future experiments. Expansion of the underground laboratory space is underway at the 4850L Ross Campus in order to maintain and enhance low-background assay capabilities as well as to host a unique nuclear astrophysics accelerator facility. Plans to accommodate other future experiments at SURF are also underway and include the next generation of direct-search dark matter experiments and the Fermilab-led international long-baseline neutrino program. Planning to understand the infrastructure developments necessary to accommodate these future projects is well advanced and in some cases have already started. SURF is a dedicated research facility with significant expansion capability.

  18. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  19. Non-detonable explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  20. Depleted argon from underground sources

    SciTech Connect (OSTI)

    Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

    2011-09-01T23:59:59.000Z

    Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

  1. Oregon Underground Injection Control Program Authorized Injection...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Program Authorized Injection Systems Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Underground...

  2. WPCF Underground Injection Control Disposal Permit Evaluation...

    Open Energy Info (EERE)

    WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection...

  3. Underground Storage Tank Act (West Virginia)

    Broader source: Energy.gov [DOE]

    New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

  4. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

  5. Preliminary Notice of Violation, Pacific Underground Construction...

    Broader source: Energy.gov (indexed) [DOE]

    Pacific Underground Construction, Inc. - WEA-2009-02 Preliminary Notice of Violation, Pacific Underground Construction, Inc. - WEA-2009-02 April 7, 2009 Issued to Pacific...

  6. Lithium niobate explosion monitor

    DOE Patents [OSTI]

    Bundy, Charles H. (Clearwater, FL); Graham, Robert A. (Los Lunas, NM); Kuehn, Stephen F. (Albuquerque, NM); Precit, Richard R. (Albuquerque, NM); Rogers, Michael S. (Albuquerque, NM)

    1990-01-01T23:59:59.000Z

    Monitoring explosive devices is accomplished with a substantially z-cut lithium niobate crystal in abutment with the explosive device. Upon impact by a shock wave from detonation of the explosive device, the crystal emits a current pulse prior to destruction of the crystal. The current pulse is detected by a current viewing transformer and recorded as a function of time in nanoseconds. In order to self-check the crystal, the crystal has a chromium film resistor deposited thereon which may be heated by a current pulse prior to detonation. This generates a charge which is detected by a charge amplifier.

  7. PINS Testing and Modification for Explosive Identification

    SciTech Connect (OSTI)

    E.H. Seabury; A.J. Caffrey

    2011-09-01T23:59:59.000Z

    The INL's Portable Isotopic Neutron Spectroscopy System (PINS)1 non-intrusively identifies the chemical fill of munitions and sealed containers. PINS is used routinely by the U.S. Army, the Defense Threat Reduction Agency, and foreign military units to determine the contents of munitions and other containers suspected to contain explosives, smoke-generating chemicals, and chemical warfare agents such as mustard and nerve gas. The objects assayed with PINS range from softball-sized M139 chemical bomblets to 200 gallon DOT 500X ton containers. INL had previously examined2 the feasibility of using a similar system for the identification of explosives, and based on this proof-of-principle test, the development of a dedicated system for the identification of explosives in an improvised nuclear device appears entirely feasible. INL has been tasked by NNSA NA-42 Render Safe Research and Development with the development of such a system.

  8. Explosion suppression system

    DOE Patents [OSTI]

    Sapko, Michael J. (Finleyville, PA); Cortese, Robert A. (Pittsburgh, PA)

    1992-01-01T23:59:59.000Z

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  9. Explosive Detection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-10-26T23:59:59.000Z

    To standardize and accelerate implementation of the Department of Energy (DOE) explosive detection program. DOE N 251.40, dated 5/3/01, extends this directive until 12/31/01.

  10. Idaho Explosive Detection System

    ScienceCinema (OSTI)

    Klinger, Jeff

    2013-05-28T23:59:59.000Z

    Learn how INL researchers are making the world safer by developing an explosives detection system that can inspect cargo. For more information about INL security research, visit http://www.facebook.com/idahonationallaboratory

  11. Improving airport explosives detection

    SciTech Connect (OSTI)

    Krause, C.

    1990-01-01T23:59:59.000Z

    ORNL has developed the technology to detect hidden explosives in luggage using X ray and neutron detection devices. The Federal Aviation Administration has ordered the airlines to buy and install Thermal Neutron Analysis (TNA) units. The combined pulsed-neutron and X-ray interrogation inspection (CPNX) system developed at ORNL uses less radioactive materials as well as being more sensitive to weapons, electronic devices and plastic explosives.

  12. DOE explosives safety manual

    SciTech Connect (OSTI)

    Not Available

    1991-10-01T23:59:59.000Z

    The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

  13. Water intrusion in underground structures

    E-Print Network [OSTI]

    Nazarchuk, Alex

    2008-01-01T23:59:59.000Z

    This thesis presents a study of the permissible groundwater infiltration rates in underground structures, the consequences of this leakage and the effectiveness of mitigation measures. Design guides and codes do not restrict, ...

  14. Non-detonable and non-explosive explosive simulators

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

  15. Non-detonable and non-explosive explosive simulators

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1997-07-15T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

  16. Opportunities in underground coal gasification

    SciTech Connect (OSTI)

    Bloomstran, M.A.; Davis, B.E.

    1984-06-01T23:59:59.000Z

    A review is presented of the results obtained on DOE-sponsored field tests of underground coal gasification in steeply-dipping beds at Rawlins, Wyoming. The coal gas composition, process parameters, and process economics are described. Steeply-dipping coal resources, which are not economically mineable using conventional coal mining methods, are identified and potential markets for underground coal gasification products are discussed. It is concluded that in-situ gasification in steeply-dipping deposits should be considered for commercialization.

  17. Underground caverns for hydrocarbon storage

    SciTech Connect (OSTI)

    Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

    1998-12-31T23:59:59.000Z

    Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

  18. Nuclear weapons, nuclear effects, nuclear war

    SciTech Connect (OSTI)

    Bing, G.F.

    1991-08-20T23:59:59.000Z

    This paper provides a brief and mostly non-technical description of the militarily important features of nuclear weapons, of the physical phenomena associated with individual explosions, and of the expected or possible results of the use of many weapons in a nuclear war. Most emphasis is on the effects of so-called ``strategic exchanges.``

  19. Thermoelectric Bulk Materials from the Explosive Consolidation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively...

  20. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

    2011-10-30T23:59:59.000Z

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?˘ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?˘ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?˘ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?˘ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

  1. Microcantilever detector for explosives

    DOE Patents [OSTI]

    Thundat, T.G.

    1999-06-29T23:59:59.000Z

    Methods and apparatus for detecting the presence of explosives by analyzing a vapor sample from the suspect vicinity utilize at least one microcantilever. Explosive gas molecules which have been adsorbed onto the microcantilever are subsequently heated to cause combustion. Heat, along with momentum transfer from combustion, causes bending and a transient resonance response of the microcantilever which may be detected by a laser diode which is focused on the microcantilever and a photodetector which detects deflection of the reflected laser beam caused by heat-induced deflection and resonance response of the microcantilever. 2 figs.

  2. explosion: Role of hydrogen thermonuclear explosion in support of cometary hypothesis

    E-Print Network [OSTI]

    Y. E. Kim

    2008-01-01T23:59:59.000Z

    deuteron fusion rates and that a thermonuclear explosion may compete with a thermo-chemical explosion

  3. Probing thermonuclear supernova explosions with neutrinos

    E-Print Network [OSTI]

    A. Odrzywolek; T. Plewa

    2011-03-27T23:59:59.000Z

    Aims: We present neutrino light curves and energy spectra for two representative type Ia supernova explosion models: a pure deflagration and a delayed detonation. Methods: We calculate the neutrino flux from $\\beta$ processes using nuclear statistical equilibrium abundances convoluted with approximate neutrino spectra of the individual nuclei and the thermal neutrino spectrum (pair+plasma). Results: Although the two considered thermonuclear supernova explosion scenarios are expected to produce almost identical electromagnetic output, their neutrino signatures appear vastly different, which allow an unambiguous identification of the explosion mechanism: a pure deflagration produces a single peak in the neutrino light curve, while the addition of the second maximum characterizes a delayed-detonation. We identified the following main contributors to the neutrino signal: (1) weak electron neutrino emission from electron captures (in particular on the protons Co55 and Ni56) and numerous beta-active nuclei produced by the thermonuclear flame and/or detonation front, (2) electron antineutrinos from positron captures on neutrons, and (3) the thermal emission from pair annihilation. We estimate that a pure deflagration supernova explosion at a distance of 1 kpc would trigger about 14 events in the future 50 kt liquid scintillator detector and some 19 events in a 0.5 Mt water Cherenkov-type detector. Conclusions: While in contrast to core-collapse supernovae neutrinos carry only a very small fraction of the energy produced in the thermonuclear supernova explosion, the SN Ia neutrino signal provides information that allows us to unambiguously distinguish between different possible explosion scenarios. These studies will become feasible with the next generation of proposed neutrino observatories.

  4. Initiative for Explosives Detection

    E-Print Network [OSTI]

    capabilities. Staff at PNNL are developing effective integrated systems for explosives detection, addressing, fundamental science and health. Battelle, based in Columbus, Ohio, has operated PNNL since 1965. PNNL's long. PNNL is located in Richland, Washington. Additional web resources are at: http

  5. Portable raman explosives detection

    SciTech Connect (OSTI)

    Moore, David Steven [Los Alamos National Laboratory; Scharff, Robert J [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Recent advances in portable Raman instruments have dramatically increased their application to emergency response and forensics, as well as homeland defense. This paper reviews the relevant attributes and disadvantages of portable Raman spectroscopy, both essentially and instrumentally, to the task of explosives detection in the field.

  6. Big Explosives Experimental Facility - BEEF

    ScienceCinema (OSTI)

    None

    2015-01-07T23:59:59.000Z

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  7. Big Explosives Experimental Facility - BEEF

    SciTech Connect (OSTI)

    None

    2014-10-31T23:59:59.000Z

    The Big Explosives Experimental Facility or BEEF is a ten acre fenced high explosive testing facility that provides data to support stockpile stewardship and other national security programs. At BEEF conventional high explosives experiments are safely conducted providing sophisticated diagnostics such as high speed optics and x-ray radiography.

  8. Type Ia Supernova Explosion: Gravitationally Confined Detonation

    E-Print Network [OSTI]

    Tomasz Plewa; Alan Calder; Don Lamb

    2004-05-08T23:59:59.000Z

    We present a new mechanism for Type Ia supernova explosions in massive white dwarfs. The proposed scenario follows from relaxing the assumption of symmetry in the model and involves a detonation created in an unconfined environment. The explosion begins with an essentially central ignition of stellar material initiating a deflagration. This deflagration results in the formation of a buoyantly-driven bubble of hot material that reaches the stellar surface at supersonic speeds. The bubble breakout forms a strong pressure wave that laterally accelerates fuel-rich outer stellar layers. This material, confined by gravity to the white dwarf, races along the stellar surface and is focused at the location opposite to the point of the bubble breakout. These streams of nuclear fuel carry enough mass and energy to trigger a detonation just above the stellar surface. The flow conditions at that moment support a detonation that will incinerate the white dwarf and result in an energetic explosion. The stellar expansion following the deflagration redistributes stellar mass in a way that ensures production of intermediate mass and iron group elements consistent with observations. The ejecta will have a strongly layered structure with a mild amount of asymmetry following from the early deflagration phase. This asymmetry, combined with the amount of stellar expansion determined by details of the evolution (principally the energetics of deflagration, timing of detonation, and structure of the progenitor), can be expected to create a family of mildly diverse Type Ia supernova explosions.

  9. Underground Storage Tanks: New Fuels and Compatibility

    Broader source: Energy.gov [DOE]

    Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

  10. Underground coal gasification: environmental update

    SciTech Connect (OSTI)

    Dockter, L.; Mcternan, E.M.

    1985-01-01T23:59:59.000Z

    To evaluate the potential for ground water contamination by underground coal gasification, extensive postburn groundwater monitoring programs are being continued at two test sites in Wyoming. An overview of the environmental concerns related to UCG and some results to date on the two field sites are presented in this report.

  11. TSUAHXETSUAHXE UndergroUnd tank

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    USer waterheatexchange waterheatexchange general exhaUSt lab exhaUSt warmairexhaUSt radiant panel heat radiant panel heat by night air, then stored underground. cold water travels through floors and ceiling panels to absorb heat rain and snowmelt in toilets saves water and reduces stormwater runoff photovoltaic panels turn solar

  12. High Temperature Superconducting Underground Cable

    SciTech Connect (OSTI)

    Farrell, Roger, A.

    2010-02-28T23:59:59.000Z

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  13. Dust cluster explosion

    SciTech Connect (OSTI)

    Saxena, Vikrant [School of Mathematics and Physics, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Institute for Plasma Research, Bhat, Gandhinagar (India); Avinash, K. [Department of Physics and Astrophysics, University of Delhi, New Delhi (India); Sen, A. [Institute for Plasma Research, Bhat, Gandhinagar (India)

    2012-09-15T23:59:59.000Z

    A model for the dust cluster explosion where micron/sub-micron sized particles are accelerated at the expense of plasma thermal energy, in the afterglow phase of a complex plasma discharge is proposed. The model is tested by molecular dynamics simulations of dust particles in a confining potential. The nature of the explosion (caused by switching off the discharge) and the concomitant dust acceleration is found to depend critically on the pressure of the background neutral gas. At low gas pressure, the explosion is due to unshielded Coulomb repulsion between dust particles and yields maximum acceleration, while in the high pressure regime it is due to shielded Yukawa repulsion and yields much feebler acceleration. These results are in agreement with experimental findings. Our simulations also confirm a recently proposed electrostatic (ES) isothermal scaling relation, P{sub E}{proportional_to}V{sub d}{sup -2} (where P{sub E} is the ES pressure of the dust particles and V{sub d} is the confining volume).

  14. Mine seismicity and the Comprehensive Nuclear Test Ban Treaty

    SciTech Connect (OSTI)

    Chiappetta, F. [Blasting Analysis International, Allentown, PA (United States); Heuze, F.; Walter, W. [Lawrence Livermore National Lab., CA (United States); Hopler, R. [Powderman Consulting Inc., Oxford, MD (United States); Hsu, V. [Air Force Technical Applications Center, Patrick AFB, FL (United States); Martin, B. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, C. [Los Alamos National Lab., NM (United States); Stump, B. [Southern Methodist Univ., Dallas, TX (United States); Zipf, K. [Univ. of New South Wales (Australia)

    1998-12-09T23:59:59.000Z

    Surface and underground mining operations generate seismic ground motions which are created by chemical explosions and ground failures. It may come as a surprise to some that the ground failures (coal bumps, first caves, pillar collapses, rockbursts, etc.) can send signals whose magnitudes are as strong or stronger than those from any mining blast. A verification system that includes seismic, infrasound, hydroacoustic and radionuclide sensors is being completed as part of the CTBT. The largest mine blasts and ground failures will be detected by this system and must be identified as distinct from signals generated by small nuclear explosions. Seismologists will analyze the seismic records and presumably should be able to separate them into earthquake-like and non earthquake-like categories, using a variety of so-called seismic discriminants. Non-earthquake essentially means explosion- or implosion-like. Such signals can be generated not only by mine blasts but also by a variety of ground failures. Because it is known that single-fired chemical explosions and nuclear explosion signals of the same yield give very similar seismic records, the non-earthquake signals will be of concern to the Treaty verification community. The magnitude of the mine-related events is in the range of seismicity created by smaller nuclear explosions or decoupled tests, which are of particular concern under the Treaty. It is conceivable that legitimate mining blasts or some mine-induced ground failures could occasionally be questioned. Information such as shot time, location and design parameters may be all that is necessary to resolve the event identity. In rare instances where the legitimate origin of the event could not be resolved by a consultation and clarification procedure, it might trigger on On-Site Inspection (OSI). Because there is uncertainty in the precise location of seismic event as determined by the International Monitoring System (IMS), the OSI can cover an area of up to 1,000 squared kilometers. In active mining districts this area could include several different mining operations. So, an OSI could be disruptive both to the mining community and to the US Government which must host the foreign inspection team. Accordingly, it is in the best interest of all US parties to try and eliminate the possible occurrence of false alarms. This can be achieved primarily by reducing the ambiguity of mine-induced seismic signals, so that even if these remain visible to the IMS they are clearly consistent with recognizable mining patterns.

  15. Review of underground coal gasification field experiments at Hoe Creek

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1983-01-01T23:59:59.000Z

    LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, WY. Three different linking methods were used: explosive fracturing, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  16. Review of underground coal gasification field experiments at Hoe Creek

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1983-01-01T23:59:59.000Z

    In three underground coal gasification experiments at the Hoe Creek site near Gillette, WY, LLNL applied three different linking methods: explosive fracture, reverse burning, and directional drilling. Air was injected in all three experiments; a steam/oxygen mixture, during 2 days of the second and most of the third experiment. Comparison of results show that the type of linking method did not influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters but declined from its initial value over a period of time because of heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  17. Cotton Gin Dust Explosibility Determinations 

    E-Print Network [OSTI]

    Vanderlick, Francis Jerome

    2014-01-06T23:59:59.000Z

    COTTON GIN DUST EXPLOSIBILITY DETERMINATIONS A Thesis by FRANCIS JEROME VANDERLICK Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree... Francis Jerome Vanderlick ii ABSTRACT Following the recent Imperial sugar dust explosion in 2008, a comprehensive survey of past dust explosions was conducted by the Occupational Safety and Health Administration (OSHA) to determine potential...

  18. Zirconium hydride containing explosive composition

    DOE Patents [OSTI]

    Walker, Franklin E. (18 Shadow Oak Rd., Danville, CA 94526); Wasley, Richard J. (4290 Colgate Way, Livermore, CA 94550)

    1981-01-01T23:59:59.000Z

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a donor additive comprising a non-explosive compound or mixture of non-explosive compounds which when subjected to an energy fluence of 1000 calories/cm.sup.2 or less is capable of releasing free radicals each having a molecular weight between 1 and 120. Exemplary donor additives are dibasic acids, polyamines and metal hydrides.

  19. GRI highlights underground gasification effort

    SciTech Connect (OSTI)

    Not Available

    1987-03-01T23:59:59.000Z

    A consortium headed by the Gas Research Institute is supporting major underground coal gasification tests to take place over the next two years at a site near Hanna, Wyoming. About 200 tons of coal will be gasified per day. Directional drilling will be used to form the horizontal gasification pathways linking the injection and production wells. The objectives of the program include a further evaluation of the controlled-retracting-injection-point technology. The technology involves the use of a device that is capable of igniting successive coal zones as it is retracted through a borehole in the coal seam. Comparable data will also be obtained during the test in sections where a linked-vertical-well concept will be used instead of the retracting-injection method. The linked-vertical-well concept, which has been used in most coal gasification tests, involves drilling a series of vertical wells into the coal seam gasification pathway for the ignition of successive coal zones. A parallel program will be conducted to evaluate environmental control technology applicable to underground coal gasification and to define the process requirements that must be satisfied to meet environmental quality standards. The results of these combined programs will provide the process and environmental data bases necessary to assess the economic potential of underground coal gasification from various US locations for a variety of end-product applications.

  20. Supernova neutrinos and explosive nucleosynthesis

    SciTech Connect (OSTI)

    Kajino, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan and Department of Astronomy, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033 (Japan); Aoki, W. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Cheoun, M.-K. [Department of Physics, Soongsil University, Seoul 156-743 (Korea, Republic of); Hayakawa, T. [Japan Atomic Energy Agency, Shirakara-Shirane 2-4, Tokai-mura, Ibaraki 319-1195 (Japan); Hidaka, J.; Hirai, Y.; Shibagaki, S. [National Astronomical Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Mathews, G. J. [Center for Astrophysics, Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Nakamura, K. [Faculty of Science and Engineering, Waseda University, Ohkubo 3-4-1, Shinjuku, Tokyo 169-8555 (Japan); Suzuki, T. [Department of Physics, College of Humanities and Sciences, Nihon University, Sakurajosui 3-25-40, Setagaya-ku, Tokyo 156-8550 (Japan)

    2014-05-09T23:59:59.000Z

    Core-collapse supernovae eject huge amount of flux of energetic neutrinos. We studied the explosive nucleosyn-thesis in supernovae and found that several isotopes {sup 7}Li, {sup 11}B, {sup 92}Nb, {sup 138}La and {sup 180}Ta as well as r-process nuclei are affected by the neutrino interactions. The abundance of these isotopes therefore depends strongly on the neutrino flavor oscillation due to the Mikheyev-Smirnov-Wolfenstein (MSW) effect. We discuss first how to determine the neutrino temperatures in order to explain the observed solar system abundances of these isotopes, combined with Galactic chemical evolution of the light nuclei and the heavy r-process elements. We then study the effects of neutrino oscillation on their abundances, and propose a novel method to determine the still unknown neutrino oscillation parameters, mass hierarchy and ?{sub 13}, simultaneously. There is recent evidence that SiC X grains from the Murchison meteorite may contain supernova-produced light elements {sup 11}B and {sup 7}Li encapsulated in the presolar grains. Combining the recent experimental constraints on ?{sub 13}, we show that our method sug-gests at a marginal preference for an inverted neutrino mass hierarchy. Finally, we discuss supernova relic neutrinos that may indicate the softness of the equation of state (EoS) of nuclear matter as well as adiabatic conditions of the neutrino oscillation.

  1. Nuclear Fuel Cycle & Vulnerabilities

    SciTech Connect (OSTI)

    Boyer, Brian D. [Los Alamos National Laboratory

    2012-06-18T23:59:59.000Z

    The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

  2. Laser machining of explosives

    DOE Patents [OSTI]

    Perry, Michael D. (Livermore, CA); Stuart, Brent C. (Fremont, CA); Banks, Paul S. (Livermore, CA); Myers, Booth R. (Livermore, CA); Sefcik, Joseph A. (Tracy, CA)

    2000-01-01T23:59:59.000Z

    The invention consists of a method for machining (cutting, drilling, sculpting) of explosives (e.g., TNT, TATB, PETN, RDX, etc.). By using pulses of a duration in the range of 5 femtoseconds to 50 picoseconds, extremely precise and rapid machining can be achieved with essentially no heat or shock affected zone. In this method, material is removed by a nonthermal mechanism. A combination of multiphoton and collisional ionization creates a critical density plasma in a time scale much shorter than electron kinetic energy is transferred to the lattice. The resulting plasma is far from thermal equilibrium. The material is in essence converted from its initial solid-state directly into a fully ionized plasma on a time scale too short for thermal equilibrium to be established with the lattice. As a result, there is negligible heat conduction beyond the region removed resulting in negligible thermal stress or shock to the material beyond a few microns from the laser machined surface. Hydrodynamic expansion of the plasma eliminates the need for any ancillary techniques to remove material and produces extremely high quality machined surfaces. There is no detonation or deflagration of the explosive in the process and the material which is removed is rendered inert.

  3. Nuclear Reactions and Reactor Safety

    E-Print Network [OSTI]

    Onuchic, José

    Nuclear Reactions and Reactor Safety DO NOT LICK We haven't entirely nailed down what element nuclear chain reaction, 1938 #12;Nuclear Chain Reactions Do nuclear chain reactions lead to runaway explosions? or ? -Controlled nuclear chain reactions possible: control energy release/sec -> More

  4. FAQS Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  5. Hazard Analysis Reports for Nuclear Explosive Operations

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department of Energy Completing theWhiz! |Nearly six weeks

  6. high explosives | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 |0/%2A0/%2Agtri |

  7. Underground storage of oil and gas

    SciTech Connect (OSTI)

    Bergman, S.M.

    1984-09-01T23:59:59.000Z

    The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

  8. The Underground Corrosion of Selected Type 300 Stainless Steels After 34 Years

    SciTech Connect (OSTI)

    T. S. Yoder; M. K. Adler Flitton

    2009-03-01T23:59:59.000Z

    Recently, interest in long-term underground corrosion has greatly increased because of the ongoing need to dispose of nuclear waste. Additionally, the Nuclear Waste Policy Act of 1982 requires disposal of high-level nuclear waste in an underground repository. Current contaminant release and transport models use limited available short-term underground corrosion rates when considering container and waste form degradation. Consequently, the resulting models oversimplify the complex mechanisms of underground metal corrosion. The complexity of stainless steel corrosion mechanisms and the processes by which corrosion products migrate from their source are not well depicted by a corrosion rate based on general attack. The research presented here is the analysis of austenitic stainless steels after 33˝ years of burial. In this research, the corrosion specimens were analyzed using applicable ASTM standards as well as microscopic and X-ray examination to determine the mechanisms of underground stainless steel corrosion. As presented, the differences in the corrosion mechanisms vary with the type of stainless steel and the treatment of the samples. The uniqueness of the long sampling time allows for further understanding of the actual stainless steel corrosion mechanisms, and when applied back into predictive models, will assist in reduction of the uncertainty in parameters for predicting long-term fate and transport.

  9. Gas Explosion Characterization, Wave Propagation

    E-Print Network [OSTI]

    s & Dt^boooo^j Risø-R-525 Gas Explosion Characterization, Wave Propagation (Small-Scale Experiments EXPLOSION CHARACTERIZATION, WAVE PROPAGATION (Small-Scale Experiments) G.C. Larsen Abstract. A number characteristics 14 3.5. Characteristics of the primary pressure wave 21 3.6. Pressure propagation over a hard

  10. Cotton Gin Dust Explosibility Determinations

    E-Print Network [OSTI]

    Vanderlick, Francis Jerome

    2014-01-06T23:59:59.000Z

    test method was found to be flawed. It used pressure as the only criterion for a dust explosion, utilized high energy ignition sources, limited the amount of oxygen, and had no requirement for a dust to have a minimum explosible concentration (MEC...

  11. Trace Explosive Detection Using Nanosensors

    SciTech Connect (OSTI)

    Senesac, Larry R [ORNL; Thundat, Thomas George [ORNL

    2008-01-01T23:59:59.000Z

    Selective and sensitive detection of explosives is very important in countering terrorist threats. Detecting trace explosives has become a very complex and expensive endeavor because of a number of factors, such as the wide variety of materials that can be used as explosives, the lack of easily detectable signatures, the vast number of avenues by which these weapons can be deployed, and the lack of inexpensive sensors with high sensitivity and selectivity. High sensitivity and selectivity, combined with the ability to lower the deployment cost of sensors using mass production, is essential in winning the war on explosives-based terrorism. Nanosensors have the potential to satisfy all the requirements for an effective platform for the trace detection of explosives.

  12. Oregon Underground Injection Control Registration Application...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Application Fees (DEQ Form UIC 1003-GIC) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Oregon...

  13. Washington Environmental Permit Handbook - Underground Injection...

    Open Energy Info (EERE)

    Washington Environmental Permit Handbook - Underground Injection Control Registration webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  14. Oregon Underground Injection Control Registration Geothermal...

    Open Energy Info (EERE)

    Oregon Underground Injection Control Registration Geothermal Heating Systems (DEQ Form UICGEO-1004(f)) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form:...

  15. ,"Tennessee Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. ,"Missouri Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. ,"Montana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"Iowa Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"Pennsylvania Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"Oregon Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"Colorado Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"Indiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"Wyoming Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"Kansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  5. ,"Maryland Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"Alaska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. ,"Nebraska Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  8. ,"Mississippi Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  9. ,"Utah Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  10. ,"Illinois Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  11. ,"Oklahoma Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  12. ,"Arkansas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  13. ,"Virginia Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  14. ,"California Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  15. ,"Texas Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  16. ,"Kentucky Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  17. ,"Ohio Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  18. ,"Michigan Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  19. ,"Minnesota Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  20. ,"Washington Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"Alabama Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"Louisiana Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. Pipelines and Underground Gas Storage (Iowa)

    Broader source: Energy.gov [DOE]

    These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

  4. Wells, Borings, and Underground Uses (Minnesota)

    Broader source: Energy.gov [DOE]

    This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits...

  5. Vapor generation methods for explosives detection research. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vapor generation methods for explosives detection research. Vapor generation methods for explosives detection research. Abstract: The generation of calibrated vapor samples of...

  6. Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort

    DOE Patents [OSTI]

    Studebaker, Irving G. (Grand Junction, CO); Hefelfinger, Richard (Grand Junction, CO)

    1980-01-01T23:59:59.000Z

    In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

  7. Explosive detection research and development

    SciTech Connect (OSTI)

    Malotky, L.O.

    1988-01-01T23:59:59.000Z

    The detection of explosives carried by a passenger or included in checked baggage is a priority objective of the Federal Aviation Administration's (FAA) Security Research and Development Program. Significant accomplishments have been made in the detection of explosives in checked baggage. A technology, thermal neutron analysis, has been developed and tested extensively in airports with actual passenger baggage. The screening of people for explosives is also progressing with laboratory testing underway of an integrated passenger screening portal. The portal is designed to extract and detect not only the more volatile explosives but also the low-vapor-pressure military explosives. In addition to these two mature technologies, the FAA is also funding research in new technologies for bulk and vapor detection of explosives to identify and refine approaches which will be more efficient and effective. The ultimate objective is to field systems to protect the traveling public from terrorist-placed explosives without interrupting the free flow of people and materials we have grown to expect.

  8. Detection of explosives in soils

    DOE Patents [OSTI]

    Chambers, William B. (Edgewood, NM); Rodacy, Philip J. (Albuquerque, NM); Phelan, James M. (Bosque Farms, NM); Woodfin, Ronald L. (Sandia Park, NM)

    2002-01-01T23:59:59.000Z

    An apparatus and method for detecting explosive-indicating compounds in subsurface soil. The apparatus has a probe with an adsorbent material on some portion of its surface that can be placed into soil beneath the ground surface, where the adsorbent material can adsorb at least one explosive-indicating compound. The apparatus additional has the capability to desorb the explosive-indicating compound through heating or solvent extraction. A diagnostic instrument attached to the probe detects the desorbed explosive-indicating compound. In the method for detecting explosive-indicating compounds in soil, the sampling probe with an adsorbent material on at least some portion of a surface of the sampling probe is inserted into the soil to contact the adsorbent material with the soil. The explosive-indicating compounds are then desorbed and transferred as either a liquid or gas sample to a diagnostic tool for analysis. The resulting gas or liquid sample is analyzed using at least one diagnostic tool selected from the group consisting of an ion-mobility spectrometer, a gas chromatograph, a high performance liquid chromatograph, a capillary electrophoresis chromatograph, a mass spectrometer, a Fourier-transform infrared spectrometer and a Raman spectrometer to detect the presence of explosive-indicating compounds.

  9. Twenty Years of Underground Research at Canada's URL

    SciTech Connect (OSTI)

    Chandler, N. A.

    2003-02-27T23:59:59.000Z

    Construction of Atomic Energy of Canada Limited's (AECL's) Underground Research Laboratory (URL) began in 1982. The URL was designed to address the needs of the Canadian nuclear fuel waste management program. Over the years, a comprehensive program of geologic characterization and underground hydrogeologic, geotechnical and geomechanical projects have been performed, many of which are ongoing. The scientific work at the URL has evolved through a number of different phases to meet the changing needs of Canada's waste management program. The various phases of the URL have included siting, site evaluation, construction and operation. Collaboration with international organizations is encouraged at the URL, with the facility being a centre of excellence in an International Atomic Energy Agency (IAEA) network of underground facilities. One of AECL's major achievements of the past 20 year program has been the preparation and public defense of a ten-volume Environmental Impact Statement (EIS) for a conceptual deep geologic repository. Completion of this dissertation on the characterization, construction and performance modeling of a conceptual repository in the granite rock of the Canadian Shield was largely based on work conducted at the URL. Work conducted over the seven years since public defense of the EIS has been directed towards developing those engineering and performance assessment tools that would be required for implementation of a deep geologic repository. The URL continues to be a very active facility with ongoing experiments and demonstrations performed for a variety of Canadian and international radioactive waste management organizations.

  10. Underground storage tank management plan

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

  11. UNDERGROUND MUONS IN SUPER-KAMIOKANDE

    E-Print Network [OSTI]

    Tokyo, University of

    HE 4.1.23 UNDERGROUND MUONS IN SUPER-KAMIOKANDE The Super-Kamiokande Collaboration, presented by J The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been for muons ver- sus zenith angle in Super-Kamiokande. The lled region is for muons with more than 1.7 Ge

  12. Carbon Allocation in Underground Storage Organs

    E-Print Network [OSTI]

    Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

  13. DOE - Office of Legacy Management -- Hoe Creek Underground Coal...

    Office of Legacy Management (LM)

    Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

  14. Emissions and Durability of Underground Mining Diesel Particulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given at...

  15. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DUNE) at Fermilab, Batavia, Illinois and the Sanford Underground Research Facility, Lead, South Dakota EA-1943: Long Baseline Neutrino FacilityDeep Underground Neutrino...

  16. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1988-03-08T23:59:59.000Z

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 4 figs.

  17. Explosive plane-wave lens

    DOE Patents [OSTI]

    Marsh, S.P.

    1987-03-12T23:59:59.000Z

    An explosive plane-wave air lens which enables a spherical wave form to be converted to a planar wave without the need to specially machine or shape explosive materials is described. A disc-shaped impactor having a greater thickness at its center than around its periphery is used to convert the spherical wave into a plane wave. When the wave reaches the impactor, the center of the impactor moves first because the spherical wave reaches the center of the impactor first. The wave strikes the impactor later in time as one moves radially along the impactor. Because the impactor is thinner as one moves radially outward, the velocity of the impactor is greater at the periphery than at the center. An acceptor explosive is positioned so that the impactor strikes the acceptor simultaneously. Consequently, a plane detonation wave is propagated through the acceptor explosive. 3 figs., 3 tabs.

  18. Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi)

    Broader source: Energy.gov [DOE]

    The Underground Storage Tank Regulations for the Certification of Persons who Install, Alter, and Remove Underground Storage Tanks applies to any project that will install, alter or remove...

  19. System for analysis of explosives

    DOE Patents [OSTI]

    Haas, Jeffrey S. (San Ramon, CA)

    2010-06-29T23:59:59.000Z

    A system for analysis of explosives. Samples are spotted on a thin layer chromatography plate. Multi-component explosives standards are spotted on the thin layer chromatography plate. The thin layer chromatography plate is dipped in a solvent mixture and chromatography is allowed to proceed. The thin layer chromatography plate is dipped in reagent 1. The thin layer chromatography plate is heated. The thin layer chromatography plate is dipped in reagent 2.

  20. Physically based simulation of explosions

    E-Print Network [OSTI]

    Roach, Matthew Douglas

    2005-08-29T23:59:59.000Z

    PHYSICALLY BASED SIMULATION OF EXPLOSIONS A Thesis by MATTHEW DOUGLAS ROACH Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May 2005 Major Subject: Visualization Sciences PHYSICALLY BASED SIMULATION OF EXPLOSIONS A Thesis by MATTHEW DOUGLAS ROACH Submitted to Texas A&M University in partial fulfillment of the requirements for the degree...

  1. Focused evaluation of selected remedial alternatives for the underground test area

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Nevada Test Site (NTS), located in Nye County in southern Nevada, was the location of 928 nuclear tests conducted between 1951 and 1992. Of the total tests, 824 were nuclear tests performed underground. This report describes the approach taken to determine whether any specific, proven, cost-effective technologies currently exist to aid in the removal of the radioactive contaminants from the groundwater, in the stabilization of these contaminants, and in the removal of the source of the contaminants.

  2. Toxic hazards of underground excavation

    SciTech Connect (OSTI)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01T23:59:59.000Z

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  3. VOLUME 84, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 20 MARCH 2000 Nuclear Fusion Driven by Coulomb Explosions of Large Deuterium Clusters

    E-Print Network [OSTI]

    Ditmire, Todd

    VOLUME 84, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 20 MARCH 2000 Nuclear Fusion Driven laser pulse, we have accelerated ions to sufficient kinetic energy to produce DD nuclear fusion nuclear fusion if deuterium clusters are irradiated in a gas of sufficient average density. We have

  4. Probing New Physics with Underground Accelerators and Radioactive Sources

    E-Print Network [OSTI]

    Eder Izaguirre; Gordan Krnjaic; Maxim Pospelov

    2014-05-19T23:59:59.000Z

    New light, weakly coupled particles can be efficiently produced at existing and future high-intensity accelerators and radioactive sources in deep underground laboratories. Once produced, these particles can scatter or decay in large neutrino detectors (e.g Super-K and Borexino) housed in the same facilities. We discuss the production of weakly coupled scalars $\\phi$ via nuclear de-excitation of an excited element into the ground state in two viable concrete reactions: the decay of the $0^+$ excited state of $^{16}$O populated via a $(p,\\alpha)$ reaction on fluorine and from radioactive $^{144}$Ce decay where the scalar is produced in the de-excitation of $^{144}$Nd$^*$, which occurs along the decay chain. Subsequent scattering on electrons, $e(\\phi,\\gamma)e$, yields a mono-energetic signal that is observable in neutrino detectors. We show that this proposed experimental set-up can cover new territory for masses $250\\, {\\rm keV}\\leq m_\\phi \\leq 2 m_e$ and couplings to protons and electrons, $10^{-11} new physics component to the neutrino and nuclear astrophysics programs at underground facilities.

  5. Surface detonation in type Ia supernova explosions?

    E-Print Network [OSTI]

    F. K. Roepke; S. E. Woosley

    2006-09-25T23:59:59.000Z

    We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different initial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may -- in some cases -- initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.

  6. Underground cosmic-ray experiment EMMA T. Enqvista

    E-Print Network [OSTI]

    Usoskin, Ilya G.

    Authority ­ STUK, Helsinki, Finland d Centre for Underground Physics at Pyh¨asalmi (CUPP), University

  7. Rare Isotopes in Cosmic Explosions and Accelerators on Earth

    ScienceCinema (OSTI)

    Hendrik Schatz

    2010-01-08T23:59:59.000Z

    Rare isotopes are nature?s stepping stones to produce the heavy elements, and they are produced in large quantities in stellar explosions. Despite their fleeting existence, they shape the composition of the universe and the observable features of stellar explosions. The challenge for nuclear science is to produce and study the very same rare isotopes so as to understand the origin of the elements and a range of astronomical observations. I will review the progress that has been made to date in astronomy and nuclear physics, and the prospects of finally addressing many of the outstanding issues with the future Facility for Rare Isotope Beams (FRIB), which DOE will build at Michigan State University.

  8. Underground Injection Control Fee Schedule (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes schedules of permit fees for state under?ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is...

  9. Underground Gas Storage Reservoirs (West Virginia)

    Broader source: Energy.gov [DOE]

    Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas is stored as well as map and data requirements,...

  10. Underground Storage of Natural Gas (Kansas)

    Broader source: Energy.gov [DOE]

    Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

  11. Prince George's County Underground Storage Act (Maryland)

    Broader source: Energy.gov [DOE]

    A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the...

  12. Arkansas Underground Injection Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the...

  13. Viewing Systems for Large Underground Storage Tanks.

    SciTech Connect (OSTI)

    Heckendorn, F.M., Robinson, C.W., Anderson, E.K. [Westinghouse Savannah River Co., Aiken, SC (United States)], Pardini, A.F. [Westinghouse Hanford Co., Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    Specialized remote video systems have been successfully developed and deployed in a number of large radiological Underground Storage Tanks (USTs)that tolerate the hostile tank interior, while providing high resolution video to a remotely located operator. The deployment is through 100 mm (4 in) tank openings, while incorporating full video functions of the camera, lights, and zoom lens. The usage of remote video minimizes the potential for personnel exposure to radiological and hazardous conditions, and maximizes the quality of the visual data used to assess the interior conditions of both tank and contents. The robustness of this type of remote system has a direct effect on the potential for radiological exposure that personnel may encounter. The USTs typical of the Savannah River and Hanford Department Of Energy - (DOE) sites are typically 4.5 million liter (1.2 million gal) units under earth. or concrete overburden with limited openings to the surface. The interior is both highly contaminated and radioactive with a wide variety of nuclear processing waste material. Some of the tanks are -flammable rated -to Class 1, Division 1,and personnel presence at or near the openings should be minimized. The interior of these USTs must be assessed periodically as part of the ongoing management of the tanks and as a step towards tank remediation. The systems are unique in their deployment technology, which virtually eliminates the potential for entrapment in a tank, and their ability to withstand flammable environments. A multiplicity of components used within a common packaging allow for cost effective and appropriate levels of technology, with radiation hardened components on some units and lesser requirements on other units. All units are completely self contained for video, zoom lens, lighting, deployment,as well as being self purging, and modular in construction.

  14. Permeability enhancement using explosive techniques

    SciTech Connect (OSTI)

    Adams, T.F.; Schmidt, S.C.; Carter, W.J.

    1980-01-01T23:59:59.000Z

    In situ recovery methods for many of our hydrocarbon and mineral resources depend on the ability to create or enhance permeability in the resource bed to allow uniform and predictable flow. To meet this need, a new branch of geomechanics devoted to computer prediction of explosive rock breakage and permeability enhancement has developed. The computer is used to solve the nonlinear equations of compressible flow, with the explosive behavior and constitutive properties of the medium providing the initial/boundary conditions and material response. Once the resulting computational tool has been verified and calibrated with appropriate large-scale field tests, it can be used to develop and optimize commercially useful explosive techniques for in situ resource recovery.

  15. SECURITY AND CONTROL OF NUCLEAR EXPLOSIVES AND NUCLEAR WEAPONS

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERALAmerica High EnergyNationalSpring

  16. Aftershock Characteristics as a Means of Discriminating Explosions from Earthquakes

    SciTech Connect (OSTI)

    Ford, S R; Walter, W R

    2009-05-20T23:59:59.000Z

    The behavior of aftershock sequences around the Nevada Test Site in the southern Great Basin is characterized as a potential discriminant between explosions and earthquakes. The aftershock model designed by Reasenberg and Jones (1989, 1994) allows for a probabilistic statement of earthquake-like aftershock behavior at any time after the mainshock. We use this model to define two types of aftershock discriminants. The first defines M{sub X}, or the minimum magnitude of an aftershock expected within a given duration after the mainshock with probability X. Of the 67 earthquakes with M > 4 in the study region, 63 of them produce an aftershock greater than M{sub 99} within the first seven days after a mainshock. This is contrasted with only six of 93 explosions with M > 4 that produce an aftershock greater than M{sub 99} for the same period. If the aftershock magnitude threshold is lowered and the M{sub 90} criteria is used, then no explosions produce an aftershock greater than M{sub 90} for durations that end more than 17 days after the mainshock. The other discriminant defines N{sub X}, or the minimum cumulative number of aftershocks expected for given time after the mainshock with probability X. Similar to the aftershock magnitude discriminant, five earthquakes do not produce more aftershocks than N{sub 99} within 7 days after the mainshock. However, within the same period all but one explosion produce less aftershocks then N{sub 99}. One explosion is added if the duration is shortened to two days after than mainshock. The cumulative number aftershock discriminant is more reliable, especially at short durations, but requires a low magnitude of completeness for the given earthquake catalog. These results at NTS are quite promising and should be evaluated at other nuclear test sites to understand the effects of differences in the geologic setting and nuclear testing practices on its performance.

  17. Sandia Explosive Inventory and Information System

    SciTech Connect (OSTI)

    Clements, D.A.

    1994-08-01T23:59:59.000Z

    The Explosive Inventory and Information System (EIS) is being developed and implemented by Sandia National Laboratories (SNL) to incorporate a cradle to grave structure for all explosives and explosive containing devices and assemblies at SNL from acquisition through use, storage, reapplication, transfer or disposal. The system does more than track all material inventories. It provides information on material composition, characteristics, shipping requirements; life cycle cost information, plan of use; and duration of ownership. The system also provides for following the processes of explosive development; storage review; justification for retention; Resource, Recovery and Disposition Account (RRDA); disassembly and assembly; and job description, hazard analysis and training requirements for all locations and employees involved with explosive operations. In addition, other information systems will be provided through the system such as the Department of Energy (DOE) and SNL Explosive Safety manuals, the Navy`s Department of Defense (DoD) Explosive information system, and the Lawrence Livermore National Laboratories (LLNL) Handbook of Explosives.

  18. Explosion at Ingham Colliery, Thornhill, Yorkshire 

    E-Print Network [OSTI]

    Bryan, A. M.

    MINISTRY OF FUEL AND POWER EXPLOSION AT INGHAM COLLIERY, THORNHILL, YORKSHIRE REPORT On the Causes of, and Circumstances attending the Explosion which occurred at Ingham Colliery Thornhill, Yorkshire) on the 9th September, ...

  19. Geosphere in underground coal gasification

    SciTech Connect (OSTI)

    Daly, D.J.; Groenewold, G.H.; Schmit, C.R.; Evans, J.M.

    1988-07-01T23:59:59.000Z

    The feasibility of underground coal gasification (UCG), the in-situ conversion of coal to natural gas, has been demonstrated through 28 tests in the US alone, mainly in low-rank coals, since the early 1970s. Further, UCG is currently entering the commercial phase in the US with a planned facility in Wyoming for the production of ammonia-urea from UCG-generated natural gas. Although the UCG process both affects and is affected by the natural setting, the majority of the test efforts have historically been focused on characterizing those aspects of the natural setting with the potential to affect the burn. With the advent of environmental legislation, this focus broadened to include the potential impacts of the process on the environment (e.g., subsidence, degradation of ground water quality). Experience to date has resulted in the growing recognition that consideration of the geosphere is fundamental to the design of efficient, economical, and environmentally acceptable UCG facilities. The ongoing RM-1 test program near Hanna, Wyoming, sponsored by the US Department of Energy and an industry consortium led by the Gas Research Institute, reflects this growing awareness through a multidisciplinary research effort, involving geoscientists and engineers, which includes (1) detailed geological site characterization, (2) geotechnical, hydrogeological, and geochemical characterization and predictive modeling, and (3) a strategy for ground water protection. Continued progress toward commercialization of the UCG process requires the integration of geological and process-test information in order to identify and address the potentially adverse environmental ramifications of the process, while identifying and using site characteristics that have the potential to benefit the process and minimize adverse impacts.

  20. Numerical Simulations of Thermobaric Explosions

    SciTech Connect (OSTI)

    Kuhl, A L; Bell, J B; Beckner, V E; Khasainov, B

    2007-05-04T23:59:59.000Z

    A Model of the energy evolution in thermobaric explosions is presented. It is based on the two-phase formulation: conservation laws for the gas and particle phases along with inter-phase interaction terms. It incorporates a Combustion Model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields. The Model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the fuel (Al or TNT detonation products) with air. Numerical simulations were performed for 1.5-g thermobaric explosions in five different chambers (volumes ranging from 6.6 to 40 liters and length-to-diameter ratios from 1 to 12.5). Computed pressure waveforms were very similar to measured waveforms in all cases - thereby proving that the Model correctly predicts the energy evolution in such explosions. The computed global fuel consumption {mu}(t) behaved as an exponential life function. Its derivative {dot {mu}}(t) represents the global rate of fuel consumption. It depends on the rate of turbulent mixing which controls the rate of energy release in thermobaric explosions.

  1. Turbulent Combustion in SDF Explosions

    SciTech Connect (OSTI)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12T23:59:59.000Z

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.

  2. Lead-free primary explosives

    DOE Patents [OSTI]

    Huynh, My Hang V.

    2010-06-22T23:59:59.000Z

    Lead-free primary explosives of the formula (cat).sub.Y[M.sup.II(T).sub.X(H.sub.2O).sub.6-X].sub.Z, where T is 5-nitrotetrazolate, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  3. Removing High Explosives from Groundwater

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – In an initiative supported by EM, Los Alamos National Laboratory’s Corrective Actions Program is addressing high explosive contamination in surface water and groundwater at a location this summer in the forests surrounding the laboratory.

  4. Characterization of secondary grain dust explosions

    E-Print Network [OSTI]

    Schulman, Cheryl Wendler

    1983-01-01T23:59:59.000Z

    explosion These include& an ignition source; oxygeni s confined space; and fuel, which 1n most instances is grain dust held. in suspension at concentration levels in excess of the minimum explosive concentration (MEC) (Palmer, 197$). The MEC is defined.... as the minimum concentration of dust in a cloud. necessary for sustained flame propagation. The MEC is also sometimes referred to as the lower explosive limit (LZL). The lower level of explosibility for most dusts ranges from 20 to 70 This thesis follows...

  5. Underground Corrosion of Activated Metals, 6-Year Exposure Analysis

    SciTech Connect (OSTI)

    M. K. Adler Flitton; T. S. Yoder

    2006-03-01T23:59:59.000Z

    The subsurface radioactive disposal site located at the Idaho National Laboratory contains neutronactivated metals from non-fuel nuclear-reactor-core components. A long-term underground corrosion test is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in the surrounding arid vadose zone environment. The test uses nonradioactive metal coupons representing the prominent neutron-activated materials buried at the disposal location, namely, Type 304L stainless steel (UNS S30403), Type 316L stainless steel (S31603), nickel-chromium alloy (UNS NO7718), beryllium, aluminum 6061-T6 (A96061), and a zirconium alloy (UNS R60804). In addition, carbon steel (the material presently used in the cask disposal liners and other disposal containers) and a duplex stainless steel (UNS S32550) are also included in the test. This paper briefly describes the ongoing test and presents the results of corrosion analysis from coupons exposed underground for 1, 3, and 6 years.

  6. Seismic explosive charge loader and anchor

    SciTech Connect (OSTI)

    Mcreynolds, O.B.

    1981-07-14T23:59:59.000Z

    An improved seismic explosive charge loader and anchor for loading and anchoring explosives in cylindrical containers in bore holes is disclosed, which includes a snap in spring band shaped anchor which effectively anchors the loader in the well bore against upward movement, one aspect of the invention includes a snap lock threaded connection for securing an explosive container having interrupted threads to the loader and anchor, and the loader and anchor is constructed and arranged to maintain a detonator in place in the explosive container thereby assuring detonation of the explosive.

  7. Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming

    SciTech Connect (OSTI)

    Stephens, D.R.

    1981-10-01T23:59:59.000Z

    Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

  8. Spot test kit for explosives detection

    DOE Patents [OSTI]

    Pagoria, Philip F; Whipple, Richard E; Nunes, Peter J; Eckels, Joel Del; Reynolds, John G; Miles, Robin R; Chiarappa-Zucca, Marina L

    2014-03-11T23:59:59.000Z

    An explosion tester system comprising a body, a lateral flow membrane swab unit adapted to be removeably connected to the body, a first explosives detecting reagent, a first reagent holder and dispenser operatively connected to the body, the first reagent holder and dispenser containing the first explosives detecting reagent and positioned to deliver the first explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body, a second explosives detecting reagent, and a second reagent holder and dispenser operatively connected to the body, the second reagent holder and dispenser containing the second explosives detecting reagent and positioned to deliver the second explosives detecting reagent to the lateral flow membrane swab unit when the lateral flow membrane swab unit is connected to the body.

  9. Underground coal gasification product quality parameters

    SciTech Connect (OSTI)

    Bruggink, P.R.; Davis, B.E.

    1981-01-01T23:59:59.000Z

    A simplified model is described which will indicate the economic value of the raw product gas from an experimental underground coal gasification test on a real-time basis in order to aid in the optimization of the process during the course of the test. The model relates the properties of the product gas and the injection gas to the cost of producing each of five potential commercial products. This model was utilized to evaluate data during the Gulf-DOE underground coal gasification test at Rawlins, Wyoming in the fall of 1981. 6 refs.

  10. Potential underground risks associated with CAES.

    SciTech Connect (OSTI)

    Kirk, Matthew F.; Webb, Stephen Walter; Broome, Scott Thomas; Pfeifle, Thomas W.; Grubelich, Mark Charles; Bauer, Stephen J.

    2010-10-01T23:59:59.000Z

    CAES in geologic media has been proposed to help 'firm' renewable energy sources (wind and solar) by providing a means to store energy when excess energy was available, and to provide an energy source during non-productive renewable energy time periods. Such a storage media may experience hourly (perhaps small) pressure swings. Salt caverns represent the only proven underground storage used for CAES, but not in a mode where renewable energy sources are supported. Reservoirs, both depleted natural gas and aquifers represent other potential underground storage vessels for CAES, however, neither has yet to be demonstrated as a functional/operational storage media for CAES.

  11. Twelve Year Study of Underground Corrosion of Activated Metals

    SciTech Connect (OSTI)

    M. Kay Adler Flitton; Timothy S. Yoder

    2012-03-01T23:59:59.000Z

    The subsurface radioactive disposal facility located at the U.S. Department of Energy’s Idaho site contains neutron-activated metals from non-fuel nuclear-reactor-core components. A long-term corrosion study is being conducted to obtain site-specific corrosion rates to support efforts to more accurately estimate the transfer of activated elements in an arid vadose zone environment. The study uses non-radioactive metal coupons representing the prominent neutron-activated material buried at the disposal location, namely, two types of stainless steels, welded stainless steel, welded nickel-chromium steel alloy, zirconium alloy, beryllium, and aluminum. Additionally, carbon steel (the material used in cask disposal liners and other disposal containers) and duplex stainless steel (high-integrity containers) are also included in the study. This paper briefly describes the test program and presents the corrosion rate results through twelve years of underground exposure.

  12. Explosives detection system and method

    DOE Patents [OSTI]

    Reber, Edward L. (Idaho Falls, ID); Jewell, James K. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID); Seabury, Edward H. (Idaho Falls, ID); Blackwood, Larry G. (Idaho Falls, ID); Edwards, Andrew J. (Idaho Falls, ID); Derr, Kurt W. (Idaho Falls, ID)

    2007-12-11T23:59:59.000Z

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  13. Forced cooling of underground electric power transmission lines : design manual

    E-Print Network [OSTI]

    Brown, Jay A.

    1978-01-01T23:59:59.000Z

    The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

  14. Underground Natural Gas Storage Wells in Bedded Salt (Kansas)

    Broader source: Energy.gov [DOE]

    These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

  15. Visit to the Deep Underground Science and Engineering Laboratory

    ScienceCinema (OSTI)

    None

    2010-01-08T23:59:59.000Z

    U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

  16. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the...

  17. Nuclear conflict and ozone depletion Quick summary

    E-Print Network [OSTI]

    Toohey, Darin W.

    Nuclear conflict and ozone depletion Quick summary o Regional nuclear war could cause global which traps pollutants o Nuclear weapons cause explosions, which then causes things around the vicinity to start burning, which in turn releases black carbon; it is not the nuclear material or fallout causing

  18. Design and Field Testing of an Autonomous Underground Tramming System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , the repetitive "load-haul-dump" cycle is well suited to automation. In this case, a vehicle called a load underground mining vehicle. Described is the development of a fast, re- liable, and robust "autotramming in underground mining operations by robotiz- ing some of the functions of underground vehicles. For example

  19. Appendix E: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix E: Underground Storage Tank Data #12;Annual Site Environmental Report Appendix E: Underground Storage Tank Data E-3 Table E.1. Underground storage tanks (USTs) at the Y-12 Plant Location/95) NA Closure approval 3/95 (6/96) 9714 2334-U 1987 In use 6,000 Gasoline Full Site check NA NA

  20. Appendix C: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C: Underground Storage Tank Data C-3 Table C.1. Underground storage tanks (USTs) at the Y-12 Plant Location/95) NA Closure approval 3/95 (6/96) 9714 2334-U 1987 In use 6,000 Gasoline Full Site check NA Case closed

  1. Appendix C: Underground Storage Annual Site Environmental Report

    E-Print Network [OSTI]

    Pennycook, Steve

    Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C: Underground Storage Tank Data C-3 Table C.1. Underground storage tanks (USTs) at the Y-12 Complex Location/95) NA Closure approval 3/95 (6/96) 9714 2334-U 1987 In use 6,000 Gasoline Full Site check NA Case closed

  2. The Public Perceptions of Underground Coal Gasification (UCG)

    E-Print Network [OSTI]

    Watson, Andrew

    The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

  3. Data base of chemical explosions in Kazakhstan

    SciTech Connect (OSTI)

    Demin, V.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Malahova, M.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Martysevich, P.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Mihaylova, N.N. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Nurmagambetov, A. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Kopnichev, Yu.F. D. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan); Edomin, V.I. [National Nuclear Center of Republic of Kazakhstan Institute of Geophysical Researches (Kazakhstan)

    1996-12-01T23:59:59.000Z

    Within the bounds of this report, the following works were done: (1) Information about explosion quarries, located in Southern, Eastern and Northern Kasakstan was summarized. (2) The general information about seismicity of areas of location of explosion quarries was adduced. (3) The system of observation and seismic apparatus, recording the local earthquakes and quarry explosions at the territory of Kazakstan were described. (4) Data base of quarry explosions, that were carried out in Southern, Eastern and Northern Kazakstan during 1995 and first half of 1996 year was adduced. (5) Upon the data of registration of explosions in Southern Kazakstan the correlative dependences between power class of explosions and summary weight of charge were constructed. (6) Seismic records of quarry explosions were adduced. It is necessary to note, that the collection of data about quarry explosions in Kazakstan in present time is very difficult task. Organizations, that makes these explosions, are always suffering reorganizations and sometimes it is actually impossible to receive all the necessary information. Some quarries are situated in remote, almost inaccessible regions, and within the bounds of supplier financing not the every quarry was in success to visit. So the present data base upon the chemical explosions for 1995 is not full and in further it`s expansion is possible.

  4. Underground coal gasification simulation. Final report

    SciTech Connect (OSTI)

    Gunn, R.D.

    1984-07-01T23:59:59.000Z

    The underground coal gasification (UCG) process - both forward gasification and reverse combustion linkage - was mathematically modeled. The models were validated with field and laboratory data. They were then used to explain some important UCG phenomena that had not been predictable with other methods. Some views on the UCG technology status are also presented. 3 references, 25 figures, 10 tables.

  5. Minimize environmental impacts when replacing underground pipe

    SciTech Connect (OSTI)

    Miller, L.R. [Ashland Petroleum Co., Catlettsburg, KY (United States); Kroll, T.R. [Insituform Technologies, Inc., Memphis, TN (United States)

    1997-02-01T23:59:59.000Z

    A US refiner urgently needed to repair a 40-year-old oily-water sewer system without disrupting processing operations. Equally important, the refiner wanted to minimize soil and groundwater contamination. In this case history, the refiner elected to use an alternative method--trenchless rehabilitation--to make required underground repairs.

  6. Wireless sensor for detecting explosive material

    DOE Patents [OSTI]

    Lamberti, Vincent E; Howell, Jr., Layton N; Mee, David K; Sepaniak, Michael J

    2014-10-28T23:59:59.000Z

    Disclosed is a sensor for detecting explosive devices. The sensor includes a ferromagnetic metal and a molecular recognition reagent coupled to the ferromagnetic metal. The molecular recognition reagent is operable to expand upon absorption of vapor from an explosive material such that the molecular recognition reagent changes a tensile stress upon the ferromagnetic metal. The explosive device is detected based on changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.

  7. Ammonia fiber explosion (AFEX) treatment of grass

    E-Print Network [OSTI]

    Ashok, Ganesh

    1991-01-01T23:59:59.000Z

    solution), high-temperature treatment, and freezing in water suspensions at -75 C (Millett, Baker, and Satter, 1975), Chemical pretreatments include alkali and ammonia swelling, dilute acid extraction, NO with alkali, explosive steam decompression, wet... for ruminants. Ammonia explosion pulping has been investigated as an approach to fiber separation in wood chips (O' Connor, 1971). Recent work on pretreatment techniques includes: pretreatment of cedar with peracetic acid and steam explosion to improve...

  8. Inner nuclear membrane proteins: targeting and influence on genome organization 

    E-Print Network [OSTI]

    Zuleger, Nikolaj

    2012-06-22T23:59:59.000Z

    The nuclear envelope is a complex double membrane system that separates the activities of the nuclear and cytoplasmic compartments. A recent explosion in the number of proteins associated with this subnuclear organelle together ...

  9. Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster

    SciTech Connect (OSTI)

    Miley, Harry

    2014-03-07T23:59:59.000Z

    Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.

  10. Remembering Fukushima: PNNL Monitors Radiation from Nuclear Disaster

    ScienceCinema (OSTI)

    Miley, Harry

    2014-06-12T23:59:59.000Z

    Senior Scientist Harry Miley describes how his work in ultra-trace, nuclear detection technology picked up the first reading of radiological materials over the U.S. following the nuclear power plant explosion in Japan.

  11. Shock Initiation of Damaged Explosives

    SciTech Connect (OSTI)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22T23:59:59.000Z

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  12. Nuclear Waste Technical Review Board Members: Curricula Vitae

    E-Print Network [OSTI]

    mines, and storage projects, primarily in the fields of engineering geology and rock mechanics as an international consultant in the planning, designing, and construction of shafts, tunnels, dams, underground and Scisson and the U.S. Atomic Energy Commission on the design of underground openings for nuclear tests

  13. Radioxenon detections in the CTBT International Monitoring System likely related to the announced nuclear test in North Korea conducted on February 12, 2013

    SciTech Connect (OSTI)

    Ringbom, Anders; Axelssson, A.; Aldener, M.; Auer, M.; Bowyer, Ted W.; Fritioff, T.; Hoffman, Ian; Khrustalev, Kirill; Nikkinen, Mika; Popov, Vladimir Y.; Popov, Y.; Ungar, R. Kurt; Wotawa, G.

    2014-02-01T23:59:59.000Z

    Abstract: Observations of the radioxenon isotopes 133Xe and 131mXe collected at the IMS stations RN38 and RN58 on April 7-8, and April 12-13 2013, respectively, are unique with respect to the measurement history of these stations. Comparison of measured data with calculated isotopic ratios as well as analysis using atmospheric transport modeling indicate that it is likely that the xenon measured was created in the underground nuclear test conducted by North Korea on February 12, 2013, and released 7 weeks later. More than one release is required to explain all observations. The 131mXe source terms for each release were calculated to 7x1011 Bq, corresponding to about 1-10% of the total xenon inventory for a 10-kt explosion, depending on fractionation and release scenario. The observed ratios could not be used to obtain any information regarding the fissile material that was used in the test.

  14. Method and apparatus for detecting explosives

    DOE Patents [OSTI]

    Moore, David Steven (Santa Fe, NM)

    2011-05-10T23:59:59.000Z

    A method and apparatus is provided for detecting explosives by thermal imaging. The explosive material is subjected to a high energy wave which can be either a sound wave or an electromagnetic wave which will initiate a chemical reaction in the explosive material which chemical reaction will produce heat. The heat is then sensed by a thermal imaging device which will provide a signal to a computing device which will alert a user of the apparatus to the possibility of an explosive device being present.

  15. THE CHARACTERIZATION OF SEISMIC AND INFRASOUND SIGNALS FROM MINING EXPLOSIONS a) Explosion Source

    E-Print Network [OSTI]

    Stump, Brian W.

    MORENCIDATA TXARDATA Natural Gas Explosion and Burn in New Mexico 19 August 2000 180 km NE of site No Seismic at TXAR T. Wallace Natural Gas Explosion and Burn in New Mexico T. Wallace Ft. Hancock Infrasound ~ 180 km are illustrated below. Type 1 - Coal overburden casting (Black Thunder) where explosions are designed to expose

  16. Dynamic underground stripping. Innovative technology summary report

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    Dynamic Underground Stripping (DUS) is a combination of technologies targeted to remediate soil and ground water contaminated with organic compounds. DUS is effective both above and below the water table and is especially well suited for sites with interbedded sand and clay layers. The main technologies comprising DUS are steam injection at the periphery of a contaminated area to heat permeable subsurface areas, vaporize volatile compounds bound to the soil, and drive contaminants to centrally located vacuum extraction wells; electrical heating of less permeable sediments to vaporize contaminants and drive them into the steam zone; and underground imaging such as Electrical Resistance Tomography to delineate heated areas to ensure total cleanup and process control. A full-scale demonstration was conducted on a gasoline spill site at Lawrence Livermore National Laboratory in Livermore, California from November 1992 through December 1993.

  17. Pumping carbon out of underground coal deposits

    SciTech Connect (OSTI)

    Steinberg, M.

    1999-07-01T23:59:59.000Z

    Thin steam and deep coal deposits are difficult and costly to mine. Underground coal gasification (UCG) with air or oxygen was thought to alleviate this problem. Experimental field tests were conducted in Wyoming and Illinois. Problems were encountered concerning a clear path for the team gasification to take place and removal of gas. The high endothermic heat of reaction requiring large quantities of steam and oxygen makes the process expensive. Safety problems due to incomplete reaction is also of concern. A new approach is proposed which can remedy most of these drawbacks for extracting energy from underground coal deposits. It is proposed to hydrogasify the coal underground with a heated hydrogen gas stream under pressure to produce a methane-rich gas effluent stream. The hydrogasification of coal is essentially exothermic so that no steam or oxygen is required. The gases formed are always in a reducing atmosphere making the process safe. The hydrogen is obtained by thermally decomposing the effluent methane above ground to elemental carbon and hydrogen. The hydrogen is returned underground for further hydrogasification of the coal seam. The small amount of oxygen and sulfur in the coal can be processed out above ground by removal as water and H{sub 2}S. Any CO can be removed by a methanation step returning the methane to process. The ash remains in the ground and the elemental carbon produced is the purest form of coal. The particulate carbon can be slurried with water to produce a fuel stream that can be fed to a turbine for efficient combined cycle power plants with lower CO{sub 2} emissions. Coal cannot be used for combined cycle because of its ash and sulfur content destroys the gas turbine. Depending on its composition of coal seam some excess hydrogen is also produced. Hydrogen is, thus, used to pump pure carbon out of the ground.

  18. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2010-07-27T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  19. Rotary steerable motor system for underground drilling

    DOE Patents [OSTI]

    Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

    2008-06-24T23:59:59.000Z

    A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

  20. Legislation pertaining to underground storage tanks

    SciTech Connect (OSTI)

    Goth, W. (Ventura County Environmental Health Division, CA (United States))

    1994-04-01T23:59:59.000Z

    Statutory authority in California for cleanup of contaminated soil and groundwater to protect water quality is the Porter Cologne Water Quality Control Act (Water Code 1967). Two state laws regulating underground hazardous material storage tanks, passed in late 1983 and effective on January 1, 1984, were AB-2013 (Cortese) and AB-1362 (Sher). Both require specific actions by the tank owners. AB-2013 requires all tank owners to register them with the state Water Resources Control Board (SWCB) and to pay a registration fee. AB-1362, Health and Safety Code Section 25280 et seq., requires tank owners to obtain a Permit to Operate, pay a fee to the local agency, and to install a leak detection system on all existing tanks. New tanks installation requires a Permit to install and provide provide secondary containment for the tank and piping. For tank closures, a permit must be obtained from the local agency to clean out the tank, remove it from the ground, and collect samples from beneath the tank for evidence of contamination. In 1988, state law AB-853 appropriated state funds to be combined with federal EPA money to allow SWRCB to initiate rapid cleanups of leaks from underground tank sites by contracting with local agencies to oversee assessment and cleanup of underground tank releases. Locally, in Ventura County, there are more than 400 leaking underground tank sites in which petroleum products have entered the groundwater. To date, no public water supplies have been contaminated; however, action in necessary to prevent any future contamination to our water supply. Over 250 leaking tank sites have completed cleanup.

  1. Advancing Explosives Detection Capabilities: Vapor Detection

    ScienceCinema (OSTI)

    Atkinson, David

    2014-07-24T23:59:59.000Z

    A new, PNNL-developed method provides direct, real-time detection of trace amounts of explosives such as RDX, PETN and C-4. The method selectively ionizes a sample before passing the sample through a mass spectrometer to detect explosive vapors. The method could be used at airports to improve aviation security.

  2. Method for laser machining explosives and ordnance

    DOE Patents [OSTI]

    Muenchausen, Ross E.; Rivera, Thomas; Sanchez, John A.

    2003-05-06T23:59:59.000Z

    Method for laser machining explosives and related articles. A laser beam is directed at a surface portion of a mass of high explosive to melt and/or vaporize the surface portion while directing a flow of gas at the melted and/or vaporized surface portion. The gas flow sends the melted and/or vaporized explosive away from the charge of explosive that remains. The method also involves splitting the casing of a munition having an encased explosive. The method includes rotating a munition while directing a laser beam to a surface portion of the casing of an article of ordnance. While the beam melts and/or vaporizes the surface portion, a flow of gas directed at the melted and/or vaporized surface portion sends it away from the remaining portion of ordnance. After cutting through the casing, the beam then melts and/or vaporizes portions of the encased explosive and the gas stream sends the melted/vaporized explosive away from the ordnance. The beam is continued until it splits the article, after which the encased explosive, now accessible, can be removed safely for recycle or disposal.

  3. Explosive laser light initiation of propellants

    DOE Patents [OSTI]

    Piltch, M.S.

    1993-05-18T23:59:59.000Z

    A improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

  4. Explosions inside Ejecta and Most Luminous Supernovae

    E-Print Network [OSTI]

    S. I. Blinnikov

    2008-12-28T23:59:59.000Z

    The extremely luminous supernova SN2006gy is explained in the same way as other SNIIn events: light is produced by a radiative shock propagating in a dense circumstellar envelope formed by a previous weak explosion. The problems in the theory and observations of multiple-explosion SNe IIn are briefly reviewed.

  5. Models of Type Ia Supernova Explosions

    E-Print Network [OSTI]

    J. C. Niemeyer; M. Reinecke; W. Hillebrandt

    2002-03-21T23:59:59.000Z

    Type Ia supernovae have become an indispensable tool for studying the expansion history of the universe, yet our understanding of the explosion mechanism is still incomplete. We describe the variety of discussed scenarios, sketch the most relevant physics, and report recent advances in multidimensional simulations of Chandrasekhar mass white dwarf explosions.

  6. Models of Type Ia Supernova Explosions

    E-Print Network [OSTI]

    Niemeyer, J C; Hillebrandt, W

    2002-01-01T23:59:59.000Z

    Type Ia supernovae have become an indispensable tool for studying the expansion history of the universe, yet our understanding of the explosion mechanism is still incomplete. We describe the variety of discussed scenarios, sketch the most relevant physics, and report recent advances in multidimensional simulations of Chandrasekhar mass white dwarf explosions.

  7. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  8. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Irene Farnham

    2011-05-01T23:59:59.000Z

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  9. Selected topics in nuclear astrophysics

    SciTech Connect (OSTI)

    Martinez-Pinedo, Gabriel [Institut fuer Kernphysik (Theoriezentrum), Technische Universitaet Darmstadt, Schlossgartenstrasse 2, 64289 Darmstadt, Germany and GSI Helmholtzzentrum fuer Schwerioneneforschung, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-06-10T23:59:59.000Z

    In this lectures after a brief introduction to stellar reaction rates and its implementation in nuclear networks, I discuss the nuclear physics aspects of core collapse supernova and explosive nucleosynthesis and their significance for the production of heavy elements by the rapid neutron capture process and potentially also by the recently discovered {nu}p process.

  10. Method for fabricating non-detonable explosive simulants

    DOE Patents [OSTI]

    Simpson, R.L.; Pruneda, C.O.

    1995-05-09T23:59:59.000Z

    A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  11. Method for fabricating non-detonable explosive simulants

    DOE Patents [OSTI]

    Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  12. Infrared near-field spectroscopy of trace explosives using an...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spectroscopy of trace explosives using an external cavity quantum cascade laser. Infrared near-field spectroscopy of trace explosives using an external cavity quantum cascade...

  13. Explosives exhibit opens at the Bradbury Science Museum Sept...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Explosives exhibit opens at the Bradbury Science Museum Explosives exhibit opens at the Bradbury Science Museum Sept. 18 To highlight the Laboratory's work in the field of...

  14. A different Big Bang theory: Los Alamos unveils explosives detection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    unveils explosives detection expertise A different Big Bang theory: Los Alamos unveils explosives detection expertise A team of scientists is now rolling out a collaborative...

  15. Construction on Pantex High Explosives Pressing Facility Reaches...

    National Nuclear Security Administration (NNSA)

    Field Offices Welcome to the NNSA Production Office NPO News Releases Construction on Pantex High Explosives Pressing Facility ... Construction on Pantex High Explosives...

  16. Chemical analysis kit for the presence of explosives

    DOE Patents [OSTI]

    Eckels, Joel Del (Livermore, CA); Nunes; Peter J. (Danville, CA); Alcaraz, Armando (Livermore, CA); Whipple, Richard E. (Livermore, CA)

    2011-05-10T23:59:59.000Z

    A tester for testing for explosives associated with a test location comprising a first explosives detecting reagent; a first reagent holder, the first reagent holder containing the first explosives detecting reagent; a second explosives detecting reagent; a second reagent holder, the second reagent holder containing the second explosives detecting reagent; a sample collection unit for exposure to the test location, exposure to the first explosives detecting reagent, and exposure to the second explosives detecting reagent; and a body unit containing a heater for heating the sample collection unit for testing the test location for the explosives.

  17. EPA - Ground Water Discharges (EPA's Underground Injection Control...

    Open Energy Info (EERE)

    Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water Discharges (EPA's...

  18. Utah Division of Environmental Response and Remediation Underground...

    Open Energy Info (EERE)

    Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah Division of...

  19. Alabama Underground Storage Tank And Wellhead Protection Act...

    Broader source: Energy.gov (indexed) [DOE]

    commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental...

  20. ,"Lower 48 States Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  1. ,"AGA Producing Region Underground Natural Gas Storage - All...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  2. ,"AGA Western Consuming Region Underground Natural Gas Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  3. ,"West Virginia Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  4. ,"AGA Eastern Consuming Region Underground Natural Gas Storage...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  5. ,"New York Underground Natural Gas Storage - All Operators"

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  6. ,"New Mexico Underground Natural Gas Storage - All Operators...

    U.S. Energy Information Administration (EIA) Indexed Site

    Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for"...

  7. EA-1943: Long Baseline Neutrino Facility/Deep Underground Neutrino...

    Broader source: Energy.gov (indexed) [DOE]

    and at a "far detector," at the Sanford Underground Research Facility (SURF) in Lead, South Dakota. NOTE: This Project was previously designated (DOEEA-1799). Further...

  8. Progress Continues Toward Closure of Two Underground Waste Tanks...

    Broader source: Energy.gov (indexed) [DOE]

    fiscal year 2013, which ended Sept. 30, SRR reached contract milestones in the Interim Salt Disposition Process, which treats salt waste from the underground storage tanks. Salt...

  9. Pore Models Track Reactions in Underground Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    want to model what happens to the crystals' geochemistry when the greenhouse gas carbon dioxide is injected underground for sequestration. Image courtesy of David...

  10. COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES

    E-Print Network [OSTI]

    Lamb, D.W.

    2013-01-01T23:59:59.000Z

    SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIEStimes are calculated for a mining and drilling progrilln toof cost and time to compl mining and core drilling for

  11. Closure report for underground storage tank 161-R1U1 and its associated underground piping

    SciTech Connect (OSTI)

    Mallon, B.J.; Blake, R.G.

    1994-05-01T23:59:59.000Z

    Underground storage tank (UST) 161-31 R at the Lawrence Livermore National Laboratory (LLNL) was registered with the State Water Resources Control Board on June 27, 1984. UST 161-31R was subsequently renamed UST 161-R1U1 (Fig. A-1, Appendix A). UST 161-R1U1 was installed in 1976, and had a capacity of 383 gallons. This tank system consisted of a fiberglass reinforced plastic tank, approximately 320 feet of polyvinyl chloride (PVC) underground piping from Building 161, and approximately 40 feet of PVC underground piping from Building 160. The underground piping connected laboratory drains and sinks inside Buildings 160 and 161 to UST 161-R1U1. The wastewater collected in UST 161-R1U1, contained organic solvents, metals, inorganic acids, and radionuclides, most of which was produced within Building 161. On June 28, 1989, the UST 161-R1U1 piping system.around the perimeter of Building 161 failed a precision test performed by Gary Peters Enterprises (Appendix B). The 161-R1U1 tank system was removed from service after the precision test. In July 1989, additional hydrostatic tests and helium leak detection tests were performed (Appendix B) to determine the locations of the piping failures in the Building 161 piping system. The locations of the piping system failures are shown in Figure A-2 (Appendix A). On July 11, 1989, LLNL submitted an Unauthorized Release Report to Alameda County Department of Environmental Health (ACDEH), Appendix C.

  12. Water pollution control for underground coal gasification

    SciTech Connect (OSTI)

    Humenick, M.J.

    1984-06-01T23:59:59.000Z

    Water pollution arising from underground gasification of coal is one of the important considerations in the eventual commercialization of the process. Because many coal seams which are amenable to in situ gasification are also ground-water aquifers, contaminants may be released to these ground waters during and after gasification. Also, when product gas is processed above ground for use, wastewater streams are generated which are too polluted to be discharged. The purpose of this paper is to characterize the nature of the groundwater and above-ground pollutants, discuss the potential long and short-term effects on ground water, propose control and restoration strategies, and to identify potential wastewater treatment schemes.

  13. Method of locating underground mines fires

    DOE Patents [OSTI]

    Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

    1992-01-01T23:59:59.000Z

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  14. 100-N Area underground storage tank closures

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-08-01T23:59:59.000Z

    This report describes the removal/characterization actions concerning underground storage tanks (UST) at the 100-N Area. Included are 105-N-LFT, 182-N-1-DT, 182-N-2-DT, 182-N-3-DT, 100-N-SS-27, and 100-N-SS-28. The text of this report gives a summary of remedial activities. In addition, correspondence relating to UST closures can be found in Appendix B. Appendix C contains copies of Unusual Occurrence Reports, and validated sampling data results comprise Appendix D.

  15. Flow characteristics in underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

    1982-01-01T23:59:59.000Z

    During the underground coal gasification field test at the Hoe Creek site No. 2, Wyoming, helium pulses were introduced to develop information to characterize the flow field, and to estimate the coefficients in dispersion models of the flow. Quantitative analysis of the tracer response curves shows an increasing departure from a plug flow regime with time because of the combined effects of the free and forced convection in addition to the complex non-uniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery and characteristic velocity, as well as the split of the gas between the parallel streams in the model. 17 refs.

  16. Investigation of CTBT OSI Radionuclide Techniques at the DILUTED WATERS Nuclear Test Site

    SciTech Connect (OSTI)

    Baciak, James E.; Milbrath, Brian D.; Detwiler, Rebecca S.; Kirkham, Randy R.; Keillor, Martin E.; Lepel, Elwood A.; Seifert, Allen; Emer, Dudley; Floyd, Michael

    2012-11-01T23:59:59.000Z

    Under the Comprehensive Nuclear-Test-Ban Treaty (CTBT), a verification regime that includes the ability to conduct an On-Site Inspection (OSI) will be established. The Treaty allows for an OSI to include many techniques, including the radionuclide techniques of gamma radiation surveying and spectrometry and environmental sampling and analysis. Such radioactivity detection techniques can provide the “smoking gun” evidence that a nuclear test has occurred through the detection and quantification of indicative recent fission products. An OSI faces restrictions in time and manpower, as dictated by the Treaty; not to mention possible logistics difficulties due to the location and climate of the suspected explosion site. It is thus necessary to have a good understanding of the possible source term an OSI will encounter and the proper techniques that will be necessary for an effective OSI regime. One of the challenges during an OSI is to locate radioactive debris that has escaped an underground nuclear explosion (UNE) and settled on the surface near and downwind of ground zero. To support the understanding and selection of sampling and survey techniques for use in an OSI, we are currently designing an experiment, the Particulate Release Experiment (PRex), to simulate a small-scale vent from an underground nuclear explosion. PRex will occur at the Nevada National Security Site (NNSS). The project is conducted under the National Center for Nuclear Security (NCNS) funded by the National Nuclear Security Agency (NNSA). Prior to the release experiment, scheduled for Spring of 2013, the project scheduled a number of activities at the NNSS to prepare for the release experiment as well as to utilize the nuclear testing past of the NNSS for the development of OSI techniques for CTBT. One such activity—the focus of this report—was a survey and sampling campaign at the site of an old UNE that vented: DILUTED WATERS. Activities at DILUTED WATERS included vehicle-based survey, in situ measurements with high-purity germanium (HPGe) and hand-held LaBr3 systems, soil sampling with a variety of tools, and laboratory gamma spectrometric analysis of those samples. A further benefit of the measurement campaign was to gain familiarity with the many logistical aspects of performing radiological field work at NNSS ahead of the PRex. Many practical lessons concerning the proper methodologies and logistics of using the surveying and sampling equipment were noted. These Lessons Learned are compiled together in Appendix A. The vehicle-based survey was successful in that it found a previously unknown hotspot (determined to be 232Th) while it demonstrated that a better method for keeping a serpentine track without staking was needed. Some of the soil sampling equipment was found to be impractical for the application, though core sampling would not be the correct way to take soil samples for a fresh vent deposit (as opposed to an old site like DILUTED WATERS). Due to the site’s age, 137Cs was the only fission radioisotope identified, though others were searched for. While not enough samples were taken and analyzed to definitively link the 137Cs to DILUTED WATERS as opposed to other NNSS activities, results were consistent with the historical DILUTED WATERS plume. MDAs were compared for soil sampling and in situ measurements.

  17. Unreacted Hugoniots for porous and liquid explosives

    SciTech Connect (OSTI)

    Gustavsen, R.L.; Sheffield, S.A.

    1993-08-01T23:59:59.000Z

    Numerous authors have measured the Hugoniots of a variety of granular explosives pressed to different densities. Each explosive at each density was typically then treated as a unique material having its own Hugoniot. By combining methods used by Hayes, Sheffield and Mitchell (for describing the Hugoniot of HNS at various densities) with Hermann`s P-{alpha} model, it is only necessary to know some thermodynamic constants or the Hugoniot of the initially solid material and the porous material sound speed to obtain accurate unreacted Hugoniots for the porous explosive. We discuss application of this method to several materials including HMX, PETN, TNT, and Tetryl, as well as HNS. We also show that the ``Universal Liquid Hugoniot`` can be used to calculate the unreacted Hugoniot for liquid explosives. With this method only the ambient pressure sound speed and density are needed to predict the Hugoniot. Applications presented include nitromethane and liquid TNT.

  18. High-explosive anti-tank warheads

    E-Print Network [OSTI]

    2011-11-30T23:59:59.000Z

    Nov 30, 2011 ... In Russian literature, this jet of steel formed by explosion, which pierces the armor, is called the “wire”. It is very thin indeed. You can see the.

  19. Explosive Safety Manual, to a New Order

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-12-02T23:59:59.000Z

    This memorandum provides justification for the conversion of Department of Energy (DOE) Manual (M) 440.1-1A, DOE Explosives Safety Manual, dated 1-9-06, into a new DOE Order.

  20. Seismic reflection imaging of underground cavities using open-source software

    SciTech Connect (OSTI)

    Mellors, R J

    2011-12-20T23:59:59.000Z

    The Comprehensive Nuclear Test Ban Treaty (CTBT) includes provisions for an on-site inspection (OSI), which allows the use of specific techniques to detect underground anomalies including cavities and rubble zones. One permitted technique is active seismic surveys such as seismic refraction or reflection. The purpose of this report is to conduct some simple modeling to evaluate the potential use of seismic reflection in detecting cavities and to test the use of open-source software in modeling possible scenarios. It should be noted that OSI inspections are conducted under specific constraints regarding duration and logistics. These constraints are likely to significantly impact active seismic surveying, as a seismic survey typically requires considerable equipment, effort, and expertise. For the purposes of this study, which is a first-order feasibility study, these issues will not be considered. This report provides a brief description of the seismic reflection method along with some commonly used software packages. This is followed by an outline of a simple processing stream based on a synthetic model, along with results from a set of models representing underground cavities. A set of scripts used to generate the models are presented in an appendix. We do not consider detection of underground facilities in this work and the geologic setting used in these tests is an extremely simple one.

  1. The physics of antimatter induced fusion and thermonuclear explosions

    E-Print Network [OSTI]

    Andre Gsponer; Jean-pierre Hurni

    triggering large scale thermonuclear explosions is investigated. The number of antiproton annihilations

  2. A theoretical model of the explosive fragmentation of vesicular magma

    E-Print Network [OSTI]

    McGuinness, Mark

    fire fountaining to vigorous Vulcanian and Plinian eruptions. The range of different types of explosiveA theoretical model of the explosive fragmentation of vesicular magma A. C. Fowler, MACSI explosion can occur, and is motivated by the corresponding phenomenon of magmatic explosion during Vulcanian

  3. Underground coal gasification using oxygen and steam

    SciTech Connect (OSTI)

    Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

    2009-07-01T23:59:59.000Z

    In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

  4. Safeguards Issues at Nuclear Reactors and Enrichment Plants

    SciTech Connect (OSTI)

    Boyer, Brian D [Los Alamos National Laboratory

    2012-08-15T23:59:59.000Z

    The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

  5. AMERICAN POLICY AND IRAN'S NUCLEAR PROGRAMME: THE CHINA ANALOGY

    E-Print Network [OSTI]

    Heinke, Dietmar

    . The first Chinese nuclear test explosion took place in October 1964, thus breaking into the monopoly held, the PRC had become the rogue state par excellence. What it might do when it acquired nuclear weapons sent against Chinese nuclear facilities (though use of nuclear weapons was an extra option to assure

  6. Explosive parcel containment and blast mitigation container

    DOE Patents [OSTI]

    Sparks, Michael H. (Frederick County, MD)

    2001-06-12T23:59:59.000Z

    The present invention relates to a containment structure for containing and mitigating explosions. The containment structure is installed in the wall of the building and has interior and exterior doors for placing suspicious packages into the containment structure and retrieving them from the exterior of the building. The containment structure has a blast deflection chute and a blowout panel to direct over pressure from explosions away from the building, surrounding structures and people.

  7. Weapons Experiments Division Explosives Operations Overview

    SciTech Connect (OSTI)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19T23:59:59.000Z

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  8. Simulation of neutrons produced by high-energy muons underground

    E-Print Network [OSTI]

    A. Lindote; H. M. Araujo; V. A. Kudryavtsev; M. Robinson

    2009-02-12T23:59:59.000Z

    This article describes the Monte Carlo simulation used to interpret the measurement of the muon-induced neutron flux in the Boulby Underground Laboratory (North Yorkshire, UK), recently performed using a large scintillator veto deployed around the ZEPLIN-II WIMP detector. Version 8.2 of the GEANT4 toolkit was used after relevant benchmarking and validation of neutron production models. In the direct comparison between Monte Carlo and experimental data, we find that the simulation produces a 1.8 times higher neutron rate, which we interpret as over-production in lead by GEANT4. The dominance of this material in neutron production allows us to estimate the absolute neutron yield in lead as (1.31 +/- 0.06) x 10^(-3) neutrons/muon/(g/cm^2) for a mean muon energy of 260 GeV. Simulated nuclear recoils due to muon-induced neutrons in the ZEPLIN-II target volume (~1 year exposure) showed that, although a small rate of events is expected from this source of background in the energy range of interest for dark matter searches, no event survives an anti-coincidence cut with the veto.

  9. Permanent Closure of the TAN-664 Underground Storage Tank

    SciTech Connect (OSTI)

    Bradley K. Griffith

    2011-12-01T23:59:59.000Z

    This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

  10. Construction of a Shallow Underground Low-background Detector for a CTBT Radionuclide Laboratory

    SciTech Connect (OSTI)

    Forrester, Joel B.; Greenwood, Lawrence R.; Miley, Harry S.; Myers, Allan W.; Overman, Cory T.

    2013-05-01T23:59:59.000Z

    The International Monitoring System (IMS) is a verification component of the Comprehensive Nuclear-Test-Ban Treaty (CTBT), and in addition to a series of radionuclide monitoring stations, contains sixteen radionuclide laboratories capable of verification of radionuclide station measurements. This paper presents an overview of a new commercially obtained low-background detector system for radionuclide aerosol measurements recently installed in a shallow (>30 meters water equivalent) underground clean-room facility at Pacific Northwest National Laboratory. Specifics such as low-background shielding materials, active shielding methods, and improvements in sensitivity to IMS isotopes will be covered.

  11. The control of confined vapor phase explosions

    SciTech Connect (OSTI)

    Scilly, N.F. [Laporte plc, Widnes (United Kingdom); Owen, O.J.R. [Fine Organics, Ltd., Middlesborough (United Kingdom); Wilberforce, J.K. [Solvay SA, Brussels (Belgium)

    1995-12-31T23:59:59.000Z

    The probability of, for example, a fire or explosion occurring during a process operation is related both to the fire-related properties of the materials used, such as flash point, flammable limits etc., i.e. the material or intrinsic factors, and the nature of the operation and the equipment used, i.e. the extrinsic factors. The risk, or frequency of occurrence, of other hazards such as reaction runaway, major toxic release etc. can be determined in a similar manner. For a vapor phase explosion (and a fire) the probability of the event is the product of the probability of generating a flammable atmosphere and the probability of ignition. Firstly, materials may be coded using properties that are relevant to the hazard in question. Secondly, different operations have different degrees of risk and these risks are assigned as Low, Medium, High etc. according to criteria outlined here. Combination of these two factors will then be a measure of the overall risk of the operation with the specified material and may be used to define operating standards. Currently, the hazard/risk of a vapor phase explosions is examined by this method but in due course dust explosions, fires, condensed phase explosions, reaction runaways, physical explosions, major toxic releases and incompatibility will be included.

  12. A hydrodynamic model for asymmetric explosions of rapidly rotating collapsing supernovae with a toroidal atmosphere

    E-Print Network [OSTI]

    V. S. Imshennik; K. V. Manukovskii

    2004-11-16T23:59:59.000Z

    We numerically solved the two-dimensional axisymmetric hydrodynamic problem of the explosion of a low-mass neutron star in a circular orbit. In the initial conditions, we assumed a nonuniform density distribution in the space surrounding the collapsed iron core in the form of a stationary toroidal atmosphere that was previously predicted analytically and computed numerically. The con?guration of the exploded neutron star itself was modeled by a torus with a circular cross section whose central line almost coincided with its circular orbit. Using an equation of state for the stellar matter and the toroidal atmosphere in which the nuclear statistical equilibrium conditions were satisfied, we performed a series of numerical calculations that showed the propagation of a strong divergent shock wave with a total energy of 0.2x10^51 erg at initial explosion energy release of 1.0x10^51 erg. In our calculations, we rigorously took into account the gravitational interaction, including the attraction from a higher-mass (1.9M_solar) neutron star located at the coordinate origin, in accordance with the rotational explosion mechanism for collapsing supernovae.W e compared in detail our results with previous similar results of asymmetric supernova explosion simulations and concluded that we found a lower limit for the total explosion energy.

  13. BWR ex-vessel steam explosion analysis with MC3D code

    SciTech Connect (OSTI)

    Leskovar, M. [Josef Stefan Inst., Jamova cesta 39, 1001 Ljubljana (Slovenia)

    2012-07-01T23:59:59.000Z

    A steam explosion may occur, during a severe reactor accident, when the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. To resolve the open issues in steam explosion understanding and modeling, the OECD program SERENA phase 2 was launched at the end of year 2007, focusing on reactor applications. To verify the progress made in the understanding and modeling of fuel coolant interaction key phenomena for reactor applications a reactor exercise has been performed. In this paper the BWR ex-vessel steam explosion study, which was carried out with the MC3D code in conditions of the SERENA reactor exercise for the BWR case, is presented and discussed. The premixing simulations were performed with two different jet breakup modeling approaches and the explosion was triggered also at the expected most challenging time. For the most challenging case, at the cavity wall the highest calculated pressure was {approx}20 MPa and the highest pressure impulse was {approx}90 kPa.s. (authors)

  14. Nuclear Nonproliferation

    SciTech Connect (OSTI)

    Atkins-Duffin, C E

    2008-12-10T23:59:59.000Z

    With an explosion equivalent of about 20kT of TNT, the Trinity test was the first demonstration of a nuclear weapon. Conducted on July 16, 1945 in Alamogordo, NM this site is now a Registered National Historic Landmark. The concept and applicability of nuclear power was demonstrated on December 20, 1951 with the Experimental Breeder Reactor Number One (EBR-1) lit four light bulbs. This reactor is now a Registered National Historic Landmark, located near Arco, ID. From that moment forward it had been clearly demonstrated that nuclear energy has both peaceful and military applications and that the civilian and military fuel cycles can overlap. For the more than fifty years since the Atoms for Peace program, a key objective of nuclear policy has been to enable the wider peaceful use of nuclear energy while preventing the spread of nuclear weapons. Volumes have been written on the impact of these two actions on the world by advocates and critics; pundits and practioners; politicians and technologists. The nations of the world have woven together a delicate balance of treaties, agreements, frameworks and handshakes that are representative of the timeframe in which they were constructed and how they have evolved in time. Collectively these vehicles attempt to keep political will, nuclear materials and technology in check. This paper captures only the briefest abstract of the more significant aspects on the Nonproliferation Regime. Of particular relevance to this discussion is the special nonproliferation sensitivity associated with the uranium isotope separation and spent fuel reprocessing aspects of the nuclear fuel cycle.

  15. Use of explosives to demolish multistory steel frame buildings

    E-Print Network [OSTI]

    Landry, Charles Vernon

    1988-01-01T23:59:59.000Z

    of Explosives Engineers. The articles dealt with the state-of-the-art, covering many peripheral subjects of the use of explosives to demolish steel framed multistory buildings. The most extensive literature available on controlled demolition techniques... with the exception of several articles presented to the Annual Proceedings of the Society of Explosives Engineers and a few U. S. government studies on the use of explosives. In depth interviews were conducted with controlled explosive demolition companies...

  16. Stellar Explosions by Magnetic Towers

    E-Print Network [OSTI]

    Dmitri A. Uzdensky; Andrew I. MacFadyen

    2006-05-05T23:59:59.000Z

    We propose a magnetic mechanism for the collimated explosion of a massive star relevant for GRBs, XRFs and asymmetric supernovae. We apply Lynden-Bell's magnetic tower scenario to the interior of a massive rotating star after the core has collapsed to form a black hole with an accretion disk or a millisecond magnetar acting as a central engine. We solve the force-free Grad-Shafranov equation to calculate the magnetic structure and growth of a tower embedded in a stellar environment. The pressure of the toroidal magnetic field, continuously generated by differential rotation of the central engine, drives a rapid expansion which becomes vertically collimated after lateral force balance with the surrounding gas pressure is reached. The collimation naturally occurs because hoop stress concentrates magnetic field toward the rotation axis and inhibits lateral expansion. This leads to the growth of a self-collimated magnetic tower. When embedded in a massive star, the supersonic expansion of the tower drives a strong bow shock behind which an over-pressured cocoon forms. The cocoon confines the tower by supplying collimating pressure and provides stabilization against disruption due to MHD instabilities. Because the tower consists of closed field lines starting and ending on the central engine, mixing of baryons from the cocoon into the tower is suppressed. The channel cleared by the growing tower is thus plausibly free of baryons and allows the escape of magnetic energy from the central engine through the star. While propagating down the stellar density gradient, the tower accelerates and becomes relativistic. During the expansion, fast collisionless reconnection becomes possible resulting in dissipation of magnetic energy which may be responsible for GRB prompt emission.

  17. Biological treatment of underground coal gasification wastewaters

    SciTech Connect (OSTI)

    Bryant, C.W. Jr.; Humenick, M.J.; Cawein, C.C.; Nolan, B.T. III

    1985-05-01T23:59:59.000Z

    Biotreatability studies using underground coal gasification (UCG) wastewaters were performed by the University of Arizona and the University of Wyoming. The University of Arizona researchers found that UCG condensate could be effectively treated by activated sludge, using feed wastewaters of up to 50% strength. Total organic carbon (TOC) and chemical oxygen demand (COD) removals approached 90% during this research. The University of Wyoming researchers found that solvent extraction and hot-gas stripping were effective pretreatments for undiluted UCG condensate and that addition of powdered activated carbon enhanced the biotreatment process. TOC and COD removals resulting from the combination of pretreatments and biotreatment were 91% and 95%, respectively. The yield, decay, and substrate removal rate coefficients were greater in the University of Wyoming study than in the University of Arizona study. This was possibly caused by removing bioinhibitory substances, such as ammonia, with pretreatment. 18 refs., 25 figs., 6 tabs.

  18. Rocky Mountain 1 Underground Coal Gasification Project

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    The Rocky Mountain 1 Underground Coal Gasification Test or Burn was conducted from approximately mid-November, 1987 through February, 1988. After the burn the project began proceeding with the following overall tasks: venting, flushing and cooling of the cavities; subsurface or groundwater cleanup; post-burn coring and drilling; groundwater monitoring, and site restoration/reclamation. By the beginning of 1991 field activities associated with venting, flushing and cooling of the cavities and post-burn coring and drilling had been completed. However, data analysis continued including the University of North Dakota analyzing drilling and coring data, and the US Department of Energy (DOE)/EG G developing a chronological listing of project events.

  19. The Large Underground Xenon (LUX) Experiment

    E-Print Network [OSTI]

    D. S. Akerib; X. Bai; S. Bedikian; E. Bernard; A. Bernstein; A. Bolozdynya; A. Bradley; D. Byram; S. B. Cahn; C. Camp; M. C. Carmona-Benitez; D. Carr; J. J. Chapman; A. Chiller; C. Chiller; K. Clark; T. Classen; T. Coffey; A. Curioni; E. Dahl; S. Dazeley; L. de Viveiros; A. Dobi; E. Dragowsky; E. Druszkiewicz; B. Edwards; C. H. Faham; S. Fiorucci; R. J. Gaitskell; K. R. Gibson; M. Gilchriese; C. Hall; M. Hanhardt; B. Holbrook; M. Ihm; R. G. Jacobsen; L. Kastens; K. Kazkaz; R. Knoche; S. Kyre; J. Kwong; R. Lander; N. A. Larsen; C. Lee; D. S. Leonard; K. T. Lesko; A. Lindote; M. I. Lopes; A. Lyashenko; D. C. Malling; R. Mannino; Z. Marquez; D. N. McKinsey; D. -M. Mei; J. Mock; M. Moongweluwan; M. Morii; H. Nelson; F. Neves; J. A. Nikkel; M. Pangilinan; P. D. Parker; E. K. Pease; K. Pech; P. Phelps; A. Rodionov; P. Roberts; A. Shei; T. Shutt; C. Silva; W. Skulski; V. N. Solovov; C. J. Sofka; P. Sorensen; J. Spaans; T. Stiegler; D. Stolp; R. Svoboda; M. Sweany; M. Szydagis; D. Taylor; J. Thomson; M. Tripathi; S. Uvarov; J. R. Verbus; N. Walsh; R. Webb; D. White; J. T. White; T. J. Whitis; M. Wlasenko; F. L. H. Wolfs; M. Woods; C. Zhang

    2012-11-21T23:59:59.000Z

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of $2\\times 10^{-46}$ cm$^{2}$, equivalent to $\\sim$1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have $<$1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.

  20. The Large Underground Xenon (LUX) Experiment

    E-Print Network [OSTI]

    Akerib, D S; Bedikian, S; Bernard, E; Bernstein, A; Bolozdynya, A; Bradley, A; Byram, D; Cahn, S B; Camp, C; Carmona-Benitez, M C; Carr, D; Chapman, J J; Chiller, A; Chiller, C; Clark, K; Classen, T; Coffey, T; Curioni, A; Dahl, E; Dazeley, S; de Viveiros, L; Dobi, A; Dragowsky, E; Druszkiewicz, E; Edwards, B; Faham, C H; Fiorucci, S; Gaitskell, R J; Gibson, K R; Gilchriese, M; Hall, C; Hanhardt, M; Holbrook, B; Ihm, M; Jacobsen, R G; Kastens, L; Kazkaz, K; Knoche, R; Kyre, S; Kwong, J; Lander, R; Larsen, N A; Lee, C; Leonard, D S; Lesko, K T; Lindote, A; Lopes, M I; Lyashenko, A; Malling, D C; Mannino, R; Marquez, Z; McKinsey, D N; Mei, D -M; Mock, J; Moongweluwan, M; Morii, M; Nelson, H; Neves, F; Nikkel, J A; Pangilinan, M; Parker, P D; Pease, E K; Pech, K; Phelps, P; Rodionov, A; Roberts, P; Shei, A; Shutt, T; Silva, C; Skulski, W; Solovov, V N; Sofka, C J; Sorensen, P; Spaans, J; Stiegler, T; Stolp, D; Svoboda, R; Sweany, M; Szydagis, M; Taylor, D; Thomson, J; Tripathi, M; Uvarov, S; Verbus, J R; Walsh, N; Webb, R; White, D; White, J T; Whitis, T J; Wlasenko, M; Wolfs, F L H; Woods, M; Zhang, C

    2012-01-01T23:59:59.000Z

    The Large Underground Xenon (LUX) collaboration has designed and constructed a dual-phase xenon detector, in order to conduct a search for Weakly Interacting Massive Particles(WIMPs), a leading dark matter candidate. The goal of the LUX detector is to clearly detect (or exclude) WIMPS with a spin independent cross section per nucleon of $2\\times 10^{-46}$ cm$^{2}$, equivalent to $\\sim$1 event/100 kg/month in the inner 100-kg fiducial volume (FV) of the 370-kg detector. The overall background goals are set to have $<$1 background events characterized as possible WIMPs in the FV in 300 days of running. This paper describes the design and construction of the LUX detector.

  1. Flow characteristics in underground coal gasification

    SciTech Connect (OSTI)

    Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

    1982-01-01T23:59:59.000Z

    During the Hoe Creek No. 2 (Wyoming) underground-coal-gasification field test, researchers introduced helium pulses to characterize the flow field and to estimate the coefficients in dispersion models of the flow. Flow models such as the axial-dispersion and parallel tanks-in-series models allowed interpretation of the in situ combustion flow field from the residence time distribution of the tracer gas. A quantitative analysis of the Hoe Creek tracer response curves revealed an increasing departure from a plug-flow regime with time, which was due to the combined effects of the free and forced convection in addition to the complex nonuniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery, and characteristic velocity, as well as the split of the gas between the parallel streams in the model.

  2. Type Ia Supernova Explosion Models: Homogeneity versus Diversity

    E-Print Network [OSTI]

    W. Hillebrandt; J. C. Niemeyer; M. Reinecke

    2000-05-30T23:59:59.000Z

    Type Ia supernovae (SN Ia) are generally believed to be the result of the thermonuclear disruption of Chandrasekhar-mass carbon-oxygen white dwarfs, mainly because such thermonuclear explosions can account for the right amount of Ni-56, which is needed to explain the light curves and the late-time spectra, and the abundances of intermediate-mass nuclei which dominate the spectra near maximum light. Because of their enormous brightness and apparent homogeneity SN Ia have become an important tool to measure cosmological parameters. In this article the present understanding of the physics of thermonuclear explosions is reviewed. In particular, we focus our attention on subsonic (``deflagration'') fronts, i.e. we investigate fronts propagating by heat diffusion and convection rather than by compression. Models based upon this mode of nuclear burning have been applied very successfully to the SN Ia problem, and are able to reproduce many of their observed features remarkably well. However, the models also indicate that SN Ia may differ considerably from each other, which is of importance if they are to be used as standard candles.

  3. Wiener filtering with a seismic underground array at the Sanford Underground Research Facility

    E-Print Network [OSTI]

    Michael Coughlin; Jan Harms; Nelson Christensen; Vladimir Dergachev; Riccardo DeSalvo; Shivaraj Kandhasamy; Vuk Mandic

    2014-08-19T23:59:59.000Z

    A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave detector underground. A major noise source for these detectors would be Newtonian noise, which is induced by fluctuations in the local gravitational field. The hope is that a combination of a low-noise seismic environment and coherent noise subtraction using seismometers in the vicinity of the detector could suppress the Newtonian noise to below the projected noise floor for future gravitational-wave detectors. In this paper, we use Wiener filtering techniques to subtract coherent noise in a seismic array in the frequency band 0.05 -- 1\\,Hz. This achieves more than an order of magnitude noise cancellation over a majority of this band. We show how this subtraction would benefit proposed future low-frequency gravitational wave detectors. The variation in the Wiener filter coefficients over the course of the day, including how local activities impact the filter, is analyzed. We also study the variation in coefficients over the course of a month, showing the stability of the filter with time. How varying the filter order affects the subtraction performance is also explored. It is shown that optimizing filter order can significantly improve subtraction of seismic noise, which gives hope for future gravitational-wave detectors to address Newtonian noise.

  4. Report on the treatability study for inerting small quantities of radioactive explosives and explosive components

    SciTech Connect (OSTI)

    Loyola, V.M.; Reber, S.D.

    1996-02-01T23:59:59.000Z

    As a result of Sandia`s radiation hardening testing on a variety of its explosive components, radioactive waste streams were generated and have to be disposed of as radioactive waste. Due to the combined hazards of explosives and radioactivity, Sandia`s Radioactive and Mixed Waste Management organization did not have a mechanism for disposal of these waste streams. This report documents the study done to provide a method for the removal of the explosive hazard from those waste streams. The report includes the design of the equipment used, procedures followed, results from waste stream analog tests and the results from the actual explosive inerting tests on radioactive samples. As a result of the inerting treatment, the waste streams were rendered non-explosive and, thus, manageable through normal radioactive waste disposal channels.

  5. Method of digesting an explosive nitro compound

    DOE Patents [OSTI]

    Shah, Manish M. (Richland, WA)

    2000-01-01T23:59:59.000Z

    The present invention is a process wherein bleaching oxidants are used to digest explosive nitro compounds. The process has an excellent reaction rate for digesting explosives and operates under multivariate conditions. Reaction solutions may be aqueous, non-aqueous or a combination thereof, and can also be any pH, but preferably have a pH between 2 and 9. The temperature may be ambient as well as any temperature above which freezing of the solution would occur and below which any degradation of the bleaching oxidant would occur or below which any explosive reaction would be initiated. The pressure may be any pressure, but is preferably ambient or atmospheric, or a pressure above a vapor pressure of the aqueous solution to avoid boiling of the solution. Because the bleaching oxidant molecules are small, much smaller than an enzyme molecule for example, they can penetrate the microstructure of plastic explosives faster. The bleaching oxidants generate reactive hydroxyl radicals, which can destroy other organic contaminants, if necessary, along with digesting the explosive nitro compound.

  6. Airport testing an explosives detection portal

    SciTech Connect (OSTI)

    Rhykerd, C.; Linker, K.; Hannum, D.; Bouchier, F.; Parmeter, J.

    1998-08-01T23:59:59.000Z

    At the direction of the US Congress, following the Pan Am 103 and TWA 800 crashes, the Federal Aviation Administration funded development of non-invasive techniques to screen airline passengers for explosives. Such an explosives detection portal, developed at Sandia National Laboratories, was field tested at the Albuquerque International airport in September 1997. During the 2-week field trial, 2,400 passengers were screened and 500 surveyed. Throughput, reliability, maintenance and sensitivity were studied. Follow-up testing at Sandia and at Idaho National Engineering and Environmental Laboratory was conducted. A passenger stands in the portal for five seconds while overhead fans blow air over his body. Any explosive vapors or dislodged particles are collected in vents at the feet. Explosives are removed from the air in a preconcentrator and subsequently directed into an ion mobility spectrometer for detection. Throughput measured 300 passengers per hour. The non-invasive portal can detect subfingerprint levels of explosives residue on clothing. A survey of 500 passengers showed a 97% approval rating, with 99% stating that such portals, if effective, should be installed in airports to improve security. Results of the airport test, as well as operational issues, are discussed.

  7. Coming to grips with nuclear winter

    SciTech Connect (OSTI)

    Scherr, S.J.

    1985-10-01T23:59:59.000Z

    This editorial examines the politics related to the concept of nuclear winter which is a term used to describe temperature changes brought on by the injection of smoke into the atmosphere by the massive fires set off by nuclear explosions. The climate change alone could cause crop failures and lead to massive starvation. The author suggests that the prospect of a nuclear winter should be a deterrent to any nuclear exchange.

  8. Mass balances for underground coal gasification in steeply dipping beds

    SciTech Connect (OSTI)

    Lindeman, R.; Ahner, P.; Davis, B.E.

    1980-01-01T23:59:59.000Z

    Two different mass balances were used during the recent underground coal gasification tests conducted in steeply dipping coal beds at Rawlins, Wyoming. The combination of both mass balances proved extremely useful in interpreting the test results. One mass balance which assumed char could be formed underground required the solution of 3 simultaneous equations. The assumption of no char decouples the 3 equations in the other mass balance. Both mass balance results are compared to the test data to provide an interpretation of the underground process.

  9. Muon simulation codes MUSIC and MUSUN for underground physics

    E-Print Network [OSTI]

    V. A. Kudryavtsev

    2008-10-25T23:59:59.000Z

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  10. Security training symposium: Meeting the challenge: Firearms and explosives recognition and detection

    SciTech Connect (OSTI)

    Not Available

    1990-09-01T23:59:59.000Z

    These conference proceedings have been prepared in support of the US Nuclear Regulatory Commission's Security Training Symposium on Meeting the Challenge -- Firearms and Explosives Recognition and Detection,'' November 28 through 30, 1989, in Bethesda, Maryland. This document contains the edited transcripts of the guest speakers. It also contains some of the speakers' formal papers that were distributed and some of the slides that were shown at the symposium (Appendix A).

  11. Lightcurves of thermonuclear supernovae as a probe of the explosion mechanism and their use in cosmology

    E-Print Network [OSTI]

    S. Blinnikov; E. Sorokina

    2002-12-30T23:59:59.000Z

    Thermonuclear supernovae are valuable for cosmology but their physics is not yet fully understood. Modeling the development and propagation of nuclear flame is complicated by numerous instabilities. The predictions of supernova light curves still involve some simplifying assumptions, but one can use the comparison of the computed fluxes with observations to constrain the explosion mechanism. In spite of great progress in recent years, a number of issues remains unsolved both in flame physics and light curve modeling.

  12. Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)

    SciTech Connect (OSTI)

    IT Corporation, Las Vegas

    2002-04-24T23:59:59.000Z

    The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations.

  13. Hydrologic Resources Management Program and Underground Test Area Project FY 2000 Progress Report

    SciTech Connect (OSTI)

    Davisson, M L; Eaton, G F; Hakemi, N L; Hudson, G B; Hutcheon, I D; Lau, C A; Kersting, A B; Kenneally, J M; Moran, J E; Phinney, D L; Rose, T P; Smith, D K; Sylwester, E R; Wang, L; Williams, R; Zavarin, M

    2001-07-01T23:59:59.000Z

    This report highlights the results of FY 2000 technical studies conducted by the Analytical and Nuclear Chemistry Division (ANCD) at Lawrence Livermore National Laboratory (LLNL) in support of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area (UGTA) Project. This is the latest in a series of annual reports published by LLNL-ANCD to document recent investigations of radionuclide migration and transport processes at the Nevada Test Site (NTS). The HRMP is sponsored by Defense Programs (DP) at the U.S. Department of Energy, Nevada Operations Office (DOENV), and supports DP operations at the NTS through studies of radiochemical and hydrologic processes that are relevant to the DP mission. Other organizations that support the HRMP include Los Alamos National Laboratory (LANL), the U.S. Geological Survey (USGS), the Desert Research Institute (DRI) of the University of Nevada, the U.S. Environmental Protection Agency (EPS), and Bechtel Nevada (BN). The UGTA Project is sponsored by the Environmental Management (EM) program at DOENV; its goal is to determine the extent of radionuclide contamination in groundwater resulting from underground nuclear testing at the NTS. The project strategy follows guidelines set forth in a Federal Facilities Agreement and Consent Order between the U.S. Department of Energy, the U.S. Department of Defense, and the State of Nevada. Participating contractors include LLNL (both ANCD and the Energy and Environmental Sciences Directorate), LANL, USGS, DRI, BN, and IT Corporation (with subcontract support from Geotrans Inc.).

  14. Securing Infrastructure from High Explosive Threats

    SciTech Connect (OSTI)

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20T23:59:59.000Z

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  15. Phases of a Type Ia supernova explosion

    E-Print Network [OSTI]

    J. C. Niemeyer

    1998-02-13T23:59:59.000Z

    In the framework of the Chandrasekhar mass white dwarf model for Type Ia supernovae, various stages of the explosion are described in terms of the burning regimes of the thermonuclear flame front. In the early flamelet regime following the ``smoldering'' phase prior to the explosion, the flame is sufficiently thin and fast to remain laminar on small scales. As the white dwarf density declines, the thermal flame structure becomes subject to penetration by turbulent eddies, and it enters the ``distributed burning'' regime. A specific control parameter for this transition is proposed. Furthermore, we outline an argument for the coincidence of the transition between burning regimes with the onset of a deflagration-detonation-transition (DDT) in the late phase of the explosion.

  16. Nuclear Explosive and Weapon Surety Program (Informational Purposes Only)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-21T23:59:59.000Z

    This draft has been scheduled for final review before the Directives Review Board on 12-4-2014. All major comments and concerns should be provided to your DRB representative, following your organization process. If you do not know who your representative is, please see the list of DRB members at https://www.directives.doe.gov/beta/references/directives-review-board. If your office is represented by Ingrid Kolb, Director, Office of Management, please submit your major concerns and comments to the DRB Liaison, Camille Beben (Camille.Beben@hq.doe.gov; 202-586-4014). All major comments and concerns should be submitted by COB 12-2-2014.

  17. altitude nuclear explosion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that have approached the Chandrasekhar mass, Mch 1.39 Msun, and are disrupted by thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such accreting...

  18. atmospheric nuclear explosions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that have approached the Chandrasekhar mass, Mch 1.39 Msun, and are disrupted by thermonuclear fusion of carbon and oxygen. However, the mechanism whereby such accreting...

  19. Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions...

    National Nuclear Security Administration (NNSA)

    Our Jobs Working at NNSA Blog Home About Us Our History NNSA Timeline Atomic Energy Commission Explores Peaceful Uses of ... Atomic Energy Commission Explores Peaceful...

  20. FAQS Job Task Analyses- Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies.

  1. FAQS Gap Analysis Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  2. Trinity Site - World's First Nuclear Explosion | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in2,EHSS A-Z SiteManhattan Project » Signature

  3. Atomic Energy Commission Explores Peaceful Uses of Nuclear Explosions |

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of the Administrator| National Lisa

  4. LANL highlights explosives work | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov OfficeAdministration FieldSecurity

  5. NNSA honors Pantex explosives experts | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14 FEDERAL EMPLOYEE OCCUPATIONALSecurity Administrationhits

  6. 2012 Monitoring Research Review: Ground-Based Nuclear Explosion Monitoring

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not FoundInformation DOEInformationSimplifiedEvolved

  7. NUCLEAR EXPLOSIONS - PEACEFUI APPLICATIONS PROJECT WUL 1 SON

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O 1 8 7 + PROJECTpi/L +3(YJEXPLOSIONS

  8. Nuclear Explosion Monitoring Research and Engineering Program - Strategic

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science InReset yourPlan | SciTech

  9. THE BIGGEST EXPLOSIONS IN THE UNIVERSE

    SciTech Connect (OSTI)

    Johnson, Jarrett L.; Whalen, Daniel J.; Smidt, Joseph [Nuclear and Particle Physics, Astrophysics and Cosmology Group (T-2), Thermonuclear Applications Physics Group (XTD-6), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Even, Wesley; Fryer, Chris L. [Computational Physics and Methods Group (CCS-2), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Heger, Alex [Monash Centre for Astrophysics, Monash University, VIC 3800 (Australia); Chen, Ke-Jung, E-mail: jlj@lanl.gov [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2013-10-01T23:59:59.000Z

    Supermassive primordial stars are expected to form in a small fraction of massive protogalaxies in the early universe, and are generally conceived of as the progenitors of the seeds of supermassive black holes (BHs). Supermassive stars with masses of ?55, 000 M{sub ?}, however, have been found to explode and completely disrupt in a supernova (SN) with an energy of up to ?10{sup 55} erg instead of collapsing to a BH. Such events, ?10, 000 times more energetic than typical SNe today, would be among the biggest explosions in the history of the universe. Here we present a simulation of such a SN in two stages. Using the RAGE radiation hydrodynamics code, we first evolve the explosion from an early stage through the breakout of the shock from the surface of the star until the blast wave has propagated out to several parsecs from the explosion site, which lies deep within an atomic cooling dark matter (DM) halo at z ? 15. Then, using the GADGET cosmological hydrodynamics code, we evolve the explosion out to several kiloparsecs from the explosion site, far into the low-density intergalactic medium. The host DM halo, with a total mass of 4 × 10{sup 7} M{sub ?}, much more massive than typical primordial star-forming halos, is completely evacuated of high-density gas after ?< 10 Myr, although dense metal-enriched gas recollapses into the halo, where it will likely form second-generation stars with metallicities of ? 0.05 Z{sub ?} after ?> 70 Myr. The chemical signature of supermassive star explosions may be found in such long-lived second-generation stars today.

  10. Electromagnetic Effects in SDF Explosions

    SciTech Connect (OSTI)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2010-02-12T23:59:59.000Z

    The notion of high ion and electron concentrations in the detonation of aluminized explosive mixtures has aroused some interest in electro-magnetic effects that the SDF charges might generate when detonated. Motivated by this interest we have started to investigate whether significant electro-magnetic effects show up in our small-scale experiments. However, the design of instrumentation for this purpose is far from straightforward, since there are a number of open questions. Thus the main aim of the feasibility tests is to find - if possible - a simple and reliable method that can be used as a diagnostic tool for electro-magnetic effects. SDF charges with a 0.5-g PETN booster and a filling of 1 g aluminum flakes have been investigated in three barometric bomb calorimeters with volumes ranging from 6.3 l to of 6.6 l. Though similar in volume, the barometric bombs differed in the length-to-diameter ratio. The tests were carried out with the bombs filled with either air or nitrogen at ambient pressure. The comparison of the test in air to those in nitrogen shows that the combustion of TNT detonation products or aluminum generates a substantial increase of the quasi-steady overpressure in the bombs. Repeated tests in the same configuration resulted in some scatter of the experimental results. The most likely reason is that the aluminum combustion in most or all cases is incomplete and that the amount of aluminum actually burned varies from test to test. The mass fraction burned apparently decreases with increasing aspect ratio L/D. Thus an L/D-ratio of about 1 is optimal for the performance of shock-dispersed-fuel combustion. However, at an L/D-ratio of about 5 the combustion still yields appreciable overpressure in excess of the detonation. For a multi-burst scenario in a tunnel environment with a number of SDF charges distributed along a tunnel section a spacing of 5 tunnel diameter and a fuel-specific volume of around 7 l/g might provide an acceptable compromise between optimizing the combustion performance and keeping the number of elementary charges low. Further tests in a barometric bomb calorimeter of 21.2 l volume were performed with four types of aluminum. The mass fraction burned in this case appeared to depend on the morphology of the aluminum particles. Flake aluminum exhibited a better performance than granulated aluminum with particle sizes ranging from below 25 {micro}m to 125 {micro}m for the coarsest material. In addition, a feasibility study on electro-magnetic effects from SDF charges detonated in a tunnel has been performed. A method was developed to measure the local, unsteady electro-conductivity in the detonation/combustion products cloud. This method proved to yield reproducible results. A variety of methods were tested with regard to probing electro-magnetic pulses from the detonation of SDF charges. The results showed little reproducibility and were small compared to the effect from pulsed high voltage discharges of comparatively small energy (around 32 J). Thus either no significant electromagnetic pulse is generated in our small-scale tests or the tested techniques have to be discarded as too insensitive or too limited in bandwidth to detect possibly very high frequency electro-magnetic disturbances.

  11. Review of underground coal-gasification field experiments at Hoe Creek. [Hoe Creek 1, 2, and 3

    SciTech Connect (OSTI)

    Thorsness, C.B.; Creighton, J.R.

    1982-05-26T23:59:59.000Z

    LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, Wyoming. Three different linking methods were used: explosive fracture, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

  12. Identification of mine collapses, explosions and earthquakes using INSAR: a preliminary investigation

    SciTech Connect (OSTI)

    Foxall, B; Sweeney, J J; Walter, W R

    1998-07-07T23:59:59.000Z

    Interferograms constmcted from satellite-borne synthetic aperture radar images have the capability of mapping sub-cm ground surface deformation over areas on the order of 100 x 100 km with a spatial resolution on the order of 10 meters. We investigate the utility of synthetic aperture radar interferomehy (InSAR) used in conjunction with regional seismic methods in detecting and discriminating different types of seismic events in the context of special event analysis for the CTBT. For this initial study, we carried out elastic dislocation modeling of underground explosions, mine collapses and small (M<5.5) shallow earthquakes to produce synthetic interferograms and then analyzed satellite radar data for a large mine collapse. The synthetic modeling shows that, for a given magnitude each type of event produces a distinctive pattern of ground deformation that can be recognized in, and recovered from, the corresponding interferogram. These diagnostic characteristics include not only differences in the polarities of surface displacements but also differences in displacement amplitudes from the different sources. The technique is especially sensitive to source depth, a parameter that is crucial in discriminating earthquakes from the other event types but is often very poorly constrained by regional seismic data alone. The ERS radar data analyzed is from a ML 5.2 seismic event that occurred in southwestern Wyoming on February 3,1995. Although seismic data from the event have some characteristics of an underground explosion, based on seismological and geodetic data it has been identified as being caused by a large underground collapse in the Solvay Mine. Several pairs of before-collapse and after-collapse radar images were phase processed to obtain interferograms. The minimum time separation for a before-collapse and after-collapse pair was 548 days. Even with this long time separation, phase coherence between the image pairs was acceptable and a deformation map was successfully obtained. Two images, separated by 1 day and occurring after the mine collapse, were used to form a digital elevation map (DEM) that was used to correct for topography. The interferograms identify the large deformation at the Solvay Mine as well as some areas of lesser deformation near other mines in the area. The large amount of deformation at the Solvay Mine was identified, but (as predicted by our dislocation modeling) could not be quantified absolutely because of the incoherent interference pattern it produced

  13. ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart.........................................................................................8 Coal and Metabolite Enrichment Studies ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16

  14. Underground barrier construction apparatus with soil-retaining shield

    DOE Patents [OSTI]

    Gardner, Bradley M. (Idaho Falls, ID); Smith, Ann Marie (Pocatello, ID); Hanson, Richard W. (Spokane, WA); Hodges, Richard T. (Deer Park, WA)

    1998-01-01T23:59:59.000Z

    An apparatus for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment.

  15. Underground barrier construction apparatus with soil-retaining shield

    DOE Patents [OSTI]

    Gardner, B.M.; Smith, A.M.; Hanson, R.W.; Hodges, R.T.

    1998-08-04T23:59:59.000Z

    An apparatus is described for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment. 17 figs.

  16. advanced underground vehicle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and radiogenic 40Ar production in situ and from external sources, we can derive the ratio of 39Ar to 40Ar in underground sources. We show for the first time that...

  17. aging underground reinforced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and geo-neutrinos, and perform exotic searches, with a 20 kiloton liquid scintillator detector of unprecedented 3% energy resolution (at 1 MeV) at 700-meter deep underground...

  18. ,"New Mexico Natural Gas Underground Storage Net Withdrawals...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"3292015 10:08:54 PM" "Back to Contents","Data 1: New Mexico Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NM2"...

  19. Nevada National Security Site Underground Test Area (UGTA) Flow...

    Office of Environmental Management (EM)

    December 12, 2014 To view all the P&RA CoP 2014 Technical Exchange Meeting videos click here. Video Presentation Nevada National Security Site Underground Test Area...

  20. ,"New York Natural Gas Underground Storage Capacity (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:17:17 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

  1. ,"New York Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:28 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

  2. ,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:55 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

  3. ,"New York Natural Gas Underground Storage Withdrawals (MMcf...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"2262015 9:16:27 AM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

  4. Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska)

    Broader source: Energy.gov [DOE]

    This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation of natural gas and permits the accumulation of...

  5. Georgia Underground Gas Storage Act of 1972 (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and...

  6. Underground-Energy-Storage Program, 1982 annual report

    SciTech Connect (OSTI)

    Kannberg, L.D.

    1983-06-01T23:59:59.000Z

    Two principal underground energy storage technologies are discussed--Seasonal Thermal Energy Storage (STES) and Compressed Air Energy Storage (CAES). The Underground Energy Storage Program objectives, approach, structure, and milestones are described, and technical activities and progress in the STES and CAES areas are summarized. STES activities include aquifer thermal energy storage technology studies and STES technology assessment and development. CAES activities include reservoir stability studies and second-generation concepts studies. (LEW)

  7. Closure report for underground storage tank 141-R3U1 and its associated underground piping

    SciTech Connect (OSTI)

    Mallon, B.J.; Blake, R.G.

    1994-03-01T23:59:59.000Z

    Underground storage tank UST 141-R3U1 at Lawrence Livermore National Laboratory (LLNL), was registered with the State Water Resources Control Board on June 27, 1984. This tank system consisted of a concrete tank, lined with polyvinyl chloride, and approximately 100 feet of PVC underground piping. UST 141-R3U1 had a capacity of 450 gallons. The underground piping connected three floor drains and one sink inside Building 141 to UST 141-R3U1. The wastewater collected in UST 141-R3U1 contained organic solvents, metals, and inorganic acids. On November 30, 1987, the 141-R3U1 tank system failed a precision tank test. The 141-R3U1 tank system was subsequently emptied and removed from service pending further precision tests to determine the location of the leak within the tank system. A precision tank test on February 5, 1988, was performed to confirm the November 30, 1987 test. Four additional precision tests were performed on this tank system between February 25, 1988, and March 6, 1988. The leak was located where the inlet piping from Building 141 penetrates the concrete side of UST 141-R3U1. The volume of wastewater that entered the backfill and soil around and/or beneath UST 141-R3U1 is unknown. On December 13, 1989, the LLNL Environmental Restoration Division submitted a plan to close UST 141-R3U1 and its associated piping to the Alameda County Department of Environmental Health. UST 141-R3U1 was closed as an UST, and shall be used instead as additional secondary containment for two aboveground storage tanks.

  8. Inertial Confinement Fusion R&D and Nuclear Proliferation

    SciTech Connect (OSTI)

    Robert J. Goldston

    2011-04-28T23:59:59.000Z

    In a few months, or a few years, the National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory may achieve fusion gain using 192 powerful lasers to generate x-rays that will compress and heat a small target containing isotopes of hydrogen. This event would mark a major milestone after decades of research on inertial confinement fusion (ICF). It might also mark the beginning of an accelerated global effort to harness fusion energy based on this science and technology. Unlike magnetic confinement fusion (ITER, 2011), in which hot fusion fuel is confined continuously by strong magnetic fields, inertial confinement fusion involves repetitive fusion explosions, taking advantage of some aspects of the science learned from the design and testing of hydrogen bombs. The NIF was built primarily because of the information it would provide on weapons physics, helping the United States to steward its stockpile of nuclear weapons without further underground testing. The U.S. National Academies' National Research Council is now hosting a study to assess the prospects for energy from inertial confinement fusion. While this study has a classified sub-panel on target physics, it has not been charged with examining the potential nuclear proliferation risks associated with ICF R&D. We argue here that this question urgently requires direct and transparent examination, so that means to mitigate risks can be assessed, and the potential residual risks can be balanced against the potential benefits, now being assessed by the NRC. This concern is not new (Holdren, 1978), but its urgency is now higher than ever before.

  9. aux explosions nucleaires: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    essentially undisturbed, even if the explosion is strong enough to blow away all the gas located inside the halo at the onset of the explosion and reheat the IGM surrounding...

  10. Detection of Explosives via Photolytic Cleavage of Nitroesters and Nitramines

    E-Print Network [OSTI]

    Swager, Timothy Manning

    The nitramine-containing explosive RDX and the nitroester-containing explosive PETN are shown to be susceptible to photofragmentation upon exposure to sunlight. Model compounds containing nitroester and nitramine moieties ...

  11. Electrical apparatus for explosive gas atmospheres, Part 0: General introduction 

    E-Print Network [OSTI]

    IEC Technical Committee

    1971-01-01T23:59:59.000Z

    This Recommendation has been prepared by IEC Technical Committee No. 31, Electrical Apparatus for Explosive Atmospheres; It forms one of a series of publications dealing with electrical apparatus for use in explosive gas atmospheres. This particular...

  12. Program for large-scale underground-coal-gasification tests

    SciTech Connect (OSTI)

    Hammesfahr, F.W.; Winter, P.L.

    1982-11-01T23:59:59.000Z

    The continuing development of underground coal gasification technology requires extended multi-module field programs in which the output gas is linked to surface usage. This effort was to appraise whether existing surface facilities in the utility, petroleum refinery, or natural gas industries could be used to reduce the cost of such an extended multi-module test and whether regional demand in areas having underground coal gasification coal resources could support the manufacture of transportation fuels from underground coal gasification gases. To limit the effort to a reasonable level but yet to permit a fair test of the concept, effort was focused on five states, Illinois, New Mexico, Texas, Washington, and Wyoming, which have good underground coal gasification reserves. Studies of plant distribution located 25 potential sites within 3 miles of the underground coal gasification amenable reserves in the five states. Distribution was 44% to utilities, 44% to refineries, and 12% to gas processing facilities. The concept that existing surface facilities, currently or potentially gas-capable, might contribute to the development of underground coal gasification technology by providing a low cost industrial application for the gas produced in a multi-module test appears valid. To further test the concept, three industries were reviewed in depth. These were the electric utility, natural gas, and petroleum industries. When looking at a fuel substitution of the type proposed, each industry had its special perspective. These are discussed in detail in the report.

  13. LLNL Capabilities in Underground Coal Gasification

    SciTech Connect (OSTI)

    Friedmann, S J; Burton, E; Upadhye, R

    2006-06-07T23:59:59.000Z

    Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

  14. Underground storage of hydrocarbons in Ontario

    SciTech Connect (OSTI)

    Carter, T.R.; Manocha, J. [Ontario Ministry of Natural Resources, Ontario (Canada)

    1995-09-01T23:59:59.000Z

    The underground storage of natural gas and liquified petroleum products in geological formations is a provincially significant industry in Ontario with economic, environmental, and safety benefits for the companies and residents of Ontario. There are 21 active natural gas storage pools in Ontario, with a total working storage capacity of approximately 203 bcf (5.76 billion cubic metres). Most of these pools utilize former natural gas-producing Guelph Formation pinnacle reefs. In addition there are seventy-one solution-mined salt caverns utilized for storage capacity of 24 million barrels (3.9 million cubic metres). These caverns are constructed within salt strata of the Salina A-2 Unit and the B Unit. The steadily increasing demand for natural gas in Ontario creates a continuing need for additional storage capacity. Most of the known gas-producing pinnacle reefs in Ontario have already been converted to storage. The potential value of storage rights is a major incentive for continued exploration for undiscovered reefs in this mature play. There are numerous depleted or nearly depleted natural gas reservoirs of other types with potential for use as storage pools. There is also potential for use of solution-mined caverns for natural gas storage in Ontario.

  15. Roof control strategies for underground coal mines

    SciTech Connect (OSTI)

    Smith, W.C. (Bureau of Mines, Denver, CO (United States))

    1993-01-01T23:59:59.000Z

    Roof support, an important aspect of ground control, involves maintaining roof competency to ensure a safe and efficient mining environment. Wide variability in rock quality and stress distributions requires a systematic approach to roof support design that satisfies specific goals. The success of past roof support in reducing the incidence of roof falls has been primarily attributed to safer roof bolting practices. However, roof falls continue to be the number one occupational hazard in underground coal mines. This US Bureau of Mines report presents a general overview of roof bolting and other roof support methods used in the United States. Characteristics of bad roof and associated roof failure theories are briefly presented as background to roof support. Methods of detecting and monitoring roof behavior and/or bolt performance provide essential feedback on roof support requirements. A discussion follows on roof bolt design that assimilates roof and support parameters into useful equations or nomographs to help decide what bolt types to use and how they should be installed under different roof conditions. 35 refs., 8 figs.

  16. Underground Muons in Super-KAMIOKANDE

    E-Print Network [OSTI]

    The Super-Kamiokande Collaboration; presented by J. G. Learned

    1997-05-24T23:59:59.000Z

    The largest underground neutrino observatory, Super-Kamiokande, located near Kamioka, Japan has been collecting data since April 1996. It is located at a depth of roughly 2.7 kmwe in a zinc mine under a mountain, and has an effective area for detecting entering-stopping and through-going muons of about $1238 m^2$ for muons of $>1.7 GeV$. These events are collected at a rate of 1.5 per day from the lower hemisphere of arrival directions, with 2.5 muons per second in the downgoing direction. We report preliminary results from 229 live days analyzed so far with respect to zenith angle variation of the upcoming muons. These results do not yet have enough statistical weight to discriminate between the favored hypothesis for muon neutrino oscillations and no-oscillations. We report on the search for astrophysical sources of neutrinos and high energy neutrino fluxes from the sun and earth center, as might arise from WIMP annihilations. None are found. We also present a topographical map of the overburden made from the downgoing muons. The detector is performing well, and with several years of data we should be able to make significant progress in this area.

  17. New Dark Matter Detector using Nanoscale Explosives

    E-Print Network [OSTI]

    Lopez, Alejandro; Freese, Katherine; Kurdak, Cagliyan; Tarle, Gregory

    2014-01-01T23:59:59.000Z

    We present nanoscale explosives as a novel type of dark matter detector and study the ignition properties. When a Weakly Interacting Massive Particle WIMP from the Galactic Halo elastically scatters off of a nucleus in the detector, the small amount of energy deposited can trigger an explosion. For specificity, this paper focuses on a type of two-component explosive known as a nanothermite, consisting of a metal and an oxide in close proximity. When the two components interact they undergo a rapid exothermic reaction --- an explosion. As a specific example, we consider metal nanoparticles of 5 nm radius embedded in an oxide. One cell contains more than a few million nanoparticles, and a large number of cells adds up to a total of 1 kg detector mass. A WIMP interacts with a metal nucleus of the nanoparticles, depositing enough energy to initiate a reaction at the interface between the two layers. When one nanoparticle explodes it initiates a chain reaction throughout the cell. A number of possible thermite mat...

  18. Explosion proof vehicle for tank inspection

    DOE Patents [OSTI]

    Zollinger, William T. (Idaho Falls, ID); Klingler, Kerry M. (Idaho Falls, ID); Bauer, Scott G. (Idaho Falls, ID)

    2012-02-28T23:59:59.000Z

    An Explosion Proof Vehicle (EPV) having an interior substantially filled with an inert fluid creating an interior pressure greater than the exterior pressure. One or more flexible tubes provide the inert fluid and one or more electrical conductors from a control system to the vehicle. The vehicle is preferably used in subsurface tank inspection, whereby the vehicle is submerged in a volatile fluid.

  19. Burgess Shale: Cambrian Explosion in Full Bloom

    E-Print Network [OSTI]

    Hagadorn, Whitey

    4 Burgess Shale: Cambrian Explosion in Full Bloom James W. Hagadorn T he middle cambrian burgess shale is one of the world's best-known and best-studied fossil deposits. The story of the discovery in the Burgess Shale Formation of the Canadian Rockies, Charles Walcott discovered a remarkable "phyl- lopod

  20. WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS

    E-Print Network [OSTI]

    Stewart, Sarah T.

    WAVE GENERATIONS FROM CONFINED EXPLOSIONS IN ROCKS C. L. Liu and Thomas J. Ahrens Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125 In order to record P- and S-waves on the interactions between incident P- and SV-waves and free-surfaces of rocks. The relations between particle

  1. ANALYSIS OF MINING EXPLOSION PERFORMANCE WITH MULTIPLE

    E-Print Network [OSTI]

    Stump, Brian W.

    Limitations of Video Data · Effect of Blast Design on Near-Source Seismograms · Different Types of Cast Blasts of Models in Visualization ß Two-Dimensional Blast Model ß Three-Dimensional Blast Models 3. Applications to Different Types of Mining Explosions · Single Shot · Cast Blast · Coal Fragmentation #12;Analysis of Mining

  2. Explosives Classifications Tracking System User Manual

    SciTech Connect (OSTI)

    Genoni, R.P.

    1993-10-01T23:59:59.000Z

    The Explosives Classification Tracking System (ECTS) presents information and data for U.S. Department of Energy (DOE) explosives classifications of interest to EM-561, Transportation Management Division, other DOE facilities, and contractors. It is intended to be useful to the scientist, engineer, and transportation professional, who needs to classify or transport explosives. This release of the ECTS reflects upgrading of the software which provides the user with an environment that makes comprehensive retrieval of explosives related information quick and easy. Quarterly updates will be provided to the ECTS throughout its development in FY 1993 and thereafter. The ECTS is a stand alone, single user system that contains unclassified, publicly available information, and administrative information (contractor names, product descriptions, transmittal dates, EX-Numbers, etc.) information from many sources for non-decisional engineering and shipping activities. The data is the most up-to-date and accurate available to the knowledge of the system developer. The system is designed to permit easy revision and updating as new information and data become available. These, additions and corrections are welcomed by the developer. This user manual is intended to help the user install, understand, and operate the system so that the desired information may be readily obtained, reviewed, and reported.

  3. Exploiting Variable Stiffness in Explosive Movement Tasks

    E-Print Network [OSTI]

    Vijayakumar, Sethu

    robots. The proposed methodology is applied to a ball- throwing task where we demonstrate that: (i, with the motivation of (i) improving safety of robots and humans (by providing an intrinsic compliance) [26], (iiExploiting Variable Stiffness in Explosive Movement Tasks David J. Braun, Matthew Howard and Sethu

  4. Post detonation nuclear forensics

    SciTech Connect (OSTI)

    Davis, Jay [The Hertz Foundation, 2300 First Street, Suite 250, Livermore, California (United States)

    2014-05-09T23:59:59.000Z

    The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.

  5. A mathematical simulation of earth satellite explosion debris orbital elements

    E-Print Network [OSTI]

    Mabrey, Wayne Edward

    1970-01-01T23:59:59.000Z

    perspective: (1) By simulating the explosion of a satellite we mean that: given the knowledge of' the number of pieces and the force vector of each piece, we will simulate the resulting trajectories. (2) The simulation of a satellite trajectory... classical elements of each debris piece as a function of: (1) the trajectory of the center of mass of *he explosion debris and (2) the explosive forces. Computer program modules are developed to create an explosion and calculate the elements of each...

  6. Determination of explosive blast loading equivalencies with an explosively driven shock tube

    SciTech Connect (OSTI)

    Jackson, Scott I [Los Alamos National Laboratory; Hill, Larry G [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Recently there has been significant interest in evaluating the potential of many different non-ideal energetic materials to cause blast damage. We present a method intended to quantitatively compare the blast loading generated by different energetic materials through use of an explosively driven shock tube. The test explosive is placed at the closed breech end of the tube and initiated with a booster charge. The resulting shock waves are then contained and focused by the tube walls to form a quasi-one-dimensional blast wave. Pressure transducers along the tube wall measure the blast overpressure versus distance from the source and allow the use of the one-dimensional blast scaling relationship to determine the energy deposited into the blast wave per unit mass of test explosive. These values are then compared for different explosives of interest and to other methods of equivalency determination.

  7. A P-5 Nuclear Dialogue: Concept, Building Blocks, and Implementation

    E-Print Network [OSTI]

    #12;A P-5 Nuclear Dialogue: Concept, Building Blocks, and Implementation Paul I. Bernstein, biological, radiological, nuclear, and high explosives) by providing capabilities to reduce, eliminate affirmed "America's intention to seek the peace and security of a world without nuclear weapons" and stated

  8. Colorimetric chemical analysis sampler for the presence of explosives

    DOE Patents [OSTI]

    Nunes, Peter J. (Danville, CA); Del Eckels, Joel (Livermore, CA); Reynolds, John G. (San Ramon, CA); Pagoria, Philip F. (Livermore, CA); Simpson, Randall L. (Livermore, CA)

    2011-09-27T23:59:59.000Z

    A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

  9. 3-D Earth model more accurately pinpoints explosions

    E-Print Network [OSTI]

    - 1 - 3-D Earth model more accurately pinpoints explosions October 25, 2013 During the Cold War, U) have partnered to develop a 3-D model of the Earth's mantle and crust called SALSA3D (Sandia-Los Alamos of explosions. Significance of the research After an explosion, the energy travels through the Earth as waves

  10. Colorimetric chemical analysis sampler for the presence of explosives

    DOE Patents [OSTI]

    Nunes, Peter J.; Eckels, Joel Del; Reynolds, John G.; Pagoria, Philip F.; Simpson, Randall L.

    2014-07-01T23:59:59.000Z

    A tester for testing for explosives comprising a body, a lateral flow swab unit operably connected to the body, a explosives detecting reagent contained in the body, and a dispenser operatively connected to the body and the lateral flow swab unit. The dispenser selectively allows the explosives detecting reagent to be delivered to the lateral flow swab unit.

  11. Forest fires, explosions, and random trees Edward Crane

    E-Print Network [OSTI]

    Wirosoetisno, Djoko

    Forest fires, explosions, and random trees Edward Crane HIMR, UoB 13th January 2014 #12 and James Martin at the University of Oxford. Edward Crane (HIMR, UoB) Forest fires, explosions, and random process and the Brownian CRT. Edward Crane (HIMR, UoB) Forest fires, explosions, and random trees 13th

  12. COUPLING AND COHERENCE ESTIMATES FROM SINGLE-FIRED CYLINDRICAL EXPLOSIONS

    E-Print Network [OSTI]

    Stump, Brian W.

    COUPLING AND COHERENCE ESTIMATES FROM SINGLE-FIRED CYLINDRICAL EXPLOSIONS Implications for Using 4 5 6 7 8 test bench pit charge depth burden charge length explosive stemming #12;Single shot) Modeling - Source a) Explosion Source Mueller-Murphy model b) Vertical Spall Opening of horizontal crack

  13. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01T23:59:59.000Z

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and transportation that would be required if the wastes were treated off site.

  14. Bubblers Speed Nuclear Waste Processing at SRS

    SciTech Connect (OSTI)

    None

    2010-11-14T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  15. Bubblers Speed Nuclear Waste Processing at SRS

    ScienceCinema (OSTI)

    None

    2014-08-06T23:59:59.000Z

    At the Department of Energy's Savannah River Site, American Recovery and Reinvestment Act funding has supported installation of bubbler technology and related enhancements in the Defense Waste Processing Facility (DWPF). The improvements will accelerate the processing of radioactive waste into a safe, stable form for storage and permit expedited closure of underground waste tanks holding 37 million gallons of liquid nuclear waste.

  16. Cryograb: A Novel Approach to the Retrieval of Waste from Underground Storage Tanks - 13501

    SciTech Connect (OSTI)

    O'Brien, Luke; Baker, Stephen; Bowen, Bob [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom)] [UK National Nuclear Laboratory, Chadwick House, Warrington (United Kingdom); Mallick, Pramod; Smith, Gary [US Department of Energy (United States)] [US Department of Energy (United States); King, Bill [Savannah River National Laboratory (United States)] [Savannah River National Laboratory (United States); Judd, Laurie [NuVision Engineering (United States)] [NuVision Engineering (United States)

    2013-07-01T23:59:59.000Z

    The UK's National Nuclear Laboratory (NNL) is investigating the use of cryogenic technology for the recovery of nuclear waste. Cryograb, freezing the waste on a 'cryo-head' and then retrieves it as a single mass which can then be treated or stabilized as necessary. The technology has a number of benefits over other retrieval approaches in that it minimizes sludge disturbance thereby reducing effluent arising and it can be used to de-water, and thereby reduce the volume of waste. The technology has been successfully deployed for a variety of nuclear and non-nuclear waste recovery operations. The application of Cryograb for the recovery of waste from US underground storage tanks is being explored through a US DOE International Technology Transfer and Demonstration programme. A sample deployment being considered involves the recovery of residual mounds of sludge material from waste storage tanks at Savannah River. Operational constraints and success criteria were agreed prior to the completion of a process down selection exercise which specified the preferred configuration of the cryo-head and supporting plant. Subsequent process modeling identified retrieval rates and temperature gradients through the waste and tank infrastructure. The work, which has been delivered in partnership with US DOE, SRNL, NuVision Engineering and Frigeo AB has demonstrated the technical feasibility of the approach (to TRL 2) and has resulted in the allocation of additional funding from DOE to take the programme to bench and cold pilot-scale trials. (authors)

  17. Method and system for detecting explosives

    DOE Patents [OSTI]

    Reber, Edward L. (Idaho Falls, ID); Jewell, James K. (Idaho Falls, ID); Rohde, Kenneth W. (Idaho Falls, ID); Seabury, Edward H. (Idaho Falls, ID); Blackwood, Larry G. (Idaho Falls, ID); Edwards, Andrew J. (Idaho Falls, ID); Derr, Kurt W. (Idaho Falls, ID)

    2009-03-10T23:59:59.000Z

    A method of detecting explosives in a vehicle includes providing a first rack on one side of the vehicle, the rack including a neutron generator and a plurality of gamma ray detectors; providing a second rack on another side of the vehicle, the second rack including a neutron generator and a plurality of gamma ray detectors; providing a control system, remote from the first and second racks, coupled to the neutron generators and gamma ray detectors; using the control system, causing the neutron generators to generate neutrons; and performing gamma ray spectroscopy on spectra read by the gamma ray detectors to look for a signature indicative of presence of an explosive. Various apparatus and other methods are also provided.

  18. Waveforms Measured in Confined Thermobaric Explosion

    SciTech Connect (OSTI)

    Reichenbach, H; Neuwald, P; Kuhl, A L

    2007-05-04T23:59:59.000Z

    Experiments with 1.5-g Shock-Dispersed-Fuel (SDF) charges have been conducted in six different chambers. Both flake Aluminum and TNT were used as the fuel. Static pressure gauges on the chamber wall were the main diagnostic. Waveforms for explosions in air were significantly larger than those in nitrogen - thereby demonstrating a strong thermobaric (combustion) effect. This effect increases as the confinement volume decreases and the mixture richness approaches 1.

  19. Experiments Upon the Explosions of Hydrocarbon Mixtures

    E-Print Network [OSTI]

    Stone, Fred

    1904-01-01T23:59:59.000Z

    appeared at i n t e r v a l s i n the s c i e n t i f i c papers and magazines on the heat and explosion engine, hut not u n t i l recently has the subject been considered of any great impor­ tance. After a time a magazine devoted excl u s i v e l y...

  20. DOE explosives safety manual. Revision 7

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This manual prescribes the Department of Energy (DOE) safety rules used to implement the DOE safety policy for operations involving explosives. This manual is applicable to all DOE facilities engaged in operations of development, manufacturing, handling, storage, transportation, processing, or testing of explosives, pyrotechnics and propellants, or assemblies containing these materials. The standards of this manual deal with the operations involving explosives, pyrotechnics and propellants, and the safe management of such operations. The design of all new explosives facilities shall conform to the requirements established in this manual and implemented in DOE 6430.1A, ``General Design Criteria Manual.`` It is not intended that existing physical facilities be changed arbitrarily to comply with these provisions, except as required by law. Existing facilities that do not comply with these standards may continue to be used for the balance of their functional life, as long as the current operation presents no significantly greater risk than that assumed when the facility was originally designed and it can be demonstrated clearly that a modification to bring the facility into compliance is not feasible. However, in the case of a major renovation, the facility must be brought into compliance with current standards. The standards are presented as either mandatory or advisory. Mandatory standards, denoted by the words ``shall,`` ``must,`` or ``will,`` are requirements that must be followed unless written authority for deviation is granted as an exemption by the DOE. Advisory standards denoted by ``should`` or ``may`` are standards that may be deviated from with a waiver granted by facility management.