Powered by Deep Web Technologies
Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

GIS surface effects archive of underground nuclear detonations conducted at Yucca Flat and Pahute Mesa, Nevada Test Site, Nevada  

SciTech Connect

This report presents a new comprehensive, digital archive of more than 40 years of geologic surface effects maps produced at individual detonation sites throughout the Yucca Flat and Pahute Mesa nuclear testing areas of the Nevada Test Site, Nye County, Nevada. The Geographic Information System (GIS) surface effects map archive on CD-ROM (this report) comprehensively documents the surface effects of underground nuclear detonations conducted at two of the most extensively used testing areas of the Nevada Test Site. Between 1951 and 1992, numerous investigators of the U.S. Geological Survey, the Los Alamos National Laboratory, the Lawrence Livermore National Laboratory, and the Defense Threat Reduction Agency meticulously mapped the surface effects caused by underground nuclear testing. Their work documented the effects of more than seventy percent of the underground nuclear detonations conducted at Yucca Flat and all of the underground nuclear detonations conducted at Pahute Mesa.

Grasso, D.N.

2001-11-02T23:59:59.000Z

2

Calculated concentrations of any radionuclide deposited on the ground by release from underground nuclear detonations, tests of nuclear rockets, and tests of nuclear ramjet engines  

SciTech Connect

This report presents calculated gamma radiation exposure rates and ground deposition of related radionuclides resulting from three types of event that deposited detectable radioactivity outside the Nevada Test Site complex, namely, underground nuclear detonations, tests of nuclear rocket engines and tests of nuclear ramjet engines.

Hicks, H.G.

1981-11-01T23:59:59.000Z

3

ENVIRONMENTAL IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS  

Office of Legacy Management (LM)

IlONITORING REPORT FOR THE NEVADA TEST SITE IlONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December 1975 Nonitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of Understanding No. AT(26-1)-539 for the U . S . ENERGY RESEARCH & DEVELOPMENT ADMINISTRATION EMSL-LV-5 39-4 May 1976 ENVIRONMENTAL 14ONITORING REPORT FOR THE NEVADA TEST SITE AND OTHER TEST AREAS USED FOR UNDERGROUND NUCLEAR DETONATIONS January through December I975 Monitoring Operations Division Environmental Monitoring and Support Laboratory U.S. ENVIRONMENTAL PROTECTION AGENCY Las Vegas, Nevada 89114 APRIL 1976 This work performed under a Memorandum of

4

Salmon Site, characterization of contamination associated with an underground nuclear detonation  

SciTech Connect

The Salmon Site, located in south central Mississippi, was used for two nuclear explosive tests and two methane/oxygen explosive tests between 1964 and 1970. The tests were conducted in the Tatum Salt Dome, 823 meters (m) below the ground surface. In 1972, the land surface was remediated, the site was decommissioned, and the Long-Term Hydrologic Monitoring Program was initiated to collect surface water and groundwater samples from the site and surrounding areas annually. In 1989, local citizens and political representatives raised concerns about the integrity of the shot cavity and whether there were hazardous substances in the near surface disposal and drilling mud pits. Examination of the problem shows that the most likely migration pathway is for contaminated groundwater to be pushed up an abandoned emplacement hole or re-entry boring as the salt stock closes in and pressurizes the shot cavity. Based on this scenario, the best way to determine whether leakage is occurring is to sample the aquifers over the dome. To do this, three wells are planned to be installed in each aquifer to collect representative soil and groundwater samples and to conduct aquifer testing to determine aquifer hydraulic properties. After evaluating the nature and extent of contamination, contaminant fate and transport modeling will be conducted. Surface contamination has resulted from site activities subsequent to the weapons testing and are not a result of a release during the actual testing. The old drilling mud pits and disposal areas have been investigated using surface geophysical methods, followed by soil and biota sampling and cone penetrometer testing. Based on the results of this testing, a number of shallow monitoring wells will be installed around the contaminated locations.

Deshler, R.M.; Danz, R.; Mellington, S.A.

1995-12-31T23:59:59.000Z

5

P-wave Spectra from Underground Nuclear Explosions  

Science Journals Connector (OSTI)

......three underground explosions at the Nevada Test Site and three earthquakes recorded...nuclear explosions detonated in Nevada (Jorum and Handley) and for a...spectra from two explosions at the Nevada Test Site (Jorum and Handley) and a presumed......

Peter Molnar

1971-08-01T23:59:59.000Z

6

Post detonation nuclear forensics  

SciTech Connect

The problem of working backwards from the debris of a nuclear explosion to attempt to attribute the event to a particular actor is singularly difficult technically. However, moving from physical information of any certainty through the political steps that would lead to national action presents daunting policy questions as well. This monograph will outline the operational and physical components of this problem and suggest the difficulty of the policy questions that remain.

Davis, Jay [The Hertz Foundation, 2300 First Street, Suite 250, Livermore, California (United States)

2014-05-09T23:59:59.000Z

7

Radioactive Fallout from Terrorist Nuclear Detonations  

SciTech Connect

Responding correctly during the first hour after a terrorist nuclear detonation is the key to reducing casualties from a low-yield surface burst, and a correct response requires an understanding of the rapidly changing dose rate from fallout. This report provides an empirical formula for dose rate as a function of time and location that can guide the response to an unexpected nuclear detonation. At least one post-detonation radiation measurement is required if the yield and other characteristics of the detonation are unknown.

Marrs, R E

2007-05-03T23:59:59.000Z

8

Determining optimal fallout shelter times following a nuclear detonation  

Science Journals Connector (OSTI)

...President, Interagency Policy Coordination Subcommittee...Response to Radiological and Nuclear Threats 2010 Planning guidance for response to a nuclear detonation, 2nd edn...Science and Technology Policy. See http://www...planning-guidance-for-response-to-nuclear-detonation-2-edition-final...

2014-01-01T23:59:59.000Z

9

Detonation  

Science Journals Connector (OSTI)

Detonation is a process of layer-by-layer, ... Zeldovich-von Neumann-Doering (ZND) model of detonation, chemical reactions occur at a definite rate...

Muhamed Su?eska Ph.D.

1995-01-01T23:59:59.000Z

10

detonation  

Science Journals Connector (OSTI)

detonation, reaction shock ? Detonation f, Explosion 2. Ordnung [Die Koppelung der energieliefernden Umsetzungen eines Explosivstoffes mit einem Verdichtungsstoß, der diese Umsetzung auslöst und sich...

2014-08-01T23:59:59.000Z

11

Surface effects of underground nuclear explosions  

SciTech Connect

The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

1997-06-01T23:59:59.000Z

12

Source Characteristics of Two Underground Nuclear Explosions  

Science Journals Connector (OSTI)

......detonated at Pahute Mesa of the Nevada Test Site have been used to estimate the...contributing factor. Moment tensor|Nevada Test Site|nuclear explosion| References...structure of Silent Canyon Caldera, Nevada Test Site, Bull, seism Soc. Am., 77......

Lane R. Johnson

1988-10-01T23:59:59.000Z

13

E-Print Network 3.0 - amchitka underground nuclear Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

underground nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: amchitka underground nuclear Page: << < 1 2 3 4 5 > >> 1 Underground Nuclear...

14

The unique signal concept for detonation safety in nuclear weapons  

SciTech Connect

The purpose of a unique signal (UQS) in a nuclear weapon system is to provide an unambiguous communication of intent to detonate from the UQS information input source device to a stronglink safety device in the weapon in a manner that is highly unlikely to be duplicated or simulated in normal environments and in a broad range of ill-defined abnormal environments. This report presents safety considerations for the design and implementation of UQSs in the context of the overall safety system.

Spray, S.D.; Cooper, J.A.

1993-06-01T23:59:59.000Z

15

detonation velocity  

Science Journals Connector (OSTI)

detonation velocity, detonation rate, velocity of detonation, V.O.D., detonating velocity, rate of detonation, detonating rate, detonation speed, detonating speed, speed of detonation ? Detonationsge...

2014-08-01T23:59:59.000Z

16

detonation rate  

Science Journals Connector (OSTI)

detonation rate, detonation velocity, velocity of detonation, V.O.D., detonating velocity, rate of detonation, detonating rate ? Detonationsgeschwindigkeit f

2014-08-01T23:59:59.000Z

17

Effects of network-average magnitude bias on yield estimates for underground nuclear explosions  

Science Journals Connector (OSTI)

......yield estimates for underground nuclear explosions R. A. Clark Department...ISC, of presumed underground nuclear explosions in Kazakhstan...on estimates for underground nuclear explosions 553 explosions...utilizing a more extensive dataset, including more sources and......

R. A. Clark

1983-11-01T23:59:59.000Z

18

Evaluation of groundwater flow and transport at the Shoal underground nuclear test: An interim report  

SciTech Connect

Since 1962, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive materials in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site, but a limited number of experiments were conducted in other locations. One of these is the subject of this report, the Project Shoal Area (PSA), located about 50 km southeast of Fallon, Nevada. The Shoal test consisted of a 12-kiloton-yield nuclear detonation which occurred on October 26, 1963. Project Shoal was part of studies to enhance seismic detection of underground nuclear tests, in particular, in active earthquake areas. Characterization of groundwater contamination at the Project Shoal Area is being conducted by the US Department of Energy (DOE) under the Federal Facility Agreement and Consent Order (FFACO) with the State of Nevada Department of Environmental Protection and the US Department of Defense (DOD). This order prescribes a Corrective Action Strategy (Appendix VI), which, as applied to underground nuclear tests, involves preparing a Corrective Action Investigation Plan (CAIP), Corrective Action Decision Document (CADD), Corrective Action Plan, and Closure Report. The scope of the CAIP is flow and transport modeling to establish contaminant boundaries that are protective of human health and the environment. This interim report describes the current status of the flow and transport modeling for the PSA.

Pohll, G.; Chapman, J.; Hassan, A.; Papelis, C.; Andricevic, R.; Shirley, C.

1998-07-01T23:59:59.000Z

19

OPTICAL, ELECTROMAGNETIC, AND SATELLITE OBSERVATIONS OF HIGH-ALTITUDE NUCLEAR DETONATIONS—PART II  

Science Journals Connector (OSTI)

...OBSERVATIONS OF HIGH-ALTITUDE NUCLEAR DETONATIONS—PART...of the explosion of a nuclear device at very high...might accompany the nuclear explosions and might...temperature-limited vacuum noise diode and the...synchro- tron particle accelerator. The generation of...

Allen M. Peterson

1959-01-01T23:59:59.000Z

20

Experiences and prospects of nuclear astrophysics in underground laboratories  

SciTech Connect

Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

Junker, M. [INFN - Laboratori Nazionali del Gran Sasso, Via Acitelli, 22, 67100 L'Aquila, Località Assergi (Italy)

2014-05-09T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

22

Last U.S. Underground Nuclear Test Conducted | National Nuclear Security  

National Nuclear Security Administration (NNSA)

U.S. Underground Nuclear Test Conducted | National Nuclear Security U.S. Underground Nuclear Test Conducted | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > Last U.S. Underground Nuclear Test Conducted Last U.S. Underground Nuclear Test Conducted September 23, 1992 USA Last U.S. Underground Nuclear Test Conducted

23

Russian Military and Security Forces: A Postulated Reaction to a Nuclear Detonation  

SciTech Connect

In this paper, we will examine how Russia's military and security forces might react to the detonation of a 10-kiloton nuclear weapon placed next to the walls surrounding the Kremlin. At the time of this 'big bang,' Putin is situated outside Moscow and survives the explosion. No one claims responsibility for the detonation. No other information is known. Numerous variables will determine how events ultimately unfold and how the military and security forces will respond. Prior to examining these variables in greater detail, it is imperative to elucidate first what we mean by Russia's military and security forces.

Ball, D

2005-04-29T23:59:59.000Z

24

backward detonation  

Science Journals Connector (OSTI)

backward detonation, backward reaction shock ? Rückwärtsdetonation f, Rückwärtsexplosion 2. Ordnung [Siehe Anmerkung unter „Detonation

2014-08-01T23:59:59.000Z

25

A compilation of nuclear weapons test detonation data for U.S. Pacific ocean tests  

SciTech Connect

Prior to December 1993, the explosive yields of 44 of 66 nuclear tests conducted by the United States in the Marshall Islands were still classified. Following a request from the Government of the Republic of the Marshall Islands to the U.S. Department of Energy to release this information, the Secretary of Energy declassified and released to the public the explosive yields of the Pacific nuclear tests. This paper presents a synopsis of information on nuclear test detonations in the Marshall Islands and other locations in the mid-Pacific including dates, explosive yields, locations, weapon placement, and summary statistics. 10 refs., 1 fig., 2 tabs.

Simon, S.L. [Radiation Effects Research, Washington, DC (United States); Robison, W.L. [Lawrence Livermore National Lab., CA (United States)

1997-07-01T23:59:59.000Z

26

DIANA - A deep underground accelerator for nuclear astrophysics experiments  

SciTech Connect

DIANA (Dakota Ion Accelerator for Nuclear Astrophysics) is a proposed facility designed to be operated deep underground. The DIANA collaboration includes nuclear astrophysics groups from Lawrence Berkeley National Laboratory, Michigan State University, Western Michigan University, Colorado School of Mines, and the University of North Carolina, and is led by the University of Notre Dame. The scientific goals of the facility are measurements of low energy nuclear cross-sections associated with sun and pre-supernova stars in a laboratory setup at energies that are close to those in stars. Because of the low stellar temperatures associated with these environments, and the high Coulomb barrier, the reaction cross-sections are extremely low. Therefore these measurements are hampered by small signal to background ratios. By going underground the background due to cosmic rays can be reduced by several orders of magnitude. We report on the design status of the DIANA facility with focus on the 3 MV electrostatic accelerator.

Winklehner, Daniel; Leitner, Daniela [Michigan State University, 640 S Shaw Lane, East Lansing MI 48824 (United States); Lemut, Alberto; Hodgkinson, Adrian [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720 (United States); Couder, Manoel; Wiescher, Michael [University of Notre Dame, Notre Dame, IN 46556 (United States)

2013-04-19T23:59:59.000Z

27

detonation trap  

Science Journals Connector (OSTI)

detonation trap [It prevents a detonation initiated in one part of a system...] ? Detonationsfang m, Detonationsfänger m

2014-08-01T23:59:59.000Z

28

Aerothermoballistics of pyrophoric metal shrapnel in high speed, high Weber number flows. [From non-nuclear detonation of nuclear weapon  

SciTech Connect

A numerical simulation is presented on the aerothermoballistic behavior of pyrophoric metal shrapnel ejected at supersonic speeds from a non-nuclear detonation of a nuclear weapon. The model predicts the aerodynamic and chemical heat transfer rates and the particle thermal responses including the time and position of melt initiation. Due to the high Weber number environment, the melting particle undergoes liquid layer stripping. The theoretical model, which is incorporated in the PLUTO computer code, predicts the liquid mass loss rate, characteristic liquid droplet diameter, temperature rise across the liquid film, and the coupled particle trajectory.

Connell, L.W.

1984-01-01T23:59:59.000Z

29

Assessment of hydrologic transport of radionuclides from the Gnome underground nuclear test site, New Mexico  

SciTech Connect

The U.S. Department of Energy (DOE) is operating an environmental restoration program to characterize, remediate, and close non-Nevada Test Site locations that were used for nuclear testing. Evaluation of radionuclide transport by groundwater from these sites is an important part of the preliminary site risk analysis. These evaluations are undertaken to allow prioritization of the test areas in terms of risk, provide a quantitative basis for discussions with regulators and the public about future work at the sites, and provide a framework for assessing data needs to be filled by site characterization. The Gnome site in southeastern New Mexico was the location of an underground detonation of a 3.5-kiloton nuclear device in 1961, and a hydrologic tracer test using radionuclides in 1963. The tracer test involved the injection of tritium, {sup 90}Sr, and {sup 137}Cs directly into the Culebra Dolomite, a nine to ten-meter-thick aquifer located approximately 150 in below land surface. The Gnome nuclear test was carried out in the Salado Formation, a thick salt deposit located 200 in below the Culebra. Because salt behaves plastically, the cavity created by the explosion is expected to close, and although there is no evidence that migration has actually occurred, it is assumed that radionuclides from the cavity are released into the overlying Culebra Dolomite during this closure process. Transport calculations were performed using the solute flux method, with input based on the limited data available for the site. Model results suggest that radionuclides may be present in concentrations exceeding drinking water regulations outside the drilling exclusion boundary established by DOE. Calculated mean tritium concentrations peak at values exceeding the U.S. Environmental Protection Agency drinking water standard of 20,000 pCi/L at distances of up to almost eight kilometers west of the nuclear test.

Earman, S.; Chapman, J.; Pohlmann, K.; Andricevic, R.

1996-09-01T23:59:59.000Z

30

Evaluating the Effects of Underground Nuclear Testing Below the Water Table on Groundwater and Radionuclide Migration in the  

E-Print Network (OSTI)

Evaluating the Effects of Underground Nuclear Testing Below the Water Table on Groundwater, using FEHM, evaluate perturbed groundwater behavior associated with underground nuclear tests to an instantaneous pressurization event caused by a nuclear test when different permeability and porosity

31

vollständige Detonation f  

Science Journals Connector (OSTI)

vollständige Detonation f [Umsetzung bis zu den Endprodukten] ? complete detonation, full detonation

2013-01-01T23:59:59.000Z

32

NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test  

NLE Websites -- All DOE Office Websites (Extended Search)

the 20th Anniversary of the Last Underground Nuclear Test the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > NNSA Commemorates the 20th Anniversary of the ... NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test

33

NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test  

National Nuclear Security Administration (NNSA)

the 20th Anniversary of the Last Underground Nuclear Test the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Video Gallery > NNSA Commemorates the 20th Anniversary of the ... NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test

34

Dopes and Detonation  

Science Journals Connector (OSTI)

... investigation which is described was the determination of the physical actions that delay or prevent detonation in the cylinder of an internal combustion engine. The addition to petrol of non- ... by compression owing to their low ignition temperature. The marked effect of pressure in promoting detonation is explained by the rapid increase of nuclear condensation with increased density of charge. ...

1926-11-20T23:59:59.000Z

35

symphathetic detonation  

Science Journals Connector (OSTI)

symphathetic detonation, gap test, sympathetic reaction shock [The initiation of an explosive charge without ignition device by the detonation of another charge in the neighbourhood] ? Übertragexplos...

2014-08-01T23:59:59.000Z

36

detonation pressure  

Science Journals Connector (OSTI)

detonation pressure ? Detonationsdruck m [Er ist dem Quadrat der Detonationsgeschwindigkeit und der Sprengstoffdichte proportional

2014-08-01T23:59:59.000Z

37

Detonation: From the Bottom Up  

NLE Websites -- All DOE Office Websites (Extended Search)

Latest Issue:December 2014 All Issues submit Detonation: From the Bottom Up In the nuclear testing era, scientists never thoroughly characterized the properties of the...

38

Tectonic Strain Release by Underground Nuclear Explosions and its Effect on Seismic Discrimination  

Science Journals Connector (OSTI)

......patterns to geologic structure in Yucca Flats Nevada Test Site, in Nevada Test Site, ed. Eckel E. B., Geol. Soc. Am. Mem...of the Benham underground nuclear explosion, Nevada Test Site, Bull. seism. Soc. Am., 59, 2209-2220......

M. Nafi Toksöz; Harold H. Kehrer

1972-12-01T23:59:59.000Z

39

Improved estimates of separation distances to prevent unacceptable damage to nuclear power plant structures from hydrogen detonation for gaseous hydrogen storage. Technical report  

SciTech Connect

This report provides new estimates of separation distances for nuclear power plant gaseous hydrogen storage facilities. Unacceptable damage to plant structures from hydrogen detonations will be prevented by having hydrogen storage facilities meet separation distance criteria recommended in this report. The revised standoff distances are based on improved calculations on hydrogen gas cloud detonations and structural analysis of reinforced concrete structures. Also, the results presented in this study do not depend upon equivalencing a hydrogen detonation to an equivalent TNT detonation. The static and stagnation pressures, wave velocity, and the shock wave impulse delivered to wall surfaces were computed for several different size hydrogen explosions. Separation distance equations were developed and were used to compute the minimum separation distance for six different wall cases and for seven detonating volumes (from 1.59 to 79.67 lbm of hydrogen). These improved calculation results were compared to previous calculations. The ratio between the separation distance predicted in this report versus that predicted for hydrogen detonation in previous calculations varies from 0 to approximately 4. Thus, the separation distances results from the previous calculations can be either overconservative or unconservative depending upon the set of hydrogen detonation parameters that are used. Consequently, it is concluded that the hydrogen-to-TNT detonation equivalency utilized in previous calculations should no longer be used.

Not Available

1994-05-01T23:59:59.000Z

40

detonation shock  

Science Journals Connector (OSTI)

detonation shock ? Detonationsstoß m, Verdichtungsstoß [DIN 20163. Verdichtungsstoß in der Chapman-Jouguet-Ebene eines detonierenden Sprengstoffs; er löst einen Verdichtungsstoß im angrenzenden Mediu...

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Detonation f  

Science Journals Connector (OSTI)

Detonation f, Explosion 2. Ordnung [Die Koppelung der energieliefernden Umsetzungen eines Explosivstoffes mit einem Verdichtungsstoß, der diese Umsetzung auslöst und sich mit Überschallge...

2013-01-01T23:59:59.000Z

42

Underground Exploration  

E-Print Network (OSTI)

Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste Technical Review Board October 1993 Yucca Mountain at #12;Nuclear Waste Technical Review Board Dr. John E and Testing #12;Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction

43

Derivation of models for nuclear weapon terrorist arming and detonation risk analysis  

SciTech Connect

This report investigates "use control" for the on-site arming and detonation, by terrorists, of stored weapon systems. We investigate both components of weapon "use control", which we define as: (1) weapon "use denial" * that we model as a probability, Pj (denial), that represents the chances that terrorists attempting to arm a type j weapon will commit a non-recoverable error, and (2) weapon "use delay" that we model as a random variable, Tj , that represents the arming delay imposed by the use control features of a type j weapon, before detonation can occur. Using information pertaining to the physical security system at a storage site, the postulated terrorist attack force size, and simulated combat engagement outcomes, we formulate the frequency, fj , and probability, P(dj ), of on-site detonation, for generic weapon types j. We derive a model that disjoins the performance of site physical security, from that for weapon use control, if the use control random variable Tj has a Uniform or histogram distribution. This is an especially significant result where most complex distributions can be adequately approximated with a histogram. Hence, we can conduct combat simulations to obtain the physical security performance of a specific storage site independent of the use control features associated with specific weapon types that are stored, or might be stored, at the site. In turn, we can obtain the use control performance for various weapon types, independent of where they are stored and the physical security systems surrounding them. Our models can then mathematically combine physical security performance and weapon use control performance for any combination of storage facility and weapon type.

Parziale, A A

1998-03-01T23:59:59.000Z

44

Modeling Groundwater Flow and Transport of Radionuclides at Amchitka Island's Underground Nuclear Tests: Milrow, Long Shot, and Cannikin  

SciTech Connect

Since 1963, all United States nuclear tests have been conducted underground. A consequence of this testing has been the deposition of large amounts of radioactive material in the subsurface, sometimes in direct contact with groundwater. The majority of this testing occurred on the Nevada Test Site (NTS), but a limited number of experiments were conducted in other locations. One of these locations, Amchitka Island, Alaska is the subject of this report. Three underground nuclear tests were conducted on Amchitka Island. Long Shot was an 80-kiloton-yield test conducted at a depth of 700 meters (m) on October 29, 1965 (DOE, 2000). Milrow had an announced yield of about 1,000 kilotons, and was detonated at a depth of 1,220 m on October 2, 1969. Cannikin had an announced yield less than 5,000 kilotons, and was conducted at a depth of 1,790 m on November 6, 1971. The purpose of this work is to provide a portion of the information needed to conduct a human-health risk assessment of the potential hazard posed by the three underground nuclear tests on Amchitka Island. Specifically, the focus of this work is the subsurface transport portion, including the release of radionuclides from the underground cavities and their movement through the groundwater system to the point where they seep out of the ocean floor and into the marine environment. This requires a conceptual model of groundwater flow on the island using geologic, hydrologic, and chemical information, a numerical model for groundwater flow, a conceptual model of contaminant release and transport properties from the nuclear test cavities, and a numerical model for contaminant transport. Needed for the risk assessment are estimates of the quantity of radionuclides (in terms of mass flux) from the underground tests on Amchitka that could discharge to the ocean, the time of possible discharge, and the location in terms of distance from shoreline. The radionuclide data presented here are all reported in terms of normalized masses to avoid presenting classified information. As only linear processes are modeled, the results can be readily scaled by the true classified masses for use in the risk assessment. The modeling timeframe for the risk assessment was set at 1,000 years, though some calculations are extended to 2,000 years. This first section of the report endeavors to orient the reader with the environment of Amchitka and the specifics of the underground nuclear tests. Of prime importance are the geologic and hydrologic conditions of the subsurface. A conceptual model for groundwater flow beneath the island is then developed and paired with an appropriate numerical modeling approach in section 2. The parameters needed for the model, supporting data for them, and data uncertainties are discussed at length. The calibration of the three flow models (one for each test) is then presented. At this point the conceptual radionuclide transport model is introduced and its numerical approach described in section 3. Again, the transport parameters and their supporting data and uncertainties are the focus. With all of the processes and parameters in place, the first major modeling phase can be discussed in section 4. In this phase, a parametric uncertainty analysis is performed to determine the sensitivity of the transport modeling results to the uncertainties present in the parameters. This analysis is motivated by the recognition of substantial uncertainty in the subsurface conditions on the island and the need to incorporate that uncertainty into the modeling. The conclusion of the first phase determines the parameters to hold as uncertain through the main flow and transport modeling. This second, main phase of modeling is presented in section 5, with the contaminant breakthrough behavior of each test site addressed. This is followed by a sensitivity analysis in section 6, regarding the importance of additional processes that could not be supported in the main modeling effort due to lack of data. Finally, the results for the individual sites are compared, the sensitivities discussed,

Ahmed Hassan; Karl Pohlmann; Jenny Chapman

2002-11-19T23:59:59.000Z

45

Underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents (OSTI)

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

Hampel, Viktor E. (Pleasanton, CA)

1989-01-01T23:59:59.000Z

46

An underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents (OSTI)

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

Hampel, V.E.

1988-05-17T23:59:59.000Z

47

Underground collocation of nuclear power plant reactors and repository to facilitate the post-renaissance expansion of nuclear power  

SciTech Connect

Underground collocation of nuclear power reactors and the nuclear waste management facilities supporting those reactors, termed an underground nuclear park (UNP), appears to have several advantages compared to the conventional approach to siting reactors and waste management facilities. These advantages include the potential to lower reactor capital and operating cost, lower nuclear waste management cost, and increase margins of physical security and safety. Envirorunental impacts related to worker health, facility accidents, waste transportation, and sabotage and terrorism appear to be lower for UNPs compared to the current approach. In-place decommissioning ofUNP reactors appears to have cost, safety, envirorunental and waste disposal advantages. The UNP approach has the potential to lead to greater public acceptance for the deployment of new power reactors. Use of the UNP during the post-nuclear renaissance time frame has the potential to enable a greater expansion of U.S. nuclear power generation than might otherwise result. Technical and economic aspects of the UNP concept need more study to determine the viability of the concept.

Myers, Carl W [Los Alamos National Laboratory; Elkins, Ned Z [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

48

Subsurface Completion Report for Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin, Rev. No.: 1  

SciTech Connect

Three underground nuclear tests were conducted on Amchitka Island, Alaska, in 1965, 1969, and 1971. The effects of the Long Shot, Milrow, and Cannikin tests on the environment were extensively investigated during and following the detonations, and the area continues to be monitored today. This report is intended to document the basis for the Amchitka Underground Nuclear Test Sites: Long Shot, Milrow, and Cannikin (hereafter referred to as ''Amchitka Site'') subsurface completion recommendation of No Further Remedial Action Planned with Long-Term Surveillance and Maintenance, and define the long-term surveillance and maintenance strategy for the subsurface. A number of factors were considered in evaluating and selecting this recommendation for the Amchitka Site. Historical studies and monitoring data, ongoing monitoring data, the results of groundwater modeling, and the results of an independent stakeholder-guided scientific investigation were also considered in deciding the completion action. Water sampling during and following the testing showed no indication that radionuclides were released to the near surface, or marine environment with the exception of tritium, krypton-85, and iodine-131 found in the immediate vicinity of Long Shot surface ground zero. One year after Long Shot, only tritium was detectable (Merritt and Fuller, 1977). These tritium levels, which were routinely monitored and have continued to decline since the test, are above background levels but well below the current safe drinking water standard. There are currently no feasible means to contain or remove radionuclides in or around the test cavities beneath the sites. Surface remediation was conducted in 2001. Eleven drilling mud pits associated with the Long Shot, Milrow and Cannikin sites were remediated. Ten pits were remediated by stabilizing the contaminants and constructing an impermeable cap over each pit. One pit was remediated by removing all of the contaminated mud for consolidation in another pit. In addition to the mud pits, the hot mix plant was also remediated. Ongoing monitoring data does not indicate that radionuclides are currently seeping into the marine environment. Additionally, the groundwater modeling results indicate no seepage is expected for tens to thousands of years. If seepage does occur in the future, however, the rich, diverse ecosystems around the island could be at risk, as well as people eating foods from the area. An independent science study was conducted by the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) in accordance with the Amchitka Independent Science Plan (2003). The study report was published on August 1, 2005. The CRESP study states ''our geophysical and biological analyses did not find evidence of risk from radionuclides from the consumption of marine foods, nor indication of any current radionuclide contaminated migration into the marine environment from the Amchitka test shots''. The study also found evidence supporting the groundwater modeling conclusions of very slow contaminant transport (CRESP, 2005). While no further action is recommended for the subsurface of the Amchitka Site, long-term stewardship of Amchitka Island will be instituted and will continue into the future. This will include institutional controls management and enforcement, post-completion monitoring, performance of five-year reviews, public participation, and records management. Long-term stewardship will be the responsibility of the U.S. Department of Energy Office of Legacy Management. The Department of Energy is recommending completion of the investigation phase of the Amchitka Sites. The recommended remedy for the Amchitka Site is No Further Action with Long-Term Monitoring and Surveillance. The future long-term stewardship actions will be governed by a Long-Term Surveillance and Maintenance Plan. This Plan is currently being developed with input from the State, landowner, and other interested or affected stakeholders.

Echelard, Tim

2006-09-01T23:59:59.000Z

49

Migration in alluvium of chlorine-36 and tritium from an underground nuclear test  

SciTech Connect

This article describes a field experiment studying the migration in alluvium of radioactive elements away from an underground nuclear explosion at the Nevada Test Site in the United States. Nuclides detected in the pumped water are tritium, chlorine-36, iodine-129, and krypton-85 - all at levels below the maximum permissible concentration for drinking water in controlled areas. The chlorine-36 elution curve precedes that of tritium, and is due to an anion exclusion process. A conventional two-dimensional convection-diffusion equation does not fully describe the elution curves for tritium and chlorine-36; the tailing of the curves is longer than predicted. Successful modeling of this experiment will be important for validating codes and models to be used in the high-level nuclear waste program.

Ogard, A.E.; Thompson, J.L.; Rundberg, R.S.; Wolfsberg, K.; Kubik, P.W.; Elmore, D.; Bentley, H.W.

1987-01-01T23:59:59.000Z

50

Goals, Objectives, and Requirements (GOR) of the Ground-based Nuclear Detonation Detection (GNDD) Team for the Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D)  

SciTech Connect

The goal, objectives, and requirements (GOR) presented in this document define a framework for describing research directed specifically by the Ground-based Nuclear Detonation Detection (GNDD) Team of the National Nuclear Security Administration (NNSA). The intent of this document is to provide a communication tool for the GNDD Team with NNSA management and with its stakeholder community. It describes the GNDD expectation that much of the improvement in the proficiency of nuclear explosion monitoring will come from better understanding of the science behind the generation, propagation, recording, and interpretation of seismic, infrasound, hydroacoustic, and radionuclide signals and development of "game-changer" advances in science and technology.

Casey, Leslie A.

2014-01-13T23:59:59.000Z

51

Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices  

SciTech Connect

The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

Taylor, L.L.; Wilson, J.R. (INEEL); Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K. (SNL); Rath, J.S. (New Mexico Engineering Research Institute)

1998-10-01T23:59:59.000Z

52

Superheated detonation and other detonations with external energy addition  

Science Journals Connector (OSTI)

...An analytical description of a new notion in detonation physics – superheated detonation – is given. This is stationary detonation of an explosive with external energy addition. Other detonation regimes with e...

V.I. Tarzhanov

1999-10-01T23:59:59.000Z

53

Detonation velocity deficit and curvature radius of flexible detonation fuses  

Science Journals Connector (OSTI)

The detonation velocity deficit in bending flexible detonating fuses is studied, based on the detonation wave’s corner effects and delay time ... model and a theoretical mathematical equation of the detonation ve...

Y. -Q. Wen; Ya. -K. Ye; N. Yan

2012-03-01T23:59:59.000Z

54

Supernova: Carbon detonation redux  

Science Journals Connector (OSTI)

... A DECADE ago carbon detonation was all the rage among supernova theorists. The idea was that the characteristic burst ... wind.

J. Craig Wheeler

1983-03-17T23:59:59.000Z

55

Underground test area subproject waste management plan. Revision No. 1  

SciTech Connect

The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS.

NONE

1996-08-01T23:59:59.000Z

56

TYBO/BENHAM: Model Analysis of Groundwater Flow and Radionuclide Migration from Underground Nuclear Tests in Southwestern Pahute Mesa, Nevada  

SciTech Connect

Recent field studies have led to the discovery of trace quantities of plutonium originating from the BENHAM underground nuclear test in two groundwater observation wells on Pahute Mesa at the Nevada Test Site. These observation wells are located 1.3 km from the BENHAM underground nuclear test and approximately 300 m from the TYBO underground nuclear test. In addition to plutonium, several other conservative (e.g. tritium) and reactive (e.g. cesium) radionuclides were found in both observation wells. The highest radionuclide concentrations were found in a well sampling a welded tuff aquifer more than 500m above the BENHAM emplacement depth. These measurements have prompted additional investigations to ascertain the mechanisms, processes, and conditions affecting subsurface radionuclide transport in Pahute Mesa groundwater. This report describes an integrated modeling approach used to simulate groundwater flow, radionuclide source release, and radionuclide transport near the BENHAM and TYBO underground nuclear tests on Pahute Mesa. The components of the model include a flow model at a scale large enough to encompass many wells for calibration, a source-term model capable of predicting radionuclide releases to aquifers following complex processes associated with nonisothermal flow and glass dissolution, and site-scale transport models that consider migration of solutes and colloids in fractured volcanic rock. Although multiple modeling components contribute to the methodology presented in this report, they are coupled and yield results consistent with laboratory and field observations. Additionally, sensitivity analyses are conducted to provide insight into the relative importance of uncertainty ranges in the transport parameters.

Andrew Wolfsberg; Lee Glascoe; Guoping Lu; Alyssa; Olson; Peter Lichtner; Maureen McGraw; Terry Cherry; ,; Guy Roemer

2002-09-01T23:59:59.000Z

57

High temperature detonator  

DOE Patents (OSTI)

A detonator assembly is provided which is usable at high temperatures about 300.degree. C. A detonator body is provided with an internal volume defining an anvil surface. A first acceptor explosive is disposed on the anvil surface. A donor assembly having an ignition element, an explosive material, and a flying plate, are placed in the body effective to accelerate the flying plate to impact the first acceptor explosive on the anvil for detonating the first acceptor explosive. A second acceptor explosive is eccentrically located in detonation relationship with the first acceptor explosive to thereafter effect detonation of a main charge.

Johnson, James O. (Los Alamos, NM); Dinegar, Robert H. (Los Alamos, NM)

1988-01-01T23:59:59.000Z

58

INCOMPLETE CARBON-OXYGEN DETONATION IN TYPE Ia SUPERNOVAE  

SciTech Connect

Incomplete carbon-oxygen detonation with reactions terminating after burning of C{sup 12} in the leading C{sup 12} + C{sup 12} reaction (C-detonation) may occur in the low-density outer layers of white dwarfs exploding as Type Ia supernovae (SNe Ia). Previous studies of carbon-oxygen detonation structure and stability at low densities were performed under the assumption that the velocity of a detonation wave is derived from complete burning of carbon and oxygen to iron. In fact, at densities {rho} {<=} 10{sup 6} g cm{sup -3} the detonation in SNe Ia may release less than a half of the available nuclear energy. In this paper, we study basic properties of such detonations. We find that the length of an unsupported steady-state C-detonation is {approx_equal}30-100 times greater than previously estimated and that the decreased energy has a drastic effect on the detonation stability. In contrast to complete detonations which are one-dimensionally stable, C-detonations may be one-dimensionally unstable and propagate by periodically re-igniting themselves via spontaneous burning. The re-ignition period at {rho} {<=} 10{sup 6} g cm{sup -3} is estimated to be greater than the timescale of an SN Ia explosion. This suggests that propagation and quenching of C-detonations at these densities could be affected by the instability. Potential observational implications of this effect are discussed.

Dominguez, Inma [Departamento de Fisica Teorica y del Cosmos, University of Granada, 18071 Granada (Spain); Khokhlov, Alexei [Department of Astronomy and Astrophysics and the Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)

2011-04-01T23:59:59.000Z

59

Front Structure of Detonation and the Stability of Detonation  

Science Journals Connector (OSTI)

The physics of propagation of detonation waves is still a challenging topic in ... been found in experiments and 3D simulations of detonation physics, there are three types of detonation front structures. These a...

H. -S. Dou; Z. M. Hu; B. C. Khoo; C. Wang

2012-01-01T23:59:59.000Z

60

Method for making generally cylindrical underground openings  

DOE Patents (OSTI)

A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

Routh, J.W.

1983-05-26T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Mechanism of Detonation  

Science Journals Connector (OSTI)

... A DISCUSSION on "Detonation" was held by the Boyal Society on November 10, in the Society's rooms ... P and specific volume V throughout the zone:

H. H. M. PIKE

1950-02-11T23:59:59.000Z

62

Seismic Response of a Deep Underground Geologic Repository for Nuclear Waste at the Waste Isolation Pilot Plant in New Mexico  

SciTech Connect

The Waste Isolation Pilot Plant (WIPP) is a deep underground nuclear waste repository certified by the U.S. Environmental Protection Agency ,(EPA) to store transuranic defense-related waste contaminated by small amounts of radioactive materials. Located at a depth of about 655 meters below the surface, the facility is sited in southeastern New Mexico, about 40 Department of Energy underground facilities, waste disposal. kilometers east of the city of Carlsbad, New Mexico. The U.S. (DOE) managed the design and construction of the surface and and remains responsible for operation and closure following The managing and operating contractor for the DOE at the WIPP, Westinghouse Electric Corporation, maintains two rechmiant seismic monitoring systems located at the surface and in the underground. This report discusses two earthquakes detected by the seismic monitoring system, one a duratior magnitude 5.0 (Md) event located approximately 60 km east-southeast of the facility, and another a body-wave magnitude 5.6 (rob) event that occurred approximately 260 kilometers to the south-southeast.

Sanchez, P.E.

1998-11-02T23:59:59.000Z

63

Detonation of Ammonium Nitrate Fertilizer  

Science Journals Connector (OSTI)

Detonation of Ammonium Nitrate Fertilizer ... charge of the fertilizer enclosed in ¼-inch Shelby seamless tubing, 3 inches in diameter and 20 inches in length, detonated with extreme violence. ...

1947-07-28T23:59:59.000Z

64

Analysis of Teleseismic Signals from Underground Nuclear Explosions Originating in Four Geological Environments  

Science Journals Connector (OSTI)

......from the E. Kazakh site and the Nevada Test Site lie in between these two values...to an underground explosion at Nevada test site, Can. J. earth Sci., 6...from the E. Kazakh site and the Nevada Test Site lie in between these two values......

H. S. Hasegawa

1971-12-01T23:59:59.000Z

65

Detonation in Liquid Explosives  

Science Journals Connector (OSTI)

... Laboratory, on the initiative of Dr. A. H. Davis, into the process of detonation in explosives, the programme including a photographic study of the ... in explosives, the programme including a photographic study of the detonation Waves in transparent liquid explosives—the sensitivity of some of which can be varied by ...

D. CRONEY

1948-09-25T23:59:59.000Z

66

Microwave Observation of Detonation  

Science Journals Connector (OSTI)

... We have recently developed a technique for measuring the velocity of detonation of various high explosives under contained conditions by means of the reflexion of microwaves from ... contained conditions by means of the reflexion of microwaves from a region travelling with the detonation front. The technique differs substantially from that of Koch2 and the recent development of ...

JOHN L. FARRANDS; G. F. CAWSEY

1956-01-07T23:59:59.000Z

67

Diamonds in detonation soot  

Science Journals Connector (OSTI)

... The chemical nature of detonation soot has been a subject of interest for some time3'5, and the formation ... high density, pressure, and temperature and then expand and cool isentropically (Table 1). Detonation of CHNO explosive compositions underbalanced relative to CO (O/C< 1, after complete ...

N. Roy Greiner; D. S. Phillips; J. D. Johnson; Fred Volk

1988-06-02T23:59:59.000Z

68

Dynamic Parameters of Detonation  

Science Journals Connector (OSTI)

A chemically reactive material or mixture can undergo various combustion modes from low-speed flame (cm/s to m/s) to high-speed detonation (km/s) (e.g., [ ... ]). The initiation of a flame or detonation has a thr...

Anatoly A. Vasil’ev

2012-01-01T23:59:59.000Z

69

Bidirectional slapper detonator  

DOE Patents (OSTI)

The disclosure is directed to a bidirectional slapper detonator. One embodiment utilizes a single bridge circuit to detonate a pair of opposing initiating pellets. A line generator embodiment uses a plurality of bridges in electrical series to generate opposing cylindrical wavefronts.

McCormick, Robert N. (Los Alamos, NM); Boyd, Melissa D. (Los Alamos, NM)

1984-01-01T23:59:59.000Z

70

Implications of an Improvised Nuclear Device Detonation on Command and Control for Surrounding Regions at the Local, State and Federal Levels  

SciTech Connect

This paper discusses command and control issues relating to the operation of Incident Command Posts (ICPs) and Emergency Operations Centers (EOCs) in the surrounding area jurisdictions following the detonation of an Improvised Nuclear Device (IND). Although many aspects of command and control will be similar to what is considered to be normal operations using the Incident Command System (ICS) and the National Incident Management System (NIMS), the IND response will require many new procedures and associations in order to design and implement a successful response. The scope of this white paper is to address the following questions: • Would the current command and control framework change in the face of an IND incident? • What would the management of operations look like as the event unfolded? • How do neighboring and/or affected jurisdictions coordinate with the state? • If the target area’s command and control infrastructure is destroyed or disabled, how could neighboring jurisdictions assist with command and control of the targeted jurisdiction? • How would public health and medical services fit into the command and control structure? • How can pre-planning and common policies improve coordination and response effectiveness? • Where can public health officials get federal guidance on radiation, contamination and other health and safety issues for IND response planning and operations?

Pasquale, David A.; Hansen, Richard G.

2013-01-23T23:59:59.000Z

71

Detonation of Metalized Composite Explosives  

Science Journals Connector (OSTI)

A wealth of experimental data on the detonation performance of Alcontaining formulations based on the...

Fan Zhang

2009-01-01T23:59:59.000Z

72

Detonation of Meta-stable Clusters  

E-Print Network (OSTI)

Germany June 24-27, 2008 Detonation of Meta-stable Clustersstate space for the detonation of such meta- stablethe Cheetah code. Large detonation pressures (3 & 16 Mbar),

Kuhl, Allen L

2008-01-01T23:59:59.000Z

73

The Rapidity of Detonation  

Science Journals Connector (OSTI)

... inflamed nor exploded when wet; and further, unless one has the key to its detonation--a little fulminate of mercury- it is of no more value as an explosive ... as when confined in a water-tight steel case.

1873-10-23T23:59:59.000Z

74

Detonation in Ammonium Nitrate  

Science Journals Connector (OSTI)

... Gelatine. Its behaviour was recorded by placing lead plates under the charge, and the detonation velocity measured by the Dautriche method at the larger cartridge diameters and with a streak ... wave died out quickly. The velocities were as follows:

STEWART PATERSON; JEAN M. DAVIDSON

1962-07-21T23:59:59.000Z

75

Detonation Diffraction into a Confined Volume  

E-Print Network (OSTI)

Detonation diffraction has been, and remains, an active area of research. However, detonation diffraction into a confined volume, and specifically the transformation of a planar detonation into a cylindrical detonation, is an area which has received...

Polley, Nolan Lee

2012-02-14T23:59:59.000Z

76

PULSATING REVERSE DETONATION MODELS OF TYPE Ia SUPERNOVAE. I. DETONATION IGNITION  

SciTech Connect

Observational evidences point to a common explosion mechanism of Type Ia supernovae based on a delayed detonation of a white dwarf (WD). Although several scenarios have been proposed and explored by means of one, two, and three-dimensional simulations, the key point still is the understanding of the conditions under which a stable detonation can form in a destabilized WD. One of the possibilities that have been invoked is that an inefficient deflagration leads to the pulsation of a Chandrasekhar-mass WD, followed by formation of an accretion shock around a carbon-oxygen rich core. The accretion shock confines the core and transforms kinetic energy from the collapsing halo into thermal energy of the core, until an inward moving detonation is formed. This chain of events has been termed Pulsating Reverse Detonation (PRD). In this work we explore the robustness of the detonation ignition for different PRD models characterized by the amount of mass burned during the deflagration phase, M {sub defl}. The evolution of the WD up to the formation of the accretion shock has been followed with a three-dimensional hydrodynamical code with nuclear reactions turned off. We found that detonation conditions are achieved for a wide range of M {sub defl}. However, if the nuclear energy released during the deflagration phase is close to the WD binding energy ({approx}0.46 x 10{sup 51} erg {yields} M {sub defl} {approx} 0.30 M {sub sun}) the accretion shock cannot heat and confine the core efficiently and detonation conditions are not robustly achieved.

Bravo, Eduardo; GarcIa-Senz, Domingo [Department de FIsica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)], E-mail: eduardo.bravo@upc.edu, E-mail: domingo.garcia@upc.edu

2009-04-20T23:59:59.000Z

77

Weak detonations, their paths and  

Science Journals Connector (OSTI)

Previously, a quasi-steady form of the classical Rankine-Hugoniot weak detonation has been shown to play an integral part in describing certain forms of detonation initiation, arising during an intermediate stage between the thermal ignition of the material and the first appearance of a strong detonation with Zeldovich-von Neumann-Döring (ZND) structure. In this paper, we use a parametric variable integration to calculate numerically the path of the weak detonation in two important initiation scenarios, shock-induced and initial disturbance-induced transition to detonation, via a large activation energy induction domain model. The influence that the nature of the path may have on the weak detonation structure is also discussed. In each case these calculations enable us to predict how, where and when the transition to a strong detonation with ZND structure will occur. Explanations for several phenomena observed in both experiments and numerical studies on transition to detonation are also uncovered by these calculations.

Mark Short; J W Dold

2002-01-01T23:59:59.000Z

78

Evaluation of Cavity Collapse and Surface Crater Formation for Selected Lawrence Livermore National Laboratory Underground Nuclear Tests - 2010  

SciTech Connect

This report evaluates collapse evolution for selected Lawrence Livermore National Laboratory (LLNL) underground nuclear tests at the Nevada National Security Site (NNSS, formerly called the Nevada Test Site). The work is being done at the request of Navarro-Interra LLC, and supports environmental restoration efforts by the Department of Energy, National Nuclear Security Administration for the Nevada Site Office. Safety decisions must be made before a surface crater area, or potential surface crater area, can be reentered for any work. Our statements on cavity collapse and surface crater formation are input into their safety decisions. These statements do not include the effects of erosion that may modify the surface collapse craters over time. They also do not address possible radiation dangers that may be present. Subject matter experts from the LLNL Containment Program who had been active in weapons testing activities performed these evaluations. Information used included drilling and hole construction, emplacement and stemming, timing and sequence of the selected test and nearby tests, geology, yield, depth of burial, collapse times, surface crater sizes, cavity and crater volume estimations, and ground motion. Both classified and unclassified data were reviewed. Various amounts of information are available for these tests, depending on their age and other associated activities. Lack of data can hamper evaluations and introduce uncertainty. We make no attempt to quantify this uncertainty.

Pawloski, G A

2011-01-03T23:59:59.000Z

79

The Initiation and Propagation of Helium Detonations in White Dwarf Envelopes  

E-Print Network (OSTI)

Detonations in helium-rich envelopes surrounding white dwarfs have garnered attention as triggers of faint thermonuclear ".Ia" supernovae and double detonation Type Ia supernovae. However, recent studies have found that the minimum size of a hotspot that can lead to a helium detonation is comparable to, or even larger than, the white dwarf's pressure scale height, casting doubt on the successful ignition of helium detonations in these systems. In this paper, we examine the previously neglected effects of C/O pollution and a full nuclear reaction network, and we consider hotspots with spatially constant pressure in addition to constant density hotspots. We find that the inclusion of these effects significantly decreases the minimum hotspot size for helium-rich detonation ignition, making detonations far more plausible during turbulent shell convection or during double white dwarf mergers. The increase in burning rate also decreases the minimum shell mass in which a helium detonation can successfully propagate ...

Shen, Ken J

2014-01-01T23:59:59.000Z

80

Reverse slapper detonator  

DOE Patents (OSTI)

A reverse slapper detonator (70), and methodology related thereto, are provided. The detonator (70) is adapted to be driven by a pulse of electric power from an external source (80). A conductor (20) is disposed along the top (14), side (18), and bottom (16) surfaces of a sheetlike insulator (12). Part of the conductor (20) comprises a bridge (28), and an aperture (30) is positioned within the conductor (20), with the bridge (28) and the aperture (30) located on opposite sides of the insulator (12). A barrel (40) and related explosive charge (50) are positioned adjacent to and in alignment with the aperture (30), and the bridge (28) is buttressed with a backing layer (60). When the electric power pulse vaporizes the bridge (28), a portion of the insulator (12) is propelled through the aperture (30) and barrel (40), and against the explosive charge (50), thereby detonating it.

Weingart, Richard C. (Livermore, CA)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Deflagration to Detonation  

E-Print Network (OSTI)

Thermonuclear explosions of Type Ia supernovae (SNIa) involve turbulent deflagrations, detonations, and possibly a deflagration-to-detonation transition. A phenomenological delayed detonation model of SNIa successfully explains many observational properties of SNIa including monochromatic light curves, spectra, brightness - decline and color - decline relations. Observed variations among SNia are explained as a result of varying nickel mass synthesised in an explosion of a Chandrasekhar mass C/O white dwarf. Based on theoretical models of SNIa, the value of the Hubble constant H_o \\simeq 67km/s/Mpc was determined without the use of secondary distance indicators. The cause for the nickel mass variations in SNIa is still debated. It may be a variation of the initial C/O ratio in a supernova progenitor, rotation, or other effects.

A. M. Khokhlov

1999-10-25T23:59:59.000Z

82

Detonation in miniature  

Science Journals Connector (OSTI)

A mathematical analog for one?dimensional compressible flow in a chemically reacting fluid is constructed and used as a vehicle for a simplified introduction to such flows with particular application to detonations. The presentation includes a concise self?contained introduction to the elements of nonreactive compressible flow.

Wildon Fickett

1979-01-01T23:59:59.000Z

83

A Review of Direct Numerical Simulations of Astrophysical Detonations and Their Implications  

SciTech Connect

Multi-dimensional direct numerical simulations (DNS) of astrophysical detonations in degenerate matter have revealed that the nuclear burning is typically characterized by cellular structure caused by transverse instabilities in the detonation front. Type Ia supernova modelers often use one- dimensional DNS of detonations as inputs or constraints for their whole star simulations. While these one-dimensional studies are useful tools, the true nature of the detonation is multi-dimensional. The multi-dimensional structure of the burning influences the speed, stability, and the composition of the detonation and its burning products, and therefore, could have an impact on the spectra of Type Ia supernovae. Considerable effort has been expended modeling Type Ia supernovae at densities above 1 107 g cm 3 where the complexities of turbulent burning dominate the flame propagation. However, most full star models turn the nuclear burning schemes off when the density falls below 1 107 g cm 3 and distributed burning begins. The deflagration to detonation transition (DDT) is believed to occur at just these densities and consequently they are the densities important for studying the properties of the subsequent detonation. This work will review the status of DNS studies of detonations and their possible implications for Type Ia supernova models. It will cover the development of Detonation theory from the first simple Chapman-Jouguet (CJ) detonation models to the current models based on the time-dependent, compressible, reactive flow Euler equations of fluid dynamics.

Parete-Koon, Suzanne T [ORNL; Messer, Bronson [ORNL; Smith, Chris R [ORNL; Papatheodore, Thomas L [ORNL

2013-01-01T23:59:59.000Z

84

Radioactive Dust from Nuclear Detonations  

Science Journals Connector (OSTI)

...than the dose received from natural radioactivity in a period of...radioactive particles. The natural radioactivity of the atmosphere...curies/liter. This radioactive gas is present in equilibrium with...With an approximation of the natural radiation dose to the lung as...

Merril Eisenbud; John H. Harley

1953-02-13T23:59:59.000Z

85

Detonation Wave Propagation in an Ejector-Augmented Pulse Detonation Rocket  

E-Print Network (OSTI)

Detonation Wave Propagation in an Ejector-Augmented Pulse Detonation Rocket Tae-Hyeong Yi , Donald, TX 76019, USA The propagation of a detonation wave in an ejector-augmented pulse detonation rocket- and two-dimensional detonation tube is first investigated to observe the nature of a detonation wave

Texas at Arlington, University of

86

Miniature plasma accelerating detonator and method of detonating insensitive materials  

DOE Patents (OSTI)

The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives. 3 figs.

Bickes, R.W. Jr.; Kopczewski, M.R.; Schwarz, A.C.

1985-01-04T23:59:59.000Z

87

Miniature plasma accelerating detonator and method of detonating insensitive materials  

DOE Patents (OSTI)

The invention is a detonator for use with high explosives. The detonator comprises a pair of parallel rail electrodes connected to a power supply. By shorting the electrodes at one end, a plasma is generated and accelerated toward the other end to impact against explosives. A projectile can be arranged between the rails to be accelerated by the plasma. An alternative arrangement is to a coaxial electrode construction. The invention also relates to a method of detonating explosives.

Bickes, Jr., Robert W. (Albuquerque, NM); Kopczewski, Michael R. (Albuquerque, NM); Schwarz, Alfred C. (Albuquerque, NM)

1986-01-01T23:59:59.000Z

88

Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium  

SciTech Connect

The purpose of the meeting was to discuss the state-of-the-art in numerical simulations of nuclear explosion phenomenology with applications to test ban monitoring. We focused on the uniqueness of model fits to data, the measurement and characterization of material response models, advanced modeling techniques, and applications of modeling to monitoring problems. The second goal of the symposium was to establish a dialogue between seismologists and explosion-source code calculators. The meeting was divided into five main sessions: explosion source phenomenology, material response modeling, numerical simulations, the seismic source, and phenomenology from near source to far field. We feel the symposium reached many of its goals. Individual papers submitted at the conference are indexed separately on the data base.

Taylor, S.R.; Kamm, J.R. [eds.

1993-11-01T23:59:59.000Z

89

Carbon in detonations  

SciTech Connect

We review three principal results from a five year study of carbon and its properties in detonations and discuss the implications of these results to the behavior of explosives. We first present a new determination of the carbon melt line from release wave velocity measurements in the shocked state. We then outline a colloidal theory of carbon clustering which from diffusion limited coagulation predicts a slow energy release rate for the carbon chemistry. Finally, we show the results from the examination of recovered soot. Here we see support for the colloid theory and find the diamond phase of carbon. The main theme of this paper is that the carbon in detonation products is in the form of a colloidal suspension of carbon clusters which grow through diffusion limited collisions. Even the final state is not bulk graphite or diamond, but is a collection of small, less than 100 /angstrom/A, diamond and graphitic clusters. 23 refs., 4 figs.

Johnson, J.D.

1989-01-01T23:59:59.000Z

90

Low voltage nonprimary explosive detonator  

DOE Patents (OSTI)

A low voltage, electrically actuated, nonprimary explosive detonator is disclosed wherein said detonation is achieved by means of an explosive train in which a deflagration-to-detonation transition is made to occur. The explosive train is confined within a cylindrical body and positioned adjacent to low voltage ignition means have electrical leads extending outwardly from the cylindrical confining body. Application of a low voltage current to the electrical leads ignites a self-sustained deflagration in a donor portion of the explosive train which then is made to undergo a transition to detonation further down the train.

Dinegar, Robert H. (Los Alamos, NM); Kirkham, John (Newbury, GB2)

1982-01-01T23:59:59.000Z

91

Detonation Diffraction into a Confined Volume.  

E-Print Network (OSTI)

??Detonation diffraction has been, and remains, an active area of research. However, detonation diffraction into a confined volume, and specifically the transformation of a planar… (more)

Polley, Nolan Lee

2012-01-01T23:59:59.000Z

92

Apparent Intermediate Supervelocity of Detonation  

Science Journals Connector (OSTI)

... the initiation of a cylindrical charge by an axial shock-wave. In that case the detonation sets out from a circular, coaxial area on the shock front, the radius of ... velocity front overtakes the low-velocity front. Ocf shows the front of the high-velocity detonation along the axis. The slope of ab gives the low velocity D19 and the ...

C. H. JOHANSSON

1961-05-20T23:59:59.000Z

93

Detonation Phenomena in Homogeneous Explosives  

Science Journals Connector (OSTI)

... In considering the effect of the container on the detonation of an explosive charge, the natural impulse is to look for an interpretati9n of ... is usually meant the resistance offered by the envelope to the lateral expansion of the detonation products. It is known, however, that the initial mass movement of the pro- ...

ELWYN JONES

1956-09-15T23:59:59.000Z

94

Stability of cosmological detonation fronts  

E-Print Network (OSTI)

The steady state propagation of a phase transition front is classified, according to hydrodynamics, as a deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase transition. One particular cause is the presence of instabilities. In this work we study the linear stability of weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation solution, we consider small perturbations of the interface and the fluid configuration. When the balance between the driving and friction forces is taken into account, it turns out that there are actually two different kinds of weak detonations, which behave very differently as functions of the parameters. We show that the branch of stronger weak detonations are unstable, except very cl...

Megevand, Ariel

2014-01-01T23:59:59.000Z

95

Semiconductor bridge (SCB) detonator  

DOE Patents (OSTI)

The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

Bickes, Jr., Robert W. (Albuquerque, NM); Grubelich, Mark C. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

96

Type Ia Supernova Explosion: Gravitationally Confined Detonation  

Science Journals Connector (OSTI)

We present a new mechanism for Type Ia supernova explosions in massive white dwarfs. The scenario follows from relaxing assumptions of symmetry and involves a detonation born near the stellar surface. The explosion begins with an essentially central ignition of a deflagration that results in the formation of a buoyancy-driven bubble of hot material that reaches the stellar surface at supersonic speeds. The bubble breakout laterally accelerates fuel-rich outer stellar layers. This material, confined by gravity to the white dwarf, races along the stellar surface and is focused at the location opposite to the point of the bubble breakout. These streams of nuclear fuel carry enough mass and energy to trigger a detonation just above the stellar surface that will incinerate the white dwarf and result in an energetic explosion. The stellar expansion following the deflagration redistributes mass in a way that ensures production of intermediate-mass and iron group elements with ejecta having a strongly layered structure and a mild amount of asymmetry following from the early deflagration phase. This asymmetry, combined with the amount of stellar expansion determined by details of the evolution (principally the energetics of deflagration, timing of detonation, and structure of the progenitor), can be expected to create a family of mildly diverse Type Ia supernova explosions.

T. Plewa; A. C. Calder; D. Q. Lamb

2004-01-01T23:59:59.000Z

97

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation...

98

Detonation Structure Simulation with AMROC Ralf Deiterding  

E-Print Network (OSTI)

Detonation Structure Simulation with AMROC Ralf Deiterding California Institute of Technology, 1200 detonation waves. But the accurate approximation of realistic detonations is extremely de- manding, because in simulating multi- dimensional detonations with detailed and highly stiff chemical kinetics on recent parallel

Barr, Al

99

Spread of Detonation in High Explosives  

Science Journals Connector (OSTI)

... W. C. F. Shepherd makes the interesting observation that in the initial stages of detonation in a cylindrical cartridge of high explosive initiated with a detonator, a phase, referred ... of high explosive initiated with a detonator, a phase, referred to as the pre-detonation phase, is often noticeable during which the rate of propagation of the reaction is ...

ELWYN JONES; DUGALD MITCHELL

1948-01-17T23:59:59.000Z

100

INTRODUCTION In detonation wave computations involving  

E-Print Network (OSTI)

INTRODUCTION In detonation wave computations involving curved detonation fronts, accurate solutions to compute solutions to detonation prob­ lems without numerically resolving the reaction zone. For planar detonation waves, algebraic jump conditions which do not depend on the dynamics within the reaction zone can

Bukiet, Bruce

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Study of the Detonation Phase in the Gravitationally Confined Detonation Model of Type Ia Supernovae  

Science Journals Connector (OSTI)

We study the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia) through the detonation phase and into homologous expansion. In the GCD model, a detonation is triggered by the surface flow due to single-point, off-center flame ignition in carbon-oxygen white dwarfs (WDs). The simulations are unique in terms of the degree to which nonidealized physics is used to treat the reactive flow, including weak reaction rates and a time-dependent treatment of material in nuclear statistical equilibrium (NSE). Careful attention is paid to accurately calculating the final composition of material which is burned to NSE and frozen out in the rapid expansion following the passage of a detonation wave over the high-density core of the WD; and an efficient method for nucleosynthesis postprocessing is developed which obviates the need for costly network calculations along tracer particle thermodynamic trajectories. Observational diagnostics are presented for the explosion models, including abundance stratifications and integrated yields. We find that for all of the ignition conditions studied here a self-regulating process comprised of neutronization and stellar expansion results in final 56Ni masses of ~1.1 M ?. But, more energetic models result in larger total NSE and stable Fe-peak yields. The total yield of intermediate mass elements is ~0.1 M ? and the explosion energies are all around 1.5 ? 1051 erg. The explosion models are briefly compared to the inferred properties of recent SN Ia observations. The potential for surface detonation models to produce lower-luminosity (lower 56Ni mass) SNe is discussed.

Casey A. Meakin; Ivo Seitenzahl; Dean Townsley; George C. Jordan IV; James Truran; Don Lamb

2009-01-01T23:59:59.000Z

102

Study of the Detonation Phase in the Gravitationally Confined Detonation Model of Type Ia Supernovae  

E-Print Network (OSTI)

We study the gravitationally confined detonation (GCD) model of Type Ia supernovae through the detonation phase and into homologous expansion. In the GCD model, a detonation is triggered by the surface flow due to single point, off-center flame ignition in carbon-oxygen white dwarfs. The simulations are unique in terms of the degree to which non-idealized physics is used to treat the reactive flow, including weak reaction rates and a time dependent treatment of material in nuclear statistical equilibrium (NSE). Careful attention is paid to accurately calculating the final composition of material which is burned to NSE and frozen out in the rapid expansion following the passage of a detonation wave over the high density core of the white dwarf; and an efficient method for nucleosynthesis post-processing is developed which obviates the need for costly network calculations along tracer particle thermodynamic trajectories. Observational diagnostics are presented for the explosion models, including abundance stratifications and integrated yields. We find that for all of the ignition conditions studied here, a self regulating process comprised of neutronization and stellar expansion results in final \\iso{Ni}{56} masses of $\\sim$1.1\\msun. But, more energetic models result in larger total NSE and stable Fe peak yields. The total yield of intermediate mass elements is $\\sim0.1$\\msun and the explosion energies are all around 1.5$\\times10^{51}$ ergs. The explosion models are briefly compared to the inferred properties of recent Type Ia supernova observations. The potential for surface detonation models to produce lower luminosity (lower \\iso{Ni}{56} mass) supernovae is discussed.

Casey A. Meakin; Ivo Seitenzahl; Dean Townsley; George C. Jordan IV; James Truran; Don Lamb

2008-06-30T23:59:59.000Z

103

Approaches to Quantify Potential Contaminant Transport in the Lower Carbonate Aquifer from Underground Nuclear Testing at Yucca Flat, Nevada National Security Site, Nye County, Nevada - 12434  

SciTech Connect

Quantitative modeling of the potential for contaminant transport from sources associated with underground nuclear testing at Yucca Flat is an important part of the strategy to develop closure plans for the residual contamination. At Yucca Flat, the most significant groundwater resource that could potentially be impacted is the Lower Carbonate Aquifer (LCA), a regionally extensive aquifer that supplies a significant portion of the water demand at the Nevada National Security Site, formerly the Nevada Test Site. Developing and testing reasonable models of groundwater flow in this aquifer is an important precursor to performing subsequent contaminant transport modeling used to forecast contaminant boundaries at Yucca Flat that are used to identify potential use restriction and regulatory boundaries. A model of groundwater flow in the LCA at Yucca Flat has been developed. Uncertainty in this model, as well as other transport and source uncertainties, is being evaluated as part of the Underground Testing Area closure process. Several alternative flow models of the LCA in the Yucca Flat/Climax Mine CAU have been developed. These flow models are used in conjunction with contaminant transport models and source term models and models of contaminant transport from underground nuclear tests conducted in the overlying unsaturated and saturated alluvial and volcanic tuff rocks to evaluate possible contaminant migration in the LCA for the next 1,000 years. Assuming the flow and transport models are found adequate by NNSA/NSO and NDEP, the models will undergo a peer review. If the model is approved by NNSA/NSO and NDEP, it will be used to identify use restriction and regulatory boundaries at the start of the Corrective Action Decision Document Corrective Action Plan (CADD/CAP) phase of the Corrective Action Strategy. These initial boundaries may be revised at the time of the Closure Report phase of the Corrective Action Strategy. (authors)

Andrews, Robert W.; Birdie, Tiraz [Navarro-INTERA LLC, Las Vegas, Nevada 89030 (United States); Wilborn, Bill; Mukhopadhyay, Bimal [National Nuclear Security Administration/Nevada Site Office, Las Vegas, Nevada 89030 (United States)

2012-07-01T23:59:59.000Z

104

EVALUATION OF THE EFFECTS OF DETONATION IN A SPHERICAL BOMB  

E-Print Network (OSTI)

by the Chapman-Jouguet detonation. J. Fluid Mechanics 55_,I- ChapMn-uouguet detonation; csnstant volume conbmiton; r (Chapcui-Oouguet detonation including von Neumann spit*;

Kurylo, J.

2010-01-01T23:59:59.000Z

105

Spherically imploding detonation waves initiated by two-step divergent detonation  

Science Journals Connector (OSTI)

The detonation chamber developed by K. Terao and H ... effectively to a focus, so that imploding detonation waves are initiated by two-step divergent detonation waves in a hemispherical space having an effective ...

K. Terao; H. Akaba; H. Shiraishi

1995-01-01T23:59:59.000Z

106

Detonation of propane-air mixtures under injection of hot detonation products  

Science Journals Connector (OSTI)

The tube for spontaneous detonation (Institute of Technical Physics, Russian Federal ... used to study the initiation and development of detonation in propane-air mixtures under injection of hot detonation produc...

V. I. Tarzhanov; I. V. Telichko; V. G. Vil’danov…

2006-05-01T23:59:59.000Z

107

Dynamics of Curved Detonation Front and Critical Conditions for Detonation Initiations  

Science Journals Connector (OSTI)

The curved detonation front appears in a number of unsteady phenomena such as the diffraction of detonations, the initiation of detonation by a point energy source, by a ... propagating velocity D and the curvatu...

L. He

1997-01-01T23:59:59.000Z

108

Design methodology to develop a conceptual underground facility for the disposal of high-level nuclear waste at Yucca Mountain, Nevada  

SciTech Connect

This paper examines the design methodology employed to develop conceptual underground layouts for a prospective high level nuclear waste repository at Yucca Mountain, Nevada. This study is in conjunction with the Nevada Nuclear Waste Storage Investigations (NNWSI), project studying the disposal of high level waste in densely welded tuff. The fundamental design effort concentraes on the effects of the heat released from the decaying waste forms and the impact of this heat on ventilation, waste emplacement configurations, and rock stability. This effort will perfect the design of the waste emplacement layout including emplacement hole spacing, emplacement drift spacing, and the areal power density (APD) for the installed waste. This paper contains only viewgraphs. 11 figs.

Zerga, D.P.; Badie, A.

1986-12-31T23:59:59.000Z

109

CONDITIONS FOR SUCCESSFUL HELIUM DETONATIONS IN ASTROPHYSICAL ENVIRONMENTS  

SciTech Connect

Several models for Type Ia-like supernova events rely on the production of a self-sustained detonation powered by nuclear reactions. In the absence of hydrogen, the fuel that powers these detonations typically consists of either pure helium (He) or a mixture of carbon and oxygen (C/O). Studies that systematically determine the conditions required to initiate detonations in C/O material exist, but until now no analogous investigation of He matter has been conducted. We perform one-dimensional reactive hydrodynamical simulations at a variety of initial density and temperature combinations and find critical length scales for the initiation of He detonations that range between 1 and 10{sup 10} cm. A simple estimate of the length scales over which the total consumption of fuel will occur for steady-state detonations is provided by the Chapman-Jouguet (CJ) formalism. Our initiation lengths are consistently smaller than the corresponding CJ length scales by a factor of {approx}100, providing opportunities for thermonuclear explosions in a wider range of low-mass white dwarfs (WDs) than previously thought possible. We find that virialized WDs with as little mass as 0.24 M{sub Sun} can be detonated, and that even less massive WDs can be detonated if a sizable fraction of their mass is raised to a higher adiabat. That the initiation length is exceeded by the CJ length implies that certain systems may not reach nuclear statistical equilibrium within the time it takes a detonation to traverse the object. In support of this hypothesis, we demonstrate that incomplete burning will occur in the majority of He WD detonations and that {sup 40}Ca, {sup 44}Ti, or {sup 48}Cr, rather than {sup 56}Ni, is the predominant burning product for many of these events. We anticipate that a measure of the quantity of the intermediate-mass elements and {sup 56}Ni produced in a helium-rich thermonuclear explosion can potentially be used to constrain the nature of the progenitor system.

Holcomb, Cole; Guillochon, James; De Colle, Fabio; Ramirez-Ruiz, Enrico [TASC, Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

2013-07-01T23:59:59.000Z

110

Seasonal thermal signatures of heat transfer by water exchange in an underground vault  

Science Journals Connector (OSTI)

......also to the long-term temperature...underground waste storage and contaminant...underground nuclear waste storage sites is...2000), the long-term impact and...Concerning the long-term temperature...underground waste storage, underlying......

Frédéric Perrier; Pierre Morat; Toshio Yoshino; Osam Sano; Hisashi Utada; Olivier Gensane; Jean-Louis Le Mouël

2004-07-01T23:59:59.000Z

111

Detonation waves in relativistic hydrodynamics  

Science Journals Connector (OSTI)

This paper is concerned with an algebraic study of the equations of detonation waves in relativistic hydrodynamics taking into account the pressure and the energy of thermal radiation. A new approach to shock and detonation wavefronts is outlined. The fluid under consideration is assumed to be perfect (nonviscous and nonconducting) and to obey the following equation of state: p=(?-1)? where p, ?, and ? are the pressure, the total energy density, and the adiabatic index, respectively. The solutions of the equations of detonation waves are reduced to the problem of finding physically acceptable roots of a quadratic polynomial ?(X) where X is the ratio ?/?0 of dynamical volumes behind and ahead of the detonation wave. The existence and the locations of zeros of this polynomial allow it to be shown that if the equation of state of the burnt fluid is known then the variables characterizing the unburnt fluid obey well-defined physical relations.

Mahdy Cissoko

1992-02-15T23:59:59.000Z

112

Comment on ’’Detonation in miniature’’  

Science Journals Connector (OSTI)

The ZND model of the steady detonation waves as outlined by Fickett is refuted on the grounds that it does not represent a complete picture of reality.(AIP)

Walter G. Zinman

1981-01-01T23:59:59.000Z

113

Type Ia Supernova: Burning and Detonation in the Distributed Regime  

E-Print Network (OSTI)

A simple, semi-analytic representation is developed for nuclear burning in Type Ia supernovae in the special case where turbulent eddies completely disrupt the flame. The speed and width of the ``distributed'' flame front are derived. For the conditions considered, the burning front can be considered as a turbulent flame brush composed of corrugated sheets of well-mixed flames. These flames are assumed to have a quasi-steady-state structure similar to the laminar flame structure, but controlled by turbulent diffusion. Detonations cannot appear in the system as long as distributed flames are still quasi-steady-state, but this condition is violated when the distributed flame width becomes comparable to the size of largest turbulent eddies. When this happens, a transition to detonation may occur. For current best estimates of the turbulent energy, the most likely density for the transition to detonation is in the range 0.5 - 1.5 x 10^7 g cm^{-3}.

S. E. Woosley

2007-09-26T23:59:59.000Z

114

Purely Gasdynamic Multidimensional Indirect Detonation Initiation Using Localized Acoustic  

E-Print Network (OSTI)

Purely Gasdynamic Multidimensional Indirect Detonation Initiation Using Localized Acoustic detonation initiation process is presented that can be independent of diffusion, viscosity and turbulence to accelerate detonation formation. It is shown that given sufficient resolution, the detonation formation time

Vasilyev, Oleg V.

115

Dependence of the Shape of a Detonation Wave Front on the Detonation Wave Velocity upon Detonation of a Cylindrical Charge  

Science Journals Connector (OSTI)

The transition of a system of partial differential equations which describe the stationary flow behind the shock–wave front of a detonation complex upon detonation of a cylindrical charge to a system...

A. R. Gushanov

2001-01-01T23:59:59.000Z

116

Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives#  

E-Print Network (OSTI)

Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives. Aslam and D. S. Stewart TAM Department# University of Illinois Urbana# IL 61801 USA Abstract# Detonation Shock Dynamics #DSD# can be used to model the e#ects that shock curvature # has on detonation speed D n

Aslam, Tariq

117

Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives  

E-Print Network (OSTI)

Curved detonation fronts in solid explosives 1 Curved detonation fronts in solid explosives. Aslam and D. S. Stewart TAM Department, University of Illinois Urbana, IL 61801 USA Abstract: Detonation Shock Dynamics (DSD) can be used to model the eects that shock curvature has on detonation speed Dn

Aslam, Tariq

118

Structure of a pulsating detonation front  

Science Journals Connector (OSTI)

Results are presented from experiments involving the recording of the reflection of a detonation wave in a mixture of nitromethane and ... and they require correction of representations on pulsating detonation.

D. I. Matsukov; V. S. Solov'ev; S. V. Sorokin

119

Stability of cosmological detonation fronts  

E-Print Network (OSTI)

The steady state propagation of a phase transition front is classified, according to hydrodynamics, as a deflagration or a detonation, depending on its velocity with respect to the fluid. These propagation modes are further divided into three types, namely, weak, Jouguet, and strong solutions, according to their disturbance of the fluid. However, some of these hydrodynamic modes will not be realized in a phase transition. One particular cause is the presence of instabilities. In this work we study the linear stability of weak detonations, which are generally believed to be stable. After discussing in detail the weak detonation solution, we consider small perturbations of the interface and the fluid configuration. When the balance between the driving and friction forces is taken into account, it turns out that there are actually two different kinds of weak detonations, which behave very differently as functions of the parameters. We show that the branch of stronger weak detonations are unstable, except very close to the Jouguet point, where our approach breaks down.

Ariel Megevand; Federico Agustin Membiela

2014-02-24T23:59:59.000Z

120

Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

The Order defines the Nuclear Explosive and Weapon Surety (NEWS) Program, which was established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2014-08-05T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Airbreathing Rotating Detonation Wave Engine Cycle Analysis  

E-Print Network (OSTI)

Airbreathing Rotating Detonation Wave Engine Cycle Analysis Eric M. Braun, Frank K. Lu, Donald R analysis of an airbreathing, rotating detonation wave engine (RDWE) is developed. The engine consists of a steady inlet system with an isolator which delivers air into the detonation annulus. A single wave

Texas at Arlington, University of

122

SOLVING CURVED DETONATION RIEMANN PROBLEMS Bruce Bukiet  

E-Print Network (OSTI)

SOLVING CURVED DETONATION RIEMANN PROBLEMS Bruce Bukiet Department of Mathematics, Center to compute accurate solutions to detonation problems without numerically solving differential equations in the thin reaction zone. For planar detonation waves, alge­ braic jump conditions can be used to compute

Bukiet, Bruce

123

PERFORMANCE ENHANCEMENTS ON A PULSED DETONATION ROCKET  

E-Print Network (OSTI)

PERFORMANCE ENHANCEMENTS ON A PULSED DETONATION ROCKET The members of the Committee approve #12;To Grandma and Grandpa #12;PERFORMANCE ENHANCEMENTS ON A PULSED DETONATION ROCKET by JASON MATTHEW DETONATION ROCKET Publication No. Jason Matthew Meyers, M.S. The University of Texas at Arlington, 2002

Texas at Arlington, University of

124

PARAMETRIC CYCLE ANALYSIS FOR PULSE DETONATION ENGINES  

E-Print Network (OSTI)

PARAMETRIC CYCLE ANALYSIS FOR PULSE DETONATION ENGINES by HAIDER HEKIRI Presented to the Faculty, in particular, pulse detonation engines. Dr. Wilson taught me the basics of propulsion and made me enjoy #12;iii ABSTRACT PARAMETRIC CYCLE ANALYSIS FOR PULSE DETONATION ENGINES Publication No. ______ Haider

Texas at Arlington, University of

125

Spread of Detonation in High Explosives  

Science Journals Connector (OSTI)

... In a note1 on the spread of detonation in a mass of high explosive from the point of initiation, Weibull demonstrates that, ... initiation, Weibull demonstrates that, in a cylindrical cartridge of compressed T.N.T., detonation is propagated with a uniform and constant speed in all directions from the detonator. ...

DUGALD MITCHELL; STEWART PATERSON

1947-09-27T23:59:59.000Z

126

Double-detonation supernovae of sub-Chandrasekhar mass white dwarfs  

E-Print Network (OSTI)

In the "double-detonation sub-Chandrasekhar" model for type Ia supernovae, a carbon-oxygen (C + O) white dwarf accumulates sufficient amounts of helium such that a detonation ignites in that layer before the Chandrasekhar mass is reached. This detonation is thought to trigger a secondary detonation in the C + O core. By means of one- and two-dimensional hydrodynamic simulations, we investigate the robustness of this explosion mechanism for generic 1-M_sun models and analyze its observable predictions. Also a resolution dependence in numerical simulations is analyzed. The propagation of thermonuclear detonation fronts, both in helium and in the carbon-oxygen mixture, is computed by means of both a level-set function and a simplified description for nuclear reactions. The decision whether a secondary detonation is triggered in the white dwarf's core or not is made based on criteria given in the literature. In a parameter study involving different initial flame geometries for He-shell masses of 0.2 and 0.1 M_sun, we find that a secondary detonation ignition is a very robust process. Converging shock waves originating from the detonation in the He shell generate the conditions for a detonation near the center of the white dwarf in most of the cases considered. Finally, we follow the complete evolution of three selected models with 0.2 M_sun of He through the C/O-detonation phase and obtain nickel-masses of about 0.40 to 0.45 M_sun. Although we have not done a complete scan of the possible parameter space, our results show that sub-Chandrasekhar models are not good candidates for normal or sub-luminous type Ia supernovae. The chemical composition of the ejecta features significant amounts of nickel in the outer layers at high expansion velocities, which is inconsistent with near-maximum spectra. (abbreviated)

M. Fink; W. Hillebrandt; F. K. Roepke

2007-10-29T23:59:59.000Z

127

Nuclear Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground Research Facility in South Dakota, which will search for neutrinoless double-beta decay. Strong Los Alamos programs in nuclear data and nuclear theory supports...

128

Surface detonation in type Ia supernova explosions?  

E-Print Network (OSTI)

We explore the evolution of thermonuclear supernova explosions when the progenitor white dwarf star ignites asymmetrically off-center. Several numerical simulations are carried out in two and three dimensions to test the consequences of different initial flame configurations such as spherical bubbles displaced from the center, more complex deformed configurations, and teardrop-shaped ignitions. The burning bubbles float towards the surface while releasing energy due to the nuclear reactions. If the energy release is too small to gravitationally unbind the star, the ash sweeps around it, once the burning bubble approaches the surface. Collisions in the fuel on the opposite side increase its temperature and density and may -- in some cases -- initiate a detonation wave which will then propagate inward burning the core of the star and leading to a strong explosion. However, for initial setups in two dimensions that seem realistic from pre-ignition evolution, as well as for all three-dimensional simulations the collimation of the surface material is found to be too weak to trigger a detonation.

F. K. Roepke; S. E. Woosley

2006-09-25T23:59:59.000Z

129

Synergic and conflicting issues in planning underground use to produce energy in densely populated countries, as Italy: Geological storage of CO2, natural gas, geothermics and nuclear waste disposal  

Science Journals Connector (OSTI)

In densely populated countries there is a growing and compelling need to use underground for different and possibly coexisting technologies to produce “low carbon” energy. These technologies include (i) clean coal combustion merged with CO2 Capture and Storage (CCS); (ii) last-generation nuclear power or, in any case, safe nuclear wastes disposal, both “temporary” and “geological” somewhere in Europe (at least in one site): Nuclear wastes are not necessarily associated to nuclear power plants; (iii) safe natural gas (CH4) reserves to allow consumption also when the foreign pipelines are less available or not available for geopolitical reasons and (iv) “low-space-consuming” renewables in terms of Energy Density Potential in Land (EDPL measured in [GW h/ha/year]) as geothermics. When geothermics is exploited as low enthalpy technology, the heat/cool production could be associated, where possible, to increased measures of “building efficiency”, low seismic risks building reworking and low-enthalpy heat managing. This is undispensable to build up “smart cities”. In any case the underground geological knowledge is prerequisite. All these technologies have been already proposed and defined by the International Energy Agency (IEA) Road Map 2009 as priorities for worldwide security: all need to use underground in a rational and safe manner. The underground is not renewable in most of case histories [10,11]. IEA recently matched and compared different technologies in a unique “Clean Energy Economy” improved document (Paris, November 16–17, 2011), by the contribution of this vision too (see reference). In concert with “energy efficiency” improvement both for plants and buildings, in the frame of the “smart cities” scenarios, and the upstanding use of “energy savings”, the energetic planning on regional scale where these cities are located, are strategic for the year 2050: this planning is strongly depending by the underground availability and typology. Therefore, if both literature and European Policy are going fast to improve the concept of “smart cities” this paper stresses the concept of “smart regions”, more strategic than “smart cities”, passing throughout a discussion on the synergic and conflicting use of underground to produce energy for the “smart regions” as a whole. The paper highlights the research lines which are urgent to plan the soundest energy mix for each region by considering the underground performances case by case: a worldwide mapping, by GIS tools of this kind of information could be strategic for all the “world energy management” authorities, up to ONU, with its Intergovernmental Panel on Climate Change (IPCC), the G20, the Carbon Sequestration Leadership Forum (CSLF) and the European Platforms such as the “Zero Emissions Fossil Fuel Power Plants” (EU-ZEP Platform), the Steel Platform, the Biomass Platform too. All of these organizations agree on the need for synergistic and coexistent uses of underground for geological storage of CO2, CH4, nuclear waste and geothermic exploitation. The paper is therefore a discussion of the tools, methods and approaches to these underground affecting technologies, after a gross view of the different uses of underground to produce energy for each use, with their main critical issues (i.e. public acceptance in different cases). The paper gives some gross evaluation for the Lazio Region and some hints from the Campania Region, located in Central Italy. Energy Density Potential in Land (EDPL), is calculated for each renewable energy technology (solar, wind, geothermal) highlighting the potentiality of the last. Why the Italian case history among the densely populated countries? on the Italian territory is hard to find suitable areas (mostly if greenfields) to use the own underground, with respect to other European countries, due to the presence of seismotectonic activity and many faulted areas characterized by Diffuse Degassing Structures (DDSs, which are rich in CO2 and CH4). In this cases, public acceptan

Fedora Quattrocchi; Enzo Boschi; Angelo Spena; Mauro Buttinelli; Barbara Cantucci; Monia Procesi

2013-01-01T23:59:59.000Z

130

ASYMMETRY AND THE NUCLEOSYNTHETIC SIGNATURE OF NEARLY EDGE-LIT DETONATION IN WHITE DWARF CORES  

SciTech Connect

Most of the leading explosion scenarios for Type Ia supernovae involve the nuclear incineration of a white dwarf star through a detonation wave. Several scenarios have been proposed as to how this detonation may actually occur, but the exact mechanism and environment in which it takes place remain unknown. We explore the effects of an off-center initiated detonation on the spatial distribution of the nucleosynthetic yield products in a toy model-a pre-expanded near Chandrasekhar-mass white dwarf. We find that a single-point near edge-lit detonation results in asymmetries in the density and thermal profiles, notably the expansion timescale, throughout the supernova ejecta. We demonstrate that this asymmetry of the thermodynamic trajectories should be common to off-center detonations where a small amount of the star is burned prior to detonation. The sensitivity of the yields on the expansion timescale results in an asymmetric distribution of the elements synthesized as reaction products. We tabulate the shift in the center of mass of the various elements produced in our model supernova and find an odd-even pattern for elements past silicon. Our calculations show that off-center single-point detonations in carbon-oxygen white dwarfs are marked by significant composition asymmetries in their remnants which bear potentially observable signatures in both velocity and coordinate space, including an elemental nickel mass fraction that varies by a factor of 2-3 from one side of the remnant to the other.

Chamulak, David A.; Truran, James W. [Argonne National Laboratory, Argonne, IL (United States); Meakin, Casey A. [Steward Observatory, University of Arizona, Tucson, AZ (United States); Seitenzahl, Ivo R., E-mail: dchamulak@anl.gov [Max Planck Institute for Astrophysics, Garching (Germany)

2012-01-01T23:59:59.000Z

131

A theoretical study of a special detonation regime of operation of a pulse detonation device with a variable cross section detonation combustion chamber and a valveless supply system  

Science Journals Connector (OSTI)

The results of a theoretical study of the special detonation regime that arises in a pulse detonation device with a variable cross section combustion ... location of the diaphragm. Since the pulse detonation devi...

L. G. Gvozdeva; D. I. Baklanov; I. N. Ryzhkina…

2009-06-01T23:59:59.000Z

132

All of Hanford's underground waste tanks generate hydrogen gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Hanford's underground waste tanks generate hydrogen gas to some degree since the radioactivity in the waste releases hydrogen from basic nuclear reactions. The routine release...

133

Shchelkin’s contribution to spin detonation studies and further development of the spin detonation theory  

Science Journals Connector (OSTI)

On the occasion of the 100th anniversary of K. I. Shchelkin, his publications on the detonation spin theory are reviewed. In those publications ... predicted the presence of a break on the detonation wave front, ...

M. E. Topchiyan

2012-05-01T23:59:59.000Z

134

Bibliography of reports by US Geological Survey personnel pertaining to underground nuclear testing and radioactive waste disposal at the Nevada Test Site, and radioactive waste disposal at the WIPP Site, New Mexico, January 1, 1979-December 31, 1979  

SciTech Connect

This bibliography presents reports released to the public between January 1, 1979, and December 31, 1979, by personnel of the US Geological Survey. Reports include information on underground nuclear testing and waste management projects at the NTS (Nevada Test Site) and radioactive waste projects at the WIPP (Waste Isolation Pilot Plant) site, New Mexico. Reports on Project Dribble, Tatum Dome, Mississippi, previously prepared as administrative reports and released to the public as 474-series reports during 1979 are also included in this bibliography.

Glanzman, V.M.

1980-01-01T23:59:59.000Z

135

An Eulerian-Lagrangian Computational Model for Deflagration and Detonation of High Explosives  

E-Print Network (OSTI)

. These scenarios are classified as slow cook-off, unknown detonation transition (XDT), and shock detonation

Utah, University of

136

A lecture on detonation-shock dynamics  

SciTech Connect

We summarize recent investigations into the theory of multi-dimensional, time-dependent detonation. These advances have led to the development of a theory for describing the propagation of high-order detonation in condensed-phase explosives. The central approximation in the theory is that the detonation shock is weakly curved. Specifically, we assume that the radius of curvature of the detonation shock is large compared to a relevant reaction-zone thickness. Our main findings are: (1) the flow is quasi-steady and nearly one dimensional along the normal to the detonation shock; and (2) the small deviation of the normal detonation velocity from the Chapman-Jouguet (CJ) value is generally a function of curvature. The exact functional form of the correction depends on the equation of state (EOS) and the form of the energy-release law. 8 refs.

Stewart, D.S.; Bdzil, J.B.

1987-01-01T23:59:59.000Z

137

Non-detonable explosive simulators  

DOE Patents (OSTI)

A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

Simpson, R.L.; Pruneda, C.O.

1994-11-01T23:59:59.000Z

138

Non-detonable explosive simulators  

DOE Patents (OSTI)

A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

1994-01-01T23:59:59.000Z

139

Existence and stability of curved multidimensional detonation fronts  

E-Print Network (OSTI)

Existence and stability of curved multidimensional detonation fronts N. Costanzino , H. K. Jenssen of curved detonation fronts 32 7.1 ZND fronts of strong detonations in the two most commonly studied inviscid models of combustion, the ZND (finite

140

Numerical Modeling of Acoustic Timescale Detonation Initiation Using the Adaptive  

E-Print Network (OSTI)

Numerical Modeling of Acoustic Timescale Detonation Initiation Using the Adaptive Wavelet 2008 #12;This thesis entitled: Numerical Modeling of Acoustic Timescale Detonation Initiation Using. (Ph.D.) Numerical Modeling of Acoustic Timescale Detonation Initiation Using the Adaptive Wavelet

Vasilyev, Oleg V.

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Detonation limits in rough walled tubes  

Science Journals Connector (OSTI)

Abstract The present paper reports the results of a study of detonation limits in rough tubes. Detonation velocity is measured by photodiodes and ionization probes spaced at 10 cm intervals along the length of the tube. Short lengths of smoked foils inserted into the core of the rough tube is used to register the structure of the detonation wave. Pressure transducers are also used to obtain the pressure profile. The results indicate that in rough tubes, the detonation velocity is generally much lower than the corresponding values for smooth tubes. The velocity decreases slowly at first and then more rapidly as the limit is approached. The velocity variation is generally continuous and at the limits, the failure velocity is of the order of about 0.4 V CJ for all cases. The detonation limits in rough tubes are found to be wider than for a smooth tube. This indicates that the turbulence generated by the wall roughness facilitates the propagation of the detonation and extends the limits. Smoked foil records show that in the core of the rough tube the detonation front has a cellular structure corresponding to the usual cellular structure due to instability of the detonation. Thus the intrinsic unstable cellular structure is quite robust and retains its global characteristics in spite of the large perturbations generated by the rough wall. The detonation in the core of the rough tube goes from multi-headed to single headed as the limit is approached. Past the single headed spin, the low velocity detonation has no cellular structure but consists of interacting weak transverse waves from the rough wall. The averaged pressure of the low velocity detonation front corresponds to about the constant volume explosion pressure, in accord with the velocity of the low velocity detonation.

Amanda Starr; John H.S. Lee; Hoi Dick Ng

2014-01-01T23:59:59.000Z

142

Sharp shock model for propagating detonation waves  

SciTech Connect

Recent analyses of the reactive Euler equations have led to an understanding of the effect of curvature on an underdriven detonation wave. This advance can be incorporated into an improved sharp shock model for propagating detonation waves in hydrodynamic calculations. We illustrate the model with two simple examples: time dependent propagation of a diverging detonation wave in 1-D, and the steady 2-D propagation of a detonation wave in a rate stick. Incorporating this model into a 2-D front tracking code is discussed. 20 refs., 3 figs.

Bukiet, B.; Menikoff, R.

1989-01-01T23:59:59.000Z

143

Deflagrations and Detonations in Thermonuclear Supernovae  

E-Print Network (OSTI)

We study a type Ia supernova explosion using three-dimensional numerical simulations based on reactive fluid dynamics. We consider a delayed-detonation model that assumes a deflagration-to-detonation transition. In contrast to the pure deflagration model, the delayed-detonation model releases enough energy to account for a healthy explosion, and does not leave carbon, oxygen, and intermediate-mass elements in central parts of a white dwarf. This removes the key disagreement between simulations and observations, and makes a delayed detonation the mostly likely mechanism for type Ia supernovae.

Vadim N. Gamezo; Alexei M. Khokhlov; Elaine S. Oran

2004-06-03T23:59:59.000Z

144

Parametric Analysis Of A Detonation-type Turbofan.  

E-Print Network (OSTI)

??Lu, Frank A new type of turbofan which detonates a fuel-air mixture was theoretically found to perform better than a conventional turbofan. A continuous detonation… (more)

Swamy, Yashwanth M.

2012-01-01T23:59:59.000Z

145

Numerical modelling of one-dimensional discrete source detonation.  

E-Print Network (OSTI)

??Detonation is a branch of combustion that is initiated by an exothermic chemical reaction and it results in a supersonic shock wave called the ?Detonation… (more)

Javaid, Mehshan

2010-01-01T23:59:59.000Z

146

Detonation diffraction in a multi-step channel .  

E-Print Network (OSTI)

??This research investigated multiple detonation diffraction events in order to better understand the limits and benefits of diffraction strategies with respect to pulse detonation engine… (more)

Juillet, Daniel M.

2010-01-01T23:59:59.000Z

147

Gas Detonation and its Application in Engineering and Technologies (Review)  

Science Journals Connector (OSTI)

The most relevant aspects of advanced experimental investigations of gas detonation and its mathematical simulation are presented. Examples of the engineering use of gas detonation are given.

Yu. A. Nikolaev; A. A. Vasil'ev…

2003-07-01T23:59:59.000Z

148

Underground Layout Configuration  

SciTech Connect

The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

A. Linden

2003-09-25T23:59:59.000Z

149

Wall Precursor Effects in Gaseous Detonation  

Science Journals Connector (OSTI)

... and 5 mm long, were used in an investigation of electrical phenomena in stoichiometric oxyhydrogen detonations produced in a 4 m long stainless steel tube of hexagonal cross-section. The ... , which was insulated from the tube wall, recorded the time of arrival of the detonation plasma at the plane of observation. Only when both the probes and insulating surfaces ...

M. C. CAVENOR

1970-02-21T23:59:59.000Z

150

Fading of Detonation in Cones of Explosive  

Science Journals Connector (OSTI)

... boundary diameter of an explosive is the smallest diameter of charge in which a stable detonation wave can be established. It is characteristic of the explosive and its physical condition, ... condition, and is a criterion of 'fading', that is, the tendency of the detonation to die out. A boundary diameter may be determined by experiments with cylindrical charges ...

D. W. WOODHEAD; R. WILSON

1951-04-07T23:59:59.000Z

151

The Phenomena of Spin in Detonation  

Science Journals Connector (OSTI)

... , the flame front was not simply a disc-like or convex surface, but the detonation spun spiralwise along the tube, giving rise to a banded appearance in the photographs ... Fraser2 made a careful photographic investigation of the phenomenon, which showed that the initiation of detonation was almost invariably associated with the spin of the ‘head’ of ...

A. C. E.

1935-12-21T23:59:59.000Z

152

Professor John H. S. Lee: The Detonation Phenomenon: Cambridge University Press, 2008, 400 pp., ISBN: 9780521897235, $99.00  

E-Print Network (OSTI)

John H. S. Lee: The Detonation Phenomenon Cambridgeat Springerlink.com The book “The Detonation Phenomenon” byaspects of gas phase detonation. Gas phase detonation has

Tarver, Craig M.

2009-01-01T23:59:59.000Z

153

Initiation of the Detonation in the Gravitationally Confined Detonation Model of Type Ia Supernovae  

Science Journals Connector (OSTI)

We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

Ivo R. Seitenzahl; Casey A. Meakin; Don Q. Lamb; James W. Truran

2009-01-01T23:59:59.000Z

154

Initiation of the detonation in the gravitationally confined detonation model of type Ia supernovae.  

SciTech Connect

We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

Seitenzahl, I. R.; Meakin, C. A.; Lamb, D. Q.; Truran, J. W. (Physics); (Univ. of Chicago); (Max-Planck-Inst. for Astrophysics); (Univ. of Arizona)

2009-07-20T23:59:59.000Z

155

Study of the detonation phase in the gravitationally confined detonation model of type Ia supernovae.  

SciTech Connect

We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zeldovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

Meakin, C. A.; Seitenzahl, I.; Jordan, G. C.; Truran,, J.; Lamb, D.; Physics; Univ. of Chicago; Univ. of Arizona

2009-07-20T23:59:59.000Z

156

INITIATION OF THE DETONATION IN THE GRAVITATIONALLY CONFINED DETONATION MODEL OF TYPE Ia SUPERNOVAE  

SciTech Connect

We study the initiation of the detonation in the gravitationally confined detonation (GCD) model of Type Ia supernovae (SNe Ia). In this model, ignition occurs at one or several off-center points, resulting in a burning bubble of hot ash that rises rapidly, breaks through the surface of the star, and collides at a point on the stellar surface opposite the breakout, producing a high-velocity inwardly directed flow. Initiation of the detonation occurs spontaneously in a region where the length scale of the temperature gradient extending from the flow (in which carbon burning is already occurring) into unburned fuel is commensurate to the range of critical length scales which have been derived from one-dimensional simulations that resolve the initiation of a detonation. By increasing the maximum resolution in a truncated cone that encompasses this region, beginning somewhat before initiation of the detonation occurs, we successfully simulate in situ the first gradient-initiated detonation in a whole-star simulation. The detonation emerges when a compression wave overruns a pocket of fuel situated in a Kelvin-Helmholtz cusp at the leading edge of the inwardly directed jet of burning carbon. The compression wave preconditions the temperature in the fuel in such a way that the Zel'dovich gradient mechanism can operate and a detonation ensues. We explore the dependence of the length scale of the temperature gradient on spatial resolution and discuss the implications for the robustness of this detonation mechanism. We find that the time and the location at which initiation of the detonation occurs varies with resolution. In particular, initiation of a detonation had not yet occurred in our highest resolution simulation by the time we ended the simulation because of the computational demand it required. However, it may detonate later. We suggest that the turbulent shear layer surrounding the inwardly directed jet provides the most favorable physical conditions, and therefore the most likely location, for initiation of a detonation in the GCD model.

Seitenzahl, Ivo R. [Department of Physics, University of Chicago, Chicago, IL 60637 (United States); Meakin, Casey A.; Truran, James W. [Joint Institute for Nuclear Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Lamb, Don Q. [Center for Astrophysical Thermonuclear Flashes, University of Chicago, Chicago, IL 60637 (United States)

2009-07-20T23:59:59.000Z

157

Hydroxylated Detonation Nanodiamond: FTIR, XPS, and NMR Studies  

Science Journals Connector (OSTI)

Hydroxylated Detonation Nanodiamond: FTIR, XPS, and NMR Studies ... Detailed and unambiguous characterization of the surface structure of detonation nanodiamond (DND) particles remains one of the most challenging tasks for the preparation of chemically functionalized nanodiamonds. ... (1-3) They are currently produced in bulk quantities by means of detonation of carbon-containing explosives followed by purification from the detonation soot by chemical treatment. ...

O. Shenderova; A. M. Panich; S. Moseenkov; S. C. Hens; V. Kuznetsov; H.-M. Vieth

2011-08-12T23:59:59.000Z

158

Experimental study of a pulse detonation rocket with Shchelkin spiral  

E-Print Network (OSTI)

Experimental study of a pulse detonation rocket with Shchelkin spiral F.K. Lu, J.M. Meyers, and D There is much recent interest in the development of propulsion systems using high- frequency pulsed detonations detonations in a short distance. The direct initiation of detonation requires an inordinate amount of energy

Texas at Arlington, University of

159

DNS of Detonation Wave and Isotropic Turbulence Interaction  

E-Print Network (OSTI)

DNS of Detonation Wave and Isotropic Turbulence Interaction Hari Narayanan Nagarajan , Luca Massa A direct numerical simulation of detonation wave with compressible homogeneous isotropic turbulence is carried out with three different detonation Mach numbers to study the effect of detonation wave

Texas at Arlington, University of

160

Direct Observations of Reaction Zone Structure in Propagating Detonations  

E-Print Network (OSTI)

of self-sustaining, cellular detonations propagating near the Chapman-Jouguet state in hydrogen- oxygen

Barr, Al

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Spectroscopic studies of detonating heterogeneous explosives. [HNS  

SciTech Connect

The experimental objectives of this work are to use real-time spectroscopic techniques, emission spectroscopy and Raman spectra to monitor chemical and physical changes in shock-loaded or detonating high explosive (HE) samples. The investigators hope to identify chemical species including any transient intermediates. Also, they wish to determine the physical state of the material when the reactions are taking place; measure the temperature and the pressure; and study the effect of different initiation parameters and bulk properties of the explosive material. This work is just part of the effort undertaken to gain information on the detailed chemistry involved in initiation and detonation. In summary, the investigators have obtained vibrational temperatures of some small radical products of detonation, which may correlate with the detonation temperature. They have also observed that NO/sub 2/ is an early product from detonating HNS and RDX, and that other electronically excited radical species such as CN(B) are formed in HNS detonations. In the Raman work, the single-pulse spectra could be obtained even in the severe environment of a detonation, and that the rate of removal of the parent molecule could be monitored. 2 refs., 6 figs.

Renlund, A.M.; Trott, W.M.

1985-01-01T23:59:59.000Z

162

Magnetic Field Generation by Detonation Waves  

Science Journals Connector (OSTI)

A simple model is given for the spontaneous magnetic field generation by a detonation wave in condensed matter. The field is shown to arise from the noncollinearity of the thermal and electron density gradients near a medium boundary at the detonation shock front. The model allows calculation of approximate values for the field strength at the front and penetration ahead of the detonation wave. For typical explosive media interfaced by air the magnetic field is predicted to lie in the range 0.1 to 15 G.

Michael J. Frankel and Edward T. Toton

1979-12-10T23:59:59.000Z

163

Detonator comprising a nonlinear transmission line  

DOE Patents (OSTI)

Detonators are described herein. In a general embodiment, the detonator includes a nonlinear transmission line that has a variable capacitance. Capacitance of the nonlinear transmission line is a function of voltage on the nonlinear transmission line. The nonlinear transmission line receives a voltage pulse from a voltage source and compresses the voltage pulse to generate a trigger signal. Compressing the voltage pulse includes increasing amplitude of the voltage pulse and decreasing length of the voltage pulse in time. An igniter receives the trigger signal and detonates an explosive responsive to receipt of the trigger signal.

Elizondo-Decanini, Juan M

2014-12-30T23:59:59.000Z

164

Seismic verification of underground explosions  

SciTech Connect

The first nuclear test agreement, the test moratorium, was made in 1958 and lasted until the Soviet Union unilaterally resumed testing in the atmosphere in 1961. It was followed by the Limited Test Ban Treaty of 1963, which prohibited nuclear tests in the atmosphere, in outer space, and underwater. In 1974 the Threshold Test Ban Treaty (TTBT) was signed, limiting underground tests after March 1976 to a maximum yield of 250 kt. The TTBT was followed by a treaty limiting peaceful nuclear explosions and both the United States and the Soviet Union claim to be abiding by the 150-kt yield limit. A comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, has also been discussed. However, a verifiable CTBT is a contradiction in terms. No monitoring technology can offer absolute assurance that very-low-yield illicit explosions have not occurred. The verification process, evasion opportunities, and cavity decoupling are discussed in this paper.

Glenn, L.A.

1985-06-01T23:59:59.000Z

165

Swept-ramp detonation initiation performance in a high pressure pulse detonation combustor .  

E-Print Network (OSTI)

??Pulse detonation combustion technologies promise the potential of increased thermodynamic efficiency and performance, across a wide range of thrust and power generation applications. Thrust applications… (more)

Nichols, Daniel A.

2010-01-01T23:59:59.000Z

166

A Study of Deflagration To Detonation Transition In a Pulsed Detonation Engine.  

E-Print Network (OSTI)

??A Pulse Detonation Engine (PDE) is a propulsion device that takes advantage of the pressure rise inherent to the efficient burning of fuel-air mixtures via… (more)

Chapin, David Michael

2005-01-01T23:59:59.000Z

167

A NUMERICAL STUDY OF DETONATION AND PLUME DYNAMICS IN A PULSED DETONATION ENGINE.  

E-Print Network (OSTI)

??The Pulse Detonation Engine (PDE) is considered to be the propulsion system of future air vehicles. The objective of the present study is to understand… (more)

RAGHUPATHY, ARUN PRAKASH

2005-01-01T23:59:59.000Z

168

National Nuclear Security Administration's Space-Based Nuclear...  

Energy Savers (EERE)

National Nuclear Security Administration's Space-Based Nuclear Detonation Detection Program OAS-L-14-09 July 2014 U.S. Department of Energy Office of Inspector General Office of...

169

Science @WIPP: Underground Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

170

Underground Injection Control (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

171

Spectroscopic studies of shocked and detonating explosives  

SciTech Connect

Real-time observation techniques including single-pulse Raman scattering, time-resolved infrared spectral photography, emission spectroscopy and fast-framing photography have been used to study chemical and physical changes in shock-loaded and detonating explosive materials. Experiments have focused on how material variables such as density and particle size may affect emission characteristics in detonating high explosives (HEs). We have also studied effects of pressure and temperature on vibrational frequencies in shocked HEs. 14 refs., 4 figs.

Renlund, A.M.; Trott, W.M.

1987-01-01T23:59:59.000Z

172

Initiation and Detonation Physics on Millimeter Scales  

SciTech Connect

The LLNL Detonation Science Project has a major interest in understanding the physics of detonation on a millimeter scale. This report summarizes the rate stick experiment results of two high explosives. The GO/NO-GO threshold between varying diameters of ultra-fine TATB (ufTATB) and LX-16 were recorded on an electronic streak camera and analyzed. This report summarizes the failure diameters of rate sticks for ufTATB and LX-16. Failure diameter for the ufTATB explosive, with densities at 1.80 g/cc, begin at 2.34 mm (not maintaining detonation velocity over the entire length of the rate stick). ufTATB rate sticks at the larger 3.18 mm diameter maintain a constant detonation velocity over the complete length. The PETN based and LLNL developed explosive, LX-16, with densities at 1.7 g/cc, shows detonation failure between 0.318 mm and 0.365 mm. Additional tests would be required to narrow this failure diameter further. Many of the tested rate sticks were machined using a femtosecond laser focused into a firing tank - in case of accidental detonation.

Philllips, D F; Benterou, J J; May, C A

2012-03-20T23:59:59.000Z

173

Spectroscopic studies of initiation and detonation chemistry  

SciTech Connect

There is much effort currently directed towards elucidating important microscopic processes in reacting high explosives (HEs). In particular, identification of early chemical steps in initiation is crucial to a better understanding of explosive sensitivity and vulnerability. The intimate coupling of the chemical work required to sustain detonation with the mechanical properties of the material and the resulting wave motion drives experimental studies to focus on realistic cases of initiation and steady-state detonation. Extrapolation of results from more homogeneous pressure and temperature domains may provide an inadequate description of the physics and chemistry involved. In practice the study of molecular properties in the extreme environment of detonation requires fast detection of transient phenomena. Over the past few years, the investigators have applied various optical techniques to studies of molecular mechanisms of initiation and detonation. The main focus has been to study reactions in compressed granular HEs like those commonly used in weapon components. Four experimental techniques were used: emission spectroscopy; fast-framing photography; time-resolved infrared spectral photography (TRISP); and single-pulse Raman spectroscopy. In this paper the investigators describe; (1) use of fast-framing photography and emission spectroscopy to study spatial and temporal character of emitted light from detonating HEs; (2) use of TRISP technique to monitor formation of water from various detonating HEs; and (3) use of single-pulse Raman scattering to study changes in shocked TATB. 11 refs., 5 figs.

Renlund, A.M.; Trott, W.M.

1987-01-01T23:59:59.000Z

174

Today and Future Neutrino Experiments at Krasnoyarsk Nuclear Reactor  

E-Print Network (OSTI)

The results of undergoing experiments and new experiment propositions at Krasnoyarsk underground nuclear reactor are presented

Yu. V. Kozlov; S. V. Khalturtsev; I. N. Machulin; A. V. Martemyanov; V. P. Martemyanov; A. A. Sabelnikov; V. G. Tarasenkov; E. V. Turbin; V. N. Vyrodov; L. A. Popeko; A. V. Cherny; G. A. Shishkina

1999-12-21T23:59:59.000Z

175

Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts (Invited)  

E-Print Network (OSTI)

Rotating Detonation Wave Propulsion: Experimental Challenges, Modeling, and Engine Concepts, Arlington, Texas, 76019 Rotating detonation engines (RDEs), also known as continuous detonation engines of energy conversion that may be even more superior than pulse detonation engines, themselves the subject

Texas at Arlington, University of

176

Underground pumped hydroelectric storage  

SciTech Connect

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

177

Underground Power Cables  

Science Journals Connector (OSTI)

...1973 research-article Underground Power Cables J. D. Endacott Up to the present, effectively...particular, in recent years, the oil-filled cable system using cellulose paper impregnated...design of supertension underground power cable systems are considered. The limitations...

1973-01-01T23:59:59.000Z

178

Underground ventilation remote monitoring and control system  

SciTech Connect

This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system.

Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

1995-12-31T23:59:59.000Z

179

Microsoft Word - WIPP Updates_Underground Recovery Process Begins  

NLE Websites -- All DOE Office Websites (Extended Search)

5DR0314 002NWPR0314 NWP Media Contacts: Donavan Mager Nuclear Waste Partnership LLC (575) 234-7586 www.wipp.energy.gov For Immediate Release WIPP UPDATES: Underground Recovery...

180

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Order provides requirements and responsibilities to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1B....

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Order provides requirements and responsibilities to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled...

182

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Order provides requirements and responsibilities to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A....

183

Steady detonation problem for slow and fast chemical reactions  

E-Print Network (OSTI)

Steady detonation problem for slow and fast chemical reactions F. Conforto1 , M. Groppi2 , R of the stationary propagation of a detonation wave. The differ- ences of the shock structure in the two cases

Ceragioli, Francesca

184

Detailed structure of spinning detonation in a circular tube  

SciTech Connect

A single spinning detonation wave propagating in a circular tube, discovered experimentally in 1926, is simulated three-dimensionally with a detailed chemical reaction mechanism. The detonation front obtained numerically rotates periodically with a Mach leg, whiskers, and a transverse detonation. A long pressure trail, which is distributed from the transverse detonation to downstream, was reproduced, clearly showing that the pressure trail also spins synchronously with the transverse detonation. The formation of an unburned gas pocket behind the detonation front was not observed in the present simulations because the rotating transverse detonation completely consumed the unburned gas. The calculated profiles of instantaneous OH mass fraction have a keystone shape behind the detonation front. The numerical results for pitch, track angle, Mach stem angle, and incident shock angle on the tube wall agree well with the experimental results. (author)

Tsuboi, N. [Space Transportation Engineering Department, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Eto, K.; Hayashi, A.K. [Department of Mechanical Engineering, Aoyama Gakuin University, Fuchinobe 5-10-1, Sagamihara, Kanagawa 229-8558 (Japan)

2007-04-15T23:59:59.000Z

185

Detonation Emissivities and Temperatures in Some Liquid Explosives  

Science Journals Connector (OSTI)

... T^XPERIMENTAL measurement of the spectral S_j distribution of radiation from a detonation wave enables the ... wave enables the detonation temperature and emissivity to be calculated using Planck's radiation equation, provided that the ...

J. T. A. BURTON; J. A. HICKS

1964-05-23T23:59:59.000Z

186

Spontaneous detonation of a mixture of two odd electron gases  

Science Journals Connector (OSTI)

Spontaneous detonation of a mixture of two odd electron gases ... Instructions for safe detonation of ClO2 and NO (the fastest known reaction between two stable molecules at room temperature). ...

Thomas S. Briggs

1991-01-01T23:59:59.000Z

187

Detonation Simulation with the AMROC Framework Ralf Deiterding  

E-Print Network (OSTI)

. The reaction results in an energy release driving the shock wave for- ward. In a self-sustaining detonation

Barr, Al

188

Detonator cable initiation system safety investigation: Consequences of energizing the detonator and actuator cables  

SciTech Connect

This study was performed to explore and assess the worst-case response of a W89-type weapons system, damaged so as to expose detonator and/or detonator safing strong link (DSSL) cables to the most extreme, credible lightning-discharge, environment. The test program used extremely high-current-level, fast-rise-time (1- to 2-{mu}s) discharges to simulate lightning strikes to either the exposed detonator or DSSL cables. Discharges with peak currents above 700 kA were required to explode test sections of detonator cable and launch a flyer fast enough potentially to detonate weapon high explosive (HE). Detonator-safing-strong-link (DSSL) cables were exploded in direct contact with hot LX-17 and Ultrafine TATB (UFTATB). At maximum charging voltage, the discharge system associated with the HE firing chamber exploded the cables at more than 600-kA peak current; however, neither LX-17 nor UFTATB detonated at 250{degree}C. Tests showed that intense surface arc discharges of more than 700 kA/cm in width across the surface of hot UFTATB [generally the more sensitive of the two insensitive high explosives (IHE)] could not initiate this hot IHE. As an extension to this study, we applied the same technique to test sections of the much-narrower but thicker-cover-layer W87 detonator cable. These tests were performed at the same initial stored electrical energy as that used for the W89 study. Because of the narrower cable conductor in the W87 cables, discharges greater than 550-kA peak current were sufficient to explode the cable and launch a fast flyer. In summary, we found that lightning strikes to exposed DSSL cables cannot directly detonate LX-17 or UFTATB even at high temperatures, and they pose no HE safety threat.

Osher, J.; Chau, H.; Von Holle, W.

1994-03-01T23:59:59.000Z

189

Initiation mechanisms of low-loss swept-ramp obstacles for deflagration to detonation transition in pulse detonation combustors .  

E-Print Network (OSTI)

??In order to enhance the performance of pulse detonation combustors (PDCs), an efficient deflagration-to-detonation transition (DDT) process is critical to maintain the thermodynamic benefits of… (more)

Myers, Charles B.

2009-01-01T23:59:59.000Z

190

Modeling of a detonation driven, linear electric generator facility  

E-Print Network (OSTI)

Modeling of a detonation driven, linear electric generator facility E.M. Braun, E. Baydar, and F.K. Lu 1 Introduction The pulsed detonation engine (PDE) has been developed over several decades due must consider if the unique properties of the detonation wave can be utilized to in- crease efficiency

Texas at Arlington, University of

191

Effects of vortical and entropic forcing on detonation dynamics  

E-Print Network (OSTI)

Effects of vortical and entropic forcing on detonation dynamics L. Massa, M. Chauhan, and F.K. Lu 1 Introduction Experiments [3] have shown that detonations in non-ideal conditions, i.e., subject to strong combustion. The present research examines the interaction of detonation with turbulence with emphasis

Texas at Arlington, University of

192

Numerical Modeling of Acoustic Timescale Detonation J.D. Regele  

E-Print Network (OSTI)

Numerical Modeling of Acoustic Timescale Detonation Initiation J.D. Regele , D.R. Kassoy and O to perform one and two-dimensional simulations of acoustic timescale detonation initiation using thermal overdriven detonation wave that decays to a steady-state CJ wave. A 1-D parametric study of acoustic

Vasilyev, Oleg V.

193

Dimensional analysis of impulse loading resulting from detonation  

E-Print Network (OSTI)

Dimensional analysis of impulse loading resulting from detonation of shallow-buried charges Mica for the problem of impulse loading experienced by target structures (e.g. vehicle hull) due to detonation-overburden stretching and acceleration before the associated sand bubble bursts and venting of the gaseous detonation

Grujicic, Mica

194

Asymptotic Stability of a Plane CJ Detonation Wave  

E-Print Network (OSTI)

Asymptotic Stability of a Plane CJ Detonation Wave Tong Li Department of Mathematics University of California, Los Angeles Abstract. We study the asymptotic stability of a plane CJ detonation wave under and that the solution converges uniformly to a shifted CJ detonation wave as t!+ 1 for initial data which are small

Soatto, Stefano

195

FRONT CURVATURE RATE STICK MEASUREMENTS AND DETONATION SHOCK DYNAMICS CALIBRATION  

E-Print Network (OSTI)

FRONT CURVATURE RATE STICK MEASUREMENTS AND DETONATION SHOCK DYNAMICS CALIBRATION FOR PBX 9502 OVER 87545 Detonation velocities and wave shapes were measured for PBX 9502 (95 wt.% TATB, 5 wt.% Kel­F 800 and diameter effect data. For each T 0 , the simplest detonation shock dynamics model assumes that the local

Aslam, Tariq

196

Testing of a Continuous Detonation Wave Engine with Swirled Injection  

E-Print Network (OSTI)

Testing of a Continuous Detonation Wave Engine with Swirled Injection Eric M. Braun Nathan L. Dunn detonation wave engines with swirl to improve mixing were developed. The reactants were ignited with an ordinary automotive spark plug. Mixing and detonation occurred in a common annular chamber in the first

Texas at Arlington, University of

197

Verification and validation of detonation simulation: topical review  

E-Print Network (OSTI)

Verification and validation of detonation simulation: topical review Joseph M. Powers Department and Reactive Systems Irvine, California 28 July 2011 23rd ICDERS ­ Irvine, California V&V of Detonation 28 July 2011 1 / 29 #12;Outline 1 Some semantics and some provocation 2 Some overly brief detonation discourse

198

State of Detonation Stability Theory and Its Application to Propulsion  

E-Print Network (OSTI)

State of Detonation Stability Theory and Its Application to Propulsion D. Scott Stewart University, Massachusetts 02139 DOI: 10.2514/1.21586 We present an overview of the current state of detonation stability or asymptotic treatments of detonations, including various asymptotic limits that appear in the literature

Kasimov, Aslan

199

Detonation shock dynamics and comparisons with direct numerical simulation  

E-Print Network (OSTI)

Detonation shock dynamics and comparisons with direct numerical simulation Tariq D. Aslam # , and D­ nation and detonation shock dynamics (DSD) is made. The theory of DSD defines the motion of the detonation shock in terms of intrinsic geometry of the shock surface, in particular for condensed phase ex

Aslam, Tariq

200

A Numerical and Analytical Study of Detonation Diffraction  

E-Print Network (OSTI)

A Numerical and Analytical Study of Detonation Diffraction Thesis by Marco Arienti In Partial. This work could be completed only thanks to his insight in all aspects of detonation theory, modeling insights in fluid mechanics in general and physics of detonations in particular ­ Eric Schultz, Joanna

Barr, Al

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Detonation shock dynamics and comparisons with direct numerical simulation  

E-Print Network (OSTI)

Detonation shock dynamics and comparisons with direct numerical simulation Tariq D. Aslam , and D- nation and detonation shock dynamics (DSD) is made. The theory of DSD defines the motion of the detonation shock in terms of intrinsic geometry of the shock surface, in particular for condensed phase ex

Aslam, Tariq

202

FRONT CURVATURE RATE STICK MEASUREMENTS AND DETONATION SHOCK DYNAMICS CALIBRATION  

E-Print Network (OSTI)

FRONT CURVATURE RATE STICK MEASUREMENTS AND DETONATION SHOCK DYNAMICS CALIBRATION FOR PBX 9502 OVER 87545 Detonation velocities and wave shapes were measured for PBX 9502 95 wt. TATB, 5 wt. Kel-F 800 rate and diameter e ect data. For each T0, the simplest detonation shock dynamics model assumes that the local

Aslam, Tariq

203

Viscous attenuation of a detonation wave propagating in a channel  

E-Print Network (OSTI)

Viscous attenuation of a detonation wave propagating in a channel P. Ravindran1 , R. Bellini1 , T of a detonation wave in a two-dimensional channel is simulated by an Euler and a Navier-Stokes solver. Transport arising from viscous drag. 1 Introduction The propagation of a detonation wave remains one

Texas at Arlington, University of

204

THEORY OF DETONATION STRUCTURE FOR TWO-PHASE MATERIALS  

E-Print Network (OSTI)

THEORY OF DETONATION STRUCTURE FOR TWO-PHASE MATERIALS BY JOSEPH MICHAEL POWERS B.S., University-CHAMPAIGN THE GRADUATE COLLEGE MAY 1988 WE HEREBY RECOMMEND THAT THE THESIS BY JOSEPH MICHAEL POWERS THEORY OF DETONATION-phase steady detonation in a granulated solid propellant has been studied, and existence conditions for a one

205

Level-Set Techniques Applied to Unsteady Detonation Propagation  

E-Print Network (OSTI)

Level-Set Techniques Applied to Unsteady Detonation Propagation D. Scott Stewart1 Tariq Aslam1 Jin. The detonation shock surface has been shown under certain circumstances to be governed by an intrinsic relation detonation theory, which summarizes our recent work in [2]. In Sect. 4, we briefly explain the derivation

Aslam, Tariq

206

High Order Hybrid Numerical Simulations of Two Dimensional Detonation Waves  

E-Print Network (OSTI)

High Order Hybrid Numerical Simulations of Two Dimensional Detonation Waves Wei Cai Department detonation waves, we have devel- oped a high order numerical scheme suitable for calculating the detailed transverse wave structures of multidimensional detonation waves. The numerical algorithm uses a multi

Cai, Wei

207

TRANSIENT FLOW ANALYSIS OF FILLING IN PULSE DETONATION  

E-Print Network (OSTI)

TRANSIENT FLOW ANALYSIS OF FILLING IN PULSE DETONATION ENGINE by VEERA VENKATA SUNEEL JINNALA. November 20, 2009 #12;iv ABSTRACT TRANSIENT FLOW ANALYSIS OF FILLING IN PULSE DETONATION ENGINE Veera The Pulse Detonation Engine (PDE) is considered to be a propulsion system of future air vehicles

Texas at Arlington, University of

208

EFFECT OF REACTION RATE PERIODICITY ON DETONATION PROPAGATION  

E-Print Network (OSTI)

EFFECT OF REACTION RATE PERIODICITY ON DETONATION PROPAGATION Eric O. Morano and Joseph E. Shepherd through numerical simulations how the detonation propagation is affected by the heterogeneous rate but there is no accepted and accurate repre- sentation of all thermodynamic states significant to the detonation process

Barr, Al

209

Detonation of Nitrogen Iodide, NI3NH3  

Science Journals Connector (OSTI)

... the other hand, the substance can be completely decomposed into iodine and permanent gases without detonation occurring if the pressure of the permanent gases be not allowed to fall below 2 ... state is reached, on subjecting the residue to a hard vacuum it detonates. On detonation, the amount of permanent gas produced is only 30–50 per cent of that ...

W. E. GARNER; W. E. LATCHEM

1935-05-18T23:59:59.000Z

210

Steady detonation problem for slow and fast chemical reactions  

E-Print Network (OSTI)

Steady detonation problem for slow and fast chemical reactions F. Conforto1 , M. Groppi2 , R of the stationary propagation of a detonation wave. The differ- ences of the shock structure in the two cases of steady detonation waves. We consider a mixture of four gases As, s = 1, . . . , 4 which, besides all

Ceragioli, Francesca

211

DIRECT NUMERICAL SIMULATION OF INTERACTION OF DETONATION WAVE WITH HOMOGENEOUS  

E-Print Network (OSTI)

DIRECT NUMERICAL SIMULATION OF INTERACTION OF DETONATION WAVE WITH HOMOGENEOUS ISOTROPIC TURBULENCE SIMULATION OF INTERACTION OF DETONATION WAVE WITH HOMOGENEOUS ISOTROPIC TURBULENCE HARI NARAYANAN NAGARAJAN The propagation of a shock or detonation wave through a reactive mixture has been the subject of research for over

Texas at Arlington, University of

212

The Ghost Fluid Method for de agration and detonation discontinuities  

E-Print Network (OSTI)

The Ghost Fluid Method for de agration and detonation discontinuities Ronald P. Fedkiw Tariq Aslam and detonations discontinuities similar to the work in 22, 16, 23, 24 . The resulting numerical method is robust and detonation discontinuities similar to the work in 22 , 16 , 23 , and 24 where the authors extended the level

Aslam, Tariq

213

Proof-of-Principle Detonation Driven, Linear Electric Generator Facility  

E-Print Network (OSTI)

Proof-of-Principle Detonation Driven, Linear Electric Generator Facility Eric M. Braun, Frank K. Lu is described in which a detonation-driven piston system has been integrated with a linear generator in order in a single mass, two-spring system where the detonation wave pressure may be modeled as a variable force

Texas at Arlington, University of

214

LevelSet Techniques Applied to Unsteady Detonation Propagation  

E-Print Network (OSTI)

## Level­Set Techniques Applied to Unsteady Detonation Propagation D. Scott Stewart 1 Tariq Aslam 1­propagating surface. The detonation shock surface has been shown under certain circumstances to be governed, we discuss the specific example from detonation theory, which summarizes our recent work in [2

Aslam, Tariq

215

The Ghost Fluid Method for de agration and detonation discontinuities  

E-Print Network (OSTI)

The Ghost Fluid Method for de agration and detonation discontinuities Ronald P. Fedkiw #3; Tariq and detonation discontinuities are considered. The result- ing numerical method is robust and easy to implement for de agration and detonation discontinuities are considered simi- lar to the work in [25], [18], [26

Soatto, Stefano

216

Detonation Simulation with the AMROC Framework Ralf Deiterding  

E-Print Network (OSTI)

Detonation Simulation with the AMROC Framework Ralf Deiterding Center for Adanced Computing, which is essential for the accurate compu- tation of detonation waves, is achieved by blockstructured perfor- mance. Cellular Structure Simulation in 2D Experiments have shown that self-sustaining detonation

Deiterding, Ralf

217

ANALYTICAL PARAMETRIC CYCLE ANALYSIS OF CONTINUOUS ROTATING DETONATION  

E-Print Network (OSTI)

ANALYTICAL PARAMETRIC CYCLE ANALYSIS OF CONTINUOUS ROTATING DETONATION EJECTOR-AUGMENTED ROCKET. Donald Wilson for showing me how interesting the topic of continuous detonation is for the application to thank Eric Braun for providing some insights and advice on the physics of continuous detonation. His

Texas at Arlington, University of

218

The Ghost Fluid Method for deflagration and detonation discontinuities  

E-Print Network (OSTI)

The Ghost Fluid Method for deflagration and detonation discontinuities Ronald P. Fedkiw \\Lambda for deflagration and detonations discontinuities similar to the work in [22, 16, 23, 24]. The resulting numerical. As a specific example, we will consider interface models for deflagration and detonation discontinuities similar

Aslam, Tariq

219

A High-resolution Method for Realistic Detonation Structure Simulation  

E-Print Network (OSTI)

A High-resolution Method for Realistic Detonation Structure Simulation R. Deiterding Abstract. Detonation simulation is one of the computationally most challenging hyperbolic problems of practical. Introduction Detonations are shock-induced combustion waves that internally consist of a dis- continuous

Deiterding, Ralf

220

Existence and stability of curved multidimensional detonation fronts  

E-Print Network (OSTI)

Existence and stability of curved multidimensional detonation fronts N. Costanzino , H. K. Jenssen for ZND detonations was begun by J.J. Erpenbeck in [E1]. He used a normal mode analysis to define, multidimensional detonation fronts for ideal polytropic gases in both the ZND and Chapman-Jouguet models

Williams, Mark

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Gaseous Detonation-Driven Fracture of Tubes Tong Wa Chao  

E-Print Network (OSTI)

Gaseous Detonation-Driven Fracture of Tubes Thesis by Tong Wa Chao In Partial Fulfillment An experimental investigation of fracture response of aluminum 6061-T6 tubes under internal gaseous detonation on the detonation velocity, strain history, blast pressure from the crack opening, and crack speeds. The curved

222

Development of a Large Pulse Detonation Engine Demonstrator  

E-Print Network (OSTI)

Development of a Large Pulse Detonation Engine Demonstrator Frank K. Lu, J. David Carter and constructed to study pulse detonation engine (PDE) operations under a broad range of test parameters to facilitate deflagration-to-detonation transition. The main sections of the combustor were fitted with fully

Texas at Arlington, University of

223

Detonation Turbulence Interaction L. Massa, M. Chauhan and F. Lu  

E-Print Network (OSTI)

Detonation Turbulence Interaction L. Massa, M. Chauhan and F. Lu This paper reports a numerical study on the effect of turbulence on the detonation wave properties. The analysis is based-mechanics equations in three dimensions to determine the fine-scale evolution. I. Introduction The detonation

Texas at Arlington, University of

224

Annihilation explosions in macroscopic polyelectrons. Photon detonation  

E-Print Network (OSTI)

Annihilation of the electron-positron pairs in macroscopic polyelectrons is considered. It is shown that very fast collapse of the spatial area occupied by macroscopic polyelectron (or dense electron-positron plasma) produces an instant annihilation of a very large number of electron-positron pairs. This phenomenon corresponds to the so-called annihilation explosion. Annihilation of each electron-positron pair is a highly exothermic process. Therefore, in dense electron-positron plasma one can observe a very interesting phenomenon of photon detonation, i.e. a self-organized formation and propagation of the detonation wave which coincides with the annihilation wave. The photon detonation can be used in many applications, including many military and astrophysical problems.

Alexei M. Frolov

2009-06-05T23:59:59.000Z

225

Oil shale retorted underground  

Science Journals Connector (OSTI)

Oil shale retorted underground ... Low-temperature underground retorting of oil shale produces a crude oil with many attractive properties, Dr. George R. Hill of the University of Utah told a meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers last week in Los Angeles. ... Typical above-ground retorting of oil shale uses temperatures of 900° to 1100° F. because of the economic need ... ...

1967-02-27T23:59:59.000Z

226

The influence of detonation synthesis conditions on surface properties of detonation nanodiamonds  

Science Journals Connector (OSTI)

The paper addresses the influence of an armor protection composition of an explosive compound on the colloid-chemical properties of the detonation nanodiamonds. Adding an oxidation inhibitor to the...

A. P. Voznyakovskii; V. Yu. Dolmatov; F. A. Shumilov

2014-05-01T23:59:59.000Z

227

Experimental Investigation of Detonation Re-initiation Mechanisms Following a Mach Reflection of a Quenched Detonation .  

E-Print Network (OSTI)

??Detonation waves are supersonic combustion waves that have a multi-shock front structure followed by a spatially non-uniform reaction zone. During propagation, a de-coupled shock-flame complex… (more)

Bhattacharjee, Rohit Ranjan

2013-01-01T23:59:59.000Z

228

Critical tube diameter for detonation transmission and critical initiation energy of spherical detonation  

Science Journals Connector (OSTI)

...Two experimental setups are used to study propagation and attenuation of blast waves. In the first one, the blast wave is generated by a spherical detonation, and in the second one, the ... is created by the d...

I. Sochet; T. Lamy; J. Brossard; C. Vaglio; R. Cayzac

1999-04-01T23:59:59.000Z

229

Detonation propagation in a high loss configuration  

SciTech Connect

This work presents an experimental study of detonation wave propagation in tubes with inner diameters (ID) comparable to the mixture cell size. Propane-oxygen mixtures were used in two test section tubes with inner diameters of 1.27 mm and 6.35 mm. For both test sections, the initial pressure of stoichiometric mixtures was varied to determine the effect on detonation propagation. For the 6.35 mm tube, the equivalence ratio {phi} (where the mixture was {phi} C{sub 3}H{sub 8} + 50{sub 2}) was also varied. Detonations were found to propagate in mixtures with cell sizes as large as five times the diameter of the tube. However, under these conditions, significant losses were observed, resulting in wave propagation velocities as slow as 40% of the CJ velocity U{sub CJ}. A review of relevant literature is presented, followed by experimental details and data. Observed velocity deficits are predicted using models that account for boundary layer growth inside detonation waves.

Jackson, Scott I [Los Alamos National Laboratory; Shepherd, Joseph E [CALTECH

2009-01-01T23:59:59.000Z

230

Proton radiography of PBX 9502 detonation shock dynamics confinement sandwich test  

SciTech Connect

Recent results utilizing proton radiography (P-Rad) during the detonation of the high explosive PBX 9502 are presented. Specifically, the effects of confinement of the detonation are examined in the LANL detonation confinement sandwich geometry. The resulting detonation velocity and detonation shock shape are measured. In addition, proton radiography allows one to image the reflected shocks through the detonation products. Comparisons are made with detonation shock dynamics (DSD) and reactive flow models for the lead detonation shock and detonation velocity. In addition, predictions of reflected shocks are made with the reactive flow models.

Aslam, Tariq D [Los Alamos National Laboratory; Jackson, Scott I [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

231

Animals that Hide Underground  

NLE Websites -- All DOE Office Websites (Extended Search)

Animals that Hide Underground Animals that Hide Underground Nature Bulletin No. 733 November 23, 1963 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist ANIMALS THAT HIDE UNDERGROUND A hole in the ground has an air of mystery about it that rouses our curiosity. No matter whether it is so small that only a worm could squeeze into it, or large enough for a fox den, our questions are much the same. What animal dug the hole? Is it down there now? What is it doing? When will it come out? An underground burrow has several advantages for an animal. In it, many kinds find safety from enemies for themselves and their young. For others, it is an air-conditioned escape from the burning sun of summer and a snug retreat away from the winds and cold of winter. The moist atmosphere of a subterranean home allows the prolonged survival of a wide variety of lower animals which, above the surface, would soon perish from drying.

232

Transition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to  

E-Print Network (OSTI)

Transition to longitudinal instability of detonation waves is generically associated with Hopf We show that transition to longitudinal instability of strong detonation solu- tions of reactive detonations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Structure of the equations

Texier, Benjamin - Institut de Mathématiques de Jussieu, Université Paris 7

233

Parallel Algorithm for Detonation Wave Simulation P. Ravindran and F. K. Lu  

E-Print Network (OSTI)

Parallel Algorithm for Detonation Wave Simulation P. Ravindran and F. K. Lu Aerodynamics Research solution of a propagating detonation wavefront is developed. The emphasis is placed on reduction of compu. 1 Introduction Detonation phenomena have been systematically examined theoretically, experimentally

Texas at Arlington, University of

234

Hydrodynamic detonation instability in electroweak and QCD phase transitions  

Science Journals Connector (OSTI)

The hydrodynamic stability of deflagration and detonation bubbles for a first order electroweak and QCD phase transition has been discussed recently with the suggestion that detonations are stable. We examine here the case of a detonation more carefully. We find that in front of the bubble wall perturbations do not grow with time, but behind the wall modes exist which grow exponentially. We briefly discuss the possible meaning of this instability.

Mark Abney

1994-02-15T23:59:59.000Z

235

Using Detonation Nanodiamond for the Specific Capture of Glycoproteins  

Science Journals Connector (OSTI)

Using Detonation Nanodiamond for the Specific Capture of Glycoproteins ... We demonstrate here the functionalization of detonation nanodiamond (ND) with aminophenylboronic acid (APBA) for the purpose of targeting the selective capture of glycoproteins from unfractionated protein mixtures. ... (1-4) In addition, a gene expression study carried out has confirmed the innate biocompatibility of ND.(5) These results are exciting because ND can now be produced in ton quantities by a breakthrough in detonation synthesis, allowing the enabling of many engineering applications. ...

Weng Siang Yeap; Yee Ying Tan; Kian Ping Loh

2008-05-14T23:59:59.000Z

236

Characterizing detonator output using dynamic witness plates  

SciTech Connect

A sub-microsecond, time-resolved micro-particle-image velocimetry (PIV) system is developed to investigate the output of explosive detonators. Detonator output is directed into a transparent solid that serves as a dynamic witness plate and instantaneous shock and material velocities are measured in a two-dimensional plane cutting through the shock wave as it propagates through the solid. For the case of unloaded initiators (e.g. exploding bridge wires, exploding foil initiators, etc.) the witness plate serves as a surrogate for the explosive material that would normally be detonated. The velocity-field measurements quantify the velocity of the shocked material and visualize the geometry of the shocked region. Furthermore, the time-evolution of the velocity-field can be measured at intervals as small as 10 ns using the PIV system. Current experimental results of unloaded exploding bridge wire output in polydimethylsiloxane (PDMS) witness plates demonstrate 20 MHz velocity-field sampling just 300 ns after initiation of the wire.

Murphy, Michael John [Los Alamos National Laboratory; Adrian, Ronald J [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

237

Critical deflagration waves that lead to the onset of detonation.  

E-Print Network (OSTI)

??The conditions that are required for DDT are studied in the present thesis by focusing on the final phase of the onset of detonation. A… (more)

Chao, Jenny C., 1976-

2006-01-01T23:59:59.000Z

238

Transient heat transfer properties in a pulse detonation combustor .  

E-Print Network (OSTI)

??The heat transfer along the axis of a pulse detonation combustor has been characterized for various frequencies and fill fractions at 2.5 atmospheres of pressure… (more)

Fontenot, Dion G.

2011-01-01T23:59:59.000Z

239

Investigating the fundamentals of liquid-fuelled pulse detonation engines.  

E-Print Network (OSTI)

??The shock tube test programme has shown that detonation initiation is achievable for gaseous fuel-air mixtures with a reflected shock. The presence of a shaped… (more)

Majithia, Ashish.

2010-01-01T23:59:59.000Z

240

Detonation shock dynamics calibration for non-ideal HE: ANFO  

SciTech Connect

Linear D{sub n}-{kappa} detonation shock dynamics (DSD) filling forms are obtained for four ammonium nitrate-fuel oil (ANFO) mixtures involving variations in the ammonium nitrate prill properties and ANFO stoichiometries. The detonation of ammonium nitrate-fuel oil (ANFO) mixtures is considered to be highly nonideal involving long reaction zones ({approx} several cms), low detonation energies and large failure diameters ({approx} 10s-100s cms). A number of experimental programs have been undertaken to understand ANFO detonation properties as a function of the AN properties [1]-[7]. Given the highly heterogeneous nature of ANFO mixtures (typical high explosive (HE) grade AN prills are porous with a range of diameters) a predictive reactive flow simulation of ANFO detonation will present significant challenges. At Los Alamos, a simulation capability has been developed for predicting the propagation of detonation in non-ideal HE and the work conducted on surrounding materials via a combination of a detonation shock dynamics (DSD) approach and a modified programmed burn method known as the pseudo-reaction-zone (or PRZ) method that accounts for the long detonation reaction zone. In the following, linear D{sub n}-{kappa} DSD fitting forms are obtained for four ammonium nitrate-fuel oil mixtures involving variation in the ammonium nitrate prill properties and ANFO stoichiometries. A detonation shock dynamics calibration for ANFO consisting of regular porous HE grade AN in a 94/6 wt.% AN to FO mix has been obtained in [7].

Short, Mark [Los Alamos National Laboratory; Salyer, Terry R [Los Alamos National Laboratory; Aslam, Tariq D [Los Alamos National Laboratory; Kiyanda, Charles B [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory; Zimmerley, Tony [NEW MEXICO TECH

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Photographic study of the structure of irregular detonation waves.  

E-Print Network (OSTI)

??Detonation waves in gaseous reactive mixtures have been known to exhibit multidimensional structure since the 1950's. The interaction of shocks and presence of unsteady triple… (more)

Kiyanda, Charles Basenga.

2005-01-01T23:59:59.000Z

242

From detonation to diapers: Los Alamos computer codes at core...  

NLE Websites -- All DOE Office Websites (Extended Search)

From detonation to diapers Los Alamos computer codes at core of advanced manufacturing tools The computer codes used for predictive fluid modeling are part of the Los Alamos...

243

LabVIEW internal combustion engine detonation frequency analysis.  

E-Print Network (OSTI)

??The project discussed herein is to develop the hardware and software necessary to identify the detonation frequency of a BMW S14 internal combustion engine. This… (more)

McClain, Kevin

2011-01-01T23:59:59.000Z

244

Investigation of transient plasma ignition for a Pulse Detonation Engine .  

E-Print Network (OSTI)

??Elimination or reduction of auxiliary oxygen use in Pulse Detonation Engines (PDEs) is necessary if the technology is to compete with existing Ramjet systems. This… (more)

Rodriguez, Joel.

2005-01-01T23:59:59.000Z

245

THE DETONATION MECHANISM OF THE PULSATIONALLY ASSISTED GRAVITATIONALLY CONFINED DETONATION MODEL OF Type Ia SUPERNOVAE  

SciTech Connect

We describe the detonation mechanism composing the 'pulsationally assisted' gravitationally confined detonation (GCD) model of Type Ia supernovae. This model is analogous to the previous GCD model reported in Jordan et al.; however, the chosen initial conditions produce a substantively different detonation mechanism, resulting from a larger energy release during the deflagration phase. The resulting final kinetic energy and {sup 56}Ni yields conform better to observational values than is the case for the 'classical' GCD models. In the present class of models, the ignition of a deflagration phase leads to a rising, burning plume of ash. The ash breaks out of the surface of the white dwarf, flows laterally around the star, and converges on the collision region at the antipodal point from where it broke out. The amount of energy released during the deflagration phase is enough to cause the star to rapidly expand, so that when the ash reaches the antipodal point, the surface density is too low to initiate a detonation. Instead, as the ash flows into the collision region (while mixing with surface fuel), the star reaches its maximally expanded state and then contracts. The stellar contraction acts to increase the density of the star, including the density in the collision region. This both raises the temperature and density of the fuel-ash mixture in the collision region and ultimately leads to thermodynamic conditions that are necessary for the Zel'dovich gradient mechanism to produce a detonation. We demonstrate feasibility of this scenario with three three-dimensional (3D), full star simulations of this model using the FLASH code. We characterized the simulations by the energy released during the deflagration phase, which ranged from 38% to 78% of the white dwarf's binding energy. We show that the necessary conditions for detonation are achieved in all three of the models.

Jordan, G. C. IV; Graziani, C.; Weide, K.; Norris, J.; Hudson, R.; Lamb, D. Q. [Flash Center for Computational Science, University of Chicago, Chicago, IL 60637 (United States); Fisher, R. T. [Department of Physics, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02740 (United States); Townsley, D. M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487 (United States); Meakin, C. [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Reid, L. B. [NTEC Environmental Technology, Subiaco WA 6008 (Australia)

2012-11-01T23:59:59.000Z

246

Use of the Modified Light Duty Utility Arm to Perform Nuclear Waste Cleanup of Underground Waste Storage Tanks at Oak Ridge National Laboratory  

SciTech Connect

The Modified Light Duty Utility Arm (MLDUA) is a selectable seven or eight degree-of-freedom robot arm with a 16.5 ft (5.03 m) reach and a payload capacity of 200 lb. (90.72 kg). The utility arm is controlled in either joystick-based telerobotic mode or auto sequence robotics mode. The MLDUA deployment system deploys the utility arm vertically into underground radioactive waste storage tanks located at Oak Ridge National Laboratory. These tanks are constructed of gunite material and consist of two 25 ft (7.62 m) diameter tanks in the North Tank Farm and six 50 ft (15.24 m) diameter tanks in the South Tank Farm. After deployment inside a tank, the utility arm reaches and grasps the confined sluicing end effecter (CSEE) which is attached to the hose management arm (HMA). The utility arm positions the CSEE within the tank to allow the HMA to sluice the tank's liquid and solid waste from the tank. The MLDUA is used to deploy the characterization end effecter (CEE) and gunite scarifying end effecter (GSEE) into the tank. The CEE is used to survey the tank wall's radiation levels and the physical condition of the walls. The GSEE is used to scarify the tank walls with high-pressure water to remove the wall scale buildup and a thin layer of gunite which reduces the radioactive contamination that is embedded into the gunite walls. The MLDUA is also used to support waste sampling and wall core-sampling operations. Other tools that have been developed for use by the MLDUA include a pipe-plugging end effecter, pipe-cutting end effecter, and pipe-cleaning end effecter. Washington University developed advance robotics path control algorithms for use in the tanks. The MLDUA was first deployed in June 1997 and has operated continuously since then. Operational experience in the first four tanks remediated is presented in this paper.

Blank, J.A.; Burks, B.L.; DePew, R.E.; Falter, D.D.; Glassell, R.L.; Glover, W.H.; Killough, S.M.; Lloyd, P.D.; Love, L.J.; Randolph, J.D.; Van Hoesen, S.D.; Vesco, D.P.

1999-04-01T23:59:59.000Z

247

Detonation probabilities of high explosives  

SciTech Connect

The probability of a high explosive violent reaction (HEVR) following various events is an extremely important aspect of estimating accident-sequence frequency for nuclear weapons dismantlement. In this paper, we describe the development of response curves for insults to PBX 9404, a conventional high-performance explosive used in US weapons. The insults during dismantlement include drops of high explosive (HE), strikes of tools and components on HE, and abrasion of the explosive. In the case of drops, we combine available test data on HEVRs and the results of flooring certification tests to estimate the HEVR probability. For other insults, it was necessary to use expert opinion. We describe the expert solicitation process and the methods used to consolidate the responses. The HEVR probabilities obtained from both approaches are compared.

Eisenhawer, S.W.; Bott, T.F.; Bement, T.R.

1995-07-01T23:59:59.000Z

248

High order finite difference methods with subcell resolution for stiff multispecies detonation capturing  

E-Print Network (OSTI)

High order finite difference methods with subcell resolution for stiff multispecies detonation words: stiff reaction term, shock capturing, detonation, WENO, ENO subcell resolution, multispecies

Shu, Chi-Wang

249

Explanation of the Colossal Detonation Sensitivity of Silicon Pentaerythritol Tetranitrate (Si-PETN) Explosive  

E-Print Network (OSTI)

Explanation of the Colossal Detonation Sensitivity of Silicon Pentaerythritol Tetranitrate (Si fulminate and far more sensitive than PETN. Although detonation sensitivity is an extremely important issue

Goddard III, William A.

250

Plutonium Pits | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

To ensure the reliability, safety, and security of nuclear weapons without underground nuclear testing; weapons go through a surveillance process, where they are regularly taken...

251

Underground waste barrier structure  

DOE Patents (OSTI)

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

252

The Sanford underground research facility at Homestake  

SciTech Connect

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

2014-06-24T23:59:59.000Z

253

Advance Detonation in a Tubular Charge of Explosive  

Science Journals Connector (OSTI)

... sleeves of 'Cellophane' J in. and 1J in. in diameter, the velocity of detonation in the tube wall is greater than the velocity in a solid cylinder by 47 ... Fig. 1 may be given (film writing-speed 352 m./sec.). Three detonation waves, indicated as A, B and C in the diagram, can be distinguished ...

D. W. WOODHEAD

1959-06-20T23:59:59.000Z

254

Relativistic detonation waves and bubble growth in false vacuum decay  

Science Journals Connector (OSTI)

After reviewing the current understanding of relativistic shock waves, a detailed analysis of relativistic detonation waves is presented. It is proposed that the motion of a detonation wave is analogous to the growth of a bubble nucleated during false vacuum decay at finite temperatures. Some possible applications of these results to cosmology are discussed.

Paul Joseph Steinhardt

1982-04-15T23:59:59.000Z

255

Numerical modelling of shock waves and detonation in complex geometries  

E-Print Network (OSTI)

Cumulation of shock snd detonation waves was considered. Computations were carried out by use of second-order central-difference scheme. Cumulation of waves in cone region with scales of 1 meter was studied. Pictures of flow in shock and detonation waves during different time moments were obtained as well as time dependences and maximum pressures for different corner angles.

Nevmerzhitskiy, Y V

2012-01-01T23:59:59.000Z

256

Low-Order Detonation in Solid High Explosives  

Science Journals Connector (OSTI)

... of Jones and Mitchell reporting the existence of a specific stable ‘low' velocity of detonation in the case of crystalline or granulated T.N.T. is of considerable interest ... by variation in casting technique and alteration in the rate of charge cooling. Velocities of detonation were measured over 30-cm. intervals by the Dautriche method With cali-A brated ...

T. C. TRANTER

1948-08-28T23:59:59.000Z

257

Suppressed Light Emission of the Reaction Zone in Detonation  

Science Journals Connector (OSTI)

... In detonation with high velocity the original surface of the explosive is luminous due to the emission ... sharply defined surfaces with different light intensities. Sometimes dark coherent sections appear. In transmitting detonation through water between two coaxial cylindrical charges with plane ends, the receptor charge has ...

C. H. JOHANSSON; L. STERNHOFF

1959-01-24T23:59:59.000Z

258

Sensitive Change Detection for Remote Monitoring of Nuclear Treaties  

E-Print Network (OSTI)

is examined in case studies involving underground nuclear testing and location of clandestine uranium mining studies involving the location of underground nuclear explosions and detection of uranium mining sites

259

Effect of prill structure on detonation performance of ANFO  

SciTech Connect

While the effects of charge diameter, fuel mix ratio, and temperature on ANFO detonation performance are substantial, the effects of prill type are considerable as well as tailorable. Engineered AN prills provide a means to improve overall performance, primarily by changing the material microstructure through the addition of features designed to enhance hot spot action. To examine the effects of prill type (along with fuel mix ratio and charge diameter) on detonation performance, a series of precision, large-scale, ANFO front-curvature rate-stick tests was performed. Each shot used standard No. 2 diesel for the fuel oil and was essentially unconfined with cardboard confinement. Detonation velocities and front curvatures were measured while actively maintaining consistent shot temperatures. Based on the experimental results, DSD calibrations were performed to model the detonation performance over a range of conditions, and the overall effects of prill microstructure were examined and correlated with detonation performance.

Salyer, Terry R [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory; Kiyanda, Charles B [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory; Zimmerly, Tony [EMRTC NMT

2010-01-01T23:59:59.000Z

260

Detonation of nanosized explosive: New mechanistic model for nanodiamond formation  

Science Journals Connector (OSTI)

Abstract While nanodiamonds are synthesized by detonation of microstructured explosives since 50 years ago, we developed a novel approach to synthesize these particles by using nanostructured explosives. This new synthesis method leads to novel results not only in the control of the size, but also in the understanding of the nanodiamond synthesis and the detonation mechanisms. The use of explosive particles with size down to 40 nm results in the formation of detonation nanodiamonds with a mean size of 2.8 nm. In the light of these experiments, a model based on the size of the material involved during the detonation process has been developed to explain the size of the obtained nanodiamond. According to hypotheses based on the number of the nanodiamond nucleation sites, the experimental results are in favor of a decrease in the size of the nanodiamonds formed when the size of the explosive particles used during detonation is decreased.

V. Pichot; M. Comet; B. Risse; D. Spitzer

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Detonation engine fed by acetylene–oxygen mixture  

Science Journals Connector (OSTI)

Abstract The advantages of a constant volume combustion cycle as compared to constant pressure combustion in terms of thermodynamic efficiency has focused the search for advanced propulsion on detonation engines. Detonation of acetylene mixed with oxygen in various proportions is studied using mathematical modeling. Simplified kinetics of acetylene burning includes 11 reactions with 9 components. Deflagration to detonation transition (DDT) is obtained in a cylindrical tube with a section of obstacles modeling a Shchelkin spiral; the DDT takes place in this section for a wide range of initial mixture compositions. A modified ka-omega turbulence model is used to simulate flame acceleration in the Shchelkin spiral section of the system. The results of numerical simulations were compared with experiments, which had been performed in the same size detonation chamber and turbulent spiral ring section, and with theoretical data on the Chapman–Jouguet detonation parameters.

N.N. Smirnov; V.B. Betelin; V.F. Nikitin; Yu.G. Phylippov; Jaye Koo

2014-01-01T23:59:59.000Z

262

Measuring In-Situ Mdf Velocity Of Detonation  

DOE Patents (OSTI)

A system for determining the velocity of detonation of a mild detonation fuse mounted on the surface of a device includes placing the device in a predetermined position with respect to an apparatus that carries a couple of sensors that sense the passage of a detonation wave at first and second spaced locations along the fuse. The sensors operate a timer and the time and distance between the locations is used to determine the velocity of detonation. The sensors are preferably electrical contacts that are held spaced from but close to the fuse such that expansion of the fuse caused by detonation causes the fuse to touch the contact, causing an electrical signal to actuate the timer.

Horine, Frank M. (Albuquerque, NM); James, Jr., Forrest B. (Albuquerque, NM)

2005-10-25T23:59:59.000Z

263

Carbon Detonation and Shock-Triggered Helium Burning in Neutron Star Superbursts  

E-Print Network (OSTI)

The strong degeneracy of the 12C ignition layer on an accreting neutron star results in a hydrodynamic thermonuclear runaway, in which the nuclear heating time becomes shorter than the local dynamical time. We model the resulting combustion wave during these superbursts as an upward propagating detonation. We solve the reactive fluid flow and show that the detonation propagates through the deepest layers of fuel and drives a shock wave that steepens as it travels upward into lower density material. The shock is sufficiently strong upon reaching the freshly accreted H/He layer that it triggers unstable 4He burning if the superburst occurs during the latter half of the regular Type I bursting cycle; this is likely the origin of the bright Type I precursor bursts observed at the onset of superbursts. The cooling of the outermost shock-heated layers produces a bright, ~0.1s, flash that precedes the Type I burst by a few seconds; this may be the origin of the spike seen at the burst onset in 4U 1820-30 and 4U 1636-54, the only two bursts observed with RXTE at high time resolution. The dominant products of the 12C detonation are 28Si, 32S, and 36Ar. Gupta et al. showed that a crust composed of such intermediate mass elements has a larger heat flux than one composed of iron-peak elements and helps bring the superburst ignition depth into better agreement with values inferred from observations.

Nevin N. Weinberg; Lars Bildsten

2007-06-21T23:59:59.000Z

264

Flame Evolution During Type Ia Supernovae and the Deflagration Phase in the Gravitationally Confined Detonation Scenario  

E-Print Network (OSTI)

We develop an improved method for tracking the nuclear flame during the deflagration phase of a Type Ia supernova, and apply it to study the variation in outcomes expected from the gravitationally confined detonation (GCD) paradigm. A simplified 3-stage burning model and a non-static ash state are integrated with an artificially thickened advection-diffusion-reaction (ADR) flame front in order to provide an accurate but highly efficient representation of the energy release and electron capture in and after the unresolvable flame. We demonstrate that both our ADR and energy release methods do not generate significant acoustic noise, as has been a problem with previous ADR-based schemes. We proceed to model aspects of the deflagration, particularly the role of buoyancy of the hot ash, and find that our methods are reasonably well-behaved with respect to numerical resolution. We show that if a detonation occurs in material swept up by the material ejected by the first rising bubble but gravitationally confined to the white dwarf (WD) surface (the GCD paradigm), the density structure of the WD at detonation is systematically correlated with the distance of the deflagration ignition point from the center of the star. Coupled to a suitably stochastic ignition process, this correlation may provide a plausible explanation for the variety of nickel masses seen in Type Ia Supernovae.

D. M. Townsley; A. C. Calder; S. M. Asida; I. R. Seitenzahl; F. Peng; N. Vladimirova; D. Q. Lamb; J. W. Truran

2007-06-07T23:59:59.000Z

265

Carbon Detonation and Shock-Triggered Helium Burning in Neutron Star Superbursts  

Science Journals Connector (OSTI)

The strong degeneracy of the 12C ignition layer on an accreting neutron star results in a hydrodynamic thermonuclear runaway, in which the nuclear heating time becomes shorter than the local dynamical time. We model the resulting combustion wave during these superbursts as an upward-propagating detonation. We solve the reactive fluid flow and show that the detonation propagates through the deepest layers of fuel and drives a shock wave that steepens as it travels upward into lower density material. The shock is sufficiently strong on reaching the freshly accreted H/He layer that it triggers unstable 4He burning if the superburst occurs during the latter half of the regular type I bursting cycle; this is likely the origin of the bright type I precursor bursts observed at the onset of superbursts. The cooling of the outermost shock-heated layers produces a bright, ?0.1 s, flash that precedes the type I burst by a few seconds; this may be the origin of the spike seen at the burst onset in 4U 1820-30 and 4U 1636-54, the only two bursts observed with RXTE at high time resolution. The dominant products of the 12C detonation are 28Si, 32S, and 36Ar. Gupta et al. showed that a crust composed of such intermediate-mass elements has a larger heat flux than one composed of iron-peak elements and helps bring the superburst ignition depth into better agreement with values inferred from observations.

Nevin N. Weinberg; Lars Bildsten

2007-01-01T23:59:59.000Z

266

Underground Injection Control Rule (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

267

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

268

Underground Injection Control Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

269

Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1. Canceled by DOE O 452.1B.

1997-01-17T23:59:59.000Z

270

Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1A. Canceled by DOE O 452.1C.

2001-08-06T23:59:59.000Z

271

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

272

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

273

Saving an Underground Reservoir  

E-Print Network (OSTI)

significant part of the region?s agricultural economy. Though the area has few rivers and lakes, underneath it lies a supply of water that has provided groundwater for developing this economy. This underground water, the Ogallala Aquifer, is a finite.... ?We have already seen isolat- ed areas that have no irrigation water remaining and the economy has been crushed.? The region produces about 4 percent of the nation?s corn, 25 percent of the hard red winter wheat, 23 per- cent of the grain sorghum...

Wythe, Kathy

2006-01-01T23:59:59.000Z

274

Hydrologic resources management program and underground test area operable unit fy 1997  

SciTech Connect

This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

Smith, D. F., LLNL

1998-05-01T23:59:59.000Z

275

Spark-safe low-voltage detonator  

DOE Patents (OSTI)

A column of explosive in a low-voltage detonator which makes it spark-safe ncludes an organic secondary explosive charge of HMX in the form of a thin pad disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to an electrical ignition device at one end of the bore. The pad of secondary charge has an axial thickness within the range of twenty to thirty percent of its diameter. The explosive column also includes a first explosive charge of CP disposed in the housing bore in the ignition region of the explosive column next to the secondary charge pad on a side opposite from the ignition device. The first CP charge is loaded under sufficient pressure, 25 to 40 kpsi, to provide mechanical confinement of the pad of secondary charge and physical coupling thereof with the ignition device. The explosive column further includes a second explosive charge of CP disposed in the housing bore in a transition region of the explosive column next to the first CP charge on a side opposite from the pad of secondary charge. The second CP charge is loaded under sufficient pressure, about 10 kpsi, to allow occurrence of DDT. The first explosive CP charge has an axial thickness within the range of twenty to thirty percent of its diameter, whereas the second explosive CP charge contains a series of increments (nominally 4) each of which has an axial thickness-to-diameter ratio of one to two.

Lieberman, Morton L. (Albuquerque, NM)

1989-01-01T23:59:59.000Z

276

Bonfire-safe low-voltage detonator  

DOE Patents (OSTI)

A column of explosive in a low-voltage detonator which makes it bonfire-safe includes a first layer of an explosive charge of CP, or a primary explosive, and a second layer of a secondary organic explosive charge, such as PETN, which has a degradation temperature lower than the autoignition temperature of the CP or primary explosives. The first layer is composed of a pair of increments disposed in a bore of a housing of the detonator in an ignition region of the explosive column and adjacent to and in contact with an electrical ignition device at one end of the bore. The second layer is composed of a plurality of increments disposed in the housing bore in a transition region of the explosive column next to and in contact with the first layer on a side opposite from the ignition device. The first layer is loaded under a sufficient high pressure, 25 to 40 kpsi, to achieve ignition, whereas the second layer is loaded under a sufficient low pressure, about 10 kpsi, to allow occurrence of DDT. Each increment of the first and second layers has an axial length-to-diameter ratio of one-half.

Lieberman, Morton L. (Albuquerque, NM)

1990-01-01T23:59:59.000Z

277

American Institute of Aeronautics and Astronautics Numerical Simulation of H2/Air Detonation Using Detailed  

E-Print Network (OSTI)

- 1 - American Institute of Aeronautics and Astronautics Numerical Simulation of H2/Air Detonation of detonation, and 3-D computation of detonation propagating in a tube with a spiral obstacle was conducted. Introduction A detonation is a shock wave sustained by the energy released by combustion. The typical case

Löhner, Rainald

278

Introduction: Perspectives on Detonation-Based Propulsion DOI: 10.2514/1.26953  

E-Print Network (OSTI)

Introduction: Perspectives on Detonation-Based Propulsion DOI: 10.2514/1.26953 DETONATION, a shock, is one of the most rapid chemical energy release processes in nature. For self-sustained detonations. These rapid speeds are attained because the major mechanism of energy transport in a detonation is acoustic

279

Performance Enhancements on a Pulsed Detonation Engine J.M. Meyers*, F.K. Lu  

E-Print Network (OSTI)

1 Performance Enhancements on a Pulsed Detonation Engine J.M. Meyers*, F.K. Lu , D.R. Wilson University of Texas at Arlington, Arlington, Texas 76019 A major problem applying detonations into aero-propulsive devices is the transition of deflagration and weak detonation into CJ detonation. The longer

Texas at Arlington, University of

280

ANALYSIS OF DETONATION STATES WHEN SHOCKING TWO-PHASE REACTIVE SOLIDS*  

E-Print Network (OSTI)

' ANALYSIS OF DETONATION STATES WHEN SHOCKING TWO-PHASE REACTIVE SOLIDS* J. M. Powers, D. S the hypothesis that observed deviations from Chapman-Jouguet detonation states inporous solid propellants for a minimum detonation wave speed analogous to a Chapman-Jouguet detonation for a single phase is given

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preliminary Design of a Pulsed Detonation Based Combined Cycle Engine Ramakanth Munipalli*  

E-Print Network (OSTI)

1 Preliminary Design of a Pulsed Detonation Based Combined Cycle Engine Ramakanth Munipalli combined cycle engine using periodic detonation waves are presented here. Four modes of operation are used detonation rocket for take off to moderate supersonic Mach numbers (2) A pulsed normal detonation wave mode

Texas at Arlington, University of

282

The random projection method for sti detonation Weizhu Bao and Shi Jin y  

E-Print Network (OSTI)

The random projection method for sti detonation waves Weizhu Bao and Shi Jin y School a simple and robust random projection method for underresolved numerical simulation of sti detonation waves the interactions of detonations. Extensive numerical experiments, including interaction of detonation waves

Jin, Shi

283

THE RANDOM PROJECTION METHOD FOR STIFF DETONATION WEIZHU BAO AND SHI JIN  

E-Print Network (OSTI)

THE RANDOM PROJECTION METHOD FOR STIFF DETONATION CAPTURING WEIZHU BAO AND SHI JIN SIAM J. SCI of stiff detonation waves in chemically reacting flows. This method is based on the random projection the interactions of detonations. Extensive nu- merical experiments, including interaction of detonation waves

Bao, Weizhu

284

Depleted argon from underground sources  

SciTech Connect

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

285

Development of a chemical microthruster based on pulsed detonation  

Science Journals Connector (OSTI)

The development of a microthruster based on gaseous pulsed detonation is presented in this study. The feasibility of cyclic valveless pulsed detonation at frequencies over 100 Hz is first experimentally investigated in a microchannel with 1 mm ? 0.6 mm rectangular cross-section. Highly reactive ethylene/oxygen mixtures are utilized to reduce the time and distance required for the reaction wave to run up to detonation in a smooth channel. High-speed visualizations have shown that the reaction waves reach detonative state through highly repeatable flame acceleration and deflagration-to-detonation transition processes in the channel. The validated concepts are implemented for the development of an integrated pulsed detonation microthruster. The microthruster was fabricated using low temperature co-fired ceramic tape technology. The volume of the reaction channel in the microthruster was 58 mm3. Spark electrodes and ion probes were embedded in the ceramic microthruster. The channel and via holes were fabricated using laser cutting techniques. Ion probe measurements showed that the reaction wave propagated at velocities larger than 2000 m s?1 before reaching the channel exit. The pulsed detonation microthruster has been successfully operated at frequencies as high as 200 Hz.

Ming-Hsun Wu; Tsung-Hsun Lu

2012-01-01T23:59:59.000Z

286

RESPONSE OF ALUMINUM SPHERES IN SITU TO DETONATION  

SciTech Connect

Time sequence x-ray imaging was utilized to determine the response of aluminum spheres embedded in a detonating high-explosive cylinder. The size of these spheres ranged from 3/8-inch to 1/32-inch in diameter. These experiments directly observed the response of the spheres as a function of time after interaction with the detonation wave. As the spheres are entrained in the post-detonation flow field, they are accelerating and their velocity profile is complicated, but can be determined from the radiography. Using the aluminum spheres as tracers, radial velocities of order 1.6 mm/us and horizontal velocities of order 0.08 mm/us were measured at early times post detonation. In terms of response, these data show that the largest sphere deforms and fractures post detonation. The intermediate size spheres suffer negligible deformation, but appear to ablate post detonation. Post detonation, the smallest spheres either react, mechanically disintegrate, atomize as a liquid or some combination of these.

Molitoris, J D; Garza, R G; Tringe, J W; Batteux, J D; Wong, B M; Villafana, R J; Cracchiola, B A; Forbes, J W

2010-03-26T23:59:59.000Z

287

Underground Gasification of Coal Reported  

Science Journals Connector (OSTI)

Underground Gasification of Coal Reported ... RESULTS of a first step taken toward determining the feasibility of the underground gasification of coal were reported recently to the Interstate Oil Compact Commission by Milton H. Fies, manager of coal operations for the Alabama Power Co. ...

1947-05-12T23:59:59.000Z

288

Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

2015-01-26T23:59:59.000Z

289

Geometry-specific scaling of detonation parameters from front curvature  

SciTech Connect

It has previously been asserted that classical detonation curvature theory predicts that the critical diameter and the diameter-effect curve of a cylindrical high-explosive charge should scale with twice the thickness of an analogous two-dimensional explosive slab. The varied agreement of experimental results with this expectation have led some to question the ability of curvature-based concepts to predict detonation propagation in non-ideal explosives. This study addresses such claims by showing that the expected scaling relationship (hereafter referred to d = 2w) is not consistent with curvature-based Detonation Shock Dynamics (DSD) theory.

Jackson, Scott I [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory

2011-01-20T23:59:59.000Z

290

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

291

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

292

Transition of combustion into detonation within a channel with the diameter less than the critical diameter of the existence of stationary detonation  

Science Journals Connector (OSTI)

An experimental investigation was carried out for transition of combustion into detonation of oxygen-hydrogen and hydrogen-air stoichiometric ... the critical diameter of the existence of stationary detonation in...

D. I. Baklanov; V. V. Golub; K. V. Ivanov; M. S. Krivokopytov

2012-04-01T23:59:59.000Z

293

Ultrafast Detonation of Hydrazoic Acid (HN3)  

Science Journals Connector (OSTI)

The fastest self-sustained chemical reactions in nature occur during detonation of energetic materials where reactions are thought to occur on nanosecond or longer time scales in carbon-containing materials. Here we perform the first atomistic simulation of an azide energetic material, HN3, from the beginning to the end of the chemical evolution and find that the time scale for complete decomposition is a mere 10 ps, orders of magnitude shorter than that of secondary explosives and approaching the fundamental limiting time scale for chemistry; i.e., vibrational time scale. We study several consequences of the short time scale including a state of vibrational disequilibrium induced by the fast transformations.

Evan J. Reed; Alejandro W. Rodriguez; M. Riad Manaa; Laurence E. Fried; Craig M. Tarver

2012-07-17T23:59:59.000Z

294

Quantitative Analysis of Reaction Front Geometry in Detonations  

E-Print Network (OSTI)

Quantitative Analysis of Reaction Front Geometry in Detonations F. Pintgen, and J.E. Shepherd Previous observations (Pintgen et al., 2003b, Pintgen, 2000) on the reaction zone struc- ture

Shepherd, Joe

295

Effect of an axial electric field on detonation waves.  

E-Print Network (OSTI)

??The present thesis reports an investigation of the effects of an axial electric field (200V/cm – 8000V/cm) on the propagation of detonation waves in mixtures… (more)

Kamenskihs, Vsevolods

2011-01-01T23:59:59.000Z

296

Set-valued solutions for non-ideal detonation  

E-Print Network (OSTI)

The existence and structure of steady gaseous detonation propagating in a packed bed of solid inert particles are analyzed in the one-dimensional approximation by taking into consideration frictional and heat losses between the gas and the particles. A new formulation of the governing equations is introduced that eliminates the well-known difficulties with numerical integration across the sonic singularity in the reactive Euler equations. The new algorithm allows us to determine that the detonation solutions as the loss factors are varied have a set-valued nature at low detonation velocities when the sonic constraint disappears from the solutions. These set-valued solutions correspond to a continuous spectrum of the eigenvalue problem that determines the velocity of the detonation.

Semenko, Roman; Kasimov, Aslan; Ermolaev, Boris

2013-01-01T23:59:59.000Z

297

Ultrafast Detonation of Hydrazoic Acid (HN[subscript 3])  

E-Print Network (OSTI)

The fastest self-sustained chemical reactions in nature occur during detonation of energetic materials where reactions are thought to occur on nanosecond or longer time scales in carbon-containing materials. Here we perform ...

Rodriguez, Alejandro W.

298

Study of a Model Equation in Detonation Theory  

E-Print Network (OSTI)

Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales, Model for shock wave chaos, Phys. Rev. Lett., 110 ...

Faria, Luiz M.

299

Frequency content of current pulses in slapper detonator bridges  

SciTech Connect

DFT amplitudes are obtained for digital current pulse files. The frequency content of slapper detonator bridge current pulses is obtained. The frequencies are confined well within the passband of the CVR used to sample them.

Carpenter, K H

2006-12-18T23:59:59.000Z

300

On the influence of low initial pressure and detonation stochastic nature on Mach reflection of gaseous detonation waves  

Science Journals Connector (OSTI)

The two-dimensional, time-dependent and reactive Navier–Stokes equations were solved to obtain an insight into Mach reflection of gaseous detonation in a stoichiometric hydrogen-oxygen mixture diluted ... argon. ...

C. J. Wang; C. M. Guo

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cyclic deflagration-to-detonation transition in the flow-type combustion chamber of a pulse-detonation burner  

Science Journals Connector (OSTI)

The possibility of realization of a rapid cyclic deflagration-to-detonation transition (DDT) with a frequency of...DDT...? 20 ms after ignition. The results will be used in the development of a new type of indust...

S. M. Frolov; V. S. Aksenov; K. A. Avdeev…

2013-03-01T23:59:59.000Z

302

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

303

Investigating leaking underground storage tanks  

E-Print Network (OSTI)

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

304

Underground Facilities, Technological Challenges  

E-Print Network (OSTI)

This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

Spooner, N

2010-01-01T23:59:59.000Z

305

New Approaches to Nuclear Proliferation Policy  

Science Journals Connector (OSTI)

...uranium, and HMX, a high explosive used in detonating nuclear warheads. The inspectors also found nucle-ar weapon parts, including...disintegrates, it will be impossible to keep nuclear control systems intact. The drastic condition of the post-Soviet econ-omies creates...

Joseph S. Nye Jr.

1992-05-29T23:59:59.000Z

306

Underground Coal Thermal Treatment  

SciTech Connect

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

307

Underground Storage Technology Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

U U U N N D D E E R R G G R R O O U U N N D D G G A A S S S S T T O O R R A A G G E E T T E E C C H H N N O O L L O O G G Y Y C C O O N N S S O O R R T T I I U U M M R R & & D D P P R R I I O O R R I I T T Y Y R R E E S S E E A A R R C C H H N N E E E E D D S S WORKSHOP PROCEEDINGS February 3, 2004 Atlanta, Georgia U U n n d d e e r r g g r r o o u u n n d d G G a a s s S S t t o o r r a a g g e e T T e e c c h h n n o o l l o o g g y y C C o o n n s s o o r r t t i i u u m m R R & & D D P P r r i i o o r r i i t t y y R R e e s s e e a a r r c c h h N N e e e e d d s s OVERVIEW As a follow up to the development of the new U.S. Department of Energy-sponsored Underground Gas Storage Technology Consortium through Penn State University (PSU), DOE's National Energy Technology Center (NETL) and PSU held a workshop on February 3, 2004 in Atlanta, GA to identify priority research needs to assist the consortium in developing Requests for Proposal (RFPs). Thirty-seven

308

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

NLE Websites -- All DOE Office Websites (Extended Search)

Surety (NEWS) Program, which was established to prevent unintendedunauthorized detonation and deliberate unauthorized use of nuclear explosives. o452.1E-Draft-8-5-14.pdf --...

309

What's in the U.S. Nuclear Stockpile?  

NLE Websites -- All DOE Office Websites (Extended Search)

ballistic missiles. VIEW THIS ARTICLE PDF ICON PDF ICON IN THIS ISSUE Detonation: From the Bottom Up What's in the U.S. Nuclear Stockpile? U.K. Is Modernizing for...

310

Underground and Ventilation System  

NLE Websites -- All DOE Office Websites (Extended Search)

HQ Total Nuclear Safety Program 8 7 3 2 12 Emergency Management 3 7 2 1 10 NWP Conduct of Operations 1 1 1 0 2 Maintenance Program 2 2 2 2 6 Radiation Protection Program 2 4 1 0 5...

311

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network (OSTI)

s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

312

Facility for Shock and Detonation Wave Interaction with a Reactive Turbulent Field  

E-Print Network (OSTI)

as in scramjet combustors30 and as a mechanism for deflagration-to-detonation transition.31 The interaction

Texas at Arlington, University of

313

Using ethanol for preparation of nanosized TiO2 by gaseous detonation  

Science Journals Connector (OSTI)

A method of preparing nanosized titanium dioxide by gaseous detonation by using ethanol, hydrogen, and oxygen as an explosion...

H. H. Yan; X. C. Huang; S. X. Xi

2014-03-01T23:59:59.000Z

314

CALTECH ASCI TECHNICAL REPORT 135 Analysis of Numerical Simulations of Detonation Diffraction  

E-Print Network (OSTI)

CALTECH ASCI TECHNICAL REPORT 135 Analysis of Numerical Simulations of Detonation Diffraction M. Arienti and J.E.Shepherd #12;Analysis of Numerical Simulations of Detonation Diffraction Marco Arienti Abstract We investigate the problem of a self-sustaining detonation wave diffracting from a tube

Barr, Al

315

Detonation loading of tubes in the modified shear wave speed regime  

E-Print Network (OSTI)

Detonation loading of tubes in the modified shear wave speed regime T. Chao and J. E. Shepherd detonation loading in the modified shear wave speed regime. Strain gauges were used to determine the time and numerical simulations with explicit finite element computation treating the detonation as a traveling load

316

AlAA 95-2580 Experimental Investigation of Pulse Detonation  

E-Print Network (OSTI)

AlAA 95-2580 Experimental Investigation of Pulse Detonation Wave Phenomenon as Related DETONATION WAVE PHENOMENON AS RELATED TO PROPULSION APPLICATION* Steven B. Stanley?, Karl R. Burgef ABSTRACT The subject of this paper is the experimental study of detonation wave phenomenon as related

Texas at Arlington, University of

317

Experimental Study on Transmission of an Overdriven Detonation Wave Across a Mixture  

E-Print Network (OSTI)

Experimental Study on Transmission of an Overdriven Detonation Wave Across a Mixture J. Li1 , K a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane

Texas at Arlington, University of

318

THE PROTOTYPE OF RECORDING SYSTEM FOR SHOCK AND DETONATION WAVE INVESTIGATION WITH APPLICATION OF  

E-Print Network (OSTI)

THE PROTOTYPE OF RECORDING SYSTEM FOR SHOCK AND DETONATION WAVE INVESTIGATION WITH APPLICATION of the prototype of multichannel recording system for shock-wave and detonation processes investigations (first of all, shock-wave and detonation ones) [1, 2]. A prototype of recording system [3], providing

Fedotov, Mikhail G.

319

Highly Shocked Polymer Bonded Explosives at a Nonplanar Interface: Hot-Spot Formation Leading to Detonation  

E-Print Network (OSTI)

to Detonation Qi An, William A. Goddard III,* Sergey V. Zybin, Andres Jaramillo-Botero, and Tingting Zhou the ReaxFF reactive force field to examine shock-induced hot-spot formation followed by detonation and pressure in the hot-spot region, until detonation. By contrast, the first step for PETN is NO2 release

Goddard III, William A.

320

American Institute of Aeronautics and Astronautics Application of Pulsed Detonation Engine for Electric Power  

E-Print Network (OSTI)

American Institute of Aeronautics and Astronautics 1 Application of Pulsed Detonation Engine of testing. In subsequent tests with the PDE, detonations were observed for H2-O2 mixtures, but H2-Air mixtures failed to detonate. Nomenclature ac = alternating current atm = atmosphere C-J = Chapman

Texas at Arlington, University of

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Numerical simulation of detonation processes in a variable cross-section chamber  

E-Print Network (OSTI)

Numerical simulation of detonation processes in a variable cross-section chamber H Y Fan and F K Lu for publication on 8 November 2007. DOI: 10.1243/09544100JAERO272 Abstract: The detonation processes occurring mechanism is used. Two detonation cases are simulated, corresponding to initiation from the closed, left end

Texas at Arlington, University of

322

American Institute of Aeronautics and Astronautics Numerical Simulation of Detonation Processes in a  

E-Print Network (OSTI)

American Institute of Aeronautics and Astronautics 1 Numerical Simulation of Detonation Processes The detonation processes occurring in a combustion chamber with variable cross-sections are numerically simulated-species, two-step global reaction mechanism is used. Two detonation cases are simulated, corresponding

Texas at Arlington, University of

323

American Institute of Aeronautics and Astronautics Experimental Study on Deflagration-to-Detonation  

E-Print Network (OSTI)

American Institute of Aeronautics and Astronautics 1 Experimental Study on Deflagration-to-Detonation detonation engine platform incorporating commercial, off-the-shelf solenoid valve gas injectors and non-conventional deflagration-to-detonation transition enhancing devices. The study made use of stoichiometric propane

Texas at Arlington, University of

324

The chemical-gas dynamic mechanisms of pulsating detonation wave instability  

E-Print Network (OSTI)

The chemical-gas dynamic mechanisms of pulsating detonation wave instability By Mark Short1- dimensional pulsating detonation wave driven by a three-step chain-branching reac- tion are revealed by direct involves regular oscillations of the detonation front, where the instability is driven by low

Kapila, Ashwani K.

325

A NUMERICAL INVESTIGATION OF SELF-PROPAGATING TWO-PHASE DETONATION Paper Number 105  

E-Print Network (OSTI)

A NUMERICAL INVESTIGATION OF SELF-PROPAGATING TWO-PHASE DETONATION Paper Number 105 Keith A-PHASE DETONATION KEITH A. GONTHIER LOS ALAMOS NATIONAL LABORATORY and JOSEPH M. POWERS UNIVERSITY OF NOTRE DAME 1 of detonation in granulated energetic material. This research has largely been motivated by concerns over

326

Exploratory study of flow domains arising from detonation waves induced in a wedged channel  

E-Print Network (OSTI)

Exploratory study of flow domains arising from detonation waves induced in a wedged channel H. Detonation of the flow of a combustible mixture over a wedged channel is numerically simulated. A two and standing detonation wave modes were found, both of which can be further subdivided depending on where

Texas at Arlington, University of

327

American Institute of Aeronautics and Astronautics Development of a Compact Liquid Fueled Pulsed Detonation  

E-Print Network (OSTI)

Detonation Engine with Predetonator Philip K. Panicker* Aerodynamic Research Center (ARC), University, USA A compact PDE platform has been constructed, which features a pre-detonator with 1 in. i.d. followed by a 30° smooth area change nozzle that expands to a 4 in. i.d. main combustor. The pre-detonator

Texas at Arlington, University of

328

Molecular simulations of Hugoniots of detonation products mixtures at chemical equilibrium: Microscopic calculation  

E-Print Network (OSTI)

Molecular simulations of Hugoniots of detonation products mixtures at chemical equilibrium and chemical equilibrium of mixtures of detonation products on the Hugoniot curve. The ReMC method (W. R. Smith the system to satisfy the Hugoniot relation. Once the Hugoniot curve of the detonation products mixture

Paris-Sud XI, Université de

329

The random projection method for stiff detonation Weizhu Bao \\Lambda and Shi Jin y  

E-Print Network (OSTI)

The random projection method for stiff detonation waves Weizhu Bao \\Lambda and Shi Jin y School a simple and robust random projection method for underresolved numerical simulation of stiff detonation, and then extended to handle the interactions of detonations. Extensive numerical experiments, including interaction

330

Under consideration for publication in J. Fluid Mech. 1 A numerical study of detonation diffraction  

E-Print Network (OSTI)

Under consideration for publication in J. Fluid Mech. 1 A numerical study of detonation diffraction of detonation diffraction through an abrupt area change has been carried out via a set of two of the reaction rate to temperature. We study in detail three highly resolved cases of detonation diffraction

Goddard III, William A.

331

A Virtual Test Facility for Simulating Detonation-Induced Fracture of  

E-Print Network (OSTI)

A Virtual Test Facility for Simulating Detonation-Induced Fracture of Thin Flexible Shells Ralf. The fluid-structure interaction simulation of detonation- and shock-wave-loaded fracturing thin with fracture and fragmen- tation capabilities with an Eulerian Cartesian detonation solver with optional

Deiterding, Ralf

332

A Fully Conservative Ghost Fluid Method & Stiff Detonation Waves Computer Science Department  

E-Print Network (OSTI)

A Fully Conservative Ghost Fluid Method & Stiff Detonation Waves Duc Nguyen Computer Science applicable for tracking material interfaces, inert shocks, and both deflagration and detonation waves tracking inert shocks and detonation waves, so that is the focus of this paper. In particular, we address

Fedkiw, Ron

333

An Accurate Deterministic Projection Method for Two-Dimensional Stiff Detonation Waves  

E-Print Network (OSTI)

An Accurate Deterministic Projection Method for Two-Dimensional Stiff Detonation Waves Yunlong Chen detonation waves. We demonstrate the robustness of the proposed approach on a number of numerical experiments. Key words: stiff detonation waves, reactive Euler equations, splitting method, deterministic

Kurganov, Alexander

334

PARAMETRIC ANALYSIS OF A DETONATION-TYPE TURBOFAN YASHWANTH M. SWAMY  

E-Print Network (OSTI)

PARAMETRIC ANALYSIS OF A DETONATION-TYPE TURBOFAN by YASHWANTH M. SWAMY Presented to the Faculty. November 8, 2011 #12;iv ABSTRACT PARAMETRIC ANALYSIS OF A DETONATION-TYPE TURBOFAN YASHWANTH M. SWAMY, M detonates a fuel-air mixture was theoretically found to perform better than a conventional turbofan

Texas at Arlington, University of

335

Under consideration for publication in J. Fluid Mech. 1 Condensed-phase detonation stability for a  

E-Print Network (OSTI)

Under consideration for publication in J. Fluid Mech. 1 Condensed-phase detonation stability ?? and in revised form ??) The linear stability analysis of a planar detonation wave is reformulated of detonations in condensed phase explosives. In this paper, we focus our attention on a Tait equation of state

Anguelova, Iana

336

Numerical Study of Unsteady Detonation Wave Propagation in a Supersonic Combustion Chamber  

E-Print Network (OSTI)

Numerical Study of Unsteady Detonation Wave Propagation in a Supersonic Combustion Chamber T.H. Yi detonation waves in a supersonic flow in one-dimensional tube and two- dimensional wedged chamber parameters. Various features including a vortex are observed. 1 Introduction Detonation wave propagation

Texas at Arlington, University of

337

Similarity and differences between conditions for initiation and failure of detonation  

Science Journals Connector (OSTI)

...conditions for initiation and failure of detonation Henry Eyring Franklin E. Walker Shao-mu...sides of the reaction zone. D is the detonation velocity and d is the diameter of the...and other phenomena associated with detonation. Similarity and differences between...

Henry Eyring; Franklin E. Walker; Shao-mu Ma; Nancy Coon

1980-01-01T23:59:59.000Z

338

A Java-Based Direct Monte Carlo Simulation of a Nano-Scale Pulse Detonation Engine  

E-Print Network (OSTI)

A Java-Based Direct Monte Carlo Simulation of a Nano- Scale Pulse Detonation Engine Darryl J. Here, the pulse detonation engine is proposed as a means of propulsion for micro-air vehicles and nano attempting to implement the pulse detonation engine at such small length scales is the dominance of the wall

339

CALTECH ASCI TECHNICAL REPORT 137 Reduction of Detailed Chemcial Reaction Networks for Detonation  

E-Print Network (OSTI)

CALTECH ASCI TECHNICAL REPORT 137 Reduction of Detailed Chemcial Reaction Networks for Detonation FOR DETONATION SIMULATIONS Patrick Hung Mechanical Engineering California Institute of Technology Pasadena, CA extended and applied to gaseous detonation simulations2,3,4 . Unfortunately, while a one-dimensional ILDM

Barr, Al

340

An Adaptive Cartesian Detonation Solver for Fluid-Structure Interaction Simulation on Distributed Memory Computers  

E-Print Network (OSTI)

An Adaptive Cartesian Detonation Solver for Fluid-Structure Interaction Simulation on Distributed shock and detonation waves impinging on deforming solid structures benefit significantly from) for studying the three- dimensional dynamic response of solid materials subject to strong shock and detonation

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Multi-Dimensional Adaptive Simulation of Shock-Induced Detonation in a Shock Tube  

E-Print Network (OSTI)

Multi-Dimensional Adaptive Simulation of Shock-Induced Detonation in a Shock Tube P. Ravindran clear of unphysical values due to linearization. One-, two- and three-dimensional detonation simu results, providing new insights in detonation wave propagation. Nomenclature Ar j , Af j Pre

Texas at Arlington, University of

342

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame  

E-Print Network (OSTI)

Flames in Type Ia Supernova: Deflagration-Detonation Transition in the Oxygen Burning Flame S. E of these regions can be supersonic and could initiate a detonation. Subject headings: supernovae: general a late time transition of the thermonuclear burning to a detonation wave (e.g., Hoflich et al. 1995

343

Transition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to  

E-Print Network (OSTI)

Transition to longitudinal instability of detonation waves is generically associated with Hopf show that transition to longitudinal instability of strong detonation solu- tions of reactive of an associated Evans function, and obtain the first complete nonlinear stability result for strong detonations

Hélein, Frédéric - Institut de Mathématiques de Jussieu, Université Paris 7

344

2011 International Workshop on Detonation for Propulsion November 14-15, 2011  

E-Print Network (OSTI)

2011 International Workshop on Detonation for Propulsion November 14-15, 2011 Paradise Hotel, Busan, Korea Summary of Recent Research on Detonation Wave Engines at UTA Donald R. Wilson,* Frank K. Lu on detonation waves related to propulsion is presented in this paper. A brief historical review of the early

Texas at Arlington, University of

345

ON A FREE BOUNDARY PROBLEM ARISING IN DETONATION THEORY: CONVERGENCE TO TRAVELLING WAVES  

E-Print Network (OSTI)

1 ON A FREE BOUNDARY PROBLEM ARISING IN DETONATION THEORY: CONVERGENCE TO TRAVELLING WAVES by M] and by Ludford and Oyediran in [10]. It is a simple model of detonation waves where the reaction is supposed to occur at the detonation front x = i(t), and where q is the ignition temperature. We consider three

Hulshof, Joost

346

A Virtual Test Facility for Simulating Detonation-induced Fracture of  

E-Print Network (OSTI)

A Virtual Test Facility for Simulating Detonation-induced Fracture of Thin Flexible Shells Ralf://www.cacr.caltech.edu/asc Abstract. The fluid-structure interaction simulation of detonation- and shock-wave-loaded fracturing thin with fracture and fragmen- tation capabilities with an Eulerian Cartesian detonation solver with optional

Cirak, Fehmi

347

Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers,  

E-Print Network (OSTI)

1 Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers detonations into aero-propulsive devices is the transition of deflagration and weak deto- nation into CJ detonation. The longer this transition, the longer the physical length of the engine must be to facilitate

Texas at Arlington, University of

348

Detonation wave driven by condensation of supersaturated carbon vapor  

Science Journals Connector (OSTI)

An experimental observation of a detonation wave driven by the energy of condensation of supersaturated carbon vapor is reported. The carbon vapor was formed by the thermal decay of unstable carbon suboxide C3O2 behind shock waves in mixtures containing 10–30% C3O2 in Ar. In the mixture 10% C3O2+Ar the insufficient heat release resulted in a regime of overdriven detonation. In the mixture 20% C3O2+Ar measured values of the pressure and wave velocity coincident with calculated Chapman-Jouguet parameters were attained. In the richest mixture 30% C3O2+Ar an excess heat release caused the slowing down of the condensation rate and the regime of underdriven detonation was observed.

A. Emelianov; A. Eremin; V. Fortov; H. Jander; A. Makeich; H. Gg. Wagner

2009-03-10T23:59:59.000Z

349

Spectra of visible emission from detonating PETN and PBX 9407  

SciTech Connect

Spectra of the visible emission from detonating PETN and PBX 9407 have been obtained and clearly show CN (B/sup 2/..sigma../sup +/)), CH(A/sup 2/..delta..), C/sub 2/ (d/sup 3//PI//sub g/) and NO/sub 2/(A/sup 2/B/sub 2/) as emitting species. Relative vibrational level populations in CN(B) and C/sub 2/(d) were measured from the intensity of their well-resolved vibronic bands in the PETN detonations. These results were used to calculate Boltzmann vibrational temperatures of 3300 +- 300 K and 4100 +- 800 K for CN(B) and C/sub 2/(d), respectively. These may be lower limits to the actual detonation temperature.

Renlund, A.M.; Trott, W.M.

1984-02-01T23:59:59.000Z

350

Logistics background study: underground mining  

SciTech Connect

Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

Hanslovan, J. J.; Visovsky, R. G.

1982-02-01T23:59:59.000Z

351

Diamond Patterns in the Cellular Front of an Overdriven Detonation  

Science Journals Connector (OSTI)

A nonlinear integral-differential equation describing the cellular front of an overdriven detonation is obtained by an analysis carried out in the neighborhood of the instability threshold. The analysis reveals both an unusual mean streaming motion, resulting from the rotational part of the oscillatory flow, and pressure bursts generated by the crossover of cusps representative of Mach stems propagating on the detonation front. A numerical study of the nonlinear equation exhibits the “diamond” patterns observed in experiments. An overall physical understanding is provided.

P. Clavin and B. Denet

2002-01-10T23:59:59.000Z

352

The Use of Steady and Pulsed Detonations for Propulsion Systems  

SciTech Connect

Objectives of the ODWE concept studies are: demonstrate the feasibility of the oblique detonation wave engine (ODWE) for hypersonic propulsion; demonstrate the existance and stability of an oblique detonation wave in hypersonic wind tunnels; develop engineering codes which predict the performance characteristics of the ODWE including specific impulse and thrust coefficients for various operating conditions; develop multi-dimensional computer codes which can model all aspects of the ODWE including fuel injection, mixing, ignition, combustion and expansion with fully detailed chemical kinetics and turbulence models; and validate the codes with experimental data use the simulations to predict the ODWE performance for conditions not easily obtained in wind tunnels.

Adelman, H.G.; Menees, G.P.; Cambier, J.L.; Bowles, J.V.

1996-02-01T23:59:59.000Z

353

Underground Storage Tanks: New Fuels and Compatibility  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

354

Method for attenuating seismic shock from detonating explosive in an in situ oil shale retort  

DOE Patents (OSTI)

In situ oil shale retorts are formed in formation containing oil shale by excavating at least one void in each retort site. Explosive is placed in a remaining portion of unfragmented formation within each retort site adjacent such a void, and such explosive is detonated in a single round for explosively expanding formation within the retort site toward such a void for forming a fragmented permeable mass of formation particles containing oil shale in each retort. This produces a large explosion which generates seismic shock waves traveling outwardly from the blast site through the underground formation. Sensitive equipment which could be damaged by seismic shock traveling to it straight through unfragmented formation is shielded from such an explosion by placing such equipment in the shadow of a fragmented mass in an in situ retort formed prior to the explosion. The fragmented mass attenuates the velocity and magnitude of seismic shock waves traveling toward such sensitive equipment prior to the shock wave reaching the vicinity of such equipment.

Studebaker, Irving G. (Grand Junction, CO); Hefelfinger, Richard (Grand Junction, CO)

1980-01-01T23:59:59.000Z

355

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

356

Gas-phase detonation propagation in mixture composition gradients  

Science Journals Connector (OSTI)

...unconfined gas detonations in hydrocarbon-air mixtures by a sympathetic...Meeting (International) of the Combustion Institute, Bordeaux, France...and A. Linan1995Effects of heat release on triple flamesPhys...model for partially premixed hydrocarbon combustionCombust. Flame...

2012-01-01T23:59:59.000Z

357

AIAA 95-2197 Experimental Investigation of Pulse Detonation Wave  

E-Print Network (OSTI)

conventional rocket motors.' This technology may also be used to clean slag offof coal furnaces which would Engines, any one of these applications would justify the development of this technology. As a result of the promising nature of this technology a detailed study of the properties of detonations needed to be conducted

Texas at Arlington, University of

358

Some observations on the initiation and onset of detonation  

Science Journals Connector (OSTI)

...wave reflections on the development of detonationPhys...K. 2010Modelling of gas explosionsPhD thesis...University of Science and Technology. 34 Markstein, G...fuels at representative gas turbine conditionsASME Gas Turbo Expo, New Orleans...

2012-01-01T23:59:59.000Z

359

The history of nuclear weapon safety devices  

SciTech Connect

The paper presents the history of safety devices used in nuclear weapons from the early days of separables to the latest advancements in MicroElectroMechanical Systems (MEMS). Although the paper focuses on devices, the principles of Enhanced Nuclear Detonation Safety implementation will also be presented.

Plummer, D.W.; Greenwood, W.H.

1998-06-01T23:59:59.000Z

360

The comprehensive Nuclear Test Ban Treaty and Seismological Research  

Science Journals Connector (OSTI)

...political context of global monitoring of underground nuclear...the Nevada Test Site. Monitoring active nuclear test...that none of them are surreptitious nuclear explosions in...chal- lenges for CTBT monitoring will be to sustain the...

Thorne Lay

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

DOE to host workshop to explore use of WIPP as 'next generation' underground laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Workshop to Explore Use of WIPP Workshop to Explore Use of WIPP As 'Next Generation' Underground Laboratory CARLSBAD, N.M., June 9, 2000 - The U.S. Department of Energy's (DOE) Carlsbad Area Office is sponsoring the "Workshop on the Next Generation U.S. Underground Science Facility" June 12-14 at the Pecos River Village Conference Center, 711 Muscatel, in Carlsbad. The purpose of the workshop is to explore the potential use of the DOE's Waste Isolation Pilot Plant (WIPP) underground as a next generation laboratory for conducting nuclear and particle astrophysics and other basic science research, and how that might be accomplished. "WIPP's underground environment represents one of only a few choices open to the research community for siting experiments that require shielding from cosmic rays," said Dr.

362

Deformation of underground deep cavities in rock salts at their long-term operations  

SciTech Connect

The underground deep cavities are created in rock salts of various morphological types with the purpose of storage of petroleum, gas and nuclear wastes. It is well known that the rock salt has rheological properties, which can result in closure of caverns and loss of their stability. In the evaporitic rocks, especially those containing halite, time-dependent deformation is pronounced even at comparatively low stress levels. At high stress levels this creep becomes a dominant feature of the mechanical behavior of salt rocks. So the knowledge of creep behavior of rock salt is of paramount importance in underground storage application of gas, petroleum products and nuclear wastes.

Zhuravleva, T.; Shafarenko, E. [Podzemgasprom, STC, Moscow (Russian Federation)

1995-12-01T23:59:59.000Z

363

Midwest Underground Technology | Open Energy Information  

Open Energy Info (EERE)

Underground Technology Underground Technology Jump to: navigation, search Name Midwest Underground Technology Facility Midwest Underground Technology Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Midwest Underground Technology Energy Purchaser Midwest Underground Technology Location Champaign IL Coordinates 40.15020987°, -88.29149723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15020987,"lon":-88.29149723,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

364

Simulations of Deflagration-to-Detonation Transition in Reactive Gases |  

NLE Websites -- All DOE Office Websites (Extended Search)

numerically generated pseudo-schlieren image numerically generated pseudo-schlieren image Weak ignition behind a reflected Mach=1.5 shock in a stoichiometric hydrogen-oxygen mixture at 0.1 atm initial pressure. Picture shows a numerically generated pseudo-schlieren image of the onset of a detonation in a turbulent boundary layer. Alexei Khokhlov, University of Chicago; Charles Bacon, Argonne National Laboratory, Joanna Austin, Andrew Knisely, University of Illinois at Urbanna-Champaign Simulations of Deflagration-to-Detonation Transition in Reactive Gases PI Name: Alexei Khokhlov PI Email: ajk@oddjob.uchicago.edu Institution: The University of Chicago Allocation Program: INCITE Allocation Hours at ALCF: 130 Million Year: 2013 Research Domain: Chemistry Hydrogen is an abundant, environmentally friendly fuel with the potential

365

CIRCUMSTELLAR ABSORPTION IN DOUBLE DETONATION TYPE Ia SUPERNOVAE  

SciTech Connect

Upon formation, degenerate He core white dwarfs are surrounded by a radiative H-rich layer primarily supported by ideal gas pressure. In this Letter, we examine the effect of this H-rich layer on mass transfer in He+C/O double white dwarf binaries that will eventually merge and possibly yield a Type Ia supernova (SN Ia) in the double detonation scenario. Because its thermal profile and equation of state differ from the underlying He core, the H-rich layer is transferred stably onto the C/O white dwarf prior to the He core's tidal disruption. We find that this material is ejected from the binary system and sweeps up the surrounding interstellar medium hundreds to thousands of years before the SN Ia. The close match between the resulting circumstellar medium profiles and values inferred from recent observations of circumstellar absorption in SNe Ia gives further credence to the resurgent double detonation scenario.

Shen, Ken J. [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Guillochon, James [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Foley, Ryan J., E-mail: kenshen@astro.berkeley.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

2013-06-20T23:59:59.000Z

366

Study of a model equation in detonation theory  

E-Print Network (OSTI)

Here we analyze properties of an equation that we previously proposed to model the dynamics of unstable detonation waves [A. R. Kasimov, L. M. Faria, and R. R. Rosales. Model for shock wave chaos. Physical Review Letters, 110(10):104104, 2013]. The equation is \\[ u_{t}+\\frac{1}{2}\\left(u^{2}-uu\\left(0_{-},t\\right)\\right)_{x}=f\\left(x,u\\left(0_{-},t\\right)\\right),\\quad x\\le0,\\quad t>0. \\] It describes a detonation shock at $x=0$ with the reaction zone in $x<0$. We investigate the nature of the steady-state solutions of this nonlocal hyperbolic balance law, the linear stability of these solutions, and the nonlinear dynamics. We establish the existence of instability followed by a cascade of period-doubling bifurcations leading to chaos.

Luiz M. Faria; Aslan R. Kasimov; Rodolfo R. Rosales

2013-09-19T23:59:59.000Z

367

Detonation along laser generated micropinch for fast ignition  

E-Print Network (OSTI)

The proposed fast ignition of highly compressed deuterium-tritium (DT) targets by petawatt lasers requires energy of about 100kJ. To lower the power of the laser, it is proposed to accomplish fast ignition with two lasers, one with lower power in the infrared, and a second one with high power in the visible to ultraviolet region. The infrared laser of lower power shall by its radiation pressure drive a large current in a less than solid density plasma placed inside a capillary, while the second high power-shorter wave length-laser shall ignite at one end of the capillary a magnetic field supported thermonuclear detonation wave in a blanket made from solid DT along the outer surface of the capillary. The other end of the capillary, together with its DT blanket, is stuck in the DT target, where following the compression of the target the detonation wave ignites the target.

Winterberg, F

2008-01-01T23:59:59.000Z

368

Might underground waste repositories blow up?  

SciTech Connect

Some writers have presented possible scenarios in which a subcritical underground deposit of plutonium or other fissile material might be changed into a critical configuration. The underground criticalities that occurred in Gabon some 1.7 billion years ago in deposits of natural uranium is cited. Other scientists assert that it is virtually impossible that such a configuration could develop in an underground repository. The author presents the pros and cons of these views. 5 refs.

Hippel, F. von [Princeton Univ., NJ (United States)

1996-03-01T23:59:59.000Z

369

Method for fabricating non-detonable explosive simulants  

DOE Patents (OSTI)

A simulator is disclosed which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

Simpson, R.L.; Pruneda, C.O.

1995-05-09T23:59:59.000Z

370

Method for fabricating non-detonable explosive simulants  

DOE Patents (OSTI)

A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

1995-01-01T23:59:59.000Z

371

Nevada National Security Site | National Nuclear Security Administrati...  

NLE Websites -- All DOE Office Websites (Extended Search)

federal agencies. It provides the government with the capability to return to underground nuclear testing should the President deem it necessary. NNSS is contractor-run by National...

372

Detonation Initiation from Spontaneous Hotspots Formed During Cook-Off Observed in Molecular Dynamics Simulations  

Science Journals Connector (OSTI)

Detonation Initiation from Spontaneous Hotspots Formed During Cook-Off Observed in Molecular Dynamics Simulations ... New equations based on Johnson?Mehl?Avrami?Kolmogorov kinetics are proposed for describing the extent of detonated material that could provide new insight into mechanisms of critical hotspot nucleation. ... Depending on the chemical and thermal properties of the energetic material as well as the size and containment of the material during cook-off, a supersonic reaction front can form; that is, the material can detonate. ...

Yanhong Hu; Donald W. Brenner; Yunfeng Shi

2011-01-06T23:59:59.000Z

373

Detonation Nanodiamond: An Organic Platform for the Suzuki Coupling of Organic Molecules  

Science Journals Connector (OSTI)

Detonation Nanodiamond: An Organic Platform for the Suzuki Coupling of Organic Molecules ... Detonation nanodiamond possesses facile surface functional groups and can be chemically processed for many engineering applications. ... (2) Although the production methods of nanodiamond via detonation of TNT?hexogene mixtures have been discovered decades ago, the widespread application of nanodiamond was restricted at that time due to the difficulty in processing tightly aggregated nanodiamond. ...

Weng Siang Yeap; Shiming Chen; Kian Ping Loh

2008-12-02T23:59:59.000Z

374

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

375

Unsteady heat losses of underground pipelines  

Science Journals Connector (OSTI)

Analytic expressions are presented for the unsteady temperature distribution of the ground and heat losses of an underground pipeline for an arbitrary...

B. L. Krivoshein; V. M. Agapkin

1977-08-01T23:59:59.000Z

376

,"Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - All Operators",8,"Monthly","102014","1151973" ,"Release...

377

Pipelines and Underground Gas Storage (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

378

,"California Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967"...

379

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

380

Cryogenic slurry for extinguishing underground fires  

DOE Patents (OSTI)

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

382

Hawaii Underground Injection Control Permitting Webpage | Open...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Permitting Webpage Author State of Hawaii Department of...

383

NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

384

Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation  

DOE Patents (OSTI)

The invention provides a more efficient electric gun or slapper detonator ich provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal.

Osher, John E. (Alamo, CA)

1992-01-01T23:59:59.000Z

385

Operational Space and Characterization of a Rotating Detonation Engine Using Hydrogen and Air.  

E-Print Network (OSTI)

??An experimental study was performed on a rotating detonation engine originally designed by Pratt and Whitney’s Seattle Aerosciences Center. The engine was tested with a… (more)

Suchocki, James Alexander

2012-01-01T23:59:59.000Z

386

Evaluation and selection of an efficient fuel/air initiation strategy for pulse detonation engines .  

E-Print Network (OSTI)

??Rapid and efficient initiation of hydrocarbon/air mixtures has been identified as one of the critical and enabling technologies for Pulse Detonation Engines (PDEs). Although the… (more)

Channell, Brent T.

2005-01-01T23:59:59.000Z

387

Material properties effects on the detonation spreading and propagation of diaminoazoxyfurazan (DAAF)  

SciTech Connect

Recent dynamic testing of Diaminoazoxyfurazan (DAAF) has focused on understanding the material properties affecting the detonation propagation, spreading, behavior and symmetry. Small scale gap testing and wedge testing focus on the sensitivity to shock with the gap test including the effects of particle size and density. Floret testing investigates the detonation spreading as it is affected by particle size, density, and binder content. The polyrho testing illustrates the effects of density and binder content on the detonation velocity. Finally the detonation spreading effect can be most dramatically seen in the Mushroom and Onionskin tests where the variations due to density gradients, pressing methods and geometry can be seen on the wave breakout behavior.

Francois, Elizabeth Green [Los Alamos National Laboratory; Morris, John S [Los Alamos National Laboratory; Novak, Alan M [Los Alamos National Laboratory; Kennedy, James E [HERE LLC

2010-01-01T23:59:59.000Z

388

A mathematical model for three dimensional detonation as pure gas-dynamic discontinuity  

E-Print Network (OSTI)

A model for three dimensional detonation is proposed based on the approximation that the detonation thickness is small compared to the characteristic scales of the fluid motion. In this framework detonations are treated as a modified hydrodynamic discontinuity. The altered Rankine-Hugoniot jump conditions take into account the internal structure of the detonation including the chemical reaction. The position of the discontinuity surface and the corresponding jump conditions are derived from first principles. The final modified conditions are dependent on curvature, flame thickness and stretching and allow for simple physical interpretation.

Jorge Yanez Escanciano; Andreas G. Class

2012-09-24T23:59:59.000Z

389

Parallel Adaptive Simulation of Detonation Waves Using a Weighted Essentially Non-Oscillatory Scheme.  

E-Print Network (OSTI)

??The purpose of this thesis was to develop a code that could be used to develop a better understanding of the physics of detonation waves.… (more)

McMahon, Sean Logan

2014-01-01T23:59:59.000Z

390

Performance characterization of swept ramp obstacle fields in pulse detonation applications .  

E-Print Network (OSTI)

??Pulse Detonation technology offers the potential for substantial increases in thrust and fuel efficiency in subsonic and supersonic flight Mach ranges through the use of… (more)

Dvorak, William T.

2010-01-01T23:59:59.000Z

391

Thrust measurement of a split-path, valveless pulse detonation engine .  

E-Print Network (OSTI)

??Theory predicts ideal pulse detonation technology offers significant fuel efficiency advantages over ramjet/scramjet architecture within a range from high subsonic to low hypersonic velocities. In… (more)

Bartosh, Brady J.

2007-01-01T23:59:59.000Z

392

Mathematical modeling of heterogeneous detonation in gas suspensions of aluminum and coal-dust particles  

SciTech Connect

Results of investigations performed by the authors in the field of theoretical and numerical modeling of heterogeneous detonation of reacting gas suspensions since 2005 are systematized.

Fedorov, A.V.; Fomin, V.M.; Khmel, T.A. [Russian Academy of Sciences, Novosibirsk (Russian Federation)

2009-07-15T23:59:59.000Z

393

Numerical Simulation of Detonation Initiation by the Space-Time Conservation Element and Solution Element Method.  

E-Print Network (OSTI)

??This dissertation is focused on the numerical simulation of the detonation initiation process. The space-time Conservation Element and Solution Element (CESE) method, a novel numerical… (more)

Wang, Bao

2010-01-01T23:59:59.000Z

394

Direct numerical investigation of detonation waves using a Monte Carlo method.  

E-Print Network (OSTI)

??A detonation wave describes a shock that propagates at supersonic velocity through a chemically unstable gas medium and is driven by the energy released by… (more)

O'Connor, Patrick

2008-01-01T23:59:59.000Z

395

Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air  

SciTech Connect

Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

Li, J.; Lai, W.H. [National Cheng Kung University, Institute of Aeronautics and Astronautics, Tainan (China); Chung, K. [National Cheng Kung University, Aerospace Science and Technology Research Center, Tainan (China); Lu, F.K. [University of Texas at Arlington, Mechanical and Aerospace Engineering Department, Aerodynamics Research Center, TX 76019 (United States)

2008-08-15T23:59:59.000Z

396

,"Colorado Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030CO2","N5010CO2","N5020CO2","N5070CO2","N5050CO2","N5060CO2" "Date","Colorado Natural Gas Underground Storage Volume (MMcf)","Colorado Natural Gas in Underground...

397

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

398

Carbon Allocation in Underground Storage Organs  

E-Print Network (OSTI)

Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

399

Detonation and deflagration characteristics of p-Xylene/gaseous hydrocarbon fuels/air mixtures  

Science Journals Connector (OSTI)

Abstract p-Xylene is an important intermediate for the production of polyethylene terephthalate, it has growing chemical industrial demand based on the statistics in the last few decades. In the process of producing p-Xylene, gaseous hydrocarbon fuels (e.g., H2, C1–C3) are usually involved, which renders p-Xylene highly possible mix with those gaseous hydrocarbon fuels as leaking occurs, this presents fire or explosion/detonation hazard at some specific conditions. To date, very limited data regarding its detonation and deflagration characteristics are available in previous literatures. In this study, experiments of measuring the overpressure and velocity of p-Xylene/gaseous hydrocarbon fuels (i.e., H2, C2H4, C3H8, CO)/air mixtures are carried out in a vertical detonation tube with an inner diameter of 200 mm and a length of 6.5 m to explore the detonation and deflagration characteristics of p-Xylene. The experimental results indicate that under the same initiation energy of 0.189 MJ m?2, pure p-Xylene/air and p-Xylene/CO/air cannot achieve detonation, only deflagrations are observed. However, under this same initiation energy, detonations occur in p-Xylene/H2/air, p-Xylene/C2H4/air and p-Xylene/C3H8/air mixtures. By comparing the combinatorial compositions of p-Xylene along with gaseous hydrocarbon fuels that within which detonation observed, the detonation sensitive of the mixtures in increasing order are obtained as following: p-Xylene/H2/air, p-Xylene/C3H8/air and p-Xylene/C2H4/air. The results also indicate the relative ease that p-Xylene/gaseous hydrocarbon fuel/air can be detonated mainly depends on the detonation sensitive of the gaseous fuel, which is supported by the critical energy of direct detonation initiation and chemical kinetic analysis.

Bo Zhang; Guangli Xiu; Jian Chen; Shaopeng Yang

2015-01-01T23:59:59.000Z

400

National Center for Nuclear Security: The Nuclear Forensics Project (F2012)  

SciTech Connect

These presentation visuals introduce the National Center for Nuclear Security. Its chartered mission is to enhance the Nation’s verification and detection capabilities in support of nuclear arms control and nonproliferation through R&D activities at the NNSS. It has three focus areas: Treaty Verification Technologies, Nonproliferation Technologies, and Technical Nuclear Forensics. The objectives of nuclear forensics are to reduce uncertainty in the nuclear forensics process & improve the scientific defensibility of nuclear forensics conclusions when applied to nearsurface nuclear detonations. Research is in four key areas: Nuclear Physics, Debris collection and analysis, Prompt diagnostics, and Radiochemistry.

Klingensmith, A. L.

2012-03-21T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Utah Underground Storage Tank Installation Permit | Open Energy...  

Open Energy Info (EERE)

Underground Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type...

402

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2012 (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

403

Progress Continues Toward Closure of Two Underground Waste Tanks...  

Office of Environmental Management (EM)

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site...

404

The Simulation Analysis of Fire Feature on Underground Substation  

Science Journals Connector (OSTI)

Underground transformer substations constructed with non-dwelling buildings have a ... out simulation analysis of fire feature on underground substation. The corresponding fire protection strategy is also...

Xin Han; Xie He; Beihua Cong

2012-01-01T23:59:59.000Z

405

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

406

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

407

EXPERIMENTS, CONCEPTUAL DESIGN, PRELIMINARY COST ESTIMATES AND SCHEDULES FOR AN UNDERGROUND RESEARCH FACILITY  

E-Print Network (OSTI)

surface and underground facilities as we11 as operation andconstruction of the underground facility. However, because

Korbin, G.

2010-01-01T23:59:59.000Z

408

Depleted Argon from Underground Sources  

SciTech Connect

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

409

Method and system for making integrated solid-state fire-sets and detonators  

DOE Patents (OSTI)

A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques. 13 figs.

O`Brien, D.W.; Druce, R.L.; Johnson, G.W.; Vogtlin, G.E.; Barbee, T.W. Jr.; Lee, R.S.

1998-03-24T23:59:59.000Z

410

Simulations of detonation wave propagation in rectangular ducts using a three-dimensional WENO scheme  

SciTech Connect

This paper reports high resolution simulations using a fifth-order weighted essentially non-oscillatory (WENO) scheme with a third-order TVD Runge-Kutta time stepping method to examine the features of detonation front and physics in square ducts. The simulations suggest that two and three-dimensional detonation wave front formations are greatly enhanced by the presence of transverse waves. The motion of transverse waves generates triple points (zones of high pressure and large velocity coupled together), which cause the detonation front to become locally overdriven and thus form ''hot spots.'' The transversal motion of these hot spots maintains the detonation to continuously occur along the whole front in two and three dimensions. The present simulations indicate that the influence of the transverse waves on detonation is more profound in three dimensions and the pattern of quasi-steady detonation fronts also depends on the duct size. For a ''narrow'' duct (4L x 4L where L is the half-reaction length), the detonation front displays a distinctive ''spinning'' motion about the axial direction with a well-defined period. For a wider duct (20L x 20L), the detonation front exhibits a ''rectangular mode'' periodically, with the front displaying ''convex'' and ''concave'' shapes one following the other and the transverse waves on the four walls being partly out-of-phase with each other. (author)

Dou, Hua-Shu; Tsai, Her Mann [Temasek Laboratories, National University of Singapore (Singapore); Khoo, Boo Cheong; Qiu, Jianxian [Department of Mechanical Engineering, National University of Singapore (Singapore)

2008-09-15T23:59:59.000Z

411

Computational Analysis of Zel'dovich-von Neumann-Doering (ZND) Detonation  

E-Print Network (OSTI)

of multiple detonation waves issuing from different ?stages? along a simple ducted engine, and aims to eliminate the need for compressors at low speeds. Currently, the Zel?dovichvon Neumann-Doering (ZND) steady, one-dimensional detonation is the simplest...

Nakamura, Tetsu

2010-07-14T23:59:59.000Z

412

American Institute of Aeronautics and Astronautics Analysis of an Ejector-Augmented Pulse Detonation Rocket  

E-Print Network (OSTI)

a preliminary design tool for investigating alternative design concepts and performing rapid performance data and from CFD simulations are provided, several applications are presented to illustrate the design is filled with a fuel/oxidizer mixture (2). A valve seals the detonation chamber and the detonation

Texas at Arlington, University of

413

Method and system for making integrated solid-state fire-sets and detonators  

DOE Patents (OSTI)

A slapper detonator comprises a solid-state high-voltage capacitor, a low-jitter dielectric breakdown switch and trigger circuitry, a detonator transmission line, an exploding foil bridge, and a flier material. All these components are fabricated in a single solid-state device using thin film deposition techniques.

O'Brien, Dennis W. (Livermore, CA); Druce, Robert L. (Union City, CA); Johnson, Gary W. (Livermore, CA); Vogtlin, George E. (Fremont, CA); Barbee, Jr., Troy W. (Palo Alto, CA); Lee, Ronald S. (Livermore, CA)

1998-01-01T23:59:59.000Z

414

Title: A Virtual Test Facility for Simulating Detonation-and Shock-induced Deformation and Fracture of Thin Flexible Shells  

E-Print Network (OSTI)

Title: A Virtual Test Facility for Simulating Detonation- and Shock-induced Deformation-mail: deiterdingr@ornl.gov Running head: A Virtual Test Facility Key words: Fluid-structure interaction, detonation hammer Abstract: The coupling of a dynamically adaptive Eulerian Cartesian detonation solver

Deiterding, Ralf

415

arXiv:1011.0897v1[math.NA]3Nov2010 EFFICIENT NUMERICAL STABILITY ANALYSIS OF DETONATION  

E-Print Network (OSTI)

arXiv:1011.0897v1[math.NA]3Nov2010 EFFICIENT NUMERICAL STABILITY ANALYSIS OF DETONATION WAVES­Stewart and Short­Stewart, the numerical evaluation of linear stability of planar detonation waves problem. Planar detonation waves can often change stability as physical parameters are varied, undergoing

Humpherys, Jeffrey

416

Dynamic Transition in the Structure of an Energetic Crystal during Chemical Reactions at Shock Front Prior to Detonation  

E-Print Network (OSTI)

Front Prior to Detonation Ken-ichi Nomura, Rajiv K. Kalia, Aiichiro Nakano, and Priya Vashishta at shock fronts prior to detonation. Shock sensitivity measurements provide widely varying results that detonation is preceded by a transition from a diffuse shock front with well-ordered molecular dipoles behind

Southern California, University of

417

A Study of Detonation Diffraction in the Ignition-and-Growth A. K. Kapila and D. W. Schwendeman  

E-Print Network (OSTI)

A Study of Detonation Diffraction in the Ignition-and-Growth Model A. K. Kapila and D. W to a sufficiently strong stimulus, such as impact by a high-velocity projectile, a detonation is initiated. Our and temperature encountered in a detonation is incomplete, and the same is true of the complex set of reactions

Kapila, Ashwani K.

418

Development of a shock-induced detonation driver F.K. Lu and D.R. Wilson  

E-Print Network (OSTI)

Development of a shock-induced detonation driver F.K. Lu and D.R. Wilson Aerodynamics Research's performance can be improved by using a detonation driver that produces a driver gas with a high pressure, are that the gaseous detonation products have high molecular weight compared to helium and the potential danger

Texas at Arlington, University of

419

Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical examination of modeling issues  

E-Print Network (OSTI)

Two-phase modeling of deflagration-to-detonation transition in granular materials: A critical the deflagration-to-detonation transition DDT in granular explosives is critically reviewed. The continuum, analysis and numerical simulation of deflagration- to-detonation transition DDT in porous energetic

Kapila, Ashwani K.

420

INVESTIGATION OF LASER SUPPORTED DETONATION WAVES AND THERMAL COUPLING USING 2.8um HF LASER IRRADIATED METAL TARGETS  

E-Print Network (OSTI)

INVESTIGATION OF LASER SUPPORTED DETONATION WAVES AND THERMAL COUPLING USING 2.8um HF LASER of Hull, Hull, HU6 7RX, England. Abstract.- The formation and propagation of laser supported detonation was obtained in a of laser supported detonation waves and thermal o. 300 nsec. pulse (FHHM). The laser output

Boyer, Edmond

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Two-Phase Steady Detonation Analysis J.M. Powers, D.S. Stewart, and H. Krier  

E-Print Network (OSTI)

Two-Phase Steady Detonation Analysis J.M. Powers, D.S. Stewart, and H. Krier Reprinted from-Phase Steady Detonation Analysis J.M. Powers,· D. S. Stewart,t and H. Krier:j: _ University of Illinois equations are studied to test the hypothesis that observed deviations from Chapman- Jouguet (C-J) detonation

422

Cold Flow Simulations for a Pulse Detonation Rocket Ejector J. Tyler Nichols, Donald R. Wilson, Frank K. Lu  

E-Print Network (OSTI)

Cold Flow Simulations for a Pulse Detonation Rocket Ejector J. Tyler Nichols, Donald R. Wilson pulse detonation rocket (PDR) ejecting into a duct was fabricated and integrated into the supersonic detonation engines (PDE) have been researched extensively as an alternate form for high-speed propulsion

Texas at Arlington, University of

423

The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3  

SciTech Connect

This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

Beck Colleen M.,Edwards Susan R.,King Maureen L.

2011-09-01T23:59:59.000Z

424

The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3  

SciTech Connect

This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

Beck Colleen M,Edwards Susan R.,King Maureen L.

2011-09-01T23:59:59.000Z

425

Focused evaluation of selected remedial alternatives for the underground test area  

SciTech Connect

The Nevada Test Site (NTS), located in Nye County in southern Nevada, was the location of 928 nuclear tests conducted between 1951 and 1992. Of the total tests, 824 were nuclear tests performed underground. This report describes the approach taken to determine whether any specific, proven, cost-effective technologies currently exist to aid in the removal of the radioactive contaminants from the groundwater, in the stabilization of these contaminants, and in the removal of the source of the contaminants.

NONE

1997-04-01T23:59:59.000Z

426

A study on the contribution of slow reaction in detonation  

SciTech Connect

Interface velocimetry and plate push experiments of the TATB-based explosives investigated so far show the presence of nonsteady detonation; namely, the initial velocity history increases with increasing explosive charge length, a condition generally attributed to the variation of effective CJ pressure. A multistage reaction model is used to simulate these experiments. For these explosives, we find that the reaction must include a slow process stage so that the numerical results can be brought into good agreement with experimental observation. 8 refs., 7 figs.

Tang, P.K.; Seitz, W.L.; Stacy, H.L.; Wackerle, J.

1989-01-01T23:59:59.000Z

427

EVALUATION OF THE EFFECTS OF DETONATION IN A SPHERICAL BOMB  

E-Print Network (OSTI)

Island - Unit 2 Accident, Nuclear Safety Analysis Centre,of Accident Risks in U.S. Cortmercial Nuclear Power Plants.

Kurylo, J.

2010-01-01T23:59:59.000Z

428

Nuclear Explosive and Weapon Surety Program  

Directives, Delegations, and Requirements

This Order provides requirements and responsibilities to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives. Cancels DOE O 452.1C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.1D.

2009-04-14T23:59:59.000Z

429

An Equilibrium-Based Model of Gas Reaction and Detonation  

SciTech Connect

During gaseous diffusion plant operations, conditions leading to the formation of flammable gas mixtures may occasionally arise. Currently, these could consist of the evaporative coolant CFC-114 and fluorinating agents such as F2 and ClF3. Replacement of CFC-114 with a non-ozone-depleting substitute is planned. Consequently, in the future, the substitute coolant must also be considered as a potential fuel in flammable gas mixtures. Two questions of practical interest arise: (1) can a particular mixture sustain and propagate a flame if ignited, and (2) what is the maximum pressure that can be generated by the burning (and possibly exploding) gas mixture, should it ignite? Experimental data on these systems, particularly for the newer coolant candidates, are limited. To assist in answering these questions, a mathematical model was developed to serve as a tool for predicting the potential detonation pressures and for estimating the composition limits of flammability for these systems based on empirical correlations between gas mixture thermodynamics and flammability for known systems. The present model uses the thermodynamic equilibrium to determine the reaction endpoint of a reactive gas mixture and uses detonation theory to estimate an upper bound to the pressure that could be generated upon ignition. The model described and documented in this report is an extended version of related models developed in 1992 and 1999.

Trowbridge, L.D.

2000-04-01T23:59:59.000Z

430

Reply to Comment on "Analytical Model for the Impulse of Single-Cycle Pulse Detonation Tube" by M. I. Radulescu and  

E-Print Network (OSTI)

Reply to Comment on "Analytical Model for the Impulse of Single- Cycle Pulse Detonation Tube" by M to model the isentrope in the detonation products in our original study1 in order to simplify) Is the polytropic approximation reliable for equilibrium detonation products? 2) To what extent are the detonation

Shepherd, Joe

431

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

432

Underground Coal Gasification in the USSR  

Science Journals Connector (OSTI)

By accomplishing in a single operation the extraction of coal and its conversion into a gaseous fuel, underground gasification makes it possible to avoid the heavy capital investments required for coal gasification

1983-01-01T23:59:59.000Z

433

Best practices for underground diesel emissions  

SciTech Connect

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

434

Underground Storage of Natural Gas (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

435

UEME : the underground electronic music experience  

E-Print Network (OSTI)

The global electronic music scene has remained underground for its entire lifespan, momentarily materializing during an event, a place defined by the music performed and the people who desire the experience. As festivals ...

Ciraulo, Christopher Samuel

2005-01-01T23:59:59.000Z

436

Move to test nuclear waste site draws fire  

Science Journals Connector (OSTI)

Move to test nuclear waste site draws fire ... The Department of Energy has stirred up a storm of opposition by taking administrative action, bypassing Congress, that would enable it to start testing an underground nuclear waste repository in New Mexico. ...

RICHARD SELTZER

1991-10-14T23:59:59.000Z

437

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

438

Staff Technical Position on geological repository operations area underground facility design: Thermal loads  

SciTech Connect

The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff`s position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design.

Nataraja, M.S. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management; Brandshaug, T. [Itasca Consulting Group, Inc., Minneapolis, MN (United States)

1992-12-01T23:59:59.000Z

439

Staff Technical Position on geological repository operations area underground facility design: Thermal loads  

SciTech Connect

The purpose of this Staff Technical Position (STP) is to provide the US Department of Energy (DOE) with a methodology acceptable to the Nuclear Regulatory Commission staff for demonstrating compliance with 10 CFR 60.133(i). The NRC staff's position is that DOE should develop and use a defensible methodology to demonstrate the acceptability of a geologic repository operations area (GROA) underground facility design. The staff anticipates that this methodology will include evaluation and development of appropriately coupled models, to account for the thermal, mechanical, hydrological, and chemical processes that are induced by repository-generated thermal loads. With respect to 10 CFR 60.133(i), the GROA underground facility design: (1) should satisfy design goals/criteria initially selected, by considering the performance objectives; and (2) must satisfy the performance objectives 10 CFR 60.111, 60.112, and 60.113. The methodology in this STP suggests an iterative approach suitable for the underground facility design.

Nataraja, M.S. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of High-Level Waste Management); Brandshaug, T. (Itasca Consulting Group, Inc., Minneapolis, MN (United States))

1992-12-01T23:59:59.000Z

440

Simulation of detonation of ammonium nitrate fuel oil mixture confined by aluminum: edge angles for DSD  

SciTech Connect

Non-ideal high explosives are typically porous, low-density materials with a low detonation velocity (3--5 km/s) and long detonation reaction zone ({approx} cms). As a result, the interaction of a non-ideal high explosive with an inert confiner can be markedly different than for a conventional high explosive. Issues arise, for example, with light stiff confiners where the confiner can drive the high explosive (HE) through a Prandtl-Meyer fan at the HE/confiner interface rather than the HE driving the confiner. For a non-ideal high explosive confined by a high sound speed inert such that the detonation velocity is lower than the inert sound speed, the flow is subsonic and thus shockless in the confiner. In such cases, the standard detonation shock dynamics methodology, which requires a positive edge-angle be specified at the HE/confiner interface in order that the detonation shape be divergent, cannot be directly utilized. In order to study how detonation shock dynamics can be utilized in such cases, numerical simulations of the detonation of ammonium nitrate-fuel oil (ANFO) confined by aluminum 6061 are conducted.

Short, Mark [Los Alamos National Laboratory; Quirk, James J [Los Alamos National Laboratory; Kiyanda, Charles B [Los Alamos National Laboratory; Jackson, Scott I [Los Alamos National Laboratory; Briggs, Matthew E [Los Alamos National Laboratory; Shinas, Micheal A [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A Three-Dimensional Picture of the Delayed-Detonation Model of Type Ia Supernovae  

E-Print Network (OSTI)

Deflagration models poorly explain the observed diversity of SNIa. Current multidimensional simulations of SNIa predict a significant amount of, so far unobserved, carbon and oxygen moving at low velocities. It has been proposed that these drawbacks can be resolved if there is a sudden jump to a detonation (delayed detonation), but this kind of models has been explored mainly in one dimension. Here we present new three-dimensional delayed detonation models in which the deflagraton-to-detonation transition (DDT) takes place in conditions like those favored by one-dimensional models. We have used a SPH code adapted to SNIa with algorithms devised to handle subsonic as well as supersonic combustion fronts. The starting point was a C-O white dwarf of 1.38 solar masses. When the average density on the flame surface reached 2-3x10^7 g/cm^3 a detonation was launched. The detonation wave processed more than 0.3 solar masses of carbon and oxygen, emptying the central regions of the ejecta of unburned fuel and raising its kinetic energy close to the fiducial 10^51 ergs expected from a healthy Type Ia supernova. The final amount of 56Ni synthesized also was in the correct range. However, the mass of carbon and oxygen ejected is still too high. The three-dimensional delayed detonation models explored here show an improvement over pure deflagration models, but they still fail to coincide with basic observational constraints. However, there are many aspects of the model that are still poorly known (geometry of flame ignition, mechanism of DDT, properties of detonation waves traversing a mixture of fuel and ashes). Therefore, it will be worth pursuing its exploration to see if a good SNIa model based on the three-dimensional delayed detonation scenario can be obtained.

Eduardo Bravo; Domingo Garcia-Senz

2007-12-04T23:59:59.000Z

442

Deflagration-to-detonation transition in inertial-confinement-fusion baseline targets  

Science Journals Connector (OSTI)

By means of highly resolved one-dimensional hydrodynamics simulations, we provide an understanding of the burn process in inertial-confinement-fusion baseline targets. The cornerstone of the phenomenology of propagating burn in such laser-driven capsules is shown to be the transition from a slow unsteady reaction-diffusion regime of thermonuclear combustion (some sort of deflagration) to a fast detonative one. Remarkably, detonation initiation follows the slowing down of a shockless supersonic reaction wave driven by energy redeposition from the fusion products themselves. Such a route to detonation is specific to fusion plasmas.

P. Gauthier; F. Chaland; L. Masse

2004-11-11T23:59:59.000Z

443

Nonlinear dynamics of self-sustained supersonic reaction waves: Fickett's detonation analogue  

E-Print Network (OSTI)

The present study investigates the spatio-temporal variability in the dynamics of self-sustained supersonic reaction waves propagating through an excitable medium. The model is an extension of Fickett's detonation model with a state dependent energy addition term. Stable and pulsating supersonic waves are predicted. With increasing sensitivity of the reaction rate, the reaction wave transits from steady propagation to stable limit cycles and eventually to chaos through the classical Feigenbaum route. The physical pulsation mechanism is explained by the coherence between internal wave motion and energy release. The results obtained clarify the physical origin of detonation wave instability in chemical detonations previously observed experimentally.

Matei I. Radulescu; Justin Tang

2011-01-21T23:59:59.000Z

444

Detonation Nanodiamonds for Rapid Detection of Clinical Isolates of Mycobacterium tuberculosis Complex in Broth Culture Media  

Science Journals Connector (OSTI)

Detonation Nanodiamonds for Rapid Detection of Clinical Isolates of Mycobacterium tuberculosis Complex in Broth Culture Media ... To tackle this problem, we develop a method to streamline identification of Mycobacterium tuberculosis complex (MTBC) in broth culture media by using detonation nanodiamonds (DNDs) as a platform to effectively capture the antigen secreted by MTBC which is cultured in BACTEC MGIT 960, followed by the analysis of matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). ... Here we present detonation nanodiamond matrix-assisted laser desorption ionization time-of-flight mass spectrometry (DND MALDI-TOF MS) to rapidly and correctly identify MTBC. ...

Po-Chi Soo; Ching-Jen Kung; Yu-Tze Horng; Kai-Chih Chang; Jen-Jyh Lee; Wen-Ping Peng

2012-08-20T23:59:59.000Z

445

Evaluating Systematic Dependencies of Type Ia Supernovae: The Influence of Deflagration to Detonation Density  

E-Print Network (OSTI)

We explore the effects of the deflagration to detonation transition (DDT) density on the production of Ni-56 in thermonuclear supernova explosions (type Ia supernovae). Within the DDT paradigm, the transition density sets the amount of expansion during the deflagration phase of the explosion and therefore the amount of nuclear statistical equilibrium (NSE) material produced. We employ a theoretical framework for a well-controlled statistical study of two-dimensional simulations of thermonuclear supernovae with randomized initial conditions that can, with a particular choice of transition density, produce a similar average and range of Ni-56 masses to those inferred from observations. Within this framework, we utilize a more realistic "simmered" white dwarf progenitor model with a flame model and energetics scheme to calculate the amount of Ni-56 and NSE material synthesized for a suite of simulated explosions in which the transition density is varied in the range 1-3x10^7 g/cc. We find a quadratic dependence ...

Jackson, Aaron P; Townsley, Dean M; Chamulak, David A; Brown, Edward F; Timmes, F X

2010-01-01T23:59:59.000Z

446

Non-detonable and non-explosive explosive simulators  

DOE Patents (OSTI)

A simulator which is chemically equivalent to an explosive, but is not detonable or explodable is disclosed. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive. 11 figs.

Simpson, R.L.; Pruneda, C.O.

1997-07-15T23:59:59.000Z

447

Non-detonable and non-explosive explosive simulators  

DOE Patents (OSTI)

A simulator which is chemically equivalent to an explosive, but is not detonable or explodable. The simulator is a combination of an explosive material with an inert material, either in a matrix or as a coating, where the explosive has a high surface ratio but small volume ratio. The simulator has particular use in the training of explosives detecting dogs, calibrating analytical instruments which are sensitive to either vapor or elemental composition, or other applications where the hazards associated with explosives is undesirable but where chemical and/or elemental equivalence is required. The explosive simulants may be fabricated by different techniques. A first method involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and a second method involves coating inert substrates with thin layers of explosive.

Simpson, Randall L. (Livermore, CA); Pruneda, Cesar O. (Livermore, CA)

1997-01-01T23:59:59.000Z

448

Detonating Failed Deflagration Model of Thermonuclear Supernovae I. Explosion Dynamics  

E-Print Network (OSTI)

We present a detonating failed deflagration model of Type Ia supernovae. In this model, the thermonuclear explosion of a massive white dwarf follows an off-center deflagration. We conduct a survey of asymmetric ignition configurations initiated at various distances from the stellar center. In all cases studied, we find that only a small amount of stellar fuel is consumed during deflagration phase, no explosion is obtained, and the released energy is mostly wasted on expanding the progenitor. Products of the failed deflagration quickly reach the stellar surface, polluting and strongly disturbing it. These disturbances eventually evolve into small and isolated shock-dominated regions which are rich in fuel. We consider these regions as seeds capable of forming self-sustained detonations that, ultimately, result in the thermonuclear supernova explosion. Preliminary nucleosynthesis results indicate the model supernova ejecta are typically composed of about 0.1-0.25 Msun of silicon group elements, 0.9-1.2 Msun of iron group elements, and are essentially carbon-free. The ejecta have a composite morphology, are chemically stratified, and display a modest amount of intrinsic asymmetry. The innermost layers are slightly egg-shaped with the axis ratio ~1.2-1.3 and dominated by the products of silicon burning. This central region is surrounded by a shell of silicon-group elements. The outermost layers of ejecta are highly inhomogeneous and contain products of incomplete oxygen burning with only small admixture of unburned stellar material. The explosion energies are ~1.3-1.5 10^51 erg.

Tomasz Plewa

2006-11-24T23:59:59.000Z

449

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network (OSTI)

Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

450

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network (OSTI)

Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

451

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network (OSTI)

Helms Underground Powerhouse - Pumped storage project Figurelayout of underground powerhouse complex—Helms Pumped57. Helms Underground Powerhouse Pumped Storage Project

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

452

First-Principles Simulations of High-Speed Combustion and Detonation |  

NLE Websites -- All DOE Office Websites (Extended Search)

Picture shows a numerically generated pseudo-schlieren image of the onset of a detonation in a turbulent boundary layer. Picture shows a numerically generated pseudo-schlieren image of the onset of a detonation in a turbulent boundary layer. Weak ignition behind a reflected Mach=1.5 shock in a stoichiometric hydrogen-oxygen mixture at 0.1 atm initial pressure. Picture shows a numerically generated pseudo-schlieren image of the onset of a detonation in a turbulent boundary layer. Alexei Khokhlov, University of Chicago, Charles Bacon, Argonne National Laboratory, Joanna Austin and Andrew Knisely, University of Illinois at Urbanna-Champaign. First-Principles Simulations of High-Speed Combustion and Detonation PI Name: Alexei Khokhlov PI Email: ajk@oddjob.uchicago.edu Institution: University of Chicago Allocation Program: INCITE Allocation Hours at ALCF: 150 Million Year: 2014

453

Hydrogen loaded metal for bridge-foils for enhanced electric gun/slapper detonator operation  

DOE Patents (OSTI)

The invention provides a more efficient electric gun or slapper detonator which provides a higher velocity flyer by using a bridge foil made of a hydrogen loaded metal. 8 figs.

Osher, J.E.

1992-01-14T23:59:59.000Z

454

OGLE-2013-SN-079: a lonely supernova consistent with a helium shell detonation  

E-Print Network (OSTI)

We present observational data for a peculiar supernova discovered by the OGLE-IV survey and followed by the Public ESO Spectroscopic Survey for Transient Objects. The inferred redshift of z=0.07 implies an absolute magnitude in the rest-frame I-band of M$_{I}\\sim-17.6$ mag. This places it in the luminosity range between normal Type Ia SNe and novae. Optical and near infrared spectroscopy reveal mostly Ti and Ca lines, and an unusually red color arising from strong depression of flux at rest wavelengths detonation of a helium shell around a low-mass CO white dwarf and "double-detonation" models that include a secondary detonation of a CO core following a primary detonation in an overlying helium shell.

Inserra, C; Wyrzykowski, L; Smartt, S J; Fraser, M; Nicholl, M; Shen, K J; Jerkstrand, A; Gal-Yam, A; Howell, D A; Maguire, K; Mazzali, P; Valenti, S; Taubenberger, S; Benitez-Herrera, S; Bersier, D; Blagorodnova, N; Campbell, H; Chen, T -W; Elias-Rosa, N; Hillebrandt, W; Kostrzewa-Rutkowska, Z; Kozlowski, S; Kromer, M; Lyman, J D; Polshaw, J; Ropke, F K; Ruiter, A J; Smith, K; Spiro, S; Sullivan, M; Yaron, O; Young, D; Yuan, F

2014-01-01T23:59:59.000Z

455

Ultrafast Spin Avalanches in Crystals of Nanomagnets in Terms of Magnetic Detonation  

Science Journals Connector (OSTI)

Recent experiments [W. Decelle et al., Phys. Rev. Lett. 102, 027203 (2009)] have discovered ultrafast propagation of spin avalanches in crystals of nanomagnets, which is 3 orders of magnitude faster than the traditionally studied magnetic deflagration. The new regime has been hypothetically identified as magnetic detonation. Here we demonstrate unequivocally the possibility of magnetic detonation in the crystals, as a front consisting of a leading shock and a zone of Zeeman energy release. We study the key features of the process and find that the magnetic detonation speed only slightly exceeds the sound speed in agreement with the experimental observations. For combustion science, our results provide a unique physical example of extremely weak detonation.

M. Modestov; V. Bychkov; M. Marklund

2011-11-11T23:59:59.000Z

456

Shock-Fitted Numerical Solutions of One- and Two-Dimensional Detonation.  

E-Print Network (OSTI)

??One- and two- dimensional detonation problems are solved using a conservative shock-fitting numerical method which is formally fifth order accurate. The shock-fitting technique for a… (more)

Henrick, Andrew Koldewey

2011-01-01T23:59:59.000Z

457

The chemical-gas dynamic mechanisms of pulsating detonation wave instability  

Science Journals Connector (OSTI)

...detonation profiles showing: (a) fuel, f (solid lines) and radical, y (dashed...low-Mach-number fast flame is again recovered before the cycle repeats. Figures...fast-flame reaction zone structure is recovered and the cycle repeats. Phil...

1999-01-01T23:59:59.000Z

458

Estimating the exposure to first receivers from a contaminated victim of a radiological dispersal device detonation  

E-Print Network (OSTI)

The threat of a Radiological Dispersal Device (RDD) detonation arouses the concern of contaminated victims of all ages. The purpose of this study was to investigate the dose to a uniformly contaminated five-year old male. It also explores...

Phillips, Holly Anne

2009-05-15T23:59:59.000Z

459

Passage of a Bubble?Detonation Wave into a Chemically Inactive Bubble Medium  

Science Journals Connector (OSTI)

Passage of detonation waves from a chemically active bubble medium into a chemically inactive bubble medium is studied experimentally. The structure of ... pressures of these waves for different parameters of bubble

A. I. Sychev

2001-07-01T23:59:59.000Z

460

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

The effect of freestream variations on the propagation of detonation and combustion waves  

E-Print Network (OSTI)

THE EFFECT OF FREESTREAM VARIATIONS ON THE PROPAGATION OF DETONATION AND COMBUSTION WAVES A Thesis by MARLON LEE CLARK Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE August 1988 Major Subject: Aerospace Engineering THE EFFECT OF FREESTREAM VARIATIONS ON THE PROPAGATION OF DETONATION AND COMBUSTION WAVES A Thesis by MARLON LEE CLARK Approved as to style and content by: eland A. Garison...

Clark, Marlon Lee

2012-06-07T23:59:59.000Z

462

THE EFFECTS OF CURVATURE AND EXPANSION ON HELIUM DETONATIONS ON WHITE DWARF SURFACES  

SciTech Connect

Accreted helium layers on white dwarfs have been highlighted for many decades as a possible site for a detonation triggered by a thermonuclear runaway. In this paper, we find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically {sup 12}C and {sup 16}O. Detonations in these thin helium layers have speeds slower than the Chapman-Jouget (CJ) speed from complete helium burning, v{sub CJ} = 1.5 × 10{sup 9} cm s{sup –1}. Though gravitationally unbound, the ashes still have unburned helium (?80% in the thinnest cases) and only reach up to heavy elements such as {sup 40}Ca, {sup 44}Ti, {sup 48}Cr, and {sup 52}Fe. It is rare for these thin shells to generate large amounts of {sup 56}Ni. We also find a new set of solutions that can propagate in even thinner helium layers when {sup 16}O is present at a minimum mass fraction of ?0.07. Driven by energy release from ? captures on {sup 16}O and subsequent elements, these slow detonations only create ashes up to {sup 28}Si in the outer detonated He shell. We close by discussing how the unbound helium burning ashes may create faint and fast 'Ia' supernovae as well as events with virtually no radioactivity, and speculate on how the slower helium detonation velocities impact the off-center ignition of a carbon detonation that could cause a Type Ia supernova in the double detonation scenario.

Moore, Kevin; Bildsten, Lars [Department of Physics, University of California, Santa Barbara, CA (United States); Townsley, Dean M. [Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States)

2013-10-20T23:59:59.000Z

463

Spontaneous initiation of detonations in while dwarf environments: Determination of critical sizes.  

SciTech Connect

Some explosion models for Type Ia supernovae (SNe Ia), such as the gravitationally confined detonation (GCD) or the double detonation sub-Chandrasekhar (DDSC) models, rely on the spontaneous initiation of a detonation in the degenerate {sup 12}C/{sup 16}O material of a white dwarf (WD). The length scales pertinent to the initiation of the detonation are notoriously unresolved in multidimensional stellar simulations, prompting the use of results of one-dimensional simulations at higher resolution, such as those performed for this work, as guidelines for deciding whether or not conditions reached in the higher dimensional full star simulations successfully would lead to the onset of a detonation. Spontaneous initiation relies on the existence of a suitable gradient in self-ignition (induction) times of the fuel, which we set up with a spatially localized nonuniformity of temperature - a hot spot. We determine the critical (smallest) sizes of such hot spots that still marginally result in a detonation in WD matter by integrating the reactive Euler equations with the hydrodynamics code FLASH. We quantify the dependences of the critical sizes of such hot spots on composition, background temperature, peak temperature, geometry, and functional form of the temperature disturbance, many of which were hitherto largely unexplored in the literature. We discuss the implications of our results in the context of modeling of SNe Ia.

Seitenzahl, I. R.; Meakin, C. A.; Townsley, D. M.; Lamb, D. Q.; Truran, J. W. (Physics); (Univ. of Chicago); (Max-Planck Inst. for Astrophysics); (Univ. of Arizona)

2009-05-01T23:59:59.000Z

464

Time-resolved spectroscopic studies of detonating heterogeneous explosives. [HMX and HNS  

SciTech Connect

Emission spectroscopy and pulsed-laser-excited Raman scattering methods have been applied to the study of detonating heterogeneous explosives, including PETN, HMX and HNS. Time-resolved spectra of emission from detonating HNS show the evolution of features due to electronically-excited radical species. For HNS, the CN(B-X) system near 388 nm has been studied at a wavelength resolution of 0.5 A. Boltzmann vibrational temperatures have been calculated by comparing the experimental data with computer-simulated spectra. These temperatures are consistent with the expected trend of detonation temperature as a function of charge density. Using 532-nm laser excitation, single-pulse Raman scattering measurements have been made at the free surface of detonating HMX and PETN samples. Monotonic attenuation of Raman scattering intensity over a 100-ns interval is observed after detonation front arrival at the free surface. Depletion of the Raman signal occurs prior to significant loss of the scattered laser light. The significance of the Raman measurements as a possible probe of reaction zone length in detonating explosives is discussed. 21 refs., 11 figs.

Trott, W.M.; Renlund, A.M.

1985-01-01T23:59:59.000Z

465

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

466

Underground Facilities Information (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

467

Underground Injection Control Permits and Registrations (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

468

Notification for Underground Storage Tanks (EPA Form 7530-1)...  

Open Energy Info (EERE)

Notification for Underground Storage Tanks (EPA Form 7530-1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Notification for Underground Storage Tanks...

469

Visit to the Deep Underground Science and Engineering Laboratory  

ScienceCinema (OSTI)

U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

None

2010-01-08T23:59:59.000Z

470

Ground Motions from and House Response to Underground Aggregate Mining  

E-Print Network (OSTI)

interest because many urban quarries have gone underground or are considering doing so. Three cracks were to determine future blasting controls for a underground aggregate quarry near Franklin, KY (Revey, 2005

471

Calculations on seismic coupling of underground explosions in salt  

SciTech Connect

This report details the results of a theoretical study of seismic coupling and decoupling of underground explosions in a salt medium. A series of chemical and nuclear explosions was carried out years ago in salt domes for the Cowboy and the Dribble programs to provide experimental data on seismic coupling for both tamped explosions and explosions in cavities. The Cowboy program consisted of a series of chemical explosions, and the Dribble program consisted of the tamped nuclear Salmon event, the Sterling nuclear event in the Salmon cavity, and an associated site calibration effort. This report presents the results of extensive computer calculations, which are in satisfactory agreement with the experimental data. The calculations were extended to give general results on seismic coupling in salt. The measure of seismic coupling for most of this work was the residual reduced displacement potential (residual RDP). The decoupling associated with a shot in a cavity was expressed as the ratio of the resulting residual RDP to that of an equal-sized tamped shot.

Heusinkveld, M.E.

1981-01-20T23:59:59.000Z

472

Rectifiers used on the London Underground Railways  

Science Journals Connector (OSTI)

... Lunn to the Institution of Electrical Engftieers on November 7, a description of the rectifier substations is given and also much useful information of the working of these rectifiers for traction ... there is little vibration; but in these respects the rectifier is much superior. The substation buildings for operating the traction system of the London Underground are in very densely populated ...

1935-11-30T23:59:59.000Z

473

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

474

The Public Perceptions of Underground Coal Gasification (UCG)  

E-Print Network (OSTI)

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

475

Detection of Underground Marlpit Quarries Using High Resolution Seismic  

E-Print Network (OSTI)

Detection of Underground Marlpit Quarries Using High Resolution Seismic B. Piwakowski* (Ecole of high resolution reflection seismic for the detection and location of underground marlpit quarries of the geological structure, the results show that the detection of marlpit underground quarries, often considered

Boyer, Edmond

476

NUCLEOSYNTHESIS IN TWO-DIMENSIONAL DELAYED DETONATION MODELS OF TYPE Ia SUPERNOVA EXPLOSIONS  

SciTech Connect

For the explosion mechanism of Type Ia supernovae (SNe Ia), different scenarios have been suggested. In these, the propagation of the burning front through the exploding white dwarf (WD) star proceeds in different modes, and consequently imprints of the explosion model on the nucleosynthetic yields can be expected. The nucleosynthetic characteristics of various explosion mechanisms are explored based on three two-dimensional explosion simulations representing extreme cases: a pure turbulent deflagration, a delayed detonation following an approximately spherical ignition of the initial deflagration, and a delayed detonation arising from a highly asymmetric deflagration ignition. Apart from this initial condition, the deflagration stage is treated in a parameter-free approach. The detonation is initiated when the turbulent burning enters the distributed burning regime. This occurs at densities around 10{sup 7} g cm{sup -3}-relatively low as compared to existing nucleosynthesis studies for one-dimensional spherically symmetric models. The burning in these multidimensional models is different from that in one-dimensional simulations as the detonation wave propagates both into unburned material in the high-density region near the center of a WD and into the low-density region near the surface. Thus, the resulting yield is a mixture of different explosive burning products, from carbon-burning products at low densities to complete silicon-burning products at the highest densities, as well as electron-capture products synthesized at the deflagration stage. Detailed calculations of the nucleosynthesis in all three models are presented. In contrast to the deflagration model, the delayed detonations produce a characteristic layered structure and the yields largely satisfy constraints from Galactic chemical evolution. In the asymmetric delayed detonation model, the region filled with electron capture species (e.g., {sup 58}Ni, {sup 54}Fe) is within a shell, showing a large off-set, above the bulk of {sup 56}Ni distribution, while species produced by the detonation are distributed more spherically.

Maeda, K. [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Roepke, F.K.; Fink, M.; Hillebrandt, W.; Travaglio, C. [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Strasse 1, 85741 Garching (Germany); Thielemann, F.-K., E-mail: keiichi.maeda@ipmu.j [Department Physik, Universitaet Basel, CH-4056 Basel (Switzerland)

2010-03-20T23:59:59.000Z

477

iNational Security Science April 2013 Also in this issue  

E-Print Network (OSTI)

to move from reliance on full-scale underground nuclear tests to much more sophisticated computer-based simulations of full-scale weapon detonations. When the United States stopped underground nuclear testing, and testing nuclear weapons to using our science and engineering capabilities to ensure that the stockpile

478

Impurity-doped optical shock, detonation and damage location sensor  

DOE Patents (OSTI)

A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack.

Weiss, Jonathan D. (Albuquerque, NM)

1995-01-01T23:59:59.000Z

479

Impurity-doped optical shock, detonation and damage location sensor  

DOE Patents (OSTI)

A shock, detonation, and damage location sensor providing continuous fiber-optic means of measuring shock speed and damage location, and could be designed through proper cabling to have virtually any desired crush pressure. The sensor has one or a plurality of parallel multimode optical fibers, or a singlemode fiber core, surrounded by an elongated cladding, doped along their entire length with impurities to fluoresce in response to light at a different wavelength entering one end of the fiber(s). The length of a fiber would be continuously shorted as it is progressively destroyed by a shock wave traveling parallel to its axis. The resulting backscattered and shifted light would eventually enter a detector and be converted into a proportional electrical signals which would be evaluated to determine shock velocity and damage location. The corresponding reduction in output, because of the shortening of the optical fibers, is used as it is received to determine the velocity and position of the shock front as a function of time. As a damage location sensor the sensor fiber cracks along with the structure to which it is mounted. The size of the resulting drop in detector output is indicative of the location of the crack. 8 figs.

Weiss, J.D.

1995-02-07T23:59:59.000Z

480

Double-detonation explosions as progenitors of type Iax supernovae  

E-Print Network (OSTI)

It has recently been proposed that one sub-class of type Ia supernovae (SNe Ia) is sufficiently both distinct and common to be classified separately from the bulk of SNe Ia, with a suggested class name of "type Iax supernovae" (SNe Iax), after SN 2002cx. We show that the population properties of this class can be understood if the events originate from helium double-detonation sub-Chandrasekhar mass explosions, in which a carbon--oxygen white dwarf (CO WD) accumulates a helium layer from a non-degenerate helium star. We have incorporated detailed binary evolution calculations for the progenitor systems into a binary population synthesis model to obtain birthrates and delay times for such events. The predicted Galactic event rate is $\\sim$$0.6-1.8\\times 10^{-3}\\,{\\rm yr}^{-1}$, in good agreement with the measured rates of SNe Iax. In addition, predicted delay times are $\\sim$70\\,Myr$-$710\\,Myr, consistent with the fact that SNe Iax have so far only been discovered in late-type galaxies. Based on the CO WD mass...

Wang, Bo; Han, Zhanwen

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground nuclear detonations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Dispersion model development for open burn/open detonation sources  

SciTech Connect

The disposal of obsolete munitions, propellants, and manufacturing wastes is conducted at Department of Defense (DOD) and Department of Energy (DOE) facilities. The most common disposal method is open burning (OB) and open detonation (OD) of the material, which occurs in an earthen pit or bermed area. OB/OD operations generate air pollutants and require predictions of pollutant concentrations. The pollutants include SO{sub 2}, NO{sub x}, particulates, volatile organic compounds and toxic materials such as metals, semivolatile organics, etc. Dispersion models are used to estimate pollutant concentrations given the source and meteorological conditions. However, there is currently no recommended EPA dispersion model to address OB/OD sources. Due to the constraints of existing models, a model development program was initiated under the DOD/DOE Strategic Environmental Research and Development Program. In Section 2, the authors give an overview of the model design which is divided into simple and research components. Sections 3 and 4 describe the simple component which includes Gaussian puff and analytic plume models.

Weil, J.C.; Templeman, B. [Univ. of Colorado, Boulder, CO (United States); Banta, R.; Weber, R. [NOAA-ETL, Boulder, CO (United States). Environmental Research Labs.; Mitchell, W. [Environmental Protection Agency, Research Triangle Park, NC (United States)

1996-12-31T23:59:59.000Z

482

Exploring high temperature phenomena related to post-detonation using an electric arc  

SciTech Connect

We report a study of materials recovered from a uranium-containing plasma generated by an electric arc. The device used to generate the arc is capable of sustaining temperatures of an eV or higher for up to 100??s. Samples took the form of a 4??m-thick film deposited onto 8 pairs of 17??m-thick Cu electrodes supported on a 25??m-thick Kapton backing and sandwiched between glass plates. Materials recovered from the glass plates and around the electrode tips after passage of an arc were characterized using scanning and transmission electron microscopy. Recovered materials included a variety of crystalline compounds (e.g., UO{sub 2}, UC{sub 2}, UCu{sub 5},) as well as mixtures of uranium and amorphous glass. Most of the materials collected on the glass plates took the form of spherules having a wide range of diameters from tens of nanometers to tens of micrometers. The composition and size of the spherules depended on location, indicating different chemical and physical environments. A theoretical analysis we have carried out suggests that the submicron spherules presumably formed by deposition during the arc discharge, while at the same time the glass plates were strongly heated due to absorption of plasma radiation mainly by islands of deposited metals (Cu, U). The surface temperature of the glass plates is expected to have risen to ?2300?K thus producing a liquefied glass layer, likely diffusions of the deposited metals on the hot glass surface and into this layer were accompanied by chemical reactions that gave rise to the observed materials. These results, together with the compact scale and relatively low cost, suggest that the experimental technique provides a practical approach to investigate the complex physical and chemical processes that occur when actinide-containing material interacts with the environment at high temperature, for example, during fallout formation following a nuclear detonation.

Dai, Z. R., E-mail: dai1@llnl.gov; Crowhurst, J. C.; Grant, C. D.; Knight, K. B.; Tang, V.; Chernov, A. A.; Cook, E. G.; Lotscher, J. P.; Hutcheon, I. D. [Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States)

2013-11-28T23:59:59.000Z

483

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

484

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

485

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

486

Flame-driven deflagration-to-detonation transitions in Type Ia supernovae?  

E-Print Network (OSTI)

Although delayed detonation models of thermonuclear explosions of white dwarfs seem promising for reproducing Type Ia supernovae, the transition of the flame propagation mode from subsonic deflagration to supersonic detonation remains hypothetical. A potential instant for this transition to occur is the onset of the distributed burning regime, i.e. the moment when turbulence first affects the internal flame structure. Some studies of the burning microphysics indicate that a deflagration-to-detonation transition may be possible here, provided the turbulent intensities are strong enough. Consequently, the magnitude of turbulent velocity fluctuations generated by the deflagration flame is analyzed at the onset of the distributed burning regime in several three-dimensional simulations of deflagrations in thermonuclear supernovae. It is shown that the corresponding probability density functions fall off towards high turbulent velocity fluctuations much more slowly than a Gaussian distribution. Thus, values claimed to be necessary for triggering a detonation are likely to be found in sufficiently large patches of the flame. Although the microphysical evolution of the burning is not followed and a successful deflagration-to-detonation transition cannot be guaranteed from simulations presented here, the results still indicate that such events may be possible in Type Ia supernova explosions.

F. K. Roepke

2007-09-26T23:59:59.000Z

487

Slang characterization and removal using pulse detonation technology during coal gasification  

SciTech Connect

Boiler slagging and fouling as a result of inorganic impurities in combustion gases being deposited on heat transfer tubes have caused severe problems in coal-fired power plant operation. These problems are fuel, system design, and operating condition dependent. Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. The detonation wave technique based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. These detonation waves have been demonstrated experimentally to have exceptionally high shearing capability important to the task of removing slag and fouling deposits. The experimental results show that the single shot detonation wave is capable of removing the entire slag (types of slag deposited on economizer) even at a distance of 8 in. from the exit of a detonation engine tube. Wave strength and slag orientation also have different effects on the chipping off of the slag. This paper discusses about the results obtained in effectively removing the economizer slag.

Huque, Z.; Mei, D.; Biney, P.O.; Zhou, J.

1997-03-25T23:59:59.000Z

488

Experimental observations of detonation in ammonium-nitrate-fuel-oil (ANFO) surrounded by a high-sound speed, shockless, aluminum confiner  

SciTech Connect

Detonations in explosive mixtures of ammonium-nitrate-fuel-oil (ANFO) confined by aluminum allow for transport of detonation energy ahead of the detonation front due to the aluminum sound speed exceeding the detonation velocity. The net effect of this energy transport on the detonation is unclear. It could enhance the detonation by precompressing the explosive near the wall. Alternatively, it could desensitize the explosive by crushing porosity required for shock initiation or destroying confinement ahead of the detonation. As these phenomena are not well understood, most numerical explosive models are unable to account for them. But with slowly detonating, non-ideal high explosive (NIHE) systems becoming increasing prevalent, proper understanding and prediction of the performance of these metal-confined NIHE systems is desirable. Experiments are discussed that measured the effect of this ANFO detonation energy transported upstream of the front by an aluminum confining tube. Detonation velocity, detonation front curvature, and aluminum response are recorded as a function of confiner wall thickness and length. Front curvature profiles display detonation acceleration near the confining surface, which is attributed to energy transported upstream modifying the flow. Average detonation velocities were seen to increase with increasing confiner thickness due to the additional inertial confinement of the reaction zone flow. Significant radial sidewall tube motion was observed immediately ahead of the detonation. Axial motion was also detected which interfered with the front curvature measurements in some cases. It was concluded that the confiner was able to transport energy ahead of the detonation and that this transport has a definite effect on the detonation.

Jackson, Scott I [Los Alamos National Laboratory; Klyanda, Charles B [Los Alamos National Laboratory; Short, Mark [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

489

Title The Containment of Underground Nuclear Explosions OTA-1SC...  

National Nuclear Security Administration (NNSA)

like krypton and xenon, are nonreactive and are sampled by compressing air in pressure tanks. Tritium, which is the radioactive form of hydrogen, is reactive but occurs in the...

490

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

491

One-Dimensional Shock and Detonation Wave Simulator Philip Caplan Dominic LeBlanc Adam Sirignano Amanda Starr Supervisor: Prof. Andrew J. Higgins April 2012  

E-Print Network (OSTI)

One-Dimensional Shock and Detonation Wave Simulator Philip Caplan Dominic LeBlanc Adam Sirignano of the project was to produce physical and numerical models to illustrate the propagation of shock and detonation is transmitted via their magnetic fields. What are shock & detonation waves? Imagine a line of parked train cars

Peraire, Jaime

492

Fluid-Structure Interaction Simulation of Detonation-Driven Rupture Events of Thin-Walled Tubes with a Parallel Adaptive Level Set Method  

E-Print Network (OSTI)

Fluid-Structure Interaction Simulation of Detonation-Driven Rupture Events of Thin-Walled Tubes of Engineering, Cambridge, CB2 1PZ, UK Technically relevant fluid-structure interaction simulation of detonation-induced dy- namic response of thin-walled solid structures requires an efficient detonation solver that can

Deiterding, Ralf

493

High-Speed Combustion and Detonation Project Scaling Up for Mira | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

High-Speed Combustion and Detonation Project Scaling Up for Mira High-Speed Combustion and Detonation Project Scaling Up for Mira March 26, 2013 Printer-friendly version Researchers at the Argonne Leadership Computing Facility (ALCF) are simulating the high-speed combustion and detonation of hydrogen-oxygen mixtures to enable safer and more widespread use of hydrogen as an alternative fuel. This is one of 16 projects in the ALCF's Early Science Program (ESP), which is aimed at preparing key scientific applications for the architecture and scale of Mira, Argonne's new 10-petaflop IBM Blue Gene/Q supercomputer. Using pre-production time on Mira for real scientific problems, these projects vet the system and gather knowledge that will help future projects take full advantage of Mira's vastly increased power and capabilities when it goes into production later this year.

494

Surface chemical reaction of laser ablated aluminum sample for detonation initiation  

SciTech Connect

We explore the evolution of metal plasma generated by high laser irradiances and its effect on the surrounding air by using shadowgraph images after laser pulse termination; hence the formation of laser supported detonation and combustion processes has been investigated. The essence of the paper is in observing initiation of chemical reaction between ablated aluminum plasma and oxygen from air by inducing high power laser pulse (>1000 mJ/pulse) and conduct a quantitative comparison of chemically reactive laser initiated waves with the classical detonation of exploding aluminum (dust) cloud in air. Findings in this work may lead to a new method of initiating detonation from metal sample in its bulk form without the need of mixing nano-particles with oxygen for initiation.

Kim, Chang-hwan; Yoh, Jack J. [School of Mechanical and Aerospace Engineering, Seoul National University, 599 Kwanakro, Kwanakgu, Seoul, Korea 151-742 (Korea, Republic of)

2011-05-01T23:59:59.000Z

495

Beyond the bubble catastrophe of Type Ia supernovae: Pulsating Reverse Detonation models  

E-Print Network (OSTI)

We describe a mechanism by which a failed deflagration of a Chandrasekhar-mass carbon-oxygen white dwarf can turn into a successful thermonuclear supernova explosion, without invoking an ad hoc high-density deflagration-detonation transition. Following a pulsating phase, an accretion shock develops above a core of 1 M_sun composed of carbon and oxygen, inducing a converging detonation. A three-dimensional simulation of the explosion produced a kinetic energy of 1.05E51 ergs and 0.70 M_sun of 56Ni, ejecting scarcely 0.01 M_sun of C-O moving at low velocities. The mechanism works under quite general conditions and is flexible enough to account for the diversity of normal Type Ia supernovae. In given conditions the detonation might not occur, which would reflect in peculiar signatures in the gamma and UV-wavelengths

Eduardo Bravo; Domingo Garcia-Senz

2006-04-03T23:59:59.000Z

496

Deflagration-to-detonation transition project. Quarterly report, December 1979-February 1980  

SciTech Connect

Progress in a project on deflagration-to-detonation transition (DDT) is reported. The activities of this project pertain primarily to the development of small, safe, low-voltage, hot-wire detonators. Its major goals are: the formulation of a modeling capability for DDT of the explosive 2-(5-cyanotetrazolato)pentaamminecobalt (III) perchlorate (CP); the development of improved DDT materials; the establishment of a data base for corrosion, compatibility, and reliability of CP-loaded detonators; and the design and development of advanced DDT components. Information is included on materials development, component development, and compatibility studies encompassing the thermal and chemical stability of CP in contact with the component materials. (LCL)

Lieberman, M.L. (ed.) [ed.

1980-09-01T23:59:59.000Z

497

THE EFFECT OF THE PRE-DETONATION STELLAR INTERNAL VELOCITY PROFILE ON THE NUCLEOSYNTHETIC YIELDS IN TYPE Ia SUPERNOVA  

SciTech Connect

A common model of the explosion mechanism of Type Ia supernovae is based on a delayed detonation of a white dwarf. A variety of models differ primarily in the method by which the deflagration leads to a detonation. A common feature of the models, however, is that all of them involve the propagation of the detonation through a white dwarf that is either expanding or contracting, where the stellar internal velocity profile depends on both time and space. In this work, we investigate the effects of the pre-detonation stellar internal velocity profile and the post-detonation velocity of expansion on the production of {alpha}-particle nuclei, including {sup 56}Ni, which are the primary nuclei produced by the detonation wave. We perform one-dimensional hydrodynamic simulations of the explosion phase of the white dwarf for center and off-center detonations with five different stellar velocity profiles at the onset of the detonation. In order to follow the complex flows and to calculate the nucleosynthetic yields, approximately 10,000 tracer particles were added to every simulation. We observe two distinct post-detonation expansion phases: rarefaction and bulk expansion. Almost all the burning to {sup 56}Ni occurs only in the rarefaction phase, and its expansion timescale is influenced by pre-existing flow structure in the star, in particular by the pre-detonation stellar velocity profile. We find that the mass fractions of the {alpha}-particle nuclei, including {sup 56}Ni, are tight functions of the empirical physical parameter {rho}{sub up}/v{sub down}, where {rho}{sub up} is the mass density immediately upstream of the detonation wave front and v{sub down} is the velocity of the flow immediately downstream of the detonation wave front. We also find that v{sub down} depends on the pre-detonation flow velocity. We conclude that the properties of the pre-existing flow, in particular the internal stellar velocity profile, influence the final isotopic composition of burned matter produced by the detonation.

Kim, Yeunjin; Jordan, G. C. IV; Graziani, Carlo; Lamb, D. Q.; Truran, J. W. [Astronomy Department, University of Chicago, Chicago, IL 60637 (United States); Meyer, B. S. [Physics and Astronomy Department, Clemson University, Clemson, SC 29634 (United States)

2013-07-01T23:59:59.000Z

498

Geometric Scaling for a Detonation Wave Governed by a Pressure-Dependent Reaction Rate and Yielding Confinement  

E-Print Network (OSTI)

The propagation of detonation waves in reactive media bounded by an inert, compressible layer is examined via computational simulations in two different geometries, axisymmetric cylinders and two dimensional, planar slabs. For simplicity, an ideal gas equation of state is used with a pressure-dependent reaction rate that results in a stable detonation wave structure. The detonation is initiated as an ideal Chapman-Jouguet (CJ) detonation with a one-dimensional structure, and then allowed to propagate into a finite diameter or thickness layer of explosive surrounded by an inert layer. The yielding confinement of the inert layer results in the detonation wave decaying to a sub-CJ steady state velocity or failing entirely. Simulations are performed with different values of the reaction rate pressure exponent (n = 2 and 3) and different impedance confinement (greater than, less than, and equal to the confinement of the explosive). The velocity decrement and critical dimension (critical diameter or thickness) are ...

Jianling, Li; Higgins, Andrew J

2014-01-01T23:59:59.000Z

499

LA-UR-11-05233 Page 1 Session 3: High Explosive Topics Modeling of Detonation Propagation  

National Nuclear Security Administration (NNSA)

233 233 Page 1 Session 3: High Explosive Topics Modeling of Detonation Propagation Tariq D. Aslam Los Alamos National Laboratory Summary A simple methodology for propagation of detonation waves, Detonation Shock Dynamics (DSD), is presented. Theory, experiments and computational issues regarding DSD will be addressed. Introduction Detonation Shock Dynamics is based on a weak curvature, quasi-steady analysis of the compressible reactive Euler equations. See [1] for a recent review of the field. The key result from DSD is that to a first order approximation, a detonation wave will propagate normal to itself at a velocity related to its local curvature. This is expressed as a D n -k relation. This D n -k relation is an intrinsic propagation rule (i.e., all

500

Off-center ignition in type Ia supernova: I. Initial evolution and implications for delayed detonation  

E-Print Network (OSTI)

The explosion of a carbon-oxygen white dwarf as a Type Ia supernova is known to be sensitive to the manner in which the burning is ignited. Studies of the pre-supernova evolution suggest asymmetric, off-center ignition, and here we explore its consequences in two- and three-dimensional simulations. Compared with centrally ignited models, one-sided ignitions initially burn less and release less energy. For the distributions of ignition points studied, ignition within two hemispheres typically leads to the unbinding of the white dwarf, while ignition within a small fraction of one hemisphere does not. We also examine the spreading of the blast over the surface of the white dwarf that occurs as the first plumes of burning erupt from the star. In particular, our studies test whether the collision of strong compressional waves can trigger a detonation on the far side of the star as has been suggested by Plewa et al. (2004). The maximum temperature reached in these collisions is sensitive to how much burning and expansion has already gone on, and to the dimensionality of the calculation. Though detonations are sometimes observed in 2D models, none ever happens in the corresponding 3D calculations. Collisions between the expansion fronts of multiple bubbles also seem, in the usual case, unable to ignite a detonation. "Gravitationally confined detonation" is therefore not a robust mechanism for the explosion. Detonation may still be possible in these models however, either following a pulsation or by spontaneous detonation if the turbulent energy is high enough.

F. K. Roepke; S. E. Woosley; W. Hillebrandt

2006-09-04T23:59:59.000Z