Powered by Deep Web Technologies
Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Continuous 1 Conventional and Other 2 Longwall 3 Total Coal-Producing State Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage Recoverable Coal Reserves at Producing Mines Average Recovery Percentage

2

Logistics background study: underground mining  

SciTech Connect

Logistical functions that are normally associated with US underground coal mining are investigated and analyzed. These functions imply all activities and services that support the producing sections of the mine. The report provides a better understanding of how these functions impact coal production in terms of time, cost, and safety. Major underground logistics activities are analyzed and include: transportation and personnel, supplies and equipment; transportation of coal and rock; electrical distribution and communications systems; water handling; hydraulics; and ventilation systems. Recommended areas for future research are identified and prioritized.

Hanslovan, J. J.; Visovsky, R. G.

1982-02-01T23:59:59.000Z

3

Case study of groundwater impact caused by underground mining  

SciTech Connect

An investigative methodology is presented to assist mining and regulatory personnel in determining the effect underground mining can have on local aquifers in the Appalachian coal region. The impact of underground mining on groundwater may be more extensive than first realized by the mining industry and regulatory agencies. The primary reason for this possible under-assessment of deep mining's influence on groundwater is the methods used to calculate groundwater movement. Since groundwater calculations are based on primary hydraulic conductivity, i.e. the conductivity through solid rock measured from rock core samples, erroneous results may be expected. In many cases, groundwater flow times and the corresponding areas of influence are much greater than those assumed since water is rapidly moved through fractured zones that commonly occur throughout Appalachia. A case study illustrating this phenomenon is drawn from underground mining operations in Pike County. A survey of 144 wells was conducted to determine if any loss of water supply and/or quality was found. This was correlated to the extent and time progression of underground mining operations. Other parameters qualified are water level fluctuations, groundwater quality, precipitation, seasonal effects, geology, and mine dewatering. The analysis includes a comprehensive compilation of a well inventory of domestic water supplies. The case study draws conclusions regarding cause and effect relationships.

Sloan, P.; Warner, R.C.

1984-12-01T23:59:59.000Z

4

The Strip and Underground Mine Reclamation Act (Montana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources from strip and underground mining. This Act imposes permitting and operating restrictions on strip and underground mining activities for coal and uranium, and authorizes the Department of Environmental Quality to administer a

5

Westinghouse Earns Mine Safety Award for Exceptional Underground Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Westinghouse Earns Mine Safety Award Westinghouse Earns Mine Safety Award For Exceptional Underground Operations CARLSBAD, N.M., October 5, 2000 - For the 14 th consecutive year, the Westinghouse Waste Isolation Division (WID) has been recognized for "excellence in underground operations" at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). On September 19, New Mexico State Inspector of Mines Gilbert Miera and the New Mexico Mining Association presented Westinghouse with the "Mine Operator of the Year" award. The presentation took place at the New Mexico Mining Association's annual convention in Farmington. The "Mine Operator of the Year" award recognizes Westinghouse's close attention to safety in a mining environment. WID received the award in the category of "non-producing

6

Underground physics without underground labs: large detectors in solution-mined salt caverns  

E-Print Network (OSTI)

A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

Benjamin Monreal

2014-09-30T23:59:59.000Z

7

Underground physics without underground labs: large detectors in solution-mined salt caverns  

E-Print Network (OSTI)

A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

Monreal, Benjamin

2014-01-01T23:59:59.000Z

8

Chemical and physical controls on waters discharged from abandoned underground coal mines  

Science Journals Connector (OSTI)

...abandoned underground coal mines D. L. Lopez M...mines in high-sulphur coal are a major source of acid mine drainage in Appalachia. Studies of mines in...abandoned underground coal mines, tailing deposits...1995, with records of mining dating to as early as...

D. L. López; M. W. Stoertz

9

Modelling rock–water interactions in flooded underground coal mines, Northern Appalachian Basin  

Science Journals Connector (OSTI)

...Office of Surface Mining 3 Parkway Center...flooded underground coal mines in northern Appalachia, USA. In early...the Effects of Coal Mining, Greene County...Seam of Northern Appalachia. In: Proceedings Eastern Coal Mine Geomechanics...

Eric F. Perry

10

Horizontal Hydraulic Conductivity Estimates for Intact Coal Barriers Between Closed Underground Mines  

Science Journals Connector (OSTI)

...discharges were obtained from industry reports stored at the Consol...mining beneath surface water and waste impoundments: In Proceedings...associated with underground coal gasification: Canadian Geotechnical Journal...underground mining United States waste disposal water quality West...

KURT J. McCOY; JOSEPH J. DONOVAN; BRUCE R. LEAVITT

11

Radon concentrations in three underground lignite mines in Turkey  

Science Journals Connector (OSTI)

......being operated by the Aegean Lignite Enterprise (Ege Linyitleri...determined in three underground lignite mines, namely Tuncbilek...which is the main state body of lignite coal production, processing...of TKi. GLi Tuncbilek coal reserve, which is located on the mid-west......

S. Çile; N. Altinsoy; N. Çelebi

2010-01-01T23:59:59.000Z

12

GPS-based slope monitoring systems and their applications in transition mining from open-pit to underground  

Science Journals Connector (OSTI)

Combining methods of open-pit and underground mining can yield maximum economic outcomes, while they may also cause large-scaled geological hazards, such as landslides. Failure to prevent landslides in mining areas could result in losses and damages to equipment, surrounding environments, and even human lives. In this paper, we report the application of global positioning system (GPS) for monitoring the Anjialing Coal Mine, the first mine in China that employs the combining methods of open-pit and underground mining. Mine slopes with different inclined angles were monitored and precise data of ground movements were obtained. Mathematic modelling of the subsidence rate over time has successfully detected the occurrence of terminal subsidence rate and a corresponding a landslide. The equipment and persons involved were evacuated and kept safe before the medium landslide occurred. In conclusion, the GPS monitoring system is proved to be effective in mitigating the geological hazards in mining areas.

Gang Chen; Xingwen Cheng; Weitao Chen; Xianju Li; Liangbiao Chen

2014-01-01T23:59:59.000Z

13

You've got that Sinking Feeling: Measuring Subsidence above Abandoned Underground Mines in Ohio, USA.  

E-Print Network (OSTI)

??As a result of more than 200 years of underground coal mining, many urbanized areas throughout Ohio, USA, are susceptible to land subsidence. Approximately 6,000… (more)

Siemer, Kyle W

2013-01-01T23:59:59.000Z

14

Advanced Underground Gas Storage Concepts Refrigerated-Mined Cavern Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

UNDERGROUND GAS STORAGE CONCEPTS UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE FINAL REPORT DOE CONTRACT NUMBER DE-AC26-97FT34349 SUBMITTED BY: PB-KBB INC. 11757 KATY FREEWAY, SUITE 600 HOUSTON, TX 77079 SEPTEMBER 1998 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily

15

The Strip and Underground Mine Siting Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Strip and Underground Mine Siting Act (Montana) The Strip and Underground Mine Siting Act (Montana) The Strip and Underground Mine Siting Act (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources from strip and underground mining. This Act grants the Department of Environmental Quality the authority to review and approve or disapprove new strip-mine and new underground-mine site locations and reclamation plans and to adopt relevant

16

Gravel bulkheads for confining hydraulic backfilling of abandoned underground coal mines  

SciTech Connect

In this work the author describes the use of gravel bulkheads for confining hydraulic backfilling of abandoned underground coal mines that are simply refilled or, as in the case of the Portal Park swimming pool in Colorado Springs, rebuilt in the area over the abandoned mine. Hydraulic backfilling was the void filling method favored when the Portal Park pool began to tip, and gravel bulkheads confining walls were developed to confine the backfilling effort to areas under the pool. This work describes these bulkheads.

Van Dyke, M.W.

1985-01-01T23:59:59.000Z

17

Diesel exhaust emissions from engines for use in underground mines  

SciTech Connect

Experimental data were obtained from two medium-duty diesel engines derated to qualify for use in underground mines. Gaseous and particulate emissions from these engines were measured and results provide information on the effect of exhaust treatment devices on the emissions. The devices in the study were a catalyst, a particulate trap, and an exhaust gas cooler of the water scrubber type. Emission levels of carbon monoxide and hydrocarbons were observed to be very low in comparison with emission levels of comparable engines in full-rated operation. Oxides of nitrogen and benzo(a)pyrene content of the exhaust also were found to be somewhat low in comparison with previous findings. For particulate reduction, the combination of a particulate trap and a scrubber was observed to be the most effective combination tried; in some cases, over 60% particulate reduction was effected by the trap-scrubber combination.

Eccleston, B.H.; Seizinger, D.E.; Clingenpeel, J.M.

1981-04-01T23:59:59.000Z

18

Method for making generally cylindrical underground openings  

DOE Patents (OSTI)

A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

Routh, J.W.

1983-05-26T23:59:59.000Z

19

Assessment of ground subsidence hazard near an abandoned underground coal mine using GIS  

Science Journals Connector (OSTI)

This study constructs a hazard map for ground subsidence around abandoned underground coal mines (AUCMs) at Samcheok City in ... ) model, and a Geographic Information System (GIS). To evaluate the factors related...

Ki-Dong Kim; Saro Lee; Hyun-Joo Oh; Jong-Kuk Choi; Joong-Sun Won

2006-09-01T23:59:59.000Z

20

Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines  

Science Journals Connector (OSTI)

Abstract Subsidence of ground caused by underground mines poses hazards to human life and property. This study analyzed the hazard to ground subsidence using factors that can affect ground subsidence and a decision tree approach in a geographic information system (GIS). The study area was Taebaek, Gangwon-do, Korea, where many abandoned underground coal mines exist. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 50/50 for training and validation of the models. A data-mining classification technique was applied to the GSH mapping, and decision trees were constructed using the chi-squared automatic interaction detector (CHAID) and the quick, unbiased, and efficient statistical tree (QUEST) algorithms. The frequency ratio model was also applied to the GSH mapping for comparing with probabilistic model. The resulting GSH maps were validated using area-under-the-curve (AUC) analysis with the subsidence area data that had not been used for training the model. The highest accuracy was achieved by the decision tree model using CHAID algorithm (94.01%) comparing with QUEST algorithms (90.37%) and frequency ratio model (86.70%). These accuracies are higher than previously reported results for decision tree. Decision tree methods can therefore be used efficiently for GSH analysis and might be widely used for prediction of various spatial events.

Saro Lee; Inhye Park

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE  

SciTech Connect

This project evaluated the technical, economic and environmental feasibility of filling abandoned underground mine voids with coal combustion byproducts. Success was measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). Phase 1 of the project was completed in September 1995 and was concerned with the development of the grout and a series of predictive models. These models were verified through the Phase II field phase and will be further verified fin the large scale field demonstration of Phase III. The verification allows the results to be packaged in such a way that the technology can be easily adapted to different site conditions. Phase II was successfully completed with 1000 cubic yards of grout being injected into Anker Energy's Fairfax mine. The grout flowed over 600 feet from a single injection borehole. The grout achieved a compressive strength of over 1000 psi (twice the level that is needed to guarantee subsidence control). Phase III was a full scale test at Anker's eleven acre Longridge mine site. The CCB grout replaced what was an open mine void with a solid so that the groundwater tends to flow around and through the pillars rather than through the previously mined areas. The project has demonstrated that CCBs can be successfully disposed in underground mines. Additionally, the project has shown that filling an abandoned underground mine with CCBs can lead to the reduction and elimination of environmental problems associated with underground mining such as acid mine drainage and subsidence. The filling of the Longridge Mine with 43,000 cubic yards of CCB grout resulted in a 97% reduction in acid mine drainage coming from the mine.

Unknown

2000-10-01T23:59:59.000Z

22

Ground Motions from and House Response to Underground Aggregate Mining  

E-Print Network (OSTI)

interest because many urban quarries have gone underground or are considering doing so. Three cracks were to determine future blasting controls for a underground aggregate quarry near Franklin, KY (Revey, 2005

23

A life cycle comparison of greenhouse emissions for power generation from coal mining and underground coal gasification  

Science Journals Connector (OSTI)

For the emissions from energy and equipment use of underground coal mining, the data from the office of Energy Efficiency and Renewable Energy’s (EERE) hypothetical eastern U.S. underground coalmine is used (EERE

Zeshan Hyder; Nino S. Ripepi…

2014-05-01T23:59:59.000Z

24

Investigation into the modeling of ground deformations induced by underground mining  

SciTech Connect

The mechanisms of strata deformation due to underground mining were analyzed in an effort to better understand immediate roof behavior and surface displacements. Strata deformation characteristics above longwall and room-and-pillar mines in the eastern US coal fields were evaluated and a numerical procedure was developed for calculating surface displacements. The model, based on the well-known finite element method, utilized empirical indices associated with subsidence engineering in order to incorporate the site-specific characteristics into the formulation. Different material behavior models and failure criteria were employed in an attempt to determine the areas highly deformed by underground excavation. Additionally, the method was sensitive to the ratios of the elastic moduli used to describe different rocks and/or rock conditions, and not to the magnitude of the elastic properties. Thus, the use of arbitrary reduction factors to convert laboratory to in situ property values was completely avoided and scaling of the calculated surface displacements was based on, the empirically predicted, regional or local parameters. The use of fixed displacement nodes around an opening to induce failure overcame the roof-floor overlap problem encountered in other formulations. The successful implementation of the proposed methodology for modeling surface deformations complements and enhances existing prediction techniques, which are primarily based on empirical approaches, by allowing parametric analysis for different excavation geometries, roof convergence curves and overburden properties.

Agioutantis, Z.G.

1987-01-01T23:59:59.000Z

25

COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES  

E-Print Network (OSTI)

Waste Storage in Mined Caverns in Crystalline Rock, LBL-Waste Storage in Mined Caverns in Crystalline Rock, LBL-for additional shaft and cavern support and stabilization.

Lamb, D.W.

2013-01-01T23:59:59.000Z

26

Sensitivity analysis for the GIS-based mapping of the ground subsidence hazard near abandoned underground coal mines  

Science Journals Connector (OSTI)

Ground subsidence around abandoned underground coal mines can cause much loss of life ... by sensitivity analysis in geographic information system (GIS). Spatial data for the subsidence area,...

Hyun-Joo Oh; Seung-Chan Ahn; Jong-Kuk Choi; Saro Lee

2011-09-01T23:59:59.000Z

27

Assessment and management of roof fall risks in underground coal mines  

Science Journals Connector (OSTI)

Accidents caused by roof falls are commonly faced problems of underground coal mines. These accidents may have detrimental effects on workers in the form of injury, disability or fatality as well as mining company due to downtimes, interruptions in the mining operations, equipment breakdowns, etc. This study proposes a risk and decision analysis methodology for the assessment and management of risk associated with mine roof falls in underground coal mines. In the proposed methodology, risk assessment requires the determination of probabilities, possible consequences and cost of consequences. Then the risk is managed by the application of decision-making principles. The probabilities are determined by the analysis of 1141 roof fall data from 12 underground mines in the Appalachian region. The consequences are assessed based on the type of injuries observed after roof falls and the place of the mining activity. The cost of consequences is modeled by the so-called “relative cost criterion”. A decision analysis framework is developed in order to manage the evaluated risk for a single mine. Then this model is extended to a regional model for the management of the roof fall risks in the mines of whole Appalachia. The proposed model is illustrated with an example and it is found to be a powerful technique for coping with uncertainties and the management of roof fall risks.

H.S.B. Duzgun; H.H. Einstein

2004-01-01T23:59:59.000Z

28

A modified version of the geomechanics classification for entry design in underground coal mines  

SciTech Connect

The Geomechanics Classification was modified for entry and roof support design in underground room-and-pillar coal mines. Adjustment multipliers were introduced to incorporate the influence of strata weatherability, high horizontal stresses, and the roof support reinforcement factor into the existing classification system. Sixty-two case histories of both standing and fallen mine roof were collected from two mines in the northern Appalachian coalfield. Twenty-seven engineering and geologic parameters were recorded for each case. A partial correlation analysis was carried out on the cases to establish which parameters have a significant impact upon the supported stand-up time of coal mine roof. Survival analysis, a statistical technique used in medical research to assess the effect of a drug or treatment on a patient's life expectancy, was conducted together with stepwise multiple regression to derive values for the adjustment multipliers. A practical example is included to illustrate the application of the modified Geomechanics Classification to underground coal mine design.

Newman, D.A.; Bieniawski, Z.T.

1985-01-01T23:59:59.000Z

29

Southwest Virginia underground coal mine map database and base maps - synopsis of an ongoing coalfield project  

SciTech Connect

In September 1991, the Department of Mines, Minerals, and Energy of the Commonwealth of Virginia entered into an agreement with the office of Surface Mining to prepare a coal mine map database and to produce 1:24,000 scale individual coal-bed base maps showing documented underground mined areas throughout the Southwest Virginia coal field. The project results are to provide public, industry, and all levels of government a much-needed means of initial evaluation of many coalfield related concerns. The completed maps will be incorporated into an integrated geographic information system (GIS). Evaluating the entire coalfield involved a preliminary review of 48 quadrangles. Ongoing detailed, accurate information gathering of extensive underground mine map files was necessary to provide a needed organized map database. Construction of coalfield index maps of information gathered to date provide insight into coalfield-wide outcrop patterns, mine distributions, and coal-bed trends. A completed set of individual maps, referenced to the underground mine map database, showing the types of mining applicable per coal bed quadrangle is the designated project output.

Sites, R.S.; Hostettler, K.K. (Division of Mineral Resources, Charlottesville, VA (United States))

1993-08-01T23:59:59.000Z

30

Development of a GIS-based monitoring and management system for underground coal mining safety  

Science Journals Connector (OSTI)

Coal mine safety is of paramount concern to mining industry. Mine accidents have various causes and consequences including catastrophic failure of mine, substantial economic losses and most notably loss of lives. Therefore, any initiative in mine monitoring is of vital importance for progressing safety surveillance and maintenance. This paper presents the development of a geographic information system (GIS)-based monitoring and management system for underground mine safety in three levels as constructive safety, surveillance and maintenance, and emergency. The developed model integrates the database design and management to the monitoring system implementation which encompasses query and analysis operations with the help of web and desktop applications. Interactive object-oriented graphical user interfaces (GUIs) were developed to visualize information about the entities gathered from the model and also to provide analysis operations based on the graphical representations and demonstrations using data tables and map objects. The research methodology essentially encompasses five main stages: (i) designing a conceptual database model; (ii) development of a logical model in terms of entity-relationship (ER) diagrams; (iii) development of a physical model based on physical constraints and requirements; (iv) development of \\{GUIs\\} and implementation of the developed model, analysis and queries; (v) verification and validation of the created model for Ömerler underground coal mine in Turkey. The proposed system is expected to be an efficient tool for improving and maintaining healthy standards in underground coal mines which can possibly be extended to a national GIS infrastructure.

Seda ?alap; Mahmut Onur Karsl?o?lu; Nuray Demirel

2009-01-01T23:59:59.000Z

31

Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method,  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Table 15. Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012 (million short tons) U.S. Energy Information Administration | Annual Coal Report 2012 Underground - Minable Coal Surface - Minable Coal Total Coal-Resource State Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base Recoverable Reserves at Producing Mines Estimated Recoverable Reserves Demonstrated Reserve Base

32

abandoned underground mines: Topics by E-print Network  

NLE Websites -- All DOE Office Websites (Extended Search)

. Atmospheric pressure . Air temperature on the surface . Exits . Open or closed old mining voids Introduction, atmospheric pressure, speed and direction of the wind have also...

33

Application of 3D electrical resistivity imaging in an underground potash mine Robert A. Eso and Douglas W. Oldenburg, University of British ColumbiaGeophysical Inversion Facility  

E-Print Network (OSTI)

Application of 3D electrical resistivity imaging in an underground potash mine Robert A. Eso it possible to explore for water infiltrated areas in underground salt mines using electrical resistivity the application of 3D electrical resistivity imaging (ERI) in an underground potash mine located in Saskatchewan

Oldenburg, Douglas W.

34

Geologic considerations in underground coal mining system design  

SciTech Connect

Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucky, is next analyzed, using both the new baseline mine concept and traditional geologic investigative approach. The baseline mine concept presented is intended as a framework, providing a consistent basis for further analyses to be subsequently conducted in other geographic regions. The baseline mine concept is intended as a tool to give system designers a more realistic feel of the mine environment and will hopefully lead to acceptable alternatives for advanced coal extraction system.

Camilli, F.A.; Maynard, D.P.; Mangolds, A.; Harris, J.

1981-10-01T23:59:59.000Z

35

IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY  

E-Print Network (OSTI)

1 IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY Susan T. Bagley1, Winthrop-1295 2 Department of Mechanical Engineering, Center for Diesel Research, University of Minnesota, 111 Church St, S.E., Minneapolis, MN 55455 3 Department of Mechanical Engineering and Engineering Mechanics

Minnesota, University of

36

Geologic considerations in underground coal mining system design  

SciTech Connect

Geologic characteristics of coal resources which may impact new extraction technologies are identified and described to aid system designers and planners in their task of designing advanced coal extraction systems for the central Appalachian region. These geologic conditions are then organized into a matrix identified as the baseline mine concept. A sample region, eastern Kentucky is analyzed using both the developed baseline mine concept and the traditional geologic investigative approach.

Camilli, F.A.; Maynard, D.P.; Mangolds, A.; Harris, J.

1981-10-01T23:59:59.000Z

37

Remote controlled underground mining system preliminary design and concept plans. Final report  

SciTech Connect

The proposed mining technique has the potential to mine coal from underground horizontal or pitching seams in the 9-foot thickness range at an estimated cost ranging from $7.987 to $10.152 per ton. The estimate is established on conclusions drawn from: (1) the anticipated mining rate, in terms of tons per hour, that the mining system's hardware is expected to achieve as an average; (2) the approximate cost of the mining hardware amortized on a production service life expectancy of 4,000,000 tons; (3) logistics pertinent to continuous mine production, requiring the operation of two Mining Rigs simultaneously with operating crews totaling to 9 men per shift; (4) the angle of the mine bores into pitching seams extend, whenever possible, to no more than 30/sup 0/ from the horizontal; (5) mine bores extend to maximum feasible or permissible length. A bore length of 2500 feet is considered feasible; and (6) gas recovery from the mine bores can be accomplished with relative ease. The value of this, however, has not been determined since its handling as a recoverable requires investigation on hardware assemblies necessary to its processing, and the volume that must exist to invite a commercially attractive effort.

Haspert, J.C.

1984-03-01T23:59:59.000Z

38

Underground coal mining is an industry well suited for robotic automation. Human operators are severely hampered in  

E-Print Network (OSTI)

Abstract Underground coal mining is an industry well suited for robotic automation. Human operators approach meets the requirements for cutting straight entries and mining the proper amount of coal per cycle. Introduction The mining of soft materials, such as coal, is a large industry. Worldwide, a total of 435 million

Stentz, Tony

39

Fracture-zone dewatering to control ground water inflow in underground coal mines. Report of Investigations/1985  

SciTech Connect

The Bureau of Mines investigation focuses on the identification and control of ground-water inflow problems that occur in the active sections of underground Appalachian coal mines. A fracture inflow survey of eight underground mines was conducted. Three types of mine fracture intercepts were identified, which are typical of wet section mining conditions. A mine in Preston County, WV was selected as the site for a fracture-zone dewatering experiment. Fracture trace analysis was used to site dewatering wells in a fracture valley setting ahead of mine development. The design, implementation, and results of the dewatering experiment are presented. The investigation suggests that fracture zones are responsible for the sudden release of stored ground water, which often occurs as mining sections advance beneath fracture valley topography. It is concluded, therefore, that dewatering operations that are designed to intercept the component of ground water that is stored in fracture zones will be most effective in controlling infiltration to active mine sections.

Schmidt, R.D.

1985-01-01T23:59:59.000Z

40

Assessment of effective parameters on dilution using approximate reasoning methods in longwall mining method, Iran coal mines  

E-Print Network (OSTI)

Approximately more than 90% of all coal production in Iranian underground mines is derived directly longwall mining method. Out of seam dilution is one of the essential problems in these mines. Therefore the dilution can impose the additional cost of mining and milling. As a result, recognition of the effective parameters on the dilution has a remarkable role in industry. In this way, this paper has analyzed the influence of 13 parameters (attributed variables) versus the decision attribute (dilution value), so that using two approximate reasoning methods, namely Rough Set Theory (RST) and Self Organizing Neuro- Fuzzy Inference System (SONFIS) the best rules on our collected data sets has been extracted. The other benefit of later methods is to predict new unknown cases. So, the reduced sets (reducts) by RST have been obtained. Therefore the emerged results by utilizing mentioned methods shows that the high sensitive variables are thickness of layer, length of stope, rate of advance, number of miners, type of...

Owladeghaffari, H; Saeedi, G H R

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Management of dry flue gas desulfurization by-products in underground mines  

SciTech Connect

Disposal of coal combustion by-products (CCBs) in an environmentally sound manner is a major issue facing the coal and utility industries in the US today. Disposal into abandoned sections of underground coal mines may overcome many of the surface disposal problems along with added benefits such as mitigation of subsidence and acid mine drainage. However, many of the abandoned underground coal mines are located far from power plants, requiring long distance hauling of by-products which will significantly contribute to the cost of disposal. For underground disposal to be economically competitive, the transportation and handling cost must be minimized. This requires careful selection of the system and optimal design for efficient operation. The materials handling and system economics research addresses these issues. Transportation and handling technologies for CCBs were investigated from technical, environmental and economic points of view. Five technologies were found promising: (1) Pneumatic Trucks, (2) Pressure Differential Rail Cars, (3) Collapsible Intermodal Containers, (4) Cylindrical Intermodal Tanks, and (5) Coal Hopper Cars with Automatic Retractable Tarping. The first two technologies are currently being utilized in transporting by-products from power plants to disposal sites, whereas the next three are either in development or in conceptualization phases. In this research project, engineering design and cost models were developed for the first four technologies. The engineering design models are in the form of spreadsheets and serve the purpose of determining efficient operating schedules and sizing of system components.

Sevim, H.

1997-06-01T23:59:59.000Z

42

DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE  

SciTech Connect

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into four major sections. The first deals with the Hydraulic Injection component. This section of the report reports on progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase III (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

Unknown

1999-01-01T23:59:59.000Z

43

Disposal of Fluidized Bed Combustion Ash in an Underground Mine to Control Acid Mine Drainage and Subsidence  

SciTech Connect

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion (FBC) ash). Success will be measured in terms of technical feasibility of the approach (i.e. YO void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase Ill the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the spring of 1998 and monitored for following year. The second demonstration involves stowing 2000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during the winter of 1997. This document will report on progress made during Phase Ill. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase Ill tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase Ill (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

NONE

1998-08-31T23:59:59.000Z

44

DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE  

SciTech Connect

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

Unknown

2000-01-01T23:59:59.000Z

45

DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE  

SciTech Connect

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

Unknown

1999-07-01T23:59:59.000Z

46

DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE  

SciTech Connect

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

Unknown

2000-04-01T23:59:59.000Z

47

DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE  

SciTech Connect

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

Unknown

1999-04-01T23:59:59.000Z

48

Management of dry flue gas dsulfurization by-products in underground mines - an update  

SciTech Connect

In 1993, the U.S. produced about 100 million tons of coal combustion by-products (CCBs) primarily from conventional coal-fired boilers. The requirement to reduce SO{sub x} and NO{sub x} emissions to comply with the 1990 Clean Air Act Amendments (CAAA) force utilities to adopt advanced combustion and flue gas desulfurization (FGD) technologies, such as wet scrubbers, fluidized bed combustion (FBC), dry sorbent duct or furnace injection. These technologies will double to triple the amount of FGD by-products while only slightly increasing the amounts of conventional combustion residues, such as fly ash, bottom ash and boiler slag. This paper describes a program concerned with the underground disposal of combustion products in abandoned underground coal mines.

Chugh, Y.P.; Thomasson, E.M. [Southern Illinois Univ., Carbondale, IL (United States)

1996-09-01T23:59:59.000Z

49

Longwall mining  

SciTech Connect

As part of EIA`s program to provide information on coal, this report, Longwall-Mining, describes longwall mining and compares it with other underground mining methods. Using data from EIA and private sector surveys, the report describes major changes in the geologic, technological, and operating characteristics of longwall mining over the past decade. Most important, the report shows how these changes led to dramatic improvements in longwall mining productivity. For readers interested in the history of longwall mining and greater detail on recent developments affecting longwall mining, the report includes a bibliography.

NONE

1995-03-14T23:59:59.000Z

50

Analytical determination of strain energy for the studies of coal mine bumps.  

E-Print Network (OSTI)

??Coal mine bumps occur in most countries where coal is mined by underground methods. Coal bumps can be characterized as unstable releases of strain energy… (more)

Xu, Qiang, 1981-

2009-01-01T23:59:59.000Z

51

Underground reconnaissance and environmental monitoring related to geologic CO2 sequestration studies at the DUSEL Facility, Homestake Mine, South Dakota  

SciTech Connect

Underground field reconnaissance was carried out in the Deep Underground Science and Engineering Laboratory (DUSEL) to identify potential locations for the planned geologic carbon sequestration experimental facility known as DUSEL CO{sub 2}. In addition, instrumentation for continuous environmental monitoring of temperature, pressure, and relative humidity was installed at various locations within the Homestake mine. The motivation for this work is the need to locate and design the DUSEL CO{sub 2} facility currently being planned to host CO{sub 2} and water flow and reaction experiments in long column pressure vessels over large vertical length scales. Review of existing geologic data and reconnaissance underground revealed numerous potential locations for vertical experimental flow columns, with limitations of existing vertical boreholes arising from limited vertical extent, poor continuity between drifts, and small diameter. Results from environmental monitoring over 46 days reveal spatial and temporal variations related to ventilation, weather, and ongoing dewatering of the mine.

Dobson, Patrick F.; Salve, Rohit

2009-11-20T23:59:59.000Z

52

A feasibility study for underground coal gasification at Krabi Mine, Thailand  

SciTech Connect

A study to evaluate the technical, economical, and environmental feasibility of underground coal gasification (UCG) in the Krabi Mine, Thailand, was conducted by the Energy and Environmental Research Center (EERC) in cooperation with B.C. Technologies (BCT) and the Electricity Generating Authority of Thailand (EGAT). The selected coal resource was found suitable to fuel a UCG facility producing 460,000 MJ/h (436 million Btu/h) of 100--125 Btu/scf gas for 20 years. The raw UCG gas could be produced for a selling price of $1.94/MMBtu. The UCG facility would require a total investment of $13.8 million for installed capital equipment, and annual operating expenses for the facility would be $7.0 million. The UCG gas could be either cofired in a power plant currently under construction or power a 40 MW simple-cycle gas turbine or a 60 MW combined-cycle power plant.

Solc, J.; Steadman, E.N. [Energy and Environmental Research Center, Grand Forks, ND (United States); Boysen, J.E. [BC Technologies, Laramie, WY (United States)

1998-12-31T23:59:59.000Z

53

Apparatus and method for monitoring underground fracturing  

DOE Patents (OSTI)

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture. 13 figs.

Warpinski, N.R.; Steinfort, T.D.; Branagan, P.T.; Wilmer, R.H.

1999-08-10T23:59:59.000Z

54

Apparatus and method for monitoring underground fracturing  

DOE Patents (OSTI)

An apparatus and method for measuring deformation of a rock mass around the vicinity of a fracture, commonly induced by hydraulic fracturing is provided. To this end, a well is drilled offset from the proposed fracture region, if no existing well is present. Once the well is formed to a depth approximately equal or exceeding the depth of the proposed fracture, a plurality of inclinometers, for example tiltmeters, are inserted downhole in the well. The inclinometers are located both above and below the approximate depth of the proposed fracture. The plurality of inclinometers may be arranged on a wireline that may be retrieved from the downhole portion of the well and used again or, alternatively, the inclinometers may be cemented in place. In either event, the inclinometers are used to measure the deformation of the rock around the induced fracture.

Warpinski, Norman R. (Albuquerque, NM); Steinfort, Terry D. (Tijeras, NM); Branagan, Paul T. (Las Vegas, NV); Wilmer, Roy H. (Las Vegas, NV)

1999-08-10T23:59:59.000Z

55

An investigation of the noise dynamics in a southern illinois underground coal mine.  

Science Journals Connector (OSTI)

Noise in an underground coal mine has dominant components generated mainly from three sources: (1) continuous mining machine (CMM) (2) roof bolters and (3) cars/vehicles which are transporting personnel end/or coal. Each of these three noise sources also has a number of well defined sub?sources with their own noise characteristics. The CMM noise is comprised mainly of noisegenerated by coal cutting drum wet scrubber for dust control and coal transport conveyor (called also the CMM’s tail). Roof bolter’s noise is generated during the drilling of the roof bolt holes in the bolting process. Personnel and coaltransportationvehiclesgeneratenoise from the power driven system. The personnel most exposed to these noises are operators of these machines and associated support personnel. Three selected techniques with appropriate instrumentation were used to monitor exposure of the personnel to the noise and noise energy over a period of time. The most common technique is based on the use of personal noise dosimeters. The sound level meters (both pressure and power) were also used to collect noise data in form of instantaneous readings and also to check calibration of other sound measuring instruments. Most useful information was obtained from continuous recordings of the noise over time. This paper discusses the variability or dynamics of the generatednoise in both frequency and time domains

Marek Szary; Yoginder Chugh; William Bell; Joseph Hirschi

2010-01-01T23:59:59.000Z

56

Method for maximizing shale oil recovery from an underground formation  

DOE Patents (OSTI)

A method for maximizing shale oil recovery from an underground oil shale formation which has previously been processed by in situ retorting such that there is provided in the formation a column of substantially intact oil shale intervening between adjacent spent retorts, which method includes the steps of back filling the spent retorts with an aqueous slurry of spent shale. The slurry is permitted to harden into a cement-like substance which stabilizes the spent retorts. Shale oil is then recovered from the intervening column of intact oil shale by retorting the column in situ, the stabilized spent retorts providing support for the newly developed retorts.

Sisemore, Clyde J. (Livermore, CA)

1980-01-01T23:59:59.000Z

57

DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES  

SciTech Connect

The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

Yoginder P. Chugh

2002-10-01T23:59:59.000Z

58

Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems  

SciTech Connect

In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

Watzlaf, G.R.; Ackman, T.E.

2006-03-01T23:59:59.000Z

59

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, April 1--June 30, 1996  

SciTech Connect

On September 30, 1993, the US Department of Energy - Morgantown Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate two technologies for the placement of coal combustion residues in abandoned underground coal mines, and will assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement, using virtually dry materials, and (2) hydraulic placement, using a {open_quotes}paste{close_quotes} mixture of materials with about 70% solids. Phase II of the overall program began April 1, 1996. The principal objective of Phase II is to develop and fabricate the equipment for placing the coal combustion by-products underground, and to conduct a demonstration of the technologies on the surface. Therefore, this quarter has been largely devoted to developing specifications for equipment components, visiting fabrication plants throughout Southern Illinois to determine their capability for building the equipment components in compliance with the specifications, and delivering the components in a timely manner.

NONE

1997-05-01T23:59:59.000Z

60

Patterns of solidarity: A case study of self-organization in underground mining  

SciTech Connect

This case study in underground coal mining is informed by some notions of scholars who have written in widely divergent traditions and disciplines. Two major themes dealt with are labor's subjective moment and workplace culture. Regarding the subjective moment of labor, it is argued that there is an expressive element in work which defies reductions to some exchange principle. The struggle, for those articulating capitalist work processes, is to keep this purposive activity from being diverted totally to alien ends. The mediating element in this struggle, which structural Marxists have ignored in their analyses of capitalist workplaces, is culture. There is created a network of lasting relationships in the work group over and above any interdependence engendered by the division of labor. This shared culture allows for a collective recognition of the common product of group work, the shared nature of a particular work process, even the liberating potential of social relations themselves. The group's internalization of these social facts provides a base from which workers can mount an unceasing effort to control their workplace.

Vaught, C.

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, September 1--November 30, 1997  

SciTech Connect

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion (FBC) ash). Success will be measured in terms of technical feasibility of the approach (i.e., % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the spring of 1998 and monitored for following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during the winter of 1997. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

NONE

1997-12-31T23:59:59.000Z

62

Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, December 1, 1996--February 28, 1997  

SciTech Connect

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the summer of 1997 and monitored for the following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during Summer 1997, as well. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine. The Gantt Chart on the following page details progress by task.

NONE

1997-12-31T23:59:59.000Z

63

Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, December 1, 1996--February 28, 1997  

SciTech Connect

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion -- FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase 3 the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the summer of 1997 and monitored for the following year. The second demonstration involves stowing 2,000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during Summer 1997, as well. This document will report on progress made during Phase 3. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase 3 tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase 3 (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

NONE

1997-12-31T23:59:59.000Z

64

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997  

SciTech Connect

The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

Chugh, Y.P.

1997-12-31T23:59:59.000Z

65

Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence. Quarterly report, March 1--May 31, 1998  

SciTech Connect

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion, FBC, ash). Success will be measured in terms of technical feasibility of the approach, cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). Phase 1 of the project was completed in September 1995 and was concerned with the development of the grout and a series of predictive models. These models were verified through the Phase 2 field phase and will be further verified in the large scale field demonstration of Phase 3. The verification will allow the results to be packaged in such a way that the technology can be easily adapted to different site conditions. Phase 2 was successfully completed with 1,000 cubic yards of grout being injected into Anker Energy`s Fairfax mine. The grout flowed over 600 feet from a single injection borehole. The grout achieved a compressive strength of over 1,000 psi (twice the level that is needed to guarantee subsidence control). Phase 3 is to take 26 months and will be a full scale test at Anker`s eleven acre Longridge mine site.

NONE

1998-09-01T23:59:59.000Z

66

Management of dry gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1996  

SciTech Connect

The objective is to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement using virtually dry coal combustion by-products, and (2) hydraulic placement using a paste mixture of combustion by-products with about 70% solids. Phase 2 of the overall program began April 1, 1996. The principal objective of Phase 2 is to develop and fabricate the equipment for both the pneumatic and hydraulic placement technologies, and to conduct a limited, small-scale shakedown test of the pneumatic and hydraulic placement equipment. The shakedown test originally was to take place on the surface, in trenches dug for the tests. However, after a thorough study it was decided, with the concurrence of DOE-METC, to drill additional injection wells and conduct the shakedown tests underground. This will allow a more thorough test of the placement equipment.

NONE

1996-12-31T23:59:59.000Z

67

Underground Injection Control (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

68

GIS-based pre-mining land damage assessment for underground coal mines in high groundwater area  

Science Journals Connector (OSTI)

Coal mining cause different degrees of damage to both land and ecosystems. Evaluation of disturbed land is a fundamental and prerequisite work for land reclamation and rehabilitation. However, most of those evaluations were carried out when mining was under process or after it cease. This paper proposes an innovative assessment model for pre-evaluation which could be implemented before mining activity begins. A geographic information system (GIS) was constructed to evaluate land damage. Three natural condition factors and three geological condition factors were chosen for evaluation. The results show that: land damage was categorised as five degrees, which are negligible, slight, moderate, severe, and very severe. Furthermore, very severely damaged areas are mainly concentrated in the northwest part of the coal mine, whereas slight damaged areas are mainly concentrated in the southwest. The developed coupling technique was used to forecast land damage, and provide reference for reclamation work.

Wu Xiao; Zhenqi Hu

2014-01-01T23:59:59.000Z

69

Compass: A hybrid method for clinical and biobank data mining  

Science Journals Connector (OSTI)

We describe a new method for identification of confident associations within large clinical data sets. The method is a hybrid of two existing methods; Self-Organizing Maps and Association Mining. We utilize Self-Organizing Maps as the initial step to ... Keywords: Association mining, Clinical data, Data mining, Rule extraction, Self-Organizing Map

K. Krysiak-Baltyn, T. Nordahl Petersen, K. Audouze, Niels Jørgensen, L. íngquist, S. Brunak

2014-02-01T23:59:59.000Z

70

Acoustically sensing the presence of methane and carbon dioxide in underground coal mine  

Science Journals Connector (OSTI)

A WSN can be used to continuously sense monitor and transmit data to a centralized control station in a under ground coal mine. A fact limiting the possibility is the presence of highly humid condition in UG coal mines. Current sensors cannot work continuously over prolonged period in UG coal mine environment. This paper describes a multi-aspect data fusion approach for acoustical sensors which make it possible to measure the build up of methane and carbon dioxide in UG coal mine environment. Suggested approach takes time of flight phase and attenuation of sonic pulses to determine the build up of methane and carbon dioxide. Suggested approach is more power efficient in comparison to existing sensors. A temperature sensor is used to accommodate change in characteristics of sonic pulses.

A. Singh; M. Radhakrishna

2011-01-01T23:59:59.000Z

71

Management of dry flue gas desulfurization by-products in underground mines. Topical report, October 1, 1993--March 31, 1998  

SciTech Connect

The DESEVAL-TRANS program is developed for the purpose of helping the engineer to design and economically evaluate coal combustion byproduct transportation systems that will operate between the power plant and the disposal site. The objective of the research project was to explore the technical, environmental and economic feasibility of disposing coal combustion byproducts in underground mines in Illinois. The DESEVAL-TRANS (short for Design and Evaluation of Transportation Systems) was developed in the Materials Handling and Systems Economics branch of the overall project. Four types of coal combustion byproducts were targeted for transportation and handling: Conventional fly ash; Scrubber sludge; Fluidized Bed Combustion (FBC) fly ash; and Spent-bed ash. Several transportation and handling systems that could handle these byproducts were examined. These technologies were classified under three general categories: Truck; Rail; and Container. The purpose of design models is to determine the proper number of transport units, silo capacity, loading and unloading rates, underground placement capacity, number of shifts, etc., for a given case, defined by a distance-tonnage combination. The cost computation models were developed for the determination of the operating and capital costs. An economic evaluation model, which is common to all categories, was also developed to establish the cost-per-ton of byproduct transported.

NONE

1998-09-01T23:59:59.000Z

72

Mthodes de prvision des dgradations des structures bties en zone d'affaissement minier Methods for buildings damage estimation located in mining subsidence area  

E-Print Network (OSTI)

, dégradations, prévisions, statistique. Abstract : Mines and underground quarries, exploited or abandoned, can

Paris-Sud XI, Université de

73

Patent data mining method and apparatus  

DOE Patents (OSTI)

A method of data mining represents related patents in a multidimensional space. Distance between patents in the multidimensional space corresponds to the extent of relationship between the patents. The relationship between pairings of patents can be expressed based on weighted combinations of several predicates. The user can select portions of the space to perceive. The user also can interact with and control the communication of the space, focusing attention on aspects of the space of most interest. The multidimensional spatial representation allows more ready comprehension of the structure of the relationships among the patents.

Boyack, Kevin W. (Albuquerque, NM); Grafe, V. Gerald (Corrales, NM); Johnson, David K. (Albuquerque, NM); Wylie, Brian N. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

74

Biodiesel Clears the Air in Underground Mines, Clean Cities, Fact Sheet, June 2009  

SciTech Connect

Mining companies are using biodiesel in their equipment to help clear the air of diesel particulate matter (DPM). This action improves air quality and protects miners' lungs. Though using biodiesel has some challenges in cold weather, tax incentives, and health benefits make it a viable option.

Not Available

2009-06-01T23:59:59.000Z

75

4D seismic data acquisition method during coal mining  

Science Journals Connector (OSTI)

In order to observe overburden media changes caused by mining processing, we take the fully-mechanized working face of the BLT coal mine in Shendong mine district as an example to develop a 4D seismic data acquisition methodology during coal mining. The 4D seismic data acquisition is implemented to collect 3D seismic data four times in different periods, such as before mining, during the mining process and after mining to observe the changes of the overburden layer during coal mining. The seismic data in the research area demonstrates that seismic waves are stronger in energy, higher in frequency and have better continuous reflectors before coal mining. However, all this is reversed after coal mining because the overburden layer has been mined, the seismic energy and frequency decrease, and reflections have more discontinuities. Comparing the records collected in the survey with those from newly mined areas and other records acquired in the same survey with the same geometry and with a long time for settling after mining, it clearly shows that the seismic reflections have stronger amplitudes and are more continuous because the media have recovered by overburden layer compaction after a long time of settling after mining. By 4D seismic acquisition, the original background investigation of the coal layers can be derived from the first records, then the layer structure changes can be monitored through the records of mining action and compaction action after mining. This method has laid the foundation for further research into the variation principles of the overburden layer under modern coal-mining conditions.

Wen-Feng Du; Su-Ping Peng

2014-01-01T23:59:59.000Z

76

Strata-movement concepts and the hydrogeological impact of underground coal mining. [Effects of subsidence on permeability of rock above longwall  

SciTech Connect

A review of mining-engineering concepts and studies in mine hydrology suggests a conceptual model linking the strata deformation, hydraulic property changes, and ground-water impacts due to underground coal mining. The pressure-arch deformation pattern about a small opening creates a local zone of increased permeabilities and dewatering in the seam and immediate roof, but should not hydraulically affect shallower aquifiers. Networks of supported headings, rooms, and pillars intensely drain lower aquifiers but only slightly affect higher strata except in areas of naturally high permeability. Longwall mining causes extensive, high-reaching, well-defined zones of stress, fracturing, and hydraulic impact, the maximum permeability increases being in the tensile zones immediately above the panel and at the sides of the subsidence trough. In shallow aquifiers, permeabilities and ground-water velocities increase, and hydraulic gradients decline independently of mine drainage. A study of a deep coal mine in the Appalachian Plateau, Pennsylvania indicated: probable hydraulic connections between the mine and shallow aquifiers in a principle valley area; no obvious response of water levels in shallow aquifiers to undermining by supported headings; and rapid, considerable declines in such water levels in response to nearby longwall mining. These results are consistent with the conceptual model.

Booth, C.J.

1986-07-01T23:59:59.000Z

77

Feasibility study for underground coal gasification at the Krabi Coal Mine site, Thailand. Final report  

SciTech Connect

This study, conducted by Energy and Environmental Research Center, was funded by the U.S Trade and Development Agency. The report summarizes the accomplishments of field, analytical data evaluation and modeling activities focused on assessment of underground coal gasification (UCG) feasibility at Krabi over a two year period. The overall objective of the project was to determine the technical issues, environmental impact, and economic of developing and commercializing UCG at the site in Krabi. The report contains an Executive Summary followed by these chapters: (1) Project Overview; (2) Project Site Characterization; (3) Inorganic and Thermal Materials Characterization; (4) Technical and Economic Feasibility of UCG At the Krabi Site; (5) Conclusions and Recommendations; (6) Acknowledgments; (7) References.

Boysen, J.; Sole, J.; Schmit, C.R.; Harju, J.A.; Young, B.C.

1997-01-01T23:59:59.000Z

78

Feasibility study for underground coal gasification at the Krabi coal mine site, Thailand: Volume 1. Progress report, December 1--31, 1995; Export trade information  

SciTech Connect

The report, conducted by Energy and Environmental Research Center, was funded by the US Trade and Development Agency. The objective of this report was to determine the technical, environmental and economic feasibility of developing, demonstrating, and commercializing underground coal gasification (UCG) at the Krabi coal mine site in Southern Thailand. This is Volume 1, the Progress Report for the period December 1, 1995, through December 31, 1995.

Young, B.C.; Schmit, C.R.

1996-01-01T23:59:59.000Z

79

Science @WIPP: Underground Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

80

Management of dry flue gas desulfurization by-products in underground mines. Technical progress report, 1 January--31 March 1994  

SciTech Connect

Southern Illinois University at Carbondale will develop and demonstrate several technologies for the handling and transport of dry coal combustion residues and for the underground placement in abandoned coal mines and assess associated environmental impacts. Although parts of the Residue Characterization portion of the program were delayed because residue samples were not obtained, other parts of the program are proceeding on schedule. The delays in obtaining residue samples were primarily caused by adverse weather conditions, the shut-down of one unit at the City Water, Light, and Power Company Plant for routing maintenance and problems due to conflicting schedules of utility and program personnel. However, by the end of the quarter most residue samples had been obtained, and the residue characterization studies were under way. Progress is described for five studies: environmental assessment and geotechnical stability and subsidence impacts; residue characterization; physico-chemical characterization of residues; identification and assessment of handling/transportation systems for FGD residues; and residue handling and transport.

Chugh, Y.P.; Esling, S.; Ghafoori, N.; Honaker, R.; Paul, B.; Sevim, H.; Thomasson, E.

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Taking the soil-structure interaction into account in assessing the loading of a structure in a mining subsidence area.  

E-Print Network (OSTI)

materials at an acceptable cost has led to large underground mines and quarries. Because of the extraction when it takes place over mines and quarries that use methods based on abandoned rooms and pillars

Paris-Sud XI, Université de

82

Oil shale retorted underground  

Science Journals Connector (OSTI)

Oil shale retorted underground ... Low-temperature underground retorting of oil shale produces a crude oil with many attractive properties, Dr. George R. Hill of the University of Utah told a meeting of the American Institute of Mining, Metallurgical, and Petroleum Engineers last week in Los Angeles. ... Typical above-ground retorting of oil shale uses temperatures of 900° to 1100° F. because of the economic need ... ...

1967-02-27T23:59:59.000Z

83

Analyses of environmental impacts of underground coal mining in an arid region using remote sensing and GIS  

Science Journals Connector (OSTI)

The influences of coal mining in an arid environment on vegetation coverage, land-use change, desertification, soil and water loss were discussed. A series of available TM/ETM+ images with no cloud cover from ...

Zheng-fu Bian; Hai-xia Zhang; Shao-gang Lei

2011-12-01T23:59:59.000Z

84

A Survey of Spatial Data Mining Methods Databases and Statistics Point of Views  

E-Print Network (OSTI)

A Survey of Spatial Data Mining Methods Databases and Statistics Point of Views Karine Zeitouni PRi in common. KEYWORDS : Spatial Data Mining, Spatial Databases, Rules Induction, Spatial Statistics, Spatial data mining to spatial data. This recent technology is an extension of the data mining applied

Zeitouni, Karine

85

E-Print Network 3.0 - advanced underground gas Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Mulder1 Summary: where all current underground activities take place except for oil and gas extraction and mining... with reluctant public perception still hamper such underground...

86

Coal Mining (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

87

NETL: News Release - Jet Engine Successful in Fighting Mine Fire  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2003 2, 2003 Jet Engine Successful in Fighting Mine Fire Energy Department's Assistance Brings West Virginia Coal Miners Back To Work One Year Early - Australian Jet Engine Successfully Fights West Virginia Mine Fire - By blowing its exhaust into the underground mine, the modified jet engine was able to snuff out the mine fire much faster than traditional methods. FAIRVIEW, WV - A modified jet engine has been used to successfully fight a West Virginia mine fire that had been burning for nearly two months and was the cause of 300 employees being temporarily laid off when mine operations were idled. Positioned at the mouth of the one of the mineshafts, the jet engine was used to blow water vapor and inert gases into the mine to smother the fire by creating an inert environment underground. It was the

88

Method and apparatus for the in situ decontamination of underground water with the aid of solar energy  

DOE Patents (OSTI)

A method for the in situ decontamination of underground water containing -volatile contaminants comprising continuously contacting in situ underground water containing non-volatile contaminants with a liquid-absorbent material possessing high capillary activity, allowing the non-volatile contaminants to deposit in the material while the water moves upwardly through the material by capillary action, allowing substantially decontaminated water to be volatilized by impinging solar radiation, and then allowing the volatilized water to escape from the material into the atmosphere. An apparatus for the in situ decontamination of underground water containing non-volatile contaminants comprising at least one water-impermeable elongated conduit having an upper portion and first and second open ends and containing a homogeneous liquid-absorbent material possessing high capillary activity, means for supporting said conduit, and means for accelerating the escape of the volatilized decontamined water from the material, said means being detachably connected to the second end of the elongated conduit; wherein when underground water contaminated with non-volatile contaminants is continuously contacted in situ with the material contained in the first end of the conduit and the second end of the conduit is placed in contact with atmospheric air, non-volatile contaminants deposit in said material as the water moves upwardly through the material by capillary action, is then volatilized by impinging solar energy and escapes to the atmosphere.

Bench, Thomas R. (Pittsburgh, PA); McCann, Larry D. (Elizabeth, PA)

1989-01-01T23:59:59.000Z

89

Mining  

Energy.gov (U.S. Department of Energy (DOE))

Supply and cost management–including energy costs–pose key challenges for U.S. mining companies. The industry has worked with AMO to develop a range of resources for increasing energy efficiency and reducing costs.

90

Proceedings of the sixteenth international symposium on mine planning and equipment selection (MPES 2007) and the tenth international symposium on environmental issues and waste management in energy and mineral production (SWEMP 2007)  

SciTech Connect

Papers presented at MPES 2007 covered: coal mining and clean coal processing technologies; control, design and planning of surface and underground mines; drilling, blasting and excavation engineering; mining equipment selection; automation and information technology; maintenance and production management for mines and mining systems; health, safety and environment; cost effective methods of mine reclamation; mine closure and waste disposal; and rock mechanics and geotechnical issues. Papers from SWEMP 2007 discussed methods and technologies for assessing, minimizing and preventing environmental problems associated with mineral and energy production. Topics included environmental impacts of coal-fired power projects; emission control in thermal power plants; greenhouse gas abatement technologies; remediation of contaminated soil and groundwater; environmental issues in surface and underground mining of coal, minerals and ores; managing mine waste and mine water; and control of effluents from mineral processing, metallurgical and chemical plants.

Singhal, R.K.; Fytas, K.; Jongsiri, S.; Ge, Hao (eds.) [Universite Laval, Quebec, PQ (Canada)

2007-07-01T23:59:59.000Z

91

Best practices for underground diesel emissions  

SciTech Connect

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

92

A Method for Evaluating the Application of Variable Frequency Drives with Coal Mine Ventilation Fans.  

E-Print Network (OSTI)

??The adjustable-pitch setting on an axial-flow fan is the most common method of controlling airflow for primary coal mine ventilation. With this method, the fan… (more)

Murphy, Tyson M.

2006-01-01T23:59:59.000Z

93

Precision Mining  

NLE Websites -- All DOE Office Websites (Extended Search)

Precision Mining Precision Mining Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Precision Mining at WIPP is Routine All tunnels that make up the WIPP underground are mined with the same precision that is exhibited in this photo. Typical drift cross sections are about 8m x 4m. Custom excavation and maintenance of openings of any configuration can be made. In 2005, WIPP completed renovations to the 6,000 cubic meter North Experimental Area (NExA). The area, located at the northern end of the mine, was refurbished through rib trimming, floor grading, removal of loose muck, ground support and restoration of basic lighting and mine communications. As of 2010, the NExA is used for the Enriched Xenon Observatory (EXO), the Dark Matter Time Projection Chamber (DMTPC)

94

Underground Exploration  

E-Print Network (OSTI)

Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste Technical Review Board October 1993 Yucca Mountain at #12;Nuclear Waste Technical Review Board Dr. John E and Testing #12;Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction

95

Engineering geologic feasibility of lignite mining in alluvial valleys by hydraulic dredging methods  

E-Print Network (OSTI)

ENGINEERING GEOLOGIC FEASIBILITY OF LIGNITE MINING IN ALLUVIAL VALLEYS BY HYDRAULIC DREDGING METHODS A Thesis by CYNTHIA LYNN CASON Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1982 Niajor Subject: Geology ENGINEERING GEOLOGIC FEASIBILITY OF LIGNITE MINING IN ALLUVIAL VALLEYS BY HYDRAULIC DREDGING METHODS A Thesis by CYNTHIA LYNN CASON Approved as to style and content by: (Chairman...

Cason, Cynthia Lynn

1982-01-01T23:59:59.000Z

96

Simulation of the Effects of Thermo Insulating Shotcrete on the Energy Consumption of Ventilation and Cooling Systems at Deep Underground Mines  

Science Journals Connector (OSTI)

As the demand for minerals increases over the world, mining reaches new depths. As a result, one has to contend with increasing temperatures in working areas due to geothermal heat trapped in the surrounding r...

Derek Apel; Wei Liu; Vivek Bindiganavile

2014-01-01T23:59:59.000Z

97

Computer methods for surface mine evaluation in the Appalachian coalfield  

SciTech Connect

The increasing complexity of surface mining operation has resulted in the development of a number of computer models to describe its operation. In this paper, a modified model is used to analyze critical design parameters of a surface mining operation. Research has indicated that there are several design factors which influence the dozer productivity and consequently the productivity of the entire overburden removal system. These are lift or bench width, lift height, the percentage of the overburden removed by dozer stripping. Several analyses are presented which illustrate the variation of both tons per hour and loose cubic yards per hour with lift width, lift height, and percentage dozed. Using this data, values of critical width, are computed to indicate the cut-offs where trapping productivity exceeds that of both the LHS (load-haul-strip) and LHST (load-haul-strip-trap) extraction. 5 references, 8 figures.

Goodman, G.V.; Topuz, E.; Karmis, M.

1985-12-09T23:59:59.000Z

98

Methods of minimizing ground-water contamination from in situ leach uranium mining. Final report  

SciTech Connect

This is the final report of a research project designed to study methods of minimizing ground-water contamination from in situ leach uranium mining. Fieldwork and laboratory experiments were conducted to identify excursion indicators for monitoring purposes during mining, and to evaluate effective aquifer restoration techniques following mining. Many of the solution constituents were found to be too reactive with the aquifer sediments to reliably indicate excursion of leaching solution from the ore zone; however, in many cases, the concentrations of chloride and sulfate and the total dissolved solids level of the solution were found to be good excursion indicators. Aquifer restoration by ground-water sweeping consumed large quantities of ground water and was not effective for the redox-sensitive contaminants often present in the ore zone. Surface treatment methods such as reverse osmosis and electrodialysis were effective in reducing the amount of water used, but also had the potential for creating conditions in the aquifer under which the redox-sensitive contaminants would be mobile. In situ restoration by chemical reduction, in which a reducing agent is added to the solution recirculated through the ore zone during restoration, can restore the ore-zone sediment as well as the ground water. This method could lead to a stable chemical condition in the aquifer similar to conditions before mining. 41 figures.

Deutsch, W.J.; Martin, W.J.; Eary, L.E.; Serne, R.J.

1985-03-01T23:59:59.000Z

99

Resource targets for advanced underground coal-extraction systems. [Identification of location and geology of deposit for which greatest savings can be realized by advanced mining systems in 2000  

SciTech Connect

This report identifies resource targets appropriate for federal sponsorship of research and development of advanced underground coal mining systems. In contrast to previous research, which focused on a particular resource type, this study made a comprehensive examination of both conventional and unconventional coals, with particular attention to exceptionally thin and thick seams, steeply dipping beds, and multiple seam geometry. The major thrust of the targeting analysis was forecasting which coals would be of clear commercial significance at the beginning of the 21st century under three widely different scenarios for coal demand. The primary measure of commercial importance was an estimate of the aggregate dollar savings realized by consumers if advanced technology were available to mine coal at prices at or below the price projected for conventional technology in the year 2000. Both deterministic and probabilistic savings estimates were prepared for each demand scenario. The results indicate that the resource of primary importance is flat-lying bituminous coal of moderate thickness, under moderate cover, and located within the lower 48 states. Resources of secondary importance are the flat-lying multiple seams and thin seams (especially those in Appalachia). The rather substantial deposits of bituminous coal in North Alaska and the deeply buried lignites of the Gulf Coast present transportation and ground control problems which appear to postpone their commercial importance well beyond 2000. Steeply dipping coals, abandoned pillars, and exceptionally thick western coals may be important in some regions or sub-regions, but the limited tonnage available places them in a position of tertiary importance.

Hoag, J.H.; Whipple, D.W.; Habib-Agahi, H.; Lavin, M.L.

1982-08-01T23:59:59.000Z

100

Sustainable heat extraction from abandoned mine tunnels: A numerical model  

Science Journals Connector (OSTI)

Abandoned mines are often associated with enduring liabilities which involve significant costs for decades after the decommissioning of the mine. Using a decommissioned mine as a geothermal resource can offset the environmental costs by supplying green heat to the communities living in and around the mine area. In this paper a numerical assessment of geothermal heat extraction from underground mine workings using an open loop geothermal system is carried out. In this study our focus is on fully flooded mines where the heat flow from the rock mass to the mine cavities is dominantly controlled by conduction in the rock mass. The sustainable heat flux into the mine workings is assessed using a transient two-dimensional axisymmetric heat transfer model. Finite volume method is applied to solve the model and simulate the transient temperature fields in the rock mass and within the water (flowing through cavities). The model is capable of controlling the rate of heat extraction through continuous adjustment of the rate of water flow through the mine. Sustainable rate of heat extraction is calculated for seasonally varied heat loads and for different project life cycles. It is shown that with proper resource management each kilometre of a typical deep underground mine tunnel can produce about 150?kW of usable heat in a sustainable manner. The model is validated by comparing its results with other published models and realistic data available from Springhill mine Nova Scotia Canada. It is found that the sustainable heat extraction is controlled dominantly by virgin rock temperature thermal conductivity of the rock mass and seasonal heat load variations.

S. A. Ghoreishi Madiseh; Mory M. Ghomshei; F. P. Hassani; F. Abbasy

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

High-volume, high-value usage of flue gas desulfurization (FGD) by- products in underground mines: Phase 1, Laboratory investigations. Quarterly report, April--June 1995  

SciTech Connect

The kinetics study which is investigating hydration reactions of the ADM by-product (Subtask 2.2) was continued this quarter. This study further aided in gaining information on mineral precipitation and dissolution reactions during hydration of the ADM materials. The information is of importance for a comprehensive understanding of the factors that control strength and long-term stability during aging of FGD materials. The decision was made by Addington, Inc., DOE, and the University of Kentucky that the originally selected mine site for the emplacement demonstration must be changed, mainly for safety reasons. Mine selection will be a priority for the next quarter (Jul--Sep, 1995). Another activity during this reporting period was related to Subtask 4.3, the selection and testing of the transport system for the FGD material. A laboratory-scale pneumatic emplacement test unit (ETU) for dry FGD materials was built at the CAER to generate data so that a final selection of the field demonstration technology can be made. A dry pneumatic system was chosen for laboratory testing because the equipment and expertise available at the CAER matched this sort of technology best. While the design of the laboratory system was based on shotcrete technology, the physical properties of the emplaced FGD material is expected to be similar for other transport techniques, either pneumatic or hydraulic. In other words, the selection of a dry pneumatic transport system for laboratory testing does not necessarily imply that a scaled-up version will be used for the field demonstration. The ETU is a convenient means of producing samples for subsequent chemical and physical testing by a representative emplacement technology. Ultimately, the field demonstration technology will be chosen based on the laboratory data and the suitability of locally available equipment.

NONE

1995-09-01T23:59:59.000Z

102

Solution mining systems and methods for treating hydrocarbon containing formations  

DOE Patents (OSTI)

A method for treating an oil shale formation comprising nahcolite is disclosed. The method includes providing a first fluid to a portion of the formation through at least two injection wells. A second fluid is produced from the portion through at least one injection well until at least two injection wells are interconnected such that fluid can flow between the two injection wells. The second fluid includes at least some nahcolite dissolved in the first fluid. The first fluid is injected through one of the interconnected injection wells. The second fluid is produced from at least one of the interconnected injection wells. Heat is provided from one or more heaters to the formation to heat the formation. Hydrocarbon fluids are produced from the formation.

Vinegar, Harold J. (Bellaire, TX); de Rouffignac, Eric Pierre (Rijswijk, NL); Schoeling, Lanny Gene (Katy, TX)

2009-07-14T23:59:59.000Z

103

Visualizing and Modeling Mining-Induced Surface Subsidence.  

E-Print Network (OSTI)

??Ground subsidence due to underground coal mining is a complex, narrowly-understood phenomenon. Due to the complicated physical processes involved and the lack of a complete… (more)

Platt, Marcor Gibbons

2009-01-01T23:59:59.000Z

104

An integrated quantitative hazard analysis method for natural gas jet release from underground gas storage caverns in salt rock. I: Models and validation  

Science Journals Connector (OSTI)

It is very important and necessary to perform quantitative hazard analysis for possible accidental leakage from an underground gas storage cavern in salt rock. An integrated quantitative hazard analysis method for natural gas jet release from salt caverns is presented in this paper, which was constituted by a revised model for gas leakage rate calculation, a consequence analysis and a model of probability assessment for harm. The presented method was validated by comparing the analytical results with the data collected from the real accidents (including the leakage, jet fire, fireball and vapor cloud explosion). It is indicated that the proposed method was more accurate than the TNT equivalence method for vapor cloud explosion and gave more reasonable results when applied to the consequence analysis for the thermal radiation from jet fire and fireball.

Shigang Yang; Qin Fang; Yadong Zhang; Hao Wu; Linjian Ma

2013-01-01T23:59:59.000Z

105

The 'Mine/Yours' method of international comparisons of carbon emissions  

SciTech Connect

In previous work (Schipper, Unander & Lilliu 1999), we summarized a new method for comparing energy use and carbon emissions among various countries. We call this the ''Mine/Yours'' comparison. In this paper, we provide details of the comparisons methodology, and carry out the comparison on a number of IEA countries. We calculate the average energy intensities I for a sample of countries (''yours'') and multiply them by structural parameters S for a particular country (''mine''). Comparing the results with the actual energy use of the country in question gives us an estimate of how much energy that country would use with average intensities but with its own structural conditions. The converse can be calculated as well, that is, average structure and own intensities. Emissions can be introduced through the F (fuel mix) term. These calculations show where differences in the components of emissions lead to large gaps among countries, and where those differences are not important. We show which components cause the largest variance in emissions by sector. In households, home size, average winter climate, and energy intensity appear to be the most important differentiating characteristics for space heating. For other residential energy uses the mix of fuels used to generate electricity (utility mix) is most important. Because some of the differences are ''built in'' - geography, climate, natural resources endowment - we conclude by questioning whether uniform emissions reductions targets make sense. Indeed, the ''Mine/Yours'' tool provides a valuable guide to important ways in which emissions may or may not be flexible.

Murtishaw, Scott; Schipper, Lee; Unander, Fridtjof

2000-09-01T23:59:59.000Z

106

Numerical study on convection diffusion for gasification agent in underground coal gasification. Part I: establishment of mathematical models and solving method  

SciTech Connect

The aim of this article is to discuss the distribution law of the gasification agent concentration in a deep-going way during underground coal gasification and the new method of solving the problem for the convection diffusion of the gas. In this paper, the basic features of convection diffusion for the gas produced in underground coal gasification are studied. On the basis of the model experiment, through the analysis of the distribution and patterns of variation for the fluid concentration field in the process of the combustion and gasification of the coal seams within the gasifier, the 3-D non-linear unstable mathematical models on the convection diffusion for oxygen are established. In order to curb such pseudo-physical effects as numerical oscillation and surfeit which frequently occurred in the solution of the complex mathematical models, the novel finite unit algorithm, the upstream weighted multi-cell balance method is advanced in this article, and its main derivation process is introduced.

Yang, L.H.; Ding, Y.M. [China University of Mining & Technology, Xuzhou (China). College of Resources and Geoscience

2009-07-01T23:59:59.000Z

107

An integrated approach for the prediction of subsidence for coal mining basins  

Science Journals Connector (OSTI)

Abstract In this study, land subsidence caused by underground mining activities was investigated by means of a new subsidence prediction approach (ISP-Tech) which takes into account the most important parameters contributing subsidence development such as coal production methods, depth, mining sequence and other geomechanical characteristics of underground rock strata, etc. ISP-Tech can be applied to operating mines to keep land subsidence under control as well as virgin coal sites to predict surface subsidence prior to mining activities. In the method, geological information gathered from the geographic information system (GIS) and the mining information system (MIS) are utilised to obtain geological cross-sections which are used in finite element models for mesh building. Then, a number of two dimensional finite element modelling analyses are carried out to determine land subsidence occurring due to mining operations. Finally, land subsidence predicted from modelling studies is compared to the GPS and/or differential interferometry synthetic aperture radar (DIn-SAR) measurements. If incompatibility of the results is detected, finite element meshes should be optimised, and then reanalysed to obtain more compatible results. In the study, two different case studies were given as examples of the application of ISP-Tech. Results of the case studies showed that ISP-Tech can successfully be applied to complex mine subsidence problems. The proposed approach gives more accurate results than those obtained from other classical subsidence prediction methods.

Tugrul Unlu; Hakan Akcin; Ozgur Yilmaz

2013-01-01T23:59:59.000Z

108

Underground Layout Configuration  

SciTech Connect

The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

A. Linden

2003-09-25T23:59:59.000Z

109

1 INTRODUCTION Appalachian coal recovered during mining fre-  

E-Print Network (OSTI)

of Appalachian underground coal mining (Newman 2003). Storage of coal processing waste is limited to above ground, the impact of past and present mining on the long-term stability of the structure must be evalu- ated overlies a section of the mine workings and, therefore, long term stability of the mine work- ings

110

Case studies of sealing methods and materials used in the salt and potash mining industries  

SciTech Connect

Sealing methods and materials currently used in salt and potash industries were surveyed to determine if systems analogous to the shaft seal design proposed for the Waste Isolation Pilot Plant (WIPP) exist. Emphasis was first given to concrete and then expanded to include other materials. Representative case studies could provide useful design, construction, and performance information for development of the WIPP shaft seal system design. This report contains a summary of engineering and construction details of various sealing methods used by mining industries for bulkheads and shaft liners. Industrial experience, as determined from site visits and literature reviews, provides few examples of bulkheads built in salt and potash mines for control of water. Sealing experiences representing site-specific conditions often have little engineering design to back up the methods employed and even less quantitative evaluation of seal performance. Cases examined include successes and failures, and both contribute to a database of experiences. Mass salt-saturated concrete placement under ground was accomplished under several varied conditions. Information derived from this database has been used to assess the performance of concrete as a seal material. Concrete appears to be a robust material with successes in several case studies. 42 refs.

Eyermann, T.J.; Sambeek, L.L. Van [RE/SPEC Inc., Rapid City, SD (United States); Hansen, F.D. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.

1995-11-01T23:59:59.000Z

111

Technology experience and economics of oil shale mining in Estonia  

SciTech Connect

The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1995-11-01T23:59:59.000Z

112

Underground Gas Storage Reservoirs (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gas Storage Reservoirs (West Virginia) Gas Storage Reservoirs (West Virginia) Underground Gas Storage Reservoirs (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider West Virginia Department of Commerce Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas

113

Geologic factors in coal mines roof stability: a progress report  

SciTech Connect

This report summarizes 10 selected United States Bureau of Mines research contract reports produced from 1970 to 1980 that consist largely of geologic studies of coal-mine roof-support problems. The reports focus on the Appalachian and Illinois coal-mining regions. In the Appalachian region two geologic structures, roof rolls and slickensides, predominate as features that directly contribute to roof falls. Studies of these and other structures are reviewed, and improved methods of utilizing drill core and core logs to prepare hazard maps are presented. Among the reports described are several on the weakening effects of moisture on shale roof, as determined from both laboratory and underground measurements, and an assessment of air tempering as a humidity-control method. Also summarized are findings concerning the time lapse between roof exposure and permanent support installation as a factor in the effectiveness of roof bolting.

Moebs, N.N.; Stateham, R.M.

1984-01-01T23:59:59.000Z

114

Underground coal gasification field experiment in the high-dipping coal seams  

SciTech Connect

In this article the experimental conditions and process of the underground gasification in the Woniushan Mine, Xuzhou, Jiangsu Province are introduced, and the experimental results are analyzed. By adopting the new method of long-channel, big-section, and two-stage underground coal gasification, the daily gas production reaches about 36,000 m{sup 3}, with the maximum output of 103,700 m{sup 3}. The daily average heating value of air gas is 5.04 MJ/m{sup 3}, with 13.57 MJ/m{sup 3} for water gas. In combustible compositions of water gas, H{sub 2} contents stand at over 50%, with both CO and CH{sub 4} contents over 6%. Experimental results show that the counter gasification can form new temperature conditions and increase the gasification efficiency of coal seams.

Yang, L.H.; Liu, S.Q.; Yu, L.; Zhang, W. [China University of Mining & Technology, Xuzhou (China). College of Resources & Geoscience

2009-07-01T23:59:59.000Z

115

Underground Power Cables  

Science Journals Connector (OSTI)

...1973 research-article Underground Power Cables J. D. Endacott Up to the present, effectively...particular, in recent years, the oil-filled cable system using cellulose paper impregnated...design of supertension underground power cable systems are considered. The limitations...

1973-01-01T23:59:59.000Z

116

Knight Hawk adapts highwall mining for Southern Illinois  

SciTech Connect

A few years ago while planning their first underground operation and trying to decide how to mine shallow seams, Knight Hawk purchased a 'Superior Highwall Miner' (SHM). Since then this small innovative company has been pioneering the use of highwall mining in a trenching application in for example the Illinois Basin. Highwall mining is very suitable for contour mining in Appalachia. The article discusses the recent improvements and the advantages of SHM mining systems. 3 photos.

Buchsbaum, L.

2007-10-15T23:59:59.000Z

117

Investigation of the spectrum of high-energy muons by the method of multiple interactions on the basis of data from the Baksan underground scintillation telescope  

Science Journals Connector (OSTI)

Experimental data obtained with the aid of the Baksan underground scintillation telescope over a long period of its operation are analyzed with the aim of searches for an excess flux of ultrahigh-energy (?100 TeV...

A. G. Bogdanov; R. P. Kokoulin; Yu. F. Novoseltsev…

2009-12-01T23:59:59.000Z

118

Active control of underground stresses through rock pressurization  

SciTech Connect

To significantly increase the stability of underground excavations while exploiting the full advantages of confined rock strength, methods must be developed to actively control the distribution of stresses near the excavation. This US Bureau of Mines study examines theoretical and practical aspects of rock pressurization, an active stress control concept that induces compressive stress in the wall rock through repeated hydraulic fracturing with a settable fluid. Numerical analyses performed by incorporating the rock pressurization concept into a variety of boundary-element models indicate that rock pressurization has the potential to improve underground excavation stability in three ways: (1) by relocating stress concentrations away from the weak opening surface to stronger, confined wall rock; (2) by inducing additional stresses in a biaxial stress field to reduce the difference between the principal stress components near the surface of the opening, and (3) by counteracting the tensile stresses induced in the rock around internally loaded openings. Practical aspects of the rock pressurization concept were investigated through a series of hydraulic fracturing experiments. The use of sulfur as a settable fluid for hydraulic fracturing was demonstrated, although problems related to sulfur viscosity suggest that other molten materials, such as wax, may be better suited to practical field application of the rock pressurization concept.

Vandergrift, T.L.

1995-06-01T23:59:59.000Z

119

Design and Field Testing of an Autonomous Underground Tramming System  

E-Print Network (OSTI)

-haul-dump (LHD) machine is often used to excavate fragmented rock, haul it to an assigned location, and then dump, the hazardous nature of underground envi- ronments, driver safety and fatigue, labor costs, and the cyclic" attempts worked by outfitting the mine with signal- emitting cables [2], light-emitting ropes [1

Paris-Sud XI, Université de

120

Underground radio technology saves miners and emergency response personnel  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground radio technology saves miners and emergency response Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital Alert Technologies, Inc. (Vital Alert) has launched a wireless, two-way real-time voice communication system that is effective through 1,000+ feet of solid rock. April 3, 2012 Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock strata and other solid media. Vital Alert's C1000 mine and tunnel radios use magnetic induction, advanced digital communications techniques and ultra-low frequency transmission to wirelessly provide reliable 2-way voice, text, or data links through rock

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

The Sanford underground research facility at Homestake  

SciTech Connect

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

2014-06-24T23:59:59.000Z

122

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.

123

Opencut Mining Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Opencut Mining Act (Montana) Opencut Mining Act (Montana) Opencut Mining Act (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources from strip and underground mining. This Act imposes permitting and operating restrictions on opencut mining activities. The Act contains permitting, siting, and procedural requirements; more specific regulations can be found in the Administrative Rules of Montana

124

Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012  

U.S. Energy Information Administration (EIA) Indexed Site

Mining Productivity by State, Mine Type, and Mine Production Range, 2012 Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Table 23. Coal Mining Productivity by State, Mine Type, and Mine Production Range, 2012 (short tons produced per employee hour) U.S. Energy Information Administration | Annual Coal Report 2012 Mine Production Range (thousand short tons) Coal-Producing State, Region 1 and Mine Type Above 1,000 Above 500 to 1,000 Above 200 to 500 Above 100 to 200 Above 50 to 100 Above 10 to 50 10 or Under Total 2 Alabama 1.69 2.50 1.95 1.72 1.83 0.69 0.55 1.68 Underground 1.73 - - - 1.08 0.31 - 1.64 Surface 1.36 2.50 1.95 1.72 2.11 1.19 0.55 1.75 Alaska 5.98 - - - - - - 5.98 Surface 5.98 - - - - - - 5.98 Arizona 7.38 - - - - - - 7.38 Surface

125

Geochemical and hydrogeologic evolution of alkaline discharges from abandoned coal mines  

SciTech Connect

Numerous large flow (> 2,000 l/min), historically (pre-1973) acidic, abandoned underground deep mine discharges in southwestern Pennsylvania are now alkaline in character, with circumneutral pH. Recently measured flow rates are consistent with those measured 25--30 years ago; thus the change in chemistry is not simply due to dilution by increased flows of uncontaminated water through the mines. It is likely that flooding of the mines has decreased the extent of acidity enhancing aerobic conditions, and that decades of weathering have reduced the amount of reactive pyrite. However, the mines continue to yield a sulfate-rich, Fe-contaminated (19--79 ppm) drainage. These highly alkaline discharges (up to 330 ppm as CaCO{sub 3}) are accompanied by large concentrations of sodium (up to 700 ppm) and suggest cation exchange with the associated overburden. To assess the hydrogeological conditions that result in the formation of alkaline Fe-contaminated mine discharges, the authors examined all the major discharges from a single synclinal basin. The northeast-trending Irwin synclinal coal basin encompasses 94 mi{sup 2} and was extensively mined by underground methods during the first half of this century. All major streams that arise within or cross the syncline are polluted by mine drainage that ranges from highly acidic Fe- and Al-contaminated discharges in the northern portion of the syncline to highly alkaline, iron and sulfate-contaminated discharges to the south. The hydrology of the basin is controlled by its southern plunging structure, by outcrops or drainage tunnels on the western arms of the syncline, and by several coal barriers. A first-order hydrogeologic model was constructed to evaluate ground water flow into and through the mine complexes found in the basin. The model integrates the basin geometry with structural and mine barrier components to determine groundwater flow paths and estimate residence time. Water quality is related to the cumulative proportion of up-gradient flooded and unflooded mine workings. Small discharges from unflooded, gravity-flow portions of the mined-out portion of the Pittsburgh Coal seam are highly acidic, and large artesian flows of water affected by only a short flow through flooded anoxic mine pools are moderately acidic. Those discharges subjected to increased residence time in flooded anoxic portions of the mines are increasingly alkaline. Refinement of this model could aid in prediction and hydrogeologic manipulation of these high flow Fe-contaminated discharges that are the main pollutant in many streams throughout Northern Appalachia and other coal mining areas throughout the world.

Winters, W.R.; Capo, R.C.; Wolinsky, M.A.; Weaver, T.J.; Hedin, R.S.

1999-07-01T23:59:59.000Z

126

Building damage risk assessment on mining terrains in Poland with GIS application  

Science Journals Connector (OSTI)

The aim of the paper was to present an approach to building damage risk assessment on mining induced areas. The presented method was developed in Poland and then adopted in the other European countries. The method shown is based on a comparison between buildings strength and terrain deformation. Prediction principles of the mining terrain deformation and terrain categorization were described in the paper. Moreover a point method for a building strength to mining impact evaluation was discussed. It should be emphasized that the presented method is optimal for densely build-up areas. The authors proposed supporting actually applied method by GIS analyses. As a case study a densely build-up area influenced by an underground mining exploitation of one of the biggest Polish coal mines has been chosen. The application of the presented method supported by GIS on chosen area enables more automated assessment of building damage caused by mining activity. The procedure outlined in this paper may also be satisfactorily applied in the other counties which cope with the problem of building damage risk assessment optimization.

A. Malinowska; R. Hejmanowski

2010-01-01T23:59:59.000Z

127

Method for obtaining gelled hydrocarbon compositions, the compositions according to said method and their application in the hydraulic fracturing of underground formations  

SciTech Connect

The invention relates to a method for obtaining gelled hydrocarbon compositions, and their application in the hydraulic fracturing of rocks. The gelling method according to the invention uses as an activator a partially neutralized aluminum acid salt.

Daccord, G.; Lemanczyk, R.; Vercaemer, C.

1985-03-26T23:59:59.000Z

128

Geotechnical & Mining Engineering  

E-Print Network (OSTI)

to the design analysis of Transformer Hall and Machine Hall in an underground cavern. Underground excavations

Chapman, Clark R.

129

Animals that Hide Underground  

NLE Websites -- All DOE Office Websites (Extended Search)

Animals that Hide Underground Animals that Hide Underground Nature Bulletin No. 733 November 23, 1963 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist ANIMALS THAT HIDE UNDERGROUND A hole in the ground has an air of mystery about it that rouses our curiosity. No matter whether it is so small that only a worm could squeeze into it, or large enough for a fox den, our questions are much the same. What animal dug the hole? Is it down there now? What is it doing? When will it come out? An underground burrow has several advantages for an animal. In it, many kinds find safety from enemies for themselves and their young. For others, it is an air-conditioned escape from the burning sun of summer and a snug retreat away from the winds and cold of winter. The moist atmosphere of a subterranean home allows the prolonged survival of a wide variety of lower animals which, above the surface, would soon perish from drying.

130

Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: application of vulnerability index method to Zhangcun Coal Mine, China  

Science Journals Connector (OSTI)

Groundwater inrush is a geohazard that can significantly impact safe operations of the coal mines in China. Its occurrence is controlled ... network (ANN) and geographic information system (GIS). The detailed pro...

Qiang Wu; Wanfang Zhou; Jinhua Wang; Shuhan Xie

2009-05-01T23:59:59.000Z

131

Underground waste barrier structure  

DOE Patents (OSTI)

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

132

Electromagnetic full wave modal analysis of frequency-dependent underground cables.  

E-Print Network (OSTI)

??In this thesis, a new method has been proposed for calculating the frequencydependent parameters of underground cables. The method uses full wave formulation for calculating… (more)

Habib, Md. Shahnoor

2011-01-01T23:59:59.000Z

133

Fuelcell-Hybrid Mine loader (LHD)  

SciTech Connect

The fuel cell hybrid mine loader project, sponsored by a government-industry consortium, was implemented to determine the viability of proton exchange membrane (PEM) fuel cells in underground mining applications. The Department of Energy (DOE) sponsored this project with cost-share support from industry. The project had three main goals: (1) to develop a mine loader powered by a fuel cell, (2) to develop associated metal-hydride storage and refueling systems, and (3) to demonstrate the fuel cell hybrid loader in an underground mine in Nevada. The investigation of a zero-emissions fuel cell power plant, the safe storage of hydrogen, worker health advantages (over the negative health effects associated with exposure to diesel emissions), and lower operating costs are all key objectives for this project.

James L Dippo; Tim Erikson; Kris Hess

2009-07-10T23:59:59.000Z

134

A Novel, Web-Driven Continuous Mining Steven J. Schafrik  

E-Print Network (OSTI)

A Novel, Web-Driven Continuous Mining Simulator By Steven J. Schafrik and Michael Karmis Department geometry of operations as well as other constraints. This paper presents WebConSim, a newly developed, Web underground and open-pit mining operations. OBJECTIVES AND DESIGN OF THE NEW WEB- BASED SIMULATOR One

135

Thermal characterisation of a lightweight mortar containing expanded perlite for underground insulation  

Science Journals Connector (OSTI)

This paper aims to investigate the use of expanded perlite in mortar, for further application of shotcrete to thermal insulation of underground mines. Mixes were designed according to the typical proportions of underground shotcrete, with the sand volumetrically substituted by expanded perlite. Tests of samples were conducted at four ages. Transient plane source technique was utilised to measure the thermal properties. The results showed reduced weight, decreased thermal conductivity, deteriorated thermal diffusivity, and sacrificed mechanical strength with perlite addition. Experimental data analysis and explanation in this paper would establish useful fundamentals for further application of expanded perlite to underground shotcrete.

W.V. Liu; D.B. Apel; V. Bindiganavile

2011-01-01T23:59:59.000Z

136

Multicomponent reactive transport modeling at the Ratones uranium mine, Cceres (Spain)  

E-Print Network (OSTI)

Multicomponent reactive transport modeling at the Ratones uranium mine, Cáceres (Spain) Modelación management. The Ratones uranium mine was abandoned and flooded in 1974. Due to its reducing underground water, uranium, reactive transport, granite hydrochemistry, Ratones mine. Resumen La inundación de minas

Politècnica de Catalunya, Universitat

137

Underground Injection Control Rule (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

138

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

139

Underground Injection Control Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

140

Geologic factors in coal mine roof stability--a progress report. Information circular/1984. [Effects of moisture  

SciTech Connect

This report summarizes 10 selected Bureau of Mines research contract reports produced from 1970 to 1980 which consist largely of geologic studies of coal mine roof support problems. Significant highlights from the contract final reports are discussed and presented in practical terms. The selected reports focus on the Appalachian and Illinois coal mining regions. In the Appalachian coal region, two geologic structures, roof rolls and slickensides, predominate over all structures as features that directly contribute to roof falls. Studies of these and other structures are reviewed, and improved methods of utilizing drill core and core logs to prepare hazard maps are presented. Among the reports described are several on the weakening effects of moisture on shale roof, as determined from both laboratory and underground measurements, and an assessment of air tempering as a humidity-control method. Also summarized are findings concerning the time lapse between roof exposure and permanent support installation as a factor in the effectiveness of roof bolting.

Moebs, N.N.; Stateham, R.M.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. (40 CFR 280). The guidance uses tables, flowcharts, and checklists to provide a roadmap'' for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

142

Regulated underground storage tanks  

SciTech Connect

This guidance package is designed to assist DOE Field operations by providing thorough guidance on the underground storage tank (UST) regulations. [40 CFR 280]. The guidance uses tables, flowcharts, and checklists to provide a ``roadmap`` for DOE staff who are responsible for supervising UST operations. This package is tailored to address the issues facing DOE facilities. DOE staff should use this guidance as: An overview of the regulations for UST installation and operation; a comprehensive step-by-step guidance for the process of owning and operating an UST, from installation to closure; and a quick, ready-reference guide for any specific topic concerning UST ownership or operation.

Not Available

1992-06-01T23:59:59.000Z

143

Saving an Underground Reservoir  

E-Print Network (OSTI)

significant part of the region?s agricultural economy. Though the area has few rivers and lakes, underneath it lies a supply of water that has provided groundwater for developing this economy. This underground water, the Ogallala Aquifer, is a finite.... ?We have already seen isolat- ed areas that have no irrigation water remaining and the economy has been crushed.? The region produces about 4 percent of the nation?s corn, 25 percent of the hard red winter wheat, 23 per- cent of the grain sorghum...

Wythe, Kathy

2006-01-01T23:59:59.000Z

144

Characterization of a thermophilic sulfur oxidizing enrichment culture dominated by a Sulfolobus sp. obtained from an underground hot spring for use in extreme bioleaching conditions  

Science Journals Connector (OSTI)

A thermoacidophilic elemental sulfur and chalcopyrite oxidizing enrichment culture VS2 was obtained from hot spring run-off sediments of an underground mine. It contained only archaeal species, namely a Sulfolobu...

Virpi L. A. Salo-Zieman; Tarja Sivonen…

2006-12-01T23:59:59.000Z

145

Reduction of fire hazards on large mining equipment  

SciTech Connect

Although standards and regulations are in place to prevent large mining equipment fires, recent analyses of mine accident data show that mining equipment fires still occur with alarming frequency and grave consequences, particularly at all surface mines and in underground metal/nonmetal mines. Recently technological advances in fire protection, combined with the statistical data on equipment fires, led NIOSH to reinvestigate this and to improve operator safety. NIOSH demonstrated that newly developed technologies, such as dual cab fire inerting systems and engine compartment fire barriers, can greatly enhance operator safety and lessen the damage of property during large mobile equipment fires. 10 refs., 5 figs.

Maria I. De Rosa

2008-09-15T23:59:59.000Z

146

Expansion of the commercial output of Estonian oil shale mining and processing  

SciTech Connect

Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1996-09-01T23:59:59.000Z

147

Underground Gasification of Coal Reported  

Science Journals Connector (OSTI)

Underground Gasification of Coal Reported ... RESULTS of a first step taken toward determining the feasibility of the underground gasification of coal were reported recently to the Interstate Oil Compact Commission by Milton H. Fies, manager of coal operations for the Alabama Power Co. ...

1947-05-12T23:59:59.000Z

148

NETL: News Release - Mine Test Seeks Capture of Powerful Greenhouse Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Mine Test Seeks Capture of Powerful Greenhouse Gas Mine Test Seeks Capture of Powerful Greenhouse Gas Potential for Major Reduction of Coal Mine Methane Emissions WASHINGTON, DC - The Department of Energy (DOE) has joined in sponsoring the first U.S. test of a system that may make a major contribution to reducing greenhouse gas emissions. Using a new application of existing technology, engineers will attempt to capture methane in underground coal mine air, and if successful could limit emission of a greenhouse gas with more than 20 times the warming potential of CO2. Methane in underground coal mine air constitutes approximately five percent of all U.S. methane emissions and is the equivalent of about 32 million tons of CO2 per year. The test will evaluate the long-term technical and economic feasibility of reducing methane emissions from underground coal mining.

149

California Working Natural Gas Underground Storage Capacity ...  

Gasoline and Diesel Fuel Update (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

150

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

151

Preliminary report on LLNL mine seismicity deployment at the Twentymile Coal Mine  

SciTech Connect

This report summarizes the preliminary results of a just completed experiment at the Twentymile Coal Mine, operated by the Cyprus Amax Coal Company near Oak Creek, CO. The purpose of the experiment was to obtain local and regional seismic data from roof caves associated with long-wall mining activities and to use this data to help determine the effectiveness with which these events can be discriminated from underground nuclear explosions under a future Comprehensive Test Ban Treaty.

Walter, W.R.; Hunter, S.L.; Glenn, L.A.

1996-01-01T23:59:59.000Z

152

Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling  

SciTech Connect

Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting designs. Numerical simulations were performed to investigate the mechanisms of modern roof bolting systems including both the tension and fully grouted bolts. Parameters to be studied are: bolt length, bolt spacing, bolt size/strength, grout annulus, in-situ stress condition, overburden depth, and roof geology (massive strata, fractured, and laminated or thinly-bedded). Based on the analysis of the mechanisms of both bolting systems and failure modes of the bolted strata, roof bolting design criteria and programs for modern roof bolting systems were developed. These criterion and/or programs were combined with the MRGIS for use in conjunction with roof bolt installation.

Syd S. Peng

2005-10-01T23:59:59.000Z

153

Ground penetrating radar technique to locate coal mining related features: case studies in Texas  

E-Print Network (OSTI)

The goal of this research project is to identify the efficacy of the ground penetrating radar (GPR) technique in locating underground coal mine related subsidence features at Malakoff and Bastrop, Texas. The work at Malakoff has been done...

Save, Neelambari R

2006-04-12T23:59:59.000Z

154

Mining (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

This section provides general rules and regulations pertaining to mining practices in the state of Montana. It addresses mining locations and claims, procedures for rights-of-way and eminent domain...

155

Underground coal gasification: a brief review of current status  

SciTech Connect

Coal gasification is a promising option for the future use of coal. Similarly to gasification in industrial reactors, underground coal gasification (UCG) produces syngas, which can be used for power generation or for the production of liquid hydrocarbon fuels and other valuable chemical products. As compared with conventional mining and surface gasification, UCG promises lower capital/operating costs and also has other advantages, such as no human labor underground. In addition, UCG has the potential to be linked with carbon capture and sequestration. The increasing demand for energy, depletion of oil and gas resources, and threat of global climate change lead to growing interest in UCG throughout the world. In this article, we review the current status of this technology, focusing on recent developments in various countries.

Shafirovich, E.; Varma, A. [Purdue University, West Lafayette, IN (United States). School of Chemical Engineering

2009-09-15T23:59:59.000Z

156

DIANA - A deep underground accelerator for nuclear astrophysics experiments  

SciTech Connect

DIANA (Dakota Ion Accelerator for Nuclear Astrophysics) is a proposed facility designed to be operated deep underground. The DIANA collaboration includes nuclear astrophysics groups from Lawrence Berkeley National Laboratory, Michigan State University, Western Michigan University, Colorado School of Mines, and the University of North Carolina, and is led by the University of Notre Dame. The scientific goals of the facility are measurements of low energy nuclear cross-sections associated with sun and pre-supernova stars in a laboratory setup at energies that are close to those in stars. Because of the low stellar temperatures associated with these environments, and the high Coulomb barrier, the reaction cross-sections are extremely low. Therefore these measurements are hampered by small signal to background ratios. By going underground the background due to cosmic rays can be reduced by several orders of magnitude. We report on the design status of the DIANA facility with focus on the 3 MV electrostatic accelerator.

Winklehner, Daniel; Leitner, Daniela [Michigan State University, 640 S Shaw Lane, East Lansing MI 48824 (United States); Lemut, Alberto; Hodgkinson, Adrian [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley CA 94720 (United States); Couder, Manoel; Wiescher, Michael [University of Notre Dame, Notre Dame, IN 46556 (United States)

2013-04-19T23:59:59.000Z

157

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

158

Investigating leaking underground storage tanks  

E-Print Network (OSTI)

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

159

Overall requirements for an advanced underground coal extraction system  

SciTech Connect

This report presents overall requirements on underground mining systems suitable for coal seams exploitable in the year 2000, with particular relevance to the resources of Central Appalachia. These requirements may be summarized as follows: (1) Production Cost: demonstrate a return on incremental investment of 1.5 to 2.5 times the value required by a low-risk capital project. (2) Miner Safety: achieve at least a 50% reduction in deaths and disabling injuries per million man-hours. (3) Miner Health: meet the intent of all applicable regulations, with particular attention to coal dust, carcinogens, and mutagens; and with continued emphasis on acceptable levels of noise and vibration, lighting, humidity and temperature, and adequate work space. (4) Environmental Impact: maintain the value of mined and adjacent lands at the pre-mining value following reclamation; mitigation of off-site impacts should not cost more than the procedures used in contemporary mining. (5) Coal Conservation: the recovery of coal from the seam being mined should be at least as good as the best available contemporary technology operating in comparable conditions. No significant trade-offs between production cost and other performance indices were found.

Goldsmith, M.; Lavin, M.L.

1980-10-15T23:59:59.000Z

160

Underground pumped hydroelectric storage  

SciTech Connect

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Underground Facilities, Technological Challenges  

E-Print Network (OSTI)

This report gives a summary overview of the status of international under- ground facilities, in particular as relevant to long-baseline neutrino physics and neutrino astrophysics. The emphasis is on the technical feasibility aspects of creating the large underground infrastructures that will be needed in the fu- ture to house the necessary detectors of 100 kton to 1000 kton scale. There is great potential in Europe to build such a facility, both from the technical point of view and because Europe has a large concentration of the necessary engi- neering and geophysics expertise. The new LAGUNA collaboration has made rapid progress in determining the feasibility for a European site for such a large detector. It is becoming clear in fact that several locations are technically fea- sible in Europe. Combining this with the possibility of a new neutrino beam from CERN suggests a great opportunity for Europe to become the leading centre of neutrino studies, combining both neutrino astrophysics and neutrino beam stu...

Spooner, N

2010-01-01T23:59:59.000Z

162

Survey of nine surface mines in North America. [Nine different mines in USA and Canada  

SciTech Connect

This report presents the information gathered by three mining engineers in a 1980 survey of nine surface mines in the United States and Canada. The mines visited included seven coal mines, one copper mine, and one tar sands mine selected as representative of present state of the art in open pit, strip, and terrace pit mining. The purpose of the survey was to investigate mining methods, equipment requirements, operating costs, reclamation procedures and costs, and other aspects of current surface mining practices in order to acquire basic data for a study comparing conventional and terrace pit mining methods, particularly in deeper overburdens. The survey was conducted as part of a project under DOE Contract No. DE-AC01-79ET10023 titled The Development of Optimal Terrace Pit Coal Mining Systems.

Hayes, L.G.; Brackett, R.D.; Floyd, F.D.

1981-01-01T23:59:59.000Z

163

Mining an Ocean of Data: Application of modern statistical methods for addressing biological oceanography questions  

E-Print Network (OSTI)

in our understanding of global ocean circulation, heat and energy transport associated with mesoscale methods of optimizing data analysis and interpretation for maximizing data use. As part of this proposal of their potential to store heat, sequester atmospheric carbon dioxide and influence major atmospheric weather events

Columbia University

164

Prediction of Floor Water Inrush: The Application of GIS-Based AHP Vulnerable Index Method to Donghuantuo Coal Mine, China  

Science Journals Connector (OSTI)

Floor water inrush represents a geohazard that can pose significant threat to safe operations for instance in coal mines in China and elsewhere. Its occurrence ... process (AHP) and geographic information system ...

Qiang Wu; Yuanzhang Liu; Donghai Liu; Wanfang Zhou

2011-09-01T23:59:59.000Z

165

Reclamation of Land Used for Mineral Mining (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation aims to provide for the rehabilitation and conservation of land affected by the mining of minerals through proper planning, proper use of appropriate methods of mining,...

166

Underground Coal Thermal Treatment  

SciTech Connect

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

167

SUNLAB - The Project of a Polish Underground Laboratory  

SciTech Connect

The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedz S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector - GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

Kisiel, J.; Dorda, J.; Konefall, A.; Mania, S.; Szeglowski, T. [Institute of Physics, University of Silesia, Universytecka 4, 40-007 Katowice (Poland); Budzanowski, M.; Haranczyk, M.; Kozak, K.; Mazur, J.; Mietelski, J. W.; Puchalska, M.; Szarska, M.; Tomankiewicz, E.; Zalewska, A. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow (Poland); Chorowski, M.; Polinski, J. [Wroclaw University of Technology, Wroclaw (Poland); Cygan, S.; Hanzel, S.; Markiewicz, A.; Mertuszka, P. [KGHM CUPRUM CBR, Wroclaw (Poland)

2010-11-24T23:59:59.000Z

168

Experiences and prospects of nuclear astrophysics in underground laboratories  

SciTech Connect

Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

Junker, M. [INFN - Laboratori Nazionali del Gran Sasso, Via Acitelli, 22, 67100 L'Aquila, Località Assergi (Italy)

2014-05-09T23:59:59.000Z

169

Key tests set for underground coal gasification  

SciTech Connect

Underground coal gasification (UCG) is about to undergo some tests. The tests will be conducted by Lawrence Livermore National Laboratory (LLNL) in a coal seam owned by Washington Irrigation and Development Co. A much-improved UCG system has been developed by Stephens and his associates at LLNL - the controlled retracting injection point (CRIP) method. Pritchard Corp., Kansas City, has done some conceptual process design and has further studied the feasibility of using the raw gas from a UCG burn as a feedstock for methanol synthesis and/or MTG gasoline. Each method was described. (DP)

Haggin, J.

1983-07-18T23:59:59.000Z

170

A Demonstration System for Capturing Geothermal Energy from Mine Waters  

Open Energy Info (EERE)

System for Capturing Geothermal Energy from Mine Waters System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description Butte, Montana, like many other mining towns that developed because of either hard-rock minerals or coal, is underlain by now-inactive water-filled mines. In Butte's case, over 10,000 miles of underground workings have been documented, but as in many other mining communities these waters are regarded as more of a liability than asset. Mine waters offer several advantages:

171

Underground Storage Technology Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

U U U N N D D E E R R G G R R O O U U N N D D G G A A S S S S T T O O R R A A G G E E T T E E C C H H N N O O L L O O G G Y Y C C O O N N S S O O R R T T I I U U M M R R & & D D P P R R I I O O R R I I T T Y Y R R E E S S E E A A R R C C H H N N E E E E D D S S WORKSHOP PROCEEDINGS February 3, 2004 Atlanta, Georgia U U n n d d e e r r g g r r o o u u n n d d G G a a s s S S t t o o r r a a g g e e T T e e c c h h n n o o l l o o g g y y C C o o n n s s o o r r t t i i u u m m R R & & D D P P r r i i o o r r i i t t y y R R e e s s e e a a r r c c h h N N e e e e d d s s OVERVIEW As a follow up to the development of the new U.S. Department of Energy-sponsored Underground Gas Storage Technology Consortium through Penn State University (PSU), DOE's National Energy Technology Center (NETL) and PSU held a workshop on February 3, 2004 in Atlanta, GA to identify priority research needs to assist the consortium in developing Requests for Proposal (RFPs). Thirty-seven

172

Method of data mining including determining multidimensional coordinates of each item using a predetermined scalar similarity value for each item pair  

DOE Patents (OSTI)

A method of data mining represents related items in a multidimensional space. Distance between items in the multidimensional space corresponds to the extent of relationship between the items. The user can select portions of the space to perceive. The user also can interact with and control the communication of the space, focusing attention on aspects of the space of most interest. The multidimensional spatial representation allows more ready comprehension of the structure of the relationships among the items.

Meyers, Charles E. (Albuquerque, NM); Davidson, George S. (Albuquerque, NM); Johnson, David K. (Albuquerque, NM); Hendrickson, Bruce A. (Albuquerque, NM); Wylie, Brian N. (Albuquerque, NM)

1999-01-01T23:59:59.000Z

173

US uranium mining industry: background information on economics and emissions  

SciTech Connect

A review of the US uranium mining industry has revealed a generally depressed industry situation. The 1982 U/sub 3/O/sub 8/ production from both open-pit and underground mines declined to 3800 and 6300 tons respectively with the underground portion representing 46% of total production. US exploration and development has continued downward in 1982. Employment in the mining and milling sectors has dropped 31% and 17% respectively in 1982. Representative forecasts were developed for reactor fuel demand and U/sub 3/O/sub 8/ production for the years 1983 and 1990. Reactor fuel demand is estimated to increase from 15,900 tons to 21,300 tons U/sub 3/O/sub 8/ respectively. U/sub 3/O/sub 8/ production, however, is estimated to decrease from 10,600 tons to 9600 tons respectively. A field examination was conducted of 29 selected underground uranium mines that represent 84% of the 1982 underground production. Data was gathered regarding population, land ownership and private property valuation. An analysis of the increased cost to production resulting from the installation of 20-meter high exhaust borehole vent stacks was conducted. An assessment was made of the current and future /sup 222/Rn emission levels for a group of 27 uranium mines. It is shown that /sup 222/Rn emission rates are increasing from 10 individual operating mines through 1990 by 1.2 to 3.8 times. But for the group of 27 mines as a whole, a reduction of total /sup 222/Rn emissions is predicted due to 17 of the mines being shutdown and sealed. The estimated total /sup 222/Rn emission rate for this group of mines will be 105 Ci/yr by year end 1983 or 70% of the 1978-79 measured rate and 124 Ci/yr by year end 1990 or 83% of the 1978-79 measured rate.

Bruno, G.A.; Dirks, J.A.; Jackson, P.O.; Young, J.K.

1984-03-01T23:59:59.000Z

174

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network (OSTI)

s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

175

Emissions and Durability of Underground Mining Diesel Particulate Filter Applications  

Energy.gov (U.S. Department of Energy (DOE))

Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs.

176

HV Substation Earthing Design for Mines  

E-Print Network (OSTI)

Abstract:-High Voltage (HV) substation forms important assets for the mining industries. The existences of these substations necessitate earthing design to ensure safety compliance to the mine regulations. The HV system within the mines is consisted of multiple substations which are connected throughout and underground cable. These substations provide the load with the required electrical power to perform its tasks. This paper endeavours to provide information in regards to the different types of connections between the load and the substations (TT, TN and IT Systems). Furthermore, the earthing arrangements under different connection were assessed. A case study is addressed to show the different earthing arrangements under different connection systems Keywords:- Earth Grid, EPR, Fault Current, High Voltage, Mines, TN and TT systems I.

unknown authors

177

ITP Mining: Exploration and Mining Technology Roadmap  

Energy.gov (U.S. Department of Energy (DOE))

This document describes the Mining Industry of the Future's development of technology roadmaps to guide collaborative research activities for mining.

178

Underground Storage Tanks: New Fuels and Compatibility  

Energy.gov (U.S. Department of Energy (DOE))

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

179

Detection and monitoring of high stress concentration zones induced by coal mining using numerical and microseismic methods  

E-Print Network (OSTI)

, published in "5. International Symposium on "Rockbursts and seismicity in mines", Sandton : South Africa distribution of stresses, according to the rheological and mechanical behaviour of the structure of the coalface and can cause significant damage in the workings, such as the collapse of roadways, violent

Boyer, Edmond

180

Noise exposures in US coal mines  

SciTech Connect

Mine Safety and Health Administration (MSHA) inspectors conduct full-shift environmental noise surveys to determine the occupational noise levels to which coal miners are exposed. These noise surveys are performed to determine compliance with the noise standard promulgated under the Federal Mine Safety and Health Act of 1977. Data from over 60,000 full-shift noise surveys conducted from fiscal year 1986 through 1992 were entered into a computer data base to facilitate analysis. This paper presents the mean and standard deviation of over 60,000 full-shift noise dose measurements for various underground and surface coal mining occupations. Additionally, it compares and contrasts the levels with historical noise exposure measurements for selected coal mining occupations that were published in the 1970`s. The findings were that the percentage of miners surveyed that were subjected to noise exposures above 100%, neglecting personal hearing protectors, were 26.5% and 21.6% for surface and underground mining, respectively. Generally, the trend is that the noise exposures for selected occupations have decreased since the 1970`s.

Seiler, J.P.; Valoski, M.P.; Crivaro, M.A.

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

An integrated quantitative hazard analysis method for natural gas jet release from underground gas storage caverns in salt rock. II: A sample computation and parametric study  

Science Journals Connector (OSTI)

It is of great importance and necessity to perform quantitative hazard analysis on possible accidental leakage from gas storage cavern in salt rock. To improve the working safety in the cavern, an integrated quantitative method for hazard analysis on natural gas jet release from caverns in salt rock was presented. In this paper, a sample of gas storage cavern in salt rock was analyzed to demonstrate the presented method. Furthermore, the factors that influence the hazard range of leakage accidents from gas storage cavern in salt rock were discussed. The results indicated that the release rate diminishes with increased pipe length due to friction in steady-state. Meanwhile, the hazard distance from production casing also diminishes with increased pipe length. As the pipeline gets as long as several kilometers, the predicted hazard distance will be constant. However, the hazard distance increases with increasing the operating pressure and pipeline diameter.

Shigang Yang; Qin Fang; Hao Wu; Yadong Zhang; Hengbo Xiang

2013-01-01T23:59:59.000Z

182

State of the art analysis of online fault location on AC cables in underground transmission systems  

E-Print Network (OSTI)

, such as 400 kV transmission lines, will also be undergrounded gradually as more experience is gath- ered of underground cables for the transmission level. In Denmark, as a leading country, the entire 150 kV and 132 kV on transmission level fault location methods have been focused on overhead lines. Because of the very different

Bak, Claus Leth

183

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

184

Standard for metal/nonmetal mining and metal mineral processing facilities. 2004 ed.  

SciTech Connect

This standard addresses the protection of diesel-powered equipment and the storage and handling of flammable and combustible liquids at these specialized sites. The 2004 edition consolidates requirements from NFPA 122 and 121 : Standard on Fire Protection for Self-Propelled and Mobile Surface Mining Equipment. Major changes include a new chapter on fire protection of surface metal mineral processing plants. The Standard is also revised to emphasize the use of a fire risk assessment when determining fire protection criteria. Chapter headings are: Administration; Referenced publications; Definitions; General; Fire risk assessment and risk reduction; Fire detection and suppression equipment; Fire protection for diesel-powered equipment in underground mines; Transfer of flammable or combustible liquids in underground mines; Flammable liquid storage in underground mines; Combustible liquid storage in underground mines; Fire suppression for flammable or combustible liquid storage areas in underground mines; Fire protection of surface mobile and self-propelled equipment; and Fire protection of surface metal mineral processing plants. 3 annexes.

NONE

2004-07-01T23:59:59.000Z

185

Pattern Based Feature Construction in Semantic Data Mining  

Science Journals Connector (OSTI)

The authors propose a new method for mining sets of patterns for classification, where patterns are represented as SPARQL queries over RDFS. The method contributes to so-called semantic data mining, a data mining approach where domain ontologies are ... Keywords: Intelligent System, Meta-Learning, Ontology, Pattern Discovery, SPARQL, Semantic Data Mining

Agnieszka ?awrynowicz, J?drzej Potoniec

2014-01-01T23:59:59.000Z

186

Westinghouse Earns 15th Consecutive Mine Safety Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Earns 15 Earns 15 th Consecutive Mine Safety Award CARLSBAD, N.M., September 26, 2001 - Westinghouse TRU Solutions LLC (WTS) has been recognized for "excellence in underground operations and an outstanding record for safety" at the U.S. Department of Energy's (DOE) Waste Isolation Pilot Plant (WIPP). This is the 15 th consecutive year Westinghouse has received the award in the category of "large, non-producing mine." A non-producing mine is one that does not mine a product for profit. This award recognizes Westinghouse's close attention to safety in a mining environment. WTS is the management and operating contractor for the DOE at the Waste Isolation Pilot Plant (WIPP). On September 17, New Mexico State Inspector of Mines Gilbert Miera and New

187

Capture and Use of Coal Mine Ventilation-Air Methane  

NLE Websites -- All DOE Office Websites (Extended Search)

Capture and use of Coal Mine Capture and use of Coal Mine Ventilation - air Methane Background Methane emissions from coal mines represent about 10 percent of the U.S. anthropogenic methane released to the atmosphere. Methane-the second most important non-water greenhouse gas-is 21 times as powerful as carbon dioxide (CO 2 ) in its global warming potential. Ventilation-air methane (VAM)-the exhaust air from underground coal mines-is the largest source of coal mine methane, accounting for about half of the methane emitted from coal mines in the United States. Unfortunately, because of the low methane concentration (0.3-1.5 percent) in ventilation air, its beneficial use is difficult. However, oxidizing the methane to CO 2 and water reduces its global warming potential by 87 percent. A thermal

188

Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy (DOE) Accident Prevention Investigation Board was appointed to investigate a fire at the Waste Isolation Pilot Plant that occurred on February 5, 2014. An aged EIMCO 985-T15 salt haul truck (dump truck) caught fire in an underground mine.

189

Rehabilitating underground pipes  

SciTech Connect

Nearly 500,000 miles of industrial pipeline in the US are almost three times older than their expected usefulness. And aging pipes that are improperly maintained can cause a variety of environmental problems. It is essential for facilities to have a system of planned maintenance procedures to prevent structural failures related to inflow/infiltration and exfiltration. Trenchless repair methods, often referred to as pipeline rehabilitation, require the plant engineer to consider a range of activities, including demand projection, system performance assessment, investigation, evaluation of defects and deficiencies, remedial options, and implementation. Two methods of pipeline rehabilitation, slip lining and cured-in-place, are described.

Sorrell, P. [Insituform Technologies, Inc., Memphis, TN (United States)

1995-06-05T23:59:59.000Z

190

Review of underground coal gasification technologies and carbon capture  

Science Journals Connector (OSTI)

It is thought that the world coal reserve is close to 150?years, which only includes recoverable reserves using conventional techniques. Mining is the typical method of extracting coal, but it has been estimat...

Stuart J Self; Bale V Reddy; Marc A Rosen

2012-08-01T23:59:59.000Z

191

Mining | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mining Industry, July 2003 Exploration and Mining Roadmap (2002) Mineral Processing Technology Roadmap (2000) Education Roadmap for Mining Professionals (2002) Energy and...

192

Mines and Mining (Maryland) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mines and Mining (Maryland) Mines and Mining (Maryland) Mines and Mining (Maryland) < Back Eligibility Commercial Construction Fed. Government Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Tribal Government Utility Program Info State Maryland Program Type Safety and Operational Guidelines Siting and Permitting Provider Maryland Department of the Environment It is the policy of the state to encourage the development of mined resources in Maryland while protecting the environment and public health and safety. This legislation establishes the Bureau of Mines within the Department of the Environment and provides for the establishment of rules and regulations governing mining activity. The legislation addresses the

193

Directional drilling techniques for exploration in-advance of mining  

SciTech Connect

In-seam directionally drilled horizontal boreholes have provided effective solutions in underground coal mines for methane and water drainage and inherently provide an excellent tool for coalbed exploration. Directionally drilled methane drainage boreholes have identified rapid changes in coalbed elevation, coalbed thickness and faults. Specific directional drilling and coring procedures for exploration in-advance of mining are reviewed in this paper, and also other directional drilling applications including in-mine horizontal gob ventilation boreholes, identification of abandoned workings, and water drainage boreholes.

Kravits, S.J.; Schwoebel, J.J. (REI Underground Exploration Inc., Salt Lake City, UT (United States))

1994-01-01T23:59:59.000Z

194

Underground coal gasification using oxygen and steam  

SciTech Connect

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

195

Blending mining and nuclear industries at the Waste Isolation Pilot Plant  

SciTech Connect

At the Waste Isolation Pilot Plant (WIPP) traditional procedures for underground mining activities have been significantly altered in order to assure underground safety and project adherence to numerous regulatory requirements. Innovative techniques have been developed for WIPP underground procedures, mining equipment, and operating environments. The mining emphasis at WIPP is upon the quality of the excavation, not (as in conventional mines) on the production of ore. The WIPP is a United States Department of Energy (DOE) project that is located 30 miles southeast of Carlsbad, New Mexico, where the nation's first underground engineered nuclear repository is being constructed. The WIPP site was selected because of its location amidst a 607 meter thick salt bed, which provides a remarkably stable rock formation for the permanent storage of nuclear waste. The underground facility is located 655 meters below the earth's surface, in the Salado formation, which comprises two-hundred million year old halites with minor amounts of clay and anhydrites. When completed, the WIPP underground facility will consist of two components: approximately 81 square kilometers of experimental areas, and approximately 405 square kilometers of repository. 3 figs.

Walls, J.R.

1990-01-01T23:59:59.000Z

196

Evaluating the feasibility of underground coal gasification in Thailand  

SciTech Connect

Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south of Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.

Young, B.C.; Harju, J.A.; Schmit, C.R.; Solc, J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuehnel, R.A. [International Inst. for Aerospace Survey and Earth Sciences, Delft (Netherlands)

1996-12-31T23:59:59.000Z

197

Midwest Underground Technology | Open Energy Information  

Open Energy Info (EERE)

Underground Technology Underground Technology Jump to: navigation, search Name Midwest Underground Technology Facility Midwest Underground Technology Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Midwest Underground Technology Energy Purchaser Midwest Underground Technology Location Champaign IL Coordinates 40.15020987°, -88.29149723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15020987,"lon":-88.29149723,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Might underground waste repositories blow up?  

SciTech Connect

Some writers have presented possible scenarios in which a subcritical underground deposit of plutonium or other fissile material might be changed into a critical configuration. The underground criticalities that occurred in Gabon some 1.7 billion years ago in deposits of natural uranium is cited. Other scientists assert that it is virtually impossible that such a configuration could develop in an underground repository. The author presents the pros and cons of these views. 5 refs.

Hippel, F. von [Princeton Univ., NJ (United States)

1996-03-01T23:59:59.000Z

199

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

200

Unsteady heat losses of underground pipelines  

Science Journals Connector (OSTI)

Analytic expressions are presented for the unsteady temperature distribution of the ground and heat losses of an underground pipeline for an arbitrary...

B. L. Krivoshein; V. M. Agapkin

1977-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

,"Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - All Operators",8,"Monthly","102014","1151973" ,"Release...

202

Pipelines and Underground Gas Storage (Iowa)  

Energy.gov (U.S. Department of Energy (DOE))

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

203

,"California Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967"...

204

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage Capacity",12,"Annual",2013,"6301988" ,"Release...

205

Cryogenic slurry for extinguishing underground fires  

DOE Patents (OSTI)

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

206

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage Capacity",11,"Annual",2013,"6301988" ,"Release...

207

Hawaii Underground Injection Control Permitting Webpage | Open...  

Open Energy Info (EERE)

Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Permitting Webpage Author State of Hawaii Department of...

208

THE IMPACT OF A URANIUM MINING SITE ON THE STREAM SEDIMENTS (CRUCEA MINE, ROMANIA)  

E-Print Network (OSTI)

THE IMPACT OF A URANIUM MINING SITE ON THE STREAM SEDIMENTS (CRUCEA MINE, ROMANIA) Petrescu L. 1 , Bilal E. 2 , Iatan L.E. 1 1 University of Bucharest, Faculty of Geology et Geophysics, Department methods were used to evaluate the impact of uranium mine dumps on the stream sedi- ments from Crucea

Paris-Sud XI, Université de

209

ITP Mining: Mining Industry Roadmap for Crosscutting Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ccroadmap.pdf More Documents & Publications ITP Mining: Exploration and Mining Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology...

210

Coal properties and system operating parameters for underground coal gasification  

SciTech Connect

Through the model experiment for underground coal gasification, the influence of the properties for gasification agent and gasification methods on underground coal gasifier performance were studied. The results showed that pulsating gasification, to some extent, could improve gas quality, whereas steam gasification led to the production of high heating value gas. Oxygen-enriched air and backflow gasification failed to improve the quality of the outlet gas remarkably, but they could heighten the temperature of the gasifier quickly. According to the experiment data, the longitudinal average gasification rate along the direction of the channel in the gasifying seams was 1.212 m/d, with transverse average gasification rate 0.069 m/d. Experiment indicated that, for the oxygen-enriched steam gasification, when the steam/oxygen ratio was 2:1, gas compositions remained stable, with H{sub 2} + CO content virtually standing between 60% and 70% and O{sub 2} content below 0.5%. The general regularities of the development of the temperature field within the underground gasifier and the reasons for the changes of gas quality were also analyzed. The 'autopneumatolysis' and methanization reaction existing in the underground gasification process were first proposed.

Yang, L. [China University of Mining & Technology, Xuzhou (China)

2008-07-01T23:59:59.000Z

211

,"Colorado Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030CO2","N5010CO2","N5020CO2","N5070CO2","N5050CO2","N5060CO2" "Date","Colorado Natural Gas Underground Storage Volume (MMcf)","Colorado Natural Gas in Underground...

212

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

213

Carbon Allocation in Underground Storage Organs  

E-Print Network (OSTI)

Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

214

Electrical installations in oil shale mines. Open file report 21 Sep 81-13 Aug 83  

SciTech Connect

This report presents recommended guidelines and regulatory changes applicable to electrical installations in underground oil shale mines. These recommendations are based on information gathered from oil shale operators, government agencies, and other knowledgeable sources familiar with existing plans for mining systems and electrical installations, and on present understanding of the problems and hazards associated with oil shale mining. Additional discussions of specific electrical problems related to oil shale mining include ground fault current levels, permissible electric wheel motors, permissible batteries and electric starting systems, intrinsically safe instrumentation, and applicability of existing test standards.

Gillenwater, B.B.; Kline, R.J.; Paas, N.

1983-08-01T23:59:59.000Z

215

Measurement of Neutron Background at the Pyhasalmi mine for CUPP Project, Finland  

E-Print Network (OSTI)

A natural neutron flux is one of significant kind of background in high-sensitive underground experiments. Therefore, when scheduling a delicate underground measurements one needs to measure neutron background. Deep underground the most significant source of neutrons are the U-Th natural radioactive chains giving a fission spectrum with the temperature of 2-3 MeV. Another source is the U-Th alpha-reactions on light nuclei of mine rock giving neutrons with different spectra in the 1-15 MeV energy region. Normal basalt mine rocks contain 1 ppm g/g of U-238 and less. Deep underground those rocks produce natural neutron fluxes of 10^{-7} - 10^{-6} cm^{-2}s^{-1} above 1 MeV. To measure such a background one needs a special techniques. In the Institute for Nuclear Research, Moscow, the neutron spectrometer was developed and built which is sensitive to such a low neutron fluxes. At the end of 2001 the collection of neutron data at the Pyhasalmi mine was started for the CUPP project. During 2002 the background and rough energy spectra of neutron at underground levels 410, 660, 990 and 1410 m were measured. The result of the measurement of the neutron background at different levels of the Pyhasalmi mine is presented and discussed. Data analysis is performed in different energy ranges from thermal neutrons up to 25 MeV and above.

J. N. Abdurashitov; V. N. Gavrin; V. L. Matushko; A. A. Shikhin; V. E. Yants; J. Peltoniemi; T. Keranen

2006-07-20T23:59:59.000Z

216

Utah Underground Storage Tank Installation Permit | Open Energy...  

Open Energy Info (EERE)

Underground Storage Tank Installation Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Utah Underground Storage Tank Installation Permit Form Type...

217

Colorado Working Natural Gas Underground Storage Capacity (Million...  

Annual Energy Outlook 2012 (EIA)

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun...

218

Progress Continues Toward Closure of Two Underground Waste Tanks...  

Office of Environmental Management (EM)

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site...

219

The Simulation Analysis of Fire Feature on Underground Substation  

Science Journals Connector (OSTI)

Underground transformer substations constructed with non-dwelling buildings have a ... out simulation analysis of fire feature on underground substation. The corresponding fire protection strategy is also...

Xin Han; Xie He; Beihua Cong

2012-01-01T23:59:59.000Z

220

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

222

Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater  

DOE Patents (OSTI)

A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

1995-09-12T23:59:59.000Z

223

EXPERIMENTS, CONCEPTUAL DESIGN, PRELIMINARY COST ESTIMATES AND SCHEDULES FOR AN UNDERGROUND RESEARCH FACILITY  

E-Print Network (OSTI)

surface and underground facilities as we11 as operation andconstruction of the underground facility. However, because

Korbin, G.

2010-01-01T23:59:59.000Z

224

Seismic verification of underground explosions  

SciTech Connect

The first nuclear test agreement, the test moratorium, was made in 1958 and lasted until the Soviet Union unilaterally resumed testing in the atmosphere in 1961. It was followed by the Limited Test Ban Treaty of 1963, which prohibited nuclear tests in the atmosphere, in outer space, and underwater. In 1974 the Threshold Test Ban Treaty (TTBT) was signed, limiting underground tests after March 1976 to a maximum yield of 250 kt. The TTBT was followed by a treaty limiting peaceful nuclear explosions and both the United States and the Soviet Union claim to be abiding by the 150-kt yield limit. A comprehensive test ban treaty (CTBT), prohibiting all testing of nuclear weapons, has also been discussed. However, a verifiable CTBT is a contradiction in terms. No monitoring technology can offer absolute assurance that very-low-yield illicit explosions have not occurred. The verification process, evasion opportunities, and cavity decoupling are discussed in this paper.

Glenn, L.A.

1985-06-01T23:59:59.000Z

225

Depleted Argon from Underground Sources  

SciTech Connect

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

226

Coalbed methane production enhancement by underground coal gasification  

SciTech Connect

The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

1997-12-31T23:59:59.000Z

227

Salinity gradient solar pond technology applied to potash solution mining  

SciTech Connect

A solution mining facility at the Eddy Potash Mine, Eddy County, New Mexico has been proposed that will utilize salinity gradient solar pond (SGSP) technology to supply industrial process thermal energy. The process will include underground dissolution of potassium chloride (KCl) from pillars and other reserves remaining after completion of primary room and pillar mining using recirculating solutions heated in the SGSP. Production of KCl will involve cold crystallization followed by a cooling pond stage, with the spent brine being recirculated in a closed loop back to the SGSP for reheating. This research uses SGSP as a renewable, clean energy source to optimize the entire mining process, minimize environmental wastes, provide a safe, more economical extraction process and reduce the need for conventional processing by crushing, grinding and flotation. The applications of SGSP technology will not only save energy in the extraction and beneficiation processes, but also will produce excess energy available for power generation, desalination, and auxiliary structure heating.

Martell, J.A.; Aimone-Martin, C.T.

2000-06-12T23:59:59.000Z

228

High-resolution 2D surface seismic reflection survey to detect abandoned old coal mine works to improve mine safety  

Science Journals Connector (OSTI)

...coal seismic studies in the Appalachia Coal Basin, the calculated average...seismic method in the U.K. coal mining industrya by Fairbairn et al...interpretation workstation for the coal industrya by Gochioco (Mining Engineering, 1991). a Modeling...

Lawrence M. Gochioco; Tim Miller; Fred Ruev; Jr.

229

Management of post-mining large-scale ground failures: blast swarms field experiment for calibration of permanent microseismic early-warning systems  

E-Print Network (OSTI)

Management of post-mining large-scale ground failures: blast swarms field experiment. To ensure post-mining risk management and public safety, wherever remediation is not possible, numerous real of the water level in the underground working caused by the halt of the de-watering system (Didier, 2008

Paris-Sud XI, Université de

230

Methodology for EIA Weekly Underground Natural Gas Storage Estimates  

Weekly Natural Gas Storage Report (EIA)

Methodology for EIA Weekly Underground Natural Gas Storage Estimates Methodology for EIA Weekly Underground Natural Gas Storage Estimates Latest Update: November 25, 2008 This report consists of the following sections: Survey and Survey Processing - a description of the survey and an overview of the program Sampling - a description of the selection process used to identify companies in the survey Estimation - how the regional estimates are prepared from the collected data Computing the 5-year Averages, Maxima, Minima, and Year-Ago Values for the Weekly Natural Gas Storage Report - the method used to prepare weekly data to compute the 5-year averages, maxima, minima, and year-ago values for the weekly report Derivation of the Weekly Historical Estimates Database - a description of the process used to generate the historical database for the

231

Treatment of acid mine wastewaters  

SciTech Connect

Acid mine drainage often results from the oxidation sulfide minerals to form sulfuric acid. As a consequence, high concentrations of metals in the both the suspended and dissolved state result from the low pH water. This paper discusses several of the more common treatment methods for acid mine drainage including the use of chemical precipitation agents, pH correction agents, filtration methods, and biodegradation methods. Advanced treatment technologies are also briefly described and include microfiltration, reverse osmosis, ion exchange, and electrodialysis.

Hayward, D.; Barnard, R.

1993-06-01T23:59:59.000Z

232

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

233

Underground Coal Gasification in the USSR  

Science Journals Connector (OSTI)

By accomplishing in a single operation the extraction of coal and its conversion into a gaseous fuel, underground gasification makes it possible to avoid the heavy capital investments required for coal gasification

1983-01-01T23:59:59.000Z

234

Underground Storage of Natural Gas (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

235

UEME : the underground electronic music experience  

E-Print Network (OSTI)

The global electronic music scene has remained underground for its entire lifespan, momentarily materializing during an event, a place defined by the music performed and the people who desire the experience. As festivals ...

Ciraulo, Christopher Samuel

2005-01-01T23:59:59.000Z

236

Reclamation of abandoned coal refuse piles and underground adit entries in the Big South Fork National River and Recreation Area  

SciTech Connect

This paper reviews reclamation activities conducting during 1984-85 in the Big South Fork National River and Recreational Area, Kentucky, and Tennessee. Under this integrated reclamation project, four sites comprising 14 acres of highly acidic abandoned coal refuse were treated and 43 abandoned adit underground mine entries were closed. The techniques used were cost-effective and could be applied in reclaiming other coal minesites in Appalachia. 9 references, 4 figures, 1 table.

Muncy, J.A.; Buckner, E.R.

1985-12-01T23:59:59.000Z

237

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

238

Depleted argon from underground sources  

SciTech Connect

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

239

Underground ventilation remote monitoring and control system  

SciTech Connect

This paper presents the design and installation of an underground ventilation remote monitoring and control system at the Waste Isolation Pilot Plant. This facility is designed to demonstrate safe underground disposal of U.S. defense generated transuranic nuclear waste. To improve the operability of the ventilation system, an underground remote monitoring and control system was designed and installed. The system consists of 15 air velocity sensors and 8 differential pressure sensors strategically located throughout the underground facility providing real-time data regarding the status of the ventilation system. In addition, a control system was installed on the main underground air regulators. The regulator control system gives indication of the regulator position and can be controlled either locally or remotely. The sensor output is displayed locally and at a central surface location through the site-wide Central Monitoring System (CMS). The CMS operator can review all sensor data and can remotely operate the main underground regulators. Furthermore, the Virtual Address Extension (VAX) network allows the ventilation engineer to retrieve real-time ventilation data on his personal computer located in his workstation. This paper describes the types of sensors selected, the installation of the instrumentation, and the initial operation of the remote monitoring system.

Strever, M.T.; Wallace, K.G. Jr.; McDaniel, K.H.

1995-12-31T23:59:59.000Z

240

The LSST Data Mining Research Agenda  

E-Print Network (OSTI)

We describe features of the LSST science database that are amenable to scientific data mining, object classification, outlier identification, anomaly detection, image quality assurance, and survey science validation. The data mining research agenda includes: scalability (at petabytes scales) of existing machine learning and data mining algorithms; development of grid-enabled parallel data mining algorithms; designing a robust system for brokering classifications from the LSST event pipeline (which may produce 10,000 or more event alerts per night); multi-resolution methods for exploration of petascale databases; indexing of multi-attribute multi-dimensional astronomical databases (beyond spatial indexing) for rapid querying of petabyte databases; and more.

K. D. Borne; J. Becla; I. Davidson; A. Szalay; J. A. Tyson

2008-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report  

SciTech Connect

Decades of underground coal mining has left about 5,000 square miles of abandoned mine workings that are rapidly filling with water. The water quality of mine pools is often poor; environmental regulatory agencies are concerned because water from mine pools could contaminate diminishing surface and groundwater supplies. Mine pools are also a threat to the safety of current mining operations. Conversely, mine pools are a large, untapped water resource that, with treatment, could be used for a variety of industrial purposes. Others have proposed using mine pools in conjunction with heat pumps as a source of heating and cooling for large industrial facilities. The management or use of mine pool water requires accurate maps of mine pools. West Virginia University has predicted the likely location and volume of mine pools in the Pittsburgh Coalbed using existing mine maps, structure contour maps, and measured mine pool elevations. Unfortunately, mine maps only reflect conditions at the time of mining, are not available for all mines, and do not always denote the maximum extent of mining. Since 1999, the National Energy Technology Laboratory (NETL) has been evaluating helicopter-borne, electromagnetic sensing technologies for the detection and mapping of mine pools. Frequency domain electromagnetic sensors are able to detect shallow mine pools (depth < 50 m) if there is sufficient contrast between the conductance of the mine pool and the conductance of the overburden. The mine pools (conductors) most confidently detected by this technology are overlain by thick, resistive sandstone layers. In 2003, a helicopter time domain electromagnetic sensor was applied to mined areas in southwestern Virginia in an attempt to increase the depth of mine pool detection. This study failed because the mine pool targets were thin and not very conductive. Also, large areas of the surveys were degraded or made unusable by excessive amounts of cultural electromagnetic noise that obscured the subtle mine pool anomalies. However, post-survey modeling suggested that thicker, more conductive mine pools might be detected at a more suitable location. The current study sought to identify the best time domain electromagnetic sensor for detecting mine pools and to test it in an area where the mine pools are thicker and more conductive that those in southwestern Virginia. After a careful comparison of all airborne time domain electromagnetic sensors (including both helicopter and fixed-wing systems), the SkyTEM system from Denmark was determined to be the best technology for this application. Whereas most airborne time domain electromagnetic systems were developed to find large, deep, highly conductive mineral deposits, the SkyTEM system is designed for groundwater exploration studies, an application similar to mine pool detection.

Geosciences Division, National Energy Technology Laboratory, US Department of Energy, Pittsburgh, PA; Hammack, R.W.

2006-12-28T23:59:59.000Z

242

Implications of mining practices in an open-pit gold mine for monitoring of a comprehensive test-ban treaty  

SciTech Connect

This report summarizes the results of an experiment at the Gold Quarry pit, operated by the Newmont Gold Company at Carlin, NV The purpose of the experiment was to obtain local and regional seismic data, together with ``ground truth``, from conventional surface blasting activity and to use these data to help determine the effectiveness with which conventional mining blasts can be discriminated from underground nuclear explosions.

Jarpe, S.P.; Moran, B.; Goldstein, P.; Glenn, L.A.

1996-01-01T23:59:59.000Z

243

Mining multimedia data  

Science Journals Connector (OSTI)

Data Mining is a young but flourishing field. Many algorithms and applications exist to mine different types of data and extract different types of knowledge. Mining multimedia data is, however, at an experimental stage.We have implemented a prototype ... Keywords: data cube, data mining, data warehousing, image analysis, information retrieval, multimedia, world-wide web

Osmar R. Zaïane; Jiawei Han; Ze-Nian Li; Jean Hou

1998-11-01T23:59:59.000Z

244

Prediction of groundwater inrush into coal mines from aquifers underlying the coal seams in China: vulnerability index method and its construction  

Science Journals Connector (OSTI)

The system in which water inrushes occur in coal mines is an open system that exchanges ... it is essential to couple the ANN with GIS, which is effective in processing the spatial...2001). Coupling of ANN and GIS

Qiang Wu; Wanfang Zhou

2008-11-01T23:59:59.000Z

245

High Performance Subgraph Mining in Molecular Compounds  

E-Print Network (OSTI)

High Performance Subgraph Mining in Molecular Compounds Giuseppe Di Fatta1,2 and Michael R data makes distributed graph mining techniques particularly relevant. In this paper, we present method has been evaluated on the well-known National Cancer Institute's HIV-screening dataset, where

Reiterer, Harald

246

Rights and Duties of Mines and Mine Owners, General (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation addresses general operational guidelines for mine owners regarding public notices, fees, land and mineral ownership, requirements for mining in certain municipalities, and mining...

247

Strip Mining Legislation: The Tug of War Continues  

Science Journals Connector (OSTI)

...and Midway Coal Mining Company (a subsidiary...bro-chure said, "This mining method has been...by irresponsible coal operators who have...large areas of Appalachia." It added that...percentage ofdo-mestic coal is produced by contour mining, the practice...

Luther J. Carter

1975-05-23T23:59:59.000Z

248

Review: Brief survey of crowdsourcing for data mining  

Science Journals Connector (OSTI)

Crowdsourcing allows large-scale and flexible invocation of human input for data gathering and analysis, which introduces a new paradigm of data mining process. Traditional data mining methods often require the experts in analytic domains to annotate ... Keywords: Crowdsourcing, Data mining, Quality control, Survey

Guo Xintong, Wang Hongzhi, Yangqiu Song, Gao Hong

2014-12-01T23:59:59.000Z

249

A Comparison of Popular Remedial Technologies for Petroleum Contaminated Soils from Leaking Underground Storage Tanks  

E-Print Network (OSTI)

Underground Storage Tanks. Chelsea: Lewis Publishers.and Underground Storage Tank Sites. Database on-line.Michigan Underground Storage Tank Rules. Database on-line.

Kujat, Jonathon D.

1999-01-01T23:59:59.000Z

250

Assessing the Effectiveness of California's Underground Storage Tank Annual Inspection Rate Requirements  

E-Print Network (OSTI)

Leaks from Underground Storage Tanks by Media Affected Soilfrom Underground Storage Tank Facilities Cities CountiesCities Counties Leaks per Underground Storage Tank Facility

Cutter, W. Bowman

2008-01-01T23:59:59.000Z

251

E-Print Network 3.0 - amchitka underground nuclear Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

underground nuclear Search Powered by Explorit Topic List Advanced Search Sample search results for: amchitka underground nuclear Page: << < 1 2 3 4 5 > >> 1 Underground Nuclear...

252

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network (OSTI)

Helms Underground Powerhouse - Pumped storage project Figurelayout of underground powerhouse complex—Helms Pumped57. Helms Underground Powerhouse Pumped Storage Project

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

253

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

254

Mined land reclamation by biological reactivation  

SciTech Connect

A mine reclamation technique, developed in Europe, restores land to full productivity within two years without topsoil replacement. The method deliberately reestablishes within one year following mining, the required biological balance between microbes, enzymes, and trace elements in the rock spoil rather than waiting five or more years for natural processes to restore balance. The technique is called Biological Reactivation (BR). This paper discusses the feasibility of BR reclamation after surface mining operations in the US. Staff of the Ohio Mining and Mineral Resources Research Institute completed an OSM-sponsored research project on BR in which physical and chemical tests characterized 140 spoil samples obtained from 10 surface mining operations. Test results indicated that Biological Reactivation technology could be effectively applied, at least in the test areas sampled within Appalachia. Preliminary estimates make clear that the new technique reduces reclamation costs on prime farmland by approximately 95% compared to topsoil segregation and replacement methods.

Gozon, J.S.; Konya, C.J.; Lukovic, S.S.; Lundquist, R.G.; Olah, J.

1982-12-01T23:59:59.000Z

255

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

256

Underground Facilities Information (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

257

Underground Injection Control Permits and Registrations (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

258

Notification for Underground Storage Tanks (EPA Form 7530-1)...  

Open Energy Info (EERE)

Notification for Underground Storage Tanks (EPA Form 7530-1) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Notification for Underground Storage Tanks...

259

Visit to the Deep Underground Science and Engineering Laboratory  

ScienceCinema (OSTI)

U.S. Department of Energy scientists and administrators join members of the National Science Foundation and South Dakotas Sanford Underground Laboratory for the deepest journey yet to the proposed site of the Deep Underground Science and Engineering Laboratory (DUSEL).

None

2010-01-08T23:59:59.000Z

260

The commercial feasibility of underground coal gasification in southern Thailand  

SciTech Connect

Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A project to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.

Solc, J.; Young, B.C.; Harju, J.A.; Schmit, C.R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J.E. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuhnel, R.A. [IIASES, Delft (Netherlands)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Requirements for the conceptual design of advanced underground coal-extraction systems  

SciTech Connect

This document presents conceptual design requirements for underground coal mining systems having substantially improved performance in the areas of production cost and miner safety. Mandatory performance levels are also set for miner health, environmental impact, and coal recovery. In addition to mandatory design goals and constraints, the document identifies a number of desirable system characteristics which must be assessed in terms of their impact on production cost and their compatibility with other system elements. Although developed for the flat-lying, moderately thick seams of Central Appalachia, these requirements are designed to be easily adaptable to other coals. This document results from the initial phase of a program to define, develop, and demonstrate advanced equipment suitable for the resources remaining beyond the year 2000. The requirements developed are meant to implement the broad systems performance goals formulated by Goldsmith and Lavin (1980) by providing a rational point of departure for the design of underground mining systems with emphasis on Central Appalachian coals. Because no one has yet attempted to design to these requirements, they may contain some inconsistencies and need clarification in some areas. Accordingly, the authors would very much appreciate commments and suggestions from those who have used or critically reviewed these requirements.

Gangal, M.D.; Lavin, M.L.

1981-12-15T23:59:59.000Z

262

Testing terrorism theory with data mining  

Science Journals Connector (OSTI)

This research demonstrates the application of multiple data mining techniques to test theories of the macro-level causes of terrorism. The unique dataset is comprised of terrorist events and measures of social, political and economic contexts in 185 countries worldwide between the years 1970 and 2004. The theories are assessed using the iterative expert data mining (IEDM) methodology with classification mining and then association mining. The resulting 100 rules suggest that the level of democracy in a country is an integral part of the explanation for terrorism. This research shows that a multi-method data mining approach can be used to test competing theories in a discipline by analysing large, comprehensive datasets that capture multiple theories and include large numbers of records.

Anthony Scime; Gregg R. Murray; Lance Y. Hunter

2010-01-01T23:59:59.000Z

263

Mining Industry Profile  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. mining industry consists of the search for, extraction, beneficiation, and processing of naturally occurring solid minerals from the earth. These mined minerals include coal, metals such...

264

Mining Regulations (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation applies to all mines in this state engaged in the mining or extraction of minerals for commercial purposes, except barite, marble, limestone, and sand and gravel, or the...

265

Rectifiers used on the London Underground Railways  

Science Journals Connector (OSTI)

... Lunn to the Institution of Electrical Engftieers on November 7, a description of the rectifier substations is given and also much useful information of the working of these rectifiers for traction ... there is little vibration; but in these respects the rectifier is much superior. The substation buildings for operating the traction system of the London Underground are in very densely populated ...

1935-11-30T23:59:59.000Z

266

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

267

The Public Perceptions of Underground Coal Gasification (UCG)  

E-Print Network (OSTI)

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

268

Detection of Underground Marlpit Quarries Using High Resolution Seismic  

E-Print Network (OSTI)

Detection of Underground Marlpit Quarries Using High Resolution Seismic B. Piwakowski* (Ecole of high resolution reflection seismic for the detection and location of underground marlpit quarries of the geological structure, the results show that the detection of marlpit underground quarries, often considered

Boyer, Edmond

269

Remediation of Abandoned Metal Mine Drainage using Dealginated Seaweed .  

E-Print Network (OSTI)

??This thesis develops and demonstrates an innovative method for adsorbing metals from metal mine drainage in mid-Wales and northern Italy using dealginated seaweed (DS) as… (more)

Hartley, Suzanne

2008-01-01T23:59:59.000Z

270

Design of coal mine roof support and yielding pillars for longwall mining in the Appalachian coalfield  

SciTech Connect

In this thesis, the existing Geomechanics Classification (Bieniawski, 1979) was modified for use in underground coal mines through the introduction of adjustment modifiers for strata weathering, horizontal stress, and roof support. Sixty-two roof case histories were collected from two mines exploiting the Pittsburgh and Lower Kittanning coal seams. Geologic and material property variables were examined with respect to supported stand-up time, while survival and regression analyses were used in deriving the adjustment multipliers. Guidelines for roofspan selection and roof support design were an integral facet of the modified classification scheme. Tentative design guidelines for chain pillars are provided on the basis of a field investigation and numerical modeling of longwall chain pillar behavior. A longwall chain pillar was instrumented with vibrating wire stressmeters to quantify the change in stress distribution as longwall mining proceeded out by the pillar. A sonic probe was used to conduct a velocity profile across the pillar before and after mining to delineate the failed and stable regions of the pillar. Velocity profiles across the pillar were supplemented by an examination of changes in the dynamic modulus and the shear wave frequency. The main contributions of the research lies in: (i) modifications introduced to the Geomechanics Classification (RMR System), (ii) the correlation between changes in pillar stress and the extent of the yield zone surrounding a longwall chain pillar, and (iii) the proposal of design procedures involving coal mine roof support and chain pillars. Numerical examples obtained from mine case histories are provided to illustrate the use of the design procedures.

Newman, D.A.

1985-01-01T23:59:59.000Z

271

Source Identification of Underground Fuel Spills by Solid-Phase Microextraction/High-Resolution Gas Chromatography/Genetic Algorithms  

Science Journals Connector (OSTI)

Source Identification of Underground Fuel Spills by Solid-Phase Microextraction/High-Resolution Gas Chromatography/Genetic Algorithms ... Groundwater is the last remaining source of potable water for many households and communities in the southeastern United States.1 Its possible contamination by fuels stored in leaking underground tanks and pipelines has become a serious environmental problem, prompting both federal and state regulatory agencies to fund the development of new methods for the identification of fuel materials recovered from subsurface environments. ...

B. K. Lavine; J. Ritter; A. J. Moores; M. Wilson; A. Faruque; H. T. Mayfield

1999-12-16T23:59:59.000Z

272

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

273

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

274

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

275

Acoustic resonance for nonmetallic mine detection  

SciTech Connect

The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

Kercel, S.W.

1998-04-01T23:59:59.000Z

276

Oil shale mining studies and analyses of some potential unconventional uses for oil shale  

SciTech Connect

Engineering studies and literature review performed under this contract have resulted in improved understanding of oil shale mining costs, spent shale disposal costs, and potential unconventional uses for oil shale. Topics discussed include: costs of conventional mining of oil shale; a mining scenario in which a minimal-scale mine, consistent with a niche market industry, was incorporated into a mine design; a discussion on the benefits of mine opening on an accelerated schedule and quantified through discounted cash flow return on investment (DCFROI) modelling; an estimate of the costs of disposal of spent shale underground and on the surface; tabulation of potential increases in resource recovery in conjunction with underground spent shale disposal; the potential uses of oil shale as a sulfur absorbent in electric power generation; the possible use of spent shale as a soil stabilizer for road bases, quantified and evaluated for potential economic impact upon representative oil shale projects; and the feasibility of co-production of electricity and the effect of project-owned and utility-owned power generation facilities were evaluated. 24 refs., 5 figs., 19 tabs.

McCarthy, H.E.; Clayson, R.L.

1989-07-01T23:59:59.000Z

277

GPR Method for the Detection and Characterization of Fractures and Karst Features: Polarimetry, Attribute Extraction, Inverse Modeling and Data Mining Techniques  

E-Print Network (OSTI)

AND KARST FEATURES: POLARIMETRY, ATTRIBUTE EXTRACTION, INVERSE MODELING AND DATA MINING TECHNIQUES A Dissertation by DOUGLAS SPENCER SASSEN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... like to thank Clyde Munster, Phillip Taucer, Brad Wilcox and Binayak Mohanty for inviting me to participate in this research opportunity. Without the enthusiasm and dedication to this project from Dax Soule and Josh Gowan the data acquisition would...

Sassen, Douglas Spencer

2011-02-22T23:59:59.000Z

278

Climate VISION: Private Sector Initiatives: Mining: Resources & Links  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs DOE Mining Industry of the Future The Mining Industry of the Future, a collaboration between the U.S. mining industry and the U.S. Department of Energy, Industrial Technologies Program, is working to make the U.S. mining industry the most efficient and advanced in the world. EPA Coalbed Methane Outreach Program The Coalbed Methane Outreach Program (CMOP) is a voluntary program aimed at reducing methane emissions from coal mining activities. Our mission is to promote the profitable recovery and use of coal mine methane (CMM), a greenhouse gas 21 times as potent as carbon dioxide. By working cooperatively with coal companies and related industries, CMOP helps to identify and implement methods to use CMM productively. In turn, these actions mitigate climate change, improve mine safety and productivity, and

279

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

280

Mining Spatial Association Rules in Census Data: A Relational Approach  

E-Print Network (OSTI)

Mining Spatial Association Rules in Census Data: A Relational Approach Donato Malerba, Francesca A involving spatial relations among (spatial) objects. The method is based on a multi-relational data mining by traditional statistical techniques in spatial data analysis. The proposed method has been implemented

Malerba, Donato

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

ITP Mining: Education Roadmap for Mining Professionals (December 2002)  

Energy.gov (U.S. Department of Energy (DOE))

A profitable and stable mining industry is vital to U.S. economic and national security. This roadmap serves to educate those professionals in the mining industry.

282

Labor and Safety: Mines and Mining Safety (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This section contains labor regulations pertaining specifically to coal mine workers. The law establishes the Indiana Mining Board. The Board's duties include: collecting and distributing...

283

ITP Mining: Education Roadmap for Mining Professionals (December...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Mining Engineering University of Missouri-Rolla John R. Sturgul JRS Consulting Services Richard J. Sweigard ProfessorChair of Mining Engineering University of Kentucky...

284

ITP Mining: Mining Industry of the Future Mineral Processing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the Future Mineral Processing Technology Roadmap ITP Mining: Mining Industry of the Future Mineral Processing Technology Roadmap mptroadmap.pdf More Documents & Publications ITP...

285

Mine Safety & Health Specialist  

Energy.gov (U.S. Department of Energy (DOE))

A successful candidate in this position will serve as the Carlsbad Field Office (CBFO) Mine Safety & Health Specialist and is primarily responsible for inspecting and evaluating the performance...

286

Coal Mining Tax Credit (Arkansas)  

Energy.gov (U.S. Department of Energy (DOE))

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

287

Noise Elimination from Web Page Based on Regular Expressions for Web Content Mining  

Science Journals Connector (OSTI)

Web content mining is used for discovering useful knowledge or information from the web page. So, noisy data in web document significantly affect the performance of web content mining. In this paper, a ... method...

Amit Dutta; Sudipta Paria; Tanmoy Golui…

2014-01-01T23:59:59.000Z

288

Arkansas Underground Injection Control Code (Arkansas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) < Back Eligibility Commercial Construction Industrial Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the purpose of this UIC Code to adopt underground injection control (UIC) regulations necessary to qualify the State of Arkansas to retain authorization for its Underground Injection Control Program pursuant to the Safe Drinking Water Act of 1974, as amended; 42 USC 300f et seq. In order

289

Study of the properties of mine waste in the midwestern coal fields. Phase I report  

SciTech Connect

In an effort to assist the coal industry in complying with the applicable regulations, to design safe and environmentally acceptable disposal systems, and to encourage secondary use of coal mine waste, the US Department of Energy has initiated research programs to develop coal mine waste disposal and use technology. This study of the properties of mine wastes in the Midwestern coal fields has been limited to the waste materials obtained from underground coal mines and preparation plants attached to both underground and surface mines. The program has been divided into two phases. In Phase I, the 20 most important properties relevant to safe disposal, reclamation, underground disposal, and secondary uses have been identified. An inventory of the significant waste disposal sites in the Midwestern coal fields has been prepared. The site locations have been plotted on USGS maps. Estimates of coal production and coal mine waste production during the next 2 decades have been prepared and are presented in this report. Also, all available information obtained from a search of existing literature on physical and chemical properties, including analysis results of the general runoff from the refuse disposal areas, has been collected and is presented. In order to fill the gaps in information, 20 sites have been identified for drilling and sampling to determine the various physical and chemical properties. They have been selected on the basis of the distribution and quantity of waste at the existing locations (both abandoned and active), the future trends in production and likely locations of waste disposal areas, their geographical and geological distribution, and ease of accessibility for drilling and sampling.

None

1980-07-04T23:59:59.000Z

290

The Kelastic variable wall mining machine. Interim final report  

SciTech Connect

This machine cuts coal along a longwall face extending up to 500 feet by a rotating auger with bits. The machine also transports the coal that is cut acting as screw conveyor. By virtue of an integral shroud comprising part of the conveyor the machine is also amenable to a separation of the zones where men work from air being contaminated by dust and methane gas by the cutting action. Beginning as single intake air courses, the air separates at the working section where one split provides fresh air to the Occupied Zone (OZ) for human needs and the other split purges and carries away dust and methane from face fragmentation in the Cutting Zone (CZ). The attractiveness of the Variable Wall Mining Machine is that it addresses the limitations of current longwall mining equipment: it can consistently out-produce continuous mining machines and most longwall shearing machines. It also is amenable to configuring an environment, the dual-duct system, where the air for human breathing is separated from dust-laden ventilating air with methane mixtures. The objective of the research was to perform a mathematical and experimental study of the interrelationships of the components of the system so that a computer model could demonstrate the workings of the system in an animation program. The analysis resulted in the compilation of the parameters for three different configurations of a dual aircourse system of ventilating underground mines. In addressing the goal of an inherently safe mining system the dual-duct adaptation to the Variable Wall Mining Machine appears to offer the path to solution. The respirable dust problem is solvable; the explosive dust problem is nearly solvable; and the explosive methane problem can be greatly reduced. If installed in a highly gassy mine, the dual duct models would also be considerably less costly.

NONE

1995-11-12T23:59:59.000Z

291

Coal Mine Safety Act (Virginia)  

Energy.gov (U.S. Department of Energy (DOE))

This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

292

Wells, Borings, and Underground Uses (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits for proposed activities,

293

Utah Division of Environmental Response and Remediation Underground...  

Open Energy Info (EERE)

Division of Environmental Response and Remediation Underground Storage Tank Branch Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Utah...

294

Idaho Underground Injection Control Program Webpage | Open Energy...  

Open Energy Info (EERE)

Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Idaho Underground Injection Control Program Webpage Author Idaho Department of...

295

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

296

All of Hanford's underground waste tanks generate hydrogen gas...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Hanford's underground waste tanks generate hydrogen gas to some degree since the radioactivity in the waste releases hydrogen from basic nuclear reactions. The routine release...

297

Title 18 Alaska Administrative Code Chapter 78 Underground Storage...  

Open Energy Info (EERE)

Underground Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: Title 18 Alaska Administrative Code Chapter 78...

298

Hawaii Department of Health Underground Storage Tank Webpage...  

Open Energy Info (EERE)

Abstract This webpage provides information on the regulation of underground storage tanks. Author State of Hawaii Department of Health Published State of Hawaii, Date Not...

299

Hawaii Underground Injection Control Program Webpage | Open Energy...  

Open Energy Info (EERE)

Program Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii Underground Injection Control Program Webpage Author State of Hawaii...

300

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration People Mission Managing the Stockpile Preventing Proliferation...

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"New York Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas Storage - All Operators",3,"Annual",2013,"6301967" ,"Release...

302

Underground coal gasification : overview of an economic and environmental evaluation.  

E-Print Network (OSTI)

??This paper examines an overview of the economic and environmental aspects of Underground Coal Gasification (UCG) as a viable option to the above ground Surface… (more)

Kitaka, Richard Herbertson

2012-01-01T23:59:59.000Z

303

EPA - Ground Water Discharges (EPA's Underground Injection Control...  

Open Energy Info (EERE)

EPA - Ground Water Discharges (EPA's Underground Injection Control Program) webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA - Ground Water...

304

Underground Storage Tanks (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

305

Look taken at coal mining costs and trends for the 1980s  

SciTech Connect

The author examines the trends in US bituminous coal production and consumption over the past 40 years, and then looks at the growth rates than can be expected for the rest of the 1980s. Increases are likely to be substantial in absolute terms, although nominal when expressed as a percentage. Surface minable reserves in the eastern US are rapidly being depleted, so that underground mining will gain in importance in these regions. A significant contribution to supplying increased domestic coal consumption will eventually come from new longwall mines in the Illinois Basin and northern Appalachia.

Weir, J.P.

1984-07-01T23:59:59.000Z

306

Survey of tar sand deposits, heavy oil fields, and shallow light oil fields of the United States for underground coal gasification applications  

SciTech Connect

A literature survey was conducted to identify areas of the United States where tar sand deposits, heavy oil fields, or shallow light oil fields might be suitably associated with coal deposits for production of oil by in situ thermal recovery methods using heat derived from underground coal gasification (UCG) processes. The survey is part of a Department of Energy-sponsored program to develop new applications for UCG technology in utilizing coal resources that are unattractive for mining. Results from the survey indicate tar sand deposits, heavy oil fields, or light oil fields are probably or possibly located within 5 miles of suitable coal in 17 states (Table 1). Especially promising areas are in the Uinta Basin of Utah; the North Slope of Alaska; the San Miguel deposit in southwest Texas; the Illinois-Eastern Interior Basin area of western Kentucky, southwestern Indiana and Illinois; the tri-state area of Missouri, Kansas and Oklahoma; and the northern Appalachian Basin in eastern Ohio and northwestern Pennsylvania. The deposits in these areas warrant further evaluation. 30 refs., 4 figs., 1 tab.

Trudell, L.G.

1986-06-01T23:59:59.000Z

307

DaimlerChrysler builds a mine-duty Dodge Ram trucks  

SciTech Connect

Automotive and engine OEMS worked together with the mines to develop a diesel-powered underground pickup truck that meets emissions standards. The article relates how DaimlerChrysler and Cummins eventually managed to redesign the engine for the Dodge Ram truck to satisfy the new HD10 onroad Environmental Protection Agency regulations for diesel engines that come into force in January 2007. Classic Motors in Richfield, Utah modifies Dodge Ram pickups for use as mantrips and service vehicles. 4 photos.

Fiscor, S.

2006-10-15T23:59:59.000Z

308

"DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments  

SciTech Connect

The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.

Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

2009-05-28T23:59:59.000Z

309

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

310

SAS Output  

U.S. Energy Information Administration (EIA) Indexed Site

Recoverable Coal Reserves at Producing Mines, Estimated Recoverable Reserves, and Demonstrated Reserve by Mining Method, 2012" "(million short tons)" ,"Underground - Minable...

311

Data mining for ontology development.  

SciTech Connect

A multi-laboratory ontology construction effort during the summer and fall of 2009 prototyped an ontology for counterfeit semiconductor manufacturing. This effort included an ontology development team and an ontology validation methods team. Here the third team of the Ontology Project, the Data Analysis (DA) team reports on their approaches, the tools they used, and results for mining literature for terminology pertinent to counterfeit semiconductor manufacturing. A discussion of the value of ontology-based analysis is presented, with insights drawn from other ontology-based methods regularly used in the analysis of genomic experiments. Finally, suggestions for future work are offered.

Davidson, George S.; Strasburg, Jana (Pacific Northwest National Laboratory, Richland, WA); Stampf, David (Brookhaven National Laboratory, Upton, NY); Neymotin,Lev (Brookhaven National Laboratory, Upton, NY); Czajkowski, Carl (Brookhaven National Laboratory, Upton, NY); Shine, Eugene (Savannah River National Laboratory, Aiken, SC); Bollinger, James (Savannah River National Laboratory, Aiken, SC); Ghosh, Vinita (Brookhaven National Laboratory, Upton, NY); Sorokine, Alexandre (Oak Ridge National Laboratory, Oak Ridge, TN); Ferrell, Regina (Oak Ridge National Laboratory, Oak Ridge, TN); Ward, Richard (Oak Ridge National Laboratory, Oak Ridge, TN); Schoenwald, David Alan

2010-06-01T23:59:59.000Z

312

Effects of network-average magnitude bias on yield estimates for underground nuclear explosions  

Science Journals Connector (OSTI)

......yield estimates for underground nuclear explosions R. A. Clark Department...ISC, of presumed underground nuclear explosions in Kazakhstan...on estimates for underground nuclear explosions 553 explosions...utilizing a more extensive dataset, including more sources and......

R. A. Clark

1983-11-01T23:59:59.000Z

313

Seasonal thermal signatures of heat transfer by water exchange in an underground vault  

Science Journals Connector (OSTI)

......also to the long-term temperature...underground waste storage and contaminant...underground nuclear waste storage sites is...2000), the long-term impact and...Concerning the long-term temperature...underground waste storage, underlying......

Frédéric Perrier; Pierre Morat; Toshio Yoshino; Osam Sano; Hisashi Utada; Olivier Gensane; Jean-Louis Le Mouël

2004-07-01T23:59:59.000Z

314

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

315

An approach for mining care trajectories for chronic diseases  

E-Print Network (OSTI)

An approach for mining care trajectories for chronic diseases Elias Egho1 ,Nicolas Jay1 , Chedy Ra of chronic patients. In this context, temporal data mining methods are promising tools, though lacking. We show the interest of our approach with the analysis of trajectories of care for colorectal cancer

Boyer, Edmond

316

Influence of lithology on longwall mining subsidence  

SciTech Connect

The US Bureau of Mines assessed the geological effects on the ratio of maximum subsidence and extraction thickness, known as the subsidence factor, to develop a simple method for predicting the maximum subsidence. This study is restricted to the Northern Appalachian Coal Basin where data were collected from 13 coal mines. A model previously developed to relate the subsidence factor with the lithology and with the width and depth of working panels was used in the assessment. The result shows the possibility of determining maximum subsidence without resorting to a rigorous method.

Tandanand, S.; Powell, L.R.

1984-12-01T23:59:59.000Z

317

Influence of lithology on longwall mining subsidence  

SciTech Connect

The Bureau of Mines, U.S. Department of the Interior, assessed the geological effects on the ratio of maximum subsidence and extraction thickness, known as the subsidence factor, to develop a simple method for predicting the maximum subsidence. The study is restricted to the Northern Appalachian Coal basin where data were collected from 13 coal mines. A model previously developed to relate the subsidence factor with the lithology and with the width and depth of working panels was used in the assessment. The result shows the possibility of determining maximum subsidence without resorting to a rigorous method.

Tandanand, S.; Powell, L.R.

1982-09-01T23:59:59.000Z

318

Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Underground Storage Tank And Wellhead Protection Act Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations The department, acting through the commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental Protection Agency to operate the state underground storage tank program in lieu of the federal program. In addition to specific authorities provided by this chapter, the department is authorized, acting through the commission, to

319

Head of EM Visits Waste Isolation Pilot Plant for First Underground...  

Office of Environmental Management (EM)

Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since February Incidents Head of EM Visits Waste Isolation Pilot Plant for First Underground Tour Since...

320

The Remote Video Monitoring System Design and Development for Underground Substation Construction Process  

Science Journals Connector (OSTI)

From the current situation of underground substation construction in China, we design and development ... image enhancement technology, the construction of underground substation can be clearly and accurately tra...

Siguo Zheng; Yugan You; Fanguang Li; Gang Liu

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

E-Print Network 3.0 - american underground science Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

underground science Search Powered by Explorit Topic List Advanced Search Sample search results for: american underground science Page: << < 1 2 3 4 5 > >> 1 Studying the Universe...

322

Changes of Land Use and Landscape Pattern in Feicheng Coal Mining Area Based on Remote Sensing  

Science Journals Connector (OSTI)

The spatial changes of landscape pattern of Feicheng Coal Mining Area were analyzed in order to improve landscape and ecological environment quality and to guarantee sustainable development in mining areas. Methods employed include RS, GIS, and landscape ... Keywords: Feicheng Coal Mining Area, landscape pattern, RS, landscape pattern index, dynamics analysis

Lu Yanyan; Li Xinju; Guo Suli; Wang Mei

2011-10-01T23:59:59.000Z

323

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

324

Surface effects of underground nuclear explosions  

SciTech Connect

The effects of nuclear explosions have been observed and studied since the first nuclear test (code named Trinity) on July 16, 1945. Since that first detonation, 1,053 nuclear tests have been conducted by the US, most of which were sited underground at the Nevada Test Site (NTS). The effects of underground nuclear explosions (UNEs) on their surroundings have long been the object of much interest and study, especially for containment, engineering, and treaty verification purposes. One aspect of these explosion-induced phenomena is the disruption or alteration of the near-surface environment, also known as surface effects. This report was prepared at the request of the Los Alamos National Laboratory (LANL), to bring together, correlate, and preserve information and techniques used in the recognition and documentation of surface effects of UNEs. This report has several main sections, including pertinent background information (Section 2.0), descriptions of the different types of surface effects (Section 3.0), discussion of their application and limitations (Section 4.0), an extensive bibliography and glossary (Section 6.0 and Appendix A), and procedures used to document geologic surface effects at the NTS (Appendix C). Because a majority of US surface-effects experience is from the NTS, an overview of pertinent NTS-specific information also is provided in Appendix B. It is not within the scope of this report to explore new relationships among test parameters, physiographic setting, and the types or degree of manifestation of surface effects, but rather to compile, summarize, and capture surface-effects observations and interpretations, as well as documentation procedures and the rationale behind them.

Allen, B.M.; Drellack, S.L. Jr.; Townsend, M.J.

1997-06-01T23:59:59.000Z

325

Uranium Mining and Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Presentation » Uranium Mining and Enrichment Overview Presentation » Uranium Mining and Enrichment Uranium Mining and Enrichment Uranium is a radioactive element that occurs naturally in the earth's surface. Uranium is used as a fuel for nuclear reactors. Uranium-bearing ores are mined, and the uranium is processed to make reactor fuel. In nature, uranium atoms exist in several forms called isotopes - primarily uranium-238, or U-238, and uranium-235, or U-235. In a typical sample of natural uranium, most of the mass (99.3%) would consist of atoms of U-238, and a very small portion of the total mass (0.7%) would consist of atoms of U-235. Uranium Isotopes Isotopes of Uranium Using uranium as a fuel in the types of nuclear reactors common in the United States requires that the uranium be enriched so that the percentage of U-235 is increased, typically to 3 to 5%.

326

Genome mining for methanobactins  

Science Journals Connector (OSTI)

Methanotrophic bacteria have potential as a biological methane sink, and methanobactins are a set of peptides important in regulating this activity. A genome mining study highlights genes involved in methanobactin production, but also suggests that not all methanotrophs have them.

Grace E Kenney; Amy C Rosenzweig

2013-02-26T23:59:59.000Z

327

Indonesian coal mining  

SciTech Connect

The article examines the opportunities and challenges facing the Indonesian coal mining industry and how the coal producers, government and wider Indonesian society are working to overcome them. 2 figs., 1 tab.

NONE

2008-11-15T23:59:59.000Z

328

Strip Mine Law (Missouri)  

Energy.gov (U.S. Department of Energy (DOE))

This law authorizes the Land Reclamation Commission of the Department of Natural Resources to adopt and promulgate rules and regulations pertaining to strip mining of coal and reclamation, review...

329

Cost Comparison Among Concepts of Injection for CO2 Offshore Underground Sequestration Envisaged in Japan  

Science Journals Connector (OSTI)

Publisher Summary Japan is in the process of 5-year R&D program of underground storage of CO2, and this study was carried out as part of this program. Offshore saline aquifers are the target geological formation in this program because (1) most of large-scale emission sources of CO2 are located near the coast in Japan, (2) aquifers of large volume are expected to be found more in offshore than on land, and (3) site acquisition is much more costly on land. At present, the total time scheme of the sequestration process is assumed, which is based on practical results from similar processes such as large-scale underground storage of natural gas in aquifers. The total system of underground sequestration can be roughly divided into three processes: recovery, transportation, and injection. Although the methods of recovery and transportation have been well studied, the injection process has not been established as it is significantly affected by geographic, geological, and topographic features of the site. The cost of injection into an offshore aquifer varies with the method applied. One reason is that there are a variety of applicable designs and construction methods of wells and surface facilities (especially offshore) that depend on the conditions of injection site. The other reason is that there are many uncertainties in exploration and operation, as is the case with petroleum development. This chapter presents the results of the preliminary analysis on the costs of injection facilities.

Hironori Kotsubo; Takashi Ohsumi; Hitoshi Koide; Motoo Uno; Takeshi Ito; Toshio Kobayashi; Kozo Ishida

2003-01-01T23:59:59.000Z

330

Underground Storage Tank Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

331

CO2 Storage in Shallow Underground and Surface Coal Mines: Challenges and Opportunities  

Science Journals Connector (OSTI)

Brine saturated with C-type (alkaline) fly ash that reacts with flue gas can provide an additional mechanism of chemical trapping (5). ... In addition, we thank Robert Virta, Mineral Commodity Specialist with the U.S. Geological Survey, for providing a digital map of swelling clay in high-resolution raster format, Garrett Veloski, for vectorization of the raster data, and Robert Dilmore, for developing the GIS database for the clay-and-coal map, expert advice on verifying the mineral stabilization aspects, and editorial input. ... Ozdemir, E. Chemistry of the adsorption of carbon dioxide by Argonne premium coals and a model to simulate CO2 sequestration in coal seams. ...

Vyacheslav N. Romanov; Terry E. Ackman; Yee Soong; Robert L. Kleinman

2009-01-29T23:59:59.000Z

332

Public institutions' investments with data mining techniques  

Science Journals Connector (OSTI)

Developing Decision Support Systems in public institutions such as the National Power Grid Companies require applying very efficient methods in order to support the decisions. The decision support system in the National Power Grid Companies can integrate ... Keywords: data mining (DM), decision support systems (DSS), measured weather parameters, wind power forecast, wind power plant (WPP)

Adela Bâra; Ion Lungu; Simona Vasilica Oprea

2009-04-01T23:59:59.000Z

333

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern  

E-Print Network (OSTI)

Fire Simulation, Evacuation Analysis and Proposal of Fire Protection Systems Inside an Underground Cavern

Stella, Carlo

334

A study of the feasibility of construction of underground storage structures in soft soil  

E-Print Network (OSTI)

Introduction Page 44 46 Construction Procedure for an Underground Storage Structure for Liquid Materials Construction Procedure for an Underground Storage Structure for Solid Materials 46 48 Geotechnical Considerations in the Construction Procedure... Introduction Page 44 46 Construction Procedure for an Underground Storage Structure for Liquid Materials Construction Procedure for an Underground Storage Structure for Solid Materials 46 48 Geotechnical Considerations in the Construction Procedure...

Rosner, Stephen Anthony

2012-06-07T23:59:59.000Z

335

Chapter 13 - Plugging In-Mine Boreholes and CBM Wells Drilled from Surface  

Science Journals Connector (OSTI)

Abstract Horizontal degasification boreholes drilled from within the mine or from the surface have proven to be effective in recovering coalbed methane (CBM) for degasification and commercial marketing. However, the inability to completely plug horizontal boreholes still producing gas prior to mine through has caused unsafe situations and significant coal production delays. To date, cement slurry has commonly been used to plug underground horizontal degasification boreholes CBM wells, including sidetracks. Over 546,000 gallons of cross-linked polymer gel has been pumped to seal these 80 boreholes. The quantity of gel pumped is almost two times the calculated volume of the boreholes, including sidetracks. The gel effectively flows into the fracture system of the coal displacing gas and water. Finally, with an affinity to attach itself to everything, except for itself, the gel adhered to the inner wall of the borehole providing an impenetrable skin, minimizing gas, and water migrating back into the borehole as evidenced by mining into the boreholes.

Gary DuBois; Stephen Kravits; Joe Kirley; Doug Conklin; Joanne Reilly

2014-01-01T23:59:59.000Z

336

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

337

Prince George's County Underground Storage Act (Maryland) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Prince George's County Underground Storage Act (Maryland) Prince George&#039;s County Underground Storage Act (Maryland) Prince George's County Underground Storage Act (Maryland) < Back Eligibility Commercial Retail Supplier Tribal Government Program Info State Maryland Program Type Environmental Regulations Provider Maryland Department of the Environment A gas storage company may invoke eminent domain to acquire property in Prince George's County for underground gas storage purposes. The area acquired must lie not less than 800 feet below the surface of a maximum of 12,000 acres of land, and may be owned by a public body. A permit from the Department of the Environment, along with an order from the Public Service Commission, is required prior to the use of eminent domain. The Act contains further information on eminent domain, landowner, and property

338

DOE - Office of Legacy Management -- Los Alamos Underground Med Pipelines -  

NLE Websites -- All DOE Office Websites (Extended Search)

Los Alamos Underground Med Los Alamos Underground Med Pipelines - NM 02 FUSRAP Considered Sites Site: Los Alamos Underground Med Pipelines ( NM.02 ) Eliminated - Remedial action being performed by the Los Alamos Area Office of the DOE Albuquerque Operations Office Designated Name: Not Designated Alternate Name: Los Alamos County Industrial Waste Lines NM.02-1 Location: Los Alamos , New Mexico NM.02-1 Evaluation Year: 1986 NM.02-1 Site Operations: From 1952 to 1965, underground pipelines or industrial waste lines were used at Los Alamos Scientific Laboratory to transport liquid wastes from Technical Areas 1, 3, 48, and 43 to a chemical waste treatment plant (Technical Area 45). NM.02-1 Site Disposition: Eliminated - Remedial action being performed by another DOE office NM.02-1

339

Georgia Underground Gas Storage Act of 1972 (Georgia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and provide for more economical distribution of gas to the domestic, commercial, and industrial consumers of the State. Any gas utility desiring to utilize or operate an

340

Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage of Natural Gas and Liquefied Petroleum Gas Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) Underground Storage of Natural Gas and Liquefied Petroleum Gas (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Nebraska Program Type Siting and Permitting Provider Nebraska Oil and Gas Conservation Commission This statute declares underground storage of natural gas and liquefied petroleum gas to be in the public interest if it promotes the conservation

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Rules and Regulations for Underground Storage Facilities Used for Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rules and Regulations for Underground Storage Facilities Used for Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Multi-Family Residential Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Rhode Island Program Type Environmental Regulations Provider Department of Environmental Management These regulations apply to underground storage facilities for petroleum and

342

Appendix E: Underground Storage Annual Site Environmental Report  

E-Print Network (OSTI)

Appendix E: Underground Storage Tank Data #12;Annual Site Environmental Report Appendix E identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

Pennycook, Steve

343

NM Underground Storage Tank Registration | Open Energy Information  

Open Energy Info (EERE)

OpenEI Reference LibraryAdd to library Legal Document- OtherOther: NM Underground Storage Tank RegistrationLegal Published NA Year Signed or Took Effect 2012 Legal Citation...

344

Colorado Natural Gas in Underground Storage (Base Gas) (Million...  

Annual Energy Outlook 2012 (EIA)

Base Gas) (Million Cubic Feet) Colorado Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 39,062 39,062...

345

,"Colorado Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1302015 12:57:42 PM" "Back to Contents","Data 1: Colorado Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CO2"...

346

ARM 17-56 - Underground Storage Tanks Petroleum and Chemical...  

Open Energy Info (EERE)

Underground Storage Tanks Petroleum and Chemical Substance Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: ARM 17-56 -...

347

Alaska Underground Storage Tanks Website | Open Energy Information  

Open Energy Info (EERE)

Tanks Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Alaska Underground Storage Tanks Website Author Division of Spill Prevention and Response...

348

30 TAC, part 1, chapter 334 Underground storage tanks general...  

Open Energy Info (EERE)

Underground storage tanks general provisions Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 30 TAC, part 1, chapter 334...

349

Investigating dynamic underground coal fires by means of numerical simulation  

Science Journals Connector (OSTI)

......available within the combustion centre. Combustion will only proceed whenever...controls the overall combustion rate. For numerical...transport-only and a chemistry-only part. Common...rate of underground coal fires by oxygen transport......

S. Wessling; W. Kessels; M. Schmidt; U. Krause

2008-01-01T23:59:59.000Z

350

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:33 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

351

,"New York Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"182015 12:49:32 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070NY2"...

352

Underground helium travels to the Earth's surface via aquifers...  

NLE Websites -- All DOE Office Websites (Extended Search)

carried to the surface with the flow of water. The only place where helium is made on Earth is underground, where deep veins of uranium and thorium give off atoms of helium as...

353

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network (OSTI)

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

354

Physical security of cut-and-cover underground facilities  

SciTech Connect

To aid designers, generic physical security objectives and design concepts for cut-and-cover underground facilities are presented. Specific aspects addressing overburdens, entryways, security doors, facility services, emergency egress, security response force, and human elements are discussed.

Morse, W.D.

1998-08-01T23:59:59.000Z

355

Microsoft Word - WIPP Updates_Underground Recovery Process Begins  

NLE Websites -- All DOE Office Websites (Extended Search)

5DR0314 002NWPR0314 NWP Media Contacts: Donavan Mager Nuclear Waste Partnership LLC (575) 234-7586 www.wipp.energy.gov For Immediate Release WIPP UPDATES: Underground Recovery...

356

P-wave Spectra from Underground Nuclear Explosions  

Science Journals Connector (OSTI)

......three underground explosions at the Nevada Test Site and three earthquakes recorded...nuclear explosions detonated in Nevada (Jorum and Handley) and for a...spectra from two explosions at the Nevada Test Site (Jorum and Handley) and a presumed......

Peter Molnar

1971-08-01T23:59:59.000Z

357

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:28 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

358

,"New York Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:06:47 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

359

,"New York Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:06:48 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060NY2"...

360

,"New York Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"1162014 3:07:27 PM" "Back to Contents","Data 1: New York Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290NY2"...

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Underground Salt Haul Truck Fire at the Waste Isolation Pilot...  

Office of Environmental Management (EM)

Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the...

362

One-man video verite: thoughts on Scenes from underground  

E-Print Network (OSTI)

This thesis considers the making of a documentary videotape on the Red Line Subway Extension project in Cambridge and Somerville, Massachusetts entitled Scenes From Underground. It traces my initial plans for an expository ...

Strongin, Barry

1984-01-01T23:59:59.000Z

363

Mining the earth  

SciTech Connect

Substances extracted from the earth - stone, iron, bronze - have been so critical to human development that historians name the ages of our past after them. But while scholars have carefully tracked human use of minerals, they have never accounted for the vast environmental damage incurred in mineral production. Few people would guess that a copper mining operation has removed a piece of Utah seven times the weight of all the material dug for the Panama Canal. Few would dream that mines and smelters take up to a tenth of all the energy used each year, or that the waste left by mining measures in the billions of tons - dwarfing the world's total accumulation of more familiar kinds of waste, such as municipal garbage. Indeed, more material is now stripped from the earth by mining than by all the natural erosion of the earth's rivers. The effects of mining operations on the environment are discussed under the following topics: minerals in the global economy, laying waste, at what cost cleaning up, and dipping out. It is concluded that in the long run, the most effective strategy for minimizing new damage is not merely to make mineral extraction cleaner, but to reduce the rich nations needs for virgin (non-recycled) minerals.

Young, J.E.

1992-01-01T23:59:59.000Z

364

Waste package and underground facility design  

SciTech Connect

The design of the waste package and the underground facility for radioactive waste disposal presents many challenges never before addressed in an engineering design effort. The designs must allow for handling and emplacement of the waste and must ensure that the waste will be isolated over time periods that extend beyond those normally dealt with in engineering solutions. Once developed, these designs must be defended in a licensing arena to allow construction and operation of the disposal system. The design of the waste package and the repository is being conducted iteratively. Each iteration of the design is accompanied by an assessment of the performance of the design and an assessment of remaining design issues. These assessments are used to establish the basis for the next design phase. Design requirements are assessed and revised as necessary before the initiation of each design phase. In addition, the design effort is being closely integrated with the siting effort through the application of an issue identification and resolution strategy.

Frei, M.W.; Dayem, N.J.

1988-01-01T23:59:59.000Z

365

National Mining Association Experimental Determination  

E-Print Network (OSTI)

National Mining Association Experimental Determination of Radon Fluxes over Water #12;Introduction research funded by the National Mining Association (NMA) regarding radon fluxes from water surfaces surfaces at uranium recovery operations are insignificant and approximate background soil fluxes for most

366

Montana Coal Mining Code (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

367

Opportunities for improved surface mine reclamation in the central Appalachian coal region  

SciTech Connect

The purpose of this research was to estimate the costs of coal surface mine reclamation methods designed to prepare mined lands for improved use in areas of steeply sloping topography. During the course of this research, a computer-based mining and reclamation cost estimating system was developed. COSTSUM is a set of seven programs designed to analyze data from active surface mining sites to determine spoil handling and reclamation costs. OPSIM is a surface mining simulator designed to estimate the differences in spoil handling costs among reclamation and postmining landform alternatives. This cost-estimating system was utilized during an intensive study of mining and reclamation cost at a surface mining site in Wise County, Virginia, where a number of improved reclamation practices were implemented. At this site, a steeply sloping premining topography was transformed to a postmining landform containing an extensive near-level area covered with deep, uncompacted, potentially productive mine soils. Analysis of daily records of operations revealed that the cost of mining and reclaiming this site was comparable to industry average costs in the area in spite of departure from conventional methods. The results of simulation procedures indicated that the cost of mining so as to produce this landscape was less than the estimated cost of conventional mining methods.

Zipper, C.E.

1986-01-01T23:59:59.000Z

368

The Sudbury Mining District  

E-Print Network (OSTI)

for Digital Scholarship. http://kuscholarworks.ku.edu Submitted to the School of Engineering of the University of Kansas in partial fulfillment of the requirements for a course in Mining Engineering ran THE SUDBURY MINING DISTRICT. A D i s s e r t a t i o... n P r e s e n t e d t o the F a c u l t y o f the SCHOOL OP ENGINEERING i n the UNIVERSITY OP KANSAS. F o r the Completion o f a Course i n MINING ENGINEERING. fey Prank G. B e d e l l . June 1906. PREFACE• I n t h i s paper w i l l be g i...

Bedell, Frank G.

1906-06-01T23:59:59.000Z

369

An introduction—Mining geophysics  

Science Journals Connector (OSTI)

...occurrences related to mining operations have forced...Kentucky, in which coal refuse and slurry broke...potential problems ahead of mining operations and minimize...resistivity to map shallow coal mine workings in the Appalachia coal fields. High-resolution...

Lawrence M. Gochioco; Milovan Urosevic

370

A method for measuring the coordinates of an asynchronous motor in a frequency-controlled electric drive of mine excavator mechanisms  

Science Journals Connector (OSTI)

This paper deals with methods for calculating the electromagnetic torque of an asynchronous motor with a square-cage rotor of the electric drive of the bucket-lifting mechanism of ... description of electromagnet...

P. A. Osipov; A. L. Karyakin

2012-09-01T23:59:59.000Z

371

Test plan: Gas-threshold-pressure testing of the Salado Formation in the WIPP underground facility  

SciTech Connect

Performance assessment for the disposal of radioactive waste from the United States defense program in the WIPP underground facility must assess the role of post-closure was generation by waste degradation and the subsequent pressurization of the facility. be assimilated by the host formation will Whether or not the generated gas can be assimilated by the host formation will determine the ability of the gas to reach or exceed lithostatic pressure within the repository. The purpose of this test plan is (1) to present a test design to obtain realistic estimates of gas-threshold pressure for the Salado Formation WIPP underground facility including parts of the formation disturbed by the underground of the Salado, and (2) to provide a excavations and in the far-field or undisturbed part framework for changes and amendments to test objectives, practices, and procedures. Because in situ determinations of gas-threshold pressure in low-permeability media are not standard practice, the methods recommended in this testplan are adapted from permeability-testing and hydrofracture procedures. Therefore, as the gas-threshold-pressure testing program progresses, personnel assigned to the program and outside observers and reviewers will be asked for comments regarding the testing procedures. New and/or improved test procedures will be documented as amendments to this test plan, and subject to similar review procedures.

Saulnier, G.J. Jr. (INTERA, Inc., Austin, TX (United States))

1992-03-01T23:59:59.000Z

372

Recovery of methane from the abandoned Golden Eagle Mine property  

SciTech Connect

The abandoned Golden Eagle underground coal mine in Colorado contains gassy coals from which Stroud Oil Properties, Inc. (Stroud) has been recovering gas since 1996. The mine closed permanently in 1996, and during its operation drained methane from gob and ventilation boreholes. Stroud currently produces about 1.8 million cubic feet of near pipeline quality gas per day from six of these boreholes. Although the project has proven successful, gas recovery has been challenging because of low bottom hole pressure and variable borehole performance. Wellhead compressors are required to boost gas pressure for delivery to the main plant. Connecting additional boreholes to the gathering system often decreases production from existing production boreholes. Increasing gas removal has resulted in air leaks that lower gas quality. Stroud monitors the gas quality and blends any below-spec gas with its above-spec gas to ensure that the resulting product meets pipeline standards. This gas is then compressed for sale into a nearby pipeline. Overburden relaxation and finite difference modeling indicate that overlying coal seams and the coal remaining at the margins of the mined out workings contribute a significant amount of gas to the current production.

Hupp, K.L.; Bibler, C.; Pilcher, R.C.

1999-07-01T23:59:59.000Z

373

ITP Mining: Energy and Environmental Profile of the U.S. Mining...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Water Use in Industries of the Future: Mining Industry ITP Mining: Exploration and Mining Technology Roadmap Advanced Manufacturing Home Key Activities Research & Development...

374

Spoil handling and reclamation costs at a contour surface mine in steep slope Appalachian topography  

SciTech Connect

Accurate overburden handling cost estimation methods are essential to effective pre-mining planning for post-mining landforms and land uses. With the aim of developing such methods, the authors have been monitoring costs at a contour surface mine in Wise County, Virginia since January 1, 1984. Early in the monitoring period, the land was being returned to its Approximate Original Contour (AOC) in a manner common to the Appalachian region since implementation of the Surface Mining Control and Reclamation Act of 1977 (SMCRA). More recently, mining has been conducted under an experimental variance from the AOC provisions of SMCRA which allowed a near-level bench to be constructed across the upper surface of two mined points and an intervening filled hollow. All mining operations are being recorded by location. The cost of spoil movement is calculated for each block of coal mined between January 1, 1984, and August 1, 1985. Per cubic yard spoil handling and reclamation costs are compared by mining block. The average cost of spoil handling was $1.90 per bank cubic yard; however, these costs varied widely between blocks. The reasons for those variations included the landscape positions of the mining blocks and spoil handling practices. The average reclamation cost was $0.08 per bank cubic yard of spoil placed in the near level bench on the mined point to $0.20 for spoil placed in the hollow fill. 2 references, 4 figures.

Zipper, C.E.; Hall, A.T.; Daniels, W.L.

1985-12-09T23:59:59.000Z

375

Saving energy in mining  

SciTech Connect

The struggle to reduce power costs is relentless in the world of mining. One of the most significant trends has been the use of electric instead of diesel power in such mining vehicles as large capacity dump trucks, hydraulic excavators, and articulated trucks. The hydraulic excavator, due to its selectivity, high breakout force, and maneuverability, has become increasingly popular as the loading unit in conventional shovel and truck operations. However, hydraulic shovels were originally only available as diesel powered units. Electric power for the prime mover is now offered as an option by most manufacturers. This is particularly cost effective with the larger machines. In surface mines, the transport of coal and overburden consumes the most energy. The application of such technology as in-pit crushers and conveyor systems are all aimed at reducing operating costs. A major development in reducing ventilation energy consumption is the Ventcon system based on the idea of distributing ventilation air more effectively around the mine. Ventcon controls the mine's fans and ventilation doors so that airflow is highest where most is required. The use of continuous haulage from the face to the surface is another energy-saving development. In many areas of Appalachia, United States, coal is cut by a continuous miner and hauled directly to the surface by a series of conveyors. The use of aluminum in cage and skip manufacturehas also been proven as an energy-saving technique. All-aluminum man cages are already in use. For the tougher application of hoisting coal, aluminum can be substituted for heavier materials in the construction of skips. In both cases, significant energy savings, and thus reduced hoisting costs, are the result. There is a power saving of more than 100 kilowatts (134 horsepower) for every one ton reduction of skip mass. The energy efficiencies of hydraulic rock drills are higher than pneumatic drills.

Chadwick, J.R.

1982-03-01T23:59:59.000Z

376

CONCEPTUAL DESIGN FOR A RADICALLY SMALLER, HIGHLY ADAPTIVE AND APPLICATION-FLEXIBLE MINING MACHINE FOR UTILITY AND DEVELOPMENT WORK  

SciTech Connect

The aim of this research project was to develop a preliminary ''conceptual design'' for a radically smaller, highly adaptive and application-flexible underground coal mining machine, for performing non-production utility work and/or also undertake limited production mining for the recovery of reserves that would otherwise be lost. Whereas historically, mining philosophies have reflected a shift to increasing larger mechanized systems [such as the continuous miner (CM)], specific mining operations that do not benefit from the economy of the large mining equipment are often ignored or addressed with significant inefficiencies. Developing this prototype concept will create a new class of equipment that can provide opportunities to re-think the very structure of the mining system across a broad range of possibilities, not able to be met by existing machinery. The approach involved pooling the collective input from mining professionals, using a structured listing of desired inputs in the form of a questionnaire, which was used to define the range of desired design specifications. From these inputs, a conceptual specification was blended, by the author, to embody the general concurrence of mission concepts for this machine.

Andrew H. Stern

2004-12-20T23:59:59.000Z

377

Estimating Residual Solids Volume In Underground Storage Tanks  

SciTech Connect

The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved and treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.

Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.; Tihey, John R.

2014-01-08T23:59:59.000Z

378

Application of GIS on forecasting water disaster in coal mines  

SciTech Connect

In many coal mines of China, water disasters occur very frequently. It is the most important problem that water gets inrush into drifts and coal faces, locally known as water gush, during extraction and excavation. Its occurrence is controlled by many factors such as geological, hydrogeological and mining technical conditions, and very difficult to be predicted and prevented by traditional methods. By making use of overlay analysis of Geographic Information System, a multi-factor model can be built to forecast the potential of water gush. This paper introduced the method of establishment of the water disaster forecasting system and forecasting model and two practical successful cases of application in Jiaozuo and Yinzhuang coal mines. The GIS proved helpful for ensuring the safety of coal mines.

Sun Yajun; Jiang Dong; Ji Jingxian [China Univ. of Mining and Technology, Jiangshy (China)] [and others

1996-08-01T23:59:59.000Z

379

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Texas Oil Project Will Help Keep Carbon Dioxide Underground Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

380

New Texas Oil Project Will Help Keep Carbon Dioxide Underground |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy’s National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen production facilities. The Air Products and Chemicals hydrogen production facilities in Port Arthur, Texas, is funded by the Energy Department through the 2009 Recovery Act. It is managed by the Office of Fossil Energy's National Energy Technology Laboratory. | Photo credit Air Products and Chemicals hydrogen

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Underground Injection Control (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control (West Virginia) Injection Control (West Virginia) Underground Injection Control (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by 5 classes of wells. All owners

382

Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Program Info State Tennessee Program Type Environmental Regulations Siting and Permitting Provider Tennessee Department Of Environment and Conservation The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division of Solid and Hazardous

383

Western Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Western Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 341 1994-Jan 01/07 331 01/14 316 01/21 303 01/28 290 1994-Feb 02/04 266 02/11 246 02/18 228 02/25 212 1994-Mar 03/04 206 03/11 201 03/18 205 03/25 202 1994-Apr 04/01 201 04/08 201 04/15 202 04/22 210 04/29 215 1994-May 05/06 225 05/13 236 05/20 242 05/27 256

384

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

storage of natural gas, liquid hydrocarbons, and carbon storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) < Back Eligibility Commercial Construction Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Louisiana Program Type Environmental Regulations Siting and Permitting The Louisiana Department of Environmental Quality regulates the underground storage of natural gas or liquid hydrocarbons and carbon dioxide. Prior to the use of any underground reservoir for the storage of natural gas and prior to the exercise of eminent domain by any person, firm, or corporation having such right under laws of the state of Louisiana, the commissioner, shall have found all of the following:

385

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Nonsalt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 841 2007-Jan 01/05 823 01/12 806 01/19 755 01/26 716 2007-Feb 02/02 666 02/09 613 02/16 564 02/23 538 2007-Mar 03/02 527 03/09 506 03/16 519 03/23 528 03/30 550 2007-Apr 04/06 560 04/13 556 04/20 568 04/27 590 2007-May 05/04 610 05/11 629 05/18 648 05/25 670

386

Office of Enforcement Final Notice of Violation to Pacific Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Final Notice of Violation to Pacific Enforcement Final Notice of Violation to Pacific Underground Construction, Inc. September 3, 2009 Office of Enforcement Final Notice of Violation to Pacific Underground Construction, Inc. September 3, 2009 Pursuant to section 234C of the Atomic Energy Act, as amended, 42 U.S.C. § 2282c, and the Department of Energy's (DOE) regulations at 10 C.F.R. Part 851, Worker Safety and Health Program, DOE is issuing this Final Notice of Violation (FNOV) to Pacific Underground Construction, Inc. (PUC). The FNOV finds PUC liable for violating DOE's worker safety and health requirements. The FNOV is based upon the Office of Enforcement's July 23, 2008, Investigation Report and a careful and thorough review of all evidence presented to DOE by PUC, including your response to the Preliminary Notice

387

Producing Region Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 570 1994-Jan 01/07 532 01/14 504 01/21 440 01/28 414 1994-Feb 02/04 365 02/11 330 02/18 310 02/25 309 1994-Mar 03/04 281 03/11 271 03/18 284 03/25 303 1994-Apr 04/01 287 04/08 293 04/15 308 04/22 334 04/29 353 1994-May 05/06 376 05/13 399 05/20 429 05/27 443

388

ITP Mining: Mining Industry of the Future Mineral Processing...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

and activities in the industry and crossed various mined commodities including copper, uranium, iron ore, coal and others. The workshop participants included individuals from...

389

Underground Storage Tanks (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tanks (West Virginia) Tanks (West Virginia) Underground Storage Tanks (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install, repair, retrofit,

390

Control Surveys for Underground Construction of the Superconducting Super Collider  

SciTech Connect

Particular care had to be taken in the design and implementation of the geodetic control systems for the Superconducting Super Collider (SSC) due to stringent accuracy requirements, the demanding tunneling schedule, long duration and large size of the construction effort of the project. The surveying requirements and the design and implementation of the surface and underground control scheme for the precise location of facilities which include approximately 120 km of bored tunnel are discussed. The methodology used for the densification of the surface control networks, the technique used for the transfer of horizontal and vertical control into the underground facilities, and the control traverse scheme employed in the tunnels is described.

Greening, W.J.Trevor; Robinson, Gregory L.; /Measurment Science Inc.; Robbins, Jeffrey S.; Ruland, Robert E.; /SLAC

2005-08-16T23:59:59.000Z

391

Sudden stratospheric warmings seen in MINOS deep underground muon data  

SciTech Connect

The rate of high energy cosmic ray muons as measured underground is shown to be strongly correlated with upper-air temperatures during short-term atmospheric (10-day) events. The effects are seen by correlating data from the MINOS underground detector and temperatures from the European Centre for Medium Range Weather Forecasts during the winter periods from 2003-2007. This effect provides an independent technique for the measurement of meteorological conditions and presents a unique opportunity to measure both short and long-term changes in this important part of the atmosphere.

Osprey, S.; /Oxford U.; Barnett, J.; /Oxford U.; Smith, J.; /Oxford U.; Adamson, P.; /Fermilab; Andreopoulos, C.; /Rutherford; Arms, K.E.; /Minnesota U.; Armstrong, R.; /Indiana U.; Auty, D.J.; /Sussex U.; Ayres, D.S.; /Argonne; Baller, B.; /Fermilab; Barnes, P.D., Jr.; /LLNL, Livermore /Oxford U.

2009-01-01T23:59:59.000Z

392

Mining Succinct and High-Coverage API Usage Patterns from Source Code  

E-Print Network (OSTI)

Mining Succinct and High-Coverage API Usage Patterns from Source Code Jue Wang�* , Yingnong Dang (API) methods. However, these usage patterns are often not well documented. To help developers to get such usage patterns, there are approaches proposed to mine client code of the API methods. However, they lack

Xie, Tao

393

H.A.R. 11-281 - Underground Storage Tanks | Open Energy Information  

Open Energy Info (EERE)

1 - Underground Storage Tanks Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: H.A.R. 11-281 - Underground Storage...

394

C.R.S. 37-90 - Underground Water | Open Energy Information  

Open Energy Info (EERE)

StatuteStatute: C.R.S. 37-90 - Underground WaterLegal Abstract This article governs the management of underground water in Colorado. Published NA Year Signed or Took Effect 2014...

395

Assessment of seawater intrusion into underground oil storage cavern and prediction of its sustainability  

Science Journals Connector (OSTI)

Operation of underground oil (gas) storage cavern in coastal area can induce seawater intrusion because excavation of underground storage cavern causes the groundwater level decrease of coastal aquifer. Seawater ...

Eunhee Lee; Jeong-Won Lim; Hee Sun Moon; Kang-Kun Lee

2014-07-01T23:59:59.000Z

396

Managing expert-information uncertainties for assessing collapse susceptibility of abandoned underground structures  

E-Print Network (OSTI)

by the vast number of quarries and marl pits, but also for various other reasons resulting in underground be sufficiently violent to cause human loss. Thus, in 1961, the collapse of an underground chalk quarry

Boyer, Edmond

397

Low glare luminaire for thin seam mining. Open file report 29 Sep 78-28 Feb 82  

SciTech Connect

Work places of an underground coal mine are required (30 CFR 1719) to be illuminated while self-propelled equipment is used. Permissible machine-mounted systems have been developed and applied satisfactorily to many mining operations. However, some low-seam and thin-seam equipment has been difficult to illuminate because reliable, direct current (dc) systems and compact, low output, low-glare luminaires were not available. This program resulted in the design and prototype construction of compact, low-glare luminaires and alternate current (ac) power systems, particularly suited to resolving illumination problems on low- and thin-seam mining equipment. Design objectives were based on enhancing the prospects for thin-seam illumination solutions through definition of a product that could challenge markets enjoyed by higher glare luminaires and through reduction of technical risks associated with any new product development as well as the MSHA certification process.

Parker, J.R.; Hahn, W.F.

1982-10-01T23:59:59.000Z

398

Lower 48 States Natural Gas Underground Storage Withdrawals (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) Lower 48 States Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 849,115 666,248 313,952 100,096 58,314 80,472 115,649 125,989 55,418 51,527 183,799 473,674 2012 619,332 515,817 205,365 126,403 73,735 90,800 129,567 133,919 66,652 85,918 280,933 489,707 2013 791,849 646,483 480,032 134,680 48,945 68,117 98,141 101,568 66,273 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Withdrawals of Natural Gas from Underground Storage - All Operators

399

Appendix C: Underground Storage Annual Site Environmental Report  

E-Print Network (OSTI)

Appendix C: Underground Storage Tank Data #12;#12;Annual Site Environmental Report Appendix C identification service Contents Status ( ) date to Corrective action Tank Out-of- assessment number date regulatory Installation Capacity Preliminary date (gallons) investigation Environmental agency Petroleum USTs

Pennycook, Steve

400

Effect of repository underground ventilation on emplacement drift temperature control  

SciTech Connect

The repository advanced conceptual design (ACD) is being conducted by the Civilian Radioactive Waste Management System, Management & Operating Contractor. Underground ventilation analyses during ACD have resulted in preliminary ventilation concepts and design methodologies. This paper discusses one of the recent evaluations -- effects of ventilation on emplacement drift temperature management.

Yang, H.; Sun, Y.; McKenzie, D.G.; Bhattacharyya, K.K. [Morrison Knudson Corporation, Las Vegas, NV (United States)

1996-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Underground test area subproject waste management plan. Revision No. 1  

SciTech Connect

The Nevada Test Site (NTS), located in southern Nevada, was the site of 928 underground nuclear tests conducted between 1951 and 1992. The tests were performed as part of the Atomic Energy Commission and U.S. Department of Energy (DOE) nuclear weapons testing program. The NTS is managed by the DOE Nevada Operations Office (DOE/NV). Of the 928 tests conducted below ground surface at the NTS, approximately 200 were detonated below the water table. As an unavoidable consequence of these testing activities, radionuclides have been introduced into the subsurface environment, impacting groundwater. In the few instances of groundwater sampling, radionuclides have been detected in the groundwater; however, only a very limited investigation of the underground test sites and associated shot cavities has been conducted to date. The Underground Test Area (UGTA) Subproject was established to fill this void and to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the NTS. One of its primary objectives is to gather data to characterize the deep aquifer underlying the NTS.

NONE

1996-08-01T23:59:59.000Z

402

Underground—and the City of the Future  

Science Journals Connector (OSTI)

... , warehouses and other public service buildings, as well as traffic routes for vehicles and pedestrians, would be constructed in this way. Already there exists a plan for the diversion ... in the well-known École spéciale d'Architecture, on the lighting of underground traffic and pedestrian routes. He reviews the practice exemplified in some of the short subways in Paris, ...

1940-01-06T23:59:59.000Z

403

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations  

E-Print Network (OSTI)

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations Ignasi category includes all step- up and step-down transmission substations, as well as a number of distribution substations indeed. Nevertheless, the current trend in electric power Engineering moves in another direction

Colominas, Ignasi

404

,"New York Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030NY2","N5010NY2","N5020NY2","N5070NY2","N5050NY2","N5060NY2" "Date","New York Natural Gas Underground Storage Volume (MMcf)","New York Natural Gas in...

405

EARLY DEVELOPMENT OF THE UNDERGROUND SNO LABORATORY IN CANADA  

E-Print Network (OSTI)

EARLY DEVELOPMENT OF THE UNDERGROUND SNO LABORATORY IN CANADA by G.T. Ewan and W.F. Davidson Council of Canada, Ottawa, Ontario Fundamental physics measurements can be made by many different of high energy cos- mic rays, solar neutrino measure- ments, and searches for rare process- es

Abolmaesumi, Purang

406

Lower 48 States Total Natural Gas Injections into Underground Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,592 41,680 99,330 270,106 465,787 438,931 372,458 370,471 418,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Injections of Natural Gas into Underground Storage - All Operators

407

Underground storage tank 511-D1U1 closure plan  

SciTech Connect

This document contains the closure plan for diesel fuel underground storage tank 511-D1U1 and appendices containing supplemental information such as staff training certification and task summaries. Precision tank test data, a site health and safety plan, and material safety data sheets are also included.

Mancieri, S.; Giuntoli, N.

1993-09-01T23:59:59.000Z

408

An experimental investigation of mine burial penetration in soft sediments  

E-Print Network (OSTI)

of that of actual mines. The factors selected for the investigation were mine weight, preburial condition of the mine, mine orientation, impact velocity of the mine and shear strength and creep characteristics of the soil. Only the geotechnical aspects...

Munim, Mohammed Abdul

2012-06-07T23:59:59.000Z

409

Proceedings, 26th international conference on ground control in mining  

SciTech Connect

Papers are presented under the following topic headings: multiple-seam mining, surface subsidence, coal pillar, bunker and roadway/entry supports, mine design and highwall mining, longwall, roof bolting, stone and hardrock mining, rock mechanics and mine seal.

Peng, S.S.; Mark, C.; Finfinger, G. (and others) (eds.)

2007-07-01T23:59:59.000Z

410

Insider Threat Detection using Stream Mining and Graph Mining  

E-Print Network (OSTI)

Insider Threat Detection using Stream Mining and Graph Mining Pallabi Parveen, Jonathan Evans threats who attempt to conceal their activities by varying their behaviors over time. This paper applies of insider threat detection, demonstrating that the ensemble-based approach is significantly more effective

Hamlen, Kevin W.

411

Mines and Quarries: The Coal Mines (Firedamp Drainage) Regulations, 1960   

E-Print Network (OSTI)

These regulations, which are made by the Minister of Power under section 141 of the Mines and Quarries Act, 1954, apply to the collecting of firedamp in coal mines before it has been diluted by any ventilation therein and its safe disposal (this...

Wood, Richard

1960-01-01T23:59:59.000Z

412

The influence of fracture properties on ground-water flow at the Bunker Hill Mine, Kellogg, Idaho  

SciTech Connect

The Bunker Hill Mine in northern Idaho is a large underground lead-zinc mine located in Precambrian metaquartzite rocks with virtually no primary porosity. Ground-water flow through these types of rocks is largely dependent upon the properties of fractures such as joints, faults and relict bedding planes. Ground water that flows into the mine via the fractures is contaminated by heavy metals and by the production of acid water, which results in a severe acid mine drainage problem. A more complete understanding of how the fractures influence the ground-water flow system is a prerequisite to the evaluation of reclamation alternatives to reduce acid drainage from the mine. Fracture mapping techniques were used to obtain detailed information on the fracture properties observed in the New East Reed drift of the Bunker Hill Mine. The data obtained include: (a) fracture type, (b) orientation, (c) trace length, (d) the number of visible terminations, (e) roughness (small-scale asperities), (f) waviness (larger-scale undulations), (g) infilling material, and (h) a qualitative measure of the amount of water flowing through each fracture.

Lachmar, T.E. [Utah State Univ., Logan, UT (United States). Dept. of Geology

1993-12-01T23:59:59.000Z

413

Marine clathrate mining and sediment separation  

DOE Patents (OSTI)

A method and apparatus for mining of hydrocarbons from a hydrocarbon-containing clathrate such as is found on the ocean floor. The hydrocarbon containing clathrate is disaggregated from sediment by first disrupting clathrate-containing strata using continuous mining means such as a rotary tilling drum, a fluid injector, or a drill. The clathrate-rich portion of sediment thus disrupted from the sea floor strata are carried through the apparatus to regions of relative lower pressure and/or relative higher temperature where the clathrate further dissociates into component hydrocarbons and water. The hydrocarbon is recovered with the assistance of a gas that is injected and buoys the hydrocarbon containing clathrate helping it to rise to regions of lower pressure and temperature where hydrocarbon is released. The sediment separated from the hydrocarbon returns to the ocean floor.

Borns, David J. (Albuquerque, NM); Hinkebein, Thomas E. (Albuquerque, NM); Lynch, Richard W. (Albuquerque, NM); Northrop, David A. (Albuquerque, NM)

2001-01-01T23:59:59.000Z

414

High performance methods for frequent pattern mining.  

E-Print Network (OSTI)

?? Current Big Data era is generating tremendous amount of data in most fields such as business, social media, engineering, and medicine. The demand to… (more)

Vu, Lan

2015-01-01T23:59:59.000Z

415

Web Mining: Research and Practice  

Science Journals Connector (OSTI)

Web mining techniques seek to extract knowledge from Web data. This article provides an overview of past and current work in the three main areas of Web mining research—content structure and usage—as well as emerging work in Semantic Webmining.

Pranam Kolari; Anupam Joshi

2004-01-01T23:59:59.000Z

416

Solar for Mining Hugh Rudnick  

E-Print Network (OSTI)

the storage requirement to increase its participation worldwide #12;Solar Energy in Mining · Electrical Energy footprint · Electrowinning Heating on electrowinning process · Non-Metallic Mining Heating on nitrate Desalinization process Pumping Water treatment · Heating Water heating Space heating Space cooling #12;Ref

Catholic University of Chile (Universidad Católica de Chile)

417

Data Mining Tools Irfan Altas  

E-Print Network (OSTI)

Data Mining Tools Irfan Altas School of Information Studies, Charles Sturt University Wagga Wagga discuss several scalable and parallel discovery and predictive data mining tools. They successfully address many of the computational challenges associated with the analy­ sis of data sets with millions

Turlach, Berwin A.

418

Analysis and remedial treatment of a steel pipe-jacking accident in complex underground environment  

Science Journals Connector (OSTI)

Abstract Steel pipe-jacking has been widely used in the construction of water supply and sewage pipelines because of its self-sealing qualities, ability to withstand high pressure and lower environmental impact. The trend in steel pipe-jacking is towards larger diameters, longer drive lengths, and better adaptation to more complex underground conditions. Steel pipe-jacking, in which a flexible pipe is used, is different from concrete pipe-jacking where a rigid pipe is used. With increasing diameters and drive lengths, the mechanical characteristics of deep-buried steel pipe-jacking in complex underground conditions have presented new challenges for designers. In this study, the forces involved and the stability of steel pipe-jacking are analyzed by examining an example of steel pipe-jacking in a complex underground environment. The causes of high deflection under elevated water and earth pressure and local buckling incidents are investigated by the finite element method. The results show that, in this particular case, confining pressure combined with jacking force leads to buckling. Two main remedial schemes are proposed: one is to increase the wall thickness of the pipe, and the other is to install stiffening ribs on the pipe where high deflection occurs. The effect of the two remedial schemes is presented and evaluated. In particular, various stiffening ribs are used in different deflection sections with grouting to decrease friction and lower the corresponding axial jacking force. This approach demonstrates that the structural strength of the pipeline has met the requirements after the rectification action is taken. The analysis and remedial treatment for this case study will provide a reference for effective design and construction of similar steel pipe-jacking.

Liang Zhen; Jin-Jian Chen; Pizhong Qiao; Jian-Hua Wang

2014-01-01T23:59:59.000Z

419

USE of mine pool water for power plant cooling.  

SciTech Connect

Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

Veil, J. A.; Kupar, J. M .; Puder, M. G.

2006-11-27T23:59:59.000Z

420

Analysis and Experimentation of Grid-Based Data Mining with Dynamic Load Balancing  

Science Journals Connector (OSTI)

Algorithms and methods for analyzing large amounts of data are studied and developed. This paper presents a Data Mining (DM) method operated in grid ... . Because DM technology uses large amounts of data and requ...

Yong Beom Ma; Tae Young Kim; Seung Hyeon Song…

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

GRR/Section 14-HI-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-HI-c - Underground Injection Control Permit GRR/Section 14-HI-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-HI-c - Underground Injection Control Permit 14HIC - UndergroundInjectionControlPermit (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Safe Drinking Water Branch Regulations & Policies Hawaii Administrative Rules Title 11, Chapter 23 Triggers None specified Click "Edit With Form" above to add content 14HIC - UndergroundInjectionControlPermit (1).pdf 14HIC - UndergroundInjectionControlPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The developer must receive an Underground Injection Control Permit from the

422

Numerical Simulations of Leakage from Underground LPG Storage Caverns  

SciTech Connect

To secure a stable supply of petroleum gas, underground storage caverns for liquified petroleum gas (LPG) are commonly used in many countries worldwide. Storing LPG in underground caverns requires that the surrounding rock mass remain saturated with groundwater and that the water pressure be higher than the liquid pressure inside the cavern. In previous studies, gas containment criteria for underground gas storage based on hydraulic gradient and pressure have been discussed, but these studies do not consider the physicochemical characteristics and behavior of LPG such as vaporization and dissolution in groundwater. Therefore, while these studies are very useful for designing storage caverns, they do not provide better understanding of the either the environmental effects of gas contamination or the behavior of vaporized LPG. In this study, we have performed three-phase fluid flow simulations of gas leakage from underground LPG storage caverns, using the multiphase multicomponent nonisothermal simulator TMVOC (Pruess and Battistelli, 2002), which is capable of solving the three-phase nonisothermal flow of water, gas, and a multicomponent mixture of volatile organic chemicals (VOCs) in multidimensional heterogeneous porous media. A two-dimensional cross-sectional model resembling an actual underground LPG facility in Japan was developed, and gas leakage phenomena were simulated for three different permeability models: (1) a homogeneous model, (2) a single-fault model, and (3) a heterogeneous model. In addition, the behavior of stored LPG was studied for the special case of a water curtain suddenly losing its function because of operational problems, or because of long-term effects such as clogging of boreholes. The results of the study indicate the following: (1) The water curtain system is a very powerful means for preventing gas leakage from underground storage facilities. By operating with appropriate pressure and layout, gas containment can be ensured. (2) However , in highly heterogeneous media such as fractured rock and fault zones, local flow paths within which the gas containment criterion is not satisfied could be formed. To eliminate such zones, treatments such as pre/post grouting or an additional installment of water-curtain boreholes are essential. (3) Along highly conductive features such as faults, even partially saturated zones possess certain effects that can retard or prevent gas leakage, while a fully unsaturated fault connected to the storage cavern can quickly cause a gas blowout. This possibility strongly suggests that ensuring water saturation of the rock surrounding the cavern is a very important requirement. (4) Even if an accident should suddenly impair the water curtain, the gas plume does not quickly penetrate the ground surface. In these simulations, the plume takes several months to reach the ground surface.

Yamamoto, Hajime; Pruess, Karsten

2004-09-01T23:59:59.000Z

423

SEARCH FOR UNDERGROUND OPENINGS FOR IN SITU TEST FACILITIES IN CRYSTALLINE ROCK  

E-Print Network (OSTI)

Eng. Min. J. , 1939, The Bunker Hill and Sullivan Enterprisethe Fletcher Mine near Bunker, Mo. , U.S. Bur. Min. Reportproperties of mine rocks, Bunker Hill Mine, Coeur d'Alene

Wallenberg, H.A.

2010-01-01T23:59:59.000Z

424

From Data Mining to Knowledge Mining Kenneth A. Kaufman and Ryszard S. Michalski  

E-Print Network (OSTI)

From Data Mining to Knowledge Mining Kenneth A. Kaufman and Ryszard S. Michalski ABSTRACT In view learning, statistical data analysis, data mining, text mining, data visualization, pattern recognition, etc for an emerging research direction, called knowledge mining, by which we mean the derivation of high

Michalski, Ryszard S.

425

Detecting Structural Damage of Nuclear Power Plant by Interactive Data Mining Approach  

SciTech Connect

This paper presents a nonlinear structural damage identification technique, based on an interactive data mining approach, which integrates a human cognitive model in a data mining loop. A mining control agent emulating human analysts is developed, which directly interacts with the data miner, analyzing and verifying the output of the data miner and controlling the data mining process. Additionally, an artificial neural network method, which is adopted as a core component of the proposed interactive data mining method, is evolved by adding a novelty detecting and retraining function for handling complicated nuclear power plant quake-proof data. Plant quake-proof testing data has been applied to the system to show the validation of the proposed method. (author)

Yufei Shu [Japan Atomic Energy Agency (Japan)

2006-07-01T23:59:59.000Z

426

ZART: A Multifunctional Itemset Mining Algorithm  

E-Print Network (OSTI)

ZART: A Multifunctional Itemset Mining Algorithm Laszlo Szathmary1 , Amedeo Napoli1 , and Sergei O independent, multi-purposed data mining platform, incorporating a rich collection of data mining algorithms. One of these algorithms is a multifunctional itemset mining algorithm called Zart, which is based

Boyer, Edmond

427

Automated Interpretation of Optic Nerve Images: A Data Mining Framework for Glaucoma Diagnostic Support  

E-Print Network (OSTI)

Automated Interpretation of Optic Nerve Images: A Data Mining Framework for Glaucoma Diagnostic high-quality images of the optic disc (the retinal re- gion where the optic nerve exits the eye processing and data mining methods, to support the interpretation of CSLT optic nerve images. Our framework

Abidi, Syed Sibte Raza

428

Spatial data mining and geographic knowledge discovery--An introduction Diansheng Guo a,1  

E-Print Network (OSTI)

Spatial data mining and geographic knowledge discovery--An introduction Diansheng Guo a,1 , Jeremy methods to extract unknown and unexpected information from spatial data sets of unprecedentedly large size, high dimensionality, and complexity. To address these challenges, spatial data mining and geographic

429

Data Mining for Selective Visualization of Large Spatial Datasets Shashi Shekhar  

E-Print Network (OSTI)

Data Mining for Selective Visualization of Large Spatial Datasets Shashi Shekhar £ , Chang-Tien Lu exploring data for pattern and trend analysis, and it is a common method of browsing spatial datasets the summarization of spatial patterns and temporal trends. We also present data mining algorithms for filtering out

Shekhar, Shashi

430

Application and Development of the Ecological Environment Carrying Capacity Evaluation Information System on Coal Mining  

Science Journals Connector (OSTI)

Some proper indexes, AHP method and GIS model are adopted for quantitative analysis and comprehensive evaluation of the ecological environment carrying capacity on coal mining. The ecological environment carrying capacity evaluation information system ... Keywords: coal mining, evaluation information system, ecological environment carrying capacity, GIS second development

Ying-chun Wei; Dai-yong Cao; Jian Wu; Chao Yu

2010-12-01T23:59:59.000Z

431

Selective mining of multiple-layer lignite deposits. A fuzzy approach  

Science Journals Connector (OSTI)

In this paper the development and the application of a fuzzy expert system for the evaluation of the exploitable reserves of multiple-layer lignite deposits, mined by continuous surface methods, is presented. The exploitable reserves are determined decisively ... Keywords: Expert, Exploitable, Fuzzy, Lignite, Mining, Reserves, System

Michael Galetakis; Anthoula Vasiliou

2010-06-01T23:59:59.000Z

432

Department of Energy Announces 15 Projects Aimed at Secure Underground  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 Projects Aimed at Secure 15 Projects Aimed at Secure Underground Storage of CO2 Department of Energy Announces 15 Projects Aimed at Secure Underground Storage of CO2 August 11, 2010 - 1:00pm Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today the selection of 15 projects to develop technologies aimed at safely and economically storing carbon dioxide (CO2) in geologic formations. Funded at $21.3 million over three years, today's selections will complement existing DOE initiatives to help develop the technology and infrastructure to implement large-scale CO2 storage in different geologic formations across the Nation. The projects selected today will support the goals of helping reduce U.S. greenhouse gas emissions, developing and deploying near-zero-emission coal technologies, and making the U.S. a leader in

433

Underground Natural Gas Working Storage Capacity - Energy Information  

Gasoline and Diesel Fuel Update (EIA)

Underground Natural Gas Working Storage Capacity Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Overview Natural gas working storage capacity increased by about 2 percent in the Lower 48 states between November 2011 and November 2012. The U.S. Energy Information Administration (EIA) has two measures of working gas storage capacity, and both increased by similar amounts: Demonstrated maximum volume increased 1.8 percent to 4,265 billion cubic feet (Bcf) Design capacity increased 2.0 percent to 4,575 Bcf Maximum demonstrated working gas volume is an operational measure of the highest level of working gas reported at each storage facility at any time

434

one mile underground into a deep saline formation. The injection  

NLE Websites -- All DOE Office Websites (Extended Search)

mile underground into a deep saline formation. The injection, mile underground into a deep saline formation. The injection, which will occur over a three-year period and is slated to start in early 2010, will compress up to 1 million metric tonnes of CO 2 from the ADM ethanol facility into a liquid-like, dense phase. The targeted rock formation, the Mt. Simon Sandstone, is the thickest and most widespread saline reservoir in the Illinois Basin, with an estimated CO 2 storage capacity of 27 to 109 billion metric tonnes. A comprehensive monitoring program, which will be evaluated yearly, will be implemented after the injection to ensure the injected CO 2 is stored safely and permanently. The RCSP Program was launched by the Office of Fossil Energy (FE)

435

200-Area plateau inactive miscellaneous underground storage tanks locations  

SciTech Connect

Fluor Daniel Northwest (FDNW) has been tasked by Lockheed Martin Hanford Corporation (LMHC) to incorporate current location data for 64 of the 200-Area plateau inactive miscellaneous underground storage tanks (IMUST) into the centralized mapping computer database for the Hanford facilities. The IMUST coordinate locations and tank names for the tanks currently assigned to the Hanford Site contractors are listed in Appendix A. The IMUST are inactive tanks installed in underground vaults or buried directly in the ground within the 200-East and 200-West Areas of the Hanford Site. The tanks are categorized as tanks with a capacity of less than 190,000 liters (50,000 gal). Some of the IMUST have been stabilized, pumped dry, filled with grout, or may contain an inventory or radioactive and/or hazardous materials. The IMUST have been out of service for at least 12 years.

Brevick, C.H.

1997-12-01T23:59:59.000Z

436

Light weight underground pipe or cable installing device  

SciTech Connect

This invention pertains to a light weight underground pipe or cable installing device adapted for use in a narrow and deep operating trench. More particularly this underground pipe installing device employs a pair of laterally movable gates positioned adjacent the bottom of the operating trench where the earth is more solid to securely clamp the device in the operating trench to enable it to withstand the forces exerted as the actuating rod is forced through the earth from the so-called operating trench to the target trench. To accommodate the laterally movable gates positioned adjacent the bottom of the narrow pipe installing device, a pair of top operated double-acting rod clamping jaws, operated by a hydraulic cylinder positioned above the actuating rod are employed.

Schosek, W. O.

1985-01-08T23:59:59.000Z

437

depleted underground oil shale for the permanent storage of carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

depleted underground oil shale for the permanent storage of carbon depleted underground oil shale for the permanent storage of carbon dioxide (CO 2 ) generated during the oil shale extraction process. AMSO, which holds a research, development, and demonstration (RD&D) lease from the U.S. Bureau of Land Management for a 160-acre parcel of Federal land in northwest Colorado's oil-shale rich Piceance Basin, will provide technical assistance and oil shale core samples. If AMSO can demonstrate an economically viable and environmentally acceptable extraction process, it retains the right to acquire a 5,120-acre commercial lease. When subject to high temperatures and high pressures, oil shale (a sedimentary rock that is rich in hydrocarbons) can be converted into oil. Through mineralization, the CO 2 could be stored in the shale

438

Underground Injection Control Fee Schedule (West Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control Fee Schedule (West Virginia) Injection Control Fee Schedule (West Virginia) Underground Injection Control Fee Schedule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Fees Provider Department of Environmental Protection This rule establishes schedules of permit fees for state under-ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is required to apply for and

439

E-Print Network 3.0 - abandoned underground coal Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Universitet, Department of Theoretical Physics Collection: Physics 4 Division of Oil, Gas, and Mining Permitting Summary: John R. Baza DirectorCoal Minerals Abandoned Mine...

440

Chemical Data Mining of the NCI Human Tumor Cell Line Database Huijun Wang, Jonathan Klinginsmith, Xiao Dong, Adam C. Lee, Rajarshi Guha, Yuqing Wu,  

E-Print Network (OSTI)

Chemical Data Mining of the NCI Human Tumor Cell Line Database Huijun Wang, Jonathan Klinginsmith resource particularly for testing data mining methods that bridge chemical, biological, and genomic information. In this paper we describe a formal knowledge discovery approach to characterizing and data mining

Wu, Yuqing Melanie

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rating underground pipeline tape and shrink sleeve coating systems  

SciTech Connect

A rating system was developed for several coating types used for underground pipeline systems. Consideration included soil stress, adhesion, surface preparation, cathodic protection (CP) shielding, CP requirements, handling and construction, repair, field joint system, bends and other components, and the application process. Polyethylene- and polyvinyl chloride-backed tapes, woven polyolefin geotextile fabric (WGF)-backed tapes, hot-applied tapes, petrolatum- and wax-based tapes, and shrink sleeves were evaluated. WGF-backed tapes had the highest rating.

Norsworthy, R.

1999-11-01T23:59:59.000Z

442

Iowa Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Iowa Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 228,019 220,410 215,229 215,377 219,838 224,572 230,226 236,154 239,871 243,782 241,829 227,519 1991 225,964 215,495 211,852 213,588 218,084 228,720 234,297 240,868 252,335 263,855 255,740 241,570 1992 221,741 209,087 205,548 208,105 217,022 225,236 236,833 247,704 258,372 267,472 258,308 237,797 1993 218,826 208,027 205,378 210,868 217,693 225,793 236,688 247,032 259,649 265,238 258,580 240,957 1994 222,694 213,205 210,208 212,114 217,678 224,185 234,433 245,426 257,120 266,215 261,645 243,875 1995 223,356 212,480 208,011 207,340 211,295 219,417 229,558 244,448 256,135 263,260 252,590 237,557

443

Utah Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Utah Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 59,806 56,937 55,229 54,606 57,328 55,249 67,314 75,921 83,365 86,778 66,668 58,461 1991 61,574 54,369 50,745 51,761 54,314 60,156 66,484 70,498 74,646 75,367 70,399 63,453 1992 59,541 59,119 59,059 60,896 64,403 67,171 70,690 75,362 78,483 79,756 74,021 67,181 1993 61,308 56,251 52,595 52,028 58,713 65,349 69,968 75,120 80,183 85,406 79,818 75,184 1994 70,826 63,733 66,678 68,028 74,061 78,089 83,551 89,773 98,223 102,035 99,841 94,306 1995 86,450 83,059 79,507 80,647 84,154 90,012 97,005 100,430 101,993 102,510 103,779 93,925

444

New York Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) New York Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 124,150 116,994 113,349 121,215 131,103 139,757 148,861 155,592 158,419 160,981 150,947 1991 127,051 118,721 114,190 117,571 124,275 132,029 140,317 149,058 157,799 163,054 158,736 151,036 1992 146,171 131,831 119,880 122,969 132,698 142,107 153,543 163,508 169,298 172,708 169,361 158,828 1993 145,521 129,184 118,756 122,771 133,838 144,835 154,895 162,969 172,642 174,589 171,253 161,801 1994 143,310 129,129 120,675 129,563 138,273 150,582 159,688 168,628 173,584 174,977 172,352 163,470 1995 149,768 135,478 129,570 130,077 138,659 150,010 156,744 165,026 173,947 175,635 165,945 148,196

445

Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Injections into Underground Storage (Million Cubic Feet) Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,740 243 1,516 3,236 5,817 8,184 5,657 5,928 4,903 4,971 1,423 854 1991 1,166 155 231 1,829 4,897 8,985 6,518 8,058 11,039 10,758 2,782 860 1992 488 43 1,246 3,184 7,652 7,568 11,453 11,281 11,472 9,000 1,228 1,203 1993 0 0 733 5,547 6,489 7,776 10,550 10,150 12,351 8,152 2,437 0 1994 0 75 1,162 3,601 7,153 7,638 11,999 12,405 13,449 10,767 2,678 0 1995 0 0 251 1,041 5,294 9,889 12,219 17,805 13,756 8,855 1,283 391 1996 2 2 0 40 1,921 7,679 12,393 13,168 12,537 10,556 2,760 0

446

Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 296,629 281,511 286,917 279,978 298,202 307,083 317,720 325,432 332,591 338,392 353,804 327,277 1991 283,982 278,961 284,515 298,730 313,114 323,305 324,150 328,823 338,810 342,711 317,072 306,300 1992 288,415 280,038 276,287 282,263 290,192 301,262 318,719 326,705 339,394 346,939 330,861 299,990 1993 275,054 253,724 246,989 257,844 277,833 296,860 311,870 325,201 341,207 348,646 330,986 316,146 1994 285,115 259,794 257,148 273,797 298,007 311,154 327,281 340,312 349,174 353,630 350,671 334,502 1995 310,835 297,169 287,302 291,768 308,245 320,842 327,910 326,131 338,685 351,385 343,918 320,269

447

Montana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Montana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 293,785 290,491 289,197 288,193 293,815 288,808 290,947 293,015 295,663 296,921 295,421 290,602 1991 289,270 287,858 286,548 286,491 287,718 288,959 290,667 292,107 292,226 290,844 288,112 284,559 1992 281,148 279,325 278,909 279,042 280,038 280,751 281,777 282,543 282,117 280,760 277,412 271,811 1993 266,711 262,291 259,532 257,822 256,665 255,940 257,149 257,450 257,904 257,816 253,710 250,503 1994 246,679 239,940 238,777 237,993 238,931 240,738 242,090 243,176 244,948 245,981 244,275 241,603 1995 238,103 236,109 235,420 236,218 237,498 239,637 242,554 245,760 246,856 246,301 243,255 238,004

448

AGA Western Consuming Region Natural Gas Underground Storage Volume  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 888,010 816,597 813,746 830,132 876,457 908,444 941,985 966,686 1,002,402 1,021,144 997,644 956,234 1995 902,782 884,830 865,309 860,012 897,991 945,183 975,307 986,131 1,011,948 1,032,357 1,033,363 982,781 1996 896,744 853,207 837,980 849,221 885,715 916,778 929,559 928,785 946,748 949,983 939,649 899,689 1997 833,239 796,139 788,601 801,955 844,880 890,703 923,845 947,277 969,170 980,388 967,286 880,627 1998 828,658 780,476 768,264 773,053 823,311 872,913 900,181 925,287 965,846 1,001,548 1,009,978 953,379

449

Indiana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Indiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 96,943 93,233 91,600 91,945 93,696 95,361 97,632 101,323 105,497 108,028 108,772 105,317 1991 99,409 90,625 87,381 86,706 88,659 89,700 93,022 97,673 102,161 119,470 106,066 101,121 1992 94,379 89,893 85,767 85,259 86,457 88,999 94,154 98,267 103,478 106,422 103,871 100,288 1993 95,109 90,016 87,368 88,414 89,388 91,515 95,971 100,516 104,709 106,058 104,160 101,505 1994 95,846 92,274 90,200 89,473 89,417 91,870 97,002 101,310 105,300 109,518 110,149 107,215 1995 101,661 95,902 93,464 92,724 93,156 94,955 97,862 101,470 106,201 110,610 111,401 106,609

450

Illinois Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Illinois Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 806,109 754,941 721,785 717,863 749,618 782,498 812,054 847,731 881,760 900,526 903,640 870,265 1991 801,635 753,141 727,699 720,275 751,641 781,883 810,535 844,477 877,485 904,206 885,341 851,258 1992 791,129 743,484 716,909 709,150 742,812 774,578 805,097 843,543 878,334 905,597 887,454 844,108 1993 783,875 735,236 710,377 713,214 746,899 779,762 810,546 844,320 882,456 907,957 898,655 854,691 1994 781,826 737,719 723,108 722,735 746,576 776,189 808,832 843,372 880,762 907,622 898,872 866,846 1995 803,422 745,457 721,311 716,886 745,970 774,803 804,912 837,002 868,941 899,868 885,665 841,580

451

Ohio Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Ohio Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 439,384 418,280 409,494 412,498 435,089 454,844 474,266 493,301 510,714 521,774 518,006 489,515 1991 477,781 454,923 439,191 448,258 461,362 490,259 505,168 523,544 538,399 546,343 533,483 506,672 1992 463,200 428,363 392,474 394,514 420,383 452,412 478,259 500,938 516,378 527,568 522,419 491,542 1993 452,510 407,121 368,376 371,641 401,431 433,291 462,741 490,248 515,994 522,961 510,471 470,120 1994 413,475 378,216 361,279 377,103 406,526 438,293 471,603 498,156 519,996 530,505 526,490 498,597 1995 448,479 410,867 391,082 385,953 413,796 445,322 472,162 495,448 513,913 522,766 498,715 455,782

452

Kansas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Kansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 245,145 234,971 229,066 227,002 227,589 232,695 244,279 256,395 272,036 278,715 307,106 283,959 1991 247,980 246,067 240,702 238,606 244,878 254,222 257,114 260,728 271,373 282,551 273,225 274,836 1992 267,254 254,115 244,632 239,589 241,818 244,415 248,599 260,231 270,362 273,183 262,414 247,855 1993 229,148 213,533 208,832 213,112 235,850 247,585 253,023 261,780 276,136 278,233 268,816 259,719 1994 243,371 229,217 228,379 229,034 240,066 245,355 256,229 268,820 278,655 283,143 276,402 266,198 1995 251,176 239,135 228,409 230,202 239,892 252,703 252,472 252,461 269,034 280,066 272,406 255,483

453

Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Kentucky Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 167,899 166,624 167,576 172,320 177,680 185,467 192,473 199,674 202,983 198,545 192,581 1991 183,697 180,169 176,535 181,119 183,491 186,795 192,143 195,330 198,776 198,351 191,831 189,130 1992 189,866 188,587 183,694 182,008 180,781 182,342 185,893 187,501 191,689 202,391 200,871 197,857 1993 192,736 181,774 172,140 171,465 177,888 185,725 193,275 198,075 204,437 205,524 199,683 188,970 1994 170,283 157,974 153,378 158,141 167,847 177,200 186,856 193,717 197,308 200,665 200,993 192,700 1995 179,376 166,756 162,223 165,687 178,354 185,982 192,799 196,645 203,357 205,882 196,585 185,704

454

Salt Producing Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Salt Producing Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 2006-Dec 12/29 101 2007-Jan 01/05 109 01/12 107 01/19 96 01/26 91 2007-Feb 02/02 78 02/09 63 02/16 52 02/23 54 2007-Mar 03/02 59 03/09 58 03/16 64 03/23 70 03/30 78 2007-Apr 04/06 81 04/13 80 04/20 80 04/27 83 2007-May 05/04 85 05/11 88 05/18 92 05/25 97 2007-Jun 06/01 100 06/08 101 06/15 102 06/22 102 06/29 102

455

AGA Eastern Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 7,862 17,834 34,190 160,946 247,849 262,039 269,285 244,910 208,853 134,234 47,094 16,471 1995 13,614 4,932 36,048 85,712 223,991 260,731 242,718 212,493 214,385 160,007 37,788 12,190 1996 12,276 39,022 32,753 130,232 233,717 285,798 303,416 270,223 247,897 166,356 39,330 28,875 1997 16,058 14,620 25,278 93,501 207,338 258,086 250,776 252,129 233,730 152,913 53,097 10,338 1998 21,908 13,334 48,068 139,412 254,837 234,427 234,269 207,026 178,129 144,203 52,518 28,342

456

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic  

Gasoline and Diesel Fuel Update (EIA)

Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Lower 48 States Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 2,322 1994-Jan 01/07 2,186 01/14 2,019 01/21 1,782 01/28 1,662 1994-Feb 02/04 1,470 02/11 1,303 02/18 1,203 02/25 1,149 1994-Mar 03/04 1,015 03/11 1,004 03/18 952 03/25 965 1994-Apr 04/01 953 04/08 969 04/15 1,005 04/22 1,085 04/29 1,161 1994-May 05/06 1,237 05/13 1,325 05/20 1,403 05/27 1,494

457

Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Mississippi Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 79,285 79,603 80,373 85,161 89,985 93,156 99,475 104,348 108,323 111,705 112,191 106,545 1991 91,368 86,763 86,679 92,641 96,297 98,701 100,991 103,104 108,211 112,270 104,184 98,741 1992 89,008 87,873 85,498 85,665 89,979 94,898 99,555 100,116 106,504 107,770 107,015 100,433 1993 94,466 86,908 80,802 83,305 90,316 94,786 99,933 103,264 109,076 109,790 108,869 101,774 1994 92,881 89,305 92,689 97,058 101,796 102,770 109,298 114,566 116,697 120,326 121,207 115,933 1995 107,126 102,620 98,569 103,285 110,250 111,888 116,039 116,791 123,081 125,717 116,280 109,906

458

Texas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Texas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 456,385 449,625 443,662 508,009 518,658 531,197 544,212 538,450 539,191 556,768 562,961 526,092 1991 444,671 436,508 436,440 453,634 468,302 487,953 491,758 497,878 513,315 517,099 502,004 486,831 1992 455,054 440,895 435,515 438,408 456,948 469,532 491,515 508,950 511,787 516,598 496,232 459,458 1993 414,216 388,921 376,731 396,804 423,544 444,755 453,961 466,560 450,853 457,581 445,059 431,719 1994 381,924 342,046 350,039 374,226 407,219 419,997 446,215 462,725 485,146 495,417 500,640 478,036 1995 465,108 443,908 434,564 455,756 479,313 497,829 498,982 490,940 510,646 520,173 509,944 463,202

459

Colorado Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Colorado Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 66,554 61,757 56,567 52,684 52,375 56,614 62,829 68,028 73,035 74,259 80,053 1991 71,524 69,768 62,807 61,367 62,448 66,425 70,705 75,800 80,506 82,065 83,134 82,145 1992 78,319 74,888 68,199 64,030 63,685 65,682 69,830 76,095 82,007 84,134 81,041 78,303 1993 73,838 68,733 66,224 62,799 65,511 70,157 73,322 77,155 81,457 81,981 79,475 78,303 1994 72,798 67,880 65,147 60,034 65,538 67,050 71,639 76,943 82,093 82,347 80,736 77,356 1995 73,047 69,545 64,567 59,852 62,142 70,945 73,047 77,326 80,150 81,357 82,831 77,475

460

Maryland Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Maryland Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 50,980 47,820 48,924 49,656 52,214 53,271 55,370 58,030 60,465 61,702 59,577 58,586 1991 55,450 52,159 50,537 51,458 52,941 54,594 55,998 58,233 60,342 61,017 61,304 61,207 1992 56,350 51,413 48,752 47,855 51,162 53,850 55,670 58,057 60,123 61,373 61,882 59,775 1993 56,503 52,155 50,240 49,746 51,939 53,114 54,206 55,924 58,423 61,103 61,504 58,605 1994 52,059 49,590 50,127 51,375 53,420 54,885 56,985 58,443 59,992 61,761 60,987 59,854 1995 57,642 53,398 53,293 53,049 55,049 57,080 56,891 58,074 60,121 61,273 60,740 57,798

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 27,878 27,848 27,810 27,846 27,946 28,419 28,946 29,427 29,707 29,734 29,656 29,429 1991 27,498 27,132 26,811 26,616 26,747 27,086 27,573 27,587 27,587 27,587 26,958 26,294 1992 25,642 25,124 24,681 24,523 24,507 25,016 25,868 26,532 26,966 26,770 26,404 25,781 1993 25,148 24,276 23,798 23,676 22,852 22,866 22,856 22,856 22,856 22,731 22,096 21,239 1994 19,771 18,729 17,426 17,116 17,647 18,199 18,762 19,566 19,776 19,712 19,354 18,757 1995 17,752 16,999 16,460 16,330 16,541 17,854 19,348 20,738 20,895 20,815 20,197 18,048

462

Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 516,257 477,783 453,124 462,399 511,406 619,401 671,431 711,942 717,828 719,002 665,421 1991 543,808 501,265 471,608 482,628 527,550 545,866 569,927 607,093 651,148 669,612 658,358 627,857 1992 559,416 497,895 441,187 445,158 485,227 535,829 579,713 622,943 665,414 690,920 692,280 650,707 1993 580,189 479,149 417,953 444,095 494,680 547,289 592,762 632,195 680,452 695,718 689,050 639,761 1994 532,216 455,494 434,081 475,107 527,242 583,595 634,007 677,221 700,758 716,066 696,721 656,431 1995 590,100 497,162 469,515 481,690 525,118 578,640 611,291 648,080 695,988 713,882 669,744 594,750

463

Eastern Consuming Region Natural Gas Working Underground Storage (Billion  

Gasoline and Diesel Fuel Update (EIA)

Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Eastern Consuming Region Natural Gas Working Underground Storage (Billion Cubic Feet) Year-Month Week 1 Week 2 Week 3 Week 4 Week 5 End Date Value End Date Value End Date Value End Date Value End Date Value 1993-Dec 12/31 1,411 1994-Jan 01/07 1,323 01/14 1,199 01/21 1,040 01/28 958 1994-Feb 02/04 838 02/11 728 02/18 665 02/25 627 1994-Mar 03/04 529 03/11 531 03/18 462 03/25 461 1994-Apr 04/01 465 04/08 475 04/15 494 04/22 541 04/29 593 1994-May 05/06 636 05/13 690 05/20 731 05/27 795

464

Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Louisiana Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 377,554 379,627 371,519 372,188 379,245 393,418 407,240 421,000 435,705 450,886 459,955 452,883 1991 405,740 373,892 361,085 367,797 387,769 411,591 425,349 435,719 453,303 477,425 464,906 433,184 1992 387,456 358,639 345,049 348,097 369,129 388,728 403,713 413,375 432,171 452,989 447,115 411,919 1993 365,128 321,651 298,841 302,181 340,366 375,731 402,638 430,431 466,345 481,609 468,227 421,634 1994 376,035 357,247 343,892 365,948 400,035 421,714 451,504 474,085 497,428 506,525 502,477 463,847 1995 412,075 372,991 364,320 374,312 392,968 420,738 441,510 442,655 466,060 480,119 455,669 408,882

465

California Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) California Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 369,842 350,519 355,192 376,146 401,513 414,633 418,894 421,696 426,235 440,326 397,785 1991 376,267 376,879 359,926 380,826 407,514 431,831 445,387 448,286 448,383 448,081 441,485 417,177 1992 374,166 357,388 341,665 355,718 382,516 404,547 418,501 431,069 445,438 455,642 446,085 390,868 1993 357,095 337,817 348,097 356,320 385,972 399,994 423,027 433,552 448,573 461,473 446,120 411,943 1994 372,605 328,438 327,546 346,463 374,574 394,821 412,465 421,818 438,754 450,997 434,260 408,636 1995 377,660 373,010 365,068 362,271 388,641 414,650 428,646 426,927 442,131 460,286 462,316 436,346

466

Tennessee Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Tennessee Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 799 683 623 539 539 539 673 807 919 1,022 1,126 1,127 1999 996 872 741 661 658 802 909 985 1,089 1,194 1,251 1,195 2000 1,031 855 792 729 711 711 711 711 711 760 874 959 2001 963 903 830 761 865 978 1,009 1,072 1,118 1,180 938 937 2002 987 988 990 990 965 962 949 945 942 940 852 852 2003 744 634 566 519 554 630 705 800 803 848 848 787 2004 684 633 621 652 685 731 794 849 854 879 867 826 2005 784 704 605 524 483 466 466 466 428 419 413 400

467

Nebraska Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Nebraska Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 82,538 81,491 81,181 82,095 83,472 85,002 83,477 83,923 85,020 84,918 81,317 1991 79,407 78,372 77,653 78,788 81,843 83,985 83,721 83,657 84,562 84,253 83,847 81,475 1992 79,888 78,880 78,837 79,448 81,080 83,708 85,758 86,968 88,154 87,853 85,260 81,824 1993 78,414 76,448 75,412 76,380 79,328 82,649 85,226 87,084 88,593 88,564 86,793 84,418 1994 81,833 79,100 79,242 80,202 82,339 83,239 85,362 85,709 87,835 88,765 88,935 86,932 1995 84,820 83,825 82,895 82,697 83,340 84,206 35,388 35,566 35,950 35,183 33,585 31,992

468

Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on...

469

GOING UNDERGROUND IN FINLAND: DESIGN OF ONKALO IN PROGRESS  

SciTech Connect

The long-term program aimed at selection of a site for a deep repository was initiated in Finland in 1983. This program has come to end in 2001 and a new phase aimed at implementation of the geological disposal of spent fuel has been started. In this new phase the first milestone is the application for a construction license for the disposal facility around 2010. To fulfill the needs for detailed design of the disposal system, an underground rock characterization facility (URCF) will be constructed at the representative depth at Olkiluoto. The excavation of this facility will start the work for underground characterization, testing and demonstration, which is planned to be a continuous activity throughout the whole life cycle of the deep repository. The overall objectives for the underground site characterization are (1) verification of the present conclusions on site suitability, (2) definition and identification of suitable rock volumes for repository space and (3) characterization of planned host rock for detailed design, safety assessment and construction planning. The objective for verification aims at assessing that the Olkiluoto site meets the basic criteria for long-term safety and as well the basic requirements for construction and thus justifies the site selection. The two other main objectives are closely related to design of the repository and assessing the long-term safety of the site-specific disposal system. The most important objective of ONKALO should allow an in-depth investigation of the geological environment and to provide the opportunity to allow validation of models at more appropriate scales and conditions than can be achieved from the surface. In some areas, such as in demonstrating operational safety, in acquiring geological information at a repository scale and in constructional and operational feasibility, the ONKALO will provide the only reliable source of in situ data. The depth range envisaged for URCF called ONKALO is between 400 and 600 m. The location and underground geometry of access ramp is of significance. Development of ONKALO will begin in 2003 and it consists of surface facilities, access ramp and vertical shaft to the depth of 500 meters and characterization and demonstration facilities. Total volume of the ONKALO underground facilities is approximately 250 000 m3. The development will be completed around 2010. The reconciliation of construction and investigations plays an important role through the project. Other major issues will be the management of groundwater conditions, workplace safety and documentation of the work.

Dikds, T.; Ikonen, A.; Niiranen, S.; Hansen, J.

2003-02-27T23:59:59.000Z

470

Surface mine reclamation for wildlife  

SciTech Connect

This document presents a reclamation plan for use on surface coal mines in southern Appalachia. The plan has been implemented cooperatively by TVA and the FWS on a mine site in Campbell County, Tennessee. Included are suggestions for establishing groundcover and trees on the mine site, and for retaining surface water on mine sites. All techniques discussed are to benefit wildlife and to assist the operator in achieving bond release. Also included is a section on the costs of reclaiming the Campbell County study site to benefit forestry and wildlife. The costs of this project are compared to the costs of reclaiming a more traditional forestry (monoculture) option. The comparison showed the techniques at the study site to be less costly than those that would be associated with a forestry option. 11 references, 14 figures, 2 tables.

Not Available

1981-06-01T23:59:59.000Z

471

Coal Mining Reclamation (North Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

The Reclamation Division of the Public Service Commission is tasked with administering the regulation of surface coal mining and reclamation. Specific regulations can be found in article 69-05.2 of...

472

Data mining for improving textbooks  

Science Journals Connector (OSTI)

We present our early explorations into developing a data mining based approach for enhancing the quality of textbooks. We describe a diagnostic tool to algorithmically identify deficient sections in textbooks. We also discuss techniques for algorithmically ...

Rakesh Agrawal; Sreenivas Gollapudi; Anitha Kannan; Krishnaram Kenthapadi

2012-05-01T23:59:59.000Z

473

Damage initiation and propagation assessed from stress-induced microseismic events during a mine-by test in the Opalinus Clay  

Science Journals Connector (OSTI)

......of such repositories. Long-term stability and confining...thus required to ensure long-term monitoring of the EDZ...underground radioactive waste storage due to their extremely...method for remote and long-term monitoring purposes......

Y. Le Gonidec; J. Sarout; J. Wassermann; C. Nussbaum

2014-01-01T23:59:59.000Z

474

ITP Mining: Energy and Environmental Profile of the U.S. Mining Industry (December 2002)  

Office of Energy Efficiency and Renewable Energy (EERE)

The U.S. Department of Energy and the National Mining Association are working in partnership to implement the Mining Industry of the Future strategy.

475

Advances in technology for the construction of deep-underground facilities  

SciTech Connect

The workshop was organized in order to address technological issues important to decisions regarding the feasibility of strategic options. The objectives of the workshop were to establish the current technological capabilities for deep-underground construction, to project those capabilities through the compressed schedule proposed for construction, and to identify promising directions for timely allocation of existing research and development resources. The earth has been used as a means of protection and safekeeping for many centuries. Recently, the thickness of the earth cover required for this purpose has been extended to the 2,000- to 3,000-ft range in structures contemplated for nuclear-waste disposal, energy storage, and strategic systems. For defensive missile basing, it is now perceived that the magnitude of the threat has increased through better delivery systems, larger payloads, and variable tactics of attack. Thus, depths of 3,000 to 8,000 ft are being considered seriously for such facilities. Moreover, it appears desirable that the facilities be operational (if not totally complete) for defensive purposes within a five-year construction schedule. Deep excavations such as mines are similar in many respects to nearsurface tunnels and caverns for transit, rail, sewer, water, hydroelectric, and highway projects. But the differences that do exist are significant. Major distinctions between shallow and deep construction derive from the stress fields and behavior of earth materials around the openings. Different methodologies are required to accommodate other variations resulting from increased depth, such as elevated temperatures, reduced capability for site exploration, and limited access during project execution. This report addresses these and other questions devoted to geotechnical characterization, design, construction, and excavation equipment.

Not Available

1987-12-31T23:59:59.000Z

476

WebUser: mining unexpected web usage  

Science Journals Connector (OSTI)

Web usage mining has been much concentrated on the discovery of relevant user behaviours from web access record data. In this paper, we present WebUser, an approach to discover unexpected usage in web access log. We present a belief-driven method for extracting unexpected web usage sequences, where the belief system consists of a temporal relation and semantics constrained sequence rules acquired with respect to prior knowledge. Our experiments show the effectiveness and usefulness of the proposed approach. Furthermore, discovered rules of unexpected web usage can be used for web content personalisation and recommendation, site structure optimisation and critical event prediction.

Dong Li; Anne Laurent; Pascal Poncelet

2011-01-01T23:59:59.000Z

477

ITP Mining: The Future Begins with Mining- A Vision of the Mining Industry of the Future  

Energy.gov (U.S. Department of Energy (DOE))

This vision document details long-term goals and objectives for the mining industry. Stemming from this vision document, targeted technology roadmaps were developed that describe pathways of research to achieve the vision goals.

478

Revitalized Board Lays Out New Path amid EM's Recent Underground Tank  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalized Board Lays Out New Path amid EM's Recent Underground Revitalized Board Lays Out New Path amid EM's Recent Underground Tank Waste Successes Revitalized Board Lays Out New Path amid EM's Recent Underground Tank Waste Successes August 20, 2012 - 12:00pm Addthis Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures. Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures. A view of the interior of the Integrated Waste Treatment Unit at the Idaho site. A view of the interior of the Integrated Waste Treatment Unit at the Idaho site. Cement trucks transport a specially formulated grout that is pumped into two underground waste tanks at the Savannah River Site as part of work to close the massive structures.

479

GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection  

Open Energy Info (EERE)

- Does the DOGGR Approve the Underground Injection - Does the DOGGR Approve the Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project After the end of the comment period and after reviewing any proposed revisions furnished by the Regional Board, the State Board decides whether to approve the Underground Injection Project. Logic Chain No Parents \V/ GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-c.12_-_Does_the_DOGGR_Approve_the_Underground_Injection_Project&oldid=539630

480

GRR/Section 14-WA-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-WA-c - Underground Injection Control Permit GRR/Section 14-WA-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-WA-c - Underground Injection Control Permit 14-WA-c - Underground Injection Control Permit.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Chapter 173-218 WAC Non-endangerment Standard Triggers None specified The Safe Drinking Water Act requires Washington to implement technical criteria and standards to protect underground sources of drinking water from contamination. Under Chapter 173-218 WAC, the Washington State Department of Ecology (WSDE) regulates and permits underground injection control (UIC) wells in Washington. The Environmental Protection Agency

Note: This page contains sample records for the topic "underground mining method" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

GRR/Section 18-WA-a - Underground Storage Tank Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-WA-a - Underground Storage Tank Process GRR/Section 18-WA-a - Underground Storage Tank Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-WA-a - Underground Storage Tank Process 18-WA-a - Underground Storage Tank Process.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Revised Code of Washington Chapter 90.76 Washington Administrative Code Chapter 173-360 Triggers None specified Washington has a federally-approved state Underground Storage Tank (UST) program regulated by the Washington State Department of Ecology (WSDE) under Revised Code of Washington Chapter 90.76 and Washington Administrative Code Chapter 173-360. Washington defines an "Underground

482

GRR/Section 18-OR-a - State Underground Storage Tank | Open Energy  

Open Energy Info (EERE)

GRR/Section 18-OR-a - State Underground Storage Tank GRR/Section 18-OR-a - State Underground Storage Tank < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 18-OR-a - State Underground Storage Tank 18ORAStateUndergroundStorageTank (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-150: Underground Storage Tank Rules Triggers None specified Click "Edit With Form" above to add content 18ORAStateUndergroundStorageTank (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 18-OR-a.1 - Application for General Permit Registration Certificate, EPA

483

Investigation of the use of fly-ash based autoclaved cellular concrete blocks in coal mines for air duct work. Final report, January 25, 1993--December 31, 1994  

SciTech Connect

Coal mines are required to provide ventilation to occupied portions of underground mines. Concrete block is used in this process to construct air duct walls. However, normal concrete block is heavy and not easy to work with and eventually fails dramatically after being loaded due to mine ceiling convergence and/or floor heave. Autoclaved cellular concrete block made from (70{plus_minus}%) coal fly ash is lightweight and less rigid when loaded. It is lighter and easier to use than regular concrete block for underground mine applications. It has also been used in surface construction around the world for over 40 years. Ohio Edison along with eight other electric utility companies, the Electric Power Research Institute (EPRI), and North American Cellular Concrete constructed a mobile demonstration plant to produce autoclaved cellular concrete block from utility fly ash. To apply this research in Ohio, Ohio Edison also worked with the Ohio Coal Development Office and CONSOL Inc. to produce autoclaved cellular concrete block not only from coal ash but also from LIMB ash, SNRB ash, and PFBC ash from various clean coal technology projects sponsored by the Ohio Coal Development Office. The purpose of this project was to demonstrate the potential for beneficial use of fly ash and clean coal technology by-products in the production of lightweight block.

Horvath, M.L. [Ohio Edison Co., Akron, OH (United States)

1995-06-19T23:59:59.000Z

484

Coal Mining Regulations (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coal Mining Regulations (Kentucky) Coal Mining Regulations (Kentucky) Coal Mining Regulations (Kentucky) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Retail Supplier Program Info State Kentucky Program Type Environmental Regulations Siting and Permitting Provider Kentucky Department for Energy Development and Independence Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state. The Department of Natural Resources under the authority of the Energy and Environment Cabinet is responsible for enforcing these laws and assuring compliance with the 1977 Federal Surface Mining Control Act (SMCRA). The Division of Mine Reclamation and Enforcement is responsible for inspecting

485

CHARM: An Efficient Algorithm for Closed Itemset Mining  

E-Print Network (OSTI)

previous methods. It is also linearly scalable in the number of transactions. 1 Introduction Mining as follows: Given a large data base of item transactions, find all frequent itemsets, where a frequent-inspired algorithms [5, 13, 16] show good performance with sparse datasets such as market- basket data, where

Zaki, Mohammed Javeed

486

Data Mining: Data Analysis on a Grand Scale? Padhraic Smyth  

E-Print Network (OSTI)

Data Mining: Data Analysis on a Grand Scale? Padhraic Smyth Information and Computer Science for Statistical Methods in Medical Research, September 2000 1 #12;Abstract Modern data mininghas evolvedlargelyas aresult ofe orts bycomputer scientists to address the needs of data owners" in extracting useful

Smyth, Padhraic

487

Deformation development around mine roadways and simulation of roadway supports  

SciTech Connect

This paper describes the use of the sand and plaster physical modeling technique to investigate the deformation around mine roadways using a variety of support methods in a particular form of stress field. The characteristics and conditions of coal measures rock were considered prior to the preparation of the models and the insertion of support. The investigation has clearly shown how floor lift, roof failure and sidewall movements of mine roadways in laminated weak rock conditions gradually develops as a result of the increase in the stress and, also, how it is related to the level of support used.

Yasar, E.; Reddish, D.J. [Univ. of Nottingham (United Kingdom). Dept. of Mineral Resources Engineering; Daws, G. [Graham Daws Associates, Derbyshire (United Kingdom); Hayes, A.W. [H M Inspectorate of Mines, Merseyside (United Kingdom)

1995-11-01T23:59:59.000Z

488

E-Print Network 3.0 - aging underground reinforced Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

University Summary: -Infrastructure Developments in Southeast Asia: Case Study of Thailand Underground Suchatvee Suwansawat Dean of Engineering... is the second phase...

489

Site Characterization, Sustainability Evaluation and Life Cycle Emissions Assessment of Underground Coal Gasification.  

E-Print Network (OSTI)

??Underground Coal Gasification (UCG), although not a new concept, is now attracting considerable global attention as a viable process to provide a âcleanâ and economic… (more)

Hyder, Zeshan

2012-01-01T23:59:59.000Z

490

A system with a tracking concentrating heliostat for lighting underground spaces with beams of sunlight  

Science Journals Connector (OSTI)

The results of the introduction of a solar-power installation for lighting and creating light effects in an underground room using mirror-concentrating systems are described.

Zh. Z. Akhadov; A. A. Abdurakhmanov; Yu. B. Sobirov; Sh. R. Kholov…

2014-04-01T23:59:59.000Z

491

Potential highwall use by raptors in coal mine reclamation  

SciTech Connect

In 1982, Western Energy Company`s Rosebud Mine, located in southeastern Montana, received legal exception, {open_quotes}a first{close_quotes} in Montana to leave a standing mine highwall extending a native bluff. This bluff extension stands 110 feet high and 900 feet long. Normally, all highwalls by law are reduced to a 5:1 slope. This legal exception was accomplished with the support of several governmental agencies and was justified on the highwalls potential value for raptors. Enhancement measures undertaken on the highwall included the construction of three artificial eryies and the release of young prairie falcons (Falco mexicanus) employing hacking methods of the Peregrine Fund. The hack is now in its fourth year with a total of 46 young falcons having been released. Opportunities exist for creating a more diverse habitat for raptors and other cliff obligate species on reclaimed mine lands in the west. It is believed that this practical approach should be explored.

Waage, B. [Western Energy Co., Colstrip, MT (United States)

1990-12-31T23:59:59.000Z

492

Alabama Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Alabama Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1995 1,379 1,377 1,113 1,113 1,140 1,182 1,218 1,436 2,028 1,955 1,766 1,365 1996 1,311 1,014 852 1,006 1,373 2,042 2,247 2,641 3,081 3,198 3,069 2,309 1997 1,778 1,594 1,619 1,749 2,020 2,113 2,156 2,443 2,705 2,956 2,713 2,713 1998 1,963 1,775 1,527 1,772 1,917 2,540 2,531 2,730 2,329 2,942 2,943 2,805 1999 1,992 1,878 1,566 1,703 2,173 2,383 2,618 2,699 3,101 3,024 3,158 2,969 2000 2,055 2,053 2,368 2,302 2,392 2,999 3,080 3,080 2,970 2,828 2,624 2,539 2001 2,210 2,451 1,847 2,041 1,997 2,574 2,728 2,841 2,859 2,739 5,527 5,538

493

Michigan Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Michigan Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 706,889 648,325 624,515 616,656 665,124 729,161 807,726 878,119 930,596 949,922 938,864 867,940 1991 743,402 679,102 654,930 682,092 729,387 786,753 845,224 891,823 911,554 952,843 894,499 818,602 1992 733,877 658,347 592,859 592,608 637,515 705,740 780,590 849,043 917,537 946,090 899,631 810,348 1993 710,139 607,908 543,589 559,454 637,732 723,706 807,040 889,450 955,444 989,143 937,100 847,136 1994 702,694 613,074 582,416 623,584 696,448 770,914 845,328 922,211 987,829 1,019,096 999,421 936,290 1995 830,235 717,515 666,164 665,004 718,094 783,569 857,995 914,295 966,578 998,665 931,432 813,622

494

West Virginia Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) West Virginia Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 406,358 395,084 390,792 397,000 415,841 433,111 451,251 467,272 480,567 484,278 484,868 464,807 1991 434,160 413,996 410,940 418,771 433,924 450,027 464,274 474,984 483,421 487,004 475,927 453,446 1992 423,942 396,889 367,681 369,328 393,606 411,353 433,399 452,065 465,496 478,316 472,378 449,402 1993 417,527 374,171 344,142 349,414 388,771 415,925 435,814 454,993 475,298 482,458 468,770 435,687 1994 379,825 347,246 330,957 352,059 377,614 406,195 433,763 456,009 476,854 482,830 475,145 450,055 1995 406,251 364,959 352,876 358,628 383,018 407,328 422,458 431,357 449,075 463,546 440,460 401,144

495

AGA Western Consuming Region Natural Gas Underground Storage Withdrawals  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Gas Underground Storage Withdrawals (Million Cubic Feet) AGA Western Consuming Region Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 58,880 70,469 16,774 11,878 2,078 1,522 2,158 2,524 1,024 3,314 29,483 47,719 1995 56,732 27,801 27,857 15,789 4,280 2,252 3,265 11,858 5,401 6,025 14,354 53,469 1996 89,320 52,624 24,847 9,346 4,785 4,298 12,886 21,661 6,866 14,578 24,096 48,438 1997 73,240 41,906 22,756 15,182 4,297 3,613 5,381 8,030 7,770 12,343 22,625 88,975 1998 54,800 50,704 27,864 16,746 3,265 2,619 6,278 6,049 5,822 4,599 14,013 62,377 1999 54,762 45,467 35,081 31,196 7,773 3,792 4,982 14,342 6,642 10,488 15,128 54,531

496

AGA Western Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Western Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,449 542 13,722 29,089 48,055 33,801 35,146 27,858 45,903 22,113 5,766 6,401 1995 2,960 9,426 8,840 10,680 42,987 47,386 37,349 22,868 31,053 25,873 15,711 3,003 1996 2,819 8,696 9,595 20,495 41,216 36,086 25,987 20,787 24,773 17,795 13,530 9,122 1997 6,982 4,857 15,669 28,479 47,040 49,438 38,542 31,080 29,596 23,973 10,066 1,975 1998 5,540 1,847 14,429 21,380 49,816 48,423 30,073 34,243 31,710 34,744 26,456 6,404 1999 4,224 3,523 10,670 17,950 41,790 42,989 40,381 26,942 30,741 20,876 18,806 4,642

497

Virginia Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Virginia Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 3,654 3,215 2,903 3,108 3,416 3,720 3,906 4,241 4,507 4,731 4,691 4,330 1999 4,004 3,548 3,215 3,397 3,666 3,872 4,078 4,280 4,691 4,792 4,599 4,118 2000 3,398 3,283 3,289 3,456 3,735 3,941 4,160 4,366 4,357 4,785 4,434 3,720 2001 3,183 3,135 2,844 3,275 3,788 4,180 4,424 4,728 4,988 5,013 5,073 4,875 2002 4,401 3,728 3,339 3,462 4,014 4,285 4,568 4,709 5,017 5,225 4,945 4,451 2003 3,429 2,933 2,754 3,047 3,494 3,969 4,381 5,469 6,083 6,035 6,003 5,458 2004 4,324 3,958 3,647 3,806 4,539 4,866 5,121 5,915 6,379 7,223 7,191 6,185

498

Oregon Natural Gas Underground Storage Volume (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Underground Storage Volume (Million Cubic Feet) Oregon Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 6,996 5,657 4,959 6,140 7,648 8,892 9,656 10,292 10,664 10,853 10,808 10,057 1991 8,982 8,017 6,250 5,271 5,985 7,539 8,997 10,089 10,763 11,102 11,125 10,638 1992 9,070 7,530 5,944 5,502 7,074 8,614 9,809 10,819 11,272 11,445 10,346 9,766 1993 7,848 6,452 5,724 5,298 6,942 8,240 9,421 10,463 11,041 11,531 10,800 9,697 1994 8,436 7,309 6,364 5,544 6,754 8,253 9,449 10,524 11,208 11,462 11,025 10,388 1995 8,710 8,325 7,885 8,752 9,932 10,965 11,661 11,661 12,147 12,147 12,090 11,268 1996 10,016 9,076 8,424 8,293 9,015 10,188 11,321 11,758 11,862 11,655 11,103 9,863

<