Powered by Deep Web Technologies
Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Underground Injection Control (Louisiana)  

Energy.gov (U.S. Department of Energy (DOE))

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

2

Underground Injection Control Regulations (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

3

Underground Injection Control Rule (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

4

Underground Injection Control Permits and Registrations (Texas) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Underground Injection Control Permits and Registrations (Texas) Underground Injection Control Permits and Registrations (Texas) < Back Eligibility Utility Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Fuel Distributor Savings Category Buying & Making Electricity Program Info State Texas Program Type Environmental Regulations Safety and Operational Guidelines Provider Texas Commission on Environmental Quality Chapter 27 of the Texas Water Code (the Injection Well Act) defines an "injection well" as "an artificial excavation or opening in the ground made by digging, boring, drilling, jetting, driving, or some other

5

Arkansas Underground Injection Control Code (Arkansas) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) Arkansas Underground Injection Control Code (Arkansas) < Back Eligibility Commercial Construction Industrial Utility Program Info State Arkansas Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the purpose of this UIC Code to adopt underground injection control (UIC) regulations necessary to qualify the State of Arkansas to retain authorization for its Underground Injection Control Program pursuant to the Safe Drinking Water Act of 1974, as amended; 42 USC 300f et seq. In order

6

Underground Injection Control (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control (West Virginia) Injection Control (West Virginia) Underground Injection Control (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by 5 classes of wells. All owners

7

Underground Injection Control Fee Schedule (West Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Injection Control Fee Schedule (West Virginia) Injection Control Fee Schedule (West Virginia) Underground Injection Control Fee Schedule (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Fees Provider Department of Environmental Protection This rule establishes schedules of permit fees for state under-ground injection control permits issued by the Chief of the Office of Water Resources. This rule applies to any person who is required to apply for and

8

GRR/Section 14-HI-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-HI-c - Underground Injection Control Permit GRR/Section 14-HI-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-HI-c - Underground Injection Control Permit 14HIC - UndergroundInjectionControlPermit (1).pdf Click to View Fullscreen Contact Agencies Hawaii Department of Health Safe Drinking Water Branch Regulations & Policies Hawaii Administrative Rules Title 11, Chapter 23 Triggers None specified Click "Edit With Form" above to add content 14HIC - UndergroundInjectionControlPermit (1).pdf 14HIC - UndergroundInjectionControlPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The developer must receive an Underground Injection Control Permit from the

9

GRR/Section 14-WA-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-WA-c - Underground Injection Control Permit GRR/Section 14-WA-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-WA-c - Underground Injection Control Permit 14-WA-c - Underground Injection Control Permit.pdf Click to View Fullscreen Contact Agencies Washington State Department of Ecology Regulations & Policies Chapter 173-218 WAC Non-endangerment Standard Triggers None specified The Safe Drinking Water Act requires Washington to implement technical criteria and standards to protect underground sources of drinking water from contamination. Under Chapter 173-218 WAC, the Washington State Department of Ecology (WSDE) regulates and permits underground injection control (UIC) wells in Washington. The Environmental Protection Agency

10

GRR/Section 14-UT-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-UT-c - Underground Injection Control Permit GRR/Section 14-UT-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-UT-c - Underground Injection Control Permit 14UTCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies Utah Department of Environmental Quality Regulations & Policies Utah Administrative Code R317-7 Triggers None specified Click "Edit With Form" above to add content Potential Roadblocks If the permit application does not adequately demonstrate that geothermal re-injection wells will be constructed and operated to be protective of any USDWs the issuance of a permit may be denied or delayed. 14UTCUndergroundInjectionControlPermit.pdf 14UTCUndergroundInjectionControlPermit.pdf

11

GRR/Section 14-TX-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

TX-c - Underground Injection Control Permit TX-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-TX-c - Underground Injection Control Permit Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Click to View Fullscreen Contact Agencies Railroad Commission of Texas Texas Commission on Environmental Quality Regulations & Policies Tex. Water Code § 27 16 TAC 3.9 46 TAC 3.46 16 TAC 3.30 - MOU between the RRC and the TCEQ Triggers None specified Click "Edit With Form" above to add content Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Pages from 14TXCUndergroundInjectionControlPermit (4).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

12

GRR/Section 14-ID-c - Underground Injection Control | Open Energy  

Open Energy Info (EERE)

4-ID-c - Underground Injection Control 4-ID-c - Underground Injection Control < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-ID-c - Underground Injection Control 14IDCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies Idaho Department of Water Resources Regulations & Policies IDAPA 37.03.04 IDAPA 37.03.03 Triggers None specified Click "Edit With Form" above to add content Potential Roadblocks Extensive public comments can stretch the timeline since IDWR must respond to all comments, potentially hold a Fact Finding Hearing, and thoroughly review the input received in these processes prior to making a decision to issue or deny the permit. 14IDCUndergroundInjectionControlPermit.pdf

13

GRR/Section 14-CA-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

14-CA-c - Underground Injection Control Permit 14-CA-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CA-c - Underground Injection Control Permit 14CACUndergroundInjectionControl.pdf Click to View Fullscreen Contact Agencies California Department of Conservation, Division of Oil, Gas, and Geothermal Resources Regulations & Policies Division 3, Chapter 4 of the California Public Resources Code Title 14, Division 2, Chapter 4 of the California Code of Regulations Title 40, Code of Federal Regulations, Part 144 Title 40, Code of Federal Regulations, Part 146 Triggers None specified Click "Edit With Form" above to add content 14CACUndergroundInjectionControl.pdf Error creating thumbnail: Page number not in range.

14

GRR/Section 14-OR-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

GRR/Section 14-OR-c - Underground Injection Control Permit GRR/Section 14-OR-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-OR-c - Underground Injection Control Permit 14ORCUndergroundInjectionControlPermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies 40 CFR 144.26: Federal UIC Regulations 40 CFR 144.83: Notification OAR 340-044: State UIC Regulations Triggers None specified Click "Edit With Form" above to add content 14ORCUndergroundInjectionControlPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

15

GRR/Section 14-NV-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

4-NV-c - Underground Injection Control Permit 4-NV-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-NV-c - Underground Injection Control Permit 14NVCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies Nevada Division of Environmental Protection Nevada Division of Minerals Nevada Division of Water Resources Bureau of Land Management Regulations & Policies Nevada Revised Statutes (NRS) Nevada Administrative Code (NAC) Triggers None specified Click "Edit With Form" above to add content 14NVCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

16

GRR/Section 14-CO-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » GRR/Section 14-CO-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-CO-c - Underground Injection Control Permit 14COCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Colorado Division of Water Resources Triggers None specified Click "Edit With Form" above to add content 14COCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative The United States Environmental Protection Agency (EPA) has not delegated

17

GRR/Section 14-MT-c - Underground Injection Control Permit | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » GRR/Section 14-MT-c - Underground Injection Control Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 14-MT-c - Underground Injection Control Permit 14MTCUndergroundInjectionControlPermit.pdf Click to View Fullscreen Contact Agencies United States Environmental Protection Agency Triggers None specified Click "Edit With Form" above to add content 14MTCUndergroundInjectionControlPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range.

18

Underground Injection Control Program Rules and Regulations (Rhode Island)  

Energy.gov (U.S. Department of Energy (DOE))

The purpose of this regulation is to preserve the quality of the groundwater of the State and thereby protect groundwater contamination from contamination by discharge from injection wells and...

19

Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project  

DOE Green Energy (OSTI)

Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

None

1989-06-01T23:59:59.000Z

20

Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project  

SciTech Connect

Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

1989-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Massachusetts Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

22

State and National Energy and Environmental Risk Analysis Systems for underground injection control. Summary annual report, April 1992--April 1993  

SciTech Connect

ICF Resources` project, entitled {open_quotes}State and National Energy and Environmental Risk Analysis Systems for Underground Injection Control{close_quotes} includes two primary tasks (development of state and national systems respectively) and a technology transfer element. The state system was designed to assist states with data management related to underground injection control (UIC). However, during the current period, external changes (primarily pending regulatory changes at the federal level) have made the risk assessment protocol aspect of the state system of increased importance relative to data management. This protocol would assess the relative risk of groundwater contamination due to UIC activities in various areas of the state. The risk assessment system could be used to assist states in allocating scarce resources and potentially could form the analytical basis of a state variance program to respond to pending federal regulatory changes. Consequently, a substantial portion of the effort to date has been focused on this aspect of the project, The national energy and environmental risk analysis system (EERAS) is designed to enhance DOE`s analytical capabilities. This concept will be demonstrated using UIC data. The initial system design for EERAS has been completed but may be revised based on input from DOE and on the pending UIC regulatory changes. Data have been collected and organized and can be input once the file structure is finalized. The further development options for EERAS defined as part of this project will allow for the full development of the system beyond the current prototype phase which will enhance DOE`s analytical capabilities for responding to regulatory initiatives and for evaluating the benefits of risk-based regulatory approaches.

Haas, M.R.

1993-04-01T23:59:59.000Z

23

Texas Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Injections into Underground Storage (Million Cubic Feet) Texas Natural Gas Injections into Underground...

24

Idaho Natural Gas Underground Storage Injections All Operators...  

Gasoline and Diesel Fuel Update (EIA)

Underground Storage Injections All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

25

Connecticut Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

26

Alaska Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

27

Delaware Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

28

Wisconsin Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1...

29

Georgia Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Injections All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

30

New Jersey Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

31

South Carolina Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

32

North Carolina Natural Gas Underground Storage Injections All...  

U.S. Energy Information Administration (EIA) Indexed Site

Pages: Injections of Natural Gas into Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage...

33

Illinois Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Illinois Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct...

34

Alaska Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

35

Rhode Island Natural Gas Underground Storage Injections All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas into Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Injections of Natural Gas into Storage (Annual Supply &...

36

GRR/Elements/14-CA-c.3 - Application For Proposed Underground Injection  

Open Energy Info (EERE)

CA-c.3 - Application For Proposed Underground Injection CA-c.3 - Application For Proposed Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.3 - Application For Proposed Underground Injection Project Under the Memorandum of Agreement Between State Water Resources Control Board and DOGGR geothermal operators must file an application for underground geothermal wastewater injection with the appropriate DOGGR district office. The application must include: A chemical analysis to characterize the proposed injection fluid; A chemical analysis from the proposed zone of injection considering the characteristics of the zone; and The depth, location, and injection formation of the proposed well. Logic Chain

37

Underground Injection Control Permit Applications for FutureGen 2.0 Morgan County Class VI UIC Wells 1, 2, 3, and 4  

NLE Websites -- All DOE Office Websites (Extended Search)

FG-RPT-017 FG-RPT-017 Revision 1 Underground Injection Control Permit Applications for FutureGen 2.0 Morgan County Class VI UIC Wells 1, 2, 3, and 4 SUPPORTING DOCUMENTATION March 2013 (Revised May 2013 in accordance with the U.S. Environmental Protection Agency's Completeness Review) Acknowledgment: This material is based upon work supported by the Department of Energy under Award Number DE-FE0001882. Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

38

State and National Energy and Environmental Risk Analysis Systems for underground injection control. Quarterly report, April 1, 1994--July 31, 1994  

SciTech Connect

This task involves developing a preliminary national energy and environmental risk analysis system (EERAS). An analytical methodology for nationwise estimation of potential for USDW contamination from underground injection and the current and future resource potential associated with these areas of concern will be developed.

Not Available

1994-07-15T23:59:59.000Z

39

one mile underground into a deep saline formation. The injection  

NLE Websites -- All DOE Office Websites (Extended Search)

mile underground into a deep saline formation. The injection, mile underground into a deep saline formation. The injection, which will occur over a three-year period and is slated to start in early 2010, will compress up to 1 million metric tonnes of CO 2 from the ADM ethanol facility into a liquid-like, dense phase. The targeted rock formation, the Mt. Simon Sandstone, is the thickest and most widespread saline reservoir in the Illinois Basin, with an estimated CO 2 storage capacity of 27 to 109 billion metric tonnes. A comprehensive monitoring program, which will be evaluated yearly, will be implemented after the injection to ensure the injected CO 2 is stored safely and permanently. The RCSP Program was launched by the Office of Fossil Energy (FE)

40

Lower 48 States Total Natural Gas Injections into Underground Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Lower 48 States Total Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2011 50,130 81,827 167,632 312,290 457,725 420,644 359,267 370,180 453,548 436,748 221,389 90,432 2012 74,854 56,243 240,351 263,896 357,965 323,026 263,910 299,798 357,109 327,767 155,554 104,953 2013 70,592 41,680 99,330 270,106 465,787 438,931 372,458 370,471 418,848 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Injections of Natural Gas into Underground Storage - All Operators

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Injections into Underground Storage (Million Cubic Feet) Injections into Underground Storage (Million Cubic Feet) Iowa Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 1,740 243 1,516 3,236 5,817 8,184 5,657 5,928 4,903 4,971 1,423 854 1991 1,166 155 231 1,829 4,897 8,985 6,518 8,058 11,039 10,758 2,782 860 1992 488 43 1,246 3,184 7,652 7,568 11,453 11,281 11,472 9,000 1,228 1,203 1993 0 0 733 5,547 6,489 7,776 10,550 10,150 12,351 8,152 2,437 0 1994 0 75 1,162 3,601 7,153 7,638 11,999 12,405 13,449 10,767 2,678 0 1995 0 0 251 1,041 5,294 9,889 12,219 17,805 13,756 8,855 1,283 391 1996 2 2 0 40 1,921 7,679 12,393 13,168 12,537 10,556 2,760 0

42

AGA Eastern Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Eastern Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 7,862 17,834 34,190 160,946 247,849 262,039 269,285 244,910 208,853 134,234 47,094 16,471 1995 13,614 4,932 36,048 85,712 223,991 260,731 242,718 212,493 214,385 160,007 37,788 12,190 1996 12,276 39,022 32,753 130,232 233,717 285,798 303,416 270,223 247,897 166,356 39,330 28,875 1997 16,058 14,620 25,278 93,501 207,338 258,086 250,776 252,129 233,730 152,913 53,097 10,338 1998 21,908 13,334 48,068 139,412 254,837 234,427 234,269 207,026 178,129 144,203 52,518 28,342

43

AGA Producing Region Natural Gas Injections into Underground Storage  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Producing Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 20,366 29,330 55,297 93,538 129,284 83,943 104,001 98,054 88,961 65,486 49,635 27,285 1995 24,645 25,960 57,833 78,043 101,019 100,926 77,411 54,611 94,759 84,671 40,182 33,836 1996 34,389 48,922 38,040 76,100 98,243 88,202 88,653 109,284 125,616 91,618 37,375 48,353 1997 45,327 35,394 89,625 83,137 107,821 99,742 71,360 95,278 116,634 117,497 49,750 33,170 1998 41,880 59,324 73,582 119,021 128,323 96,261 107,136 94,705 87,920 129,117 58,026 47,924 1999 35,830 50,772 49,673 80,879 110,064 100,132 72,348 67,286 103,587 79,714 66,465 32,984

44

AGA Western Consuming Region Natural Gas Injections into Underground  

Gasoline and Diesel Fuel Update (EIA)

Gas Injections into Underground Storage (Million Cubic Feet) Gas Injections into Underground Storage (Million Cubic Feet) AGA Western Consuming Region Natural Gas Injections into Underground Storage (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 2,449 542 13,722 29,089 48,055 33,801 35,146 27,858 45,903 22,113 5,766 6,401 1995 2,960 9,426 8,840 10,680 42,987 47,386 37,349 22,868 31,053 25,873 15,711 3,003 1996 2,819 8,696 9,595 20,495 41,216 36,086 25,987 20,787 24,773 17,795 13,530 9,122 1997 6,982 4,857 15,669 28,479 47,040 49,438 38,542 31,080 29,596 23,973 10,066 1,975 1998 5,540 1,847 14,429 21,380 49,816 48,423 30,073 34,243 31,710 34,744 26,456 6,404 1999 4,224 3,523 10,670 17,950 41,790 42,989 40,381 26,942 30,741 20,876 18,806 4,642

45

GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection  

Open Energy Info (EERE)

- Does the DOGGR Approve the Underground Injection - Does the DOGGR Approve the Underground Injection Project < GRR‎ | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections 14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project After the end of the comment period and after reviewing any proposed revisions furnished by the Regional Board, the State Board decides whether to approve the Underground Injection Project. Logic Chain No Parents \V/ GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground Injection Project (this page) \V/ No Dependents Under Development Add.png Add an Element Retrieved from "http://en.openei.org/w/index.php?title=GRR/Elements/14-CA-c.12_-_Does_the_DOGGR_Approve_the_Underground_Injection_Project&oldid=539630

46

Compendium of Regulatory Requirements Governing Underground Injection of Drilling Wastes  

Science Conference Proceedings (OSTI)

This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies.

Puder, Markus G.; Bryson, Bill; Veil, John A.

2003-03-03T23:59:59.000Z

47

Underground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies & Practicality.  

E-Print Network (OSTI)

environments and are very salty, like the Marcellus shale and other oil and gas formations underlying the areaUnderground Injection Wells as an Option for Disposal of Shale Gas Wastewaters: Policies), Region 3. Marcellus Shale Educational Webinar, February 18, 2010 (Answers provide below by Karen Johnson

Boyer, Elizabeth W.

48

Compendium of regulatory requirements governing underground injection of drilling waste.  

Science Conference Proceedings (OSTI)

Large quantities of waste are produced when oil and gas wells are drilled. The two primary types of drilling wastes include used drilling fluids (commonly referred to as muds), which serve a variety of functions when wells are drilled, and drill cuttings (rock particles ground up by the drill bit). Some oil-based and synthetic-based muds are recycled; other such muds, however, and nearly all water-based muds, are disposed of. Numerous methods are employed to manage drilling wastes, including burial of drilling pit contents, land spreading, thermal processes, bioremediation, treatment and reuse, and several types of injection processes. This report provides a comprehensive compendium of the regulatory requirements governing the injection processes used for disposing of drilling wastes; in particular, for a process referred to in this report as slurry injection. The report consists of a narrative discussion of the regulatory requirements and practices for each of the oil- and gas-producing states, a table summarizing the types of injection processes authorized in each state, and an appendix that contains the text of many of the relevant state regulations and policies. The material included in the report was derived primarily from a review of state regulations and from interviews with state oil and gas regulatory officials.

Puder, M. G.; Bryson, B.; Veil, J. A.

2002-11-08T23:59:59.000Z

49

,"Wisconsin Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1973 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050wi2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050wi2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:12 PM"

50

,"Alaska Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050ak2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050ak2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:46 PM"

51

,"Connecticut Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1996 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050ct2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050ct2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

52

,"Georgia Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050ga2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050ga2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

53

,"Delaware Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050de2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050de2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:50 PM"

54

,"Idaho Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050id2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050id2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:28:51 PM"

55

,"South Carolina Natural Gas Underground Storage Injections All Operators (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Injections All Operators (MMcf)" Injections All Operators (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Underground Storage Injections All Operators (MMcf)",1,"Annual",1975 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5050sc2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5050sc2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:29:07 PM"

56

,"U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5540us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5540us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:33 PM" "Back to Contents","Data 1: U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)" "Sourcekey","N5540US2" "Date","U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)" 34515,2654035 34880,2371697 35246,2647124 35611,2532986

57

,"U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Annual",2012 Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5440us2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5440us2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:29 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" "Sourcekey","N5440US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" 34515,142243 34880,194185 35246,258468

58

,"U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5540us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5540us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:33 PM" "Back to Contents","Data 1: U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)" "Sourcekey","N5540US2" "Date","U.S. Natural Gas Non-Salt Underground Storage Injections (MMcf)" 34349,23610 34380,37290 34408,91769

59

,"U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly","9/2013" Monthly","9/2013" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","n5440us2m.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/n5440us2m.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:30:30 PM" "Back to Contents","Data 1: U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" "Sourcekey","N5440US2" "Date","U.S. Natural Gas Salt Underground Storage Activity-Injects (MMcf)" 34349,10956 34380,12444

60

Evaluation of land disposal and underground injection of shale oil wastewaters  

DOE Green Energy (OSTI)

Results indicate that the salinity of retort water, the principal wastewater generated by shale oil recovery operations, will be too high in most cases for irrigation of cover crops needed for effective stabilization by land disposal. Furthermore, large storage lagoons would be required to hold the retort water during the long winters encountered in the oil shale regions of Colorado, Wyoming and Utah. Land disposal cannot be carried out during prolonged periods of freezing weather. Additional problems which may arise with land disposal include air pollution from volatile constituents and groundwater pollution from refractory organics and dissolved salts in the retort water. Pretreatment requirements include the removal of ammonia which is present at toxic concentrations in retort water. Underground injection of retort water may be permitted in regions possessing favorable geological characteristics. It is anticipated that this method would be used as a last resort where effective or resonably priced treatment technology is not available. Regulatory restraints are expected to limit the use of underground injection for disposal of highly polluted shale oil wastewaters. Proving the confinement of injected wastes, a frequently difficult and expensive task, will be required to assure protection of drinking water resources.

Mercer, B.W.; Campbell, A.C.; Wakamiya, W.

1979-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced underground Vehicle Power and Control: The locomotive Research Platform  

DOE Green Energy (OSTI)

Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.

Vehicle Projects LLC

2003-01-28T23:59:59.000Z

62

Remote control, signalization and communication system at Eynez fully mechanized underground colliery, Turkey  

Science Conference Proceedings (OSTI)

The peculiarities of application of the mine observation system Senturion 600 are considered for continuous gas control at Eynez underground colliery.

Pamukcu, C. [Dokuz Eylul University, Izmir (Turkey)

2007-07-15T23:59:59.000Z

63

Interphase power controller with voltage injection  

Science Conference Proceedings (OSTI)

This paper introduces a new family of Interphase Power Controllers (IPC) based on the principle of voltage injection commonly used in phase-shifting transformers (PST). The voltage injection IPC exhibits power (active and reactive) control characteristics similar to previously defined IPC's and retains their inherent qualities: passive control, short circuit limitation and voltage decoupling. It also provides more flexibility for the adjustment of the operating points. Two promising topologies are described in more detail. One of them offers the potential of retrofitting existing phase-shifting transformers into full-fledged IPC's.

Beauregard, F.; Brochu, J.; Morin, G.; Pelletier, P. (Centre d'Innovation sur le Transport d'Energie du Quebec, Varennes, Quebec (Canada))

1994-10-01T23:59:59.000Z

64

Collection and analyses of physical data for deep injection wells in Florida.  

E-Print Network (OSTI)

??Deep injection wells (DIW) in Florida are regulated by the U.S. Environmental Protection Agency (USEPA) and the state of Florida through the Underground Injection Control (more)

Gao, Jie.

2010-01-01T23:59:59.000Z

65

Combustion oscillation control by cyclic fuel injection  

SciTech Connect

A number of recent articles have demonstrated the use of active control to mitigate the effects of combustion instability in afterburner and dump combustor applications. In these applications, cyclic injection of small quantities of control fuel has been proposed to counteract the periodic heat release that contributes to undesired pressure oscillations. This same technique may also be useful to mitigate oscillations in gas turbine combustors, especially in test rig combustors characterized by acoustic modes that do not exist in the final engine configuration. To address this issue, the present paper reports on active control of a subscale, atmospheric pressure nozzle/combustor arrangement. The fuel is natural gas. Cyclic injection of 14% control fuel in a premix fuel nozzle is shown to reduce oscillating pressure amplitude by a factor of 0.30 (i.e., {approximately}10 dB) at 300 Hz. Measurement of the oscillating heat release is also reported.

Richards, G.A.; Yip, M.J. [USDOE Morgantown Energy Technology Center, WV (United States); Robey, E. [EG& G Technical Services of West Virginia, Morgantown Energy Technology Center, WV (United States); Cowell, L.; Rawlins, D. [Solar Turbines, Inc., San Diedgo, CA (United States)

1995-04-01T23:59:59.000Z

66

PEP-II injection timing and controls  

SciTech Connect

Hardware has been built and software written and incorporated in the existing SLC accelerator control system to control injection of beam pulses from the accelerator into the PEP-II storage rings currently under construction. Hardware includes a CAMAC module to delay the machine timing fiducial in order that a beam pulse extracted from a damping ring will be injected into a selected group of four 476 MHz buckets in a PEP-II ring. Further timing control is accomplished by shifting the phase of the bunches stored in the damping rings before extraction while leaving the phase of the PEP-II stored beam unchanged. The software which drives timing devices on a pulse-to-pulse basis relies on a dedicated communication link on which one scheduling microprocessor broadcasts a 128-bit message to all distributed control microprocessors at 360 Hz. PEP-II injection will be driven by the scheduling microprocessor according to lists specifying bucket numbers in arbitrary order, and according to scheduling constraints maximizing the useful beam delivered to the SLC collider currently in operation. These lists will be generated by a microprocessor monitoring the current stored per bucket in each of the PEP-II rings.

Bharadwaj, V.; Browne, M.; Crane, M.; Gromme, T.; Himel, T.; Ross, M.; Stanek, M. [Stanford Linear Accelerator Center, Menlo Park, CA (United States); Ronan, M. [Lawrence Berkeley National Lab., CA (United States)

1997-07-01T23:59:59.000Z

67

Advanced Underground Vehicle Power and Control Fuelcell Mine Locomotive  

E-Print Network (OSTI)

-- Tethered -- Diesel -- Battery · Solution by fuelcells will provide cost offsets -- Lower recurring costs -- Higher availability -- Lower ventilation costs A PROBLEM AND OPPORTUNITY Underground Traction Power #12 available battery-powered 4-ton locomotive · Remove traction battery module and use existing electric drive

68

Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2  

Science Conference Proceedings (OSTI)

The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriately represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.

Cappa, F.; Rutqvist, J.

2010-06-01T23:59:59.000Z

69

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

70

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at Laramie River Station Unit 3, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program is to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL are to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the benchmark established by DOE of $60,000/lb mercury removed. The goals of the program were exceeded at Laramie River Station by achieving over 90% mercury removal at a sorbent cost of $3,980/lb ($660/oz) mercury removed for a coal mercury content of 7.9 lb/TBtu.

Sharon Sjostrom

2005-12-30T23:59:59.000Z

71

Energy-efficient control in injection molding.  

E-Print Network (OSTI)

??xviii, 209 leaves : ill. ; 30 cm HKUST Call Number: Thesis CENG 2008 Yao As an energy-intensive process, in injection molding, energy cost is (more)

Yao, Ke

2008-01-01T23:59:59.000Z

72

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

ADA-ES, Inc., with support from DOE/NETL, EPRI, and industry partners, studied mercury control options at six coal-fired power plants. The overall objective of the this test program was to evaluate the capabilities of activated carbon injection at six plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, American Electric Power's Conesville Station Unit 6, and Labadie Power Plant Unit 2. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The financial goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000 per pound of mercury removed. Results from testing at Holcomb, Laramie, Meramec, Labadie, and Monroe indicate the DOE goal was successfully achieved. However, further improvements for plants with conditions similar to Conesville are recommended that would improve both mercury removal performance and economics.

Sharon Sjostrom

2008-06-30T23:59:59.000Z

73

Evaluation of Sorbent Injection for Mercury Control  

Science Conference Proceedings (OSTI)

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of the test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at five plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer-term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Detroit Edison's Monroe Power Plant. In addition to tests identified for the four main sites, parametric testing at Missouri Basin Power Project's Laramie River Station Unit 3 has been scheduled and made possible through additional costshare participation targeted by team members specifically for tests at Holcomb or a similar plant. This is the fifth quarterly report for this project. Long-term testing was completed at Meramec during this reporting period. Preliminary results from parametric, baseline and long-term testing at Meramec are included in this report. Planning information for the other three sites is also included. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

Sharon Sjostrom

2005-02-02T23:59:59.000Z

74

Evaluation of Sorbent Injection for Mercury Control  

SciTech Connect

The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. This is the final site report for tests conducted at DTE Energy's Monroe Power Plant, one of five sites evaluated in this DOE/NETL program. The overall objective of the test program was to evaluate the capabilities of activated carbon injection at five plants: Sunflower Electric's Holcomb Station Unit 1, AmerenUE's Meramec Station Unit 2, Missouri Basin Power Project's Laramie River Station Unit 3, Detroit Edison's Monroe Power Plant Unit 4, and AEP's Conesville Station Unit 6. These plants have configurations that together represent 78% of the existing coal-fired generation plants. The goals for the program established by DOE/NETL were to reduce the uncontrolled mercury emissions by 50 to 70% at a cost 25 to 50% lower than the target established by DOE of $60,000/lb mercury removed. The results from Monroe indicate that using DARCO{reg_sign} Hg would result in higher mercury removal (80%) at a sorbent cost of $18,000/lb mercury, or 70% lower than the benchmark. These results demonstrate that the goals established by DOE/NETL were exceeded during this test program. The increase in mercury removal over baseline conditions is defined for this program as a comparison in the outlet emissions measured using the Ontario Hydro method during the baseline and long-term test periods. The change in outlet emissions from baseline to long-term testing was 81%.

Sharon Sjostrom

2006-04-30T23:59:59.000Z

75

Dry sorbent injection may serve as a key pollution control ...  

U.S. Energy Information Administration (EIA)

Dry sorbent injection (DSI) is a pollution control technology that may play a role in the United States' electric power sector's compliance with the Mercury and Air ...

76

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2003-01-01T23:59:59.000Z

77

Alkaline sorbent injection for mercury control  

DOE Patents (OSTI)

A mercury removal system for removing mercury from combustion flue gases is provided in which alkaline sorbents at generally extremely low stoichiometric molar ratios of alkaline earth or an alkali metal to sulfur of less than 1.0 are injected into a power plant system at one or more locations to remove at least between about 40% and 60% of the mercury content from combustion flue gases. Small amounts of alkaline sorbents are injected into the flue gas stream at a relatively low rate. A particulate filter is used to remove mercury-containing particles downstream of each injection point used in the power plant system.

Madden, Deborah A. (Boardman, OH); Holmes, Michael J. (Washington Township, Stark County, OH)

2002-01-01T23:59:59.000Z

78

Teleoperated control system for underground room and pillar mining  

DOE Patents (OSTI)

A teleoperated mining system is provided for remotely controlling the various machines involved with thin seam mining. A thin seam continuous miner located at a mining face includes a camera mounted thereon and a slave computer for controlling the miner and the camera. A plurality of sensors for relaying information about the miner and the face to the slave computer. A slave computer controlled ventilation sub-system which removes combustible material from the mining face. A haulage sub-system removes material mined by the continuous miner from the mining face to a collection site and is also controlled by the slave computer. A base station, which controls the supply of power and water to the continuous miner, haulage system, and ventilation systems, includes cable/hose handling module for winding or unwinding cables/hoses connected to the miner, an operator control module, and a hydraulic power and air compressor module for supplying air to the miner. An operator controlled host computer housed in the operator control module is connected to the slave computer via a two wire communications line.

Mayercheck, William D. (New Stanton, PA); Kwitowski, August J. (Clairton, PA); Brautigam, Albert L. (Pittsburgh, PA); Mueller, Brian K. (Pittsburgh, PA)

1992-01-01T23:59:59.000Z

79

OVERVIEW: UNDERGROUND INJECTION  

E-Print Network (OSTI)

collected, edited and integrated large amounts of information to create this technical reference document. During development of the original overview in 1991, the detailed editorial/technical assistance of Tom Belk (Office of Drinking Water), Marc Herman (Supe rfund Branch, Region VIII) an d Marion Yoder (Office of Regional C ounsel, Region VIII) helped to improve the readability of this document. Virginia Rose (Drinking Water Branch) made the original document possible by retyping numerous drafts containing never-ending changes.

unknown authors

2001-01-01T23:59:59.000Z

80

Method for controlling corrosion in thermal vapor injection gases  

DOE Patents (OSTI)

An improvement in the method for producing high pressure thermal vapor streams from combustion gases for injection into subterranean oil producing formations to stimulate the production of viscous minerals is described. The improvement involves controlling corrosion in such thermal vapor gases by injecting water near the flame in the combustion zone and injecting ammonia into a vapor producing vessel to contact the combustion gases exiting the combustion chamber.

Sperry, John S. (Houston, TX); Krajicek, Richard W. (Houston, TX)

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NETL: Mercury Emissions Control Technologies - Sorbent Injection for Small  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas URS Group and their test team will evaluate sorbent injection for mercury control on sites with low-SCA ESPs, burning low sulfur Eastern bituminous coals. Full-scale tests will be performed at Plant Yates Units 1 and 2 to evaluate sorbent injection performance across a cold-side ESP/wet FGD and a cold-side ESP with a dual NH3/SO3 flue gas conditioning system, respectively. Short-term parametric tests on Units 1 and 2 will provide data on the effect of sorbent injection rate on mercury removal and ash/FGD byproduct composition. Tests on Unit 2 will also evaluate the effect of dual-flue gas conditioning on sorbent injection performance. Results from a one-month injection test on Unit 1 will provide insight to the long-term performance and variability of this process as well as any effects on plant operations. The goals of the long-term testing are to obtain sufficient operational data on removal efficiency over time, effects on the ESP and balance of plant equipment, and on injection equipment operation to prove process viability.

82

Vitrified underground structures  

DOE Patents (OSTI)

A method of making vitrified underground structures in which 1) the vitrification process is started underground, and 2) a thickness dimension is controlled to produce substantially planar vertical and horizontal vitrified underground structures. Structures may be placed around a contaminated waste site to isolate the site or may be used as aquifer dikes.

Murphy, Mark T. (Kennewick, WA); Buelt, James L. (Richland, WA); Stottlemyre, James A. (Richland, WA); Tixier, Jr., John S. (Richland, WA)

1992-01-01T23:59:59.000Z

83

NOx Sensor for Direct Injection Emission Control  

DOE Green Energy (OSTI)

The Electricore/Delphi team continues to leverage the electrochemical planar sensor technology that has produced stoichiometric planar and wide range oxygen sensors as the basis for development of a NOx sensor. Zirconia cell technology with an integrated heater will provide the foundation for the sensor structure. Proven materials and packaging technology will help to ensure a cost-effective approach to the manufacture of this sensor. The electronics technique and interface is considered to be an area where new strategies need to be employed to produce higher S/N ratios of the NOx signal with emphasis on signal stability over time for robustness and durability Both continuous mode and pulse mode control techniques are being evaluated. Packaging the electronics requires careful design and circuit partitioning so that only the necessary signal conditioning electronics are coupled directly in the wiring harness, while the remainder is situated within the ECM for durability and costs reasons. This task continues to be on hold due to the limitation that the definition of the interface electronics was unavailable until very late in the project. The sense element is based on the amperometric method utilizing integrated alumina and zirconia ceramics. Precious metal electrodes are used to form the integrated heater, the cell electrodes and leads. Inside the actual sense cell structure, it is first necessary to separate NOx from the remaining oxygen constituents of the exhaust, without reducing the NOx. Once separated, the NOx will be measured using a measurement cell. Development or test coupons have been used to facilitate material selection and refinement, cell, diffusion barrier, and chamber development. The sense element currently requires elaborate interconnections. To facilitate a robust durable connection, mechanical and metallurgical connections are under investigation. Materials and process refinements continue to play an important role in the development of the sensor.

Betteridge, William J

2006-02-28T23:59:59.000Z

84

Flow monitoring and control system for injection wells  

DOE Patents (OSTI)

The present invention relates to a system for monitoring and controlling the rate of fluid flow from an injection well used for in-situ remediation of contaminated groundwater. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

Corey, J.C.

1991-01-01T23:59:59.000Z

85

Flow monitoring and control system for injection wells  

DOE Patents (OSTI)

A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

Corey, John C. (212 Lakeside Dr., Aiken, SC 29803)

1993-01-01T23:59:59.000Z

86

Flow monitoring and control system for injection wells  

DOE Patents (OSTI)

A system for monitoring and controlling the injection rate of fluid by an injection well of an in-situ remediation system for treating a contaminated groundwater plume. The well is fitted with a gated insert, substantially coaxial with the injection well. A plurality of openings, some or all of which are equipped with fluid flow sensors and gates, are spaced along the insert. The gates and sensors are connected to a surface controller. The insert may extend throughout part of, or substantially the entire length of the injection well. Alternatively, the insert may comprise one or more movable modules which can be positioned wherever desired along the well. The gates are opened part-way at the start of treatment. The sensors monitor and display the flow rate of fluid passing through each opening on a controller. As treatment continues, the gates are opened to increase flow in regions of lesser flow, and closed to decrease flow in regions of greater flow, thereby approximately equalizing the amount of fluid reaching each part of the plume.

Corey, J.C.

1993-02-16T23:59:59.000Z

87

Underground Nuclear Explosions and the Control of Earthquakes Author(s): Cesare Emiliani, Christopher G. A. Harrison, Mary Swanson  

E-Print Network (OSTI)

Underground Nuclear Explosions and the Control of Earthquakes Author(s): Cesare Emiliani- ground nuclear explosions has been ex- plored in some detail during the past 2 years. In an examination with under- ground nuclear explosions has been ex- plored in some detail during the past 2 years

Miami, University of

88

Injection engine as a control object. II. Problems of automatic control of the engine  

Science Conference Proceedings (OSTI)

Specific features of injection engine as a control object are discussed, strict formulations of problems of engine automatic control and principles of their solution are presented. Examples of solution of the problem of stabilization of air-fuel ratio ...

D. N. Gerasimov; H. Javaherian; D. V. Efimov; V. O. Nikiforov

2010-12-01T23:59:59.000Z

89

NETL: Mercury Emissions Control Technologies - Long-Term Carbon Injection  

NLE Websites -- All DOE Office Websites (Extended Search)

Long-Term Carbon Injection Field Test for > 90% Long-Term Carbon Injection Field Test for > 90% Mercury Removal for a PRB Unit with a Spray Drier and Fabric Filter The intent of DOE's Phase I and II field tests was to work with industry to evaluate the most promising mercury control technologies at full-scale in a variety of configurations. Although longer-term tests were conducted, the test period was not sufficient to answer many fundamental questions about long-term consistency of mercury removal and reliability of the system when integrated with plant processes. As the technologies move towards commercial implementation, it is critical to accurately define the mercury removal performance and costs so that power companies and policy makers can make informed decisions. Therefore, the overall objective of this Phase III project is to determine the mercury removal performance, long-term emissions variability, and associated O&M costs of activated carbon injection for >90% mercury control over a 10 to 12 month period on a unit that represents the combination of coal and emission control equipment that will be used for many new and existing power plants.

90

FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID CONTROL  

Science Conference Proceedings (OSTI)

This document summarizes progress on Cooperative Agreement DE-FC26-99FT40718, Furnace Injection of Alkaline Sorbents for Sulfuric Acid Control, during the time period April 1, 2003 through September, 2003. The objective of this project is to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The coincident removal of hydrochloric acid and hydrofluoric acid is also being determined, as is the removal of arsenic, a known poison for NO{sub x} selective catalytic reduction (SCR) catalysts. EPRI, the Tennessee Valley Authority (TVA), FirstEnergy Corporation, American Electric Power (AEP) and the Dravo Lime Company are project co-funders. URS Group is the prime contractor. This is the eighth reporting period for the subject Cooperative Agreement. During previous reporting periods, two long-term sorbent injection tests were conducted, one on Unit 3 at FirstEnergy's Bruce Mansfield Plant (BMP) and one on Unit 1 at AEP's Gavin Plant. Those tests determined the effectiveness of injecting alkaline slurries into the upper furnace of the boiler as a means of controlling sulfuric acid emissions from these units. The alkaline slurries tested included commercially available magnesium hydroxide slurry (Gavin Plant), and a byproduct magnesium hydroxide slurry (both Gavin Plant and BMP). The tests showed that injecting either the commercial or the byproduct magnesium hydroxide slurry could achieve up to 70-75% overall sulfuric acid removal. At BMP, the overall removal was limited by the need to maintain acceptable electrostatic precipitator (ESP) particulate control performance. At Gavin Plant, the overall sulfuric acid removal was limited because the furnace injected sorbent was less effective at removing SO{sub 3} formed across the SCR system installed on the unit for NO{sub x} control than at removing SO{sub 3} formed in the furnace. The SO{sub 3} removal results were presented in the semi-annual Technical Progress Report for the time period April 1, 2001 through September 30, 2001. Additional balance of plant impact information for the two tests was reported in the Technical Progress Report for the time period October 1, 2001 through March 30, 2002. Additional information became available about the effects of byproduct magnesium hydroxide injection on SCR catalyst coupons during the long-term test at BMP, and those results were reported in the report for the time period April 1, 2002 through September 30, 2002. During the current period, process economic estimates were developed, comparing the costs of the furnace magnesium hydroxide slurry injection process tested as part of this project to a number of other candidate SO{sub 3}/sulfuric acid control technologies for coal-fired power plants. The results of this economic evaluation are included in this progress report.

Gary M. Blythe

2003-10-01T23:59:59.000Z

91

Base Natural Gas in Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period:

92

Apparatus and method for controlling the secondary injection of fuel  

SciTech Connect

A combustor (28) for a gas turbine engine is provided comprising a primary combustion chamber (30) for combusting a first fuel to form a combustion flow stream (50) and a transition piece (32) located downstream from the primary combustion chamber (30). The transition piece (32) comprises a plurality of injectors (66) located around a circumference of the transition piece (32) for injecting a second fuel into the combustion flow stream (50). The injectors (66) are effective to create a radial temperature profile (74) at an exit (58) of the transition piece (32) having a reduced coefficient of variation relative to a radial temperature profile (64) at an inlet (54) of the transition piece (32). Methods for controlling the temperature profile of a secondary injection are also provided.

Martin, Scott M.; Cai, Weidong; Harris, Jr., Arthur J.

2013-03-05T23:59:59.000Z

93

Water injection into a Low-Permeability Rock - 2: Control Model  

Science Conference Proceedings (OSTI)

In Part 1, we have demonstrated the inevitable growth of the fluid injection hydrofractures in low-permeability rocks. Thus, a smart controller that manages fluid injection in the presence of hydrofracture extension is highly desirable. Such a controller will be an essential part of automated waterflood project surveillance and control. Here we design an optimal injection controller using methods of optimal control theory. The controller inputs are the history of the injection pressure and the cumulative injection, along with the fracture size. The output parameter is the injection pressure and the control objective is the injection rate. We demonstrate that the optimal injection pressure depends not only on the instantaneous measurements, but it is determined by the whole history of the injection and of the fracture area growth. We show the controller robustness when the inputs are delayed and noisy and when the fracture undergoes abrupt extensions. Finally, we propose a procedure that allows estimation of the hydrofracture size at no additional cost.

Silin, Dmitriy B.; Patzek, Tad W.

1999-06-01T23:59:59.000Z

94

An underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents (OSTI)

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working fluid in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast- acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor. 5 figs.

Hampel, V.E.

1988-05-17T23:59:59.000Z

95

Underground nuclear power station using self-regulating heat-pipe controlled reactors  

DOE Patents (OSTI)

A nuclear reactor for generating electricity is disposed underground at the bottom of a vertical hole that can be drilled using conventional drilling technology. The primary coolant of the reactor core is the working fluid in a plurality of thermodynamically coupled heat pipes emplaced in the hole between the heat source at the bottom of the hole and heat exchange means near the surface of the earth. Additionally, the primary coolant (consisting of the working flud in the heat pipes in the reactor core) moderates neutrons and regulates their reactivity, thus keeping the power of the reactor substantially constant. At the end of its useful life, the reactor core may be abandoned in place. Isolation from the atmosphere in case of accident or for abandonment is provided by the operation of explosive closures and mechanical valves emplaced along the hole. This invention combines technology developed and tested for small, highly efficient, space-based nuclear electric power plants with the technology of fast-acting closure mechanisms developed and used for underground testing of nuclear weapons. This invention provides a nuclear power installation which is safe from the worst conceivable reactor accident, namely, the explosion of a nuclear weapon near the ground surface of a nuclear power reactor.

Hampel, Viktor E. (Pleasanton, CA)

1989-01-01T23:59:59.000Z

96

Dynamic Underground Stripping: In situ steam sweeping and electrical heating to remediate a deep hydrocarbon spill  

Science Conference Proceedings (OSTI)

Dynamic Underground Stripping is a combination of in situ steam injection, electrical resistance heating, and fluid extraction for rapid removal and recovery of subsurface contaminants such as solvents or fuels. Underground imaging and other measurement techniques monitor the system in situ for process control. Field tests at a deep gasoline spill at Lawrence Livermore National Laboratory recovered over 7000 gallons of gasoline during several months of field operations. Preliminary analysis of system cost and performance indicate that Dynamic Underground Stripping compares favorably with conventional pump-and-treat and vacuum extraction schemes for removing non-aqueous phase liquids such as gasoline from deep subsurface plumes.

Yow, J.L. Jr.; Aines, R.D.; Newmark, R.L.; Udell, K.S.; Ziagos, J.P.

1994-07-01T23:59:59.000Z

97

Controlled air injection for a fuel cell system  

DOE Patents (OSTI)

A method and apparatus for injecting oxygen into a fuel cell reformate stream to reduce the level of carbon monoxide while preserving the level of hydrogen in a fuel cell system.

Fronk, Matthew H. (Honeove Falls, NY)

2002-01-01T23:59:59.000Z

98

Cost Estimate of Activated Carbon Injection for Controlling Mercury...  

NLE Websites -- All DOE Office Websites (Extended Search)

mercury reductions of between 60% and 70% at injection rates around 10-15 lbsmillion acf (see Figure 1). Although regression analysis of full-scale ACIESP data shows that it...

99

The geopressured geothermal resources of Texas: regulatory controls over water pollution  

DOE Green Energy (OSTI)

The following are presented: an overview of the control framework, Federal pollution control of surface waters, state water pollution control in Texas, new Federal standards for underground injection control, and a summary assessment. (MHR)

Rogers, K.E.; Oberbeck, A.W.

1977-07-01T23:59:59.000Z

100

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Steam-injection profile control using limited-entry perforations  

SciTech Connect

A completion technique for steam-injection wells that ensures improved profile distribution of steam into several independent sands is being used at the South Belridge field in California. Previously, steam profiles were poor for many of the conventionally perforated (two 3/8-in. (9.5-mm) -diameter holes per foot) injection wells. This standard completion does not guarantee that the thicker, higher-permeability sands will not act as thief zones with respect to the thinner, tighter sands open in the same wellbore. Limited-entry perforating (typically one hole per 15 to 20 ft (4.6 to 6.1m) of gross interval with at least one in each major sand member) provides the best assurance of achieving a uniform injection profile in single-wellbore multisand completions.

Small, G.P.

1986-09-01T23:59:59.000Z

102

Steam-injection profile control using limited-entry perforations  

Science Conference Proceedings (OSTI)

A completion technique for steam injection wells that assures improved profile distribution of steam into several independent sands is being used at the South Belridge Field, California. Previously, steam profiles were poor for many of the conventionally perforated (two-3/8'' diameter holes per foot) injection wells. This standard completion does not guarantee that the thicker, higher permeability sands will not act as thief zones with respect to the thinner, tighter sands open in the same wellbore. Limited entry perforating (typically one hole per 15-20' of gross interval with at least one in each major sand member) provides the best assurance of achieving a uniform injection profile in single wellbore multi-sand completions.

Small, G.P.

1985-03-01T23:59:59.000Z

103

Natural Gas Withdrawals from Underground Storage (Annual Supply &  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

104

Flue gas injection control of silica in cooling towers.  

Science Conference Proceedings (OSTI)

Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

2011-06-01T23:59:59.000Z

105

Neural Predictive Controller Based Diesel Injection Management System for Emission Minimisation  

Science Conference Proceedings (OSTI)

Rapid growth in production of automobiles has increased emissions. Automotive control engineers use innovative control techniques to meet the upcoming emission standards. This paper proposes a novel method of employing artificial neural network ANN based ... Keywords: Artificial Neural Network ANN, Common Rail System CRS, Control System Simulation, Emission Minimisation, Fuel Injection System, Green System Design, Green Technology

C. N. Arunaa; S. Babu Devasenapati; K. I. Ramachandran; K. Vishnuprasad; C. Surendra

2011-07-01T23:59:59.000Z

106

Quick egress from deep underground  

SciTech Connect

A method of storage of missiles deep underground in a protected environment capable of withstanding nuclear blasts while allowing access for maintenance and rapid egress when necessary-- even after exposure to severe environments due to an explosion at or near the surface of the earth. To accomplish this, the objects to be stored are contained in a closed container of positive buoyancy in quicksand. A shaft is excavated in the earth and filled with sand. The water content of the sand backfill is controlled and maintained at that percentage of saturation which will provide the best compromise between rapidity and ease of container egress on one hand and resistance to hostile surface environments on the other. Means for the introduction of additional water at the bottom of the sand-filled shaft are provided. When the sand column is fluidized by the injection of water at the bottom thereof, quicksand is formed in the shaft and the container can be drawn to the bottom by a tether line. When water injection is stopped, the sand returns to its normal solid condition and provides a protective layer for the buried container while restraining it in its deep buried position. The sand, in its normal tightly packed solid condition also acts to preserve the egress path to the surface by preventing the entry of dislodged earth material in the attack environment. To access the container for maintenance or for use of the contents, the shaft is again fluidized allowing the container to float to the surface.

Funston, N.E.

1976-09-21T23:59:59.000Z

107

Optical injection and coherent control of a ballistic charge current in GaAsAlGaAs quantum wells  

E-Print Network (OSTI)

Optical injection and coherent control of a ballistic charge current in GaAs?AlGaAs quantum wells of Hache´ et al.,2,3 but in this article we report injection into the plane of GaAs/AlGaAs quantum wells specific to quantum wells. Although we expect the underlying physics of injection and control of currents

Sipe,J. E.

108

Optimization of Trona/Limestone Injection for SO2 Control in Coal-Fired Boilers  

SciTech Connect

Mobotec USA develops and markets air pollution control systems for utility boilers and other combustion systems. They have a particular interest in technologies that can reduce NOx, SOx, and mercury emissions from coal-fired boilers, and have been investigating the injection of sorbents such as limestone and trona into a boiler to reduce SOx and Hg emissions. WRI proposed to use the Combustion Test Facility (CTF) to enable Mobotec to conduct a thorough evaluation of limestone and trona injection for SO{sub 2} control. The overall goal of the project was to characterize the SO{sub 2} reductions resulting from the injection of limestone and trona into the CTF when fired with a high-sulfur eastern bituminous coal used in one of Mobotec's Midwest installations. Results revealed that when limestone was injected at Ca:S molar ratios of 1.5 to 3.0, the resulting SO{sub 2} reductions were 35-55%. It is believed that further reductions can be attained with improved mixing of the sorbent with the combustion gases. When limestone was added to the coal, at Ca:S molar ratios of 0.5 to 1.5, the SO{sub 2} reductions were 13-21%. The lower reductions were attributed to dead-burning of the sorbent in the high temperature flame zone. In cases where limestone was both injected into the furnace and added to the coal, the total SO{sub 2} reductions for a given Ca:S molar ratio were similar to the reductions for furnace injection only. The injection of trona into the mid-furnace zone, for Na:S molar ratios of 1.4 to 2.4, resulted in SO{sub 2} reductions of 29-43%. Limestone injection did not produce any slag deposits on an ash deposition probe while trona injection resulted in noticeable slag deposition.

None

2005-09-01T23:59:59.000Z

109

Numerical study of boundary layer injection as a scale control method  

DOE Green Energy (OSTI)

A boundary layer injection method of controlling scale-buildup in geothermal two-phase flow nozzles is studied. The object of this study is to set an upper limit on the ratio of the injected mass flow rate to the free stream mass flow rate that is necessary to isolate the scale carrying free stream flow from the nozzle wall. In order to develop a numerical model of the boundary layer flow, assumptions are made which reduce the results to order of magnitude approximations. Two configurations of nozzles with various injection flow rates are tried. It is found by numerical experiment that a nozzle with injection through a 1 mm thick ring near the inlet, is more efficient at isolating the free stream than a porous nozzle. A mass flow rate ratio of 0.173% was necessary to achieve this effect. It may be concluded that an upper limit on the mass flow rate ratio is about 2.0% with injection through a ring near the inlet, and that boundary layer injection is a reasonable method of controlling scale-buildup. A glossary of variables, program documentation and listings are presented for programs GMD15SR8, TRACK11, and TRACK12.

Feiereisen, W.

1975-09-26T23:59:59.000Z

110

Sensors for Underground Distribution Systems  

Science Conference Proceedings (OSTI)

A variety of different sensors are needed for underground distribution applications. These include sensors for temperature monitoring to track possible overload issues and other issues that can cause heating in underground systems (for example, arcing), sensors for fault detection and characterization, and sensors for voltage and current monitoring to support a wide range of applications (for example, SCADA, volt/var control, and load flow management). In 2008, EPRI evaluated the present state of medium-...

2010-03-31T23:59:59.000Z

111

LLNL Capabilities in Underground Coal Gasification  

DOE Green Energy (OSTI)

Underground coal gasification (UCG) has received renewed interest as a potential technology for producing hydrogen at a competitive price particularly in Europe and China. The Lawrence Livermore National Laboratory (LLNL) played a leading role in this field and continues to do so. It conducted UCG field tests in the nineteen-seventies and -eighties resulting in a number of publications culminating in a UCG model published in 1989. LLNL successfully employed the ''Controlled Retraction Injection Point'' (CRIP) method in some of the Rocky Mountain field tests near Hanna, Wyoming. This method, shown schematically in Fig.1, uses a horizontally-drilled lined injection well where the lining can be penetrated at different locations for injection of the O{sub 2}/steam mixture. The cavity in the coal seam therefore gets longer as the injection point is retracted as well as wider due to reaction of the coal wall with the hot gases. Rubble generated from the collapsing wall is an important mechanism studied by Britten and Thorsness.

Friedmann, S J; Burton, E; Upadhye, R

2006-06-07T23:59:59.000Z

112

MODELING POWDERED SORBENT INJECTION IN COMBINATION WITHE FABRIC FILTER FOR THE CONTROL OF MERCURY EMISSIONS  

NLE Websites -- All DOE Office Websites (Extended Search)

POWDERED SORBENT INJECTION IN POWDERED SORBENT INJECTION IN COMBINATION WITH FABRIC FILTER FOR THE CONTROL OF MERCURY EMISSIONS Joseph R. V. Flora Department of Civil and Environmental Engineering University of South Carolina, Columbia, SC 29208 Richard A. Hargis, William J. O'Dowd, Henry W. Pennline National Energy Technology Laboratory, U.S. Department of Energy P.O. Box, 10940, Pittsburgh, PA 15236 Radisav D. Vidic * Department of Civil and Environmental Engineering University of Pittsburgh, Pittsburgh, PA 15261 ABSTRACT A two-stage mathematical model for mercury removal using powdered activated carbon injection upstream of a baghouse filter was developed, with the first stage accounting for removal in the ductwork and the second stage accounting for additional removal due to the

113

Pilot-scale HCl control by dry alkaline injection for emissions from refuse incinerators. Technical report  

Science Conference Proceedings (OSTI)

One method of removing the HCl in an exhaust-gas stream is to directly inject finely divided sorbent particles into the gas stream upstream from particulate collection equipment, allowing enough time for the HCl to react with the sorbent in the duct. The study proposed to provide data on HCl removal from a simulated incinerator exhaust stream as a function of the in-duct reaction/residence time, the reaction temperature, and the sorbent-to-gas ratio. A 500-acfm pilot-scale HCl control system utilizing dry powdered sorbent was tested at the University of Washington. Powdered alkaline reagents including sodium bicarbonate and calcium hydroxide were injected into boiler flue gas spiked with hydrogen chloride gas. The acid gas reacts with the injected sorbent in a 20-inch diameter by 26-foot high vertical, down-flow vessel. HCl removal efficiency was measured as a function of sorbent stoichiometry, gas residence time in reactor, and reaction temperature.

Moore, D.; Pilat, M.

1988-11-08T23:59:59.000Z

114

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

Science Conference Proceedings (OSTI)

The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

2009-01-07T23:59:59.000Z

115

Midwest Underground Technology | Open Energy Information  

Open Energy Info (EERE)

Underground Technology Underground Technology Jump to: navigation, search Name Midwest Underground Technology Facility Midwest Underground Technology Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Midwest Underground Technology Energy Purchaser Midwest Underground Technology Location Champaign IL Coordinates 40.15020987°, -88.29149723° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15020987,"lon":-88.29149723,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

116

Injection engine as a control object. I. Schematic diagram of the engine and synthesis of a mathematical model  

Science Conference Proceedings (OSTI)

The paper is devoted to the analysis of injection engine as an object of automatic control by a built-in microprocessor system. The schematic diagram of the engine is presented; controlled, measured, and input variables are indicated; a mathematical ...

D. N. Gerasimov; H. Javaherian; D. V. Efimov; V. O. Nikiforov

2010-10-01T23:59:59.000Z

117

Surface acoustic wave controlled carrier injection into self-assembled quantum dots and quantum posts  

E-Print Network (OSTI)

We report on recent progress in the acousto-electrical control of self-assembled quantum dot and quantum post using radio frequency surface acoustic waves (SAWs). We show that the occupancy state of these optically active nanostructures can be controlled via the SAW-induced dissociation of photogenerated excitons and the resulting sequential bipolar carrier injection which strongly favors the formation of neutral excitons for quantum posts in contrast to conventional quantum dots. We demonstrate high fidelity preparation of the neutral biexciton which makes this approach suitable for deterministic entangled photon pair generation. The SAW driven acoustic charge conveyance is found to be highly efficient within the wide quantum well surrounding the quantum posts. Finally we present the direct observation of acoustically triggered carrier injection into remotely positioned, individual quantum posts which is required for a low-jitter SAW-triggered single photon source.

Hubert J. Krenner; Stefan Vlk; Florian J. R. Schlein; Florian Knall; Achim Wixforth; Dirk Reuter; Andreas D. Wieck; Hyochul Kim; Tuan A. Truong; Pierre M. Petroff

2011-10-20T23:59:59.000Z

118

Impacts of Low-NOX Combustion and Activated Carbon Injection on Particulate Control Device Performance  

Science Conference Proceedings (OSTI)

This report summarizes the results of a computational fluid dynamics (CFD) model study of the re-entrainment of carbon from the hoppers of a typical utility electrostatic precipitator (ESP). During earlier phases of this study, hopper re-entrainment was identified as the principle mechanism responsible for the low collection efficiency of carbon by ESPs. This statement was found to be true for both unburned carbon from the boiler and activated carbon injected for mercury control. The results indicate tha...

2008-03-31T23:59:59.000Z

119

Underground Layout Configuration  

SciTech Connect

The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

A. Linden

2003-09-25T23:59:59.000Z

120

Active Control of an Axial Flow Compressor via Pulsed Air Injection  

E-Print Network (OSTI)

This paper presents the use of pulsed air injection to control the onset of rotating stall in a low-speed, axial flow compressor. By measuring the unsteady pressures near the rotor face, a control algorithm determines the magnitude and phase of the first mode of rotating stall and controls the injection of air in the front of the rotor face. Experimental results show that this technique slightly extends the stall point of the compressor and eliminates the hysteresis loop normally associated with rotating stall. A parametric study is used to determine the optimal control parameters for suppression of stall. Analytic results---using a low-dimensional model developed by Moore and Greitzer combined with an unsteady shift in the compressor characteristic to model the injectors---give further insights into the operation of the controller. Based on this model, we show that the behavior of the experiment can be explained as a change in the bifurcation behavior of the system under non...

Raffaello D' Andrea; Robert L. Behnken; Richard M. Murray; Asme J. Turbomachinery

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

GRR/Elements/14-CA-c.12 - Does the DOGGR Approve the Underground...  

Open Energy Info (EERE)

- Does the DOGGR Approve the Underground Injection Project < GRR | Elements Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List...

122

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

SciTech Connect

This project Final Report is submitted to the U.S. Department of Energy (DOE) as part of Cooperative Agreement DE-FC26-03NT41987, 'Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas.' Sorbent injection technology is targeted as the primary mercury control process on plants burning low/medium sulfur bituminous coals equipped with ESP and ESP/FGD systems. About 70% of the ESPs used in the utility industry have SCAs less than 300 ft2/1000 acfm. Prior to this test program, previous sorbent injection tests had focused on large-SCA ESPs. This DOE-NETL program was designed to generate data to evaluate the performance and economic feasibility of sorbent injection for mercury control at power plants that fire bituminous coal and are configured with small-sized electrostatic precipitators and/or an ESP-flue gas desulfurization (FGD) configuration. EPRI and Southern Company were co-funders for the test program. Southern Company and Reliant Energy provided host sites for testing and technical input to the project. URS Group was the prime contractor to NETL. ADA-ES and Apogee Scientific Inc. were sub-contractors to URS and was responsible for all aspects of the sorbent injection systems design, installation and operation at the different host sites. Full-scale sorbent injection for mercury control was evaluated at three sites: Georgia Power's Plant Yates Units 1 and 2 [Georgia Power is a subsidiary of the Southern Company] and Reliant Energy's Shawville Unit 3. Georgia Power's Plant Yates Unit 1 has an existing small-SCA cold-side ESP followed by a Chiyoda CT-121 wet scrubber. Yates Unit 2 is also equipped with a small-SCA ESP and a dual flue gas conditioning system. Unit 2 has no SO2 control system. Shawville Unit 3 is equipped with two small-SCA cold-side ESPs operated in series. All ESP systems tested in this program had SCAs less than 250 ft2/1000 acfm. Short-term parametric tests were conducted on Yates Units 1 and 2 to evaluate the performance of low-cost activated carbon sorbents for removing mercury. In addition, the effects of the dual flue gas conditioning system on mercury removal performance were evaluated as part of short-term parametric tests on Unit 2. Based on the parametric test results, a single sorbent (e.g., RWE Super HOK) was selected for a 30-day continuous injection test on Unit 1 to observe long-term performance of the sorbent as well as its effects on ESP and FGD system operations as well as combustion byproduct properties. A series of parametric tests were also performed on Shawville Unit 3 over a three-week period in which several activated carbon sorbents were injected into the flue gas duct just upstream of either of the two Unit 3 ESP units. Three different sorbents were evaluated in the parametric test program for the combined ESP 1/ESP 2 system in which sorbents were injected upstream of ESP 1: RWE Super HOK, Norit's DARCO Hg, and a 62:38 wt% hydrated lime/DARCO Hg premixed reagent. Five different sorbents were evaluated for the ESP 2 system in which activated carbons were injected upstream of ESP 2: RWE Super HOK and coarse-ground HOK, Norit's DARCO Hg and DARCO Hg-LH, and DARCO Hg with lime injection upstream of ESP 1. The hydrated lime tests were conducted to reduce SO3 levels in an attempt to enhance the mercury removal performance of the activated carbon sorbents. The Plant Yates and Shawville studies provided data required for assessing carbon performance and long-term operational impacts for flue gas mercury control across small-sized ESPs, as well as for estimating the costs of full-scale sorbent injection processes.

Carl Richardson; Katherine Dombrowski; Douglas Orr

2006-12-31T23:59:59.000Z

123

Elastic and elastoplastic finite element simulations of injection into porous reservoirs.  

E-Print Network (OSTI)

??Underground gas injection has attracted remarkable attention for natural gas storage and carbon dioxide (CO2) geologic sequestration applications. Injection of natural gas into depleted hydrocarbon (more)

Chamani, Amin

2013-01-01T23:59:59.000Z

124

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Field TesTing oF AcTivATed cArbon Field TesTing oF AcTivATed cArbon injecTion opTions For Mercury conTrol AT TXu's big brown sTATion Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. Lignite coal is unique because of its highly variable ash content (rich in alkali and alkaline-earth elements), high moisture levels, low chlorine content, and high calcium content. Unique to Texas lignite coals are relatively high iron and selenium concentrations. When combusting Texas lignite coals, up to 80 percent of the mercury in the flue gas is present as elemental mercury, which is not readily captured by downstream pollution control devices. To better understand the factors that influence mercury control at units firing

125

Injections of Natural Gas into Storage (Annual Supply & Disposition)  

U.S. Energy Information Administration (EIA) Indexed Site

Citygate Price Residential Price Commercial Price Industrial Price Electric Power Price Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Gas in Underground Storage Base Gas in Underground Storage Working Gas in Underground Storage Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

126

Reducing cold start hydrocarbon emissions from port fuel injected spark ignition engines with improved management of hardware & controls  

E-Print Network (OSTI)

An experimental study was performed to investigate strategies for reducing cold start hydrocarbon (HC) emissions from port fuel injected (PFI) spark ignition (SI) engines with better use of existing hardware and control ...

Lang, Kevin R., 1980-

2006-01-01T23:59:59.000Z

127

Best practices for underground diesel emissions  

Science Conference Proceedings (OSTI)

The US NIOSH and the Coal Diesel Partnership recommend practices for successfully using ceramic filters to control particulate emitted from diesel-powered equipment used in underground coal mines. 3 tabs.

Patts, L.; Brnich, M. Jr. [NIOSH Pittsburgh Research Laboratory, Pittsburgh, PA (United States)

2007-08-15T23:59:59.000Z

128

Drilling Waste Management Fact Sheet: Slurry Injection of Drilling Wastes  

NLE Websites -- All DOE Office Websites (Extended Search)

Slurry Injection Slurry Injection Fact Sheet - Slurry Injection of Drilling Wastes Underground Injection of Drilling Wastes Several different approaches are used for injecting drilling wastes into underground formations for permanent disposal. Salt caverns are described in a separate fact sheet. This fact sheet focuses on slurry injection technology, which involves grinding or processing solids into small particles, mixing them with water or some other liquid to make a slurry, and injecting the slurry into an underground formation at pressures high enough to fracture the rock. The process referred to here as slurry injection has been given other designations by different authors, including slurry fracture injection (this descriptive term is copyrighted by a company that provides slurry injection services), fracture slurry injection, drilled cuttings injection, cuttings reinjection, and grind and inject.

129

Science @WIPP: Underground Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

WIPP WIPP Underground Laboratory Double Beta Decay Dark Matter Biology Repository Science Renewable Energy Underground Laboratory The deep geologic repository at WIPP provides an ideal environment for experiments in many scientific disciplines, including particle astrophysics, waste repository science, mining technology, low radiation dose physics, fissile materials accountability and transparency, and deep geophysics. The designation of the Carlsbad Department of Energy office as a "field" office has allowed WIPP to offer its mine operations infrastructure and space in the underground to researchers requiring a deep underground setting with dry conditions and very low levels of naturally occurring radioactive materials. Please contact Roger Nelson, chief scientist of the Department of

130

FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL  

DOE Green Energy (OSTI)

This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

2003-08-24T23:59:59.000Z

131

Coal-water slurry spray characteristics of an electronically-controlled accumulator fuel injection system  

Science Conference Proceedings (OSTI)

Experiments have been complete to characterize coal-water slurry sprays from a electronically-controlled accumulator fuel injection system of diesel engine. The sprays were injected into a pressurized chamber equipped with windows. High speed movies, fuel pressures and needle lifts were obtained as a function of time, orifice diameter, coal loading, gas density in the chamber, and accumulator fuel pressure. For the base conditions 50% (by mass) coal loading, 0.4 mm diameter nozzle hole, coal-water slurry pressure of 82 MPa (12,000 psi), and a chamber density of 25 kg/m{sup 3}, the break-up time was 0. 30 ms. An empirical correlation for both spray tip penetration and initial jet velocity was developed. For the conditions of this study, the spray tip penetration and initial jet velocity were 15% greater for coal-water slurry than for diesel fuel or water. Cone angles of the sprays were dependent on the operating conditions and fluid, as well as the time and locations of the measurement. The time-averaged cone angle for the base case conditions was 13.6{degree}. Results of this study and the correlation are specific to the tested coal-water slurry and are not general for other coal-water slurry fuels.

Caton, J.A.; Payne, S.E.; Terracina, D.P.; Kihm, K.D. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1993-12-31T23:59:59.000Z

132

Controllable needle-free injection : development and verification of a novel device  

E-Print Network (OSTI)

Current needle-free injection technology is based on actuation via compressed springs or gas. These devices are not easy to modify for different depths of injections. This thesis describes the design and verification of a ...

Wendell, Dawn M. (Dawn Marie), 1983-

2006-01-01T23:59:59.000Z

133

Late - Cycle Injection of Air/Oxygen - Enriched Air for Diesel Exhaust Emissions Control  

DOE Green Energy (OSTI)

Reduce the ''Engine Out'' particulates using the ''In Cylinder'' technique of late cycle auxiliary gas injection (AGI). Reduce the ''Engine Out'' NOx by combining AGI with optimization of fuel injection parameters. Maintain or Improve the Fuel Efficiency.

Mather, Daniel

2000-08-20T23:59:59.000Z

134

All-optical injection and control of spin and electrical currents in quantum wells Ali Najmaie, R. D. R. Bhat, and J. E. Sipe  

E-Print Network (OSTI)

All-optical injection and control of spin and electrical currents in quantum wells Ali Najmaie, R of the injected carriers. This degeneracy is lifted in a quantum well semiconductor structure due to confinement injection of electrical and spin currents in the plane of a GaAs quantum well and its control through

Sipe,J. E.

135

Determination of Zinc-Based Additives in Lubricating Oils by Flow-Injection Analysis with Flame-AAS Detection Exploiting Injection with a Computer-Controlled Syringe  

E-Print Network (OSTI)

A flow-injection system is proposed for the determination of metal-based additives in lubricating oils. The system, operating under computer control uses a motorised syringe for measuring and injecting the oil sample (200 L) in a kerosene stream, where it is dispersed by means of a packed mixing reactor and carried to an atomic absorption spectrometer which is used as detector. Zinc was used as model analyte. Two different systems were evaluated, one for low concentrations (range 010 ppm) and the second capable of providing higher dilution rates for high concentrations (range 0.02%0.2 % w/w). The sampling frequency was about 30 samples/h. Calibration curves fitted a second-degree regression model (r 2 = 0.996). Commercial samples with high and low zinc levels were analysed by the proposed method and the results were compared with those obtained with the standard ASTM method. The t test for mean values showed no significant differences at the 95 % confidence level. Precision (RSD%) was better than 5 % (2 % typical) for the high concentrations system. The carryover between successive injections was found to be negligible. 1.

Gustavo Pignalosa; Moiss Knochen; Noel Cabrera

2004-01-01T23:59:59.000Z

136

Blasting to stabilize abandoned underground mines in eastern and midwestern coal fields: A feasibility study. Open File Report  

SciTech Connect

The study was designed to assist individuals involved with problem of abandoned mines that are subsiding. The study analyzed the practicality and desirability of using blasting to stabilize subsiding abandoned underground mines. Application of blasting to subsidence problems could provide a valuable alternative technology to classical methods of injecting fill material into abandoned mines to fill voids and prevent subsidence. By blasting, subsidence can be induced in a controlled manner, completed, and the site returned to its desired usage.

1991-05-22T23:59:59.000Z

137

Duct injection for SO{sub 2} control, Design Handbook, Volume 1, Process design and engineering guidelines  

SciTech Connect

PETC developed a comprehensive program of coal-related, acid-rain research and development with a major activity area centering on flue gas cleanup and control of SO{sub 2} emissions. Particular emphasis was placed on the retrofit measures for older coal-fired power plants which predate the 1971 New Source Performance Standards. Candidate emission control technologies fall into three categories, depending upon their point of application along the fuel path (i.e., pre, during, or post combustion). The post-combustion, in-duct injection of a calcium-based chemical reagent seemed promising. Preliminary studies showed that reagent injection between the existing air heater and electrostatic precipitator (ESP) could remove between 50-60% of the SO{sub 2} and produce an environmentally safe, dry, solid waste that is easily disposed. Although SO{sub 2} removal efficiencies were less, the estimated capital costs for duct injection technology were low making the economics of duct injection systems seem favorable when compared to conventional wet slurry scrubbers under certain circumstances. With the promulgation of the Clean Air Act Amendments of 1990 came more incentive for the development of low capital cost flue gas desulfurization (FGD) processes. A number of technical problems had to be resolved, however, before duct injection technology could be brought to a state of commercial readiness. The Duct Injection Technology Development Program was launched as a comprehensive, four-year research effort undertaken by PETC to develop this new technology. Completed in 1992, this Duct Injection Design Handbook and the three-dimensional predictive mathematical model constitute two primary end products from this development program. The aim of this design handbook and the accompanying math model is to provide utility personnel with sufficient information to evaluate duct injection technology against competing SO{sub 2} emissions reduction strategies for an existing plant.

NONE

1995-09-01T23:59:59.000Z

138

Frequency modulation on single sideband using controlled dynamics of an optically injected semiconductor laser  

E-Print Network (OSTI)

locked semicon- ductor lasers with delayed optoelectronicgeneration using semiconductor laser dynamics, IEEE J. Sel.in optically-injected laser diodes, Opt. Commun. , vol.

Chan, Sze-Chun; Liu, Jia-Ming

2006-01-01T23:59:59.000Z

139

Control strategy for hydrocarbon emissions in turbocharged direct injection spark ignition engines during cold-start  

E-Print Network (OSTI)

Gasoline consumption and pollutant emissions from transportation are costly and have serious, demonstrated environmental and health impacts. Downsized, turbocharged direct-injection spark ignition (DISI) gasoline engines ...

Cedrone, Kevin David

2013-01-01T23:59:59.000Z

140

Advanced in-duct sorbent injection for SO{sub 2} control. Final technical report  

Science Conference Proceedings (OSTI)

The objective of this research project was to develop a second generation duct sorbent injection technology as a cost-effective compliance option for the 1990 Clean Air Act Amendments. Research and development work was focused on the Advanced Coolside process, which showed the potential for exceeding the original performance targets of 90% SO{sub 2} removal and 60% sorbent utilization. Process development was conducted in a 1000 acfm pilot plant. The pilot plant testing showed that the Advanced Coolside process can achieve 90% SO{sub 2} removal at sorbent utilizations up to 75%. The testing also showed that the process has the potential to achieve very high removal efficiency (90 to >99%). By conducting conceptual process design and economic evaluations periodically during the project, development work was focused on process design improvements which substantially lowered process capital and operating costs, A final process economic study projects capital costs less than one half of those for limestone forced oxidation wet FGD. Projected total SO{sub 2} control cost is about 25% lower than wet FGD for a 260 MWe plant burning a 2.5% sulfur coal. A waste management study showed the acceptability of landfill disposal; it also identified a potential avenue for by-product utilization which should be further investigated. Based on the pilot plant performance and on the above economic projections, future work to scale up the Advanced Coolside process is recommended.

Stouffer, M.R.; Withium, J.A.; Rosenhoover, W.A.; Maskew, J.T.

1994-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers  

DOE Patents (OSTI)

The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

Reifman, Jaques (Western Springs, IL); Feldman, Earl E. (Willowbrook, IL); Wei, Thomas Y. C. (Downers Grove, IL); Glickert, Roger W. (Pittsburgh, PA)

2003-01-01T23:59:59.000Z

142

Underground Coal Thermal Treatment  

Science Conference Proceedings (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: ? Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). ? Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). ? Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). ? Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

143

Magnetic detection of underground pipe using timed-release marking droplets  

DOE Patents (OSTI)

A system 10 and method of detecting an underground pipe 12 injects magnetic marking droplets 16 into the underground pipe 12 which coat the inside of the pipe 12 and may be detected from aboveground by a magnetometer 28. The droplets 16 include a non-adhesive cover 32 which allows free flow thereof through the pipe 12, with the cover 32 being ablatable for the timed-release of a central core 30 containing magnetic particles 30a which adhere to the inside of the pipe 12 and are detectable from aboveground. The rate of ablation of the droplet covers 32 is selectively variable to control a free flowing incubation zone 12a for the droplets 16 and a subsequent deposition zone 12b in which the magnetic particles 30a are released for coating the pipe 12.

Powell, James R. (Shoreham, NY); Reich, Morris (Kew Garden Hills, NY)

1996-12-17T23:59:59.000Z

144

Characterizing the Effects of Air Injection on Compressor Performance for Use in Active Control of Rotating Stall  

E-Print Network (OSTI)

Previous work has developed an air injection controller for rotating stall based on the idea of a shifting compressor characteristic and the Moore--Greitzer three state compressor model. In order to demonstrate this form of control experimentally, a series of open loop tests were performed to measure the performance characteristics of a low speed axial flow compression system when air is injected upstream of the rotor face. The position of the air injection port relative to the hub and the rotor face and the angle relative to the mean axial flow were varied. The tests show that the injection of air has drastic effects on the stalling mass flow rate and on the size of the hysteresis loop associated with rotating stall. The stalling mass flow rate was decreased by 10% and the hysteresis loop was completely eliminated under some conditions. The results of the open loop parametric study were then used to implement a closed loop control strategy based on a shifting characteristic. 1 Introdu...

Robert Behnken; Mina Leung; Richard M. Murray

1997-01-01T23:59:59.000Z

145

Prototype demonstration of dual sorbent injection for acid gas control on municipal solid waste combustion units  

SciTech Connect

This report gathered and evaluated emissions and operations data associated with furnace injection of dry hydrated lime and duct injection of dry sodium bicarbonate at a commercial, 1500 ton per day, waste-to-energy facility. The information compiled during the project sheds light on these sorbents to affect acid gas emissions from municipal solid waste combustors. The information assesses the capability of these systems to meet the 1990 Clean Air Act and 1991 EPA Emission Guidelines.

None

1994-05-01T23:59:59.000Z

146

Vibrations from underground blasting  

SciTech Connect

The Bureau of Mines has investigated vibration levels produced by blasting at four underground sites to establish how such factors as type of explosive, delay blasting, charge weight, and geology affect amplitudes of ground motion. A summary of the work is presented and the results of further analysis of the data are discussed. Square root scaling was found applicable to two of the underground sites and could be applied with minor error to all the sites. Comparison of empirical propagation equations in the different rock types indicates that although the site effect is apparent, the combined data may be used as a basis for engineering estimates of vibration amplitudes from subsurface blasting in many different rock types. Recommendations for predicting and minimizing vibration amplitudes from underground blasts are given.

Snodgrass, J.J.; Siskind, D.E.

1964-01-01T23:59:59.000Z

147

Controlling combustion characteristics using a slit nozzle in a direct-injection methanol engine  

SciTech Connect

A new type of fuel injection nozzle, called a `slit nozzle,` has been developed to improve poor ignitability and to stabilize combustion under low load conditions in direct-injection methanol diesel engines manufactured for medium-duty trucks. This nozzle has a single oblong vent like a slit. Engine test results indicate that the slit nozzle can improve combustion and thermal efficiency, especially at low loads and no load. This can be explained by the fact that the slit nozzle forms a more highly concentrated methanol spray around the glow-plug than do multi-hole nozzles. As a result, this nozzle improves flame propagation. 3 refs., 12 figs., 4 tabs.

Kusaka, Jin; Daisho, Yasuhiro; Saito, Takeshi; Kihara, Ryoji

1994-10-01T23:59:59.000Z

148

Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy  

E-Print Network (OSTI)

A versatile stroboscopic technique based on active phase-locking of a surface acoustic wave to picosecond laser pulses is used to monitor dynamic acoustoelectric effects. Time-integrated multi-channel detection is applied to probe the modulation of the emission of a quantum well for different frequencies of the surface acoustic wave. For quantum posts we resolve dynamically controlled generation of neutral and charged excitons and preferential injection of holes into localized states within the nanostructure.

Vlk, S; Schlein, F J R; Truong, T A; Kim, H; Petroff, P M; Wixforth, A; Krenner, H J

2010-01-01T23:59:59.000Z

149

Direct observation of dynamic surface acoustic wave controlled carrier injection into single quantum posts using phase-resolved optical spectroscopy  

E-Print Network (OSTI)

A versatile stroboscopic technique based on active phase-locking of a surface acoustic wave to picosecond laser pulses is used to monitor dynamic acoustoelectric effects. Time-integrated multi-channel detection is applied to probe the modulation of the emission of a quantum well for different frequencies of the surface acoustic wave. For quantum posts we resolve dynamically controlled generation of neutral and charged excitons and preferential injection of holes into localized states within the nanostructure.

S. Vlk; F. Knall; F. J. R. Schlein; T. A. Truong; H. Kim; P. M. Petroff; A. Wixforth; H. J. Krenner

2010-11-08T23:59:59.000Z

150

Underground Infrastructure Research and Education  

E-Print Network (OSTI)

productivity, environmental improvement and renewal of the aging underground infrastructure. OrganizationalCenter for Underground Infrastructure Research and Education CUIRE Board Members Sam Arnaout Pipe Association Tim Kennedy, AMERON NOV Chad Kopecki, Dallas Water Utilities David Marshall, Tarrant

Texas at Arlington, University of

151

Synchronized droplet size measurements for coal-water-slurry (CWS) diesel sprays of an electronically-controlled fuel injection system  

DOE Green Energy (OSTI)

Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMDs near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 {mu}m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

Kihm, K.D.; Terracina, D.P.; Payne, S.E.; Caton, J.A. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering

1993-12-31T23:59:59.000Z

152

Net Withdrawals of Natural Gas from Underground Storage (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price Citygate Price Residential Price Commercial Price Industrial Price Vehicle Fuel Price Electric Power Price Proved Reserves as of 12/31 Reserves Adjustments Reserves Revision Increases Reserves Revision Decreases Reserves Sales Reserves Acquisitions Reserves Extensions Reserves New Field Discoveries New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil Wells Gross Withdrawals From Shale Gas Wells Gross Withdrawals From Coalbed Wells Repressuring Nonhydrocarbon Gases Removed Vented and Flared Marketed Production Natural Gas Processed NGPL Production, Gaseous Equivalent Dry Production Imports By Pipeline LNG Imports Exports Exports By Pipeline LNG Exports Underground Storage Capacity Underground Storage Injections Underground Storage Withdrawals Underground Storage Net Withdrawals LNG Storage Additions LNG Storage Withdrawals LNG Storage Net Withdrawals Total Consumption Lease and Plant Fuel Consumption Lease Fuel Plant Fuel Pipeline & Distribution Use Delivered to Consumers Residential Commercial Industrial Vehicle Fuel Electric Power Period: Monthly Annual

153

Underground barrier construction apparatus with soil-retaining shield  

DOE Patents (OSTI)

An apparatus for building a horizontal underground barrier by cutting through soil and depositing a slurry, preferably one which cures into a hardened material. The apparatus includes a digging means for cutting and removing soil to create a void under the surface of the ground, a shield means for maintaining the void, and injection means for inserting barrier-forming material into the void. In one embodiment, the digging means is a continuous cutting chain. Mounted on the continuous cutting chain are cutter teeth for cutting through soil and discharge paddles for removing the loosened soil. This invention includes a barrier placement machine, a method for building an underground horizontal containment barrier using the barrier placement machine, and the underground containment system. Preferably the underground containment barrier goes underneath and around the site to be contained in a bathtub-type containment.

Gardner, Bradley M. (Idaho Falls, ID); Smith, Ann Marie (Pocatello, ID); Hanson, Richard W. (Spokane, WA); Hodges, Richard T. (Deer Park, WA)

1998-01-01T23:59:59.000Z

154

Animals that Hide Underground  

NLE Websites -- All DOE Office Websites (Extended Search)

Animals that Hide Underground Animals that Hide Underground Nature Bulletin No. 733 November 23, 1963 Forest Preserve District of Cook County Seymour Simon, President David H. Thompson, Senior Naturalist ANIMALS THAT HIDE UNDERGROUND A hole in the ground has an air of mystery about it that rouses our curiosity. No matter whether it is so small that only a worm could squeeze into it, or large enough for a fox den, our questions are much the same. What animal dug the hole? Is it down there now? What is it doing? When will it come out? An underground burrow has several advantages for an animal. In it, many kinds find safety from enemies for themselves and their young. For others, it is an air-conditioned escape from the burning sun of summer and a snug retreat away from the winds and cold of winter. The moist atmosphere of a subterranean home allows the prolonged survival of a wide variety of lower animals which, above the surface, would soon perish from drying.

155

Rich Reagent Injection Technology for NOx Control in Cyclone-Fired Boilers  

Science Conference Proceedings (OSTI)

This report summarizes multiple demonstration projects that have led to commercial development of the Rich Reagent Injection (RRI) technology. RRI was developed by Reaction Engineering International (REI) with funding from EPRI and U.S. DOE National Energy Technology Laboratory (DOE-NETL). Prior to RRI, most NOx reduction efforts that focused on modifying combustion to reduce NOx formation in fossil-fuel-fired boilers and furnaces involved air or fuel staging. Even with significant levels of furnace stag...

2006-11-06T23:59:59.000Z

156

Underground Wells (Oklahoma)  

Energy.gov (U.S. Department of Energy (DOE))

Class I, III, IV and V injection wells require a permit issued by the Executive Director of the Department of Environmental Quality; Class V injection wells utilized in the remediation of...

157

Underground waste barrier structure  

DOE Patents (OSTI)

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

158

Underground Distribution Sensors  

Science Conference Proceedings (OSTI)

Rising costs of new infrastructure, increasing demand, and a declining number of available workers will drive utilities to operate as efficiently as possible. The practice of overbuilding infrastructure to improve or maintain reliability will be viewed as cost-inefficient. Utilities will be forced to operate distribution systems more dynamically and efficiently. Distribution sensors will help provide the needed information to utilities to achieve the goal of dynamic efficiency. The Underground Distributi...

2009-03-31T23:59:59.000Z

159

DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection  

Science Conference Proceedings (OSTI)

Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal 'above and beyond' the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166 000/lb Hg removed. 13 refs., 4 figs., 3 tabs.

Andrew P. Jones; Jeffrey W. Hoffmann; Dennis N. Smith; Thomas J. Feeley III; James T. Murphy [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2007-02-15T23:59:59.000Z

160

Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater  

SciTech Connect

A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process.

Daily, William D. (Livermore, CA); Ramirez, Abelardo L. (Pleasanton, CA); Newmark, Robin L. (Pleasanton, CA); Udell, Kent (Berkeley, CA); Buetnner, Harley M. (Livermore, CA); Aines, Roger D. (Livermore, CA)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Dynamic underground stripping: steam and electric heating for in situ decontamination of soils and groundwater  

DOE Patents (OSTI)

A dynamic underground stripping process removes localized underground volatile organic compounds from heterogeneous soils and rock in a relatively short time. This method uses steam injection and electrical resistance heating to heat the contaminated underground area to increase the vapor pressure of the contaminants, thus speeding the process of contaminant removal and making the removal more complete. The injected steam passes through the more permeable sediments, distilling the organic contaminants, which are pumped to the surface. Large electrical currents are also applied to the contaminated area, which heat the impermeable subsurface layers that the steam has not penetrated. The condensed and vaporized contaminants are withdrawn by liquid pumping and vacuum extraction. The steam injection and electrical heating steps are repeated as necessary. Geophysical imaging methods can be used to map the boundary between the hot, dry, contamination-free underground zone and the cool, damp surrounding areas to help monitor the dynamic stripping process. 4 figs.

Daily, W.D.; Ramirez, A.L.; Newmark, R.L.; Udell, K.; Buetnner, H.M.; Aines, R.D.

1995-09-12T23:59:59.000Z

162

Distribution Grounding of Underground Facilities  

Science Conference Proceedings (OSTI)

This report describes Phase I of a two-phase project to assess industry practices and standards for grounding and bonding of medium-voltage underground residential distribution (URD) and underground commercial distribution (UCD) circuits and worker safety in worksites with these systems.The report includes an overview of the issues and concerns associated with underground distribution systems safety and, in particular, worker safety in worksites. It identifies the industry and utility ...

2013-12-20T23:59:59.000Z

163

Underground Storage Tank Program (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

164

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

165

Washington Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Washington Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

166

Missouri Natural Gas Underground Storage Acquifers Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Missouri Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

167

Mississippi Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

168

Pennsylvania Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

169

Minnesota Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Minnesota Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

170

Pennsylvania Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

171

Washington Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

172

Illinois Natural Gas Underground Storage Withdrawals (Million...  

Gasoline and Diesel Fuel Update (EIA)

Gas Underground Storage Withdrawals (Million Cubic Feet) Illinois Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

173

Alkali injection system with controlled CO.sub.2 /O.sub.2 ratios for combustion of coal  

DOE Patents (OSTI)

A high temperature combustion process for an organic fuel containing sulfur n which the nitrogen of air is replaced by carbon dioxide for combination with oxygen with the ratio of CO.sub.2 /O.sub.2 being controlled to generate combustion temperatures above 2000 K. for a gas-gas reaction with SO.sub.2 and an alkali metal compound to produce a sulfate and in which a portion of the carbon-dioxide rich gas is recycled for mixing with oxygen and/or for injection as a cooling gas upstream from heating exchangers to limit fouling of the exchangers, with the remaining carbon-dioxide rich gas being available as a source of CO.sub.2 for oil recovery and other purposes.

Berry, Gregory F. (Naperville, IL)

1988-01-01T23:59:59.000Z

174

Alkali injection system with controlled CO/sub 2//O/sub 2/ ratios for combustion of coal  

DOE Patents (OSTI)

A high temperature combustion process for an organic fuel containing sulfur in which the nitrogen of air is replaced by carbon dioxide for combination with oxygen with the ratio of CO/sub 2//O/sub 2/ being controlled to generate combustion temperatures above 2000/sup 0/K for a gas-gas reaction with SO/sub 2/ and an alkali metal compound to produce a sulfate and in which a portion of the carbon-dioxide rich gas is recycled for mixing with oxygen and/or for injection as a cooling gas upstream from heating exchangers to limit fouling of the exchangers, with the remaining carbon-dioxide rich gas being available as a source of CO/sub 2/ for oil recovery and other purposes. Several advantages are associated with the invention. First, by using a low CO/sub 2//O/sub 2/ ratio, higher flame temperatures can be achieved, thereby substantially promoting the gas-gas reaction between alkali atoms and sulfur gases. Second, by providing a means for injecting additional CO/sub 2/ at various locations removed from the combustion zone, the heat transfer rate and cooling of the alkali sulfates can be tightly controlled without suffering either the loss in efficiency inherent in conventional gas recycle techniques or the added cost associated with the larger mass throughput rate and heat transfer surface area. Third, there is the ability to use the concept in retrofit applications by tailoring the CO/sub 2/ quantity recycled to match the heat utilization performance previously achieved using air as the oxidizing medium. Fourth, a natural reduction in nitrous oxides is achieved by eliminating the reaction of oxygen with the nitrogen in the oxidizer.

Berry, G.F.

1986-11-21T23:59:59.000Z

175

The Effects of Ketorolac Injected via Patient Controlled Analgesia Postoperatively on Spinal Fusion  

E-Print Network (OSTI)

Lumbar spinal fusions have been performed for spinal stability, pain relief and improved function in spinal stenosis, scoliosis, spinal fractures, infectious conditions and other lumbar spinal problems. The success of lumbar spinal fusion depends on multifactors, such as types of bone graft materials, levels and numbers of fusion, spinal instrumentation, electrical stimulation, smoking and some drugs such as nonsteroidal anti-inflammatory drugs (NSAIDs). From January 2000 to December 2001, 88 consecutive patients, who were diagnosed with spinal stenosis or spondylolisthesis, were retrospectively enrolled in this study. One surgeon performed all 88 posterolateral spinal fusions with instrumentation and autoiliac bone graft. The patients were divided into two groups. The first group (n=30) was infused with ketorolac and fentanyl intravenously via patient controlled analgesia (PCA) postoperatively

Si-young Park; Seong-hwan Moon; Moon-soo Park; Kyung-soo Oh; Hwan-mo Lee

2004-01-01T23:59:59.000Z

176

CT-Guided Thrombin Injection to Control Rapid Expansion of Ascending Aortic False Aneurysm 15 Months After Bentall-Bono Operation  

Science Conference Proceedings (OSTI)

We report a case of 57-year-old man treated emergently with CT-guided local thrombin injection as the first, life-saving step for control rapid expansion of the aortic pseudoaneurysm. Fifteen months earlier, he was operated on for ascending aortic true aneurysm and coronary artery disease. Upon admission, he had an anterior thoracic wall pulsatile tumor. Due to critical status, definite surgery was postponed and thrombin was injected close to the origin of pseudoaneurysm. It controlled successfully, bleeding from the ascending aorta and enabled the patient to survive the acute phase.

Perek, Bartlomiej, E-mail: bperek@yahoo.com; Urbanowicz, Tomasz [Poznan University of Medical Sciences, Department of Cardiac Surgery (Poland); Zabicki, Bartosz [Poznan University of Medical Sciences, Department of Radiology (Poland); Puslecki, Mateusz [Poznan University of Medical Sciences, Department of Cardiac Surgery (Poland); Juszkat, Robert, E-mail: radiologiamim@wp.pl [Poznan University of Medical Sciences, Department of Radiology (Poland); Jemielity, Marek [Poznan University of Medical Sciences, Department of Cardiac Surgery (Poland)

2011-02-15T23:59:59.000Z

177

Increased Power Flow Guidebook - Underground Cables  

Science Conference Proceedings (OSTI)

Utilities must consider a number of factors when evaluating uprating and upgrading options for underground transmission cables. This comprehensive guidebook documents the state-of-science for increasing power flow capacities of underground transmission cables. It provides an overview of underground transmission cable ratings and uprating techniques so that the maximum utilization can be obtained from the existing underground transmission infrastructure.

2003-12-01T23:59:59.000Z

178

Water intrusion in underground structures  

E-Print Network (OSTI)

This thesis presents a study of the permissible groundwater infiltration rates in underground structures, the consequences of this leakage and the effectiveness of mitigation measures. Design guides and codes do not restrict, ...

Nazarchuk, Alex

2008-01-01T23:59:59.000Z

179

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

180

Chemical tailoring of steam to remediate underground mixed waste contaminents  

DOE Patents (OSTI)

A method to simultaneously remediate mixed-waste underground contamination, such as organic liquids, metals, and radionuclides involves chemical tailoring of steam for underground injection. Gases or chemicals are injected into a high pressure steam flow being injected via one or more injection wells to contaminated soil located beyond a depth where excavation is possible. The injection of the steam with gases or chemicals mobilizes contaminants, such as metals and organics, as the steam pushes the waste through the ground toward an extraction well having subatmospheric pressure (vacuum). The steam and mobilized contaminants are drawn in a substantially horizontal direction to the extraction well and withdrawn to a treatment point above ground. The heat and boiling action of the front of the steam flow enhance the mobilizing effects of the chemical or gas additives. The method may also be utilized for immobilization of metals by using an additive in the steam which causes precipitation of the metals into clusters large enough to limit their future migration, while removing any organic contaminants.

Aines, Roger D. (Livermore, CA); Udell, Kent S. (Berkeley, CA); Bruton, Carol J. (Livermore, CA); Carrigan, Charles R. (Tracy, CA)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Indiana Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 997 821 771 1,207 1,916 1,673 2,268 3,772 4,202 2,896 1,993 539 1991 91 245 158 710 1,849 1,107 2,920 3,845 4,606 4,490 3,131 501 1992 98 349 429 1,076 1,611 2,638 5,174 4,168 5,309 3,579 926 413 1993 681 526 882 1,587 2,170 2,733 4,564 4,464 4,276 2,659 911 475 1994 328 565 519 609 934 2,541 5,229 4,565 4,175 3,340 1,546 305 1995 439 80 786 1,211 1,057 1,831 2,892 3,751 4,791 4,578 2,437 483 1996 262 870 948 968 1,028 2,560 4,317 6,153 3,943 3,112 2,407 696 1997 609 435 815 546 893 2,117 3,322 3,775 4,610 3,523 2,584 175 1998 648 87 86 508 1,235 1,495 2,999 4,082 4,578 3,026 2,710 581

182

Louisiana Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 17,712 15,346 15,364 11,228 15,333 18,647 19,527 17,703 19,665 19,333 15,705 14,621 1991 2,280 4,842 12,957 13,291 22,317 22,447 17,260 17,261 23,603 27,512 9,950 4,281 1992 7,699 4,109 13,109 16,478 29,243 21,440 20,695 21,713 23,276 24,685 7,374 3,230 1993 4,314 1,638 8,805 14,315 34,776 33,317 27,192 28,570 32,062 21,236 21,232 2,111 1994 3,737 9,288 9,922 26,592 34,270 23,811 30,757 28,317 24,211 15,673 13,387 4,560 1995 3,922 3,407 18,010 20,556 23,957 33,196 27,885 16,834 27,100 25,285 5,363 4,060 1996 7,445 9,971 7,106 16,287 22,178 26,529 35,343 38,303 39,009 27,599 10,386 8,996 1997 10,921 11,877 35,874 23,219 30,520 31,455 30,290 31,277 36,960 34,440 13,787 11,704

183

Wyoming Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 22 16 140 1,047 1,248 1,648 2,162 1,899 2,415 1,135 222 191 1991 56 467 479 368 908 1,922 2,233 1,628 1,090 1,135 423 164 1992 0 73 211 356 439 605 1,402 465 861 525 208 194 1993 8 15 557 1,247 1,443 2,426 2,423 1,875 1,433 1,533 482 163 1994 145 16 930 1,339 1,692 771 1,125 1,524 1,444 1,060 412 138 1995 17 76 89 67 863 1,452 1,588 1,896 1,849 1,265 236 52 1996 13 0 66 974 2,862 1,764 2,169 836 641 540 243 312 1997 157 0 47 372 1,205 2,308 3,418 2,734 2,461 986 222 170 1998 23 0 8 265 1,430 3,462 2,814 2,015 2,621 1,499 926 150 1999 0 0 573 1,322 2,151 1,668 2,300 1,377 1,064 519 360 124

184

Virginia Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1997 0 0 0 0 0 0 0 0 0 0 0 0 1998 303 22 31 220 304 296 185 322 301 225 78 84 1999 326 59 50 220 278 267 249 236 414 109 45 125 2000 127 269 47 282 291 224 222 222 350 299 62 60 2001 83 244 244 434 532 402 274 322 362 275 242 25 2002 95 92 0 186 683 339 344 283 434 327 44 183 2003 51 220 70 276 458 504 482 823 671 147 102 203 2004 325 454 190 347 1,013 415 611 1,104 894 1,138 303 279 2005 599 566 319 458 699 560 923 747 783 834 2,614 595 2006 587 274 376 275 377 615 1,035 837 1,422 308 374 517 2007 202 314 1,140 800 1,090 647 863 556 1,213 1,125 115 729 2008 532 962 491 1,000 950 1,040 980 1,167 950 833 471 1,092

185

Injections of Natural Gas into Underground Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 272,001 466,852 440,062 373,435 371,989 420,828 1973-2013 Alaska 1,895 1,065 1,131 977 1,518 1,981 2013-2013 Lower 48 States 270,106 465,787 438,931 372,458 370,471 418,848 2011-2013 Alabama 2,934 2,058 1,226 2,464 1,142 1,743 1994-2013 Arkansas 213 515 402 406 433 204 1990-2013 California 21,631 36,229 28,781 15,933 13,891 20,028 1990-2013 Colorado 2,863 5,575 7,902 8,359 10,862 9,051 1990-2013 Illinois 15,713 28,662 35,608 33,014 36,051 39,558 1990-2013 Indiana 461 2,204 2,677 2,868 3,774 5,015 1990-2013

186

Oklahoma Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 4,366 3,193 6,903 5,872 11,548 13,440 11,689 10,380 8,709 8,453 8,353 2,367 1991 26 3,253 7,982 15,800 16,462 10,864 4,815 6,272 10,749 9,706 3,437 4,853 1992 1,358 3,452 5,980 8,163 10,270 11,596 17,116 11,326 13,627 11,199 2,570 812 1993 1,709 2,183 3,139 17,592 30,401 25,865 16,422 17,249 15,631 12,044 1,415 7,600 1994 692 1,521 7,130 20,751 26,772 15,711 17,419 13,891 9,370 6,950 2,330 1,038 1995 1,144 1,218 4,867 9,018 18,190 15,120 9,480 6,202 10,541 14,552 2,750 1,727 1996 871 3,814 4,043 9,051 19,783 12,404 11,191 17,682 19,846 13,803 1,849 2,730 1997 3,164 3,776 11,894 14,013 19,122 13,736 7,711 12,725 17,542 22,393 4,205 2,208

187

West Virginia Natural Gas Injections into Underground Storage (Million  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,636 3,056 7,714 11,094 19,622 17,419 16,104 16,323 13,930 7,415 6,785 4,120 1991 843 2,207 5,193 12,543 15,471 16,359 15,601 10,248 9,551 8,573 5,375 2,288 1992 1,013 1,191 1,116 9,299 25,331 21,514 19,498 21,430 15,698 16,466 5,155 936 1993 467 42 1,620 11,145 39,477 28,118 20,621 18,991 20,910 11,087 7,110 863 1994 331 2,543 4,529 21,836 25,960 28,392 28,083 23,234 21,272 9,826 3,695 1,516 1995 1,637 1,663 6,487 10,136 25,124 25,049 23,910 12,599 18,493 16,438 2,473 1,948 1996 3,579 5,076 2,329 20,784 34,294 29,814 32,943 20,814 28,469 17,457 2,164 2,890 1997 1,987 2,401 2,869 6,756 25,269 32,158 27,135 24,684 20,412 14,862 4,930 836

188

Washington Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 929 289 499 863 0 2,707 2,937 2,937 1,101 622 906 507 1991 833 586 299 3,139 1,705 2,716 2,138 291 308 0 1,447 753 1992 436 149 945 1,205 1,824 1,543 1,336 1,618 1,578 979 785 895 1993 750 383 2,192 1,363 4,359 1,112 2,036 1,280 2,258 340 326 3,176 1994 1,579 318 1,268 3,455 2,882 2,005 1,945 965 1,330 503 1,263 1,192 1995 541 827 1,671 1,661 2,601 2,020 1,565 829 2,494 464 1,696 1,447 1996 808 2,027 1,081 1,609 2,176 3,349 1,470 2,279 1,441 655 1,978 1,252 1997 2,356 844 100 1,041 6,091 3,816 1,351 399 2,304 257 1,145 313 1998 2,718 32 296 937 4,485 3,086 967 3,957 1,836 722 1,817 2,284

189

Oregon Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 0 0 0 1,181 1,508 1,244 764 636 372 188 0 0 1991 0 0 0 0 713 1,554 1,458 1,092 674 339 23 0 1992 0 0 0 0 1,572 1,540 1,194 1,010 453 195 0 149 1993 0 0 0 0 1,636 1,291 1,175 1,036 575 487 0 0 1994 0 0 0 0 1,216 1,506 1,202 1,081 688 264 0 0 1995 0 182 0 867 1,179 1,034 695 0 490 0 0 0 1996 - - - - 841 1,365 1,318 509 121 262 - - 1997 0 24 0 0 1,300 1,681 1,301 1,178 411 97 267 0 1998 0 0 0 0 0 1,968 1,188 1,143 1,141 28 0 205 1999 0 0 0 0 13 2,018 2,119 1,316 1,546 0 593 0 2000 0 0 0 0 894 2,101 2,270 2,074 720 720 103 11 2001 0 0 0 0 2,151 2,561 2,295 1,860 845 0 775 0

190

Utah Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 217 15 3 133 1,503 1,503 7,253 6,393 5,871 3,255 768 282 1991 85 0 2,099 2,224 2,645 5,554 6,015 3,813 3,940 2,080 1,316...

191

Utah Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 609 640 580 1970's 547 883 906 2,320 999 1,340 1,069 1,446 1,180 1,193 1980's 2,381 11,107...

192

Injections of Natural Gas into Underground Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Alaska 1973-1975 Lower 48 States 3,421,813 2,825,427 2011-2012 Alabama 20,009 31,208 21,020 23,026 22,766 21,195 1968-2012 Arkansas 5,695 5,023 4,108 4,672 4,628 2,848 1967-2012 California 214,469 237,364 199,763 226,810 263,067 218,663 1967-2012 Colorado 38,619 39,034 45,861 43,250 51,469 59,096 1967-2012 Connecticut 1973-1996 Delaware 1967-1975 Georgia 1974-1975 Idaho 1974-1975 Illinois 243,789 260,333 259,421 247,458 258,690 249,953 1967-2012 Indiana 22,686 22,874 24,399 21,943 23,864 19,878 1967-2012 Iowa 70,329 70,022 79,012 76,407 77,783 66,774 1967-2012 Kansas 113,399 115,669 102,406 113,253 119,823 93,460 1967-2012 Kentucky 70,682 77,503 71,972 85,167 77,526 64,483 1967-2012

193

Injections of Natural Gas into Underground Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Alaska 1973-1975 Lower 48 States 3,421,813 2,825,427 2011-2012 Alabama 20,009 31,208 21,020 23,026 22,766 21,195 1968-2012 Arkansas 5,695 5,023 4,108 4,672 4,628 2,848 1967-2012 California 214,469 237,364 199,763 226,810 263,067 218,663 1967-2012 Colorado 38,619 39,034 45,861 43,250 51,469 59,096 1967-2012 Connecticut 1973-1996 Delaware 1967-1975 Georgia 1974-1975 Idaho 1974-1975 Illinois 243,789 260,333 259,421 247,458 258,690 249,953 1967-2012 Indiana 22,686 22,874 24,399 21,943 23,864 19,878 1967-2012 Iowa 70,329 70,022 79,012 76,407 77,783 66,774 1967-2012 Kansas 113,399 115,669 102,406 113,253 119,823 93,460 1967-2012 Kentucky 70,682 77,503 71,972 85,167 77,526 64,483 1967-2012

194

Alabama Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 8 12 26 71 106 95 103 93 85 55 25 14 1995 0 122 0 0 44 42 41 252 592 156 24 101 1996 231 185 141 192 390 670 318 395 440 166 63 160 1997 297 101 63 168 271 161 108 286 262 251 27 27 1998 26 0 81 245 188 623 25 203 139 613 76 0 1999 0 0 14 645 547 213 333 202 459 0 166 67 2000 48 534 44 51 232 606 166 0 0 42 12 286 2001 411 304 85 323 207 618 250 293 370 414 529 109 2002 711 278 182 349 240 54 357 139 106 318 515 536 2003 242 818 564 938 1,089 821 970 633 1,283 1,128 606 1,098 2004 201 619 736 845 1,429 1,595 571 894 1,718 3,022 636 468 2005 976 1,778 917 855 1,230 797 1,687 804 2,301 2,019 1,364 845

195

Injections of Natural Gas into Underground Storage - All Operators  

Gasoline and Diesel Fuel Update (EIA)

Monthly Annual Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area May-13 Jun-13 Jul-13 Aug-13 Sep-13 Oct-13 View History U.S. 466,852 440,062 373,435 371,989 420,828 339,960 1973-2013 Alaska 1,065 1,131 977 1,518 1,981 1,627 2013-2013 Lower 48 States 465,787 438,931 372,458 370,471 418,848 338,332 2011-2013 Alabama 2,058 1,226 2,464 1,142 1,743 896 1994-2013 Arkansas 515 402 406 433 204 110 1990-2013 California 36,229 28,781 15,933 13,891 20,028 14,296 1990-2013 Colorado 5,575 7,902 8,359 10,862 9,051 8,258 1990-2013 Illinois 28,662 35,608 33,014 36,051 39,558 35,792 1990-2013 Indiana 2,204 2,677 2,868 3,774 5,015 3,670 1990-2013

196

Colorado Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 538 235 252 265 1,274 4,266 6,279 5,212 5,012 1,957 1,734 650 1991 992 654 483 61 2,494 3,876 4,219 4,449 5,296 3,296 2,611 2,153 1992 0 301 61 53 158 2,168 4,187 6,308 5,942 2,708 395 779 1993 1,476 514 1,328 277 3,434 5,426 4,400 5,097 4,898 19,867 1,773 2,642 1994 349 561 1,525 594 6,187 1,887 5,096 5,311 5,305 1,318 1,652 1,401 1995 1,508 1,548 1,831 1,379 3,769 6,416 6,446 4,716 4,341 2,877 3,680 1,206 1996 1,050 3,496 1,026 1,484 3,363 5,288 5,602 4,106 4,955 2,693 2,316 2,429 1997 1,773 489 1,563 1,182 6,370 5,785 6,044 5,081 5,610 3,253 1,570 669 1998 884 80 2,100 615 6,732 4,651 4,354 6,274 6,162 3,100 3,713 1,125

197

Kentucky Natural Gas Injections into Underground Storage (Million Cubic  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 3,591 7,852 5,644 4,269 4,991 5,462 7,829 7,379 7,268 5,324 3,591 2,996 1991 1,910 2,777 4,468 4,883 2,671 3,345 5,395 4,818 4,660 4,074 4,315 4,110 1992 5,509 3,635 2,314 2,151 1,697 2,787 4,724 4,202 5,539 10,882 3,272 2,656 1993 1,967 990 928 2,687 7,049 7,985 7,838 5,873 7,014 3,907 1,397 482 1994 431 928 1,526 6,100 10,571 9,346 9,742 7,138 4,696 4,684 3,438 1,230 1995 1,189 478 2,868 4,780 13,288 7,749 8,687 5,375 6,889 4,882 1,009 1,369 1996 625 2,061 2,137 2,635 6,489 14,262 13,389 10,275 8,975 4,913 1,788 1,948 1997 1,674 1,585 1,826 3,461 8,209 9,043 7,464 6,799 8,296 5,231 2,932 553

198

Ohio Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,095 2,783 8,487 12,731 23,624 20,221 19,895 19,615 18,355 13,780 9,089 3,777 1991 474 569 2,278 13,918 24,470 20,782 18,348 18,211 16,615 12,371 5,205 819 1992 46 383 775 11,319 27,233 30,305 29,147 24,617 16,672 14,358 4,364 790 1993 152 278 1,376 10,017 30,894 32,804 30,187 28,001 26,720 12,055 3,036 109 1994 1,075 1,772 2,164 19,428 30,107 32,303 33,898 27,173 22,437 13,196 7,269 837 1995 617 1,176 1,782 7,066 28,599 32,073 31,206 24,033 18,978 13,053 2,159 608 1996 826 2,927 1,712 16,095 30,586 37,488 36,425 29,901 24,140 15,350 2,100 1,091 1997 1,494 1,211 2,351 11,510 34,696 38,150 34,738 32,628 24,009 15,174 3,656 709

199

Utah Natural Gas Injections into Underground Storage (Million Cubic Feet)  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 217 15 3 133 1,503 1,503 7,253 6,393 5,871 3,255 768 282 1991 85 0 2,099 2,224 2,645 5,554 6,015 3,813 3,940 2,080 1,316 2,475 1992 389 1,210 2,719 3,032 3,970 3,612 3,759 4,834 3,898 3,111 506 182 1993 0 6 93 168 6,607 6,471 5,034 5,017 4,968 5,083 501 541 1994 45 195 3,861 2,050 6,133 4,069 5,508 6,269 8,509 4,218 1,026 624 1995 71 1,029 918 1,645 4,350 6,226 7,254 3,681 2,323 1,721 2,729 256 1996 7 276 904 1,589 5,596 6,757 6,824 4,746 3,130 1,729 596 214 1997 319 928 4,246 3,658 4,481 8,422 8,176 5,300 3,235 2,823 1,129 86 1998 0 0 999 1,310 3,551 4,004 3,501 3,561 3,993 1,954 799 73

200

California Natural Gas Injections into Underground Storage (Million...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,676 4,631 11,774 22,230 26,798 17,079 11,773 10,071 10,383 17,080 11,528 1,051 1991 1,964 7,531 6,205 21,709 28,179...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

California Natural Gas Injections into Underground Storage (Million...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 71,148 58,085 77,617 1970's 80,260 89,373 118,758 92,331 129,945 105,167 107,749 109,760 108,432...

202

Ohio Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 142,717 169,955 168,142 1970's 182,405 188,916 163,884 179,078 152,580 183,032 146,228 188,721...

203

Ohio Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 2,095 2,783 8,487 12,731 23,624 20,221 19,895 19,615 18,355 13,780 9,089 3,777 1991 474 569 2,278 13,918 24,470 20,782...

204

Michigan Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 222,800 255,365 257,737 1970's 344,524 296,475 275,460 299,766 287,776 322,960 342,010 372,262...

205

Michigan Natural Gas Injections into Underground Storage (Million...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 9,245 1,582 10,686 31,603 52,870 66,300 76,718 72,178 53,824 26,587 11,504 2,212 1991 1,032 3,107 15,520 34,937 50,769...

206

Colorado Natural Gas Injections into Underground Storage (Million...  

Annual Energy Outlook 2012 (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 6,391 6,849 8,663 1970's 8,757 5,839 8,502 10,673 11,444 13,420 16,987 21,717 20,630 25,334...

207

Colorado Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 538 235 252 265 1,274 4,266 6,279 5,212 5,012 1,957 1,734 650 1991 992 654 483 61 2,494 3,876 4,219 4,449 5,296 3,296...

208

Illinois Natural Gas Injections into Underground Storage (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 119,125 143,180 153,497 1970's 190,661 214,871 237,098 233,112 232,284 294,689 235,310 293,311...

209

New Mexico Natural Gas Injections into Underground Storage (Million...  

Gasoline and Diesel Fuel Update (EIA)

Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 383 74 383 1970's 398 5,067 12,589 4,160 1,005 2,378 472 39 1980's 2,871 2,801 19,894 2,500...

210

New Mexico Natural Gas Injections into Underground Storage (Million...  

Annual Energy Outlook 2012 (EIA)

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 502 1,137 1,088 2,198 1,190 1,665 3,674 3,203 2,048 3,187 1,857 602 1991 341 245 267 3,130 3,097 3,033 1,930 790 3,099...

211

North Carolina Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

212

South Carolina Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

213

New Jersey Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

214

North Carolina Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators North Carolina Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

215

Rhode Island Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

216

South Carolina Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas from Underground Storage - All Operators South Carolina Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

217

New Jersey Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators New Jersey Underground Natural Gas Storage - All Operators Net Withdrawals of Natural Gas from Underground Storage...

218

Rhode Island Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

of Natural Gas from Underground Storage - All Operators Rhode Island Underground Natural Gas Storage - All Operators Natural Gas Withdrawals from Underground Storage (Annual Supply...

219

Underground Storage Technology Consortium  

NLE Websites -- All DOE Office Websites (Extended Search)

U U U N N D D E E R R G G R R O O U U N N D D G G A A S S S S T T O O R R A A G G E E T T E E C C H H N N O O L L O O G G Y Y C C O O N N S S O O R R T T I I U U M M R R & & D D P P R R I I O O R R I I T T Y Y R R E E S S E E A A R R C C H H N N E E E E D D S S WORKSHOP PROCEEDINGS February 3, 2004 Atlanta, Georgia U U n n d d e e r r g g r r o o u u n n d d G G a a s s S S t t o o r r a a g g e e T T e e c c h h n n o o l l o o g g y y C C o o n n s s o o r r t t i i u u m m R R & & D D P P r r i i o o r r i i t t y y R R e e s s e e a a r r c c h h N N e e e e d d s s OVERVIEW As a follow up to the development of the new U.S. Department of Energy-sponsored Underground Gas Storage Technology Consortium through Penn State University (PSU), DOE's National Energy Technology Center (NETL) and PSU held a workshop on February 3, 2004 in Atlanta, GA to identify priority research needs to assist the consortium in developing Requests for Proposal (RFPs). Thirty-seven

220

Laboratory Characterization of Advanced SO2 Control By-Products: Dry Sodium and Calcium In-Duct Injection Wastes  

Science Conference Proceedings (OSTI)

Extensive laboratory investigation indicates that the physical and chemical characterization and engineering properties of dry sodium and calcium in-duct injection wastes differ, as do the refuse and by-product management options associated with them. Utilities can use this report on the chemical, physical, engineering, and leachate properties of dry sodium and calcium in-duct injection wastes to better plan for and manage future waste disposal and/or use.

1990-01-08T23:59:59.000Z

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Method of locating underground mines fires  

DOE Patents (OSTI)

An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

1992-01-01T23:59:59.000Z

222

2009 underground/longwall mining buyer's guide  

Science Conference Proceedings (OSTI)

The guide lists US companies supplying equipment and services to underground mining operations. An index by product category is included.

NONE

2009-06-15T23:59:59.000Z

223

The Basics of Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

... interstate pipeline companies rely heavily on underground storage to facilitate load balancing and system ... costs. "Open Access ... independent operators ...

224

High Temperature Superconducting Underground Cable  

SciTech Connect

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the worlds first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

225

Underground Transmission Systems Reference Book  

Science Conference Proceedings (OSTI)

The Underground Transmission Systems Reference Book covers all stages of cable system design and operation, from initial planning studies to failure analysis. It contains contributions from many of the industry's experts and represents practices from all parts of the United States.

1993-03-01T23:59:59.000Z

226

Synchronized droplet size measurements of intermittent coal-water slurry diesel sprays from an electronically-controlled accumulator fuel injection system  

E-Print Network (OSTI)

Experiments have been completed to characterize atomization of intermittent coal-water slurry sprays from an electronically controlled accumulator fuel injection system of a diesel fuel engine. A synchronized laser diffraction particle analyzer technique was used to measure the spray tip Sauter mean diameters (SMD). The Rosin-Rammler two parameter model was assumed for the droplet distribution. The measurements were made at the spray tip where laser obscuration was low and the chance of multiscattering bias was minimal. Coal-water slurry fuel with 50% coal loading by mass containing 5gm volume mean diameter coal particles was used. Injection pressures were ranged from 28 to II 0 MPa. Three different nozzle orifice diameters, 0.2, 0.4, and 0.6 mm, four axial measurement locations from 60 to 120 mm downstream of the nozzle tip were studied. Measurements were made for both pressurized (2.07 MPa, 300 psig) and unpressurized (ambient, 0 gage) chamber conditions. The spray tip SMD showed an increase with chamber gas density, and with axial measurement location, and showed a decrease with increasing injection pressure. The effect of nozzle orifice diameter on spray tip SMDs of completely developed sprays for such high pressure injections was found to be negligible. A regression equation for CWS-50 spray tip SMDs was determined as SMD = 0.279-P(inj).?702 r(amb) 2?85 x .521 where Pinj is the injection pressure in Mpa, r(amb) is the ambient density in kg/m3, and x is the axial measurement location downstream of the nozzle tip in mm. The equation shows very good agreement with the measured SMD data by having a Pearson correlation coefficient of 0.97. The results were also compared with previous SMD regression equations that were originally obtained for diesel fuel sprays.

Terracina, Dwayne Paul

1993-01-01T23:59:59.000Z

227

Control of coal combustion SO[sub 2]and NO[sub x] emissions by in- boiler injection of CMA  

SciTech Connect

The principal objectives of the proposed research are two-fold: (A) To understand the mechanism and assess the effectiveness of sulfur capture by the chemical calcium magnesium acetate (CMA); and (B) To evaluate the NO[sub x], reduction capabilities of CMA by burning the organic constituents of the chemical (the acetate) and reducing NO to stable N[sub 2]. The optimum conditions and the location of CMA introduction in the furnace will be identified. To achieve these goals water solutions of CMA or dry powders of CMA will be injected into hot air or gases simulating the furnace exhaust (containing CO[sub 2], SO[sub x],NO[sub x], H[sub 2]O, O[sub 2] etc.) and the composition of gaseous and solid products of the reaction will be monitored. The processes of burning the organic acetate as well as the calcination, sintering and sulfation of the remaining solid will be studied in detail. The possibility of introducing two different sorbents sequentially will also be examined. For instance, such a scheme may employ injection of the rather inexpensive calcium carbonate initially, followed by the more costly CMA. The effectiveness of a homemade'' CMA using woody biomass as a low-cost source of acetate will be explored if such a product becomes available during the course of this work. Finally, CMA will be introduced in the matrix of the coal by an ion exchange or a precipitation technique. Upon subsequent combustion, the composition and physical structure of the remaining ash will be examined, as well as the gas phase SO[sub x], concentration. Both techniques (CMA pretreatment and CMA injection) may also be implemented simultaneously to assess their combined effect on sulfur capture.

Levendis, Y.A.; Wise, D.L.

1993-04-01T23:59:59.000Z

228

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6/30/1935" U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6/30/1935" ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","ng_stor_sum_dcu_nus_a.xls" ,"Available from Web Page:","http://www.eia.gov/dnav/ng/ng_stor_sum_dcu_nus_a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"12/12/2013 7:04:06 PM" "Back to Contents","Data 1: U.S. Underground Natural Gas Storage - All Operators" "Sourcekey","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Net Withdrawals (MMcf)","U.S. Total Natural Gas Injections into Underground Storage (MMcf)","U.S. Natural Gas Underground Storage Withdrawals (MMcf)"

229

Underground Transmission Vault Inspection Using Robotic Techniques  

Science Conference Proceedings (OSTI)

Underground power lines require inspection and maintenance to ensure long-term performance and reliable operation. In addition to terminations at both ends of the underground lines, access to the lines for inspection and maintenance is obtained through underground vaults or manholes. General practices require utility personnel to enter the vaults for visual inspection and to make the necessary measurements using portable instruments.The Electric Power Research Institute has developed the ...

2013-11-22T23:59:59.000Z

230

,"Utah Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

231

Underground Storage Tank Regulations | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations Underground Storage Tank Regulations Underground Storage Tank Regulations < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Department of Environmental Quality The Underground Storage Tank Regulations is relevant to all energy projects

232

,"California Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","62013"...

233

,"California Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","62013" ,"Release...

234

,"California Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","62013" ,"Release...

235

,"Ohio Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","72013" ,"Release...

236

Cryogenic slurry for extinguishing underground fires  

DOE Patents (OSTI)

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

237

Cover story: Digging up the hacking underground  

Science Conference Proceedings (OSTI)

The hacking underground is driven by three things: money, information, and reputation. Danny Bradbury takes a walk through its dark tunnels

Danny Bradbury

2010-09-01T23:59:59.000Z

238

,"Texas Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Underground Natural Gas Storage - All Operators" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

239

CFD Simulation of Underground Coal Gasification.  

E-Print Network (OSTI)

??Underground Coal Gasification (UCG) is a process in which coal is converted to syngas in-situ. UCG has gained popularity recently as it could be used (more)

Sarraf Shirazi, Ahad

2012-01-01T23:59:59.000Z

240

,"West Virginia Natural Gas Underground Storage Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Existing and Proposed Underground Storage Facilities  

U.S. Energy Information Administration (EIA)

Energy Information Administration 158 Natural Gas 1996: Issues and Trends Table F1. Summary of Existing Underground Natural Gas Storage, by Region and Type of ...

242

,"Michigan Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","72013" ,"Release...

243

,"California Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967"...

244

,"Kansas Natural Gas Underground Storage Withdrawals (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

245

,"Kentucky Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

246

,"Oklahoma Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

247

,"Alabama Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

248

,"Indiana Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

249

,"Colorado Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

250

Massachusetts Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

251

,"Minnesota Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

252

,"Arkansas Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

253

,"Nebraska Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

254

,"Louisiana Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

255

,"Missouri Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

256

,"Maryland Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data...

257

,"Texas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage Capacity",11,"Annual",2011,"6301988" ,"Release...

258

,"Texas Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967" ,"Release...

259

,"Nebraska Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Underground Natural Gas...

260

,"Kentucky Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Underground Natural Gas...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

,"Wyoming Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Underground Natural Gas...

262

,"Minnesota Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Underground Natural Gas...

263

,"Maryland Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Underground Natural Gas...

264

,"Indiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Underground Natural Gas...

265

,"West Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Underground Natural...

266

,"Michigan Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Underground Natural Gas...

267

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural...

268

,"Mississippi Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Underground Natural...

269

,"Arkansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Underground Natural Gas...

270

,"Alabama Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Underground Natural Gas...

271

,"Oregon Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Underground Natural Gas...

272

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas...

273

,"Missouri Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Underground Natural Gas...

274

,"Oklahoma Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Underground Natural Gas...

275

,"Washington Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Underground Natural...

276

,"Kansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Underground Natural Gas...

277

,"New Mexico Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural...

278

,"Montana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Underground Natural Gas...

279

,"Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Underground Natural Gas...

280

,"Colorado Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Underground Natural Gas...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Utah Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Underground Natural Gas...

282

,"Tennessee Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Underground Natural Gas...

283

,"Louisiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Underground Natural Gas...

284

,"Ohio Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Underground Natural Gas...

285

,"Pennsylvania Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Underground Natural...

286

,"Illinois Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","52013" ,"Release...

287

,"Texas Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

288

Method and apparatus for constructing an underground barrier wall structure  

SciTech Connect

A method and apparatus for constructing a underground barrier wall structure using a jet grout injector subassembly comprising a pair of primary nozzles and a plurality of secondary nozzles, the secondary nozzles having a smaller diameter than the primary nozzles, for injecting grout in directions other than the primary direction, which creates a barrier wall panel having a substantially uniform wall thickess. This invention addresses the problem of the weak "bow-tie" shape that is formed during conventional jet injection when using only a pair of primary nozzles. The improvement is accomplished by using at least four secondary nozzles, of smaller diameter, located on both sides of the primary nozzles. These additional secondary nozzles spray grout or permeable reactive materials in other directions optimized to fill in the thin regions of the bow-tie shape. The result is a panel with increased strength and substantially uniform wall thickness.

Dwyer, Brian P. (Albuquerque, NM); Stewart, Willis E. (W. Richland, WA); Dwyer, Stephen F. (Albuquerque, NM)

2002-01-01T23:59:59.000Z

289

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997  

Science Conference Proceedings (OSTI)

The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

Chugh, Y.P.

1997-12-31T23:59:59.000Z

290

Underground storage tank management plan  

Science Conference Proceedings (OSTI)

The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

NONE

1994-09-01T23:59:59.000Z

291

Construction of the NuMI underground laboratory facilities  

SciTech Connect

At Fermilab, a 4000-ft long underground complex has recently been constructed for a high-energy physics experiment. The complex is sited up to 350 ft, below grade principally in bedrock. The rock excavations were mined by TBM and drill and blast methods and supported by a combination of rock bolts, dowels and shotcrete. Water control was achieved using a combination of pre- and post-excavation grouting, drainage systems, drip shielding and air desiccation measures.

Laughton, Christopher; Bruen, Michael P

2003-01-01T23:59:59.000Z

292

Tax Credits, Rebates & Savings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Injection Control Rule (Vermont) Vermont Utility Industrial Buying & Making Electricity Department of Environmental Conservation Underground Storage Tank Program...

293

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

294

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County,...

295

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

296

The Value of Underground Storage in Today's Natural Gas Industry  

U.S. Energy Information Administration (EIA)

Energy Information Administration iii The Value of Underground Storage in Today's Natural Gas Industry Preface The Value of Underground Storage in Today's Natural ...

297

Texas Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Natural Gas Underground Storage Capacity (Million...

298

Texas Natural Gas Underground Storage Net Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Net Withdrawals (Million Cubic Feet) Texas Natural Gas Underground Storage Net...

299

Texas Natural Gas Underground Storage Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Texas Natural Gas Underground Storage Withdrawals...

300

Underground storage of natural gas, liquid hydrocarbons, and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana) Underground storage of natural gas, liquid hydrocarbons, and carbon dioxide (Louisiana)...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Rules and Regulations for Underground Storage Facilities Used...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island) Rules and Regulations for Underground Storage Facilities Used for Petroleum...

302

California Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic...

303

Solid Waste Disposal, Hazardous Waste Management Act, Underground...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee) Eligibility...

304

Alaska Natural Gas Underground Storage Withdrawals (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Gas Underground Storage Withdrawals (Million Cubic Feet) Alaska Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov...

305

Estimates of Peak Underground Working Gas Storage Capacity in the ...  

U.S. Energy Information Administration (EIA)

Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update The aggregate peak capacity for U.S. underground natural gas storage is ...

306

Alaska Natural Gas in Underground Storage (Base Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Date: 9302013 Next Release Date: 10312013 Referring Pages: Underground Base Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Base...

307

Lower 48 States Total Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Total Natural Gas Underground Storage Capacity Lower 48 States Underground Natural Gas Storage Capacity...

308

Alaska Natural Gas in Underground Storage (Working Gas) (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

9302013 Next Release Date: 10312013 Referring Pages: Underground Working Natural Gas in Storage - All Operators Alaska Underground Natural Gas Storage - All Operators Working...

309

Indiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

310

Wyoming Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

311

Louisiana Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Louisiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

312

Louisiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

313

Virginia Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

314

New Mexico Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

315

Washington Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Washington Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

316

Iowa Natural Gas Underground Storage Acquifers Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Iowa Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

317

Illinois Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

318

New York Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

319

Maryland Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

320

Oklahoma Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Alabama Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

322

Kansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

323

Utah Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

324

Tennessee Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Tennessee Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

325

Maryland Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Maryland Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

326

Missouri Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

327

Oregon Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

328

Tennessee Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Tennessee Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

329

Colorado Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

330

Montana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

331

Minnesota Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

332

Arkansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

333

Minnesota Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Minnesota Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

334

Iowa Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

335

Nebraska Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Nebraska Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

336

Nebraska Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

337

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

338

Texas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

339

Arkansas Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Arkansas Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

340

Colorado Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Colorado Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Pennsylvania Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Pennsylvania Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

342

Oklahoma Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

343

Kentucky Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

344

Oregon Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oregon Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

345

Ohio Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Ohio Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

346

Montana Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Montana Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

347

Michigan Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

348

Ohio Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

349

Mississippi Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Mississippi Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

350

New Mexico Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet)...

351

Underground radio technology saves miners and emergency response...  

NLE Websites -- All DOE Office Websites (Extended Search)

Underground radio technology saves miners and emergency response personnel Underground radio technology saves miners and emergency response personnel Founded through LANL, Vital...

352

Depleted Argon from Underground Sources  

Science Conference Proceedings (OSTI)

Argon is a strong scintillator and an ideal target for Dark Matter detection; however {sup 39}Ar contamination in atmospheric argon from cosmic ray interactions limits the size of liquid argon dark matter detectors due to pile-up. Argon from deep underground is depleted in {sup 39}Ar due to the cosmic ray shielding of the earth. In Cortez, Colorado, a CO{sub 2} well has been discovered to contain approximately 600 ppm of argon as a contamination in the CO{sub 2}. We first concentrate the argon locally to 3% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation, and then the N{sub 2} and He will be removed by continuous distillation to purify the argon. We have collected 26 kg of argon from the CO{sub 2} facility and a cryogenic distillation column is under construction at Fermilab to further purify the argon.

Back, H. O.; Galbiati, C.; Goretti, A.; Loer, B.; Montanari, D.; Mosteiro, P. [Department of Physics, Princeton University, Jadwin Hall, Princeton, NJ 08544 (United States); Alexander, T.; Alton, A.; Rogers, H. [Augustana College, Physics Department, 2001 South Summit Ave., Sioux Fall, SD 57197 (United States); Kendziora, C.; Pordes, S. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2011-04-27T23:59:59.000Z

353

Underground-desiccant cooling system  

DOE Green Energy (OSTI)

The Underground-Desiccant Cooling System relies on the successful coordination of various components. The central feature of the system is a bed of silica gel which will absorb moisture from house air until the gel has become saturated. When this point has been reached, the silica gel must be regenerated by passing hot air through it. For this project, the hot air is produced by air-type solar collectors mounted on the roof and connected with the main air-handling system by means of ducts attached to the outside of the house. As the air is dehumidified its temperature is raised somewhat by the change of state. The dried but somewhat heated air, after leaving the silica gel bed, passes through a rock bin storage area and then past a water coil chiller before being circulated through the house by means of the previously existing ductwork. The cooling medium for both the rock bin and the chiller coil is water which circulates through underground pipes buried beneath the back yard at a depth of about 10 to 12 ft. When the silica gel is being regenerated by the solar collectors, house air bypasses the desiccant bed but still passes through the rock bin and the chiller coil and is cooled continuously. The system is designed for maximum flexibility so that full use can be made of the solar collectors. Ducting is arranged so that the collectors provide heat for the house in the winter and there is also a hot-water capability year-round.

Finney, O.

1982-10-01T23:59:59.000Z

354

Two-stage Ignition as an Indicator of Low Temperature Combustion in a Late Injection Pre-mixed Compression Ignition Control Strategy  

E-Print Network (OSTI)

Internal combustion engines have dealt with increasingly restricted emissions requirements. After-treatment devices are successful in bringing emissions into compliance, but in-cylinder combustion control can reduce their burden by reducing engine out emissions. For example, oxides of nitrogen (NOx) are diesel combustion exhaust species that are notoriously difficult to remove by after-treatment. In-cylinder conditions can be controlled for low levels of NOx, but this produces high levels of soot potentially leading to increased particulate matter (PM). The simultaneous reduction of NOx and PM can be realized through a combustion process known as low temperature combustion (LTC). In this study, the typical definition of LTC as the defeat of the inverse relationship between soot and NOx is not applicable as a return to the soot-NOx tradeoff is observed with increasing exhaust gas recirculation (EGR). It is postulated that this effect is the result of an increase in the hot ignition equivalence ratio, moving the combustion event into a slightly higher soot formation region. This is important because a simple emissions based definition of LTC is no longer helpful. In this study, the manifestation of LTC in the calculated heat release profile is investigated. The conditions classified as LTC undergo a two-stage ignition process. Two-stage ignition is characterized by an initial cool-flame reaction followed by typical hot ignition. In traditional combustion conditions, the ignition is fast enough that a cool-flame is not observed. By controlling initial conditions (pressure, temperature, and composition), the creation and duration of the cool-flame event is predictable. Further, the effect that injection timing and the exhaust gas recirculation level have on the controlling factors of the cool-flame reaction is well correlated to the duration of the cool-flame event. These two results allow the postulation that the presence of a sufficiently long cool-flame reaction indicates a combustion event that can be classified as low temperature combustion. A potential method for identifying low temperature combustion events using only the rate of heat release profile is theorized. This study employed high levels of EGR and late injection timing to realize the LTC mode of ordinary petroleum diesel fuel. Under these conditions, and based on a 90 percent reduction in nitric oxide and no increase in smoke output relative to the chosen baseline condition, a two part criteria is developed that identifies the LTC classified conditions. The criteria are as follow: the combustion event of conventional petroleum diesel fuel must show a two-stage ignition process; the first stage (cool-flame reaction) must consume at least 2 percent of the normalized fuel energy before the hot ignition commences.

Bittle, Joshua

2010-12-01T23:59:59.000Z

355

ENGINEERING STUDY ON UNDERGROUND CONSTRUCTION OF NUCLEAR POWER REACTORS  

SciTech Connect

The advantages, disadvantages, and cost of constructing a auclear power reactor underground are outlinedData on underground construction of hydroelectric plants, other structures, and underground reactor projects in Norway and Sweden are reviewed. A hypothetical underground Experimental Boiling Water Reactor design and sketch are given with cost estimates(T.R.H.)

Beck, C.

1958-04-15T23:59:59.000Z

356

Simulation and Economic Screening of Improved Oil Recovery Methods with Emphasis on Injection Profile Control Including Waterflooding, Polymer Flooding and a Thermally Activated Deep Diverting Gel  

E-Print Network (OSTI)

The large volume of water produced during the extraction of oil presents a significant problem due to the high cost of disposal in an environmentally friendly manner. On average, an estimated seven barrels of water is produced per barrel of oil in the US alone and the associated treatment and disposal cost is an estimated $5-10 billion. Besides making oil-water separation more complex, produced water also causes problems such as corrosion in the wellbore, decline in production rate and ultimate recovery of hydrocarbons and premature well or field abandonment. Water production can be more problematic during waterflooding in a highly heterogeneous reservoir with vertical communication between layers leading to unevenness in the flood front, cross-flow between high and low permeability layers and early water breakthrough from high permeability layers. Some of the different technologies that can be used to counteract this involve reducing the mobility of water or using a permeability block in the higher permeability, swept zones. This research was initiated to evaluate the potential effectiveness of the latter method, known as deep diverting gels (DDG) to plug thief zones deep within the reservoir and far from the injection well. To evaluate the performance of DDG, its injection was modeled, sensitivities run for a range of reservoir characteristics and conditions and an economic analysis was also performed. The performance of the DDG was then compared to other recovery methods, specifically waterflooding and polymer flooding from a technical and economic perspective. A literature review was performed on the background of injection profile control methods, their respective designs and technical capabilities. For the methods selected, Schlumberger's Eclipse software was used to simulate their behavior in a reservoir using realistic and simplified assumptions of reservoir characteristics and fluid properties. The simulation results obtained were then used to carry out economic analyses upon which conclusions and recommendations are based. These results show that the factor with the largest impact on the economic success of this method versus a polymer flood was the amount of incremental oil produced. By comparing net present values of the different methods, it was found that the polymer flood was the most successful with the highest NPV for each configuration followed by DDG.

Okeke, Tobenna

2012-05-01T23:59:59.000Z

357

,"Washington Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Net Withdrawals (MMcf)" 32888,-1451 32919,-3625 32947,-1954 32978,-938 33008,0 33039,2640 33069,2937 33100,2937 33131,1069 33161,205 33192,81...

358

,"California Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:10 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2"...

359

,"California Natural Gas Underground Storage Net Withdrawals...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:37 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Net Withdrawals (MMcf)" "Sourcekey","N5070CA2"...

360

,"California Natural Gas Underground Storage Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:08 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060CA2"...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Massachusetts Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Massachusetts Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

362

Georgia Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Georgia Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

363

Connecticut Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Connecticut Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

364

Delaware Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

365

Wisconsin Natural Gas Underground Storage Withdrawals (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Withdrawals (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

366

,"Texas Natural Gas Underground Storage Withdrawals (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:20:28 PM" "Back to Contents","Data 1: Texas Natural Gas Underground Storage Withdrawals (MMcf)" "Sourcekey","N5060TX2"...

367

Underground Storage of Natural Gas (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

368

Underground infrastructure damage for a Chicago scenario  

SciTech Connect

Estimating effects due to an urban IND (improvised nuclear device) on underground structures and underground utilities is a challenging task. Nuclear effects tests performed at the Nevada Test Site (NTS) during the era of nuclear weapons testing provides much information on how underground military structures respond. Transferring this knowledge to answer questions about the urban civilian environment is needed to help plan responses to IND scenarios. Explosions just above the ground surface can only couple a small fraction of the blast energy into an underground shock. The various forms of nuclear radiation have limited penetration into the ground. While the shock transmitted into the ground carries only a small fraction of the blast energy, peak stresses are generally higher and peak ground displacement is lower than in the air blast. While underground military structures are often designed to resist stresses substantially higher than due to the overlying rocks and soils (overburden), civilian structures such as subways and tunnels would generally only need to resist overburden conditions with a suitable safety factor. Just as we expect the buildings themselves to channel and shield air blast above ground, basements and other underground openings as well as changes of geology will channel and shield the underground shock wave. While a weaker shock is expected in an urban environment, small displacements on very close-by faults, and more likely, soils being displaced past building foundations where utility lines enter could readily damaged or disable these services. Immediately near an explosion, the blast can 'liquefy' a saturated soil creating a quicksand-like condition for a period of time. We extrapolate the nuclear effects experience to a Chicago-based scenario. We consider the TARP (Tunnel and Reservoir Project) and subway system and the underground lifeline (electric, gas, water, etc) system and provide guidance for planning this scenario.

Dey, Thomas N [Los Alamos National Laboratory; Bos, Rabdall J [Los Alamos National Laboratory

2011-01-25T23:59:59.000Z

369

First Edition Underground Distribution Reference Book  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is developing a first edition of the Underground Distribution Systems Reference (Bronze Book). This report will join the EPRI series of transmission and distribution technical reference reports, commonly known by the color of their covers. The report will be a desk and field compendium on the general principles involved in the planning, design, manufacture, installation design, installation, testing, operation, and maintenance of underground distribution syste...

2009-12-22T23:59:59.000Z

370

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

371

Depleted argon from underground sources  

Science Conference Proceedings (OSTI)

Argon is a powerful scintillator and an excellent medium for detection of ionization. Its high discrimination power against minimum ionization tracks, in favor of selection of nuclear recoils, makes it an attractive medium for direct detection of WIMP dark matter. However, cosmogenic {sup 39}Ar contamination in atmospheric argon limits the size of liquid argon dark matter detectors due to pile-up. The cosmic ray shielding by the earth means that Argon from deep underground is depleted in {sup 39}Ar. In Cortez Colorado a CO{sub 2} well has been discovered to contain approximately 500ppm of argon as a contamination in the CO{sub 2}. In order to produce argon for dark matter detectors we first concentrate the argon locally to 3-5% in an Ar, N{sub 2}, and He mixture, from the CO{sub 2} through chromatographic gas separation. The N{sub 2} and He will be removed by continuous cryogenic distillation in the Cryogenic Distillation Column recently built at Fermilab. In this talk we will discuss the entire extraction and purification process; with emphasis on the recent commissioning and initial performance of the cryogenic distillation column purification.

Back, H.O.; /Princeton U.; Alton, A.; /Augustana U. Coll.; Calaprice, F.; Galbiati, C.; Goretti, A.; /Princeton U.; Kendziora, C.; /Fermilab; Loer, B.; /Princeton U.; Montanari, D.; /Fermilab; Mosteiro, P.; /Princeton U.; Pordes, S.; /Fermilab

2011-09-01T23:59:59.000Z

372

Common Rail Injection System Development  

DOE Green Energy (OSTI)

The collaborative research program between the Department of energy and Electro-Motive Diesels, Inc. on the development of common rail fuel injection system for locomotive diesel engines that can meet US EPA Tier 2 exhaust emissions has been completed. This final report summarizes the objectives of the program, work scope, key accomplishments and research findings. The major objectives of this project encompassed identification of appropriate injection strategies by using advanced analytical tools, development of required prototype hardware/controls, investigations of fuel spray characteristics including cavitation phenomena, and validation of hareware using a single-cylinder research locomotive diesel engine. Major milestones included: (1) a detailed modeling study using advanced mathematical models - several various injection profiles that show simultaneous reduction of NOx and particulates on a four stroke-cycle locomotive diesel engine were identified; (2) development of new common rail fuel injection hardware capable of providing these injection profiles while meeting EMD engine and injection performance specifications. This hardware was developed together with EMD's current fuel injection component supplier. (3) Analysis of fuel spray characteristics. Fuel spray numerical studies and high speed photographic imaging analyses were performed. (4) Validation of new hardware and fuel injection profiles. EMD's single-cylinder research diesel engine located at Argonne National Laboratory was used to confirm emissions and performacne predictions. These analytical ane experimental investigations resulted in optimized fuel injection profiles and engine operating conditions that yield reductions in NOx emissions from 7.8 g/bhp-hr to 5.0 g/bhp-hr at full (rated) load. Additionally, hydrocarbon and particulate emissions were reduced considerably when compared to baseline Tier I levels. The most significant finding from the injection optimization process was a 2% to 3% improvement in fuel economy over EMD's traditional Tier I engine hardware configuration. the common rail fuel injection system enabled this added benefit by virtue of an inherent capability to provide multiple injections per power stroke at high fuel rail pressures. On the basis of the findings in this study, EMD concludes that the new electronically-controlled high-pressure common rail injection system has the potential to meet locomotive Tier 2 NOx and particulates emission standards without sacrificing the fuel economy. A number of areas to further improve the injection hardware and engine operating characteristics to further exploit the benefits of common rail injection system have also been identified.

Electro-Motive,

2005-12-30T23:59:59.000Z

373

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

374

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

375

Method for making generally cylindrical underground openings  

DOE Patents (OSTI)

A rapid, economical and safe method for making a generally cylindrical underground opening such as a shaft or a tunnel is described. A borehole is formed along the approximate center line of where it is desired to make the underground opening. The borehole is loaded with an explodable material and the explodable material is detonated. An enlarged cavity is formed by the explosive action of the detonated explodable material forcing outward and compacting the original walls of the borehole. The enlarged cavity may be increased in size by loading it with a second explodable material, and detonating the second explodable material. The process may be repeated as required until the desired underground opening is made. The explodable material used in the method may be free-flowing, and it may be contained in a pipe.

Routh, J.W.

1983-05-26T23:59:59.000Z

376

Underground Facilities Information (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Facilities Information (Iowa) Facilities Information (Iowa) Underground Facilities Information (Iowa) < Back Eligibility Agricultural Commercial Construction Fuel Distributor Industrial Installer/Contractor Institutional Investor-Owned Utility Low-Income Residential Multi-Family Residential Municipal/Public Utility Residential Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Utilities Board This section applies to any excavation which may impact underground facilities, including those used for the conveyance of electricity or the transportation of hazardous liquids or natural gas. Excavation is prohibited unless notification takes place, as described in this chapter

377

Potential underground risks associated with CAES.  

Science Conference Proceedings (OSTI)

CAES in geologic media has been proposed to help 'firm' renewable energy sources (wind and solar) by providing a means to store energy when excess energy was available, and to provide an energy source during non-productive renewable energy time periods. Such a storage media may experience hourly (perhaps small) pressure swings. Salt caverns represent the only proven underground storage used for CAES, but not in a mode where renewable energy sources are supported. Reservoirs, both depleted natural gas and aquifers represent other potential underground storage vessels for CAES, however, neither has yet to be demonstrated as a functional/operational storage media for CAES.

Kirk, Matthew F.; Webb, Stephen Walter; Broome, Scott Thomas; Pfeifle, Thomas W.; Grubelich, Mark Charles; Bauer, Stephen J.

2010-10-01T23:59:59.000Z

378

New Texas Oil Project Will Help Keep Carbon Dioxide Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

Texas Oil Project Will Help Keep Carbon Dioxide Underground New Texas Oil Project Will Help Keep Carbon Dioxide Underground February 5, 2013 - 12:05pm Addthis The Air Products and...

379

Forced cooling of underground electric power transmission lines : design manual  

E-Print Network (OSTI)

The methodology utilized for the design of a forced-cooled pipe-type underground transmission system is presented. The material is divided into three major parts: (1) The Forced-cooled Pipe-Type Underground Transmission ...

Brown, Jay A.

1978-01-01T23:59:59.000Z

380

Missouri Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Missouri Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Wyoming Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Wyoming Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 84,808...

382

Washington Natural Gas Underground Storage Volume (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Volume (Million Cubic Feet) Washington Natural Gas Underground Storage Volume (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990...

383

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations  

E-Print Network (OSTI)

Grounding Analysis in Heterogeneous Soil Models: Application to Underground Substations Ignasi in forthcoming publications. Keywords-grounding analysis; earthing analysis, underground substations; I to a river (at substations next to hydroelectric dams), or the grounding system of a buried electrical

Colominas, Ignasi

384

Montana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Montana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

385

Utah Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Utah Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

386

Virginia Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Virginia Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

387

Kansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

388

Alabama Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Alabama Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

389

Michigan Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Michigan Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

390

Maryland Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Maryland Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

391

Arkansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Arkansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

392

Iowa Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Iowa Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

393

Colorado Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Colorado Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

394

Illinois Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Illinois Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

395

Nebraska Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Nebraska Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

396

Texas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Texas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

397

Ohio Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Ohio Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

398

Missouri Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Missouri Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

399

Oklahoma Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oklahoma Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

400

Indiana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Indiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Wyoming Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Wyoming Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

402

Oregon Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oregon Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

403

Kentucky Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kentucky Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

404

Underground Natural Gas Storage Wells in Bedded Salt (Kansas)  

Energy.gov (U.S. Department of Energy (DOE))

These regulations apply to natural gas underground storage and associated brine ponds, and includes the permit application for each new underground storage tank near surface water bodies and springs.

405

New Mexico Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) New Mexico Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

406

Estimates of Peak Underground Working Gas Storage Capacity in...  

U.S. Energy Information Administration (EIA) Indexed Site

Administration report, The Basics of Underground Storage, http:www.eia.doe.govpuboilgasnaturalgasanalysispublicationsstoragebasicsstoragebasics.html. 2 Working gas is...

407

Commercial-Scale Tests Demonstrate Secure CO2 Storage in Underground Formations  

NLE Websites -- All DOE Office Websites (Extended Search)

CommerCial-SCale TeSTS DemonSTraTe CommerCial-SCale TeSTS DemonSTraTe SeCure Co 2 STorage in unDergrounD FormaTionS Two industry-led commercial-scale projects, the Sleipner Project off the coast of Norway and the Weyburn Project in Ontario, Canada, have enhanced the option of sequestering carbon dioxide (CO 2 ) in underground geologic formations. The United States Department of Energy (DOE) collaborated in both projects, primarily by providing rigorous monitoring of the injected CO 2 and studying CO 2 behavior to a greater extent than the project operators would have pursued on their own - creating a mutually beneficial public/private partnership. The most significant outcome from both field projects is that CO 2 leakage has not been observed, nor is there any indication that CO 2 will leak in the future.

408

October 15, 2001 PRE-INSULATED UNDERGROUND PIPE FOR STEAM  

E-Print Network (OSTI)

SERVICE PART 1 ­ GENERAL 1.01 SUMMARY Underground steam and condensate distribution systems includingOctober 15, 2001 02558-1 PRE-INSULATED UNDERGROUND PIPE FOR STEAM AND CONDENSATE SERVICE CONSTRUCTION STANDARD SPECIFICATION SECTION 02558 PRE-INSULATED UNDERGROUND PIPE FOR STEAM AND CONDENSATE

409

A Method for Detecting Miners in Underground Coal Mine Videos  

Science Conference Proceedings (OSTI)

Detecting miners in underground coal mine videos is significant for the production safety. But, the miners are very similar to the background in underground coal mine videos, it is difficult to detect. In this paper, we proposed a method to detect miners ... Keywords: moving detection, miner detection, underground coal mine video

Limei Cai; Jiansheng Qian

2009-12-01T23:59:59.000Z

410

Utilization of Oil Shale Retorting Technology and Underground Overview  

Science Conference Proceedings (OSTI)

The paper analyzes the world's oil shale development and status of underground dry distillation technology and, through case studies proved the advantages of underground dry distillation technology. Global oil shale resource-rich, many countries in the ... Keywords: oil shale, ground retorting, underground dry distillation, shale oil, long slope mining

Chen Shuzhao; Guo Liwen; Xiao Cangyan; Wang Haijun

2011-02-01T23:59:59.000Z

411

Surveillance Guide - ERS 14.3 Underground and Above Ground Diesel Fuel Storage Tanks  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS UNDERGROUND AND ABOVE GROUND DIESEL FUEL STORAGE TANKS 1.0 Objective The objective of this surveillance is to verify underground and above ground diesel storage tanks are maintained, monitored, configured and marked as required. These surveillance activities provide a basis for evaluating the effectiveness of the contractor's program for implementation of appropriate controls and compliance with DOE requirements. 2.0 References 1. DOE O 440.1A, Worker Protection Management For DOE Federal And Contractor Employees [http://www.explorer.doe.gov:1776/cgi-bin/w3vdkhgw?qryBGD07_rSj;doe- 1261] 1. 29CFR1910.1200, Subpart Z, Hazard Communication [Access http://www.osha-slc.gov/OshStd_data/1910_1200.html ] 2. 29CFR1910.106, Subpart H, Flammable And Combustible Liquids [Access at

412

Underground natural gas storage reservoir management  

SciTech Connect

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

413

Underground Structure Monitoring with Wireless Sensor Networks  

E-Print Network (OSTI)

University of Science and Technology {limo, liu}@cse.ust.hk ABSTRACT Environment monitoring in coal mines, Underground, Coal Mine 1. INTRODUCTION A Wireless Sensor Network (WSN) is a self-organized wireless network and widths of several meters) has been a crucial task to ensure safe working conditions in coal mines where

Liu, Yunhao

414

Electrical Safety Practices in Underground Transmission Systems  

Science Conference Proceedings (OSTI)

This report addresses utility safety practices relating to underground transmission cables and provides analytical approaches and worked examples for induced voltages and currents for several scenarios that may be encountered by utilities.BackgroundSafety is of paramount importance in all areas of utility system operations. All utilities have safety practices and procedures in place to protect their workers and the public ...

2012-12-20T23:59:59.000Z

415

Robotic location of underground chemical sources  

Science Conference Proceedings (OSTI)

This paper describes current progress in a project to develop robotic systems for locating underground chemical sources. There are a number of economic and humanitarian applications for this technology. Finding unexploded ordinance, land mines, and sources ... Keywords: Chemical diffusion, Chemical source location, De-mining, Robotics

R. Andrew Russell

2004-01-01T23:59:59.000Z

416

Underground Energy Storage Program. 1983 annual summary  

DOE Green Energy (OSTI)

The Underground Energy Storage Program approach, structure, history, and milestones are described. Technical activities and progress in the Seasonal Thermal Energy Storage and Compressed Air Energy Storage components of the program are then summarized, documenting the work performed and progress made toward resolving and eliminating technical and economic barriers associated with those technologies. (LEW)

Kannberg, L.D.

1984-06-01T23:59:59.000Z

417

Science and Technology Gaps in Underground Coal Gasification  

DOE Green Energy (OSTI)

Underground coal gasification (UCG) is an appropriate technology to economically access the energy resources in deep and/or unmineable coal seams and potentially to extract these reserves through production of synthetic gas (syngas) for power generation, production of synthetic liquid fuels, natural gas, or chemicals. India is a potentially good area for underground coal gasification. India has an estimated amount of about 467 billion British tons (bt) of possible reserves, nearly 66% of which is potential candidate for UCG, located at deep to intermediate depths and are low grade. Furthermore, the coal available in India is of poor quality, with very high ash content and low calorific value. Use of coal gasification has the potential to eliminate the environmental hazards associated with ash, with open pit mining and with greenhouse gas emissions if UCG is combined with re-injection of the CO{sub 2} fraction of the produced gas. With respect to carbon emissions, India's dependence on coal and its projected rapid rise in electricity demand will make it one of the world's largest CO{sub 2} producers in the near future. Underground coal gasification, with separation and reinjection of the CO{sub 2} produced by the process, is one strategy that can decouple rising electricity demand from rising greenhouse gas contributions. UCG is well suited to India's current and emerging energy demands. The syngas produced by UCG can be used to generate electricity through combined cycle. It can also be shifted chemically to produce synthetic natural gas (e.g., Great Plains Gasification Plant in North Dakota). It may also serve as a feedstock for methanol, gasoline, or diesel fuel production and even as a hydrogen supply. Currently, this technology could be deployed in both eastern and western India in highly populated areas, thus reducing overall energy demand. Most importantly, the reduced capital costs and need for better surface facilities provide a platform for rapid acceleration of coal-gas-fired electric power and other high value products. In summary, UCG has several important economic and environmental benefits relevant to India's energy goals: (1) It requires no purchase of surface gasifiers, reducing capital expense substantially. (2) It requires no ash management, since ash remains in the subsurface. (3) It reduces the cost of pollution management and emits few black-carbon particulates. (4) It greatly reduces the cost of CO2 separation for greenhouse gas management, creating the potential for carbon crediting through the Kyoto Clean Development Mechanism. (5) It greatly reduces the need to mine and transport coal, since coal is used in-situ.

Upadhye, R; Burton, E; Friedmann, J

2006-06-27T23:59:59.000Z

418

Effects of sorbent injection for sulfur dioxide removal on particulate control systems for coal-fired boilers. Final report, October 1984-October 1987  

Science Conference Proceedings (OSTI)

This report describes studies undertaken to quantify the effects of dry SO2 sorbent injection on electrostatic precipitator (ESP) operation with a coal-burning utility boiler. The specific operation of interest was EPA's limestone injection, multistage burners (LIMB) process. The combination of spent sorbent and fly ash has a higher resistivity, a higher mass concentration, and a finer particle-size distribution than the ash alone; all of these factors diminish the effectiveness of ESP. Also investigated was chemical conditioning to reduce the resistivity problem, the only one of three concerns stemming from sorbent injection that can be readily mitigated. Other topics studied were: the recycle, disposal, and utilization of waste-ash/sorbent mixtures; the selection and modification of sorbents to improve SO2 capture in the furnace; and the reactivation of spent sorbent by humidification to achieve supplemental post-furnace capture of SO2.

Gooch, J.P.; DuBard, J.L.; Faulkner, M.G.; Marchant, G.H.; Dahlin, R.S.

1988-11-01T23:59:59.000Z

419

Proof of concept testing of an integrated dry injection system for SO{sub 2}/NO{sub x} control. Final report  

Science Conference Proceedings (OSTI)

The integrated Dry Injection Process (IDIP) consists of combustion modification using low NO{sub x} burners to reduce NO{sub x} emissions, dry injection of hydrated line at economizer temperatures for primary capture of SO{sub 2}, dry injection of a commercial grade sodium bicarbonate at the air heater exit for additional SO{sub 2} and NO{sub x} removal, and humidification for precipitator conditioning. IDIP offers the potential for simultaneously achieving 90% SO{sub 2} removal, and 65% NO{sub x} removal from a high sulfur flue gas. The process is well suited for new or retrofit applications since it can be incorporated within existing economizer and downstream ductwork. Subscale tests were performed in order to identify the best calcium and sodium sorbents. These tests involved the injection of calcium hydroxide and sodium sorbents at various points of the flue gas system downstream of a 0.25 MM BTU/hr. coal fired combustor, and the gas residence times, cooling rates and temperatures were comparable to those found for full-scale utility boilers. These tests verified that a high surface area hydrated lime provides maximum sorbent utilization and identified an alcohol-water hydrated lime as yielding the highest surface area and the best SO{sub 2} removal capability. The tests also identified sodium bicarbonate to be somewhat more effective than sodium sesquicarbonate for SO{sub 2} removal. The proof of concept demonstration was conducted on the large combustor at the Riley Stoker Research Facility in Worcester, MA. When economically compared to conventional limestone slurry scrubbing on a 300 MW plant, the dry injection process shows lower capital cost but higher operating cost. Hydrated lime injection can be less costly than limestone scrubbing when two or more of the following conditions exist: plant is small (less than 100MW); yearly operating hours are small (less than 3000); and the remaining plant lifetime is small (less than 10 years).

Helfritch, D.J.; Bortz, S.J. [Research-Cottrell, Inc., Somerville, NJ (United States); Beittel, R. [Riley Stoker Corp., Worcester, MA (United States)

1994-03-01T23:59:59.000Z

420

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

NLE Websites -- All DOE Office Websites (Extended Search)

Hoe Creek Underground Coal Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Hoe Creek Underground Gasification site occupies 80 acres of land located in Campbell County, Wyoming. The site was used to investigate the process and environmental parameters of underground coal gasification technologies in the 1970s. The Department of Energy¿s (DOE) current mission is limited to completing environmental remediation activities at the site. This property is owned by the Bureau of Land Management (BLM),

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Underground Storage Tank Regulations for the Certification of Persons Who  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Regulations for the Certification of Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) Underground Storage Tank Regulations for the Certification of Persons Who Install, Alter, and Remove Underground Storage Tanks (Mississippi) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells

422

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

423

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

424

Rotary steerable motor system for underground drilling  

Science Conference Proceedings (OSTI)

A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.

Turner, William E. (Durham, CT); Perry, Carl A. (Middletown, CT); Wassell, Mark E. (Kingwood, TX); Barbely, Jason R. (Middletown, CT); Burgess, Daniel E. (Middletown, CT); Cobern, Martin E. (Cheshire, CT)

2010-07-27T23:59:59.000Z

425

Greenhouse of an underground heat accumulation system  

SciTech Connect

A greenhouse of an underground heat accumulation system is described wherein the radiant energy of the sun or wasted thermal energy is accumulated in the soil below the floor of the greenhouse over a prolonged period of time, and spontaneous release of the accumulated energy into the interior of the greenhouse begins in the wintertime due to a time lag of heat transfer through the soil. The release of the accumulated energy lasts throughout the winter.

Fujie, K.; Abe, K.; Uchida, A.

1983-11-01T23:59:59.000Z

426

Bangkok area grid extensions go underground  

SciTech Connect

To reinforce electricity supply in the growing load center of Bangkok, the Metropolitan Electricity Authority is constructing a 230-kV underground, oil-filled cable system from Bangkapi substation, located on the outskirts of the city, to Chidlom substation in the heart of the city's business area. The project covers design, supply, and delivery to site of all the materials and equipments, installation, assembly of equipment and commissioning tests of the system.

1976-12-01T23:59:59.000Z

427

Electrical Safety Practices of Underground Transmission Systems  

Science Conference Proceedings (OSTI)

Safety is of paramount importance in all areas of utility system operations. All utilities have safety practices and procedures in place to protect their workers and the public and are diligent about monitoring compliance. However, underground transmission cables present unique requirements that might not be covered in existing utility safety practices. This report addresses the grounding requirements and induced voltage calculation procedures that should be considered when performing operation, mainten...

2010-12-23T23:59:59.000Z

428

Underground particle fluxes in the Soudan mine.  

E-Print Network (OSTI)

This is a summary of our knowledge of the underground particle fluxes in the vicinity of Soudan 2 and of the future MINOS detector. It includes a brief description of the measured muon fluxes and of the gamma ray spectra deduced from measurements of 238 U, 232 Th and 40 K concentrations in the rock. Counting rates in gaseous and scintillation detectors are estimated. Some data on what is known about the chemical composition of the local rocks are included; these are relevant to an understanding of the underground muon rates and also to a calculation of low energy neutron fluxes. 1 Introduction As plans for the MINOS detector and for the excavation of a new detector hall progress, some people have begun asking what is known of the fluxes of various particles underground. The muon flux is relevant for possibly calibrating and certainly for monitoring the long term behavior of the detector. It will likely be the determining factor in the eventual trigger rate if the MINOS det...

Keith Ruddick; Keith Ruddick; Th

1996-01-01T23:59:59.000Z

429

Slit injection device  

DOE Patents (OSTI)

A laser cavity electron beam injection device provided with a single elongated slit window for passing a suitably shaped electron beam and means for varying the current density of the injected electron beam.

Alger, Terry W. (Livermore, CA); Schlitt, Leland G. (Livermore, CA); Bradley, Laird P. (Livermore, CA)

1976-06-15T23:59:59.000Z

430

GRR/Section 4-OR-d - Exploration Injection Permit | Open Energy Information  

Open Energy Info (EERE)

4-OR-d - Exploration Injection Permit 4-OR-d - Exploration Injection Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-OR-d - Exploration Injection Permit 04ORDExplorationInjectionPermit (1).pdf Click to View Fullscreen Contact Agencies Oregon Department of Environmental Quality Regulations & Policies OAR 340-044-0012: Authorization of Underground Injection Triggers None specified Click "Edit With Form" above to add content 04ORDExplorationInjectionPermit (1).pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative _ 4-OR-d.1 - Is this New Injection Activity or a Renewal? The developer must follow one of two different procedures if the developer

431

Rich catalytic injection  

SciTech Connect

A gas turbine engine includes a compressor, a rich catalytic injector, a combustor, and a turbine. The rich catalytic injector includes a rich catalytic device, a mixing zone, and an injection assembly. The injection assembly provides an interface between the mixing zone and the combustor. The injection assembly can inject diffusion fuel into the combustor, provides flame aerodynamic stabilization in the combustor, and may include an ignition device.

Veninger, Albert (Coventry, CT)

2008-12-30T23:59:59.000Z

432

Beam injection into RHIC  

SciTech Connect

During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

1997-07-01T23:59:59.000Z

433

Geothermal injection monitoring project  

DOE Green Energy (OSTI)

Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

Younker, L.

1981-04-01T23:59:59.000Z

434

Underground Transmission Cable System Installation and Construction Practices Manual  

Science Conference Proceedings (OSTI)

Installation and construction remain the most expensive implementation components of underground transmission cable systems. Recent advancements in underground transmission have led to more demand for best practices and innovative ways to reduce installation and construction costs in a cable project. EPRI has funded many projects over the years to improve the efficiency and reduce the cost of underground transmission cable installation. Other organizations such as Association of Edison Illuminating Compa...

2009-12-22T23:59:59.000Z

435

Recovery of heavy crude oil or tar sand oil or bitumen from underground formations  

SciTech Connect

This patent describes a method of producing heavy crude oil or tar sand oil or bitumen from an underground formation. The method consists of utilizing or establishing an aqueous fluid communication path within and through the formation between an injection well or conduit and a production well or conduit by introducing into the formation from the injection well or conduit hot water and/or low quality steam at a temperature in the range about 60{sup 0}-130{sup 0}C and at a substantially neutral or alkaline pH to establish or enlarge the aqueous fluid communication path within the formation from the injection well or conduit to the production well or conduit by movement of the introduced hot water or low quality steam through the formation, increasing the temperature of the injected hot water of low quality steam to a temperature in the range about 110{sup 0}-180{sup 0}C while increasing the pH of the injected hot water or low quality steam to a pH of about 10-13 so as to bring about the movement or migration or stripping of the heavy crude oil or tar sand oil or bitumen from the formation substantially into the hot aqueous fluid communication path with the formation and recovering the resulting produced heavy crude oil or tar sand oil or bitumen from the formation as an emulsion containing less than about 30% oil or bitumen from the production well or conduit.

McKay, A.S.

1989-07-11T23:59:59.000Z

436

,"Utah Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

437

Underground Storage Tanks (New Jersey) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) Underground Storage Tanks (New Jersey) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State New Jersey Program Type Safety and Operational Guidelines This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and the environment

438

Wells, Borings, and Underground Uses (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) Wells, Borings, and Underground Uses (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits for proposed activities,

439

,"Ohio Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","72013" ,"Release...

440

Pipelines and Underground Gas Storage (Iowa) | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Reaching Underground Sources (from MIT Energy Initiative's Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reaching Underground Sources (from MIT Energy Initiative's Energy Futures, Spring 2012) American Fusion News Category: Massachusetts Institute of Technology (MIT) Link: Reaching...

442

U.S. Natural Gas Pipeline and Underground Storage Expansions ...  

U.S. Energy Information Administration (EIA)

Pipeline transportation and underground storage are vital and complementary components of the U.S. natural gas system. While mainline gas transmission ...

443

,"Texas Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Workbook Contents" ,"Texas Natural Gas Underground Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of...

444

,"Michigan Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","72013"...

445

Idaho Natural Gas Underground Storage Net Withdrawals All Operators...  

Annual Energy Outlook 2012 (EIA)

Net Withdrawals All Operators (Million Cubic Feet) Idaho Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

446

PNNL offers 'virtual tour' of Shallow Underground Laboratory...  

NLE Websites -- All DOE Office Websites (Extended Search)

PNNL offers 'virtual tour' of Shallow Underground Laboratory | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

447

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation...

448

NNSA Commemorates the 20th Anniversary of the Last Underground...  

National Nuclear Security Administration (NNSA)

Twitter YouTube NNSA Commemorates the 20th Anniversary of the Last Underground Nuclear Test | National Nuclear Security Administration Our Mission Managing the Stockpile...

449

Alaska Natural Gas Underground Storage Net Withdrawals All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Alaska Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

450

Connecticut Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Connecticut Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

451

Delaware Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

452

Georgia Natural Gas Underground Storage Net Withdrawals All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Georgia Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

453

Wisconsin Natural Gas Underground Storage Net Withdrawals All...  

U.S. Energy Information Administration (EIA) Indexed Site

Net Withdrawals All Operators (Million Cubic Feet) Wisconsin Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

454

Estimate of Maximum Underground Working Gas Storage Capacity in ...  

U.S. Energy Information Administration (EIA)

Estimate of Maximum Underground Working Gas Storage Capacity in the United States: 2007 Update This report provides an update to an estimate for U.S. aggregate ...

455

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

U.S. Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301935" ,"Release Date:","9302013" ,"Next Release Date:","10312013" ,"Excel File Name:","ngstorsumd...

456

,"Colorado Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","72013"...

457

NETL: News Release - Storing Liquefied Natural Gas in Underground...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 22, 2003 Storing Liquefied Natural Gas in Underground Salt Caverns Could Boost Global LNG Trade Novel Process May be Half the Cost of Conventional Liquid Tank Terminals...

458

,"New Mexico Underground Natural Gas Storage - All Operators...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural Gas Storage - All Operators",3,"Annual",2012,"6301967" ,"Release...

459

,"New Mexico Natural Gas Underground Storage Volume (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Natural Gas Underground Storage Volume (MMcf)",1,"Monthly","82013" ,"Release...

460

,"Texas Natural Gas Underground Storage Net Withdrawals (MMcf...  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Underground Storage Net Withdrawals (MMcf)",1,"Monthly","52013" ,"Release...

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Intradermal needle-free powdered drug injection  

E-Print Network (OSTI)

This thesis presents a new method for needle-free powdered drug injection. The design, construction, and testing of a bench-top helium-powered device capable of delivering powder to controllable depths within the dermis ...

Liu, John (John Hsiao-Yung)

2012-01-01T23:59:59.000Z

462

Underground Energy Storage Program. 1984 annual summary  

DOE Green Energy (OSTI)

Underground Energy Storage (UES) Program activities during the period from April 1984 through March 1985 are briefly described. Primary activities in seasonal thermal energy storage (STES) involved field testing of high-temperature (>100/sup 0/C (212/sup 0/F)) aquifer thermal energy storage (ATES) at St. Paul, laboratory studies of geochemical issues associated with high-temperatures ATES, monitoring of chill ATES facilities in Tuscaloosa, and STES linked with solar energy collection. The scope of international activities in STES is briefly discussed.

Kannberg, L.D.

1985-06-01T23:59:59.000Z

463

CO2 Injection Begins in Illinois | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Begins in Illinois Begins in Illinois CO2 Injection Begins in Illinois November 17, 2011 - 12:00pm Addthis Washington, DC - The Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance carbon storage technologies nationwide, has begun injecting carbon dioxide (CO2) for their large-scale CO2 injection test in Decatur, Illinois. The test is part of the development phase of the Regional Carbon Sequestration Partnerships program, an Office of Fossil Energy initiative launched in 2003 to determine the best approaches for capturing and permanently storing gases that can contribute to global climate change. "Establishing long-term, environmentally safe and secure underground CO2 storage is a critical component in achieving successful commercial

464

Control of coal combustion SO[sub 2] and NO[sub x] emissions by in-boiler injection of CMA  

SciTech Connect

The principal objectives of the proposed research are two-fold: (A) To understand the mechanism and assess the effectiveness of sulfur capture by the chemical calcium magnesium acetate (CMA). And (B) To evaluate the NO[sub x] reduction capabilities of CMA by burning the organic constituents of the chemical (the acetate) and reducing NO to stable N[sub 2] The optimum conditions and the location of CMA introduction in the furnace will be identified. To achieve these goals water solutions of CMA or dry powders of CMA will be injected into hot air or gases simulating the furnace exhaust (containing CO[sub 2], SO[sub x] NO[sub x], H[sub 2]O, O[sub 2] etc.) and the composition of gaseous and solid products of the reaction will be monitored. The processes of burning the organic acetate as well as the calcination, sintering and sulfation of the remaining solid will be studied in detail.

Levendis, Y.A.; Wise, D.L.

1992-01-01T23:59:59.000Z

465

Geysers injection modeling  

DOE Green Energy (OSTI)

Our research is concerned with mathematical modeling techniques for engineering design and optimization of water injection in vapor-dominated systems. The emphasis in the project has been on the understanding of physical processes and mechanisms during injection, applications to field problems, and on transfer of numerical simulation capabilities to the geothermal community. This overview summarizes recent work on modeling injection interference in the Southeast Geysers, and on improving the description of two-phase flow processes in heterogeneous media.

Pruess, K.

1994-04-01T23:59:59.000Z

466

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

467

Underground coal gasification using oxygen and steam  

Science Conference Proceedings (OSTI)

In this paper, through model experiment of the underground coal gasification, the effects of pure oxygen gasification, oxygen-steam gasification, and moving-point gasification methods on the underground gasification process and gas quality were studied. Experiments showed that H{sub 2} and CO volume fraction in product gas during the pure oxygen gasification was 23.63-30.24% and 35.22-46.32%, respectively, with the gas heating value exceeding 11.00 MJ/m{sup 3}; under the oxygen-steam gasification, when the steam/oxygen ratio stood at 2: 1, gas compositions remained virtually stable and CO + H{sub 2} was basically between 61.66 and 71.29%. Moving-point gasification could effectively improve the changes in the cavity in the coal seams or the effects of roof inbreak on gas quality; the ratio of gas flowing quantity to oxygen supplying quantity was between 3.1:1 and 3.5:1 and took on the linear changes; on the basis of the test data, the reasons for gas quality changes under different gasification conditions were analyzed.

Yang, L.H.; Zhang, X.; Liu, S. [China University of Mining & Technology, Xuzhou (China)

2009-07-01T23:59:59.000Z

468

Guide for the Application of Distributed Fiber Optic Sensing to Underground Power Cables  

Science Conference Proceedings (OSTI)

BackgroundTemperature measurements using junctions of two dissimilar metals a thermocouple have been around since the 1800s. The thermocouple was relatively simple to configure, rugged, and reliable, and has been applied for many years to all sorts of process controls, as well as used for temperature monitoring on underground cable systems since the 1950s. Thermocouples would be fitted to locations that were anticipated to be hot spots. Unfortunately, ...

2012-11-14T23:59:59.000Z

469

Cash, Money Laundering, and the Size of Underground Economy  

E-Print Network (OSTI)

Givenavastempiricalevidencethatcashiswidelyusedinthe underground economy, inter-governmental bodies like FATF recommend policy measures aimed at limitation of cash and at combat of money laundering. We show that there is no simple monotone relationship between policy and the size of underground economy, so that the policy has at best a limited scope.

Alexei Deviatov

2009-01-01T23:59:59.000Z

470

Underground Transmission Construction: Vault and Manhole Design and Current Practices  

Science Conference Proceedings (OSTI)

Underground transmission (UT) cable systems are alternatives to overhead transmission lines, especially if the costs in design and construction of the UT cable systems are further reduced. Among the major activities of an underground transmission cable project, vault (manhole) designs and related safety issues need to be addressed. Manhole design and construction account for one of the major costs in a cable project.

2009-12-08T23:59:59.000Z

471

Permanent Closure of the TAN-664 Underground Storage Tank  

SciTech Connect

This closure package documents the site assessment and permanent closure of the TAN-664 gasoline underground storage tank in accordance with the regulatory requirements established in 40 CFR 280.71, 'Technical Standards and Corrective Action Requirements for Owners and Operators of Underground Storage Tanks: Out-of-Service UST Systems and Closure.'

Bradley K. Griffith

2011-12-01T23:59:59.000Z

472

Underground Event Mitigation: State-of-Science Workshop Report  

Science Conference Proceedings (OSTI)

This report summarizes a workshop on underground event mitigation held in Phoenix, Arizona, in October 2002. EPRI sponsored the workshop to present a comprehensive review of the state of the science and knowledge of underground events and mitigation measures and to provide a forum for discussion of future needs of the utility industry and directions for further EPRI-sponsored work in this area.

2002-11-25T23:59:59.000Z

473

,"U.S. Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground Storage (Base...

474

Tennessee Underground Natural Gas Storage - All Operators  

U.S. Energy Information Administration (EIA) Indexed Site

1 2002 2003 2004 2005 2006 View History Net Withdrawals -337 131 9 -42 426 16 1968-2006 Injections 556 63 336 262 0 1968-2005 Withdrawals 219 194 344 220 426 16 1968-2006...

475

Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alabama Underground Storage Tank And Wellhead Protection Act Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) Alabama Underground Storage Tank And Wellhead Protection Act (Alabama) < Back Eligibility Commercial Construction Industrial Municipal/Public Utility Savings Category Buying & Making Electricity Water Home Weatherization Program Info State Alabama Program Type Environmental Regulations The department, acting through the commission, is authorized to promulgate rules and regulations governing underground storage tanks and is authorized to seek the approval of the United States Environmental Protection Agency to operate the state underground storage tank program in lieu of the federal program. In addition to specific authorities provided by this chapter, the department is authorized, acting through the commission, to

476

The Strip and Underground Mine Reclamation Act (Montana) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) The Strip and Underground Mine Reclamation Act (Montana) < Back Eligibility Utility Investor-Owned Utility Industrial Construction Municipal/Public Utility Installer/Contractor Rural Electric Cooperative Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Environmental Quality The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources from strip and underground mining. This Act imposes permitting and operating restrictions on strip and underground mining activities for coal and uranium, and authorizes the Department of Environmental Quality to administer a

477

Please cite this article in press as: Preisig, M., Prvost, J.H., Coupled multi-phase thermo-poromechanical effects. Case study: CO2 injection at In Salah, Algeria. Int. J. Greenhouse Gas Control (2011), doi:10.1016/j.ijggc.2010.12.006  

E-Print Network (OSTI)

-poromechanical effects. Case study: CO2 injection at In Salah, Algeria. Int. J. Greenhouse Gas Control (2011), doi:10 of Greenhouse Gas Control xxx (2011) xxx­xxx Contents lists available at ScienceDirect International Journal of Greenhouse Gas Control journal homepage: www.elsevier.com/locate/ijggc Coupled multi-phase thermo

Prevost, Jean-Herve

478

Industrial hygiene aspects of underground oil shale mining  

SciTech Connect

Health hazards associated with underground oil shale mining are summarized in this report. Commercial oil shale mining will be conducted on a very large scale. Conventional mining techniques of drilling, blasting, mucking, loading, scaling, and roof bolting will be employed. Room-and-pillar mining will be utilized in most mines, but mining in support of MIS retorting may also be conducted. Potential health hazards to miners may include exposure to oil shale dusts, diesel exhaust, blasting products, gases released from the oil shale or mine water, noise and vibration, and poor environmental conditions. Mining in support of MIS retorting may in addition include potential exposure to oil shale retort offgases and retort liquid products. Based upon the very limited industrial hygiene surveys and sampling in experimental oil shale mines, it does not appear that oil shale mining will result in special or unique health hazards. Further animal toxicity testing data could result in reassessment if findings are unusual. Sufficient information is available to indicate that controls for dust will be required in most mining activities, ventilation will be necessary to carry away gases and vapors from blasting and diesel equipment, and a combination of engineering controls and personal protection will likely be required for control of noise. Recommendations for future research are included.

Hargis, K.M.; Jackson, J.O.

1982-01-01T23:59:59.000Z

479

U.S. Natural Gas Salt Underground Storage Activity-Injects (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 10,956 12,444 13,738 13,524 14,931 10,472 12,153 9,236 12,757 10,248 10,991 10,792 1995 13,745 13,232 15,992 17,283 17,654 14,528 10,998 9,778 23,267 21,484 16,206 20,016 1996 23,488 23,256 21,012 29,831 18,909 20,523 20,268 20,540 22,624 16,908 15,716 25,394 1997 20,945 14,876 21,608 21,581 27,492 22,410 15,072 22,801 26,605 29,839 25,383 18,699 1998 18,091 17,783 23,444 30,168 25,873 21,482 26,158 24,084 24,200 44,723 22,501 18,461 1999 19,390 16,158 17,906 28,378 29,410 22,024 16,494 23,088 23,680 23,005 21,254 18,866 2000 15,558 22,648 23,516 24,379 27,001 30,582 29,501 23,710 30,559 28,773 21,222 18,466

480

U.S. Natural Gas Non-Salt Underground Storage Injections (Million Cubic  

U.S. Energy Information Administration (EIA) Indexed Site

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1994 23,610 37,290 91,769 272,229 412,511 370,551 398,280 363,275 332,730 213,939 94,314 43,538 1995 30,839 30,821 88,264 159,247 351,714 395,761 348,399 282,995 319,462 252,016 79,450 32,731 1996 25,996 73,383 59,375 196,997 354,267 389,563 397,787 379,756 375,662 258,861 74,521 60,957 1997 47,422 39,996 108,965 183,536 334,707 384,856 345,606 355,687 353,354 264,545 87,529 26,783 1998 51,238 56,722 112,635 249,644 407,102 357,628 345,321 311,891 273,558 263,342 114,499 64,208 1999 38,695 47,084 68,665 181,533 351,657 326,986 281,583 288,182 333,841 224,232 151,411 43,988 2000 43,575 60,268 115,756 167,409 285,859 318,412 342,631 280,889 339,865 300,117 86,316 47,273

Note: This page contains sample records for the topic "underground injection control" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Method of pressurizing and stabilizing rock by periodic and repeated injections of a settable fluid of finite gel strength  

DOE Patents (OSTI)

A finite region of overpressure can be created in solid underground formations by the periodic injection of a fluid that has finite gel strength that subsequently, after each injection, partially sets--i.e., equivalently becomes a very much stronger gel. A region of overpressure is a region in which the static, locked in pressure is larger than what was there before. A region of overpressure can be used to prevent a roof of a tunnel from caving by adding compressive stresses in the roof. A sequence of regions of overpressure can be used to lift an arch or dome underground, squeeze off water or gas flows, stabilize dams, foundations, large underground rooms, etc. In general, the stress or pressure distribution in rock can be altered and engineered in a fashion that is more advantageous than what would have been the case without overstressing. 3 figs.

Colgate, S.A.

1983-01-25T23:59:59.000Z

482

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

483

Geostock's containment method reduces underground storage leakage  

SciTech Connect

Geostock's hydraulic containment method of safely containing liquid hydrocarbons in unlined underground storage caverns, so that there is no danger of leakage into the surrounding ground makes use of the surrounding ground water, whose static head is kept higher than the pressure of the stored product. For leakage prevention, the static head must be larger than the potential of the stored product plus a safety margin. The safety margin involves a shape factor, dependent on the size and shape of the cavity (examples are given), and a factor which allows for unforeseen conditions. The depth required for the ground water to possess a sufficiently large static head depends on the type and pressure of the stored product, the hydrogeological environment, and the geometry of the facility. Geostock has used the hydraulic containment method in a domestic heating oil facility at May sur Orne, Fr., and also in three propane storage facilities in France.

Not Available

1980-06-23T23:59:59.000Z

484

Yet Another Fault Injection Technique : by Forward Body Biasing Injection  

E-Print Network (OSTI)

expensive fault injection tech- niques, like clock or voltage glitches, are well taken into accountYet Another Fault Injection Technique : by Forward Body Biasing Injection K. TOBICH1,2, P. MAURINE1 Injection, Electromag- netic Attacks, RSA, Chinese Remainder Theorem 1 Introduction Fault injection

485

THE RHIC INJECTION SYSTEM.  

SciTech Connect

The RHIC injection system has to transport beam from the AGS-to-RHIC transfer line onto the closed orbits of the RHIC Blue and Yellow rings. This task can be divided into three problems. First, the beam has to be injected into either ring. Second, once injected the beam needs to be transported around the ring for one turn. Third, the orbit must be closed and coherent beam oscillations around the closed orbit should be minimized. We describe our solutions for these problems and report on system tests conducted during the RHIC Sextant test performed in 1997. The system will be fully commissioned in 1999.

FISCHER,W.; GLENN,J.W.; MACKAY,W.W.; PTITSIN,V.; ROBINSON,T.G.; TSOUPAS,N.

1999-03-29T23:59:59.000Z

486

Integrated injection-locked semiconductor diode laser  

DOE Patents (OSTI)

A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet. 18 figures.

Hadley, G.R.; Hohimer, J.P.; Owyoung, A.

1991-02-19T23:59:59.000Z

487

Integrated injection-locked semiconductor diode laser  

DOE Patents (OSTI)

A continuous wave integrated injection-locked high-power diode laser array is provided with an on-chip independently-controlled master laser. The integrated injection locked high-power diode laser array is capable of continuous wave lasing in a single near-diffraction limited output beam at single-facet power levels up to 125 mW (250 mW total). Electronic steering of the array emission over an angle of 0.5 degrees is obtained by varying current to the master laser. The master laser injects a laser beam into the slave array by reflection of a rear facet.

Hadley, G. Ronald (Albuquerque, NM); Hohimer, John P. (Albuquerque, NM); Owyoung, Adelbert (Albuquerque, NM)

1991-01-01T23:59:59.000Z

488

Underground Storage Tank Act (West Virginia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Act (West Virginia) Act (West Virginia) Underground Storage Tank Act (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Siting and Permitting Provider Department of Environmental Protection New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored therein, which may occur as

489

Underground nuclear energy complexes - technical and economic advantages  

SciTech Connect

Underground nuclear power plant parks have been projected to be economically feasible compared to above ground instalIations. This paper includes a thorough cost analysis of the savings, compared to above ground facilities, resulting from in-place entombment (decommissioning) of facilities at the end of their life. reduced costs of security for the lifetime of the various facilities in the underground park. reduced transportation costs. and reduced costs in the operation of the waste storage complex (also underground). compared to the fair share of the costs of operating a national waste repository.

Myers, Carl W [Los Alamos National Laboratory; Kunze, Jay F [IDAHO STATE UNIV; Giraud, Kellen M [BABECOCK AND WILCOX; Mahar, James M [IDAHO STATE UNIV

2010-01-01T23:59:59.000Z

490

Applications of TIERRAS for underground particle cascade simulations  

SciTech Connect

In this communication we present some example applications of TIERRAS, a software package for the simulation of High Energy particle cascades underground and underwater. The examples illustrate how this package can be used to study the phenomenology of particle cascades from Extended Air Showers propagated several meters underground, including the effect of the surface ''albedo'' particles that are generated when a cascade reaches ground level. These up-going particles can have a measurable effect on surface or shallow underground detectors. Finally, to show the package ability ro perform simulations of particle cascades in ice, an application for neutrino radio detection is briefly introduced.

Tueros, M. J.

2010-11-24T23:59:59.000Z

491

Smart Materials for Fuel Injection Actuation  

DOE Green Energy (OSTI)

The demands of stringent emissions and a robust engine dynamic torque response characteristic require innovative, accurate and repeatable control of the fuel injection event. Recent advances in piezo-material actuators have warranted the pursuit of its application to advanced heavy-duty truck fuel injection systems. This presentation will report on design and testing of an advanced electronic unit injector for the Detroit Diesel Series 60 truck engine.

Hakim, Nabil

2000-08-20T23:59:59.000Z

492

Illinois CO2 Injection Project Moves Another Step Forward | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward Illinois CO2 Injection Project Moves Another Step Forward March 15, 2010 - 1:00pm Addthis Washington, DC - The recent completion of a three-dimensional (3-D) seismic survey at a large Illinois carbon dioxide (CO2) injection test site is an important step forward for the carbon capture and storage (CCS) project's planned early 2011 startup. The survey - essential to determine the geometry and internal structures of the deep underground saline reservoir where CO2 will be injected - was completed by the Midwest Geological Sequestration Consortium (MGSC), one of seven regional partnerships created by the U.S. Department of Energy (DOE) to advance CCS technologies nationwide. CCS is seen by many experts as a

493

An optimal leakage detection strategy for underground pipelines using magnetic induction-based sensor networks  

Science Conference Proceedings (OSTI)

It is difficult to detect small leakages in underground pipelines with high accuracy and low-energy cost due to the inaccessible underground environments. To this end, the Magnetic Induction (MI)-based wireless sensor network for underground pipeline ... Keywords: deployment and activation of sensors, energy consumption, estimation accuracy, leakage detection and localization, underground pipelines

Xin Tan, Zhi Sun

2013-08-01T23:59:59.000Z

494

Analysis of the Changing Microbial Phase in an Underground River Anaerobic Digestion Reactor  

Science Conference Proceedings (OSTI)

The underground river anaerobic fermentation system was adopted in this experiment was that a pipeline buried underground just like an underground river. The hydrolysis, acidification and degradation of initial fermentation were carried out when raw ... Keywords: underground river anaerobic digestion reactor, microbial phase, methane-producing bacteria, dominant bacteria

Bingbing Li; Xiao Bo; Zhiquan Hu

2009-10-01T23:59:59.000Z

495

A Motion Control Algorithm for a Continuous Mining Machine Based on a Hierarchical Real-Time Control System Design  

E-Print Network (OSTI)

of underground coal mining. The development of control architectures for the control of the movement involved in the support of the United States Bureau of Mines' computer-assisted underground coal mining procedure for a hierarchical computer-assisted coal mining control system. Based on this previous work

496

A Motion Control Algorithm for a Continuous Mining Machine Based on a Hierarchical RealTime Control System Design  

E-Print Network (OSTI)

of underground coal mining. The development of control architectures for the control of the movement involved in the support of the United States Bureau of Mines' computer­assisted underground coal mining procedure for a hierarchical computer­assisted coal mining control system. Based on this previous work

497

Utah Natural Gas in Underground Storage - Change in Working Gas...  

U.S. Energy Information Administration (EIA) Indexed Site

Percent) Utah Natural Gas in Underground Storage - Change in Working Gas from Same Month Previous Year (Percent) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 48.7 19.2...

498

Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Base Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Base Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 46,944 46,944...

499

Utah Natural Gas in Underground Storage (Working Gas) (Million...  

Annual Energy Outlook 2012 (EIA)

Working Gas) (Million Cubic Feet) Utah Natural Gas in Underground Storage (Working Gas) (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1990 12,862 9,993...

500

EIA - Natural Gas Pipeline Network - Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA) Indexed Site

Storage Storage About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Underground Natural Gas Storage Overview | Regional Breakdowns Overview Underground natural gas storage provides pipelines, local distribution companies, producers, and pipeline shippers with an inventory management tool, seasonal supply backup, and access to natural gas needed to avoid imbalances between receipts and deliveries on a pipeline network. There are three principal types of underground storage sites used in the United States today. They are: · depleted natural gas or oil fields (326), · aquifers (43), or · salt caverns (31). In a few cases mine caverns have been used. Most underground storage facilities, 82 percent at the beginning of 2008, were created from reservoirs located in depleted natural gas production fields that were relatively easy to convert to storage service, and that were often close to consumption centers and existing natural gas pipeline systems.