Powered by Deep Web Technologies
Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Underground Coal Mine Monitoring with Wireless Sensor Networks  

E-Print Network [OSTI]

10 Underground Coal Mine Monitoring with Wireless Sensor Networks MO LI and YUNHAO LIU Hong Kong University of Science and Technology Environment monitoring in coal mines is an important application queries under instable circumstances. A prototype is deployed with 27 mica2 motes in a real coal mine. We

Liu, Yunhao

2

Underground coal mining is an industry well suited for robotic automation. Human operators are severely hampered in  

E-Print Network [OSTI]

Abstract Underground coal mining is an industry well suited for robotic automation. Human operators approach meets the requirements for cutting straight entries and mining the proper amount of coal per cycle. Introduction The mining of soft materials, such as coal, is a large industry. Worldwide, a total of 435 million

Stentz, Tony

3

Coal Mining (Iowa)  

Broader source: Energy.gov [DOE]

These sections describe procedures for coal exploration and extraction, as well as permitting requirements relating to surface and underground coal mining. These sections also address land...

4

A feasibility study for underground coal gasification at Krabi Mine, Thailand  

SciTech Connect (OSTI)

A study to evaluate the technical, economical, and environmental feasibility of underground coal gasification (UCG) in the Krabi Mine, Thailand, was conducted by the Energy and Environmental Research Center (EERC) in cooperation with B.C. Technologies (BCT) and the Electricity Generating Authority of Thailand (EGAT). The selected coal resource was found suitable to fuel a UCG facility producing 460,000 MJ/h (436 million Btu/h) of 100--125 Btu/scf gas for 20 years. The raw UCG gas could be produced for a selling price of $1.94/MMBtu. The UCG facility would require a total investment of $13.8 million for installed capital equipment, and annual operating expenses for the facility would be $7.0 million. The UCG gas could be either cofired in a power plant currently under construction or power a 40 MW simple-cycle gas turbine or a 60 MW combined-cycle power plant.

Solc, J.; Steadman, E.N. [Energy and Environmental Research Center, Grand Forks, ND (United States); Boysen, J.E. [BC Technologies, Laramie, WY (United States)

1998-12-31T23:59:59.000Z

5

Feasibility study for underground coal gasification at the Krabi Coal Mine site, Thailand. Final report  

SciTech Connect (OSTI)

This study, conducted by Energy and Environmental Research Center, was funded by the U.S Trade and Development Agency. The report summarizes the accomplishments of field, analytical data evaluation and modeling activities focused on assessment of underground coal gasification (UCG) feasibility at Krabi over a two year period. The overall objective of the project was to determine the technical issues, environmental impact, and economic of developing and commercializing UCG at the site in Krabi. The report contains an Executive Summary followed by these chapters: (1) Project Overview; (2) Project Site Characterization; (3) Inorganic and Thermal Materials Characterization; (4) Technical and Economic Feasibility of UCG At the Krabi Site; (5) Conclusions and Recommendations; (6) Acknowledgments; (7) References.

Boysen, J.; Sole, J.; Schmit, C.R.; Harju, J.A.; Young, B.C.

1997-01-01T23:59:59.000Z

6

Feasibility study for underground coal gasification at the Krabi coal mine site, Thailand: Volume 1. Progress report, December 1--31, 1995; Export trade information  

SciTech Connect (OSTI)

The report, conducted by Energy and Environmental Research Center, was funded by the US Trade and Development Agency. The objective of this report was to determine the technical, environmental and economic feasibility of developing, demonstrating, and commercializing underground coal gasification (UCG) at the Krabi coal mine site in Southern Thailand. This is Volume 1, the Progress Report for the period December 1, 1995, through December 31, 1995.

Young, B.C.; Schmit, C.R.

1996-01-01T23:59:59.000Z

7

DEVELOPMENT AND DEMONSTRATION OF A PILOT SCALE FACILITY FOR FABRICATION AND MARKETING OF LIGHTWEIGHT-COAL COMBUSTION BYPRODUCTS-BASED SUPPORTS AND MINE VENTILATION BLOCKS FOR UNDERGROUND MINES  

SciTech Connect (OSTI)

The overall goal of this program was to develop a pilot scale facility, and design, fabricate, and market CCBs-based lightweight blocks for mine ventilation control devices, and engineered crib elements and posts for use as artificial supports in underground mines to replace similar wooden elements. This specific project was undertaken to (1) design a pilot scale facility to develop and demonstrate commercial production techniques, and (2) provide technical and marketing support to Fly Lite, Inc to operate the pilot scale facility. Fly Lite, Inc is a joint venture company of the three industrial cooperators who were involved in research into the development of CCBs-based structural materials. The Fly-Lite pilot scale facility is located in McLeansboro, Illinois. Lightweight blocks for use in ventilation stoppings in underground mines have been successfully produced and marketed by the pilot-scale facility. To date, over 16,000 lightweight blocks (30-40 pcf) have been sold to the mining industry. Additionally, a smaller width (6-inch) full-density block was developed in August-September 2002 at the request of a mining company. An application has been submitted to Mine Safety and Health Administration for the developed block approval for use in mines. Commercialization of cribs and posts has also been accomplished. Two generations of cribs have been developed and demonstrated in the field. MSHA designated them suitable for use in mines. To date, over 2,000 crib elements have been sold to mines in Illinois. Two generations of posts were also demonstrated in the field and designated as suitable for use in mines by MSHA. Negotiations are currently underway with a mine in Illinois to market about 1,000 posts per year based on a field demonstration in their mine. It is estimated that 4-5 million tons CCBs (F-fly ash or FBC fly ash) may be utilized if the developed products can be commercially implemented in U.S. coal and non-coal mines.

Yoginder P. Chugh

2002-10-01T23:59:59.000Z

8

Underground Mine Communication and Tracking Systems : A Survey  

E-Print Network [OSTI]

the mine. The self ignition of coal seams results from an exothermic reaction of coal and oxygen from the presence of pillars and undulations following the mineral seam. These underground structures

New South Wales, University of

9

Underground Coal Thermal Treatment  

SciTech Connect (OSTI)

The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coalâ??s carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO{sub 2} sequestration. Efforts focused on: â?¢ Constructing a suite of three different coal pyrolysis reactors. These reactors offer the ability to gather heat transfer, mass transfer and kinetic data during coal pyrolysis under conditions that mimic in situ conditions (Subtask 6.1). â?¢ Studying the operational parameters for various underground thermal treatment processes for oil shale and coal and completing a design matrix analysis for the underground coal thermal treatment (UCTT). This analysis yielded recommendations for terms of targeted coal rank, well orientation, rubblization, presence of oxygen, temperature, pressure, and heating sources (Subtask 6.2). â?¢ Developing capabilities for simulating UCTT, including modifying the geometry as well as the solution algorithm to achieve long simulation times in a rubblized coal bed by resolving the convective channels occurring in the representative domain (Subtask 6.3). â?¢ Studying the reactive behavior of carbon dioxide (CO{sub 2}) with limestone, sandstone, arkose (a more complex sandstone) and peridotite, including mineralogical changes and brine chemistry for the different initial rock compositions (Subtask 6.4). Arkose exhibited the highest tendency of participating in mineral reactions, which can be attributed to the geochemical complexity of its initial mineral assemblage. In experiments with limestone, continuous dissolution was observed with the release of CO{sub 2} gas, indicated by the increasing pressure in the reactor (formation of a gas chamber). This occurred due to the lack of any source of alkali to buffer the solution. Arkose has the geochemical complexity for permanent sequestration of CO{sub 2} as carbonates and is also relatively abundant. The effect of including NH{sub 3} in the injected gas stream was also investigated in this study. Precipitation of calcite and trace amounts of ammonium zeolites was observed. A batch geochemical model was developed using Geochemists Workbench (GWB). Degassing effect in the experiments was corrected using the sliding fugacity model in GWB. Experimental and simulation results were compared and a reasonable agreement between the two was observed.

P. Smith; M. Deo; E. Eddings; A. Sarofim; K. Gueishen; M. Hradisky; K. Kelly; P. Mandalaparty; H. Zhang

2011-10-30T23:59:59.000Z

10

The production of acid mine drainage (AMD) from sur-face and underground coal mines in northern West Virginia  

E-Print Network [OSTI]

West Virginia is a major environmental problem and continues to receive much attention in affected (Figure 1) has produced some of the worst AMD problems in West Virginia surface mines due to low pH, high was successfully completed by Nobes and McCahon (1999). Data were collected over a mine spoil area in northern West

Wilson, Thomas H.

11

Coal conversion siting on coal mined lands: water quality issues  

SciTech Connect (OSTI)

The siting of new technology coal conversion facilities on land disturbed by coal mining results in both environmental benefits and unique water quality issues. Proximity to mining reduces transportation requirements and restores disrupted land to productive use. Uncertainties may exist, however, in both understanding the existing site environment and assessing the impact of the new technology. Oak Ridge National Laboratory is currently assessing the water-related impacts of proposed coal conversion facilities located in areas disturbed by surface and underground coal mining. Past mining practices, leaving highly permeable and unstable fill, may affect the design and quality of data from monitoring programs. Current mining and dewatering, or past underground mining may alter groundwater or surface water flow patterns or affect solid waste disposal stability. Potential acid-forming material influences the siting of waste disposal areas and the design of grading operations. These and other problems are considered in relation to the uncertainties and potentially unique problems inherent in developing new technologies.

Triegel, E.K.

1980-01-01T23:59:59.000Z

12

Coal Mining Tax Credit (Arkansas)  

Broader source: Energy.gov [DOE]

The Coal Mining Tax Credit provides an income or insurance premium tax credit of $2.00 per ton of coal mined, produced or extracted on each ton of coal mined in Arkansas in a tax year. An...

13

Coal Mining Regulations (Kentucky)  

Broader source: Energy.gov [DOE]

Kentucky Administrative Regulation Title 405 chapters 1, 2, 3, 5, 7, 8, 10, 12, 16, 18 and 20 establish the laws governing coal mining in the state.

14

2009 underground/longwall mining buyer's guide  

SciTech Connect (OSTI)

The guide lists US companies supplying equipment and services to underground mining operations. An index by product category is included.

NONE

2009-06-15T23:59:59.000Z

15

1 INTRODUCTION Appalachian coal recovered during mining fre-  

E-Print Network [OSTI]

of Appalachian underground coal mining (Newman 2003). Storage of coal processing waste is limited to above ground- ground room-and-pillar or longwall coal production do not allow for the separation of waste during coal. Such an analysis requires the ability to predict potential surface ground movements, both vertical (i

16

DOE - Office of Legacy Management -- Hoe Creek Underground Coal...  

Office of Legacy Management (LM)

Hoe Creek Underground Coal Gasification Site - 045 FUSRAP Considered Sites Site: Hoe Creek Underground Coal Gasification Site (045) Designated Name: Alternate Name: Location:...

17

Coal Mine Safety Act (Virginia)  

Broader source: Energy.gov [DOE]

This Act is the primary legislation pertaining to coal mine safety in Virginia. It contains information on safety rules, safety standards and required certifications for mine workers, prohibited...

18

Surface Coal Mining Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The Surface Coal Mining Regulations are a combination of permitting requirements and environmental regulations that limit how, where and when coal can be mined. It protects lands that are under...

19

Montana Coal Mining Code (Montana)  

Broader source: Energy.gov [DOE]

The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

20

Emissions and Durability of Underground Mining Diesel Particulate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Durability of Underground Mining Diesel Particulate Filter Applications Emissions and Durability of Underground Mining Diesel Particulate Filter Applications Presentation given...

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Coalbed methane production enhancement by underground coal gasification  

SciTech Connect (OSTI)

The sub-surface of the Netherlands is generally underlain by coal-bearing Carboniferous strata at greater depths (at many places over 1,500 m). These coal seams are generally thinner than 3 meter, occur in groups (5--15) within several hundred meters and are often fairly continuous over many square kilometers. In many cases they have endured complex burial history, influencing their methane saturation. In certain particular geological settings, a high, maximum coalbed methane saturation, may be expected. Carboniferous/Permian coals in the Tianjin-region (China) show many similarities concerning geological settings, rank and composition. Economical coalbed methane production at greater depths is often obstructed by the (very) low permeabilities of the coal seams as with increasing depth the deformation of the coal reduces both its macro-porosity (the cleat system) and microporosity. Experiments in abandoned underground mines, as well as after underground coal gasification tests indicate ways to improve the prospects for coalbed methane production in originally tight coal reservoirs. High permeability areas can be created by the application of underground coal gasification of one of the coal seams of a multi-seam cycle with some 200 meter of coal bearing strata. The gasification of one of the coal seams transforms that seam over a certain area into a highly permeable bed, consisting of coal residues, ash and (thermally altered) roof rubble. Additionally, roof collapse and subsidence will destabilize the overburden. In conjunction this will permit a better coalbed methane production from the remaining surrounding parts of the coal seams. Moreover, the effects of subsidence will influence the stress patterns around the gasified seam and this improves the permeability over certain distances in the coal seams above and below. In this paper the effects of the combined underground coal gasification and coalbed methane production technique are regarded for a single injection well. Known geotechnical aspects are combined with results from laboratory experiments on compaction of thermally treated rubble. An axi-symmetric numerical model is used to determine the effects induced by the gasified coal seam. The calculation includes the rubble formation, rubble compaction and induced stress effects in the overlying strata. Subsequently the stress effects are related to changes in coal permeability, based on experimental results of McKee et al.

Hettema, M.H.H.; Wolf, K.H.A.A.; Neumann, B.V.

1997-12-31T23:59:59.000Z

22

Evaluating the feasibility of underground coal gasification in Thailand  

SciTech Connect (OSTI)

Underground coal gasification (UCG) is a clean coal technology that converts in situ coal into a low- to medium-grade product gas without the added expense of mining and reclamation. Potential candidates for UCG are those coal resources that are not economically recoverable or that are otherwise unacceptable for conventional coal utilization processes. The Energy and Environmental Research Center (EERC), through the sponsorship of the US Trade and Development Agency and in collaboration with the Electricity Generating Authority of Thailand (EGAT), is undertaking a feasibility study for the application of UCG in the Krabi coal mining area, 620 miles south of Bangkok in Thailand. The EERC`s objective for this project is to determine the technical, environmental, and economic feasibility of demonstrating and commercializing UCG at a selected site in the Krabi coal mining area. This paper addresses the preliminary developments and ongoing strategy for evaluating the selected UCG site. The technical, environmental, and economic factors for successful UCG operation are discussed, as well as the strategic issues pertaining to future energy expansion in southern Thailand.

Young, B.C.; Harju, J.A.; Schmit, C.R.; Solc, J. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuehnel, R.A. [International Inst. for Aerospace Survey and Earth Sciences, Delft (Netherlands)

1996-12-31T23:59:59.000Z

23

Overall requirements for an advanced underground coal extraction system  

SciTech Connect (OSTI)

This report presents overall requirements on underground mining systems suitable for coal seams exploitable in the year 2000, with particular relevance to the resources of Central Appalachia. These requirements may be summarized as follows: (1) Production Cost: demonstrate a return on incremental investment of 1.5 to 2.5 times the value required by a low-risk capital project. (2) Miner Safety: achieve at least a 50% reduction in deaths and disabling injuries per million man-hours. (3) Miner Health: meet the intent of all applicable regulations, with particular attention to coal dust, carcinogens, and mutagens; and with continued emphasis on acceptable levels of noise and vibration, lighting, humidity and temperature, and adequate work space. (4) Environmental Impact: maintain the value of mined and adjacent lands at the pre-mining value following reclamation; mitigation of off-site impacts should not cost more than the procedures used in contemporary mining. (5) Coal Conservation: the recovery of coal from the seam being mined should be at least as good as the best available contemporary technology operating in comparable conditions. No significant trade-offs between production cost and other performance indices were found.

Goldsmith, M.; Lavin, M.L.

1980-10-15T23:59:59.000Z

24

Method of underground mining by pillar extraction  

DOE Patents [OSTI]

A method of sublevel caving and pillar and top coal extraction for mining thick coal seams includes the advance mining of rooms and crosscuts along the bottom of a seam to a height of about eight feet, and the retreat mining of the top coal from the rooms, crosscuts and portions of the pillars remaining from formation of the rooms and cross-cuts. In the retreat mining, a pocket is formed in a pillar, the top coal above the pocket is drilled, charged and shot, and then the fallen coal is loaded by a continuous miner so that the operator remains under a roof which has not been shot. The top coal from that portion of the room adjacent the pocket is then mined, and another pocket is formed in the pillar. The top coal above the second pocket is mined followed by the mining of the top coal of that portion of the room adjacent the second pocket, all by use of a continuous miner which allows the operator to remain under a roof portion which has not been shot.

Bowen, Ray J. (1879 Delann, Salt Lake City, UT 84121); Bowen, William R. (1636 Sunnydale La., Salt Lake City, UT 84108)

1980-08-12T23:59:59.000Z

25

Coal Mining on Pitching Seams  

E-Print Network [OSTI]

. 1915* App r ov e d: Department of Mining Engineering* COAL MUTING ON PITCHING SEAMS A THESIS SUBMITTED TO THE FACULTY OP THE SCHOOL OP ENGINEERING OF THE UNIVERSITY OP KANSAS for THE DEGREE OF ENGINEER OF MINES BY GEORGE MACMILLAN BROWN 1915... PREFACE In the following dissertation on the subject of "Coal Mining in Pitching Beams" the writer desires to describe more particularly those methods of mining peculiar to coal mines in Oklahoma, with which he has been more or less familiar during...

Brown, George MacMillan

1915-01-01T23:59:59.000Z

26

Arkansas Surface Coal Mining Reclamation Act (Arkansas)  

Broader source: Energy.gov [DOE]

The Arkansas Surface Coal Mining Reclamation Act authorizes the state to develop, adopt, issue and amend rules and regulations pertaining to surface coal mining and reclamation operations. These...

27

The Public Perceptions of Underground Coal Gasification (UCG)  

E-Print Network [OSTI]

The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Simon Shackley #12;The Public Perceptions of Underground Coal Gasification (UCG): A Pilot Study Dr Simon Shackley of Underground Coal Gasification (UCG) in the United Kingdom. The objectives were to identify the main dangers

Watson, Andrew

28

Coal mine methane global review  

SciTech Connect (OSTI)

This is the second edition of the Coal Mine Methane Global Overview, updated in the summer of 2008. This document contains individual, comprehensive profiles that characterize the coal and coal mine methane sectors of 33 countries - 22 methane to market partners and an additional 11 coal-producing nations. The executive summary provides summary tables that include statistics on coal reserves, coal production, methane emissions, and CMM projects activity. An International Coal Mine Methane Projects Database accompanies this overview. It contains more detailed and comprehensive information on over two hundred CMM recovery and utilization projects around the world. Project information in the database is updated regularly. This document will be updated annually. Suggestions for updates and revisions can be submitted to the Administrative Support Group and will be incorporate into the document as appropriate.

NONE

2008-07-01T23:59:59.000Z

29

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS  

E-Print Network [OSTI]

ANALYSIS OF METHANE PRODUCING COMMUNITIES WITHIN UNDERGROUND COAL BEDS by Elliott Paul Barnhart ..................................................................................14 Ability of the Consortium to Produce Methane from Coal and Metabolites ................16.............................................................................................21 Coal and Methane Production

Maxwell, Bruce D.

30

Preliminary report on LLNL mine seismicity deployment at the Twentymile Coal Mine  

SciTech Connect (OSTI)

This report summarizes the preliminary results of a just completed experiment at the Twentymile Coal Mine, operated by the Cyprus Amax Coal Company near Oak Creek, CO. The purpose of the experiment was to obtain local and regional seismic data from roof caves associated with long-wall mining activities and to use this data to help determine the effectiveness with which these events can be discriminated from underground nuclear explosions under a future Comprehensive Test Ban Treaty.

Walter, W.R.; Hunter, S.L.; Glenn, L.A.

1996-01-01T23:59:59.000Z

31

Surface Coal Mining Law (Missouri)  

Broader source: Energy.gov [DOE]

This law aims to provide for the regulation of coal mining in order to minimize or prevent its adverse effects, protect the environment to the extent possible, protect landowner rights, and...

32

Coal Mining Reclamation (North Dakota)  

Broader source: Energy.gov [DOE]

The Reclamation Division of the Public Service Commission is tasked with administering the regulation of surface coal mining and reclamation. Specific regulations can be found in article 69-05.2 of...

33

Method of locating underground mines fires  

DOE Patents [OSTI]

An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

Laage, Linneas (Eagam, MN); Pomroy, William (St. Paul, MN)

1992-01-01T23:59:59.000Z

34

The commercial feasibility of underground coal gasification in southern Thailand  

SciTech Connect (OSTI)

Underground Coal Gasification (UCG) is a clean coal technology with the commercial potential to provide low- or medium-Btu gas for the generation of electric power. While the abundance of economic coal and natural gas reserves in the United States of America (USA) has delayed the commercial development of this technology in the USA, potential for commercial development of UCG-fueled electric power generation currently exists in many other nations. Thailand has been experiencing sustained economic growth throughout the past decade. The use of UCG to provide electric power to meet the growing power demand appears to have commercial potential. A project to determine the commercial feasibility of UCG-fueled electric power generation at a site in southern Thailand is in progress. The objective of the project is to determine the commercial feasibility of using UCG for power generation in the Krabi coal mining area located approximately 1,000 kilometers south of Bangkok, Thailand. The project team has developed a detailed methodology to determine the technical feasibility, environmental acceptability, and commercial economic potential of UCG at a selected site. In the methodology, hydrogeologic conditions of the coal seam and surrounding strata are determined first. These results and information describing the local economic conditions are then used to assess the commercial potential of the UCG application. The methodology for evaluating the Krabi UCG site and current project status are discussed in this paper.

Solc, J.; Young, B.C.; Harju, J.A.; Schmit, C.R. [Univ. of North Dakota, Grand Forks, ND (United States). Energy and Environmental Research Center; Boysen, J.E. [B.C. Technologies, Ltd., Laramie, WY (United States); Kuhnel, R.A. [IIASES, Delft (Netherlands)

1996-12-31T23:59:59.000Z

35

Ground penetrating radar technique to locate coal mining related features: case studies in Texas  

E-Print Network [OSTI]

The goal of this research project is to identify the efficacy of the ground penetrating radar (GPR) technique in locating underground coal mine related subsidence features at Malakoff and Bastrop, Texas. The work at Malakoff has been done...

Save, Neelambari R

2006-04-12T23:59:59.000Z

36

Flow characteristics in underground coal gasification  

SciTech Connect (OSTI)

During the underground coal gasification field test at the Hoe Creek site No. 2, Wyoming, helium pulses were introduced to develop information to characterize the flow field, and to estimate the coefficients in dispersion models of the flow. Quantitative analysis of the tracer response curves shows an increasing departure from a plug flow regime with time because of the combined effects of the free and forced convection in addition to the complex non-uniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery and characteristic velocity, as well as the split of the gas between the parallel streams in the model. 17 refs.

Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

1982-01-01T23:59:59.000Z

37

Underground Coal Thermal Treatment Task 6 Topical Report, Utah Clean Coal Program  

SciTech Connect (OSTI)

The long-term objective of this task is to develop a transformational energy production technology by in- situ thermal treatment of a coal seam for the production of substitute natural gas and/or liquid transportation fuels while leaving much of the coal’s carbon in the ground. This process converts coal to a high-efficiency, low-greenhouse gas (GHG) emitting fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This task focused on three areas: • Experimental. The Underground Coal Thermal Treatment (UCTT) team focused on experiments at two scales, bench-top and slightly larger, to develop data to understand the feasibility of a UCTT process as well as to develop validation/uncertainty quantification (V/UQ) data for the simulation team. • Simulation. The investigators completed development of High Performance Computing (HPC) simulations of UCTT. This built on our simulation developments over the course of the task and included the application of Computational Fluid Dynamics (CFD)- based tools to perform HPC simulations of a realistically sized domain representative of an actual coal field located in Utah. • CO2 storage. In order to help determine the amount of CO2 that can be sequestered in a coal formation that has undergone UCTT, adsorption isotherms were performed on coals treated to 325, 450, and 600°C with slow heating rates. Raw material was sourced from the Sufco (Utah), Carlinville (Illinois), and North Antelope (Wyoming) mines. The study indicated that adsorptive capacity for the coals increased with treatment temperature and that coals treated to 325°C showed less or similar capacity to the untreated coals.

Smith, P.J.; Deo, M.; Edding, E.G.; Hradisky, M.; Kelly, K.E.; Krumm, R.; Sarofim, Adel; Wang, D.

2014-08-15T23:59:59.000Z

38

Safety in Mine Research EstablishmentPresent-day requirements for protection against fire in coal mines   

E-Print Network [OSTI]

Analysis of a statistical data shows that, on an average, about 50% of the total underground emergencies occurring in coal mines in the USSR are due to fires. Great attention is, therefore, paid in our country to the problem of protection against...

Kushnarev, A.; Koslyuk, A.; Petrov, P.

39

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

Y·~' Table 3-12. Coal Source State Mine Seam Wilsonville SRCAnalysis for Coal Underground Mines in 48-inch Seams - 1974Analysis for Coal Underground Mines in 72-inch Seams - 1974

Ferrell, G.C.

2010-01-01T23:59:59.000Z

40

Results from the third LLL underground coal gasification experiment at Hoe Creek  

SciTech Connect (OSTI)

A major objective of the US Energy Program is the development of processes to produce clean fuels from coal. Underground coal gasification is one of the most promising of these processes. If successful, underground coal gasification (UCG) would quadruple the proven reserves of the US coal. Cost for products produced from UCG are projected to be 65 to 75% of those from conventional coal conversion. Finally, UCG appears to possess environmental advantages since no mining is involved and there are less solid wastes produced. In this paper we describe results from the Hoe Creek No. 3 underground coal gasification test. The experiment employed a drilled channel between process wells spaced 130' apart. The drilled channel was enlarged by reverse combustion prior to forward gasification. The first week of forward gasification was carried out using air injection, during which 250 tons of coal were consumed yielding an average dry product gas heating value of 114 Btu/scf. Following this phase, steam and oxygen were injected (generally a 50-50 mixture) for 47 days, during which 3945 tons of coal were consumed at an average rate of 84 tons of coal per day and an average dry gas heating value of 217 Btu/scf. The average gas composition during the steam-oxygen phase was 37% H/sub 2/, 5% CH/sub 4/, 11% CO, and 44% CO/sub 2/. Gas recovery was approximately 82% during the test, and the average thermochemical efficiency was near 65%.

Hill, R.W.; Thorsness, C.B.; Cena, R.J.; Aiman, W.R.; Stephens, D.R.

1980-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Flow characteristics in underground coal gasification  

SciTech Connect (OSTI)

During the Hoe Creek No. 2 (Wyoming) underground-coal-gasification field test, researchers introduced helium pulses to characterize the flow field and to estimate the coefficients in dispersion models of the flow. Flow models such as the axial-dispersion and parallel tanks-in-series models allowed interpretation of the in situ combustion flow field from the residence time distribution of the tracer gas. A quantitative analysis of the Hoe Creek tracer response curves revealed an increasing departure from a plug-flow regime with time, which was due to the combined effects of the free and forced convection in addition to the complex nonuniformity of the flow field. The Peclet number was a function of temperature, pressure, gas recovery, and characteristic velocity, as well as the split of the gas between the parallel streams in the model.

Chang, H.L.; Himmelblau, D.M.; Edgar, T.F.

1982-01-01T23:59:59.000Z

42

Demonstration of coal mine illumination systems. Open file report (final) October 1977-June 1980  

SciTech Connect (OSTI)

The purpose of this program was to demonstrate the feasibility of illuminating various types of underground coal mining machinery as required by the Federal Coal Mine Illumination Standards Part 75.1719 to 75.1719-4 Code of Federal Regulations Title 30. Nine various machines were illuminated and the illumination systems were evaluated for a 3-month period. Factors evaluted were ease of implementation, reliability, ease of maintenance, acceptance by mine workers and operations, illumination degradation, and durability.

Szpak, A.D.; Hahn, W.F.; Skinner, C.S.

1981-01-01T23:59:59.000Z

43

Coal mine directory: United States and Canada  

SciTech Connect (OSTI)

The directory gives a state-by-state listing of all US and Canadian coal producers. It contains contact information as well as the type of mine, production statistics, coal composition, transportation methods etc. A statistical section provides general information about the US coal industry, preparation plants, and longwall mining operations.

NONE

2004-07-01T23:59:59.000Z

44

LLNL Underground Coal Gasification Project annual report - fiscal year 1984  

SciTech Connect (OSTI)

The Laboratory has been conducting an interdisciplinary underground coal gasification program since 1974 under the sponsorship of DOE and its predecessors. We completed three UCG tests at the Hoe Creek site near Gillette, Wyoming, during the period 1975 to 1979. Five small field experiments, the large-block tests, were completed from 1981 to 1982 at the exposed coal face in the WIDCO coal mine near Centralia, Washington. A larger test at the same location, the partial-seam CRIP test, was completed during fiscal year 1984. In conjunction with the DOE and an industrial group lead by the Gas Research Institute, we have prepared a preliminary design for a large-scale test at the WIDCO site. The planned test features dual injection and production wells, module interaction, and consumption of 20,000 tons of coal during a hundred-day steam-oxygen gasification. During fiscal year 1984, we documented the large-block excavations. The cavities were elongated, the cavity cross sections were elliptical, and the cavities contained ash and slag at the bottom, char and dried coal above that, and a void at the top. The results from the large-block tests provided enough data to allow us to construct a composite model, CAVSM. Preliminary results from the model agree well with the product-gas chemistry and cavity shape observed in the large-block tests. Other models and techniques developed during the year include a transient, moving-front code, a two-dimensional, reactive-flow code using the method of lines, and a wall-recession-rate model. In addition, we measured the rate of methane decomposition in the hot char bed and developed an engineering rate expression to estimate the magnitude of the methane-decomposition reaction. 16 refs., 30 figs., 1 tab.

Stephens, D.R.; O'Neal, E.M. (eds.)

1985-06-15T23:59:59.000Z

45

Production of Hydrogen from Underground Coal Gasification  

DOE Patents [OSTI]

A system of obtaining hydrogen from a coal seam by providing a production well that extends into the coal seam; positioning a conduit in the production well leaving an annulus between the conduit and the coal gasification production well, the conduit having a wall; closing the annulus at the lower end to seal it from the coal gasification cavity and the syngas; providing at least a portion of the wall with a bifunctional membrane that serves the dual purpose of providing a catalyzing reaction and selectively allowing hydrogen to pass through the wall and into the annulus; and producing the hydrogen through the annulus.

Upadhye, Ravindra S. (Pleasanton, CA)

2008-10-07T23:59:59.000Z

46

Coal Mining Regulatory and Reclamation Act (Massachusetts)  

Broader source: Energy.gov [DOE]

These regulations aim to ensure that any coal mining or extraction will be conducted in a manner that will not significantly damage the environment or area of land affected. The Department of...

47

Underground Coal Gasification at Tennessee Colony  

E-Print Network [OSTI]

The Tennessee Colony In Situ Coal Gasification Project conducted by Basic Resources Inc. is the most recent step in Texas Utilities Company's ongoing research into the utilization of Texas lignite. The project, an application of the Soviet...

Garrard, C. W.

1979-01-01T23:59:59.000Z

48

Mines and Quarries: The Coal Mines (Firedamp Drainage) Regulations, 1960   

E-Print Network [OSTI]

These regulations, which are made by the Minister of Power under section 141 of the Mines and Quarries Act, 1954, apply to the collecting of firedamp in coal mines before it has been diluted by any ventilation therein and its safe disposal (this...

Wood, Richard

1960-01-01T23:59:59.000Z

49

2008 Underground/Longwall Mining Buyer's Guide  

SciTech Connect (OSTI)

The guide lists US companies supplying equipment and services to mines. An index by product category is included.

NONE

2008-06-15T23:59:59.000Z

50

Mining vertical coal seams in France  

SciTech Connect (OSTI)

French coal miners in the Lorraine Basin coalfields of Charbonnages de France, work under extremely difficult mining conditions. The coal seams are located in two parallel anticlines dipping to the southwest. On the northwest flanks the coal dips at angles up to 40/sup 0/; on the southeast flanks the coal dips as steep as 90/sup 0/. In addition to the problems associated with steeply dipping coal seams, the coal is often more than 3 meters (10 feet) thick, thus contributing the additional problems that are associated with thick seams. A cut-and-fill mining method is used and production of up to 400 tons per day for a three-shift working face has been achieved. The cut-and-fill mining method employed at Puit Reumaux, rising horizontal rooms with hydraulic stowing, is used in areas of the mine where seam dips exceed 45/sup 0/ and where seam thickness is from 2 to 5 meters (6.5 to 16.5 feet). Hydraulic stowing has many advantages for the Merlebach mine: The coalis located under urbanized areas and is also covered by water-bearing strata with hydraulic sand stowing there is little subsidence, so disturbances to the surface and the aquiferous zones are minimized. Hydraulic sand stowing also helps prevent eating and combustion.

Schneiderman, S.J.

1981-05-01T23:59:59.000Z

51

Study of the properties of mine waste in the midwestern coal fields. Phase I report  

SciTech Connect (OSTI)

In an effort to assist the coal industry in complying with the applicable regulations, to design safe and environmentally acceptable disposal systems, and to encourage secondary use of coal mine waste, the US Department of Energy has initiated research programs to develop coal mine waste disposal and use technology. This study of the properties of mine wastes in the Midwestern coal fields has been limited to the waste materials obtained from underground coal mines and preparation plants attached to both underground and surface mines. The program has been divided into two phases. In Phase I, the 20 most important properties relevant to safe disposal, reclamation, underground disposal, and secondary uses have been identified. An inventory of the significant waste disposal sites in the Midwestern coal fields has been prepared. The site locations have been plotted on USGS maps. Estimates of coal production and coal mine waste production during the next 2 decades have been prepared and are presented in this report. Also, all available information obtained from a search of existing literature on physical and chemical properties, including analysis results of the general runoff from the refuse disposal areas, has been collected and is presented. In order to fill the gaps in information, 20 sites have been identified for drilling and sampling to determine the various physical and chemical properties. They have been selected on the basis of the distribution and quantity of waste at the existing locations (both abandoned and active), the future trends in production and likely locations of waste disposal areas, their geographical and geological distribution, and ease of accessibility for drilling and sampling.

None

1980-07-04T23:59:59.000Z

52

Virginia Coal Surface Mining Control and Reclamation Act (Virginia)  

Broader source: Energy.gov [DOE]

This legislation implements the federal Surface Mining Control and Reclamation Act and establishes a statewide regulatory program for reclamation following coal surface mining activities. The...

53

Large-block experiments in underground coal gasification  

SciTech Connect (OSTI)

A major objective of the nation's energy program is to develop processes for cleanly producing fuels from coal. One of the more promising of these is underground coal gasification (UCG). If successful, UCG would quadruple recoverable U.S. coal reserves. Under the sponsorship of the Department of Energy (DOE), Lawrence Livermore National Laboratory (LLNL) performed an early series of UCG field experiments from 1976 through 1979. The Hoe Creek series of tests were designed to develop the basic technology of UCG at low cost. The experiments were conducted in a 7.6-m thick subbituminous coal seam at a relatively shallow depth of 48 m at a site near Gillette, Wyoming. On the basis of the Hoe Creek results, more extensive field experiments were designed to establish the feasibility of UCG for commercial gas production under a variety of gasification conditions. Concepts and practices in UCG are described, and results of the field tests are summarized.

Not Available

1982-11-01T23:59:59.000Z

54

A sweep efficiency model for underground coal gasification  

SciTech Connect (OSTI)

A new model to predict sweep efficiency for underground coal gasification (UCG) has been developed. The model is based on flow through rubble in the cavity as well as through the open channel and uses a tanks-in-series model for the flow characteristics. The model can predict cavity growth and product gas composition given the rate of water influx, roof collapse, and spalling. Self-gasification of coal is taken into account in the model, and the coal consumption rate and the location of the flame front are determined by material and energy balances at the char surface. The model has been used to predict the results of the Hoe Creek III field tests (for the air gasification period). Predictions made by the model such as cavity shape, product gas composition, temperature profile, and overall reaction stoichiometry between the injected oxygen and the coal show reasonable agreement with the field test results.

Chang, H.L.; Edgar, T.F.; Himmelblau, D.M.

1985-01-01T23:59:59.000Z

55

Industrial hygiene aspects of underground oil shale mining  

SciTech Connect (OSTI)

Health hazards associated with underground oil shale mining are summarized in this report. Commercial oil shale mining will be conducted on a very large scale. Conventional mining techniques of drilling, blasting, mucking, loading, scaling, and roof bolting will be employed. Room-and-pillar mining will be utilized in most mines, but mining in support of MIS retorting may also be conducted. Potential health hazards to miners may include exposure to oil shale dusts, diesel exhaust, blasting products, gases released from the oil shale or mine water, noise and vibration, and poor environmental conditions. Mining in support of MIS retorting may in addition include potential exposure to oil shale retort offgases and retort liquid products. Based upon the very limited industrial hygiene surveys and sampling in experimental oil shale mines, it does not appear that oil shale mining will result in special or unique health hazards. Further animal toxicity testing data could result in reassessment if findings are unusual. Sufficient information is available to indicate that controls for dust will be required in most mining activities, ventilation will be necessary to carry away gases and vapors from blasting and diesel equipment, and a combination of engineering controls and personal protection will likely be required for control of noise. Recommendations for future research are included.

Hargis, K.M.; Jackson, J.O.

1982-01-01T23:59:59.000Z

56

Texas Surface Coal Mining and Reclamation Act (Texas)  

Broader source: Energy.gov [DOE]

The Railroad Commission of Texas regulates all surface mining activities for the extraction of coal. The Commission acts with the authority of the Texas Surface Coal Mining and Reclamation Act,...

57

High frequency electromagnetic burn monitoring for underground coal gasification  

SciTech Connect (OSTI)

This paper describes the use of high frequency electromagnetic waves to monitor an in-situ coal gasification burn process, and presents some recent results obtained with the method. Both the technique, called HFEM (high frequency electromagnetic) probing, the HFEM hardware used are described, and some of the data obtained from the LLNL Hoe Creek No. 3 underground coal gasification experiment conducted near Gillette, Wyoming are presented. HFEM was found to be very useful for monitoring the burn activity found in underground coal gasification. The technique, being a remote sensing method which does not require direct physical contact, does not suffer from burnout problems as found with thermocouples, and can continue to function even as the burn progresses on through the region of interest. While HFEM does not replace more conventional instrumentation such as thermocouples, the method does serve to provide data which is unobtainable by other means, and in so doing it complements the other data to help form a picture of what cannot be seen underground.

Deadrick, F.J.; Hill, R.W.; Laine, E.F.

1981-06-17T23:59:59.000Z

58

E-Print Network 3.0 - abandoned underground coal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Universitet, Department of Theoretical Physics Collection: Physics 4 Division of Oil, Gas, and Mining Permitting Summary: John R. Baza DirectorCoal Minerals Abandoned Mine...

59

Coal mine ground control. 3rd ed.  

SciTech Connect (OSTI)

The third edition not only completely revises and updates the original subject areas, but also is broadened to include a number of new topics such as high horizontal stresses, computer modeling, and highwall stability. The subject areas covered in this book define the current field of coal mine ground control, except for the recently emerging topic of mine seals and some conventional subjects such as coal/rock cutting and impoundment dams. It contains 1,134 references from all published sources, and archived since 1876.

Peng, S.S.

2008-09-15T23:59:59.000Z

60

Generating power with drained coal mine methane  

SciTech Connect (OSTI)

The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

NONE

2005-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Process analysis and simulation of underground coal gasification  

SciTech Connect (OSTI)

This investigation pertains to the prediction of cavity growth and the prediction of product gas composition in underground coal gasification (ICG) via mathematical model. The large-scale simulation model of the UCG process is comprised of a number of sub-models, each describing definable phenomena in the process. Considerable effort has been required in developing these sub-models, which are described in this work. In the first phase of the investigation, the flow field in field experiments was analyzed using five selected flow models and a combined model was developed based on the Hoe Creek II field experimental observations. The combined model was a modified tanks-in-series mode, and each tank consisted of a void space and a rubble zone. In the second phase of this work, a sub-model for self-gasification of coal was developed and simulated to determine the effect of water influx on the consumption of coal and whether self-gasification of coal alone was shown to be insufficient to explain the observed cavity growth. In the third phase of this work, a new sweep efficiency model was developed and coded to predict the cavity growth and product gas composition. Self-gasification of coal, water influx, and roof collapse and spalling were taken into account in the model. Predictions made by the model showed reasonable agreement with the experimental observations and calculations.

Chang, H.L.

1984-01-01T23:59:59.000Z

62

Pricetown I underground coal gasification field test: operations report  

SciTech Connect (OSTI)

An Underground Coal Gasification (UCG) field test in bituminous coal was successfully completed near Pricetown, West Virginia. The primary objective of this field test was to determine the viability of the linked vertical well (LVV) technology to recover the 900 foot deep, 6 foot thick coal seam. A methane rich product gas with an average heating value of approximately 250 Btu/SCF was produced at low air injection flow rates during the reverse combustion linkage phase. Heating value of the gas produced during the linkage enhancement phase was 221 Btu/SCF with air injection. The high methane formation has been attributed to the thermal and hydrocracking of tars and oils along with hydropyrolysis and hydrogasification of coal char. The high heating value of the gas was the combined effect of residence time, flow pattern, injection flow rate, injection pressure, and back pressure. During the gasification phase, a gas with an average heating value of 125 Btu/SCF was produced with only air injection, which resulted in an average energy production of 362 MMBtu/day.

Agarwal, A.K.; Seabaugh, P.W.; Zielinski, R.E.

1981-01-01T23:59:59.000Z

63

Thermal-Hydrological Sensitivity Analysis of Underground Coal Gasification  

SciTech Connect (OSTI)

This paper presents recent work from an ongoing project at Lawrence Livermore National Laboratory (LLNL) to develop a set of predictive tools for cavity/combustion-zone growth and to gain quantitative understanding of the processes and conditions (natural and engineered) affecting underground coal gasification (UCG). We discuss the application of coupled thermal-hydrologic simulation capabilities required for predicting UCG cavity growth, as well as for predicting potential environmental consequences of UCG operations. Simulation of UCG cavity evolution involves coupled thermal-hydrological-chemical-mechanical (THCM) processes in the host coal and adjoining rockmass (cap and bedrock). To represent these processes, the NUFT (Nonisothermal Unsaturated-saturated Flow and Transport) code is being customized to address the influence of coal combustion on the heating of the host coal and adjoining rock mass, and the resulting thermal-hydrological response in the host coal/rock. As described in a companion paper (Morris et al. 2009), the ability to model the influence of mechanical processes (spallation and cavity collapse) on UCG cavity evolution is being developed at LLNL with the use of the LDEC (Livermore Distinct Element Code) code. A methodology is also being developed (Morris et al. 2009) to interface the results of the NUFT and LDEC codes to simulate the interaction of mechanical and thermal-hydrological behavior in the host coal/rock, which influences UCG cavity growth. Conditions in the UCG cavity and combustion zone are strongly influenced by water influx, which is controlled by permeability of the host coal/rock and the difference between hydrostatic and cavity pressure. In this paper, we focus on thermal-hydrological processes, examining the relationship between combustion-driven heat generation, convective and conductive heat flow, and water influx, and examine how the thermal and hydrologic properties of the host coal/rock influence those relationships. Specifically, we conducted a parameter sensitivity analysis of the influence of thermal and hydrological properties of the host coal, caprock, and bedrock on cavity temperature and steam production.

Buscheck, T A; Hao, Y; Morris, J P; Burton, E A

2009-10-05T23:59:59.000Z

64

Underground Gas Storage Reservoirs (West Virginia)  

Broader source: Energy.gov [DOE]

Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas is stored as well as map and data requirements,...

65

UNDERGROUNG PLACEMENT OF COAL PROCESSING WASTE AND COAL COMBUSTION BY-PRODUCTS BASED PASTE BACKFILL FOR ENHANCED MINING ECONOMICS  

SciTech Connect (OSTI)

This project has successfully demonstrated that the extraction ratio in a room-and-pillar panel at an Illinois mine can be increased from the current value of approximately 56% to about 64%, with backfilling done from the surface upon completion of all mining activities. This was achieved without significant ground control problems due to the increased extraction ratio. The mined-out areas were backfilled from the surface with gob, coal combustion by-products (CCBs), and fine coal processing waste (FCPW)-based paste backfill containing 65%-70% solids to minimize short-term and long-term surface deformations risk. This concept has the potential to increase mine productivity, reduce mining costs, manage large volumes of CCBs beneficially, and improve the miner's health, safety, and environment. Two injection holes were drilled over the demonstration panel to inject the paste backfill. Backfilling was started on August 11, 1999 through the first borehole. About 9,293 tons of paste backfill were injected through this borehole with a maximum flow distance of 300-ft underground. On September 27, 2000, backfilling operation was resumed through the second borehole with a mixture of F ash and FBC ash. A high-speed auger mixer (new technology) was used to mix solids with water. About 6,000 tons of paste backfill were injected underground through this hole. Underground backfilling using the ''Groutnet'' flow model was simulated. Studies indicate that grout flow over 300-foot distance is possible. Approximately 13,000 tons of grout may be pumped through a single hole. The effect of backfilling on the stability of the mine workings was analyzed using SIUPANEL.3D computer program and further verified using finite element analysis techniques. Stiffness of the backfill mix is most critical for enhancing the stability of mine workings. Mine openings do not have to be completely backfilled to enhance their stability. Backfill height of about 50% of the seam height is adequate to minimize surface deformations. Freeman United Coal Company performed engineering economic evaluation studies for commercialization. They found that the costs for underground management at the Crown III mine would be slightly higher than surface management at this time. The developed technologies have commercial potential but each site must be analyzed on its merit. The Company maintains significant interest in commercializing the technology.

Y.P. Chugh; D. Biswas; D. Deb

2002-06-01T23:59:59.000Z

66

Disposal of Fluidized Bed Combustion Ash in an Underground Mine to Control Acid Mine Drainage and Subsidence  

SciTech Connect (OSTI)

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion (FBC) ash). Success will be measured in terms of technical feasibility of the approach (i.e. YO void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). During Phase Ill the majority of the activity involves completing two full scale demonstration projects. The eleven acre Longridge mine in Preston County will be filled with 53,000 cubic yards of grout during the spring of 1998 and monitored for following year. The second demonstration involves stowing 2000 tons of ash into an abandoned mine to demonstrate the newly redesigned Burnett Ejector. This demonstration is anticipated to take place during the winter of 1997. This document will report on progress made during Phase Ill. The report will be divided into four major sections. The first will be the Hydraulic Injection component. This section of the report will report on progress and milestones associated with the grouting activities of the project. The Phase Ill tasks of Economic Analysis and Regulatory Analysis will be covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The Water Quality component involves background monitoring of water quality and precipitation at the Phase Ill (Longridge) mine site. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

NONE

1998-08-31T23:59:59.000Z

67

DISPOSAL OF FLUIDIZED BED COMBUSTION ASH IN AN UNDERGROUND MINE TO CONTROL ACID MINE DRAINAGE AND SUBSIDENCE  

SciTech Connect (OSTI)

This project will evaluate the technical, economic and environmental feasibility of filling abandoned underground mine voids with alkaline, advanced coal combustion wastes (Fluidized Bed Combustion-FBC ash). Success will be measured in terms of technical feasibility of the approach (i.e. % void filling), cost, environmental benefits (acid mine drainage and subsidence control) and environmental impacts (noxious ion release). This document reports on progress made during Phase III. The report is divided into three major sections. The first deals with the Hydraulic Injection component. This section of the report describes the progress and milestones associated with the grouting activities of the project. The Phase III tasks of Economic Analysis and Regulatory Analysis is covered under this section. The second component is Pneumatic Injection. This section reports on progress made towards completing the demonstration project. The last component involves evaluating the migration of contaminants through the grouted mine. A computer model has been developed in earlier phases and will model the flow of water in and around the grouted Longridge mine.

Unknown

1999-07-01T23:59:59.000Z

68

Management of dry flue gas desulfurization by-products in underground mines. Annual report, October 1993--September 1994  

SciTech Connect (OSTI)

Preliminary environmental risk assessment on the FGD by-products to be placed underground is virtually complete. The initial mixes for pneumatic and hydraulic placement have been selected and are being subject to TCLP, ASTM, and modified SLP shake tests as well as ASTM column leaching. Results of these analyses show that the individual coal combustion residues, and the residues mixes, are non-hazardous in character. Based on available information, including well logs obtained from Peabody Coal Company, a detailed study of the geology of the placement site was completed. The study shows that the disposal site in the abandoned underground mine workings at depths of between 325 and 375 feet are well below potable groundwater resources. This, coupled with the benign nature of the residues and residues mixtures, should alleviate any concern that the underground placement will have adverse effects on groundwater resources. Seven convergence stations were installed in the proposed underground placement area of the Peabody Coal Company No. 10 mine. Several sets of convergence data were obtained from the stations. A study of materials handling and transportation of coal combustion residues from the electric power plant to the injection site has been made. The study evaluated the economics of the transportation of coal combustion residues by pneumatic trucks, by pressure differential rail cars, and by SEEC, Inc. collapsible intermodal containers (CICs) for different annual handling rates and transport distances. The preliminary physico-chemical characteristics and engineering properties of various FBC fly ash-spent bed mixes have been determined, and long-term studies of these properties are continuing.

Chugh, Y.P.; Dutta, D.; Esling, S.; Ghafoori, N.; Paul, B.; Sevim, H.; Thomasson, E.

1994-10-01T23:59:59.000Z

69

Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site  

SciTech Connect (OSTI)

Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

Oliver, R.L.; Youngberg, A.D.

1983-12-01T23:59:59.000Z

70

Colliers in Corsets? Uncovering Stark County's Nineteenth-Century Coal Mining Women  

E-Print Network [OSTI]

notion of family labor that persisted in the coal mines. InAmerican women first entered the coal mines en masse, theyCounty’s Nineteenth-Century Coal Mining Women According to

Sampson, Jason

2012-01-01T23:59:59.000Z

71

Water Management Plans for Surface Coal Mining Operations (North Dakota)  

Broader source: Energy.gov [DOE]

A water management plan is required for all surface coal mining operations. This plan must be submitted to the State Engineer of the State Water Commission at the same time a surface mining permit...

72

NPDES Rule for Coal Mining Facilities (West Virginia)  

Broader source: Energy.gov [DOE]

This rule establishes requirements implementing the powers, duties, and responsibilities of State's Water Pollution Control Act with respect to all coal mines, preparation plants and all refuse and...

73

Assessment of effective parameters on dilution using approximate reasoning methods in longwall mining method, Iran coal mines  

E-Print Network [OSTI]

Approximately more than 90% of all coal production in Iranian underground mines is derived directly longwall mining method. Out of seam dilution is one of the essential problems in these mines. Therefore the dilution can impose the additional cost of mining and milling. As a result, recognition of the effective parameters on the dilution has a remarkable role in industry. In this way, this paper has analyzed the influence of 13 parameters (attributed variables) versus the decision attribute (dilution value), so that using two approximate reasoning methods, namely Rough Set Theory (RST) and Self Organizing Neuro- Fuzzy Inference System (SONFIS) the best rules on our collected data sets has been extracted. The other benefit of later methods is to predict new unknown cases. So, the reduced sets (reducts) by RST have been obtained. Therefore the emerged results by utilizing mentioned methods shows that the high sensitive variables are thickness of layer, length of stope, rate of advance, number of miners, type of...

Owladeghaffari, H; Saeedi, G H R

2008-01-01T23:59:59.000Z

74

Proceedings of the ninth annual underground coal gasification symposium  

SciTech Connect (OSTI)

The Ninth Underground Coal Gasification Symposium was held August 7 to 10, 1983 at the Indian Lakes Resort and Conference Center in Bloomingdale, Illinois. Over one-hundred attendees from industry, academia, National Laboratories, State Government, and the US Government participated in the exchange of ideas, results and future research plans. Representatives from six countries including France, Belgium, United Kingdom, The Netherlands, West Germany, and Brazil also participated by presenting papers. Fifty papers were presented and discussed in four formal sessions and two informal poster sessions. The presentations described current and future field testing plans, interpretation of field test data, environmental research, laboratory studies, modeling, and economics. All papers were processed for inclusion in the Energy Data Base.

Wieber, P.R.; Martin, J.W.; Byrer, C.W. (eds.)

1983-12-01T23:59:59.000Z

75

Review of underground coal gasification field experiments at Hoe Creek  

SciTech Connect (OSTI)

LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, WY. Three different linking methods were used: explosive fracturing, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

Thorsness, C.B.; Creighton, J.R.

1983-01-01T23:59:59.000Z

76

Review of underground coal gasification field experiments at Hoe Creek  

SciTech Connect (OSTI)

In three underground coal gasification experiments at the Hoe Creek site near Gillette, WY, LLNL applied three different linking methods: explosive fracture, reverse burning, and directional drilling. Air was injected in all three experiments; a steam/oxygen mixture, during 2 days of the second and most of the third experiment. Comparison of results show that the type of linking method did not influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters but declined from its initial value over a period of time because of heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

Thorsness, C.B.; Creighton, J.R.

1983-01-01T23:59:59.000Z

77

Underground physics without underground labs: large detectors in solution-mined salt caverns  

E-Print Network [OSTI]

A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

Benjamin Monreal

2014-09-30T23:59:59.000Z

78

Underground physics without underground labs: large detectors in solution-mined salt caverns  

E-Print Network [OSTI]

A number of current physics topics, including long-baseline neutrino physics, proton decay searches, and supernova neutrino searches, hope to someday construct huge (50 kiloton to megaton) particle detectors in shielded, underground sites. With today's practices, this requires the costly excavation and stabilization of large rooms in mines. In this paper, we propose utilizing the caverns created by the solution mining of salt. The challenge is that such caverns must be filled with pressurized fluid and do not admit human access. We sketch some possible methods of installing familiar detector technologies in a salt cavern under these constraints. Some of the detectors discussed are also suitable for deep-sea experiments, discussed briefly. These sketches appear challenging but feasible, and appear to force few major compromises on detector capabilities. This scheme offers avenues for enormous cost savings on future detector megaprojects.

Monreal, Benjamin

2014-01-01T23:59:59.000Z

79

Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997  

SciTech Connect (OSTI)

This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

Chugh, Y.P.; Brackebusch, F.; Carpenter, J. [and others

1998-12-31T23:59:59.000Z

80

Assessment of underground coal gasification in bituminous coals. Volume I. Executive summary. Final report  

SciTech Connect (OSTI)

This report describes the bituminous coal resources of the United States, identifies those resources which are potentially amenable to Underground Coal Gasification (UCG), identifies products and markets in the vicinity of selected target areas, identifies UCG concepts, describes the state of the art of UCG in bituminous coal, and presents three R and D programs for development of the technology to the point of commercial viability. Of the 670 billion tons of bituminous coal remaining in-place as identified by the National Coal Data System, 32.2 billion tons or 4.8% of the total are potentially amenable to UCG technology. The identified amenable resource was located in ten states: Alabama, Colorado, Illinois, Kentucky, New Mexico, Ohio, Oklahoma, Utah, Virginia, and West Virginia. The principal criteria which eliminated 87.3% of the resource was the minimum thickness (42 inches). Three R and D programs were developed using three different concepts at two different sites. Open Borehole, Hydraulic Fracture, and Electrolinking concepts were developed. The total program costs for each concept were not significantly different. The study concludes that much of the historical information based on UCG in bituminous coals is not usable due to the poor siting of the early field tests and a lack of adequate diagnostic equipment. This information gap requires that much of the early work be redone in view of the much improved understanding of the role of geology and hydrology in the process and the recent development of analytical tools and methods.

None

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Management of dry gas desulfurization by-products in underground mines. Quarterly report, October 1--December 31, 1996  

SciTech Connect (OSTI)

The objective is to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of coal combustion by-products. The two technologies for the underground placement that will be developed and demonstrated are: (1) pneumatic placement using virtually dry coal combustion by-products, and (2) hydraulic placement using a paste mixture of combustion by-products with about 70% solids. Phase 2 of the overall program began April 1, 1996. The principal objective of Phase 2 is to develop and fabricate the equipment for both the pneumatic and hydraulic placement technologies, and to conduct a limited, small-scale shakedown test of the pneumatic and hydraulic placement equipment. The shakedown test originally was to take place on the surface, in trenches dug for the tests. However, after a thorough study it was decided, with the concurrence of DOE-METC, to drill additional injection wells and conduct the shakedown tests underground. This will allow a more thorough test of the placement equipment.

NONE

1996-12-31T23:59:59.000Z

82

LLNL underground coal gasification project. Quarterly progress report, October-December 1980  

SciTech Connect (OSTI)

We have continued laboratory studies of forward gasification through drilled holes in small blocks of coal (approx. 30 cm on a side). Such studies give insight into cavity growth mechanisms and particulate production. In addition, we have been developing a mathematical model for these experiments in order to further our understanding of the physical and chemical processes governing the burning of the coal and the growth of the cavity within the block. This model will be adapted, later, to larger-scale coal-block experiments, and finally to full-scale field exoperiments. We hope to obtain scaling laws and other insights from the model. The small-block experiments are beginning to provide information relevant to the early-time cavity growth. The natural extension of these experiments to larger blocks, perhaps 10ft or more on a side, is presently being planned. The large-block tests will be conducted at a mine, where blocks of coal will be isolated by the experimenter; the objective will be to quantify early-time cavity growth. We completed planning for the directionally drilled injection well for DOE Experiment No. 1. Assessment of the data obtained during the various underground coal gasification tests is continuing. Results from the four different diagnostic systems have been combined to produce a description of the shape of the burn cavity as a function of time during the Hoe Creek No. 3 experiment. Groundwater samples from wells located at distances of a few feet to several hundred feet from the gasification cavities have been collected before, during, and after each of the Hoe Creek tests. The analysis of the groundwater contamination data pertinent to the Hoe Creek No. 2 test was completed.

Olness, D.U. (ed.)

1981-01-26T23:59:59.000Z

83

Public views of reclaiming an abandoned coal mine: the Macoupin County project  

SciTech Connect (OSTI)

An abandoned underground coal mine waste area in Macoupin County, Illinois, has been reclaimed for demonstration and research purposes near the city of Staunton. According to federal law, end uses of reclaimed coal mines must be determined in part by local concerns. This study examined local residents' preferences for land uses and their social and economic evaluations of reclamation at the Macoupin County site. Personal interviews with 119 residents revealed preferences for recreational use of the demonstration area; however, responses were probably influenced by prior awareness of land-use intentions. Generally, very positive evaluations of the reclamation were received. Willingness to pay for reclamation appears to be linked to fulfillment of desired recreational uses on the site and socioeconomic status of the respondent. In general, the research results provide further evidence that the value of abatement of environmental damage from mining is recognized and supported in economic terms at the public level.

Bernard, J. R.

1980-07-01T23:59:59.000Z

84

Safety at coal mines: what role does methane play?  

SciTech Connect (OSTI)

The recent Sago Mine disaster in West Virginia and other widely publicized coal mine accidents around the world have received a great deal of attention and have generated some confusion about the link between methane drainage and safety. In response, this article provides an overview of safety concerns faced by coal mines and how they do or do not relate to methane. The first section explains the variety of safety issues a coal mine must take into consideration, including methane build-up. The second section summarizes the recent coal mines accident at Sago Mine in West Virginia. The final section describes the regulatory and legislative responses in the US. 2 refs., 2 figs.

NONE

2006-04-01T23:59:59.000Z

85

EA-1219: Hoe Creek Underground Coal Gasification Test Site Remediation, Campbell County, Wyoming  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts for the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming.

86

A System for ThreeDimensional Robotic Mapping of Underground Mines  

E-Print Network [OSTI]

mines. Our systems have been deployed in an operational coal mine in Bruceton, Pennsylvania, where for accurate maps of abandoned mines. Hazardous operating conditions and difficult access routes suggest and utilize accurate 2­D maps of flat mines. Similarly, Baily [14] reports 2­D mapping results of an un

87

Analysis of forward combustion underground coal gasification models  

SciTech Connect (OSTI)

A survey has been made of forward combustion gasification models that are available in the public domain. The six models obtained for study have been mathematically analyzed to determine their conceptual completeness and computational complexity. The models range in scope of generality from a simple constrained mass balance model to a two-dimensional unsteady-state model. The computer code for each model has been implemented on the University of Wyoming CDC CYBER 730/760 computer system. Computed analyses with each of the programs are compared using data (taken primarily from the Lawrence Livermore National Laboratory (LLNL) Underground Coal Gasification (UCG) Data Base) corresponding to six representative DOE sponsored field experiments at Hanna, Hoe Creek, Rawlins, and Pricetown. Four of the field tests were air injection experiments and two were oxygen/steam injection experiments. This study provides a direct comparison of input data requirements and computer resource requirements of the six computer codes. It furnishes an indication of the applicability of each model to the various operating conditions in the different field tests. Computational capabilities and limitations of each model are discussed in detail. 20 references, 47 figures, 13 tables.

Fausett, L.K.; Fausett, D.W.

1984-01-01T23:59:59.000Z

88

Steam tracer experiment at the Hoe Creek No. 3 underground coal gasification field test  

SciTech Connect (OSTI)

Water plays an important role in in-situ coal gasification. To better understand this role, we conducted a steam tracer test during the later stages of the Hoe Creek No. 3 underground coal gasification field test. Deuterium oxide was used as the tracer. This report describes the tracer test and the analysis of the data obtained. The analysis indicates that at Hoe Creek the injected steam interacts with a large volume of water as it passes through the underground system. We hypothesize that this water is undergoing continual reflux in the underground system, resulting in a tracer response typical of a well-stirred tank.

Thorsness, C.B.

1980-11-26T23:59:59.000Z

89

Characterization of seven United States coal regions. The development of optimal terrace pit coal mining systems  

SciTech Connect (OSTI)

This report characterizes seven United State coal regions in the Northern Great Plains, Rocky Mountain, Interior, and Gulf Coast coal provinces. Descriptions include those of the Fort Union, Powder River, Green River, Four Corners, Lower Missouri, Illinois Basin, and Texas Gulf coal resource regions. The resource characterizations describe geologic, geographic, hydrologic, environmental and climatological conditions of each region, coal ranks and qualities, extent of reserves, reclamation requirements, and current mining activities. The report was compiled as a basis for the development of hypothetical coal mining situations for comparison of conventional and terrace pit surface mining methods, under contract to the Department of Energy, Contract No. DE-AC01-79ET10023, entitled The Development of Optimal Terrace Pit Coal Mining Systems.

Wimer, R.L.; Adams, M.A.; Jurich, D.M.

1981-02-01T23:59:59.000Z

90

The Economic Impact of Coal Mining in New Mexico  

SciTech Connect (OSTI)

The economic impact of coal mining in New Mexico is examined in this report. The analysis is based on economic multipliers derived from an input-output model of the New Mexico economy. The direct, indirect, and induced impacts of coal mining in New Mexico are presented in terms of output, value added, employment, and labor income for calendar year 2007. Tax, rental, and royalty income to the State of New Mexico are also presented. Historical coal production, reserves, and price data are also presented and discussed. The impacts of coal-fired electricity generation will be examined in a separate report.

Peach, James; Starbuck, C.

2009-06-01T23:59:59.000Z

91

Coal quality and estimated coal resources in the proposed Colville Mining District, central North Slope, Alaska  

SciTech Connect (OSTI)

The proposed Colville Mining District (CMD) encompasses 27,340 mi{sup 2} (70,800 km{sup 2}) in the central part of the North Slope. Known coal deposits within the proposed district range from Mississippian to Tertiary in age. Available information indicates that neither Mississippian and Tertiary coals in the CMD constitute a significant resource because they are excessively deep, thin, or high in ash content; however, considerable amount of low-sulfur Cretaceous coal is present. The paper briefly describes the geology and quality of these coal reserves. Difficult conditions will restrict mining of these coals in the near future.

Stricker, G.D. [Geological Survey, Denver, CO (United States); Clough, J.G. [Alaska Department of Natural Resources, Fairbanks, AK (United States). Division of Geological and Geophysical Surveys

1994-12-31T23:59:59.000Z

92

LLNL underground coal gasification project. Quarterly progress report, July-Sep 1980. [Hoe Creek and Gorgas, Alabama tests  

SciTech Connect (OSTI)

Laboratory studies of forward gasification through drilled holes in blocks of coal have continued. Such studies give insight into cavity growth mechanisms and particulate production. In addition to obtaining a qualitative comparison of the forward burn characteristics of two coals, we obtained information on the influence of bedding plane/cleat structure orientation on the early-time shape of the burn cavity in the Roland coal. We have improved our model of the coal drying rate during underground coal gasification (UCG) by adding refinements to the model. To aid in analyzing and predicting the performance of UCG tests, we have developed a simple gas-compositional model. When the model was tested against experimental data from the three Hoe Creek experiments, it was able to match very closely the observed gas compositions, energy fractions, and water influxes. This model can be used to make performance predictions consistent with the material and energy balance constraints of the underground system. A postburn coring and wireline-logging study is under way at the Hoe Creek No. 3 site to investigate the overall effect of the directionally-drilled, horizontal linking hole to better estimate the amount of coal gasified and the shape of the combustion front, and to provide additional information on subsurface deformation and thermal effects. The site reclamation work was completed, including the dismantling of all surface equipment and piping and the plugging and sealing of process and diagnostics wells. Final grading of the reclaimed land has been completed, and the area is ready for disk-seeding. Our survey of the UCG literature has continued with a review of the extensive tests at Gorgas, Alabama, carried on by the US Bureau of Mines from 1947 to 1959.

Olness, D.U. (ed.)

1980-10-14T23:59:59.000Z

93

ADVANCED UNDERGROUND GAS STORAGE CONCEPTS REFRIGERATED-MINED CAVERN STORAGE  

SciTech Connect (OSTI)

Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill-withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. Five regions of the U.S.A. were studied for underground storage development and PB-KBB reviewed the literature to determine if the geology of these regions was suitable for siting hard rock storage caverns. Area gas market conditions in these regions were also studied to determine the need for such storage. Based on an analysis of many factors, a possible site was determined to be in Howard and Montgomery Counties, Maryland. The area has compatible geology and a gas industry infrastructure for the nearby market populous of Baltimore and Washington D.C.. As Gas temperature is lowered, the compressibility of the gas reaches an optimum value. The compressibility of the gas, and the resultant gas density, is a function of temperature and pressure. This relationship can be used to commercial advantage by reducing the size of a storage cavern for a given working volume of natural gas. This study looks at this relationship and and the potential for commercialization of the process in a storage application. A conceptual process design, and cavern design were developed for various operating conditions. Potential site locations were considered and a typical plant layout was developed. In addition a geomechanical review of the proposed cavern design was performed, evaluating the stability of the mine rooms and shafts, and the effects of the refrigerated gas temperatures on the stability of the cavern. Capital and operating cost estimates were also developed for the various temperature cases considered. The cost estimates developed were used to perform a comparative market analysis of this type of gas storage system to other systems that are commercially used in the region of the study.

NONE

1998-09-01T23:59:59.000Z

94

COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES  

E-Print Network [OSTI]

SHAFT SINKING IN-MINE DRILLiNG NEW MINE - 1500 M SURFACEORILUNG SHAFT SINKiNG FACIUTY DEVELOPMENT IN-MINE DRILLINGSURFACE DRILLING FACIUTY DEVELOPMENT IN-MINE DRILLING ~~NGM!

Lamb, D.W.

2013-01-01T23:59:59.000Z

95

Groundwater Protection Rules Coal Mining Operations (West Virginia)  

Broader source: Energy.gov [DOE]

These rules establish a series of practices for the protection of groundwater which are to be followed by any person who conducts coal mining operations subject to the provisions of West Virginia...

96

Capture and Use of Coal Mine Ventilation Air Methane  

SciTech Connect (OSTI)

CONSOL Energy Inc., in conjunction with MEGTEC Systems, Inc., and the U.S. Department of Energy with the U.S. Environmental Protection Agency, designed, built, and operated a commercial-size thermal flow reversal reactor (TFRR) to evaluate its suitability to oxidize coal mine ventilation air methane (VAM). Coal mining, and particularly coal mine ventilation air, is a major source of anthropogenic methane emissions, a greenhouse gas. Ventilation air volumes are large and the concentration of methane in the ventilation air is low; thus making it difficult to use or abate these emissions. This test program was conducted with simulated coal mine VAM in advance of deploying the technology on active coal mine ventilation fans. The demonstration project team installed and operated a 30,000 cfm MEGTEC VOCSIDIZER oxidation system on an inactive coal mine in West Liberty, WV. The performance of the unit was monitored and evaluated during months of unmanned operation at mostly constant conditions. The operating and maintenance history and how it impacts the implementation of the technology on mine fans were investigated. Emission tests showed very low levels of all criteria pollutants at the stack. Parametric studies showed that the equipment can successfully operate at the design specification limits. The results verified the ability of the TFRR to oxidize {ge}95% of the low and variable concentration of methane in the ventilation air. This technology provides new opportunities to reduce greenhouse gas emissions by the reduction of methane emissions from coal mine ventilation air. A large commercial-size installation (180,000 cfm) on a single typical mine ventilation bleeder fan would reduce methane emissions by 11,000 to 22,100 short tons per year (the equivalent of 183,000 to 366,000 metric tonnes carbon dioxide).

Deborah Kosmack

2008-10-31T23:59:59.000Z

97

Ground Motions from and House Response to Underground Aggregate Mining  

E-Print Network [OSTI]

interest because many urban quarries have gone underground or are considering doing so. Three cracks were to determine future blasting controls for a underground aggregate quarry near Franklin, KY (Revey, 2005

98

A System for Three-Dimensional Robotic Mapping of Underground Mines  

E-Print Network [OSTI]

systems have been deployed in an operational coal mine in Bruceton, Pennsylvania, where they have been of abandoned mines. Hazardous operating conditions and difficult access routes suggest that robotic exploration accurate 2-D maps of flat mines. Similarly, Baily [14] reports 2-D mapping results of an un- derground area

99

Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, August 1--October 31, 1997  

SciTech Connect (OSTI)

The objective of this project was to develop and demonstrate two technologies for the placement of coal combustion by-products in abandoned underground coal mines, and to assess the environmental impact of these technologies for the management of CCB materials. The two technologies for the underground placement that were to be developed and demonstrated are: (1) pneumatic placement using virtually dry CCB products, and (2) hydraulic placement using a paste mixture of CCB products with about 70% solids. The period covered by this report is the second quarter of Phase 3 of the overall program. During this period over 8,000 tons of CCB mixtures was injected using the hydraulic paste technology. This amount of material virtually filled the underground opening around the injection well, and was deemed sufficient to demonstrate fully the hydraulic injection technology. By the end of this quarter about 2,000 tons of fly ash had been placed underground using the pneumatic placement technology. While the rate of injection of about 50 tons per hour met design criteria, problems were experienced in the delivery of fly ash to the pneumatic demonstration site. The source of the fly ash, the Archer Daniels Midland Company power plant at Decatur, Illinois is some distance from the demonstration site, and often sufficient tanker trucks are not available to haul enough fly ash to fully load the injection equipment. Further, on some occasions fly ash from the plant was not available. The injection well was plugged three times during the demonstration. This typically occurred due to cementation of the FBC ash in contact with water. After considerable deliberations and in consultation with the technical project officer, it was decided to stop further injection of CCB`s underground using the developed pneumatic technology.

Chugh, Y.P.

1997-12-31T23:59:59.000Z

100

Analysis of seismic waves generated by surface blasting at Indiana coal mines  

E-Print Network [OSTI]

Analysis of seismic waves generated by surface blasting at Indiana coal mines A project pursuant is to investigate the characteristics of mine blast seismic waves in southern Indiana. Coal mines are prevalent blasting) and coal mines (surface blasting) to gain new understanding of seismic wave propagation, ground

Polly, David

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Gas Migration from Closed Coal Mines to the Surface RISK ASSESSMENT METHODOLOGY AND PREVENTION MEANS  

E-Print Network [OSTI]

Gas Migration from Closed Coal Mines to the Surface RISK ASSESSMENT METHODOLOGY AND PREVENTION to the surface is especially significant in the context of coal mines. This is because mine gas can migrate of the scheduled closure of all coal mining operations in France, INERIS has drawn up, at the request of national

Paris-Sud XI, Université de

102

COST AND SCHEDULE FOR DRILLING AND MINING UNDERGROUND TEST FACILITIES  

E-Print Network [OSTI]

Waste Storage in Mined Caverns in Crystalline Rock, LBL-Waste Storage in Mined Caverns in Crystalline Rock, LBL-for additional shaft and cavern support and stabilization.

Lamb, D.W.

2013-01-01T23:59:59.000Z

103

Seismic Characterization of Coal-Mining Seismicity in Utah for CTBT Monitoring  

SciTech Connect (OSTI)

Underground coal mining (down to {approx}0.75 km depth) in the contiguous Wasatch Plateau (WP) and Book Cliffs (BC) mining districts of east-central Utah induces abundant seismicity that is monitored by the University of Utah regional seismic network. This report presents the results of a systematic characterization of mining seismicity (magnitude {le} 4.2) in the WP-BC region from January 1978 to June 2000-together with an evaluation of three seismic events (magnitude {le} 4.3) associated with underground trona mining in southwestern Wyoming during January-August 2000. (Unless specified otherwise, magnitude implies Richter local magnitude, M{sub L}.) The University of Utah Seismograph Stations (UUSS) undertook this cooperative project to assist the University of California Lawrence Livermore National Laboratory (LLNL) in research and development relating to monitoring the Comprehensive Test Ban Treaty (CTBT). The project, which formally began February 28, 1998, and ended September 1, 2000, had three basic objectives: (1) Strategically install a three-component broadband digital seismic station in the WP-BC region to ensure the continuous recording of high-quality waveform data to meet the long-term needs of LLNL, UUSS, and other interested parties, including the international CTBT community. (2) Determine source mechanisms--to the extent that available source data and resources allowed--for comparative seismic characterization of stress release in mines versus earthquakes in the WP-BC study region. (3) Gather and report to LLNL local information on mine operations and associated seismicity, including ''ground truth'' for significant events. Following guidance from LLNL's Technical Representative, the focus of Objective 2 was changed slightly to place emphasis on three mining-related events that occurred in and near the study area after the original work plan had been made, thus posing new targets of opportunity. These included: a magnitude 3.8 shock that occurred close to the Willow Creek coal mine in the Book Cliffs area on February 5, 1998 (UTC date), just prior to the start of this project; a magnitude 4.2 shock on March 7,2000 (UTC date), in the same area as the February 5 event; and a magnitude 4.3 shock that occurred on January 30,2000 (UTC and local date), associated with a panel collapse at the Solvay trona mine in southwestern Wyoming. This is the same mine in which an earlier collapse event of magnitude 5.2 occurred in February 1995, attracting considerable attention from the CTBT community.

Arabasz, W J; Pechmann, J C

2001-03-01T23:59:59.000Z

104

Patterns of solidarity: A case study of self-organization in underground mining  

SciTech Connect (OSTI)

This case study in underground coal mining is informed by some notions of scholars who have written in widely divergent traditions and disciplines. Two major themes dealt with are labor's subjective moment and workplace culture. Regarding the subjective moment of labor, it is argued that there is an expressive element in work which defies reductions to some exchange principle. The struggle, for those articulating capitalist work processes, is to keep this purposive activity from being diverted totally to alien ends. The mediating element in this struggle, which structural Marxists have ignored in their analyses of capitalist workplaces, is culture. There is created a network of lasting relationships in the work group over and above any interdependence engendered by the division of labor. This shared culture allows for a collective recognition of the common product of group work, the shared nature of a particular work process, even the liberating potential of social relations themselves. The group's internalization of these social facts provides a base from which workers can mount an unceasing effort to control their workplace.

Vaught, C.

1991-01-01T23:59:59.000Z

105

Changes in major organic contaminants in the groundwater at the Hoe Creek underground coal gasification site  

SciTech Connect (OSTI)

The results of groundwater analysis at the Hoe Creek underground coal gasification (UCG) site have indicated that, after gasification, the phenolic compounds and neutral aromatic hydrocarbons decrease more slowly than expected on the basis of our laboratory studies. The field data also fail to confirm the expected inverse relationship between a contaminant's water solubility and the extent to which it is sorbed by surrounding coal. The authors described a mechanism for the deposition of coal pyrolysis products that may help to elucidate the observed behavior of these organic contaminants. 7 refs., 7 figs.

Wang, F.; Mead, W.

1985-08-01T23:59:59.000Z

106

Geology of the Hanna Formation, Hanna Underground Coal Gasification Site, Hanna, Wyoming  

SciTech Connect (OSTI)

The Hanna Underground Coal Gasification (UCG) study area consists of the SW1/4 of Section 29 and the E1/2SE1/4 of Section 30 in Township 22 North, Range 81 West, Wyoming. Regionally, this is located in the coal-bearing Hanna Syncline of the Hanna Basin in southeast Wyoming. The structure of the site is characterized by beds dipping gently to the northeast. An east-west fault graben complex interrupts this basic trend in the center of the area. The target coal bed of the UCG experiments was the Hanna No. 1 coal in the Hanna Formation. Sedimentary rocks comprising the Hanna Formation consist of a sequence of nonmarine shales, sandstones, coals and conglomerates. The overburden of the Hanna No. 1 coal bed at the Hanna UCG site was divided into four broad local stratigraphic units. Analytical studies were made on overburden and coal samples taken from cores to determine their mineralogical composition. Textural and mineralogical characteristics of sandstones from local stratigraphic units A, B, and C were analyzed and compared. Petrographic analyses were done on the coal including oxides, forms of sulfur, pyrite types, maceral composition, and coal rank. Semi-quantitative spectrographic and analytic geochemical analyses were done on the overburden and coal and relative element concentrations were compared. Trends within each stratigraphic unit were also presented and related to depositional environments. The spectrographic analysis was also done by lithotype. 34 references, 60 figures, 18 tables.

Oliver, R.L.; Youngberg, A.D.

1984-01-01T23:59:59.000Z

107

Stream periphyton and coal mining: Comparative Effects in the Elk Flathead Rivers of Southeastern British Columbia  

E-Print Network [OSTI]

Stream periphyton and coal mining: Comparative Effects in the Elk Flathead Rivers of Southeastern British Columbia Jessica Thompson and F.R. Hauer Coal mining can have a variety of effects on surrounding nutrients into surrounding streams. We examined the potential effects of coal mining by comparing adjacent

Renn, Susan C.P.

108

Research on chemical factors in underground coal gasification. Final technical report  

SciTech Connect (OSTI)

The goal of this research has been to acquire experimental data and develop mathematical models in order to analyze results from laboratory-scale and field-scale experiments on underground coal gasification (UCG), especially for low-rank coals such as Texas lignite. Experimental data for water injection in a combustion tube, coal core combustion, and coal block gasification are reported; in parallel, a mathematical model for the combustion tube temperature profile and gas composition was developed which compared favorably with experimental data. A mathematical model for predicting gas composition and coal recovery in the Hoe Creek field experiment has been completed and verified with field data. Two experiments have been constructed to obtain data on reactions of interest to UCG; these include an apparatus for determining the kinetics of tar cracking and a microreactor for analyzing the process dynamics of the water gas shift reaction carried out in a fixed bed catalytic system. 44 refs., 60 figs., 22 tabs.

Edgar, T.F.

1985-09-01T23:59:59.000Z

109

Longwall mining  

SciTech Connect (OSTI)

As part of EIA`s program to provide information on coal, this report, Longwall-Mining, describes longwall mining and compares it with other underground mining methods. Using data from EIA and private sector surveys, the report describes major changes in the geologic, technological, and operating characteristics of longwall mining over the past decade. Most important, the report shows how these changes led to dramatic improvements in longwall mining productivity. For readers interested in the history of longwall mining and greater detail on recent developments affecting longwall mining, the report includes a bibliography.

NONE

1995-03-14T23:59:59.000Z

110

abandoned underground mines: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. Atmospheric pressure . Air temperature on the surface . Exits . Open or closed old mining voids Introduction, atmospheric pressure, speed and direction of the wind have also...

111

An improved formulation of the underground mine scheduling ...  

E-Print Network [OSTI]

set within a resource production/consumption framework is presented, ...... Mining Engineering, Amer. Inst. Min. Metall. Pet. Eng, 55(8):33–39,. 2003. 8. J. Little ...

2012-11-21T23:59:59.000Z

112

Burn cavity growth during the Hoe Creek No. 3 underground coal gasification experiment  

SciTech Connect (OSTI)

A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic (HFEM) scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity are derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

Hill, R.W.

1981-01-14T23:59:59.000Z

113

Burn cavity growth during the Hoe Creek No. 3 underground-coal-gasification experiment  

SciTech Connect (OSTI)

A detailed history is given of the growth of the burn cavity during the first month of the Hoe Creek No. 3 underground coal gasification experiment near Gillette, Wyoming, in 1979. The changing shape of the cavity with time is inferred from data from three types of instruments installed throughout the experimental zone: (1) thermocouples at various levels in a number of holes, to map temperatures; (2) extensometers at various levels in other holes, to detect motions of the overburden material; and (3) high-frequency electromagnetic scans made between various pairs of holes, to detect cavities and zones of burning coal. Additional data on the final shape of the underground cavity is derived from the results of a core drilling program carried out from the surface after the burn had ended. This study of cavity growth history has contributed significantly to our understanding of how the in-situ coal gasification process operates in sites like Hoe Creek. The diagnostic system provided invaluable information on cavity growth and on the interaction between the two coal seams. Some new problems with injection well survival and slag production in oxygen-steam burns were brought out, and the importance of understanding and controlling heat loss mechanisms was amply demonstrated. Although no one system of underground diagnostics can give all of the information needed to fully describe the in-situ process, a combination of several diagnostic systems can be used to deduce a self-consistent description.

Hill, R.W.

1981-06-08T23:59:59.000Z

114

Report Title: The Economic Impact of Coal Mining in New Mexico: 2008 Update Type of Report: Technical Report  

E-Print Network [OSTI]

Report Title: The Economic Impact of Coal Mining in New Mexico: 2008 Update Type of Report 88003-8001 At Madrid Coal Mine, New Mexico by Carl Redin 1934. * *At Madrid Coal Mine, New Mexico 1934: The economic impact of coal mining in New Mexico is examined in this report. This report is an update

Johnson, Eric E.

115

Assessment of underground coal gasification in bituminous coals: potential UCG products and markets. Final report, Phase I  

SciTech Connect (OSTI)

The following conclusions were drawn from the study: (1) The US will continue to require new sources of energy fuels and substitutes for petrochemical feedstocks into the foreseeable future. Most of this requirement will be met using coal. However, the cost of mining, transporting, cleaning, and preparing coal, disposing of ash or slag and scrubbing stack gases continues to rise; particularly, in the Eastern US where the need is greatest. UCG avoids these pitfalls and, as such, should be considered a viable alternative to the mining of deeper coals. (2) Of the two possible product gases LBG and MBG, MBG is the most versatile. (3) The most logical use for UCG product in the Eastern US is to generate power on-site using a combined-cycle or co-generation system. Either low or medium Btu gas (LBG or MBG) can be used. (4) UCG should be an option whenever surface gasification is considered; particularly, in areas where deeper, higher sulfur coal is located. (5) There are environmental and social benefits to use of UCG over surface gasification in the Eastern US. (6) A site could be chosen almost anywhere in the Illinois and Ohio area where amenable UCG coal has been determined due to the existence of existing transportation or transmission systems. (7) The technology needs to be demonstrated and the potential economic viability determined at a site in the East-North-Central US which has commercial quantities of amenable bituminous coal before utilities will show significant interest.

None

1982-01-31T23:59:59.000Z

116

Network modelling of underground mine layout: Two case studies  

E-Print Network [OSTI]

, and horizontal tunnels, called drives (Figure 1). These need to be navigable by the large trucks that are used for haulage. In other long life or deeper mines a vertical shaft may also be used to haul mined material vertical meter for transporting ore and therefore has advantages over the more expensive truck haulage

Wormald, Nick

117

IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY  

E-Print Network [OSTI]

1 IMPACT OF LOW-EMISSION DIESEL ENGINES ON UNDERGROUND MINE AIR QUALITY Susan T. Bagley1, Winthrop-1295 2 Department of Mechanical Engineering, Center for Diesel Research, University of Minnesota, 111, however, is providing the report on its Website because it is important for parties interested in diesel

Minnesota, University of

118

Surface Coal Mining and Reclamation (Indiana)  

Broader source: Energy.gov [DOE]

The Indiana Department of Natural Resources implements and enforces the federal Surface Mining Control and Reclamation Act of 1977, as well as a statewide program to protect society and the...

119

Estimated groundwater restoration costs associated with commercial underground coal gasification operations. Topical report  

SciTech Connect (OSTI)

The objective of this program was to complete a preliminary cost estimate for groundwater restoration for the Hoe Creek commercial underground coal gasification (UCG) facility under a set of ground rules based on field data measurements and specific compound removal requirements. Of the three approaches evaluated for disposal of the contaminated groundwater, deep well injection is the least expensive, followed by the alternate treatment approach.

Fischer, D.D.

1985-12-17T23:59:59.000Z

120

Characterizing a lignite formation before and after an underground coal gasification experiment  

E-Print Network [OSTI]

water. To answer questions relating to the amount of lignite gasified, subsidence, ground water pollution problems and to obtain a better understanding of the process itself, work is needed to define the size, shape and orientation of the cavity...CHARACTERIZING A LIGNITE FORMATION BEFORE AND AFTER AN UNDERGROUND COAL GASIFICATION EXPERIMENT A Thesis by USMAN AHMED Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree...

Ahmed, Usman

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CO2 gas production understanding above a partly flooded coal post-mining area  

E-Print Network [OSTI]

- The Westphalian deposit is constituted by numerous exploited coal seams of different thicknesses. These seamsCO2 gas production understanding above a partly flooded coal post-mining area Candice Lagnya, a former coal mining area. To understand the origin of this production, a borehole of 90 meters deep

Paris-Sud XI, Université de

122

BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL LABORATORY EXPERIMENTAL STUDY  

E-Print Network [OSTI]

BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL LABORATORY EXPERIMENTAL STUDY OF SEISMIC ENERGY of Explosive Engineers, 2-5 Feb 97, Las Vegas, NV #12;BLACK THUNDER COAL MINE AND LOS ALAMOS NATIONAL and David Gross Thunder Basin Coal Company Post Office Box 406 Wright, Wyoming 82732 D. Craig Pearson

123

Virginia big-eared bats (Corynorhinus townsendii virginianus) roosting in abandoned coal mines in West Virginia  

SciTech Connect (OSTI)

We surveyed bats at 36 abandoned coal mines during summer 2002 and 47 mines during fall 2002 at New River Gorge National River and Gauley River National Recreation Area, WV. During summer, we captured three federally endangered Virginia big-eared bats at two mine entrances, and 25 were captured at 12 mine entrances during fall. These represent the first documented captures of this species at coal mines in West Virginia. Future survey efforts conducted throughout the range of the Virginia big-eared bat should include abandoned coal mines.

Johnson, J.B.; Edwards, J.W.; Wood, P.B. [West Virginia University, Morgantown, WV (US). Wildlife & Fisheries Resources Programme

2005-07-01T23:59:59.000Z

124

LLNL Underground-Coal-Gasification Project. Quarterly progress report, July-September 1981  

SciTech Connect (OSTI)

We have continued our laboratory studies of forward gasification in small blocks of coal mounted in 55-gal drums. A steam/oxygen mixture is fed into a small hole drilled longitudinally through the center of the block, the coal is ignited near the inlet and burns toward the outlet, and the product gases come off at the outlet. Various diagnostic measurements are made during the course of the burn, and afterward the coal block is split open so that the cavity can be examined. Development work continues on our mathematical model for the small coal block experiments. Preparations for the large block experiments at a coal outcrop in the Tono Basin of Washington State have required steadily increasing effort with the approach of the scheduled starting time for the experiments (Fall 1981). Also in preparation is the deep gasification experiment, Tono 1, planned for another site in the Tono Basin after the large block experiments have been completed. Wrap-up work continues on our previous gasification experiments in Wyoming. Results of the postburn core-drilling program Hoe Creek 3 are presented here. Since 1976 the Soviets have been granted four US patents on various aspects of the underground coal gasification process. These patents are described here, and techniques of special interest are noted. Finally, we include ten abstracts of pertinent LLNL reports and papers completed during the quarter.

Stephens, D.R.; Clements, W. (eds.) [eds.

1981-11-09T23:59:59.000Z

125

Financing coal mine, methane recovery and utilization projects  

SciTech Connect (OSTI)

The article describes types and sources of funding that may be available to project developers and investors that are interested in pursuing coal mine methane (CMM) project opportunities particularly in developing countries or economies in transition. It briefly summarizes prefeasibility and feasibility studies and technology demonstrations. It provides a guide to key parties involved in project financing (equity, debt or carbon financing) as well as project risk reduction support. This article provides an update to the information contained in two previous guides - Catalogue of Coal Mine Methane Project Finance Sources (2002) and A Guide to Financing Coalbed Methane Projects (1997) - both available on the CMOP web site http://www.epa.gov/cmop/resources/reports/finance.html.

NONE

2006-07-01T23:59:59.000Z

126

The Methane to Markets Coal Mine Methane Subcommittee meeting  

SciTech Connect (OSTI)

The presentations (overheads/viewgraphs) include: a report from the Administrative Support Group; strategy updates from Australia, India, Italy, Mexico, Nigeria, Poland and the USA; coal mine methane update and IEA's strategy and activities; the power of VAM - technology application update; the emissions trading market; the voluntary emissions reduction market - creating profitable CMM projects in the USA; an Italian perspective towards a zero emission strategies; and the wrap-up and summary.

NONE

2008-07-01T23:59:59.000Z

127

Presentations from the 1992 Coal Mining Impoundment Informational Meeting  

SciTech Connect (OSTI)

On May 20 and 21, 1992, the MSHA Coal Mining Impoundment Informational Meeting was held at the National Mine Health and Safety Academy in Beckley, West Virginia. Fifteen presentations were given on key issues involved in the design and construction of dams associated with coal mining. The attendees were told that to improve the consistency among the plan reviewers, engineers from the Denver and Pittsburgh Technical Support Centers meet twice annually to discuss specific technical issues. It was soon discovered that the topics being discussed needed to be shared with anyone involved with coal waste dam design, construction, or inspection. The only way to accomplish that goal was through the issuance of Procedure Instruction Letters. The Letters present a consensus of engineering philosophy that could change over time. They do not present policy or carry the force of law. Currently, thirteen position papers have been disseminated and more will follow as the need arises. The individual paper were not even entered into the database.

Not Available

1993-12-31T23:59:59.000Z

128

Cost to the Indian economy of mining coal  

SciTech Connect (OSTI)

Like steel production, energy production is one of the significant parameters of stage of advancement of a developing economy. Availability of energy at the right price is vital for development. Coal is a primary resource of energy. The price of coal has been a very important parameter in the Indian economy. In the past 20 years coal has been marketed at administered prices. There has been a very complex mechanism at work for this purpose. There have been a lot of incentives given to thin industry. These, in fact, are tantamount to subsidies. The role of subsidies is well acknowledged and is considered quite useful to the economy. A detailed analysis by carefully studying the methodology of mining and delineating various stages in mining has been conducted, and the subsidies, which have traditionally not been quantified, have been calculated The impact of each parameter on the total subsidy has been studied to facilitate continuance or change in the subsidy by adopting a suitable strategy for coal pricing, as presently the considerations show unaccounted-for subsidies to be more than 70% of the price charged.

Bansal, N.K.; Bhave, A. [Indian Inst. of Technology, New Delhi (India). Centre of Energy Studies

1995-03-01T23:59:59.000Z

129

PREVENTTVE FACILITIES AND EMERGENCY OPERATIONS IN CASE OFFIRES IN CdF COAL MINES  

E-Print Network [OSTI]

). The upper group consists of a bituminous soft coal, the lower coke coal. The field is sharply folded alongPREVENTTVE FACILITIES AND EMERGENCY OPERATIONS IN CASE OFFIRES IN CdF COAL MINES J.P. AMARTIN HJSJL a stricl methodology. It has been possjble then to resume coal winning, which has cor.tmued until

Boyer, Edmond

130

Assessment of a 40-kilowatt stirling engine for underground mining applications  

SciTech Connect (OSTI)

An assessment of alternative power souces for underground mining applications was performed. A 40-kW Stirling research engine was tested to evaluate its performance and emission characteristics when operated with helium working gas and diesel fuel. The engine, the test facility, and the test procedures are described. Performance and emission data for the engine operating with helium working gas and diesel fuel are reported and compared with data obtained with hydrogen working gas and unleaded gasoline fuel. Helium diesel test results are compared with the characteristics of current diesel engines and other Stirling engines. External surface temperature data are also presented. Emission and temperature results are compared with the Federal requirements for diesel underground mine engines. The durability potential of Stirling engines is discussed on the basis of the experience gaind during the engine tests.

Cairelli, J.E.; Kelm, G.G.; Slaby, J.G.

1982-06-01T23:59:59.000Z

131

A project health check for coal mining caompanies : case of Douglas Middelburg optimisation project .  

E-Print Network [OSTI]

??The purpose of the study is to develop a project health check model to evaluate the status of projects within the coal mining industry. The… (more)

De Wet, G.F.

2007-01-01T23:59:59.000Z

132

E-Print Network 3.0 - abandoned coal mines Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

78 Economic Impact of Standard Reference Materials Summary: . Although many mines, coking plants, coal preparation plants, utilities, and refineries have their own... -4 2.2...

133

Underground Mine Water Heating and Cooling Using Geothermal Heat Pump Systems  

SciTech Connect (OSTI)

In many regions of the world, flooded mines are a potentially cost-effective option for heating and cooling using geothermal heat pump systems. For example, a single coal seam in Pennsylvania, West Virginia, and Ohio contains 5.1 x 1012 L of water. The growing volume of water discharging from this one coal seam totals 380,000 L/min, which could theoretically heat and cool 20,000 homes. Using the water stored in the mines would conservatively extend this option to an order of magnitude more sites. Based on current energy prices, geothermal heat pump systems using mine water could reduce annual costs for heating by 67% and cooling by 50% over conventional methods (natural gas or heating oil and standard air conditioning).

Watzlaf, G.R.; Ackman, T.E.

2006-03-01T23:59:59.000Z

134

Hoe Creek experiments: LLNL's underground coal-gasification project in Wyoming  

SciTech Connect (OSTI)

Under the sponsorship of the US Department of Energy and predecessor organizations, the Lawrence Livermore National Laboratory carried out a laboratory program and three field, underground coal gasification tests near Gillette, Wyoming. This report summarizes that work. Three methods of linking or connecting injection and production wells were used for the UCG field tests: Hoe Creek No. 1 employed explosive fracturing, Hoe Creek No. 2 featured use of reverse combustion, and directional drilling was used for the Hoe Creek No. 3. The Gas Research Institute cosponsored the latter test. Laboratory experiments and modeling, together with a laboratory and field environment program, are necessary adjuncts to the field program. Explosive fracturing in coal was simulated using computer models and laboratory tests. We developed a relationship of total inelastic strains to permeability, which we used to design and interpret a coal outcrop, explosive fracturing experiment at Kemmerer, Wyoming. Coal gasification was also simulated in laboratory experiments and with computer models. The primary aim has been to predict and correlate reaction, thermal-front propagation rates, and product gas composition as a function of bed properties and process operating conditions. Energy recovery in the form of produced gas and liquids amounted to 73% of the energy in the consumed coal. There were essentially no losses to the subsurface formation. The greatest energy loss was in steam production.

Stephens, D.R.

1981-10-01T23:59:59.000Z

135

RENFORCEMENT ET CONTROLE DE PAREMENTS DANS UNE MINE A CffiL OUVERT DE CHARBON REINFORCEMENT AND CONTROL OF FOOTWALL SLOPES IN AN OPEN PIT COAL MINE  

E-Print Network [OSTI]

AND CONTROL OF FOOTWALL SLOPES IN AN OPEN PIT COAL MINE VERSTÄRKUNG UND KONTROLLE VON STOSSER IM KOHLETAGEBAU to exploit the stephanian coal.TheNorth West area ofthis open pit is composed of an overthrust fold. The coal

Paris-Sud XI, Université de

136

Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification. [STEALTH Codes  

SciTech Connect (OSTI)

Two computer codes compare surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington. Calculations with the STEALTH explicit finite-difference code are shown to match equivalent, implicit finite-element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite-difference continuum rigid-block caving code is used to model underground opening behavior. Numerical techniques agree qualitatively with empirical studies but, so far, underpredict ground surface displacement. The two methods, numerical and empirical, are most effective when used together. It is recommended that the thermal characteristics of coal measure rock be investigated and that additional calculations be carried out to longer times so that cooling influences can be modeled.

Langland, R.T.; Trent, B.C.

1981-01-01T23:59:59.000Z

137

Computer models to support investigations of surface subsidence and associated ground motion induced by underground coal gasification  

SciTech Connect (OSTI)

Two computer codes compare surface subsidence induced by underground coal gasification at Hoe Creek, Wyoming, and Centralia, Washington. Calculations with the STEALTH explicit finite-difference code are shown to match equivalent, implicit finite-element method solutions for the removal of underground material. Effects of removing roof material, varying elastic constants, investigating thermal shrinkage, and burning multiple coal seams are studied. A coupled, finite-difference continuum rigid-block caving code is used to model underground opening behavior. Numerical techniques agree qualitatively with empirical studies but, so far, underpredict ground surface displacement. The two methods, numerical and empirical, are most effective when used together. It is recommended that the thermal characteristics of coal measure rock be investigated and that additional calculations be carried out to longer times so that cooling influences can be modeled.

Trent, B.C.; Langland, R.T.

1981-08-01T23:59:59.000Z

138

Postburn evaluation for Hanna II, Phases 2 and 3, underground coal gasification experiments, Hanna, Wyoming  

SciTech Connect (OSTI)

During 1980 and 1981 the Laramie Energy Technology Center (LETC) conducted a post-burn study at the Hanna II, Phases 2 and 3 underground coal gasification (UCG) site, Hanna, Wyoming. This report contains a summary of the field and laboratory results from the study. Lithologic and geophysical well log data from twenty-two (22) drill holes, combined with high resolution seismic data delineate a reactor cavity 42.7m (140 ft.) long, 35.1 m (115 ft.) and 21.3 m (70 ft.) high that is partially filled with rubble, char and pyrometamorphic rock. Sedimentographic studies were completed on the overburden. Reflectance data on coal samples within the reactor cavity and cavity wall reveal that the coal was altered by temperatures ranging from 245/sup 0/C to 670/sup 0/C (472/sup 0/-1238/sup 0/F). Overburden rocks found within the cavity contain various pyrometamorphic minerals, indicating that temperatures of at least 1200/sup 0/C (2192/sup 0/F) were reached during the tests. The calcite cemented fine-grained sandstone and siltstone directly above the Hanna No. 1 coal bed formed a strong roof above the cavity, unlike other UCG sites such as Hoe Creek which is not calcite cemented. 30 references, 27 figures, 8 tables.

Youngberg, A.D.; Sinks, D.J.; Craig, G.N. II; Ethridge, F.G.; Burns, L.K.

1983-12-01T23:59:59.000Z

139

Environmental controls for underground coal gasification: ground-water effects and control technologies  

SciTech Connect (OSTI)

Underground coal gasfication (UCG) promises to provide economic access to an enormous deep-coal resource. It is, therefore, of considerable importance to develop appropriate environmental controls for use in conjunction with the UCG process. The Lawrence Livermore Laboratory has conducted three UCG experiments at its Hoe Creek site in northeastern Wyoming. Environmental studies are being conducted in conjunction with these UCG experiments, including an investigation of changes in local ground-water quality and subsidence effects. Ground-water monitoring and geotechnical measurements have helped to clarify the environmental significance of reaction-product contaminants that remain underground following gasification, and the implications of cavity roof collapse and aquifer interconnection. These investigations have led to the development of preliminary plans for a specific method of ground water quality restoration utilizing activated carbon adsorption. Unconventional technologies are also being investigated that may be appropriate for restoring ground water that has been contaminated as a result of UCG operations. These water treatment technologies are being explored as possible supplements to natural controls and process restrictions.

Mead, W.; Raber, E.

1980-03-14T23:59:59.000Z

140

Groundwater restoration field test at the Hoe Creek underground coal gasification site  

SciTech Connect (OSTI)

Three underground coal gasification burns were conducted at the Hoe Creek Site in the Powder River Basin. Some contaminants were released in the groundwater. The Department of Energy (DOE) analyzed the water from a network of wells. Two million gallons of groundwater were pumped from wells adjacent to the Hoe Creek II underground coal gasification cavity, passed through filters and carbon adsorbers, and reinjected into the cavity. Phenol was the target compound of the water treatment system. The phenol concentration pumped from well WS-10 decreased from 974 parts per billion (ppB) when treatment began on July 2, 1987, to about 200 ppB when treatment ceased on August 29, 1987. Phenol concentrations pumped from well WS-22 fluctuated during the tests, but they decreased to the 150 to 200 ppB range by the time treatment was terminated. The phenol concentration of treated water reinjected into the Hoe Creek II cavity was below detectable limits (less than 20 ppB). Pumping rates were about 18 gallons per minute (gpm) from well WS-10 and 6 to 8 gpm from well WS-22. Hoe Creek is located approximately 20 miles southwest of Gillette, Wyoming. 12 refs., 5 figs., 8 tabs.

Nordin, J.S.; Barrash, W.; Nolan, B.T.

1988-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Coal-Mac, Inc. Phoenix No. 1 mine provides wildlife haven. 2007 Wildlife West Virginia Award  

SciTech Connect (OSTI)

Coal Mac, Inc.'s Harless Wood Industrial Park off Holden 22 Mines Road in Logan Country, West Virginia is an award-winning reclamation site in the mountains frequented by geese, wild turkey, deer and black bears. Orchard grass and rye is a temporary cover for the timothy, clover and other seedlings. The area was mined several years ago. Some 40,000-50,000 tons of coal per month are surfaced mined with the current permit that takes in 1,500-2,000 acres. After removing the coal, valleys are backfilled as part of the mining and reclamation plan. 10 photos.

Skinner, A.

2007-07-15T23:59:59.000Z

142

Selenium Bioaccumulation in Stocked Fish as an Indicator of Fishery Potential in Pit Lakes on Reclaimed Coal Mines  

E-Print Network [OSTI]

on Reclaimed Coal Mines in Alberta, Canada L. L. Miller · J. B. Rasmussen · V. P. Palace · G. Sterling · A to selenium (Se) and other metals and metalloids in pit lakes formed by open pit coal mining in Tertiary (thermal coal) and in Cretaceous (metallurgical coal) bedrock. Juvenile hatchery rainbow trout

Hontela, Alice

143

Methane emission from flooded coal seams in abandoned mines, in the light of laboratory investigations  

E-Print Network [OSTI]

Methane emission from flooded coal seams in abandoned mines, in the light of laboratory of methane from flooded unexploited coal seams Field experience from the flooding operations of the abandoned sorption capacity of coal in the dry-air state through determining the isotherm of methane sorption

Boyer, Edmond

144

Advanced Underground Gas Storage Concepts: Refrigerated-Mined Cavern Storage, Final Report  

SciTech Connect (OSTI)

Over the past 40 years, cavern storage of LPG's, petrochemicals, such as ethylene and propylene, and other petroleum products has increased dramatically. In 1991, the Gas Processors Association (GPA) lists the total U.S. underground storage capacity for LPG's and related products of approximately 519 million barrels (82.5 million cubic meters) in 1,122 separate caverns. Of this total, 70 are hard rock caverns and the remaining 1,052 are caverns in salt deposits. However, along the eastern seaboard of the U.S. and the Pacific northwest, salt deposits are not available and therefore, storage in hard rocks is required. Limited demand and high cost has prevented the construction of hard rock caverns in this country for a number of years. The storage of natural gas in mined caverns may prove technically feasible if the geology of the targeted market area is suitable; and economically feasible if the cost and convenience of service is competitive with alternative available storage methods for peak supply requirements. Competing methods include LNG facilities and remote underground storage combined with pipeline transportation to the area. It is believed that mined cavern storage can provide the advantages of high delivery rates and multiple fill withdrawal cycles in areas where salt cavern storage is not possible. In this research project, PB-KBB merged advanced mining technologies and gas refrigeration techniques to develop conceptual designs and cost estimates to demonstrate the commercialization potential of the storage of refrigerated natural gas in hard rock caverns. DOE has identified five regions, that have not had favorable geological conditions for underground storage development: New England, Mid-Atlantic (NY/NJ), South Atlantic (DL/MD/VA), South Atlantic (NC/SC/GA), and the Pacific Northwest (WA/OR). PB-KBB reviewed published literature and in-house databases of the geology of these regions to determine suitability of hard rock formations for siting storage caverns, and gas market area storage needs of these regions.

none

1998-09-30T23:59:59.000Z

145

LLNL underground-coal-gasification project. Quarterly progress report, April-June 1982  

SciTech Connect (OSTI)

Cavity mapping has been completed for the large block experiments, which were done near Centralia, Washington, in the winter of 1981-1982. Postburn excavations into the experimental sites show all the cavities to be largely filled with rubble consisting of dried coal, char, ash, and slag. None of the five injection holes remained completely open through its associated cavity. Temperature histories for all the in situ thermocouples in the large block experiments have been analyzed. The interpretation of most of this temperature data is straightforward and consistent with other observations. As a further refinement in our underground coal gasification (UCG) modeling effort, transient temperature profiles have been calculated for open borehole gasification in wet coal by the isotherm migration method, using the LSODE computer code developed at LLNL. The next logical step in this calculation would be to make the rate of combustion surface movement a function of the rate of steam generation at the vaporization interface. Follow-up observations have continued at the Hoe Creek UCG experiment sites in Wyoming. Phenols have been detected at very low but significant levels in groundwater 400 ft from the Hoe Creek 2 experiment, which was done in 1977. It appears important to continue this investigation of phenol transport at Hoe Creek, and to extend it by drilling and sampling additional wells. The controlled retracting injection point (CRIP) technique, which was devised for UCG application, may also have applications in enhanced recovery of crude oil.

Not Available

1982-08-06T23:59:59.000Z

146

Lawrence Livermore National Laboratory underground coal gasification data base. [US DOE-supported field tests; data  

SciTech Connect (OSTI)

The Department of Energy has sponsored a number of field projects to determine the feasibility of converting the nation's vast coal reserves into a clean efficient energy source via underground coal gasification (UCG). Due to these tests, a significant data base of process information has developed covering a range of coal seams (flat subbituminous, deep flat bituminous and steeply dipping subbituminous) and processing techniques. A summary of all DOE-sponsored tests to data is shown. The development of UCG on a commercial scale requires involvement from both the public and private sectors. However, without detailed process information, accurate assessments of the commercial viability of UCG cannot be determined. To help overcome this problem the DOE has directed the Lawrence Livermore National Laboratory (LLNL) to develop a UCG data base containing raw and reduced process data from all DOE-sponsored field tests. It is our intent to make the data base available upon request to interested parties, to help them assess the true potential of UCG.

Cena, R. J.; Thorsness, C. B.

1981-08-21T23:59:59.000Z

147

Selenium transformation in coal mine spoils: Its environmental impact assessment  

SciTech Connect (OSTI)

The objective of this program was to conduct an environmental impact assessment study for selenium from coal mine spoils. The use of in-situ lysimetry to predict selenium speciation, transformation, and mobility under natural conditions was evaluated. The scope of the study was to construct and test field-scale lysimeter and laboratory mini-column to assess mobility and speciation of selenium in coal mine overburden and soil systems; to conduct soil and groundwater sampling throughout the state of Oklahoma for an overall environmental impact assessment of selenium; and to conduct an in-depth literature review on the solubility, speciation, mobility, and toxicity of selenium from various sources. Groundwater and surface soil samples were also collected from each county in Oklahoma. Data collected from the lysimeter study indicated that selenium in the overburden of the abandoned mine site was mainly found in the selenite form. The amount of selenite found was too low and immobile to be of concern to the environment. The spoil had equilibrated long enough (over 50 years) that most of the soluble forms of selenium have already been lost. Examination of the overburden indicated the presence of pyrite crystals that precipitated over time. The laboratory mini-column study indicated that selenite is quite immobile and remained on the overburden material even after leaching with dilute acid. Data from groundwater samples indicated that based on the current permissible level for selenium in groundwater (0.01 mg Se/L), Oklahoma groundwater is widely contaminated with the element. However, according to the new regulation (0.05 mg Se/L), which is to be promulgated in 1992, only 9 of the 77 counties in the state exceed the limit.

Harness, J.; Atalay, A.; Koll, K.J.; Zhang, H.; Maggon, D.

1991-12-31T23:59:59.000Z

148

The Hanna and Hoe Creek underground coal gasification test sites: Status report, (June 1986-June 1987)  

SciTech Connect (OSTI)

To comply with a cooperative agreement with the U.S. Department of Energy (DOE), the Western Research Institute (WRI) is required to submit an annual report summarizing the status of environmentally related work performed by WRI at the Hanna and Hoe Creek underground coal gasification (UCG) sites. The following is a summary of work performed at these two sites from June 1986 to June 1987. Several tasks for restoring the water quailty at Hoe Creek were: (1) groundwater treatment demonstration (1986); (2) bench-scale carbon adsorption experiments (1987); (3) design of the scaled-up treatment system (1987); (4) well-pumping test (1987). A summary of the results of each task is presented. 6 refs., 8 figs., 4 tabs.

Berdan, G.L.; Nolan, B.T.; Barteaux, W.L.; Barrash, W.

1987-06-01T23:59:59.000Z

149

Hoe Creek No. 3 - First long-term underground coal gasification experiment with oxygen-steam injection  

SciTech Connect (OSTI)

The paper describes the first long-term underground coal gasification experiment with oxygen-steam injection. In the Hoe Creek No. 3 underground experiment, linkage paths were established between the injection and production wells by drilling a horizontal borehole between them near the bottom of the coal seam. The drilled linkage hole was enlarged by reverse burning, and then the forward gasification process was started - first with air injection for one week, then with oxygen-steam injection for the remainder of the experiment. During the oxygen-steam injection period, about 3900 tons of coal were gasified in 47 days, at an average rate of 83 tons per day. The heating value of the dry product gas averaged 218 Btu/scf, suitable for input to a processing plant for upgrading to pipeline quality, which is about 900 Btu/scf.

Not Available

1980-05-01T23:59:59.000Z

150

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described earlier in an e-mail, in an  

E-Print Network [OSTI]

Coal River Mountain Redux Below is an update to the Coal River Mountain story that I described billion gallons of toxic coal sludge located directly above Marsh Fork Elementary School. (No word yet on their campus a couple of years ago. Underground Appalachian coal mining is being replaced in recent years

Hansen, James E.

151

Impact of mine closure and access facilities on gas emissions from old mine workings to surface: examples of French iron and coal  

E-Print Network [OSTI]

: examples of French iron and coal Lorraine basins C. Lagny, R. Salmon, Z. Pokryszka and S. Lafortune (INERIS of mine shafts located in the iron Lorraine basin, in the Lorraine and in North-East coal basins are quite in mine workings but gas entrance and exit are allowed. Coal shafts are secured and can be equipped

Boyer, Edmond

152

Environmental assessment for the Hoe Creek underground, Coal Gasification Test Site Remediation, Campbell County, Wyoming  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has prepared this EA to assess environmental and human health Issues and to determine potential impacts associated with the proposed Hoe Creek Underground Coal Gasification Test Site Remediation that would be performed at the Hoe Creek site in Campbell County, Wyoming. The Hoe Creek site is located south-southwest of the town of Gillette, Wyoming, and encompasses 71 acres of public land under the stewardship of the Bureau of Land Management. The proposed action identified in the EA is for the DOE to perform air sparging with bioremediation at the Hoe Creek site to remove contaminants resulting from underground coal gasification (UCG) experiments performed there by the DOE in the late 1970s. The proposed action would involve drilling additional wells at two of the UCG test sites to apply oxygen or hydrogen peroxide to the subsurface to volatilize benzene dissolved in the groundwater and enhance bioremediation of non-aqueous phase liquids present in the subsurface. Other alternatives considered are site excavation to remove contaminants, continuation of the annual pump and treat actions that have been used at the site over the last ten years to limit contaminant migration, and the no action alternative. Issues examined in detail in the EA are air quality, geology, human health and safety, noise, soils, solid and hazardous waste, threatened and endangered species, vegetation, water resources, and wildlife. Details of mitigative measures that could be used to limit any detrimental effects resulting from the proposed action or any of the alternatives are discussed, and information on anticipated effects identified by other government agencies is provided.

NONE

1997-10-01T23:59:59.000Z

153

Relations between health indicators and residential proximity to coal mining in West Virginia  

SciTech Connect (OSTI)

We used data from a survey of 16493 West Virginians merged with county-level coal production and other covariates to investigate the relations between health indicators and residential proximity to coal mining. Results of hierarchical analyses indicated that high levels of coal production were associated with worse adjusted health status and with higher rates of cardiopulmonary disease, chronic obstructive pulmonary disease, hypertension, lung disease, and kidney disease. Research is recommended to ascertain the mechanisms, magnitude, and consequences of a community coal-mining exposure effect.

Hendryx, M.; Ahern, M.M. [West Virginia University, Morgantown, WV (United States). Dept. for Community Medicine

2008-04-15T23:59:59.000Z

154

Application of geological studies to overburden collapse at underground coal gasification experiments  

SciTech Connect (OSTI)

Detailed geologic and mineralogic studies were conducted on the Hanna, Wyoming, and Hoe Creek, Wyoming, underground coal gasification sites. These studies demonstrate the importance geologic factors have on controlling overburden collapse into the reactor cavity during and after coal gasification and on subsequent environmental problems. Parameters that control the collapse of overburden material into the reactor cavity include: duration of the burn; maximum span of unsupported roof rock; lateral and vertical homogeneity, permeability and rock strength; and thickness of overburden materials. At the Hoe Creek I experiment, a small reactor cavity and a correspondingly short maximum span of unsupported roof rock consisting of fine-grained, low permeability overbank deposits resulted in minimal collapse. At the Hoe Creek II experiment, a significant amount of collapse occurred due to an increased span of unsupported roof rock comprised of poorly consolidated, more permeable channel sandstones and a limited amount of overburden mudstones and siltstones. Roof rock collapse extended to the surface at the Hoe Creek III experiment where the roof rock consisted of highly permeable, poorly consolidated channel sandstones. The unit comprising the reactor cavity roof rock at the Hanna II experimental site is a laterally continuous lacustrine delta deposit, which primarily consists of sandstones with lesser amounts of interbedded siltstones and claystones. Calcite cement has reduced permeability and interstitial waters which probably kept spalling of the roof rock to a minimum. Consequently, roof rock collapse at the Hanna II experiment was much less extensive than at the Hoe Creek II and III experiments.

Ethridge, F.G.; Alexander, W.G.; Craig, G.N. II; Burns, L.K.; Youngberg, A.D.

1983-08-01T23:59:59.000Z

155

Combined Air Sparge and Bioremediation of an Underground Coal Gasification Site  

SciTech Connect (OSTI)

EG&G Technical Services of West Virginia (TSWV) Inc. is successfully remediating a former underground coal gasification (UCG) test site in northeastern Wyoming. EG&G is demonstrating the effectiveness of combined air sparge and biostimulation technology. This project is being conducted for the U.S. Department of Energy (DOE ) - Morgantown Energy Technology Center (METC), the lease holder of the site. UCG testing from 1976 through 1979 contaminated three water-bearing units at the site with benzene. Previous pump and treat operations at the site showed the presence of a persistent non-dissolved benzene source material. The Felix I coal seam is the most contaminated unit at the site and was the target unit for the initial demonstration. Air sparging was selected to strip dissolved benzene, volatilize the non- dissolved benzene source material, and to provide oxygen for increasing aerobic bacteria populations. Indigenous bacteria populations were stimulated with ammonium phosphate addition. EG&G designed the remediation system to take advantage of the hydrogeologic environment to produce a cost-effective approach to the groundwater remediation. Groundwater pumping was used to manipulate subsurface air flow, nutrient transport, and biomass management. Demonstration operations began on September 29, 1995, and were suspended on April 30, 1996 to begin demonstration expansion. Initial results of the demonstration show substantial reduction in benzene concentrations across the demonstration area. Benzene concentration reductions greater than 80% were observed two months after demonstration operations were suspended.

Covell, J.R.; Thomas, M.H.

1996-12-01T23:59:59.000Z

156

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

SciTech Connect (OSTI)

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

157

Underground reconnaissance and environmental monitoring related to geologic CO2 sequestration studies at the DUSEL Facility, Homestake Mine, South Dakota  

SciTech Connect (OSTI)

Underground field reconnaissance was carried out in the Deep Underground Science and Engineering Laboratory (DUSEL) to identify potential locations for the planned geologic carbon sequestration experimental facility known as DUSEL CO{sub 2}. In addition, instrumentation for continuous environmental monitoring of temperature, pressure, and relative humidity was installed at various locations within the Homestake mine. The motivation for this work is the need to locate and design the DUSEL CO{sub 2} facility currently being planned to host CO{sub 2} and water flow and reaction experiments in long column pressure vessels over large vertical length scales. Review of existing geologic data and reconnaissance underground revealed numerous potential locations for vertical experimental flow columns, with limitations of existing vertical boreholes arising from limited vertical extent, poor continuity between drifts, and small diameter. Results from environmental monitoring over 46 days reveal spatial and temporal variations related to ventilation, weather, and ongoing dewatering of the mine.

Dobson, Patrick F.; Salve, Rohit

2009-11-20T23:59:59.000Z

158

Distinct element modelling and mining induced subsidence: Influence of the major faults Modelisation des affaissements miniers :Influence des faules  

E-Print Network [OSTI]

, Nancy, France ABSTRACT :This study examines the subsidence due to Underground mining works in a coal mine in France. Coal is mined at a depth reaching 1000 m, according to longwall face method with caving. The seam ranges between 2 and 3.4 m in thickness. The dip strata does not exceed 10°. As predicted

Boyer, Edmond

159

Higher coronary heart disease and heart attack morbidity in Appalachian coal mining regions  

SciTech Connect (OSTI)

This study analyzes the U.S. 2006 Behavioral Risk Factor Surveillance System survey data (N = 235,783) to test whether self-reported cardiovascular disease rates are higher in Appalachian coal mining counties compared to other counties after control for other risks. Dependent variables include self-reported measures of ever (1) being diagnosed with cardiovascular disease (CVD) or with a specific form of CVD including (2) stroke, (3) heart attack, or (4) angina or coronary heart disease (CHD). Independent variables included coal mining, smoking, BMI, drinking, physician supply, diabetes co-morbidity, age, race/ethnicity, education, income, and others. SUDAAN Multilog models were estimated, and odds ratios tested for coal mining effects. After control for covariates, people in Appalachian coal mining areas reported significantly higher risk of CVD (OR = 1.22, 95% CI = 1.14-1.30), angina or CHO (OR = 1.29, 95% C1 = 1.19-1.39) and heart attack (OR = 1.19, 95% C1 = 1.10-1.30). Effects were present for both men and women. Cardiovascular diseases have been linked to both air and water contamination in ways consistent with toxicants found in coal and coal processing. Future research is indicated to assess air and water quality in coal mining communities in Appalachia, with corresponding environmental programs and standards established as indicated.

Hendryx, M.; Zullig, K.J. [West Virginia University, Morgantown, WV (United States). Dept. of Community Medicine

2009-11-15T23:59:59.000Z

160

Hoe Creek No. 3: first long-term underground coal gasification experiment with oxygen-steam injection  

SciTech Connect (OSTI)

There are compelling reasons for pursuing underground coal gasification. The resource that could be exploited is huge - enough to quadruple present proved coal reserves - if the process is successful. Cost estimates indicate that substitute natural gas or gasoline may be producible at reasonable prices by the technique. In the Hoe Creek No. 3 underground coal gasification experiment linkage paths were established between the injection and production wells by drilling a horizontal borehole between them near the bottom of the coal seam. The drilled linkage hole was enlarged by reverse burning, then the forward gasification process began - first with air injection for one week, then with oxygen-steam injection for the remainder of the experiment. During the oxygen-steam injection period, approximately 3900 tons of coal was gasified in 47 days, at an average rate of 83 tons/day. The heating value of the dry product gas averaged 218 Btu/SCF (194 kj/mol), suitable for input to a processing plant for upgrading to pipeline quality, which is approximately 900 Btu/SCF (800 kj/mol).

Not Available

1980-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING  

E-Print Network [OSTI]

DETECTION OF EVENTS CAUSING PLUGGAGE OF A COAL-FIRED BOILER: A DATA MINING APPROACH ANDREW KUSIAK to analyze events leading to plug- gage of a boiler. The proposed approach involves statistics, data. The proposed approach has been tested on a 750 MW commercial coal-fired boiler affected with an ash fouling

Kusiak, Andrew

162

Restoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern Appalachia  

E-Print Network [OSTI]

Restoration As Mitigation: Analysis of Stream Mitigation for Coal Mining Impacts in Southern or degraded but little is known about the success of stream mitigation. This article presents a synthesis of information about 434 stream mitigation projects from 117 permits for surface mining in Appalachia. Data from

Palmer, Margaret A.

163

Injury experience in nonmetallic mineral mining (except stone and coal), 1989  

SciTech Connect (OSTI)

This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of nonmetallic mineral mining (except stone and coal) in the United States for 1989. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report. 3 figs., 46 tabs.

Not Available

1990-01-01T23:59:59.000Z

164

Environmental evaluation and restoration plan of the Hoe Creek Underground Coal Gasification Site, Wyoming: Topical report  

SciTech Connect (OSTI)

Three underground coal gasification (UCG) experiments were conducted by Lawrence Livermore National Laboratory (LLNL) at the Hoe Creek Site, Wyoming; the Hoe Creek I experiment was conducted in 1976, the Hoe Creek II experiment in 1977, and the Hoe Creek III experiment in 1979. These experiments have had an impact on the land and groundwater quality at the site, and the Department of Energy (DOE) has requested that Western Research Institute (WRI) develop and implement a site restoration plan. The purpose of the plan is to restore the site to conditions being negotiated with the Wyoming Department of Environmental Quality (WDEQ). To prepare for developing a plan, WRI compiled background information on the site. The geologic and hydrologic characteristics of the site were determined, and the water quality data were analyzed. Modelling the site was considered and possible restoration methods were examined. Samples were collected and laboratory tests were conducted. WRI then developed and began implementing a field-scale restoration test. 41 refs, 46 figs., 13 tabs.

Barteaux, W.L.; Berdan, G.L.; Lawrence, J.

1986-09-01T23:59:59.000Z

166

Development of enclosed life support system for underground rescue employing a photocatalytic metal oxide thin film to generate oxygen from water and reduce carbon dioxide  

E-Print Network [OSTI]

Despite major improvements in technology and safety regulations, coal mining continues to be a hazardous industry. Catastrophic accidents, related largely to underground explosions and generation of toxic gases, commonly ...

Trivedi, Meghna S

2006-01-01T23:59:59.000Z

167

Unconventional (borehole) Technologies for Gas Fuel Producing from Coal  

E-Print Network [OSTI]

The scheme discribtion of borehole thechnologies for coal fields utilization is cited in the report. The merits and shortages of the technologies are discussed. The several conclusions are expressed. Key words: borehole technology, coal seam, coalbed methane, recovery, comparision. Geotechnology is the method of raw fossil recovery through the surface boreholes. The raw fossil may be presented both liquid and gas or hard materials. The geotechnological methods have used since beginning of XX century. Conventional methods of coal mining permit to receive 7-9 % useful energy from coal in situ potential energy (calorific value of it). This energy effectiveness have calculated on the base of mining and transportation and processing of the coal [1]. Besides, capacity of labour during underground mining activity is not very high and is evaluated as 0.02-0.5 man-sheet per one ton of coal. The coal mining is accompanied high shake of extracted rock (in Russian coal fields as many as 25-27%). As much as 8-12 tones of clean air are given for one ton of the produced coal. The coefficient of fatal accidents in the coal mines ranges as 1.2-1.5 per 1 million tons of the coal recovery. Underground (mines) and surface (open pits) mining make negative influence on the environment.

Vasyuchkov Yu. F; Vasyuchkov M. Yu

168

Analysis, comparison, and modeling of radar interferometry, date of surface deformation signals associated with underground explosions, mine collapses and earthquakes. Phase I: underground explosions, Nevada Test Site  

SciTech Connect (OSTI)

We have previously presented simple elastic deformation modeling results for three classes of seismic events of concern in monitoring the CTBT--underground explosions, mine collapses and earthquakes. Those results explored the theoretical detectability of each event type using synthetic aperture radar interferometry (InSAR) based on commercially available satellite data. In those studies we identified and compared the characteristics of synthetic interferograms that distinguish each event type, as well the ability of the interferograms to constrain source parameters. These idealized modeling results, together with preliminary analysis of InSAR data for the 1995 mb 5.2 Solvay mine collapse in southwestern Wyoming, suggested that InSAR data used in conjunction with regional seismic monitoring holds great potential for CTBT discrimination and seismic source analysis, as well as providing accurate ground truth parameters for regional calibration events. In this paper we further examine the detectability and ''discriminating'' power of InSAR by presenting results from InSAR data processing, analysis and modeling of the surface deformation signals associated with underground explosions. Specifically, we present results of a detailed study of coseismic and postseismic surface deformation signals associated with underground nuclear and chemical explosion tests at the Nevada Test Site (NTS). Several interferograms were formed from raw ERS-1/2 radar data covering different time spans and epochs beginning just prior to the last U.S. nuclear tests in 1992 and ending in 1996. These interferograms have yielded information about the nature and duration of the source processes that produced the surface deformations associated with these events. A critical result of this study is that significant post-event surface deformation associated with underground nuclear explosions detonated at depths in excess of 600 meters can be detected using differential radar interferometry. An immediate implication of this finding is that underground nuclear explosions may not need to be captured coseismically by radar images acquired before and after an event in order to be detectable. This has obvious advantages in CTBT monitoring since suspect seismic events--which usually can be located within a 100 km by 100 km area of an ERS-1/2 satellite frame by established seismic methods-can be imaged after the event has been identified and located by existing regional seismic networks. Key Words: InSAR, SLC images, interferogram, synthetic interferogram, ERS-1/2 frame, phase unwrapping, DEM, coseismic, postseismic, source parameters.

Foxall, W; Vincent, P; Walter, W

1999-07-23T23:59:59.000Z

169

Bacterial reduction of selenium in coal mine tailings pond sediment  

SciTech Connect (OSTI)

Sediment from a storage facility for coal tailings solids was assessed for its capacity to reduce selenium (Se) by native bacterial community. One Se{sup 6+}-reducing bacterium Enterobacter hormaechei (Tar11) and four Se{sup 4+}-reducing bacteria, Klebsiella pneumoniae (Tar1), Pseudomonasfluorescens (Tar3), Stenotrophomonas maltophilia (Tar6), and Enterobacter amnigenus (Tar8) were isolated from the sediment. Enterobacter horinaechei removed 96% of the added Se{sup 6+} (0.92 mg L{sup -1} from the effluents when Se6+ was determined after 5 d of incubation. Analysis of the red precipitates showed that Se{sup 6+} reduction resulted in the formation of spherical particles ({lt}1.0 {mu} m) of Se 0 as observed under scanning electron microscope (SEM) and confirmed by EDAX. Selenium speciation was performed to examine the fate of the added Se{sup 6+} in the sediment with or without addition of Enterobacter hormaechei cells. More than 99% of the added Se{sup 6+} (about 2.5 mg L{sup -1}) was transformed in the nonsterilized sediment (without Enterobacter hormaechei cells) as well as in the sterilized (heat-killed) sediment (with Enterobacter hormaechei cells). The results of this study suggest that the lagoon sediments at the mine site harbor Se{sup 6+}- and Se{sup 4+} -reducing bacteria and may be important sinks for soluble Se (Se{sup 6+} and Se{sup 4+}). Enterobacter hormaechei isolated from metal-contaminated sediment may have potential application in removing Se from industrial effluents.

Siddique, T.; Arocena, J.M.; Thring, R.W.; Zhang, Y.Q. [University of North British Columbia, Prince George, BC (Canada)

2007-05-15T23:59:59.000Z

170

Report Title: The Economic Impact of Coal Mining in New Mexico Type of Report: Final Technical Report  

E-Print Network [OSTI]

Report Title: The Economic Impact of Coal Mining in New Mexico Type of Report: Final Technical Name and Address of Submitting Organization: Arrowhead Center New Mexico State University P. O. Box The economic impact of coal mining in New Mexico is examined in this report. The analysis is based on economic

Johnson, Eric E.

171

Table 16. Recoverable Coal Reserves and Average Recovery Percentage at Producing Underground Coal Mines by State and Mining Method,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary statistics for0b.Total:1

172

Health and safety evaluation of a modified tunnel-borer design for application to single-entry coal-mine development  

SciTech Connect (OSTI)

The health and safety analysis is part of an overall effort to identify and develop innovative underground coal extraction systems. The single-entry tunnel borer system was initially considered an innovative approach to underground mining because it exhibited a means of increasing the speed and efficiency of entry development by reducing the number of entries. However, to be considered a truly advanced system, the tunnel borer had to meet distinct safety criteria as well. The objective was to examine the tunnel borer design and determine whether it offset major health hazards, and satisfied the prescribed safety levels. As a baseline for comparison, the tunnel borer was compared against the continuous mining entry driving system. The results of the health analysis indicated that while the tunnel borer design offered improvements in dust control through the use of water sprays, a higher face ventilation rate, and the application of spalling rather than the conventional grinding process, it interjected an additional mutagenic is and toxic compound into the environment through the use of shotcrete. The tunnel borer system easily conformed with the prescribed fatality limit, but exceeded the required limits for disabling and overall injuries. It also exhibited projected disabling and overall injury rates considerably higher than existing continuous mining injury rates. Consequently, the tunnel borer system was not considered an advanced system.

Zimmerman, W. F.

1982-02-15T23:59:59.000Z

173

Characterization of available coals from Illinois mines. Technical report, December 1, 1992--February 28, 1993  

SciTech Connect (OSTI)

The goal of this project is to characterize marketed coals from Illinois mines. The results generated by this project will promote Illinois coals for prospective new markets as feed materials for advanced gasification processes, for synthetic organic chemicals, and help asses future environmental requirements for abatement of noxious trace elements. The properties that are being determined include the concentration of all trace elements that are of environmental concern, the pyrite size distribution and maceral association, preliminary froth flotation cleanability, slagging and fouling characteristics relevant to the coal`s behavior in utility boilers, chlorine forms and distribution, and certain gasification and rheology parameters. We completed collection and processing of samples of 34 marketed coals that represent the products from a total of 40 mines. All the samples were submitted for standard coal and trace element analyses, and some of the analytical tasks were completed. There was a considerable amount of trace element data on face channel samples scattered in various files at the ISGS. In order to establish useful correlations between the marketed coal and face channel samples, the existing files were integrated and edited for accuracy and completeness.

Demir, I.; Harvey, R.D.; Ruch, R.R.; Chaven, C.; Damberger, H.H.; Dreher, G.B.; Frankie, W.T. [Illinois Dept. of Energy and Natural Resources, Springfield, IL (United States). Geological Survey; Ho, K.K. [Illinois Clean Coal Inst., Carterville, IL (United States)

1993-05-01T23:59:59.000Z

174

Proceedings of the sixteenth international symposium on mine planning and equipment selection (MPES 2007) and the tenth international symposium on environmental issues and waste management in energy and mineral production (SWEMP 2007)  

SciTech Connect (OSTI)

Papers presented at MPES 2007 covered: coal mining and clean coal processing technologies; control, design and planning of surface and underground mines; drilling, blasting and excavation engineering; mining equipment selection; automation and information technology; maintenance and production management for mines and mining systems; health, safety and environment; cost effective methods of mine reclamation; mine closure and waste disposal; and rock mechanics and geotechnical issues. Papers from SWEMP 2007 discussed methods and technologies for assessing, minimizing and preventing environmental problems associated with mineral and energy production. Topics included environmental impacts of coal-fired power projects; emission control in thermal power plants; greenhouse gas abatement technologies; remediation of contaminated soil and groundwater; environmental issues in surface and underground mining of coal, minerals and ores; managing mine waste and mine water; and control of effluents from mineral processing, metallurgical and chemical plants.

Singhal, R.K.; Fytas, K.; Jongsiri, S.; Ge, Hao (eds.) [Universite Laval, Quebec, PQ (Canada)

2007-07-01T23:59:59.000Z

175

Modeling of Gas Extraction from Closed Coal Mines C. Lagny & Z. Pokryszka  

E-Print Network [OSTI]

Modeling of Gas Extraction from Closed Coal Mines C. Lagny & Z. Pokryszka Direction des risques du gas flow rate. Validations were made for several years. This model is able to evaluate firedamp of indus- trial gas drainage from the surface. In this aim, a specific mathematical model has been

Paris-Sud XI, Université de

176

Respiratory disease in Utah coal miners  

SciTech Connect (OSTI)

Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's penumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

1981-04-01T23:59:59.000Z

177

Respiratory disease in Utah coal miners  

SciTech Connect (OSTI)

Two hundred forty-two Utah underground coal miners volunteered to participate in a respiratory disease study. They were an older group (mean, 56 years of age) and had spent a mean of 29 years in the coal-mining industry. The prevalence of chronic bronchitis was 57%, and that of coal worker's pneumoconiosis, 25%; only one worker had progressive massive fibrosis. Significant impairment of pulmonary function was found among those with a history of cigarette smoking. Chronic bronchitis or coal worker's pneumoconiosis among nonsmokers did not impair pulmonary function. There was a significant association among the nonsmokers between increasing exposure to coal dust and coal worker's pneumoconiosis, but not for changes in pulmonary function. Coal mine dust had a significant influence in causing the symptom complex of chronic cough and sputum production, and coal worker's pneumoconiosis.

Rom, W.N.; Kanner, R.E.; Renzetti, A.D. Jr.; Shigeoka, J.W.; Barkman, H.W.; Nichols, M.; Turner, W.A.; Coleman, M.; Wright, W.E.

1981-04-01T23:59:59.000Z

178

Black Thunder Coal Mine and Los Alamos National Laboratory experimental study of seismic energy generated by large scale mine blasting  

SciTech Connect (OSTI)

In an attempt to better understand the impact that large mining shots will have on verifying compliance with the international, worldwide, Comprehensive Test Ban Treaty (CTBT, no nuclear explosion tests), a series of seismic and videographic experiments has been conducted during the past two years at the Black Thunder Coal Mine. Personnel from the mine and Los Alamos National Laboratory have cooperated closely to design and perform experiments to produce results with mutual benefit to both organizations. This paper summarizes the activities, highlighting the unique results of each. Topics which were covered in these experiments include: (1) synthesis of seismic, videographic, acoustic, and computer modeling data to improve understanding of shot performance and phenomenology; (2) development of computer generated visualizations of observed blasting techniques; (3) documentation of azimuthal variations in radiation of seismic energy from overburden casting shots; (4) identification of, as yet unexplained, out of sequence, simultaneous detonation in some shots using seismic and videographic techniques; (5) comparison of local (0.1 to 15 kilometer range) and regional (100 to 2,000 kilometer range) seismic measurements leading to determine of the relationship between local and regional seismic amplitude to explosive yield for overburden cast, coal bulking and single fired explosions; and (6) determination of the types of mining shots triggering the prototype International Monitoring System for the CTBT.

Martin, R.L.; Gross, D. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, D.C.; Stump, B.W. [Los Alamos National Lab., NM (United States); Anderson, D.P. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Geological Sciences

1996-12-31T23:59:59.000Z

179

Reuse of Produced Water from CO2 Enhanced Oil Recovery, Coal-Bed Methane, and Mine Pool Water by Coal-Based Power Plants  

SciTech Connect (OSTI)

Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO{sub 2} enhanced oil recovery (CO{sub 2}-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO{sub 2}-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter ($15 to $60 per 1000 gallons), with treatment costs accounting for 13 â?? 23% of the overall cost. Results from this project suggest that produced water is a potential large source of cooling water, but treatment and transportation costs for this water are large.

Chad Knutson; Seyed Dastgheib; Yaning Yang; Ali Ashraf; Cole Duckworth; Priscilla Sinata; Ivan Sugiyono; Mark Shannon; Charles Werth

2012-04-30T23:59:59.000Z

180

Influence of continuous-miner bit sharpness and coal-lithotype composition on coal breakage: examples from Kentucky mines. Technical report  

SciTech Connect (OSTI)

This pilot study addresses the influence of coal lithotype, continuous miner bit sharpness, and coal hardness on particle sizing and liberation characteristics. The interface of the job end of the traditional continuous mining machine and the given geologic conditions at the job site; and their combined influence on particle sizing and liberation is investigated.

Lineberry, G.T.; Rogers, F.D.; Leonard, J.W.; Hower, J.C.; Graese, A.M.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Underground Injection Control (Louisiana)  

Broader source: Energy.gov [DOE]

The Injection and Mining Division (IMD) has the responsibility of implementing two major federal environmental programs which were statutorily charged to the Office of Conservation: the Underground...

182

Laboratory studies on evaluation of in situ biodegradation at the Hoe Creek UCG (underground coal gasification) site  

SciTech Connect (OSTI)

Laboratory experiments were conducted to evaluate the potential for in situ biodegradation in the contaminated groundwater aquifer at the Hoe Creek underground coal gasification site. Experiments were performed in electrolytic respirometric cells under simulated environmental conditions. An orthogonal, fractional factorial design was used to evaluate the effects of the following factors on phenol degradation: nutrient dose, amount of bacterial inoculum, temperature, light conditions, and substrate concentration. Microorganisms native to the environment were used as the inoculum, and phosphorus was used as the nutrient. The amount of inoculum introduced and the nutrient dose were found to have a positive effect on phenol degradation. Temperature changes from 15{degree}C (59{degree}F) to 25{degree}C (77{degree}F) had no significant effect. The light conditions (fluorescent or dark) also had no significant effect on phenol degradation. Higher concentrations of substrate required increased amounts of oxygen for biodegradation. 24 refs., 1 fig., 4 tabs.

Nolan, B.T.; Suthersan, S.

1987-09-01T23:59:59.000Z

183

Review of underground coal-gasification field experiments at Hoe Creek. [Hoe Creek 1, 2, and 3  

SciTech Connect (OSTI)

LLNL has conducted three underground coal gasification experiments at the Hoe Creek site near Gillette, Wyoming. Three different linking methods were used: explosive fracture, reverse burning and directional drilling. Air was injected on all three experiments and a steam/oxygen mixture during 2 days of the second and most of the third experiment. Comparison of results show that the linking method didn't influence gas quality. The heat of combustion of the product gas was higher with steam/oxygen injection, mainly because of reduced inert diluent. Gas quality was generally independent of other operating parameters, but declined from its initial value over a period of time. This was due to heat loss to the wet overburden and extensive roof collapse in the second and third experiments.

Thorsness, C.B.; Creighton, J.R.

1982-05-26T23:59:59.000Z

184

King Coal vs. Reclamation: federal regulation of mountaintop removal mining in Appalachia  

SciTech Connect (OSTI)

This research focuses on the regulatory politics of mountaintop removal mining for coal within the Appalachian states of West Virginia and Kentucky. Based on Administrative Presidency concepts suggesting that chief executives seek more control and influence over agency program decisions, this article analyzes President George W. Bush's efforts to promote the development of coal resources within these states despite statutory constraints posed by federal environmental laws. The analysis demonstrates that President Bush effectively achieved his energy production goals by combining the use of discretionary authority with staff controls, executive orders, and regulatory initiatives to lessen industry compliance costs with environmental regulatory requirements.

Davis, C.E.; Duffy, R.J. [Colorado State University, Fort Collins, CO (United States). Dept. of Political Science

2009-10-15T23:59:59.000Z

185

An analysis of injury claims from low-seam coal mines  

SciTech Connect (OSTI)

The restricted workspace present in low-seam coal mines forces workers to adopt awkward working postures (kneeling and stooping), which place high physical demands on the knee and lower back. This article provides an analysis of injury claims for eight mining companies operating low-seam coal mines during calendar years 1996-2008. All cost data were normalized using data on the cost of medical care (MPI) as provided by the U.S. Bureau of Labor Statistics. Results of the analysis indicate that the knee was the body part that led in terms of claim cost ($4.2 million), followed by injuries to the lower back ($2.7 million). While the average cost per injury for these body parts was $13,100 and $14,400, respectively (close to the average cost of an injury overall), the high frequency of these injuries resulted in their pre-eminence in terms of cost. Analysis of data from individual mining companies suggest that knee and lower back injuries were a consistent problem across companies, as these injuries were each among the top five most costly part of body for seven out of eight companies studied. Results of this investigation suggest that efforts to reduce the frequency of knee and low back injuries in low-seam mines have the potential to create substantial cost savings.

Gallagher, S.; Moore, S.; Dempsey, P.G. [NIOSH, Pittsburgh, PA (United States)

2009-07-01T23:59:59.000Z

186

Performance consequences of alternating directional control-response compatibility: Evidence from a coal mine shuttle car simulator  

SciTech Connect (OSTI)

This experiment examines the performance of 48 novice participants in a virtual analogy of an underground coal mine shuttle car. Participants were randomly assigned to a compatible condition, an incompatible condition, an alternating condition in which compatibility alternated within and between hands, or an alternating condition in which compatibility alternated between hands. Participants made fewer steering direction errors and made correct steering responses more quickly in the compatible condition. Error rate decreased over time in the incompatible condition. A compatibility effect for both errors and reaction time was also found when the control-response relationship alternated; however, performance improvements over time were not consistent. Isolating compatibility to a hand resulted in reduced error rate and faster reaction time than when compatibility alternated within and between hands. Thus consequences of alternating control-response relationships are higher error rates and slower responses, at least in the early stages of learning. This research highlights the importance of ensuring consistently compatible human-machine directional control-response relationships.

Zupanc, C.M.; Burgess-Limerick, R.J.; Wallis, G. [University of Queensland, St Lucia, Qld. (Australia)

2007-08-15T23:59:59.000Z

187

Identification of sediment sources in forested watersheds with surface coal mining disturbance using carbon and nitrogen isotopes  

SciTech Connect (OSTI)

Sediments and soils were analyzed using stable carbon and nitrogen isotope ratio mass spectrometry and carbon and nitrogen elemental analyses to evaluate the their ability to indicate land-use and land management disturbance and pinpoint loading from sediment transport sources in forested watersheds disturbed by surface coal mining. Samples of transported sediment particulate organic matter were collected from four watersheds in the Southern Appalachian forest in Kentucky. The four watersheds had different surface coal mining history that were classified as undisturbed, active mining, and reclaimed conditions. Soil samples were analyzed including reclaimed grassland soils, undisturbed forest soils, geogenic organic matter associated with coal fragments in mining spoil, and soil organic matter from un-mined grassland soils. Statistically significant differences were found for all biogeochemical signatures when comparing transported sediments from undisturbed watersheds and surface coal mining disturbed watersheds and the results were attributed to differences in erosion sources and the presence of geogenic organic matter. Sediment transport sources in the surface coal mining watersheds analyzed using Monte Carlo mass balance un-mixing found that: {delta}{sup 15}N showed the ability to differentiate streambank erosion and surface soil erosion; and {delta} {sup 13}C showed the ability to differentiate soil organic matter and geogenic organic matter. This suggests that streambank erosion downstream of surface coal mining sites is a significant source of sediment in coal mining disturbed watersheds. The results suggest that the sediment transport processes governing streambank erosion loads are taking longer to reach geomorphologic equilibrium in the watershed as compared with the surface erosion processes.

Fox, J.F. [University of Kentucky, Lexington, KY (United States). Dept. of Civil Engineering

2009-10-15T23:59:59.000Z

188

Research and Development of a New Silica-Alumina Based Cementitious Material Largely Using Coal Refuse for Mine Backfill, Mine Sealing and Waste Disposal Stabilization  

SciTech Connect (OSTI)

Coal refuse and coal combustion byproducts as industrial solid waste stockpiles have become great threats to the environment. To activate coal refuse is one practical solution to recycle this huge amount of solid waste as substitute for Ordinary Portland Cement (OPC). The central goal of this project is to investigate and develop a new silica-alumina based cementitious material largely using coal refuse as a constituent that will be ideal for durable construction, mine backfill, mine sealing and waste disposal stabilization applications. This new material is an environment-friendly alternative to Ordinary Portland Cement. The main constituents of the new material are coal refuse and other coal wastes including coal sludge and coal combustion products (CCPs). Compared with conventional cement production, successful development of this new technology could potentially save energy and reduce greenhouse gas emissions, recycle vast amount of coal wastes, and significantly reduce production cost. A systematic research has been conducted to seek for an optimal solution for enhancing pozzolanic reactivity of the relatively inert solid waste-coal refuse in order to improve the utilization efficiency and economic benefit as a construction and building material.

Henghu Sun; Yuan Yao

2012-06-29T23:59:59.000Z

189

Characterization of available coals from Illinois mines. Final technical report, September 1, 1992--August 31, 1993  

SciTech Connect (OSTI)

The goal of this project was to characterize available product coals from Illinois mines. The characterization parameters that were determined include the concentration of all trace and minor elements that are of environmental concern, the pyrite size distribution and maceral association, preliminary froth flotation cleanability, slagging and fouling characteristics, chlorine forms and distribution, and certain gasification and rheology parameters. The available trace element data on Illinois coals, mainly on channel samples, was edited and updated with new records. The determinations of the trace and minor elements in 34 collected cleaned coal samples, as well as the proximate and ultimate compositions of 34 samples, were completed. In comparison with the previous channel sample data, the results indicated that the cleaning at existing preparation plants reduced the average concentrations of most of the trace elements in the coals. The data also indicated that the trace element concentrations in the product coals could be reduced further by advanced physical cleaning techniques. A sequential (hot water, dilute ammonia, and dilute sodium hydroxide) extraction procedure on three samples indicated variable chloride reductions. The pyrite cleanability index was determined microscopically for each sample. This index is a relative measure of the ease of pyrite removal from the tested sample. The froth flotation test data on 15 of the samples provided a measure of further cleanability of the product coals by physical fine coal cleaning. Viscosities of the 50% solid and <60 mesh particle size slurries of the same 15 samples revealed that these coals can be pumped in slurry form through a pipeline. Slagging and fouling indices, calculated for all 34 samples, indicated that most of the samples are of low to medium slagging and fouling types. Calculation of the gasification parameters indicated that the Illinois coals are in general amenable to gasification.

Demir, I.; Harvey, R.D.; Ruch, R.R.; Chaven, C.; Damberger, H.H.; Steele, J.D.; Frankie, W.T. [Illinois State Geological Survey, Champaign, IL (United States)

1993-12-31T23:59:59.000Z

190

Underground coal gasification data base. [Information on 14 US DOE sponsored tests; also available on computer tapes  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory has developed a data base containing results from fourteen DOE-sponsored underground coal gasification (UCG) field tests. These tests include three performed by LLNL near Gillette, Wyoming at the Hoe Creek site, eight performed by LETC at a site near Hanna, Wyoming, two by GULF near Rawlings, Wyoming, and one performed by METC near Princetown, West Virginia. All tests were done in flat lying coal seams except the Rawlings tests, which utilized a steeply dipping seam. The report presents process parameters and the results of material and energy balances for each test in a variety of forms. The raw process data used to construct the data base is first discussed along with material and energy balance conventions. Following this, each test is described with the process geometry and a brief operating chronology given. Differential and integral summary information in tabular and graphic form is provided for each test. Computer tapes of the entire data base may be requested from the authors through the Lawrence Livermore National Laboratory.

Cena, R.J.; Thorsness, C.B.; Ott, L.L.

1982-11-24T23:59:59.000Z

191

Characterization of available coals from Illinois mines. [Quarterly] technical report, March 1, 1993--May 31, 1993  

SciTech Connect (OSTI)

The goal of this project is to characterize marketed coals from Illinois mines. The characterization parameters that are being determined include the concentration of all trace and minor elements that are of environmental concern, proximate and ultimate compositions, the pyrite size distribution and maceral association, preliminary froth flotation cleanability, slagging and fouling characteristics relevant to the coal`s behavior in utility boilers, chlorine forms and distribution, and certain gasification and rheology parameters. During the third quarter, the trace element data base on Illinois coals was fully checked and edited. The determinations of the trace and minor element contents and proximate and ultimate compositions of the 34 project samples were largely completed. The pyritic S content, still high in some of the marketed samples, could be reduced further in the samples by advanced physical cleaning techniques. Results from the analysis of all 34 samples for Ba, Hg, Mn, and Zr indicate that these elements are primarily or partly associated with mineral matter and, therefore, their concentrations could also be reduced further in the product coals by advanced physical cleaning techniques. A sequential extraction of Cl from two of the samples revealed that regardless of the initial chlorine concentration of the two coals, the total combined amount of chlorine extracted by water, ammonia, and sodium hydroxide is about the same.

Demir, I.; Harvey, R.D.; Ruch, R.R.; Chaven, C.; Damberger, H.H.; Steele, J.D.; Frankie, W.T. [Illinois State Geological Survey, Champaign, IL (United States)

1993-09-01T23:59:59.000Z

192

11/26/12 4:27 PMCoal mine fossils: Paleontology shows us past climate change. -Slate Magazine Page 1 of 4http://www.slate.com/articles/health_and_science/coal/2012/11/coal_mine_fossils_paleontology_shows_us_past_climate_change.single.html  

E-Print Network [OSTI]

part of the surrounding wall, and enormous cranes collect the coal while methane fires belch from, because coal is well worth the investment. And since paleontologists and coal companies have known 1 of 4http://www.slate.com/articles/health_and_science/coal/2012/11/coal_mine

Montañez, Isabel Patricia

193

LLNL underground coal gasification project. Quarterly progress report, January-March 1981  

SciTech Connect (OSTI)

We have continued our laboratory studies of forward gasification through drilled holes in small blocks of coal, approximately 1 foot on a side. Such studies give insight into cavity growth mechanisms and particulate production. However, because of the small dimensions involved, the information these tests provide is necessarily limited to aspects of cavity growth at very early times. The preliminary process design of the Tono No. 1 field experiment in Washington has been completed. The experimental plan and operational strategy have been developed to ensure that the injection point remains near the bottom of the coal seam and that the experiment continues at least until a period of stable operation has been reached and sustained for a time. We have continued to develop a mathematical model for the small coal block experiments in order to further our understanding of the physical and chemical processes governing the burning of the coal and the growth of the cavity within the block. This model will be adapted, later, to larger-scale coal block experiments, and finally to full-scale field experiments. We hope to obtain scaling laws and other insights from the model. Groundwater samples from wells located at distances of a few feet to several hundred feet from the gasification cavities were collected before, during, and after each of the Hoe Creek tests. The analysis of the groundwater contamination data pertinent to the Hoe Creek No. 3 test was completed. This is an ongoing project, and we will continue to obtain and analyze groundwater samples from these test sites.

Olness, D.U.; Clements, W. (eds.)

1981-04-27T23:59:59.000Z

194

Occupational health and safety regulation in the coal mining industry: public health at the workplace  

SciTech Connect (OSTI)

The strategy for preventing occupational disease and injury in the coal mining industry employs several elements. Standards are set and enforced; technical assistance, research, and development are provided; and surveillance is conducted. Compensation for black lung is a vivid reminder of the consequences of failure to prevent disease. And, workers are represented by a union that encourages active participation in all aspects of this strategy. There are significant problems in each of these elements. Regulatory reform threatens to weaken many standards, there is a decline in government research budgets, surveillance is not well monitored, and compensation for black lung is significantly more difficult to obtain now than in the past. Moreover, the conservative governments of the past decade are not friendly towards unions. Nevertheless, the fundamental structure of disease and injury prevention remains intact and, more importantly, it has a historical record of success. The Mine Safety and Health Act provided for a wide array of basic public health measures to prevent occupational disease and injury in the mining industry. These measures have been effective in reducing both risk of fatal injury and exposure to respirable coal mine dust. They are also associated with temporary declines in productivity. In recent years, however, productivity has increased, while risk of fatal injury and exposure to respirable dust have declined. At individual mines, productivity with longwall mining methods appear to be associated with increases in exposure to respirable dust. These trends are not inconsistent with similar trends following implementation of regulations by OSHA. When OSHA promulgated regulations to control exposure to vinyl chloride monomer, enforcement of the standard promoted significant efficiencies in vinyl chloride production (5).21 references.

Weeks, J.L. (Department of Occupational Health and Safety, United Mine Workers of America, Washington, DC (USA))

1991-01-01T23:59:59.000Z

195

Support research on chemical, mechanical, and environmental factors in underground coal gasification. Final technical report  

SciTech Connect (OSTI)

The general goal of this research has been to develop basic data and mathematical models in order to better understand information obtained from large scale field experimentation in underground gasification of Texas lignite. The chemical engineering research has focused on the topics of combustion tube studies of water influx, investigation of cavity growth mechanisms, cracking of pyrolysis products, and analysis of flow patterns in UCG. The petroleum engineering research has focused on subsidence analysis, creep testing and modeling, and effects of overburden drying. Good agreement between subsidence model predictions and data from the Hoe Creek No. 2 field experiment has been obtained. Environmental effects of UCG have been studied both for surface processing of wastewater as well as subsurface phenomena. Activated sludge processing of wastewater seems feasible and pertinent laboratory data have been acquired. Adsorption characteristics and microbial activity for different species in contaminated groundwater have been determined for the Tennessee Colony, Texas, field test site. 100 references, 95 figures, 10 tables.

Edgar, T.F.; Humenick, M.J.; Thompson, T.W.

1984-03-01T23:59:59.000Z

196

DOE Underground-Coal-Conversion-Program field-test activities for 1979 and 1980. [Pricetown 1, Hoe Creek 3, Hanna IV, and SDB 1  

SciTech Connect (OSTI)

Under the US Department of Energy's Underground-Coal-Conversion program, four field tests were completed in 1979 and preparations were begun in 1980 for two additional field tests to be operated in 1981. The Laramie Energy Technology Center (LETC) and Sandia National Laboratories (SNL) completed Hanna IV, an air gasification test in Wyoming subbituminous coal. The Morgantown Energy Technology Center (METC) completed Pricetown 1, an air gasification test in West Virginia bituminous coal. Lawrence Livermore National Laboratory (LLNL) completed Hoe Creek 3, a steam-oxygen gasification test in Wyoming subbituminous coal. Gulf Research and Development Co. completed Steeply Dipping Beds (SDB) Test 1, primarily an air gasification test in Wyoming subbituminous coal and the first SDB test in the US. In 1980, Gulf R and D Co. began preparation of SDB Test 2, scheduled for operation in the fall of 1981. The DOE project teams at LETC, METC, LLNL, and SNL, in association with the Washington Irrigation and Development Co. (WIDCo), Washington Water Power (WWP), and the State of Washington, are preparing a field test site in the Centralia-Chehalis coal district of Washington. A series of large coal block tests will be completed prior to the field test, scheduled for operation in 1982 or 1983. This field test will utilize a directionally drilled link and steam-oxygen gasification system. This paper summarizes the results of the four recently completed field tests and the plans for additional tests.

Bartke, T.C.

1983-08-01T23:59:59.000Z

197

Techniques and equipment used in contaminant detection at Hoe Creek underground coal gasification experimental site  

SciTech Connect (OSTI)

Data obtained from existing monitoring wells at an experimental coal gasification site indicated that local groundwater supplies were under risk from organic contaminants, particularly phenols. A more extensive monitoring system was installed. A drilling and open-hole sampling programme was devised to locate the edge of the contaminated area and indicate where additional monitoring wells were required. Geophysical logging was employed to determine the optimal position of gas-driven groundwater samplers/piezometers. The system successfully delineated the extent of the contaminant plume on 3 sides, but further work is required on the fourth side.

Davidson, S.C.

1984-01-01T23:59:59.000Z

198

Mutagenic and toxic activity of environmental effluents from underground coal gasification experiments  

SciTech Connect (OSTI)

Using bacterial bioassays, the authors have screened for the presence of mutagens and toxins in extracts from groundwater, and in tar from product gas, at the Hoe Creek II and III in situ coal gasification sites. The sites exhibited different potential biological hazards, suggesting that different gasification processes may represent different human health concerns. It was found that mutagens are present in groundwater, they persist for at least 2 years after gasification has been terminated, and they show a change in activity with time, possibly in parallel with changes in chemical composition. The tar may represent a disposal problem, since it is mutagenic, but with a low level of activity.

Timourian, H.

1982-05-01T23:59:59.000Z

199

Mines and Quarries: The Coal Mines (Precautions against Inflammable Dust) Order, 1956   

E-Print Network [OSTI]

This order is made under the Mines and Quarries Act, 1954, s. 190, which empowers the Minister of Fuel and Power to re-enact (to the extent to which they could be enacted in regulations made under the Act and subject to ...

Her Majesty's Stationary Office

1957-01-01T23:59:59.000Z

200

Mines and Quarries: The Coal and Other Mines (Safety -Lamps and Lighting) Order, 1956   

E-Print Network [OSTI]

This order is made under the Mines and Quarries Act, 1954, s. 190, which empowers the Minister of Fuel and Power to re-enact (to the extent to which they could be enacted in regulations made under the Act and subject to modifications of the kind...

Her Majesty's Stationary Office

1960-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Underground coal gasification: Development of theory, laboratory experimentation, interpretation, and correlation with the Hanna field tests: Final report  

SciTech Connect (OSTI)

The following report is a description of a 7 year effort to develop a theoretical understanding of the underground coal gasification process. The approach used is one of the mathematical model development from known chemical and principles, simplification of the models to isolate important effects, and through validation of models to isolate important effects, and through validation of models with laboratory experiments and field test data. Chapter I contains only introductory material. Chapter II describes the development of two models for reverse combustion: a combustion model and a linearized model for combustion front instability. Both models are required for realistic field predictions. Chapter III contains a discussion of a successful forward gasification model. Chapter IV discusses the spalling-enhanced-drying model is applicable to prediction of cavity growth and subsidence. Chapter VI decribes the correct use of energy and material balances for the analysis of UCG field test data. Chapter VII shows how laboratory experiments were used to validate the models for reverse combustion and forward gasification. It is also shown that laboratory combustion tube experiments can be used to simulate gas compositions expected from field tests. Finally, Chapter VII presents results from a comprehensive economic analysis of UCG involving 1296 separate cases. 37 refs., 49 figs., 12 tabs.

Gunn, R.D.; Krantz, W.B.

1987-03-01T23:59:59.000Z

202

Biodiesel Clears the Air in Underground Mines, Clean Cities, Fact Sheet, June 2009  

SciTech Connect (OSTI)

Mining companies are using biodiesel in their equipment to help clear the air of diesel particulate matter (DPM). This action improves air quality and protects miners' lungs. Though using biodiesel has some challenges in cold weather, tax incentives, and health benefits make it a viable option.

Not Available

2009-06-01T23:59:59.000Z

203

Acid-producing potential of the various lithic units associated with the mining of coal. Technical completion report  

SciTech Connect (OSTI)

A collection of the seven different potentially toxic lithotypes encountered in the mining of coal were collected for five coals in 18 mines over a 5 county area in northern West Virginia for a total of 89 samples. Each sample was subjected to total sulfur analysis and to the soxhlet extraction/oven reoxidation procedure devised by the authors for the evaluation of an acid-production rate constant, alpha. The data show that the samples with the lowest sulfur contents have the highest acid production rate constants.

Renton, J.J.; Stiller, A.H.

1986-01-01T23:59:59.000Z

204

Optimal Control of Coal Segregation using On-line Analyzers R. Ganguli, J. C. Yingling, J. Sottile, Dept. of Mining Eng.  

E-Print Network [OSTI]

1 Optimal Control of Coal Segregation using On-line Analyzers R. Ganguli, J. C. Yingling, J 40506 ABSTRACT The capability for on-line measurement of the quality characteristics of conveyed coal of coal that must be washed at the mine and thereby reduces processing costs, recovery losses, and refuse

Kumar, Ratnesh

205

Selenium transformation in coal mine spoils: Its environmental impact assessment. Final report  

SciTech Connect (OSTI)

The objective of this program was to conduct an environmental impact assessment study for selenium from coal mine spoils. The use of in-situ lysimetry to predict selenium speciation, transformation, and mobility under natural conditions was evaluated. The scope of the study was to construct and test field-scale lysimeter and laboratory mini-column to assess mobility and speciation of selenium in coal mine overburden and soil systems; to conduct soil and groundwater sampling throughout the state of Oklahoma for an overall environmental impact assessment of selenium; and to conduct an in-depth literature review on the solubility, speciation, mobility, and toxicity of selenium from various sources. Groundwater and surface soil samples were also collected from each county in Oklahoma. Data collected from the lysimeter study indicated that selenium in the overburden of the abandoned mine site was mainly found in the selenite form. The amount of selenite found was too low and immobile to be of concern to the environment. The spoil had equilibrated long enough (over 50 years) that most of the soluble forms of selenium have already been lost. Examination of the overburden indicated the presence of pyrite crystals that precipitated over time. The laboratory mini-column study indicated that selenite is quite immobile and remained on the overburden material even after leaching with dilute acid. Data from groundwater samples indicated that based on the current permissible level for selenium in groundwater (0.01 mg Se/L), Oklahoma groundwater is widely contaminated with the element. However, according to the new regulation (0.05 mg Se/L), which is to be promulgated in 1992, only 9 of the 77 counties in the state exceed the limit.

Harness, J.; Atalay, A.; Koll, K.J.; Zhang, H.; Maggon, D.

1991-12-31T23:59:59.000Z

206

Coal companies hope to receive carbon credits for methane reductions  

SciTech Connect (OSTI)

Each year, underground coal mining in the USA liberates 2.4 million tonnes of coal mine methane (CMM), of which less than 30% is recovered and used. One barrier to CMM recovery is cost. Drainage, collection, and utilization systems are complex and expensive to install. Two coal mines have improved the cost equation, however, by signing on to earn money for CMM emissions they are keeping out of the atmosphere. Jim Walter Resources and PinnOak Resources have joined a voluntary greenhouse gas reduction trading program called the Chicago Climate Exchange (CCX) to turn their avoided emissions into carbon credits. The example they set may encourage other coal mining companies to follow suit, and may bring new projects on the line that would otherwise have not gone forward. 2 refs., 1 fig.

NONE

2007-09-30T23:59:59.000Z

207

Effects of unseeded areas on species richness of coal mines reclaimed with municipal biosolids  

SciTech Connect (OSTI)

Land application of municipal biosolids on coal mine spoils can benefit vegetation establishment in mine reclamation. However, the application of biosolids leads to domination by early-successional species, such as grasses, and low establishment of woody and volunteer species, thus reducing potential for forestry as a postmining land use. In this experiment, tree seedlings were planted in strips (0.6-, 1-, and 4-m wide) that were not seeded with grasses, and the effects of unseeded strip width on seedling growth and species richness were assessed. Planted seedling mortality was high; therefore, the effect of unseeded strip width on seedling growth could not be determined. However, it was found that natural plant invasion and species richness were highest in the 4-m unseeded strips. The practice of leaving 4-m-wide unseeded strips in mine reclamation with biosolids in the eastern United States, along with the improvement of tree seedling planting practices and planting stock, would help promote a more species-rich plant community that could be utilized for forestry or a variety of other postmining land uses.

Halofsky, J.E.; McCormick, L.H. [Penn State University, University Park, PA (United States). School for Forest Resources

2005-12-01T23:59:59.000Z

208

Utilization of fuel cells to beneficially use coal mine methane. Final report  

SciTech Connect (OSTI)

DOE has been given the responsibility to encourage industry to recover and use methane that is currently being released to the atmosphere. At this time the only method being employed at the Left Fork Mine to remove methane is the mine ventilation system. The methane content was measured at one one-hundredth of a percent. To prevent this methane from being vented to the atmosphere, degasification wells are proposed. To use the coal mine methane, it is proposed to use phosphoric-acid fuel cells to convert methane to electric power. These fuel cells contain (1) a steam reformer to convert the methane to hydrogen (and carbon dioxide), (2) the fuel cell stack, and (3) a power conditioner that provides 200 kW of 60 Hz alternating current output. The environmental impacts and benefits of using this technology ware summarized in the report. The study indicates the methane emission reduction that could be achieved on a national and Global level. The important point being that this technology is economically viable as is demonstrated in the report.

Brown, J.T.; O`Brien, D.G.; Miller, A.R.; Atkins, R.; Sanders, M.

1996-03-01T23:59:59.000Z

209

Mines in the Four Corners anticipate growth  

SciTech Connect (OSTI)

Productive mines in the southwest deplete reserves, while the government drags its heels on new power projects. Production in Arizona and New Mexico has fallen 18% over the last four years to 34.1 million tons. With Chevron Mining's McKinley mine rapidly depleting its reserves the industry will continue to contract. In the last three years at least three large mines in the Four Corners have terminated operations. Three others remain captive operations: BHP Billiton's San Juan Underground and Navajo Surface operations and Peabody Energy's Kayenta surface mine. In 2006 the Black Mesa mine stopped producing coal. These four mines are isolated from the national railways. Peabody's new El Segundo surface mine near Grants, NM is increasing production. If the planned $3 billion Desert Rock coal-fired power plant is built this will present a new market for the Navajo mine. The article gives details about the state of the aforementioned mines and of the new King II coal mine on the northern periphery of the San Juan basin and discusses the state of plans for the Desert Rock Energy Project. 5 photos.

Buchsbaum, L.

2008-02-15T23:59:59.000Z

210

CAERs's mine mapping program and Kentucky's mine mapping initiative  

SciTech Connect (OSTI)

Since 1884 the Kentucky Department of Mines and Minerals (KDMM now OMSL) has had a mine mapping function as it relates to mine safety. The CAER's Mine Mapping Program has provided this service to that agency since 1972. The program has been in continuous operation under the current staff and management over that period. Functions include operating the Mine Map Repository/Mine Map Information Center of the OMSL; and receiving and processing all annual coal mine license maps, old maps, and related data. The Kentucky Mine Mapping Initiative's goal is to ensure that every underground and surface mine map in Kentucky is located, digitized and online. The Kentucky mine mapping website plays a vital role in the safety of Kentuckians. The purpose of the web service is to make available electronic maps of mined out areas and approximately 32,000 engineering drawings of operating or closed mines that are located in the state. Future phases of the project will include the archival scanning of all submitted mine maps; the recovery from outside sources of maps that were destroyed in a 1948 fire; and the development of further technology to process maps and related data. 7 photos.

Hiett, J. [University of Kentucky Center for Applied Energy Research, Lexington, KY (United States). Mine Map Repository and Mine Map Information Systems

2007-07-01T23:59:59.000Z

211

Local amplification of deep mining induced vibrations - Part.2: Simulation of the ground motion in a coal basin  

E-Print Network [OSTI]

This work investigates the impact of deep coal mining induced vibrations on surface constructions using numerical tools. An experimental study of the geological site amplification and of its influence on mining induced vibrations has already been published in a previous paper (Part 1: Experimental evidence for site effects in a coal basin). Measurements have shown the existence of an amplification area in the southern part of the basin where drilling data have shown the presence of particularly fractured and soft stratigraphic units. The present study, using the Boundary Element Method (BEM) in the frequency domain, first investigates canonical geological structures in order to get general results for various sites. The amplification level at the surface is given as a function of the shape of the basin and of the velocity contrast with the bedrock. Next, the particular coal basin previously studied experimentally (Driad-Lebeau et al., 2009) is modeled numerically by BEM. The amplification phenomena characteri...

Semblat, Jean-François; Driad-Lebeau, L; Bonnet, Guy; 10.1016/j.soildyn.2010.04.006

2010-01-01T23:59:59.000Z

212

New EPA Guidelines for Review of Surface Coal Mining Operations in Appalachia (released in AEO2010)  

Reports and Publications (EIA)

On April 1, 2010, the Environmental Protection Agency (EPA) issued a set of new guidelines to several of its Regional offices regarding the compliance of surface coal mining operations in Appalachia with the provisions of the Clean Water Act (CWA), the National Environmental Policy Act, and the environmental justice Executive Order (E.O. 12898). The stated purpose of the guidance was to explain more fully the approach that the EPA will be following in permit reviews, and to provide additional assurance that its Regional offices use clear, consistent, and science-based standards in reviewing the permits. Although the new guidelines go into effect immediately, they will be subjected to review both by the public and by the EPA's Science Advisory Board, with a set of final guidelines to be issued no later than April 1, 2011.

2010-01-01T23:59:59.000Z

213

Ground-water hydrologic effects resulting from underground coal gasification experiments at the Hoe Creek Site near Gillette, Wyoming. Interim report, October 1979-March 1980  

SciTech Connect (OSTI)

This technical note summarizes our activities, to date, on the research project: Ground-Water Hydrologic Effects Resulting from Underground Coal Gasification Experiments (EPA-IAG-79-D-X0795). The gasified coal seam (Felix No. 2 coal) and two overlying aquifers (Felix No. 1 coal and overlying sand) appear to have become interconnected as a result of roof collapse and subsidence at both Hoe Creek Sites II and III near Gillette, Wyoming. To evaluate changes in the ground-water flow regime at the two sites, completion of supplementary wells was necessary to define the distance versus head drawdown relationships in each of the three aquifers. Hydraulic head potentials have been measured at Site III since gasification ended on October 10, 1979. These data are presented in graphic format. Although hydraulic head measurements at Site II seemed to be approaching a steady-state condition 1.5 years after gasification, the subsequent gasification at Site III temporarily altered the ground-water flow patterns. These changes will have a definite effect on contaminant dispersal and will need to be taken into consideration.

Raber, E.; Stone, R.

1980-05-01T23:59:59.000Z

214

Alaska coal geology, resources, and coalbed methane potential  

SciTech Connect (OSTI)

Estimated Alaska coal resources are largely in Cretaceous and Tertiary rocks distributed in three major provinces, Northern Alaska-Slope, Central Alaska-Nenana, and Southern Alaska-Cook Inlet. Cretaceous resources, predominantly bituminous coal and lignite, are in the Northern Alaska-Slope coal province. Most of the Tertiary resources, mainly lignite to subbituminous coal with minor amounts of bituminous and semianthracite coals, are in the other two provinces. The combined measured, indicated, inferred, and hypothetical coal resources in the three areas are estimated to be 5,526 billion short tons (5,012 billion metric tons), which constitutes about 87 percent of Alaska's coal and surpasses the total coal resources of the conterminous United States by 40 percent. Coal mining has been intermittent in the Central Alaskan-Nenana and Southern Alaska-Cook Inlet coal provinces, with only a small fraction of the identified coal resource having been produced from some dozen underground and strip mines. Alaskan coals have a lower sulfur content (averaging 0.3 percent) than most coals in the conterminous United States and are within or below the minimum sulfur value mandated by the 1990 Clean Air Act amendments. Another untapped potential resource is coalbed methane estimated to total 1,000 trillion cubic feet (28 trillion cubic meters).

Romeo M. Flores; Gary D. Stricker; Scott A. Kinney

2005-11-15T23:59:59.000Z

215

A. Kusiak and A. Burns, Mining Temporal Data: A Coal-Fired Boiler Case Study, Proceedings of International Conference, KES 2005, Melbourne, Australia, September 14-16, 2005, in R.  

E-Print Network [OSTI]

A. Kusiak and A. Burns, Mining Temporal Data: A Coal-Fired Boiler Case Study, Proceedings of the 9 3683, Springer, Heidelberg, Germany, 2005, pp. 953-958. Mining Temporal Data: A Coal-Fired Boiler Case. This paper presents an approach to control pluggage of a coal-fired boiler. The proposed approach involves

Kusiak, Andrew

216

High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines - Phase I: Laboratory investigations. Quarterly report, October 1993--December 1993  

SciTech Connect (OSTI)

This project proposes to use pneumatically or hydraulically emplaced dry-flue gas desulfurization (FGD) by-products to backfill the adits left by highwall mining. Backfilling highwall mine adits with dry-FGD materials is technically attractive. The use of an active highwall mine would allow the dry-FGD material to be brought in using the same transportation network used to move the coal out, eliminating the need to recreated the transportation infrastructure, thereby saving costs. Activities during the period included the negotiations leading to the final cooperative agreement for the project and the implementation of the necessary instruments at the University of Kentucky to administer the project. Early in the negotiations, a final agreement on a task structure was reached and a milestone plan was filed. A review was initiated of the original laboratory plan as presented in the proposal, and tentative modifications were developed. Selection of a mine site was made early; the Pleasant Valley mine in Greenup County was chosen. Several visits were made to the mine site to begin work on the hydrologic monitoring plan. The investigation of the types of permits needed to conduct the project was initiated. Considerations concerning the acceptance and implementation of technologies led to the choice of circulating fluidized bed ash as the primary material for the study. Finally, the membership of a Technical Advisory Committee for the study was assembled.

Not Available

1994-03-01T23:59:59.000Z

217

Overburden characterization and post-burn study of the Hoe Creek, Wyoming underground coal gasification site and comparison with the Hanna, Wyoming site  

SciTech Connect (OSTI)

In 1978 the third test (Hoe Creek III) in a series of underground coal gasification (UCG) experiments was completed at a site south of Gillette, Wyoming. The post-burn study of the geology of the overburden and interlayered rock of the two coal seams affected by the experiment is based on the study of fifteen cores. The primary purpose of the study was to characterize the geology of the overburden and interlayered rock and to determine and evaluate the mineralogical and textural changes that were imposed by the experiment. Within the burn cavity the various sedimentary units have been brecciated and thermally altered to form several pyrometamorphic rock types of paralava rock, paralava breccia, buchite, buchite breccia and hornfels. High temperature minerals of mullite, cordierite, oligo-clase-andesine, tridymite, cristobalite, clinopyroxenes, and magnetite are common in the pyrometamorphic rocks. The habit of these minerals indicates that they crystallized from a melt. These minerals and textures suggest that the rocks were formed at temperatures between 1200/sup 0/ and 1400/sup 0/C. A comparison of geologic and geological-technological factors between the Hoe Creek III site, which experienced substantial roof collapse, and the Hanna II site, which had only moderate roof collapse, indicates that overburden thickness relative to coal seam thickness, degree of induration of overburden rock, injection-production well spacing, and ultimate cavity size are important controls of roof collapse in the structural setting of the two sites.

Ethridge, F.C.; Burns, L.K.; Alexander, W.G.; Craig, G.N. II; Youngberg, A.D.

1983-01-01T23:59:59.000Z

218

High volume - high value usage of Flue Gas Desulfurization (FGD) by-products in underground mines. Quarterly report, October 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

The amount of dry FGD materials produced in the U.S. has not been increasing at the high rate originally anticipated. This has been due to a number of economic factors affecting the utility industry. Technologies for the disposal of large amounts of materials are not going to be implemented in the near term. In light of this development the target application for this project is being changed from highwall adit filling to the filling of auger holes to allow for highwall mining. This application focuses on using the dry FGD material to recover coal isolated by excessive augering. It produces 10 or more times the amount of coal per ton of dry FGD utilized than the originally proposed methodology. It also does not require extensive equipment development and, if applied to abandoned mine lands, may have substantially more significant environmental benefit. We also propose to use a spray dryer material for the demonstration instead of the fluidized bed material originally proposed. The spray dryer material is already slacked eliminating problems associated with heat generation at the mine site. Auger hole grouting with FGD material is also best performed by hydraulic emplacement methods.

NONE

1997-05-01T23:59:59.000Z

219

abandoned mined lands: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

220

abandoned mined land: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

abandoned mining land: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

222

advance mining: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mines Using Coal Combustion By-Products Engineering Websites Summary: subject headings: Remedial action; Acid mine water; Mines; Coals; Recycling; Maryland; Fly ashRemediation of...

223

Disposal of fluidized bed combustion ash in an underground mine to control acid mine drainage and subsidence - phase II - small scale field demonstration. Topical report, December 1, 1996--February 28, 1997  

SciTech Connect (OSTI)

It has been proposed that a mix made from fly and bottom ash from atmospheric pressure fluidized bed coal combusters (FBC ash), water, and stabilizers be injected from the surface into abandoned room and pillar coal mines through boreholes. Besides ash disposal, this process would prevent subsidence and acid mine drainage. Such a mix (called `grout`) needs to be an adequately stable and flowable suspension for it to spread and cover large areas in the mine. This is necessary as the drilling of the boreholes will be an expensive operation and the number such holes should be minimized. Addition of bentonite was found to be needed for this purpose. A suitable grout mix was tested rheologically to determine its fluid flow properties. Finding little published information on such materials, tests were performed using a commercial rotational viscometer with a T-bar rotor and a stand which produced a helical rotor path. Existing mixer viscometer test methods were modified and adapted to convert the measurements of torque vs. angular speed to the material properties appearing in several non-Newtonian constitutive equations. Yield stress was measured by an independent test called the vane method. The rheological behavior was a close fit to the Bingham fluid model. Bleed tests were conducted to ascertain the stability of the mixtures. Spread tests were conducted to compare the flowability of various mixes. Using the flow parameters determined in the laboratory, numerical simulations of grout flow were performed and compared with the results of scale model and field tests. A field injection of this grout was performed at the Fairfax mines in Preston county, W.V.. The observations there proved that this FBC ash grout flows as desired, is a very economical way of disposing the environmentally menacing ash, while also preventing the subsidence and acid mine drainage of the mines.

Ziemkiewicz, P.F.; Head, W.J.; Gray, D.D.; Siriwardane, H.J.; Sack, W.A.

1998-01-01T23:59:59.000Z

224

Reactive-power compensation of coal mining excavators by using a new-generation STATCOM  

SciTech Connect (OSTI)

This paper deals with the development and implementation of a current-source-converter-based static synchronous compensator (CSC-STATCOM) applied to the volt-ampere-reactive (VAR) compensation problem of coal mining excavators. It is composed of a +/- 750-kVAR full-bridge CSC with selective harmonic elimination, a low-pass input filter tuned to 200 Hz, and a Delta/Y-connected coupling transformer for connection to medium-voltage load bus. Each power semiconductor switch is composed of an asymmetrical integrated gate commutated thyristor (IGCT) connected in series with a reverse-blocking diode and switched at 500 Hz to eliminate 5th, 7th, 11th, and 13th current harmonics produced by the CSC. Operating principles, power stage, design of dc link, and input filter are also described in this paper. It has been verified by field tests that the developed STATCOM follows rapid fluctuations in nearly symmetrical lagging and leading VAR consumption of electric excavators, resulting in nearly unity power factor on monthly basis, and the harmonic current spectra in the lines of CSC-STATCOM at the point of common coupling comply with the IEEE Standard 519-1992.

Bilgin, H.F.; Ermis, M.; Kose, K.N.; Cadirci, I.; Acik, A.; Demirci, T.; Terciyanli, A.; Kocak, C.; Yorukoglu, M. [TUBITAK Information Technology & Electronic Research Institute, Ankara (Turkey)

2007-01-15T23:59:59.000Z

225

Health-hazard evaluation report MHETA 89-009-1990, Consolidation Coal Company, Humphrey No. 7 Mine, Pentress, West Virginia  

SciTech Connect (OSTI)

An evaluation was made of worker exposure to hydraulic fluid used on the longwall-mining operations at Consolidated Coal Company's Humphrey Number 7 Mine, Pentress, West Virginia. Employees were complaining of headache, eye and throat irritation, congestion, and cough. A particular emulsion oil, Solcenic-3A, was used with water in the mine's hydraulic roof-support system. An analysis of the oil indicated the presence of methyl-isobutyl-carbinol (MIBC), dipropylene glycol, and paraffin hydrocarbons. Personal breathing-zone samples for MIBC were collected from all workers on the longwall mining operation during the two days of the visit. All the analysis indicated concentrations of MIBC below the limit of quantification, which was 0.6 parts per million for an 8 hour sample. These levels were well below the exposure recommendations of the Mine Safety and Health Administration. Exposure to MIBC may be occurring through skin contact with oil through hydraulic line leaks, accidents, and maintenance activity on the hydraulic machines. The report concludes that Solcenic-3A oil constituents in air did not pose a health hazard at the time of the survey.

Kullman, G.J.

1989-09-01T23:59:59.000Z

226

Speedy backfilling for old mines  

SciTech Connect (OSTI)

This article describes pneumatic equipment that can help fill the underground voids left by abandoned coal mines that threaten nearly half a million acres of densely populated urban areas in the US alone. In 1910, when coal was king in northeastern Pennsylvania, engineers built a 600 ft cut-and-cover tunnel to transport coal from a mine entrance to a rail siding in the town of Vandling. In December 1992, engineers filled it up. The tunnel, known as the Hillside Coal and Iron Slope, had been well designed and constructed. Where it crossed under a main road, the roof was reinforced by three concrete columns--protection against loads from trolley cars whose rails shared the road. In October 1991, a hole opened up in one of the town's roads, and a subsidence complaint brought investigators from the US Department of the Interior's Office of Surface Mining (OSM) in Wilkes Barre, Pa. The tunnel, which passes directly underneath several of Vandling's residential streets as well as State Highway 171, was declared a potential hazard. The OSM engineers decided that complete backfilling was necessary to support the tunnel roof. After remediating the original subsidence hole, they contacted the US Bureau of Mines and offered the tunnel as a field demonstration site for two new pneumatic backfilling devices. The demonstration, a success, completely filled the tunnel in only 23 working days.

Dyni, R.C. (Bureau of Mines, Philadelphia, PA (United States)); Burnett, M. (Burnett Associates, Inc., Farmingham, MA (United States))

1993-09-01T23:59:59.000Z

227

Upgrading drained coal mine methane to pipeline quality: a report on the commercial status of system suppliers  

SciTech Connect (OSTI)

In today's scenario of growing energy demand worldwide and rising natural gas prices, any methane emitted into the atmosphere is an untapped resource of energy and potentially a lost opportunity for additional revenue. In 2005, 9.7% of the total US anthropogenic emissions of methane were attributed to coal production. In recent years, many gassy coal mines have seized the opportunity to recover coal mine methane (CMM) and supply it to natural gas pipeline systems. With natural gas prices in the US exceeding $7.00 per million Btu, CMM pipeline sales brought in an annual revenue topping $97 million in 2005. However, significant opportunity still exists for tapping into this resource as 22% of the drained CMM remains unutilized as of 2005, primarily because its quality does not meet the requirements of natural gas pipeline systems. Recent advances in technologies now offer off-the-shelf options in the US that can upgrade the drained CMM to pipeline quality. These gas upgrading technologies are not only opening up the market to lower-quality methane resources but also providing significant means for reducing emissions, since methane is over 20 times a more potent greenhouse gas than carbon dioxide. This report reviews current gas upgrading technologies available in the market for removal of typical CMM contaminants, provides examples of their successful commercial implementation and compiles a list of vendors specific to nitrogen rejection systems, since nitrogen exposes the biggest challenge to upgrading CMM. 2 figs., 3 tabs., 9 apps.

Carothers, F.P.; Schultz, M.L.

2008-01-15T23:59:59.000Z

228

Use of phosphate materials as ameliorants for acid mine drainage. Volume 1. The use of rock phosphate (apatite) for the amelioration of acid mine drainage from the mining of coal. Final report  

SciTech Connect (OSTI)

Acid mine drainage is the primary environmental problem facing the high sulfur coal mining industry in West Virginia, parts of western Pennsylvania, Ohio, western Kentucky and Illinois. Earlier experiments conducted by these investigators have shown that phosphate rock could be used to reduce the acidity of the waste to acceptable levels. Thus, it is believed that addition of phosphatic clays would not only reduce the acidity but also would add phosphate as a plant nutrient. In addition, it would improve the physical and chemical properties of these soils. Therefore, it was the specific objective of the research to systematically evaluate the effectiveness of both rock phosphate and phosphatic clay slurries in ameliorating the acidity produced from waste materials through bench scale and small field scale experiments and to test the effectiveness of phosphatic clays as a topical additive to mine soils.

Renton, J.J.; Stiller, A.H.

1988-06-01T23:59:59.000Z

229

Method for in situ biological conversion of coal to methane  

DOE Patents [OSTI]

A method and apparatus are provided for the in situ biological conversion of coal to methane comprising culturing on a coal-containing substrate a consortium of microorganisms capable of degrading the coal into methane under suitable conditions. This consortium of microorganisms can be obtained from an underground cavity such as an abandoned mine which underwent a change from being supplied with sewage to where no sewage was present, since these conditions have favored the development of microorganisms capable of using coal as a carbon source and converting coal to methane. The consortium of microorganisms obtained from such abandoned coal mines can be isolated and introduced to hard-to-reach coal-containing substrates which lack such microorganisms and which would otherwise remain unrecoverable. The present invention comprises a significant advantage in that useable energy can be obtained from a number of abandoned mine sites or other areas wherein coal is no longer being recovered, and such energy can be obtained in a safe, efficient, and inexpensive manner.

Volkwein, Jon C. (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

230

Mining conditions and deposition in the Amburgy (Westphalian B) coal, Breathitt Group, central Appalachian basin  

SciTech Connect (OSTI)

Carbonate concretions called clay balls are rare in the Central Appalachian Basin, but were found in the Amburgy coal overlain by the Kendrick Shale Member. In the study area, the Amburgy coal is 0.7 to 0.9 meters thick, moderate to high in sulfur content, moderate to high in ash yield, and mostly bright clarain, except at the top near the area of coal balls, where durain of limited extent occurs. The coal is co-dominated by lycopod and cordaites; tree spores, with subordinate Calamites. The local durain layer is dominated by Densosporites, produced by the shrubby lycopod Ompbalophloios. Coal balls were encountered where the durain is immediately overlain by a coquinoid hash of broken and whole marine fossils, along a trend of coal thinning. The coal balls contain permineralized cordaites, lycopods, calamites, and ferns. The Amburgy coal accumulated as a succession of planar mires. Local splits in the seam are common, indicating contemporaneous clastic influx. The abundance of Cordaites may indicate brackish mire waters related to a coastal position and initial eustatic rise of the marginal Kendrick seas. Near the end of the Amburgy mires, the high ash-Omphalopbloios association is interpreted as a local area that was being drowned by the Kendrick transgression. Ravinement within this local embayment, rapid inundation by marine waters, and concentration of carbonate-bearing waters within transgressive scours may have contributed to the formation of coal balls and pyritic concretions in the upper part of the coal bed.

Greb, S.F.; Eble, C.F. [Kentucky Geological Survey, Lexington, KY (United States); Hower, J.C. [Center for Applied Research, Lexington, KY (United States); Phillips, T.L. [Univ. of illinois, Urbana, IL (United States)

1996-09-01T23:59:59.000Z

231

Directional drilling techniques for exploration in-advance of mining  

SciTech Connect (OSTI)

In-seam directionally drilled horizontal boreholes have provided effective solutions in underground coal mines for methane and water drainage and inherently provide an excellent tool for coalbed exploration. Directionally drilled methane drainage boreholes have identified rapid changes in coalbed elevation, coalbed thickness and faults. Specific directional drilling and coring procedures for exploration in-advance of mining are reviewed in this paper, and also other directional drilling applications including in-mine horizontal gob ventilation boreholes, identification of abandoned workings, and water drainage boreholes.

Kravits, S.J.; Schwoebel, J.J. (REI Underground Exploration Inc., Salt Lake City, UT (United States))

1994-01-01T23:59:59.000Z

232

Water spray ventilator system for continuous mining machines  

DOE Patents [OSTI]

The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

Page, Steven J. (Pittsburgh, PA); Mal, Thomas (Pittsburgh, PA)

1995-01-01T23:59:59.000Z

233

Is the coal industry worth protecting? an examination of the effects of competing advocacy coalitions on implementation of the Surface Mining Control and Reclamation Act (SMCRA) of 1977  

E-Print Network [OSTI]

IS THE COAL INDUSTRY WORTH PROTECTING? AN EXAMINATION OF THE EFFECTS OF COMPETING ADVOCACY COALITIONS ON IMPLEMENTATION OF THE SURFACE MINING CONTROL AND RECLAMATION ACT (SMCRA) OF 1977 A Dissertation by MICHAEL SEAN PENNINGTON... PROTECTING? AN EXAMINATION OF THE EFFECTS OF COMPETING ADVOCACY COALITIONS ON IMPLEMENTATION OF THE SURFACE MINING CONTROL AND RECLAMATION ACT (SMCRA) OF 1977 A Dissertation by MICHAEL SEAN PENNINGTON Submitted to the Office of Graduate Studies...

Pennington, Michael Sean

2008-10-10T23:59:59.000Z

234

E-Print Network 3.0 - african coal mining Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In 2003, the South African synthetic fuel industry consumed 24... of synthetic fuels in South Africa, this must also reflect their coal consumption (Figure 2). South African......

235

E-Print Network 3.0 - advanced underground gas Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mulder1 Summary: where all current underground activities take place except for oil and gas extraction and mining... with reluctant public perception still hamper such underground...

236

Table 9. Major U.S. Coal Mines, 2013 U.S. Energy Information Administration | Annual Coal Report 2013  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary:Principal shaleMajor U.S. Coal

237

Geology in coal resource utilization  

SciTech Connect (OSTI)

The 37 papers in this book were compiled with an overriding theme in mind: to provide the coal industry with a comprehensive source of information on how geology and geologic concepts can be applied to the many facets of coal resource location, extraction, and utilization. The chapters have been arranged to address the major coal geology subfields of Exploration and Reserve Definition, Reserve Estimation, Coalbed Methane, Underground Coal Gasification, Mining, Coal Quality Concerns, and Environmental Impacts, with papers distributed on the basis of their primary emphasis. To help guide one through the collection, the author has included prefaces at the beginning of each chapter. They are intended as a brief lead-in to the subject of the chapter and an acknowledgement of the papers' connections to the subject and contributions to the chapter. In addition, a brief cross-reference section has been included in each preface to help one find papers of interest in other chapters. The subfields of coal geology are intimately intertwined, and investigations in one area may impact problems in another area. Some subfields tend to blur at their edges, such as with reserve definition and reserve estimation. Papers have been processed separately for inclusion on the data base.

Peters, D.C. (ed.)

1991-01-01T23:59:59.000Z

238

Safer blasting agents and procedures for blasting in gassy non-coal mines. [Quarterly] technical progress report, January 1--March 31, 1993  

SciTech Connect (OSTI)

The US Bureau of Mines` research program is focused on developing procedures and guidelines for acceptable underground oil shale blasting that fulfill the operational requirements for efficiency while maintaining a high level of safety when operating under gassy mine conditions. This work is aimed at providing new information, alternate methods, and innovation in underground blasting procedures. The results from this research will have direct impact on regulatory standards for blasting under gassy mine conditions. Based on the low incendivity data from the Cannon Gallery and several months of recent testing in their mine, Kennecott`s Greens Creek base metal mine in Alaska had decided to exclusively use a low incendive bulk emulsion product in place of the low incendive water gel prod ct for all blasting operations. As was the case with the low incendive water gel product, the use of this bulk product resulted in: no dust ignitions and related injuries and/or production/equipment losses; the elimination if preblasting measures of using stemming and water sprays, and the improvement of roadways due to the reduction of water.

Weiss, E.S.

1993-11-01T23:59:59.000Z

239

Coal competition: prospects for the 1980s  

SciTech Connect (OSTI)

This report consists of 10 chapters which present an historical overview of coal and the part it has played as an energy source in the economic growth of the United States from prior to World War II through 1978. Chapter titles are: definition of coals, coal mining; types of coal mines; mining methods; mining work force; development of coal; mine ownership; production; consumption; prices; exports; and imports. (DMC)

Not Available

1981-03-01T23:59:59.000Z

240

Design and Field Testing of an Autonomous Underground Tramming System  

E-Print Network [OSTI]

, the repetitive "load-haul-dump" cycle is well suited to automation. In this case, a vehicle called a load underground mining vehicle. Described is the development of a fast, re- liable, and robust "autotramming in underground mining operations by robotiz- ing some of the functions of underground vehicles. For example

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Coal industry annual 1997  

SciTech Connect (OSTI)

Coal Industry Annual 1997 provides comprehensive information about US coal production, number of mines, prices, productivity, employment, productive capacity, and recoverable reserves. US Coal production for 1997 and previous years is based on the annual survey EIA-7A, Coal Production Report. This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report includes a national total coal consumption for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. 14 figs., 145 tabs.

NONE

1998-12-01T23:59:59.000Z

242

Waterfowl use of sediment ponds on an east Texas coal mine  

E-Print Network [OSTI]

appreciation. Lastly, I thank my wife, Diana, who makes my life a continual adventure. She provided the love, encouragement, and confidence I often needed during my graduate work. vii TABLE OF CONTENTS Page ABSTRACT. ACKNOWLEDGEMENT. TABLE OF CONTENTS... Brown Mine by waterfowl use in Year 1. 2 Measurements of vegetative cover (m and k), shallow water, light transmission (cm), slope (k), and vegetative richness for 15 ponds in high, medium, and low waterfowl use classes at Big Brown Mine. 41 42...

Reynolds, Larry A

1989-01-01T23:59:59.000Z

243

Labor and Safety: Mines and Mining Safety (Indiana)  

Broader source: Energy.gov [DOE]

This section contains labor regulations pertaining specifically to coal mine workers. The law establishes the Indiana Mining Board. The Board's duties include: collecting and distributing...

244

Coal industry annual 1993  

SciTech Connect (OSTI)

Coal Industry Annual 1993 replaces the publication Coal Production (DOE/FIA-0125). This report presents additional tables and expanded versions of tables previously presented in Coal Production, including production, number of mines, Productivity, employment, productive capacity, and recoverable reserves. This report also presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for a wide audience including the Congress, Federal and State agencies, the coal industry, and the general public. In addition, Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility Power Producers who are not in the manufacturing, agriculture, mining, construction, or commercial sectors. This consumption is estimated to be 5 million short tons in 1993.

Not Available

1994-12-06T23:59:59.000Z

245

Table 17. Recoverable Coal Reserves and Average Recovery Percentage at Producing U.S. Mines by Mine Production Range and Mine Type,  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystallineForeign ObjectOUR Table 1. Summary statisticsRecoverable Coal

246

Coal Industry Annual 1995  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States. This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 21 million short tons for 1995.

NONE

1996-10-01T23:59:59.000Z

247

Coal industry annual 1996  

SciTech Connect (OSTI)

This report presents data on coal consumption, coal distribution, coal stocks, coal prices, and coal quality, and emissions for Congress, Federal and State agencies, the coal industry, and the general public. Appendix A contains a compilation of coal statistics for the major coal-producing States.This report does not include coal consumption data for nonutility power producers that are not in the manufacturing, agriculture, mining, construction, or commercial sectors. Consumption for nonutility power producers not included in this report is estimated to be 24 million short tons for 1996. 14 figs., 145 tabs.

NONE

1997-11-01T23:59:59.000Z

248

Mining  

Broader source: Energy.gov [DOE]

Supply and cost management–including energy costs–pose key challenges for U.S. mining companies. The industry has worked with AMO to develop a range of resources for increasing energy efficiency and reducing costs.

249

THE USE OF COAL COMBUSTION BY-PRODUCTS FOR IN SITU TREATMENT OF ACID MINE DRAINAGE  

SciTech Connect (OSTI)

In 1994 a demonstration project was undertaken to investigate the effectiveness of using CCBs for the in situ treatment of acidic mine water. Actual injection of alkaline material was performed in 1997 with initial positive results; however, the amount of alkalinity added to the system was limited and resulted in short duration treatment. In 1999, a CBRC grant was awarded to further investigate the effectiveness of alkaline injection technology (AIT). Funds were released in fall 2001. In December 2001, 2500 tons of fluidized bed combustion (FBC) ash were injected into the wells used in the 1997 injection project. Post injection monitoring continued for 24 months. During this period the mine chemistry had gone through a series of chemical changes that manifested as stages or ''treatment phases.'' The mine system appeared to be in the midst of reestablishing equilibrium with the partial pressure of mine headspace. Alkalinity and pH appeared to be gradually increasing during this transition. As of December 2003, the pH and alkalinity were roughly 7.3 and 65 ppm, respectively. Metal concentrations were significantly lower than pre-injection levels, but iron and manganese concentrations appeared to be gradually increasing (roughly 30 ppm and 1.25 ppm, respectively). Aluminum, nickel, and zinc were less than pre-injection concentrations and did not appear to be increasing (roughly

Geoffrey A. Canty; Jess W. Everett

2004-09-30T23:59:59.000Z

250

Proceedings, 27th international conference on ground control in mining  

SciTech Connect (OSTI)

Topics covered include: coal bumps and rockbursts, surface subsidence, surface mining, mine seals, longwall mining, pillars, roof bolting, rock mechanics and standing supports.

Peng, S.S.; Mark, C.; Finfinger, G. (and others) (eds.)

2008-07-01T23:59:59.000Z

251

Underground storage of oil and gas  

SciTech Connect (OSTI)

The environmental and security advantages of underground storage of oil and gas are well documented. In many cases, underground storage methods such as storage in salt domes, abandoned mines, and mined rock caverns have proven to be cost effective when compared to storage in steel tanks constructed for that purpose on the surface. In good rock conditions, underground storage of large quantities of hydrocarbon products is normally less costly--up to 50-70% of the surface alternative. Under fair or weak rock conditions, economic comparisons between surface tanks and underground caverns must be evaluated on a case to case basis. The key to successful underground storage is enactment of a realistic geotechnical approach. In addition to construction cost, storage of petroleum products underground has operational advantages over similar storage above ground. These advantages include lower maintenance costs, less fire hazards, less land requirements, and a more even storage temperature.

Bergman, S.M.

1984-09-01T23:59:59.000Z

252

Naturally Occurring Radionuclides of Ash Produced by Coal Combustion. The Case of the Kardia Mine in Northern Greece  

SciTech Connect (OSTI)

West Macedonia Lignite Center (WMLC), located in Northwest Greece, releases into the atmosphere about 21,400 tons/year of fly ash through the stacks of four coal fired plants. The lignite ash contains naturally occurring radionuclides, which are deposited on the WMLC basin. This work investigates the natural radioactivity of twenty six ash samples, laboratory produced from combustion of lignite, which was sampled perpendicularly to the benches of the Kardia mine. The concentrations of radionuclides {sup 40}K, {sup 235}U, {sup 238}U, {sup 226}Ra, {sup 228}Ra and {sup 232}Th, were measured spectroscopically and found round one order of magnitude as high as those of lignite. Subsequently the Radionuclide Partitioning Coefficients of radionuclides were calculated and it was found that they are higher for {sup 232}Th, {sup 228}Ra and {sup 40}K, because the latter have closer affinity with the inorganic matrix of lignite. During combustion up to one third of the naturally occurring radioisotopes escape from the solid phase into the flue gases. With comparison to relative global data, the investigated ash has been found to have relatively high radioactivity, but the emissions of the WMLC radionuclides contribute only 0.03% to the mean annual absorbed dose.

Fotakis, M.; Tsikritzis, L.; Tzimkas, N.; Kolovos, N.; Tsikritzi, R. [Technological Educational Institute (TEI) of West Macedonia, Department of Pollution Control Technologies, Koila, Kozani, 50100 (Greece)

2008-08-07T23:59:59.000Z

253

Underground Exploration  

E-Print Network [OSTI]

Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste Technical Review Board October 1993 Yucca Mountain at #12;Nuclear Waste Technical Review Board Dr. John E and Testing #12;Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction

254

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect (OSTI)

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z

255

Where Appalachia Went Right: White Masculinities, Nature, and Pro-Coal Politics in an Era of Climate Change  

E-Print Network [OSTI]

in order to mine a coal seam and then leave a rocky,breaking the coal out of the coal seams, work that dozens ofbanker, could open a seam of coal [on a surface mine] with

Schwartzman, Gabe

2013-01-01T23:59:59.000Z

256

E-Print Network 3.0 - air coal franklin Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A brief overview Mikael Hk UHDSG 2007-01-22 German coal excavator... for surface mining of brown coal 12;2 Coal basics What is coal? As most people know, coal consists of...

257

The Impact of the Clean Air Act Amendments of 1990 on Electric Utilities and Coal Mines: Evidence from the Stock Market  

E-Print Network [OSTI]

administration would back clean-coal technology developmentwould pursue clean-coal technology rather than emissions

Kahn, Shulamit; Knittel, Christopher R.

2003-01-01T23:59:59.000Z

258

2009 Coal Age Buyers Guide  

SciTech Connect (OSTI)

The buyers guide lists more than 1200 companies mainly based in the USA, that provide equipment and services to US coal mines and coal preparation plants. The guide is subdivided by product categories.

NONE

2009-07-15T23:59:59.000Z

259

Coal market momentum converts skeptics  

SciTech Connect (OSTI)

Tight supplies, soaring natural gas prices and an improving economy bode well for coal. Coal Age presents it 'Forecast 2006' a survey of 200 US coal industry executives. Questions asked included predicted production levels, attitudes, expenditure on coal mining, and rating of factors of importance. 7 figs.

Fiscor, S.

2006-01-15T23:59:59.000Z

260

Coal data: A reference  

SciTech Connect (OSTI)

This report, Coal Data: A Reference, summarizes basic information on the mining and use of coal, an important source of energy in the US. This report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ``Supplemental Figures and Tables`` contains statistics, graphs, maps, and other illustrations that show trends, patterns, geographic locations, and similar coal-related information. The section ``Coal Terminology and Related Information`` provides additional information about terms mentioned in the text and introduces some new terms. The last edition of Coal Data: A Reference was published in 1991. The present edition contains updated data as well as expanded reviews and additional information. Added to the text are discussions of coal quality, coal prices, unions, and strikes. The appendix has been expanded to provide statistics on a variety of additional topics, such as: trends in coal production and royalties from Federal and Indian coal leases, hours worked and earnings for coal mine employment, railroad coal shipments and revenues, waterborne coal traffic, coal export loading terminals, utility coal combustion byproducts, and trace elements in coal. The information in this report has been gleaned mainly from the sources in the bibliography. The reader interested in going beyond the scope of this report should consult these sources. The statistics are largely from reports published by the Energy Information Administration.

Not Available

1995-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

MS_Coal_Studyguide.indd  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

what about costs? Th e mining, transportation, electricity generation, and pollution-control costs associated with using coal are increasing, but both natural gas and oil are...

262

Technology experience and economics of oil shale mining in Estonia  

SciTech Connect (OSTI)

The exhaustion of fuel-energy resources became an evident problem of the European continent in the 1960s. Careful utilization of their own reserves of coal, oil, and gas (Germany, France, Spain) and assigned shares of imports of these resources make up the strategy of economic development of the European countries. The expansion of oil shale utilization is the most topical problem. The experience of mining oil shale deposits in Estonia and Russia, in terms of the practice and the economic results, is reviewed in this article. The room-and-pillar method of underground mining and the open-cut technology of clearing the ground ensure the fertility of a soil. The economics of underground and open pit oil shale mines is analyzed in terms of natural, organizational, and technical factors. These analyses are used in the planning and management of oil shale mining enterprises. The perspectives of the oil shale mining industry of Estonia and the economic expediency of multiproduction are examined. Recommendations and guidelines for future industrial utilization of oil shale are given in the summary.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1995-11-01T23:59:59.000Z

263

Evaluation of airborne geophysical surveys for large-scale mapping of contaminated mine pools: draft final report  

SciTech Connect (OSTI)

Decades of underground coal mining has left about 5,000 square miles of abandoned mine workings that are rapidly filling with water. The water quality of mine pools is often poor; environmental regulatory agencies are concerned because water from mine pools could contaminate diminishing surface and groundwater supplies. Mine pools are also a threat to the safety of current mining operations. Conversely, mine pools are a large, untapped water resource that, with treatment, could be used for a variety of industrial purposes. Others have proposed using mine pools in conjunction with heat pumps as a source of heating and cooling for large industrial facilities. The management or use of mine pool water requires accurate maps of mine pools. West Virginia University has predicted the likely location and volume of mine pools in the Pittsburgh Coalbed using existing mine maps, structure contour maps, and measured mine pool elevations. Unfortunately, mine maps only reflect conditions at the time of mining, are not available for all mines, and do not always denote the maximum extent of mining. Since 1999, the National Energy Technology Laboratory (NETL) has been evaluating helicopter-borne, electromagnetic sensing technologies for the detection and mapping of mine pools. Frequency domain electromagnetic sensors are able to detect shallow mine pools (depth < 50 m) if there is sufficient contrast between the conductance of the mine pool and the conductance of the overburden. The mine pools (conductors) most confidently detected by this technology are overlain by thick, resistive sandstone layers. In 2003, a helicopter time domain electromagnetic sensor was applied to mined areas in southwestern Virginia in an attempt to increase the depth of mine pool detection. This study failed because the mine pool targets were thin and not very conductive. Also, large areas of the surveys were degraded or made unusable by excessive amounts of cultural electromagnetic noise that obscured the subtle mine pool anomalies. However, post-survey modeling suggested that thicker, more conductive mine pools might be detected at a more suitable location. The current study sought to identify the best time domain electromagnetic sensor for detecting mine pools and to test it in an area where the mine pools are thicker and more conductive that those in southwestern Virginia. After a careful comparison of all airborne time domain electromagnetic sensors (including both helicopter and fixed-wing systems), the SkyTEM system from Denmark was determined to be the best technology for this application. Whereas most airborne time domain electromagnetic systems were developed to find large, deep, highly conductive mineral deposits, the SkyTEM system is designed for groundwater exploration studies, an application similar to mine pool detection.

Geosciences Division, National Energy Technology Laboratory, US Department of Energy, Pittsburgh, PA; Hammack, R.W.

2006-12-28T23:59:59.000Z

264

State coal profiles, January 1994  

SciTech Connect (OSTI)

The purpose of State Coal Profiles is to provide basic information about the deposits, production, and use of coal in each of the 27 States with coal production in 1992. Although considerable information on coal has been published on a national level, there is a lack of a uniform overview for the individual States. This report is intended to help fill that gap and also to serve as a framework for more detailed studies. While focusing on coal output, State Coal Profiles shows that the coal-producing States are major users of coal, together accounting for about three-fourths of total US coal consumption in 1992. Each coal-producing State is profiled with a description of its coal deposits and a discussion of the development of its coal industry. Estimates of coal reserves in 1992 are categorized by mining method and sulfur content. Trends, patterns, and other information concerning production, number of mines, miners, productivity, mine price of coal, disposition, and consumption of coal are detailed in statistical tables for selected years from 1980 through 1992. In addition, coal`s contribution to the State`s estimated total energy consumption is given for 1991, the latest year for which data are available. A US summary of all data is provided for comparing individual States with the Nation as a whole. Sources of information are given at the end of the tables.

Not Available

1994-02-02T23:59:59.000Z

265

Safer blasting agents and procedures for blasting in gassy non-coal mines. Final report, September 9, 1990--December 31, 1993  

SciTech Connect (OSTI)

Hundreds of tests have been conducted in the Bureau`s Lake Lynn Laboratory Cannon Gallery to evaluate the incendivity characteristics of both commercially available and experimental explosive products. The cannon gallery test results have clearly identified several lower incendive explosives that can and have significantly reduced the gas and/or dust ignition hazards associated with blasting in non-coal mines. Several of the lower incendive explosive formulations have undergone full-scale field evaluations and, to date, had been very successful in preventing ignitions in base metal mines with high sulphur-bearing ore. Tests in the cannon gallery have shown that an inert gelled water material outperforms most other stemming agents in preventing the ignition of flammable gases and/or combustible dusts outside of the bore. A new water stemming plug was evaluated in the cannon gallery and shown to be a very effective stemming device. As a means to better evaluate explosive incendivity, the initial development of two instrument sensors are underway. A fiber optic rate probe has been redesigned to accurately measure the detonation velocity of explosives in the cannon bore. A photometric sensor is also under development to measure the peak temperatures of the detonation products exiting the bore. This report discusses the results of the research program including the test apparatus and procedures and summarizes the incendivity data obtained from the various explosives. Results from the full-scale field testing of the lower incendive products in an operating mine are then presented.

Not Available

1993-12-01T23:59:59.000Z

266

Underground pumped hydroelectric storage  

SciTech Connect (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

267

ITP Mining: Mining Industry of the Future Mineral Processing...  

Broader source: Energy.gov (indexed) [DOE]

and activities in the industry and crossed various mined commodities including copper, uranium, iron ore, coal and others. The workshop participants included individuals from...

268

Overburden characterization and post-burn study of the Hanna IV, underground coal gasification site, Wyoming, and comparison to other Wyoming UCG sites  

SciTech Connect (OSTI)

Analysis of 21 post-burn cores taken from the Hanna IV UCG site allows 96 m (315 ft) of overburden to be subdivided into four local stratigraphic units. The 7.6 m (25 ft) thick Hanna No. 1 coal seam is overlain by a laterally discontinuous, 3.3 m (11 ft) thick shaley mudstone (Unit A') in part of the Hanna IV site. A more widespread, 30 m (90 ft) thick well-indurated sandstone (Unit A) overlies the A' unit. Unit A is the roof rock for both of the Hanna IV cavities. Overlying Unit A is a 33 m (108 ft) thick sequence of mudstone and claystone (Unit B), and the uppermost unit at the Hanna IV site (Unit C) is a coarse-grained sandstone that ranges in thickness from 40 to 67 m (131 to 220 ft). Two elliptical cavities were formed during the two phases of the Hanna IV experiment. The larger cavity, Hanna IVa, is 45 x 15 m in plan and has a maximum height of 18 m (59 ft) from the base of the coal seam to the top of the cavity; the Hanna IVb cavity is 40 x 15 m in plan and has a maximum height of 11 m (36 ft) from the base of the coal seam to the top of the cavity. Geotechnical tests indicated that the Hanna IV overburden rocks were moderately strong to strong, based on the empirical classification of Broch and Franklin (1972), and a positive, linear correlation exists between rock strength and volume percent calcite cement. There is an inverse linear correlation between rock strength and porosity for the Hanna IV overburden rocks. 28 refs., 34 figs., 13 tabs..

Marcouiller, B.A.; Burns, L.K.; Ethridge, F.G.

1984-11-01T23:59:59.000Z

269

Coal markets squeeze producers  

SciTech Connect (OSTI)

Supply/demand fundamentals seem poised to keep prices of competing fossil fuels high, which could cushion coal prices, but increased mining and transportation costs may squeeze producer profits. Are markets ready for more volatility?

Ryan, M.

2005-12-01T23:59:59.000Z

270

EIS-0004: Coal Loan Guarantee Program (P.L. 94-163)  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy prepared this EIS to address the potential impacts of implementing the Coal Loan Guarantee Program to encourage the production of low and high sulfur coal by small underground coal producers.

271

Rule of Tennessee Department of Conservation Division of Surface Mining (Tennessee)  

Broader source: Energy.gov [DOE]

The Division of Surface Mining, under the authority of the Department of Environment and Conservation, has established rules specific to the mining of coal. All coal mining operations must first...

272

STUDIES OF THE SPONTANEOUS COMBUSTION OF LOW RANK COALS AND LIGNITES  

SciTech Connect (OSTI)

Spontaneous combustion has always been a problem in coal utilization especially in the storage and transportation of coal. In the United States, approximately 11% of underground coal mine fires are attributed to spontaneous coal combustion. The incidence of such fires is expected to increase with increased consumption of lower rank coals. The cause is usually suspected to be the reabsorption of moisture and oxidation. To understand the mechanisms of spontaneous combustion this study was conducted to (1) define the initial and final products during the low temperature (10 to 60 C) oxidation of coal at different partial pressures of O{sub 2}, (2) determine the rate of oxidation, and (3) measure the reaction enthalpy. The reaction rate (R) and propensity towards spontaneous combustion were evaluated in terms of the initial rate method for the mass gained due to adsorbed O{sub 2}. Equipment that was used consisted of a FT-IR (Fourier Transform-Infrared Spectrometer, Perkin Elmer), an accelerated surface area porosimeter (ASAP, Micromeritics model 2010), thermogravimetric analyzer (TGA, Cahn Microbalance TG 121) and a differential scanning calorimeter (DSC, Q1000, thermal analysis instruments). Their combination yielded data that established a relation between adsorption of oxygen and reaction enthalpy. The head space/ gas chromatograph/ mass spectrometer system (HS/GC/MS) was used to identify volatiles evolved during oxidation. The coal samples used were Beulah lignite and Wyodak (sub-bituminous). Oxygen (O{sub 2}) absorption rates ranged from 0.202 mg O{sub 2}/mg coal hr for coal sample No.20 (Beulah pyrolyzed at 300 C) to 6.05 mg O{sub 2}/mg coal hr for coal sample No.8 (wyodak aged and pyrolyzed at 300 C). Aging of coal followed by pyrolysis was observed to contribute to higher reaction rates. Reaction enthalpies ranged from 0.42 to 1580 kcal/gm/mol O{sub 2}.

Joseph M. Okoh; Joseph N.D. Dodoo

2005-07-26T23:59:59.000Z

273

Detection and monitoring of high stress concentration zones induced by coal mining using numerical and microseismic methods  

E-Print Network [OSTI]

, published in "5. International Symposium on "Rockbursts and seismicity in mines", Sandton : South Africa distribution of stresses, according to the rheological and mechanical behaviour of the structure of the coalface and can cause significant damage in the workings, such as the collapse of roadways, violent

Boyer, Edmond

274

A generic study of strip mining impacts on groundwater resources  

E-Print Network [OSTI]

This report evaluates the influence of strip mining features, commonly found in the Northern Great Plains Coal Region, on ground

Hamilton, David Andrew

1977-01-01T23:59:59.000Z

275

Strip Mine Law (Missouri)  

Broader source: Energy.gov [DOE]

This law authorizes the Land Reclamation Commission of the Department of Natural Resources to adopt and promulgate rules and regulations pertaining to strip mining of coal and reclamation, review...

276

Impact analysis of OSM regulations on highwall mining systems. Final report  

SciTech Connect (OSTI)

The establishment of the federal surface mining performance standards has placed additional restraints on auger mining. The federal regulations impose barrier pillar and hole sealing requirements on augering, stipulate time frames for hole sealing and discharge treatment, and prohibit auger mining under certain conditions. Barrier pillar requirements between groups of auger holes and between auger holes and underground workings decrease the augerable reserve base on a site by a minimum of ten percent. Barrier requirements may also reduce productivity levels due to increased delay and scheduling problems. Federal auger hole sealing requirements are more stringent than most state regulations, and consequently have increased the cost of augering in almost all auger mining areas. The availability of impervious materials on the site and the extent of backfilling required to form a water-tight seal may have the greatest effect on auger hole reclamation costs. The federal regulations require auger mining to be prohibited: if adverse water quality impacts cannot be prevented; if stability of sealings cannot be achieved; if subsidence resulting from augering may damage powerlines, pipelines, buildings, or other facilities; or if coal reserve recovery is not maximized by augering. As a result, all up dip augering may be restricted on the grounds that seal stability cannot be maintained for long time periods if water pressure builds behind the plug. Also, since tradiational augering techniques have a lower recovery rate than surface or underground methods, augering may be prohibited in many situations by the stipulation that maximum resource recovery will not be achieved.

Not Available

1980-09-01T23:59:59.000Z

277

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics  

SciTech Connect (OSTI)

During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

Doyle, F.M.

1992-01-01T23:59:59.000Z

278

Coal Transportation Issues (released in AEO2007)  

Reports and Publications (EIA)

Most of the coal delivered to U.S. consumers is transported by railroads, which accounted for 64% of total domestic coal shipments in 2004. Trucks transported approximately 12% of the coal consumed in the United States in 2004, mainly in short hauls from mines in the East to nearby coal-fired electricity and industrial plants. A number of minemouth power plants in the West also use trucks to haul coal from adjacent mining operations. Other significant modes of coal transportation in 2004 included conveyor belt and slurry pipeline (12%) and water transport on inland waterways, the Great Lakes, and tidewater areas (9%).

2007-01-01T23:59:59.000Z

279

Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Creek  

E-Print Network [OSTI]

1 Reintroduction of Native FishReintroduction of Native Fish Species to Coal CreekSpecies to Coal Control and Reclamation ActSurface Mining Control and Reclamation Act of 1977of 1977 Coal Creek Watershed Foundation (2000)Coal Creek Watershed Foundation (2000) BackgroundBackground Fish populations in Coal Creek

Gray, Matthew

280

HYDROGENOLYSIS OF A SUB-BITUMINOUS COAL WITH MOLTEN ZINC CHLORIDE SOLUTIONS  

E-Print Network [OSTI]

variations in coal from rank to rank, mine to mine, seam tocoal was supplied by the Wyodak t. Resources Development Corporation from the Roland top seam

Holten, R.R.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Toxic hazards of underground excavation  

SciTech Connect (OSTI)

Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

1982-09-01T23:59:59.000Z

282

WIRELESS MINE-WIDE TELECOMMUNICATIONS TECHNOLOGY  

SciTech Connect (OSTI)

A comprehensive mine-wide, two-way wireless voice and data communication system for the underground mining industry was developed. The system achieves energy savings through increased productivity and greater energy efficiency in meeting safety requirements within mines. The mine-wide system is comprised of two interfaced subsystems: a through-the-earth communications system and an in-mine communications system. The mine-wide system permits two-way communication among underground personnel and between underground and surface personnel. The system was designed, built, and commercialized. Several systems are in operation in underground mines in the United States. The use of these systems has proven they result in considerable energy savings. A system for tracking the location of vehicles and people within the mine was also developed, built and tested successfully. Transtek's systems are being used by the National Institute of Occupational Safety and Health (NIOSH) in their underground mine rescue team training program. This project also resulted in a spin-off rescue team lifeline and communications system. Furthermore, the project points the way to further developments that can lead to a GPS-like system for underground mines allowing the use of autonomous machines in underground mining operations, greatly reducing the amount of energy used in these operations. Some products developed under this program are transferable to applications in fields other than mining. The rescue team system is applicable to use by first responders to natural, accidental, or terrorist-caused building collapses. The in-mine communications system can be installed in high-rise buildings providing in-building communications to security and maintenance personnel as well as to first responders.

Zvi H. Meiksin

2004-03-01T23:59:59.000Z

283

LLNL`s partnership with selected US mines, for CTBT verification: A pictorial and some reflections  

SciTech Connect (OSTI)

The verification of an upcoming Comprehensive Test Ban Treaty (CTBT) will involve seismic monitoring and will provide for on-site inspections which may include drilling. Because of the fact that mining operations can send out strong seismic signals, many mining districts in the US and abroad may come under special scrutiny. The seismic signals can be generated by the use of large quantities of conventional explosives, by the collapse of underground workings, or by sudden energy release in the ground such as in rock bursts and coal bumps. These mining activities may be the cause of false alarms, but may also offer opportunities for evasive nuclear testing. So in preparing for future verification of a CTBT it becomes important to address the mining-related questions. For the United States, these are questions to be answered with respect to foreign mines. But there is a good amount of commonality in mining methods worldwide. Studies conducted at US mine sites can provide good analogs of activities that may be carried out for overseas CTBT verification, save for the expected logistical impediments.

Heuze, F.E.

1996-01-01T23:59:59.000Z

284

Rank enhancement of Permian Barakar and Raniganj coal measures in the western part of the Sohagpur coalfield, Madhya Pradesh, India  

SciTech Connect (OSTI)

The Geological Survey of India (GSI) and the U.S. Geological Survey (USGS) are engaged in a study of the coking coal deposits in the Sohagpur coalfield, near Shahdol, Madhya Pradesh. The major occurrences of coking coal in the Sohagpur coalfield are on the northern, down-thrown side of the regional Bamhani-Chilpa fault, where depths to the coking coal range generally from 100 to 500 m. These coal deposits are within the Permian Barakar Formation, which comprises the lower coal measures of the Gondwana Supergroup. Equivalent coal beds on the south side of the fault are generally non-coking, and are currently being mined in open-cast and underground mines, for use as fuel for electric power generation. In this paper, new data are presented which expands on data and ideas originally presented in Mukhopadyay and others. The purpose of this paper is to integrate thermal signatures (vitrinite reflectance and volatile matter) of the principal coal beds of the Sohagpur coalfield with stratigraphic and structural data. In order to characterize the coking coal deposits, the authors have collected more than 100 coal samples from both the Barakar and Raniganj Formations for analyses. The occurrence of coking coal in the Sohagpur coalfield is related primarily to the thermal alteration of the coal beds in the different geologic settings within the coalfield. In addition, differences in the maceral content of the various coal beds and in the chemical and physical composition within each bed depending upon location, play an important role in determining the existence of coking properties for a particular coal deposit. Potential heat sources for thermal alteration include the abundant dolerite intrusives in the region, and greater depth of burial of the coking coal beds on the down-thrown side of the Bamhani-Chilpa fault. Offset along the Bamhani-Chilpa system has been suggested to greater than 400 m. Hot water, similar to that found in other Permian coalfields in India, may have been the agent that metamorphosed the coal in some places but not in others.

Warwick, P.D.; Milici, R.C.; Mukhopadyay, A.; Adhikari, S.

1999-07-01T23:59:59.000Z

285

National Coal Quality Inventory (NACQI)  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) conducted the National Coal Quality Inventory (NaCQI) between 1999 and 2005 to address a need for quality information on coals that will be mined during the next 20-30 years. Collaboration between the USGS, State geological surveys, universities, coal burning utilities, and the coal mining industry plus funding support from the Electric Power Research Institute (EPRI) and the U.S. Department of Energy (DOE) permitted collection and submittal of coal samples for analysis. The chemical data (proximate and ultimate analyses; major, minor and trace element concentrations) for 729 samples of raw or prepared coal, coal associated shale, and coal combustion products (fly ash, hopper ash, bottom ash and gypsum) from nine coal producing States are included. In addition, the project identified a new coal reference analytical standard, to be designated CWE-1 (West Elk Mine, Gunnison County, Colorado) that is a high-volatile-B or high-volatile-A bituminous coal with low contents of ash yield and sulfur, and very low, but detectable contents of chlorine, mercury and other trace elements.

Robert Finkelman

2005-09-30T23:59:59.000Z

286

Mthodes de prvision des dgradations des structures bties en zone d'affaissement minier Methods for buildings damage estimation located in mining subsidence area  

E-Print Network [OSTI]

, dégradations, prévisions, statistique. Abstract : Mines and underground quarries, exploited or abandoned, can

Paris-Sud XI, Université de

287

Underground Storage Tank Regulations  

Broader source: Energy.gov [DOE]

The Underground Storage Tank Regulations is relevant to all energy projects that will require the use and building of pipelines, underground storage of any sorts, and/or electrical equipment. The...

288

Underground Layout Configuration  

SciTech Connect (OSTI)

The purpose of this analysis was to develop an underground layout to support the license application (LA) design effort. In addition, the analysis will be used as the technical basis for the underground layout general arrangement drawings.

A. Linden

2003-09-25T23:59:59.000Z

289

Rend Lake College celebrates the opening of a new coal miner training facility  

SciTech Connect (OSTI)

The Coal Miner Training Center at Rend Lake College recently hosted the Illinois Mining Institute's annual conference and a regional mine rescue competition. The article gives an outline of the coal miner training and refresher course offered. 3 photos.

Buchsbaum, L.

2009-09-15T23:59:59.000Z

290

Low glare luminaire for thin seam mining. Open file report 29 Sep 78-28 Feb 82  

SciTech Connect (OSTI)

Work places of an underground coal mine are required (30 CFR 1719) to be illuminated while self-propelled equipment is used. Permissible machine-mounted systems have been developed and applied satisfactorily to many mining operations. However, some low-seam and thin-seam equipment has been difficult to illuminate because reliable, direct current (dc) systems and compact, low output, low-glare luminaires were not available. This program resulted in the design and prototype construction of compact, low-glare luminaires and alternate current (ac) power systems, particularly suited to resolving illumination problems on low- and thin-seam mining equipment. Design objectives were based on enhancing the prospects for thin-seam illumination solutions through definition of a product that could challenge markets enjoyed by higher glare luminaires and through reduction of technical risks associated with any new product development as well as the MSHA certification process.

Parker, J.R.; Hahn, W.F.

1982-10-01T23:59:59.000Z

291

COAL LOGISTICS. Tracking U.S. Coal Exports  

SciTech Connect (OSTI)

COAL LOGISTICS has the capability to track coal from a U. S. mine or mining area to a foreign consumer`s receiving dock. The system contains substantial quantities of information about the types of coal available in different U. S. coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in Italy, Japan, South Korea, Taiwan, and Thailand. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations. COAL LOGISTICS can be used to examine coal quality within or between any of 18 U. S. coalfields, including three in Alaska, or to compare alternative routes and associated service prices between coal-producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The system contains three types of information: records of coal quality, domestic coal transportation options, and descriptions of marine shipment routes. COAL LOGISTICS contains over 3100 proximate analyses of U. S. steam coals, usually supplemented by data for ash softening temperature and Hardgrove grindability; over 1100 proximate analyses for coals with metallurgical potential, usually including free swelling index values; 87 domestic coal transportation options: rail, barge, truck, and multi-mode routes that connect 18 coal regions with 15 U. S. ports and two Canadian terminals; and data on 22 Italian receiving ports for thermal and metallurgical coal and 24 coal receiving ports along the Asian Pacific Rim. An auxiliary program, CLINDEX, is included which is used to index the database files.

Sall, G.W. [US Department of Energy, Office of Fossil Energy, Washington, DC (United States)

1988-06-28T23:59:59.000Z

292

ENERGY UTILIZATION AND ENVIRONMENTAL CONTROL TECHNOLOGIES IN THE COAL-ELECTRIC CYCLE  

E-Print Network [OSTI]

Kansas New Mexico Sulfur Content Feed Coal (%) Sulfurcoal from different sections of the Navajo mine in New Mexico (

Ferrell, G.C.

2010-01-01T23:59:59.000Z

293

PRB mines mature  

SciTech Connect (OSTI)

Already seeing the results of reclamation efforts, America's largest surface mines advance as engineers prepare for the future. 30 years after the signing of the Surface Mining Control and Reclamation Act by Jimmy Carter, western strip mines in the USA, especially in the Powder River Basin, are producing more coal than ever. The article describes the construction and installation of a $38.5 million near-pit crusher and overland belt conveyor system at Foundation Coal West's (FCW) Belle Ayr surface mine in Wyoming, one of the earliest PRB mines. It goes on to describe the development by Rio Tinto of an elk conservatory, the Rochelle Hill Conservation Easement, on reclaimed land at Jacobs Ranch, adjacent to the Rochelle Hills. 4 photos.

Buchsbaum, L.

2007-08-15T23:59:59.000Z

294

Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas  

E-Print Network [OSTI]

concentrations in mine soils. An exception was in the case of Cd in soils on sand quarry and hard coal spoil heap. Introduction Post-mining facilities such as open pit quarries, lignite mine spoil heaps, open pit sulphur mine

Battles, John

295

ITP Mining: Energy and Environmental Profile of the U.S. Mining...  

Broader source: Energy.gov (indexed) [DOE]

objectives. Overburden Designates material of any nature, consolidated or unconsolidated, that overlies a deposit of useful materials, ores, oar coal that are mined from...

296

Mine seismicity and the Comprehensive Nuclear Test Ban Treaty  

SciTech Connect (OSTI)

Surface and underground mining operations generate seismic ground motions which are created by chemical explosions and ground failures. It may come as a surprise to some that the ground failures (coal bumps, first caves, pillar collapses, rockbursts, etc.) can send signals whose magnitudes are as strong or stronger than those from any mining blast. A verification system that includes seismic, infrasound, hydroacoustic and radionuclide sensors is being completed as part of the CTBT. The largest mine blasts and ground failures will be detected by this system and must be identified as distinct from signals generated by small nuclear explosions. Seismologists will analyze the seismic records and presumably should be able to separate them into earthquake-like and non earthquake-like categories, using a variety of so-called seismic discriminants. Non-earthquake essentially means explosion- or implosion-like. Such signals can be generated not only by mine blasts but also by a variety of ground failures. Because it is known that single-fired chemical explosions and nuclear explosion signals of the same yield give very similar seismic records, the non-earthquake signals will be of concern to the Treaty verification community. The magnitude of the mine-related events is in the range of seismicity created by smaller nuclear explosions or decoupled tests, which are of particular concern under the Treaty. It is conceivable that legitimate mining blasts or some mine-induced ground failures could occasionally be questioned. Information such as shot time, location and design parameters may be all that is necessary to resolve the event identity. In rare instances where the legitimate origin of the event could not be resolved by a consultation and clarification procedure, it might trigger on On-Site Inspection (OSI). Because there is uncertainty in the precise location of seismic event as determined by the International Monitoring System (IMS), the OSI can cover an area of up to 1,000 squared kilometers. In active mining districts this area could include several different mining operations. So, an OSI could be disruptive both to the mining community and to the US Government which must host the foreign inspection team. Accordingly, it is in the best interest of all US parties to try and eliminate the possible occurrence of false alarms. This can be achieved primarily by reducing the ambiguity of mine-induced seismic signals, so that even if these remain visible to the IMS they are clearly consistent with recognizable mining patterns.

Chiappetta, F. [Blasting Analysis International, Allentown, PA (United States); Heuze, F.; Walter, W. [Lawrence Livermore National Lab., CA (United States); Hopler, R. [Powderman Consulting Inc., Oxford, MD (United States); Hsu, V. [Air Force Technical Applications Center, Patrick AFB, FL (United States); Martin, B. [Thunder Basin Coal Co., Wright, WY (United States); Pearson, C. [Los Alamos National Lab., NM (United States); Stump, B. [Southern Methodist Univ., Dallas, TX (United States); Zipf, K. [Univ. of New South Wales (Australia)

1998-12-09T23:59:59.000Z

297

Dating of coal fires in Xinjiang, north-west China Xiangmin Zhang,1  

E-Print Network [OSTI]

of coal resources and mining safety, coal fires cause considerable environmental problems, such as air pollution and land degradation. Coal fires have a global impact as well; the emission of CO2 might). Active coal fires in China are usu- ally related to mining activity; how- ever, the direct cause

Utrecht, Universiteit

298

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, December 31, 1992  

SciTech Connect (OSTI)

During the ninth quarter, electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania. Scanning electron microscopy and energy dispersive X-ray analysis were done to characterize the morphology and composition of the surface of as-received coal, oxidized coal and coal pyrite. In addition, electrokinetic tests were done on Upper Freeport coal pyrite.

Doyle, F.M.

1992-12-31T23:59:59.000Z

299

Survey of nine surface mines in North America. [Nine different mines in USA and Canada  

SciTech Connect (OSTI)

This report presents the information gathered by three mining engineers in a 1980 survey of nine surface mines in the United States and Canada. The mines visited included seven coal mines, one copper mine, and one tar sands mine selected as representative of present state of the art in open pit, strip, and terrace pit mining. The purpose of the survey was to investigate mining methods, equipment requirements, operating costs, reclamation procedures and costs, and other aspects of current surface mining practices in order to acquire basic data for a study comparing conventional and terrace pit mining methods, particularly in deeper overburdens. The survey was conducted as part of a project under DOE Contract No. DE-AC01-79ET10023 titled The Development of Optimal Terrace Pit Coal Mining Systems.

Hayes, L.G.; Brackett, R.D.; Floyd, F.D.

1981-01-01T23:59:59.000Z

300

Western Coal/Great Lakes Alternative export-coal conference  

SciTech Connect (OSTI)

This conference dealt with using the Great Lakes/St. Lawrence Seaway as an alternative to the East and Gulf Coasts for the exporting of coal to Europe and the potential for a piece of the European market for the subbituminous coals of Montana and Wyoming. The topics discussed included: government policies on coal exports; the coal reserves of Montana; cost of rail transport from Western mines to Lake Superior; the planning, design, and operation of the Superior Midwest Energy Terminal at Superior, Wisconsin; direct transfer of coal from self-unloading lakers to large ocean vessels; concept of total transportation from mines to users; disadvantage of a nine month season on the Great Lakes; costs of maritime transport of coal through the Great Lakes to Europe; facilities at the ice-free, deep water port at Sept Iles; the use of Western coals from an environmental and economic viewpoint; the properties of Western coal and factors affecting its use; the feasibility of a slurry pipeline from the Powder River Basin to Lake Superior; a systems analysis of the complete hydraulic transport of coal from the mine to users in Europe; the performance of the COJA mill-burner for the combustion of superfine coal; demand for steam coal in Western Europe; and the effect the New Source Performance Standards will have on the production and use of Western coal. A separate abstract was prepared for each of the 19 papers for the Energy Data Base (EDB); 17 will appear in Energy Research Abstracts (ERA) and 11 in Energy Abstracts for Policy Analysis (EAPA). (CKK)

Not Available

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Evaluation of Roof Bolting Requirements Based on In-Mine Roof Bolter Drilling  

SciTech Connect (OSTI)

Roof bolting is the most popular method for underground openings in the mining industry, especially in the bedded deposits such as coal. In fact, all U.S. underground coal mine entries are roof-bolted as required by law. However, roof falls still occur frequently in the roof bolted entries. The two possible reasons are: the lack of knowledge of and technology to detect the roof geological conditions in advance of mining, and lack of roof bolting design criteria for modern roof bolting systems. This research is to develop a method for predicting the roof geology and stability condition in real time during roof bolting operation. Based on this information, roof bolting design criteria for modern roof bolting systems will be developed for implementation in real time. For the prediction of roof geology and stability condition in real time, a micro processor was used and a program developed to monitor and record the drilling parameters of roof bolter. These parameters include feed pressure, feed flow (penetration rate), rotation pressure, rotation rate, vacuum pressure, oil temperature of hydraulic circuit, and signals for controlling machine. From the results of a series of laboratory and underground tests so far, feed pressure is found to be a good indicator for identifying the voids/fractures and estimating the roof rock strength. The method for determining quantitatively the location and the size of void/fracture and estimating the roof rock strength from the drilling parameters of roof bolter was developed. Also, a set of computational rules has been developed for in-mine roof using measured roof drilling parameters and implemented in MRGIS (Mine Roof Geology Information System), a software package developed to allow mine engineers to make use of the large amount of roof drilling parameters for predicting roof geology properties automatically. For the development of roof bolting criteria, finite element models were developed for tensioned and fully grouted bolting designs. Numerical simulations were performed to investigate the mechanisms of modern roof bolting systems including both the tension and fully grouted bolts. Parameters to be studied are: bolt length, bolt spacing, bolt size/strength, grout annulus, in-situ stress condition, overburden depth, and roof geology (massive strata, fractured, and laminated or thinly-bedded). Based on the analysis of the mechanisms of both bolting systems and failure modes of the bolted strata, roof bolting design criteria and programs for modern roof bolting systems were developed. These criterion and/or programs were combined with the MRGIS for use in conjunction with roof bolt installation.

Syd S. Peng

2005-10-01T23:59:59.000Z

302

USE of mine pool water for power plant cooling.  

SciTech Connect (OSTI)

Water and energy production issues intersect in numerous ways. Water is produced along with oil and gas, water runs off of or accumulates in coal mines, and water is needed to operate steam electric power plants and hydropower generating facilities. However, water and energy are often not in the proper balance. For example, even if water is available in sufficient quantities, it may not have the physical and chemical characteristics suitable for energy or other uses. This report provides preliminary information about an opportunity to reuse an overabundant water source--ground water accumulated in underground coal mines--for cooling and process water in electric generating facilities. The report was funded by the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL), which has implemented a water/energy research program (Feeley and Ramezan 2003). Among the topics studied under that program is the availability and use of ''non-traditional sources'' of water for use at power plants. This report supports NETL's water/energy research program.

Veil, J. A.; Kupar, J. M .; Puder, M. G.

2006-11-27T23:59:59.000Z

303

Coal: the cornerstone of America's energy future  

SciTech Connect (OSTI)

In April 2005, US Secretary of Energy Samuel W. Bodman asked the National Coal Council to develop a 'report identifying the challenges and opportunities of more fully exploring our domestic coal resources to meet the nation's future energy needs'. The Council has responded with eight specific recommendations for developing and implementing advanced coal processing and combustion technologies to satisfy our unquenchable thirst for energy. These are: Use coal-to-liquids technologies to produce 2.6 million barrels/day; Use coal-to-natural gas technologies to produce 4 trillion ft{sup 3}/yr; Build 100 GW of clean coal plants by 2025; Produce ethanol from coal; Develop coal-to-hydrogen technologies; Use CO{sub 2} to enhance recovery of oil and coal-bed methane; Increase the capacity of US coal mines and railroads; and Invest in technology development and implementation. 1 ref.; 4 figs.; 1 tab.

Beck, R.A. [National Coal Council (United Kingdom)

2006-06-15T23:59:59.000Z

304

Pelletization of fine coals. Final report  

SciTech Connect (OSTI)

Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

Sastry, K.V.S.

1995-12-31T23:59:59.000Z

305

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. [Coal pyrite electrodes  

SciTech Connect (OSTI)

The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville [number sign]2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

Doyle, F.M.

1992-01-01T23:59:59.000Z

306

Hardgrove grindability index and petrology used as an enhanced predictor of coal feed rate  

SciTech Connect (OSTI)

An improved predictor of coal pulverization behavior and coal feed rate is under development at the CAER based upon the interaction between Hardgrove Grindability Index (HGI) and coal petrology. With educated attention, this interaction may be a useful tool to enhance coal feed rates if cautiously extended to the mining environment where blends of coal lithotypes are produced.

Hower, J.C. (Univ. of Kentucky, KY (US))

1990-01-01T23:59:59.000Z

307

Coal mine methane ownership issues  

SciTech Connect (OSTI)

The article summarizes the CMM ownership conditions in the US and the obstacles they present for project development. The first section discusses CMM resources and rights on lands controlled by the US Government, the case in several western states. The second section reviews the situation on private lands, such as in much of the eastern US, where ownership of the mineral; resources is governed by state laws. Each of the two sections analyses the ownership procedures and rules that govern both the relationship between the surface and subsurface owners and the relationship between two or more subsurface resource owners. 8 refs., 1 tab.

NONE

2007-09-30T23:59:59.000Z

308

2012 International Pittsburgh Coal Conference Pittsburgh, PA, USA  

E-Print Network [OSTI]

1 2012 International Pittsburgh Coal Conference Pittsburgh, PA, USA October 15 - 18, 2012 PROGRAM through the bed (1). An aquifer is suited for underground storage of gases or liquids since

Mohaghegh, Shahab

309

Mining and Gas and Oil Production (North Dakota)  

Broader source: Energy.gov [DOE]

This chapter of the North Dakota Code contains provisions for oil, gas, and coal mining and the development of geothermal resources. This chapter addresses claims to mines, licensing and control of...

310

Application of the directional hydraulic fracturing at Berezovskaya Mine  

SciTech Connect (OSTI)

The paper analyzes the experimental research of the directional hydraulic fracturing applied for weakening of rocks at Berezovskaya Mine (Kuznetsk Coal Basin) in 2005-2006.

Lekontsev, Y.M.; Sazhin, P.V. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Institute for Mining

2008-05-15T23:59:59.000Z

311

High-sulfur coals in the eastern Kentucky coal field  

SciTech Connect (OSTI)

The Eastern Kentucky coal field is notable for relatively low-sulfur, [open quotes]compliance[close quotes] coals. Virtually all of the major coals in this area do have regions in which higher sulfur lithotypes are common, if not dominant, within the lithologic profile. Three Middle Pennsylvanian coals, each representing a major resource, exemplify this. The Clintwood coal bed is the stratigraphically lowest coal bed mined throughout the coal field. In Whitley County, the sulfur content increase from 0.6% at the base to nearly 12% in the top lithotype. Pyrite in the high-sulfur lithotype is a complex mixture of sub- to few-micron syngenetic forms and massive epigenetic growths. The stratigraphically higher Pond Creek coal bed is extensively mined in portions of the coal field. Although generally low in sulfur, in northern Pike and southern Martin counties the top one-third can have up to 6% sulfur. Uniformly low-sulfur profiles can occur within a few hundred meters of high-sulfur coal. Pyrite occurs as 10-50 [mu]m euhedra and coarser massive forms. In this case, sulfur distribution may have been controlled by sandstone channels in the overlying sediments. High-sulfur zones in the lower bench of the Fire Clay coal bed, the stratigraphically highest coal bed considered here, are more problematical. The lower bench, which is of highly variable thickness and quality, generally is overlain by a kaolinitic flint clay, the consequence of a volcanic ash fall into the peat swamp. In southern Perry and Letcher counties, a black, illite-chlorite clay directly overlies the lower bench. General lack of lateral continuity of lithotypes in the lower bench suggests that the precursor swamp consisted of discontinuous peat-forming environments that were spatially variable and regularly inundated by sediments. Some of the peat-forming areas may have been marshlike in character.

Hower, J.C.; Graham, U.M. (Univ. of Kentucky Center for Applied Energy Research, Lexington, KY (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington, KY (United States))

1993-08-01T23:59:59.000Z

312

The Sanford underground research facility at Homestake  

SciTech Connect (OSTI)

The former Homestake gold mine in Lead, South Dakota is being transformed into a dedicated laboratory to pursue underground research in rare-process physics, as well as offering research opportunities in other disciplines such as biology, geology and engineering. A key component of the Sanford Underground Research Facility (SURF) is the Davis Campus, which is in operation at the 4850-foot level (4300 m.w.e) and currently hosts three projects: the LUX dark matter experiment, the MAJORANA DEMONSTRATOR neutrinoless double-beta decay experiment and the CUBED low-background counter. Plans for possible future experiments at SURF are well underway and include long baseline neutrino oscillation experiments, future dark matter experiments as well as nuclear astrophysics accelerators. Facility upgrades to accommodate some of these future projects have already started. SURF is a dedicated facility with significant expansion capability.

Heise, J. [Sanford Underground Research Facility, 630 East Summit Street, Lead, SD 57754 (United States)

2014-06-24T23:59:59.000Z

313

Hydrothermally treated coals for pulverized coal injection. Technical progress report, April 1995--June 1995  

SciTech Connect (OSTI)

This project is investigating the suitability of hydrothermally dried low-rank coals for pulverized fuel injection into blast furnaces in order to reduce coke consumption. Coal samples from the Beluga coal field and Usibelli Coal Mine, Alaska, are being used for the study. Crushed coal samples were hydrothermally treated at three temperatures, 275, 300 and 325{degrees}C, for residence times ranging from 10 to 120 minutes. Products have been characterized to determine their suitability for pulverized coal injection. Characterization includes proximate and ultimate analyses, vitrinite reflectance, TGA reactivity and thermochemical modeling. A literature survey has been conducted.

Walsh, D.E.; Rao, P.D.; Ogunsola, O.; Lin, H.K.

1995-07-01T23:59:59.000Z

314

The West Virginia Coal Economy February 2010  

E-Print Network [OSTI]

Education Policy Commission or the governing boards of Marshall University and West Virginia University. #12-Quantifiable Economic Impacts on West Virginia 46-47 I. Reclaimed Coal Mine Sites 46 II. Corporate Responsibility

Mohaghegh, Shahab

315

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1  

E-Print Network [OSTI]

Opportunities for Visual Resource Management in the Southern Appalachian Coal Basin1 John W) in the southern Appalachian coal basin resulting from the Surface Mining Control and Reclamation Act. It focuses been concerned with the visual impacts resulting from the surface mined coal the agency purchases

Standiford, Richard B.

316

Effectiveness of cabs for dust and silica control on mobile mining equipment  

SciTech Connect (OSTI)

The Mine Safety and Health Administration (MSHA) has conducted a study to evaluate the effectiveness of cabs for controlling silica dust exposure during operation of mobile mining equipment. This study focused on bulldozers, front-end loaders and haul trucks, was conducted at surface coal mining operations and underground metal and nonmetal mining operations. Each piece of equipment tested was equipped with a cab. The vehicles sampled were from a range of manufacturers having different types of filter media and air intake configurations. The purpose of this study was to determine the reduction of dust and silica exposure that could be achieved through the use of a well-maintained cab. For each piece of equipment, dust and silica concentrations inside and outside the cab were determined and compared. In some cases, filtration efficiencies could be calculated. A properly designed environmental cab is sealed, has an intake air filtration system, and a heating and cooling system. Cabs should have good seals around the doors and windows. Factors such as cab pressurization filtration systems, filter media, and maintenance practices were also examined. In some cases, dust and silica reduction of 90 to 95% were observed.

Garcia, J.J.; Gresh, R.E.; Gareis, M.B.; Haney, R.A.

1999-07-01T23:59:59.000Z

317

Source Characterization of the August 6, 2007 Crandall Canyon Mine Seismic Event in Central Utah  

SciTech Connect (OSTI)

On August 6, 2007 a local magnitude 3.9 seismic event occurred at 08:48:40 UTC in central Utah. The epicenter is within the boundaries of the Crandall Canyon coal mine (c.f. Pechmann et al., this volume). We performed a moment tensor analysis with complete, three-component seismic recordings from stations operated by the USGS, the University of Utah, and EarthScope. The analysis method inverts the seismic records to retrieve the full seismic moment tensor, which allows for interpretation of both shearing (e.g., earthquakes) and volume-changing (e.g., explosions and collapses) seismic events. The results show that most of the recorded seismic wave energy is consistent with an underground collapse in the mine. We contrast the waveforms and moment tensor results of the Crandall Canyon Mine seismic event to a similar sized tectonic earthquake about 200 km away near Tremonton, Utah, that occurred on September 1, 2007. Our study does not address the actual cause of the mine collapse.

Ford, S R; Dreger, D S; Walter, W R

2008-07-01T23:59:59.000Z

318

Coal surface control for advanced fine coal flotation  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal's emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. (California Univ., Berkeley, CA (United States)); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. (Columbia Univ., New York, NY (United States)); Hu, W.; Zou, Y.; Chen, W. (Utah Univ., Salt Lake City, UT (United States)); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. (Praxis Engineers, Inc., Milpitas, CA (United States))

1992-03-01T23:59:59.000Z

319

Integrated coal cleaning, liquefaction, and gasification process  

DOE Patents [OSTI]

Coal is finely ground and cleaned so as to preferentially remove denser ash-containing particles along with some coal. The resulting cleaned coal portion having reduced ash content is then fed to a coal hydrogenation system for the production of desirable hydrocarbon gases and liquid products. The remaining ash-enriched coal portion is gasified to produce a synthesis gas, the ash is removed from the gasifier usually as slag, and the synthesis gas is shift converted with steam and purified to produce the high purity hydrogen needed in the coal hydrogenation system. This overall process increases the utilization of as-mined coal, reduces the problems associated with ash in the liquefaction-hydrogenation system, and permits a desirable simplification of a liquids-solids separation step otherwise required in the coal hydrogenation system.

Chervenak, Michael C. (Pennington, NJ)

1980-01-01T23:59:59.000Z

320

A Testbed of Magnetic Induction-based Communication System for Underground Applications  

E-Print Network [OSTI]

Wireless underground sensor networks (WUSNs) can enable many important applications such as intelligent agriculture, pipeline fault diagnosis, mine disaster rescue, concealed border patrol, crude oil exploration, among others. The key challenge to realize WUSNs is the wireless communication in underground environments. Most existing wireless communication systems utilize the dipole antenna to transmit and receive propagating electromagnetic (EM) waves, which do not work well in underground environments due to the very high material absorption loss. The Magnetic Induction (MI) technique provides a promising alternative solution that could address the current problem in underground. Although the MI-based underground communication has been intensively investigated theoretically, to date, seldom effort has been made in developing a testbed for the MI-based underground communication that can validate the theoretical results. In this paper, a testbed of MI-based communication system is designed and implemented in a...

Tan, Xin; Akyildiz, Ian F

2015-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Curriculum Support Maps for the Study of Indiana Coal  

E-Print Network [OSTI]

Curriculum Support Maps for the Study of Indiana Coal By Walt Gray Targeted Age: High SchoolMap to create geographic information systems (GIS) maps to demonstrate the distribution of coal mines within comprehension of the data presented to them. It is expected that students have studied the process of coal

Polly, David

322

Update on use of mine pool water for power generation.  

SciTech Connect (OSTI)

In 2004, nearly 90 percent of the country's electricity was generated at power plants using steam-based systems (EIA 2005). Electricity generation at steam electric plants requires a cooling system to condense the steam. With the exception of a few plants using air-cooled condensers, most U.S. steam electric power plants use water for cooling. Water usage occurs through once-through cooling or as make-up water in a closed-cycle system (generally involving one or more cooling towers). According to a U.S. Geological Survey report, the steam electric power industry withdrew about 136 billion gallons per day of fresh water in 2000 (USGS 2005). This is almost the identical volume withdrawn for irrigation purposes. In addition to fresh water withdrawals, the steam electric power industry withdrew about 60 billion gallons per day of saline water. Many parts of the United States are facing fresh water shortages. Even areas that traditionally have had adequate water supplies are reaching capacity limits. New or expanded steam electric power plants frequently need to turn to non-traditional alternate sources of water for cooling. This report examines one type of alternate water source-groundwater collected in underground pools associated with coal mines (referred to as mine pool water in this report). In 2003, the U.S. Department of Energy's (DOE's) National Energy Technology Laboratory (NETL) funded Argonne National Laboratory (Argonne) to evaluate the feasibility of using mine pool water in Pennsylvania and West Virginia. That report (Veil et al. 2003) identified six small power plants in northeastern Pennsylvania (the Anthracite region) that had been using mine pool water for over a decade. It also reported on a pilot study underway at Exelon's Limerick Generating Station in southeastern Pennsylvania that involved release of water from a mine located about 70 miles upstream from the plant. The water flowed down the Schuylkill River and augmented the natural flow so that the Limerick plant could withdraw a larger volume of river water. The report also included a description of several other proposed facilities that were planning to use mine pool water. In early 2006, NETL directed Argonne to revisit the sites that had previously been using mine pool water and update the information offered in the previous report. This report describes the status of mine pool water use as of summer 2006. Information was collected by telephone interviews, electronic mail, literature review, and site visits.

Veil, J. A.; Puder, M. G.; Environmental Science Division

2006-09-30T23:59:59.000Z

323

Coal cutting research slashes dust  

SciTech Connect (OSTI)

US Bureau of Mines' research projects aimed at the reduction of coal dust during coal cutting operations are described. These include an investigation of the effects of conical bit wear on respirable dust generation, energy and cutting forces; the determination of the best conical bit mount condition to increase life by enhancing bit rotation; a comparison between chisel- and conical-type cutters. In order to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

324

Recolonization of surface-mined lands by pocket gophers (Geomys breviceps) in East Texas Post Oak Savannah  

E-Print Network [OSTI]

Surface mining involves the use of heavy equipment that would theoretically create underground vibrations sensed by pocket gophers. To determine if vibrations cause pocket gopher movement away from areas being mined, gopher movements were monitored...

Gutierrez, Paula B

2001-01-01T23:59:59.000Z

325

Taking the soil-structure interaction into account in assessing the loading of a structure in a mining subsidence area.  

E-Print Network [OSTI]

materials at an acceptable cost has led to large underground mines and quarries. Because of the extraction when it takes place over mines and quarries that use methods based on abandoned rooms and pillars

Paris-Sud XI, Université de

326

Highwall miners extract coal cost effectively  

SciTech Connect (OSTI)

Contour Mining Corp's Powellton site in West Virginia has produced over 60,000 tons of coal per month using the Terex Highwall Mining System (HWM). The HWM can use a lower or high-seam cutter module. MTS Systems' Sensors Division provides mobile hydraulic magnetostrictive sensors for the HWM system, to increase the accuracy and reliability of linear positioning. 1 photo.

NONE

2009-08-15T23:59:59.000Z

327

About Armstrong Coal Company In just a few short years, Armstrong Coal has grown from a start-up  

E-Print Network [OSTI]

About Armstrong Coal Company In just a few short years, Armstrong Coal has grown from a start approximately 370 million tons of coal reserves, Armstrong operates six active mines in Western Kentucky, along the U.S. Midwest and Southeast. Armstrong is fully committed to meeting strict environmental standards

Fisher, Kathleen

328

New developments in coal briquetting technology  

SciTech Connect (OSTI)

Briquetting of coal has been with us for well over a century. In the earliest applications of coal briquetting, less valuable fine coal was agglomerated into briquettes using a wide variety of binders, including coal tar, pitch and asphalt. Eventually, roll briquetters came into more widespread use, permitting the process to become a continuous one. Coal briquetting went out of favor during the 1950s in most of the industrialized world. The major reason for this decline in use was the discovery that the coal gas distillates used for binders were harmful to human health. Also, the abundance of cheap petroleum made coal briquettes a less attractive alternative as an industrial or domestic fuel. The re-emergence of coal as a primary industrial fuel and also its increased prominence as a fuel for thermal electric power stations led to a large increase in the annual volume of coal being mined worldwide. Coal preparation technology steadily improved over the years with the general exception of fine coal preparation. The processes available for treating this size range were considerably more expensive per unit mass of coal treated than coarse coal processes. Also, costly dewatering equipment was required after cleaning to remove surface moisture. Even with dewatering, the high surface area per unit mass of fine coal versus coarse coal resulted in high moisture contents. Therefore, little incentive existed to improve the performance of fine coal processes since this would only increase the amount of wet coal fines which would have to be dealt with. With such an ever-increasing volume of coal fines being created each year, there emerged an interest in recovering this valuable product. Several schemes were developed to recover coal fines discarded in abandoned tailings impoundments by previous operations.

Tucker, P.V. [Kilborn Inc., Ontario (Canada); Bosworth, G.B. [Kilborn Engineering Pacific Ltd., Vancouver, British Columbia (Canada); Kalb, G.W. [KKS Systems Inc., Wheeling, WV (United States)

1993-12-31T23:59:59.000Z

329

Underground Injection Control (West Virginia)  

Broader source: Energy.gov [DOE]

This rule set forth criteria and standards for the requirements which apply to the State Underground Injection Control Program (U.I.C.). The UIC permit program regulates underground injections by...

330

Geotechnical & Mining Engineering  

E-Print Network [OSTI]

to the design analysis of Transformer Hall and Machine Hall in an underground cavern. Underground excavations

Chapman, Clark R.

331

Uncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal  

E-Print Network [OSTI]

analyses involving coal. Greenhouse gas emissions from fuel use and methane releases at coal mines, fuel.5 million metric tons of methane emissions. Close to 95% of domestic coal was consumed by the electricityUncertainty in Life Cycle Greenhouse Gas Emissions from United States Coal Aranya Venkatesh

Jaramillo, Paulina

332

An epidemiological study of salt miners in diesel and nondiesel mines  

SciTech Connect (OSTI)

A cross-sectional study of 5 NaCl mines and 259 miners addressed the following questions: 1) Is there an association of increased respiratory symptoms, radiographic findings, and reduced pulmonary function with exposure to nitrogen dioxide (NO2) and/or respirable particulate (RP) among these miners. 2) Is there increased morbidity of these miners compared to other working populations. Personal samples of NO2 and respirable particulate for jobs in each mine were used to estimate cumulative exposure. NO2 is used as a surrogate measure of diesel exposure. Cough was associated with age and smoking, dyspnea with age; neither symptom was associated with exposure (years worked, estimated cumulative NO2 or RP exposure). Phlegm was associated with age, smoking, and exposure. Reduced pulmonary function (FVC, FEV1, peak, flow, FEF50, FEF75) showed no association with exposure. There was one case of small rounded and one case of small irregular opacities; pneumoconiosis was not analyzed further. Compared to underground coal miners, above ground coal miners, potash miners, and nonmining workers, the study population after adjustment for age and smoking generally showed no increased prevalence of cough, phlegm, dyspnea, or obstruction (FEV1/FVC less than 0.7). Obstruction in younger salt miners and phlegm in older salt miners was elevated compared to nonmining workers. Mean predicted pulmonary function was reduced 2-4% for FEV1 and FVC, 7-13% for FEF50, and 18-22% for FEF75 below all comparison populations.

Gamble, J.; Jones, W.; Hudak, J.

1983-01-01T23:59:59.000Z

333

Search for underground openings for in situ test facilities in crystalline rock  

SciTech Connect (OSTI)

With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.

Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O'Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.

1980-01-01T23:59:59.000Z

334

Modeled atmospheric radon concentrations from uranium mines  

SciTech Connect (OSTI)

Uranium mining and milling operations result in the release of radon from numerous sources of various types and strengths. The US Environmental Protection Agency (EPA) under the Clean Air Act, is assessing the health impact of air emissions of radon from underground uranium mines. In this case, the radon emissions may impact workers and residents in the mine vicinity. To aid in this assessment, the EPA needs to know how mine releases can affect the radon concentrations at populated locations. To obtain this type of information, Pacific Northwest Laboratory used the radon emissions, release characteristics and local meterological conditions for a number of mines to model incremental radon concentrations. Long-term, average, incremental radon concentrations were computed based on the best available information on release rates, plume rise parameters, number and locations of vents, and local dispersion climatology. Calculations are made for a model mine, individual mines, and multiple mines. Our approach was to start with a general case and then consider specific cases for comparison. A model underground uranium mine was used to provide definition of the order of magnitude of typical impacts. Then computations were made for specific mines using the best mine-specific information available for each mine. These case study results are expressed as predicted incremental radon concentration contours plotted on maps with local population data from a previous study. Finally, the effect of possible overlap of radon releases from nearby mines was studied by calculating cumulative radon concentrations for multiple mines in a region with many mines. The dispersion model, modeling assumptions, data sources, computational procedures, and results are documented in this report. 7 refs., 27 figs., 18 tabs.

Droppo, J.G.

1985-04-01T23:59:59.000Z

335

Rock, Mineral, Coal, Oil, and Gas Resources on State Lands (Montana)  

Broader source: Energy.gov [DOE]

This chapter authorizes and regulates prospecting permits and mining leases for the exploration and development of rock, mineral, oil, coal, and gas resources on state lands.

336

E-Print Network 3.0 - abandoned surface coal Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

<< < 1 2 3 4 5 > >> 1 Discussion Paper Industrial Organization of Summary: of Chinas coal output is produced by surface mining operations. Chinas heavy reliance on...

337

Environmental data energy technology characterizations: coal  

SciTech Connect (OSTI)

This document describes the activities leading to the conversion of coal to electricity. Specifically, the activities consist of coal mining and beneficiation, coal transport, electric power generation, and power transmission. To enhance the usefulness of the material presented, resource requirements, energy products, and residuals for each activity area are normalized in terms of 10/sup 12/ Btus of energy produced. Thus, the total effect of producing electricity from coal can be determined by combining the residuals associated with the appropriate activity areas. Emissions from the coal cycle are highly dependent upon the type of coal consumed as well as the control technology assigned to the activity area. Each area is assumed to be equipped with currently available control technologies that meet environmental regulations. The conventional boiler, for example, has an electrostatic precipitator and a flue gas desulfurization scrubber. While this results in the removal of most of the particulate matter and sulfur dioxide in the flue gas stream, it creates other new environmental residuals -- solid waste, sludge, and ash. There are many different types of mined coal. For informational purposes, two types from two major producing regions, the East and the West, are characterized here. The eastern coal is typical of the Northern Appalachian coal district with a high sulfur and heat content. The western coal, from the Powder River Basin, has much less sulfur, but also has a substantially lower heating value.

Not Available

1980-04-01T23:59:59.000Z

338

State-of-the-art techniques for backfilling abandoned mine voids. Information circular/1993  

SciTech Connect (OSTI)

Abandoned underground mine openings are susceptible to collapse because of the mining methods used, the character of the overburden, and the typically large wide entries with minimal roof support. The final effect of the collapse of the underground workings is surface subsidence. To reduce the probability of subsidence, methods to backfill the mine void with various types of materials have been developed. The paper describes the available technologies for subsidence abatement and discusses their operation and application.

Walker, J.S.

1993-01-01T23:59:59.000Z

339

Underground waste barrier structure  

DOE Patents [OSTI]

Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

Saha, Anuj J. (Hamburg, NY); Grant, David C. (Gibsonia, PA)

1988-01-01T23:59:59.000Z

340

ANALYSIS OF MINING EXPLOSION PERFORMANCE WITH MULTIPLE  

E-Print Network [OSTI]

Limitations of Video Data · Effect of Blast Design on Near-Source Seismograms · Different Types of Cast Blasts of Models in Visualization ß Two-Dimensional Blast Model ß Three-Dimensional Blast Models 3. Applications to Different Types of Mining Explosions · Single Shot · Cast Blast · Coal Fragmentation #12;Analysis of Mining

Stump, Brian W.

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

ITP Mining: Energy and Environmental Profile of the U.S. Mining...  

Broader source: Energy.gov (indexed) [DOE]

1 Combustion Engineering, Combustion-Fossil Power, Chapter 2-7, 1991. Coal 2-1 Energy and Environmental Profile of the U.S. Mining Industry Anthracite - Hard and very...

342

Coal pump  

DOE Patents [OSTI]

A device for pressurizing pulverized coal and circulating a carrier gas is disclosed. This device has utility in a coal gasification process and eliminates the need for a separate collection hopper and eliminates the separate compressor.

Bonin, John H. (Sunnyvale, CA); Meyer, John W. (Palo Alto, CA); Daniel, Jr., Arnold D. (Alameda County, CA)

1983-01-01T23:59:59.000Z

343

High pressure water jet mining machine  

DOE Patents [OSTI]

A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

Barker, Clark R. (Rolla, MO)

1981-05-05T23:59:59.000Z

344

DIESEL ENGINES FOR FIREDAMP MINES Institut National de 1'Environnement Industricl  

E-Print Network [OSTI]

arresting devices in the intake circuit and exhaust circuit. The old French mining regulations defined %. This is of considerable interest to French coal mines who need more and more powerfui engines to drive their rubber tyred

Paris-Sud XI, Université de

345

Fuelcell-Hybrid Mine loader (LHD)  

SciTech Connect (OSTI)

The fuel cell hybrid mine loader project, sponsored by a government-industry consortium, was implemented to determine the viability of proton exchange membrane (PEM) fuel cells in underground mining applications. The Department of Energy (DOE) sponsored this project with cost-share support from industry. The project had three main goals: (1) to develop a mine loader powered by a fuel cell, (2) to develop associated metal-hydride storage and refueling systems, and (3) to demonstrate the fuel cell hybrid loader in an underground mine in Nevada. The investigation of a zero-emissions fuel cell power plant, the safe storage of hydrogen, worker health advantages (over the negative health effects associated with exposure to diesel emissions), and lower operating costs are all key objectives for this project.

James L Dippo; Tim Erikson; Kris Hess

2009-07-10T23:59:59.000Z

346

Hydraulic mining method  

DOE Patents [OSTI]

A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

Huffman, Lester H. (Kent, WA); Knoke, Gerald S. (Kent, WA)

1985-08-20T23:59:59.000Z

347

A Novel, Web-Driven Continuous Mining Steven J. Schafrik  

E-Print Network [OSTI]

A Novel, Web-Driven Continuous Mining Simulator By Steven J. Schafrik and Michael Karmis Department geometry of operations as well as other constraints. This paper presents WebConSim, a newly developed, Web underground and open-pit mining operations. OBJECTIVES AND DESIGN OF THE NEW WEB- BASED SIMULATOR One

348

Wiener filtering with a seismic underground array at the Sanford Underground Research Facility  

E-Print Network [OSTI]

A seismic array has been deployed at the Sanford Underground Research Facility in the former Homestake mine, South Dakota, to study the underground seismic environment. This includes exploring the advantages of constructing a third-generation gravitational-wave detector underground. A major noise source for these detectors would be Newtonian noise, which is induced by fluctuations in the local gravitational field. The hope is that a combination of a low-noise seismic environment and coherent noise subtraction using seismometers in the vicinity of the detector could suppress the Newtonian noise to below the projected noise floor for future gravitational-wave detectors. In this paper, we use Wiener filtering techniques to subtract coherent noise in a seismic array in the frequency band 0.05 -- 1\\,Hz. This achieves more than an order of magnitude noise cancellation over a majority of this band. We show how this subtraction would benefit proposed future low-frequency gravitational wave detectors. The variation in the Wiener filter coefficients over the course of the day, including how local activities impact the filter, is analyzed. We also study the variation in coefficients over the course of a month, showing the stability of the filter with time. How varying the filter order affects the subtraction performance is also explored. It is shown that optimizing filter order can significantly improve subtraction of seismic noise, which gives hope for future gravitational-wave detectors to address Newtonian noise.

Michael Coughlin; Jan Harms; Nelson Christensen; Vladimir Dergachev; Riccardo DeSalvo; Shivaraj Kandhasamy; Vuk Mandic

2014-08-19T23:59:59.000Z

349

In-situ coal-gasification data look promising  

SciTech Connect (OSTI)

According to a report given at the 6th Underground Coal Conversion Symposium (Afton, Oklahoma 1980), the Hoe Creek No. 3 underground coal-gasification experiments Oil Gas J. 77 sponsored by the U.S. Department of Energy and the Gas Research Institute and directed by the University of California Lawrence Livermore Laboratory demonstrated the feasibility of in-situ coal conversion and featured the use of a directionally drilled channel to connect the injection and production wells rather than the reverse-burn ordinarily used to produce the connecting channel. In the test, 2816 cu m of coal weighing (APPROX) 4200 tons was consumed, with (APPROX) 18% of the product gas escaping through the overburden or elsewhere. When air injection was used, the average heating value was 217 Btu/std cu ft. The average thermal efficiency of the burn was 65%, and the average gas composition was 35% hydrogen, 5% methane, 11% carbon monoxide, and 44% carbon dioxide. Subsidence occurred after completion of the test. The Uniwell gasification method, scheduled for use in the final experiment in the Deep-1 series of underground coal-gasification tests in Wyoming, seeks to prevent subsidence by use of concentric pipes which are inserted into the vertical well to control the combustion zone. Underground coal-gasification prospects and the mechanics of subsidence are discussed.

Not Available

1980-07-21T23:59:59.000Z

350

Underground Injection Control Regulations (Kansas)  

Broader source: Energy.gov [DOE]

This article prohibits injection of hazardous or radioactive wastes into or above an underground source of drinking water, establishes permit conditions and states regulations for design,...

351

Underground Injection Control Rule (Vermont)  

Broader source: Energy.gov [DOE]

This rule regulates injection wells, including wells used by generators of hazardous or radioactive wastes, disposal wells within an underground source of drinking water, recovery of geothermal...

352

Underground Storage Tanks (West Virginia)  

Broader source: Energy.gov [DOE]

This rule governs the construction, installation, upgrading, use, maintenance, testing, and closure of underground storage tanks, including certification requirements for individuals who install,...

353

Underground Storage Tank Program (Vermont)  

Broader source: Energy.gov [DOE]

These rules are intended to protect public health and the environment by establishing standards for the design, installation, operation, maintenance, monitoring, and closure of underground storage...

354

Underground Storage Tanks (New Jersey)  

Broader source: Energy.gov [DOE]

This chapter constitutes rules for all underground storage tank facilities- including registration, reporting, permitting, certification, financial responsibility and to protect human health and...

355

Multicomponent reactive transport modeling at the Ratones uranium mine, Cceres (Spain)  

E-Print Network [OSTI]

Multicomponent reactive transport modeling at the Ratones uranium mine, Cáceres (Spain) Modelación management. The Ratones uranium mine was abandoned and flooded in 1974. Due to its reducing underground water, uranium, reactive transport, granite hydrochemistry, Ratones mine. Resumen La inundación de minas

Politècnica de Catalunya, Universitat

356

Corner-cutting mining assembly  

DOE Patents [OSTI]

This invention resulted from a contract with the United States Department of Energy and relates to a mining tool. More particularly, the invention relates to an assembly capable of drilling a hole having a square cross-sectional shape with radiused corners. In mining operations in which conventional auger-type drills are used to form a series of parallel, cylindrical holes in a coal seam, a large amount of coal remains in place in the seam because the shape of the holes leaves thick webs between the holes. A higher percentage of coal can be mined from a seam by a means capable of drilling holes having a substantially square cross section. It is an object of this invention to provide an improved mining apparatus by means of which the amount of coal recovered from a seam deposit can be increased. Another object of the invention is to provide a drilling assembly which cuts corners in a hole having a circular cross section. These objects and other advantages are attained by a preferred embodiment of the invention.

Bradley, J.A.

1981-07-01T23:59:59.000Z

357

Mines and Mining (Maryland)  

Broader source: Energy.gov [DOE]

It is the policy of the state to encourage the development of mined resources in Maryland while protecting the environment and public health and safety. This legislation establishes the Bureau of...

358

Compositional characteristics of the Fire Clay coal bed in a portion of eastern Kentucky  

SciTech Connect (OSTI)

The Fire Clay (Hazard No. 4) coal bed (Middle Pennsylvanian Breathitt Formation) is one of the most extensively mined coal in eastern Kentucky. The coal is used for metallurgical and steam end uses and, with its low sulfur content, should continue to be a prime steam coal. This study focuses on the petrology, mineralogy, ash geochemistry, and palynology of the coal in an eight 7.5-min quadrangle area of Leslie, Perry, Knott, and Letcher counties.

Hower, J.C.; Andrews, W.M. Jr.; Rimmer, S.M. (Univ. of Kentucky, Lexington (United States)); Eble, C.F. (Kentucky Geological Survey, Lexington (United States))

1991-08-01T23:59:59.000Z

359

Multinational underground nuclear parks  

SciTech Connect (OSTI)

Newcomer countries expected to develop new nuclear power programs by 2030 are being encouraged by the International Atomic Energy Agency to explore the use of shared facilities for spent fuel storage and geologic disposal. Multinational underground nuclear parks (M-UNPs) are an option for sharing such facilities. Newcomer countries with suitable bedrock conditions could volunteer to host M-UNPs. M-UNPs would include back-end fuel cycle facilities, in open or closed fuel cycle configurations, with sufficient capacity to enable M-UNP host countries to provide for-fee waste management services to partner countries, and to manage waste from the M-UNP power reactors. M-UNP potential advantages include: the option for decades of spent fuel storage; fuel-cycle policy flexibility; increased proliferation resistance; high margin of physical security against attack; and high margin of containment capability in the event of beyond-design-basis accidents, thereby reducing the risk of Fukushima-like radiological contamination of surface lands. A hypothetical M-UNP in crystalline rock with facilities for small modular reactors, spent fuel storage, reprocessing, and geologic disposal is described using a room-and-pillar reference-design cavern. Underground construction cost is judged tractable through use of modern excavation technology and careful site selection. (authors)

Myers, C.W. [Nuclear Engineering and Nonproliferation Division, Los Alamos National Laboratory, MS F650, Los Alamos, NM 87544 (United States); Giraud, K.M. [Wolf Creek Nuclear Operating Corporation, 1550 Oxen Lane NE, P.O. Box 411, Burlington, KS 66839-0411 (United States)

2013-07-01T23:59:59.000Z

360

Characterization of the seismic environment at the Sanford Underground Laboratory, South This article has been downloaded from IOPscience. Please scroll down to see the full text article.  

E-Print Network [OSTI]

Characterization of the seismic environment at the Sanford Underground Laboratory, South Dakota. Quantum Grav. 27 (2010) 225011 (22pp) doi:10.1088/0264-9381/27/22/225011 Characterization of the seismic, the former Homestake mine, in South Dakota to study the properties of underground seismic fields

Christensen, Nelson

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Panel data analysis of U.S. coal productivity  

E-Print Network [OSTI]

We analyze labor productivity in coal mining in the United States using indices of productivity change associated with the concepts of panel data modeling. This approach is valuable when there is extensive heterogeneity ...

Stoker, Thomas M.

2000-01-01T23:59:59.000Z

362

Coal surface control for advanced fine coal flotation. Final report, October 1, 1988--March 31, 1992  

SciTech Connect (OSTI)

The initial goal of the research project was to develop methods of coal surface control in advanced froth flotation to achieve 90% pyritic sulfur rejection, while operating at Btu recoveries above 90% based on run-of-mine quality coal. Moreover, the technology is to concomitantly reduce the ash content significantly (to six percent or less) to provide a high-quality fuel to the boiler (ash removal also increases Btu content, which in turn decreases a coal`s emission potential in terms of lbs SO{sub 2}/million Btu). (VC)

Fuerstenau, D.W.; Hanson, J.S.; Diao, J.; Harris, G.H.; De, A.; Sotillo, F. [California Univ., Berkeley, CA (United States); Somasundaran, P.; Harris, C.C.; Vasudevan, T.; Liu, D.; Li, C. [Columbia Univ., New York, NY (United States); Hu, W.; Zou, Y.; Chen, W. [Utah Univ., Salt Lake City, UT (United States); Choudhry, V.; Shea, S.; Ghosh, A.; Sehgal, R. [Praxis Engineers, Inc., Milpitas, CA (United States)

1992-03-01T23:59:59.000Z

363

Method for gasification of deep, thin coal seams  

DOE Patents [OSTI]

A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

Gregg, David W. (Moraga, CA)

1982-01-01T23:59:59.000Z

364

Method for gasification of deep, thin coal seams. [DOE patent  

DOE Patents [OSTI]

A method of gasification of coal in deep, thin seams by using controlled bending subsidence to confine gas flow to a region close to the unconsumed coal face is given. The injection point is moved sequentially around the perimeter of a coal removal area from a production well to sweep out the area to cause the controlled bending subsidence. The injection holes are drilled vertically into the coal seam through the overburden or horizontally into the seam from an exposed coal face. The method is particularly applicable to deep, thin seams found in the eastern United States and at abandoned strip mines where thin seams were surface mined into a hillside or down a modest dip until the overburden became too thick for further mining.

Gregg, D.W.

1980-08-29T23:59:59.000Z

365

Underground Storage Tank Act (West Virginia)  

Broader source: Energy.gov [DOE]

New underground storage tank construction standards must include at least the following requirements: (1) That an underground storage tank will prevent releases of regulated substances stored...

366

Georgia Underground Storage Tank Act (Georgia)  

Broader source: Energy.gov [DOE]

The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

367

Preliminary Notice of Violation, Pacific Underground Construction...  

Broader source: Energy.gov (indexed) [DOE]

Pacific Underground Construction, Inc. - WEA-2009-02 Preliminary Notice of Violation, Pacific Underground Construction, Inc. - WEA-2009-02 April 7, 2009 Issued to Pacific...

368

Emissions tradeoffs associated with cofiring forest biomass with coal: A case study in Colorado, USA  

E-Print Network [OSTI]

3 July 2013 Keywords: Forest biomass Greenhouse gas emissions Air pollution Bioenergy Cofire a b mine and power plant. Model emissions tradeoffs of cofiring forest biomass with coal up to 20% by heat emissions sources: coal mining, power plant processes, forest biomass processes, boiler emissions

Fried, Jeremy S.

369

Expansion of the commercial output of Estonian oil shale mining and processing  

SciTech Connect (OSTI)

Economic and ecological preconditions are considered for the transition from monoproduct oil shale mining to polyproduct Estonian oil shale deposits. Underground water, limestone, and underground heat found in oil shale mines with small reserves can be operated for a long time using chambers left after oil shale extraction. The adjacent fields of the closed mines can be connected to the operations of the mines that are still working. Complex usage of natural resources of Estonian oil shale deposits is made possible owing to the unique features of its geology and technology. Oil shale seam development is carried out at shallow depths (40--70 m) in stable limestones and does not require expensive maintenance. Such natural resources as underground water, carbonate rocks, heat of rock mass, and underground chambers are opened by mining and are ready for utilization. Room-and-pillar mining does not disturb the surface, and worked oil shale and greenery waste heaps do not breach its ecology. Technical decisions and economic evaluation are presented for the complex utilization of natural resources in the boundaries of mine take of the ``Tammiku`` underground mine and the adjacent closed mine N2. Ten countries have already experienced industrial utilization of oil shale in small volumes for many years. Usually oil shale deposits are not notable for complex geology of the strata and are not deeply bedded. Thus complex utilization of quite extensive natural resources of Estonian oil shale deposits is of both scientific and practical interest.

Fraiman, J.; Kuzmiv, I. [Estonian Oil Shale State Co., Jyhvi (Estonia). Scientific Research Center

1996-09-01T23:59:59.000Z

370

School for Engineering of Matter, Transport and  

E-Print Network [OSTI]

are discussed and their importance to coal mine methane production and ensuring underground coal and research projects to understand methane migration paths in coal mines and to developing strategies methane explosion hazards in underground coal mines. Dr. Karacan has served in various promotion

371

Phoenix rising  

SciTech Connect (OSTI)

Phoenix Coal currently operates 3 surface coal mines in Western Kentucky and have recently obtained the permits to construct their first underground mine. The expansion of the Phoenix Coal company since its formation in July 2004 is described. 4 photos.

Buchsbaum, L.

2008-08-15T23:59:59.000Z

372

COAL SLAGGING AND REACTIVITY TESTING  

SciTech Connect (OSTI)

Union Fenosa's La Robla I Power Station is a 270-MW Foster Wheeler arch-fired system. The unit is located at the mine that provides a portion of the semianthracitic coal. The remaining coals used are from South Africa, Russia, Australia, and China. The challenges at the La Robla I Station stem from the various fuels used, the characteristics of which differ from the design coal. The University of North Dakota Energy & Environmental Research Center (EERC) and the Lehigh University Energy Research Center (LUERC) undertook a program to assess problematic slagging and unburned carbon issues occurring at the plant. Full-scale combustion tests were performed under baseline conditions, with elevated oxygen level and with redistribution of air during a site visit at the plant. During these tests, operating information, observations and temperature measurements, and coal, slag deposit, and fly ash samples were obtained to assess slagging and unburned carbon. The slagging in almost all cases appeared due to elevated temperatures rather than fuel chemistry. The most severe slagging occurred when the temperature at the sampling port was in excess of 1500 C, with problematic slagging where first-observed temperatures exceeded 1350 C. The presence of anorthite crystals in the bulk of the deposits analyzed indicates that the temperatures were in excess of 1350 C, consistent with temperature measurements during the sampling period. Elevated temperatures and ''hot spots'' are probably the result of poor mill performance, and a poor distribution of the coal from the mills to the specific burners causes elevated temperatures in the regions where the slag samples were extracted. A contributing cause appeared to be poor combustion air mixing and heating, resulting in oxygen stratification and increased temperatures in certain areas. Air preheater plugging was observed and reduces the temperature of the air in the windbox, which leads to poor combustion conditions, resulting in unburned carbon as well as slagging. A second phase of the project involved advanced analysis of the baseline coal along with an Australian coal fired at the plant. These analysis results were used in equilibrium thermodynamic modeling along with a coal quality model developed by the EERC to assess slagging, fouling, and opacity for the coals. Bench-scale carbon conversion testing was performed in a drop-tube furnace to assess the reactivity of the coals. The Australian coal had a higher mineral content with significantly more clay minerals present than the baseline coal. The presence of these clay minerals, which tend to melt at relatively low temperatures, indicated a higher potential for problematic slagging than the baseline coal. However, the pyritic minerals, comprising over 25% of the baseline mineral content, may form sticky iron sulfides, leading to severe slagging in the burner region if local areas with reducing conditions exist. Modeling results indicated that neither would present significant fouling problems. The Australian coal was expected to show slagging behavior much more severe than the baseline coal except at very high furnace temperatures. However, the baseline coal was predicted to exhibit opacity problems, as well as have a higher potential for problematic calcium sulfate-based low-temperature fouling. The baseline coal had a somewhat higher reactivity than the Australian coal, which was consistent with both the lower average activation energy for the baseline coal and the greater carbon conversion at a given temperature and residence time. The activation energy of the baseline coal showed some effect of oxygen on the activation energy, with E{sub a} increasing at the lower oxygen concentration, but may be due to the scatter in the baseline coal kinetic values at the higher oxygen level tested.

Donald P. McCollor; Kurt E. Eylands; Jason D. Laumb

2003-10-01T23:59:59.000Z

373

Remediation of inactive mining and milling sites  

SciTech Connect (OSTI)

The presentation introduces relevant environment remediation standards and describes some measures of engineering remedied for inactive mines and mills. Since 1990, the remediation of decommissioned nuclear facilities has obtained fixed financial aid from state government, part of which is offered to inactive mines and mills. Considering the environmental characteristics of Chinese uranium mines and mills, the major task of decommissioning is to prevent radon release, and keep surface water and underground water from contamination. In order to control the rate of radon release effectively, the authors` research institutes conducted a series of experiments on the covers of tailings with two kinds of different material, clay and concrete.

Mao, H.; Pan, Y.; Li, R.

1993-12-31T23:59:59.000Z

374

Underground storage of hydrocarbons in Ontario  

SciTech Connect (OSTI)

The underground storage of natural gas and liquified petroleum products in geological formations is a provincially significant industry in Ontario with economic, environmental, and safety benefits for the companies and residents of Ontario. There are 21 active natural gas storage pools in Ontario, with a total working storage capacity of approximately 203 bcf (5.76 billion cubic metres). Most of these pools utilize former natural gas-producing Guelph Formation pinnacle reefs. In addition there are seventy-one solution-mined salt caverns utilized for storage capacity of 24 million barrels (3.9 million cubic metres). These caverns are constructed within salt strata of the Salina A-2 Unit and the B Unit. The steadily increasing demand for natural gas in Ontario creates a continuing need for additional storage capacity. Most of the known gas-producing pinnacle reefs in Ontario have already been converted to storage. The potential value of storage rights is a major incentive for continued exploration for undiscovered reefs in this mature play. There are numerous depleted or nearly depleted natural gas reservoirs of other types with potential for use as storage pools. There is also potential for use of solution-mined caverns for natural gas storage in Ontario.

Carter, T.R.; Manocha, J. [Ontario Ministry of Natural Resources, Ontario (Canada)

1995-09-01T23:59:59.000Z

375

Outlook and Challenges for Chinese Coal  

SciTech Connect (OSTI)

China has been, is, and will continue to be a coal-powered economy. The rapid growth of coal demand since 2001 has created deepening strains and bottlenecks that raise questions about supply security. Although China's coal is 'plentiful,' published academic and policy analyses indicate that peak production will likely occur between 2016 and 2029. Given the current economic growth trajectory, domestic production constraints will lead to a coal gap that is not likely to be filled with imports. Urbanization, heavy industry growth, and increasing per-capita consumption are the primary drivers of rising coal usage. In 2006, the power sector, iron and steel, and cement accounted for 71% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units could save only 14% of projected 2025 coal demand. If China follows Japan, steel production would peak by 2015; cement is likely to follow a similar trajectory. A fourth wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. New demand from coal-to-liquids and coal-to-chemicals may add 450 million tonnes of coal demand by 2025. Efficient growth among these drivers indicates that China's annual coal demand will reach 4.2 to 4.7 billion tonnes by 2025. Central government support for nuclear and renewable energy has not been able to reduce China's growing dependence on coal for primary energy. Few substitution options exist: offsetting one year of recent coal demand growth would require over 107 billion cubic meters of natural gas, 48 GW of nuclear, or 86 GW of hydropower capacity. While these alternatives will continue to grow, the scale of development using existing technologies will be insufficient to substitute significant coal demand before 2025. The central role of heavy industry in GDP growth and the difficulty of substituting other fuels suggest that coal consumption is inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate change mitigation. The possibility of a large coal gap suggests that Chinese and international policy makers should maximize institutional and financial support

Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

2008-06-20T23:59:59.000Z

376

Coal extraction  

SciTech Connect (OSTI)

Coal is extracted using a mixed solvent which includes a substantially aromatic component and a substantially naphthenic component, at a temperature of 400/sup 0/ to 500/sup 0/C. Although neither component is an especially good solvent for coal by itself, the use of mixed solvent gives greater flexibility to the process and offers efficiency gains.

Clarke, J.W.; Kimber, G.M.; Rantell, T.D.; Snape, C.E.

1985-06-04T23:59:59.000Z

377

Potential for Coal-to-Liquids Conversion in the United States--FischerTropsch Synthesis  

E-Print Network [OSTI]

Potential for Coal-to-Liquids Conversion in the United States--Fischer­Tropsch Synthesis Tad W-mine development. Consequently, a large-scale effort to convert coal to liquids (CTL) has been proposed to create that coal into a synthetic liquid fuel, or synfuel. The plan is con- troversial, but Gov. Schweitzer ­ half

Patzek, Tadeusz W.

378

Coal cutting research slashes dust  

SciTech Connect (OSTI)

The Coal-Cutting Technology Group at the Bureau of Mine's Twin Cities Research Center is investigating ways to reduce primary dust generated by coal cutting. The progression of research within the program is from fundamental laboratory research, to fundamental field research, to field concept verification. Then the Bureau recommends warranted changes and/or prototype development to industry. Currently the Cutting Technology Group has several projects in each phase of research. The Bureau's current fundamental studies of bit characteristics are directed to determining the effects of conical bit wear on primary respirable dust generation, energy, and cutting forces; establishing best conical bit mount condition to increase life by enhancing bit rotation; and comparing chisel-type cutters to conical-type cutters. Additionally, to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

379

Coal cutting research slashes dust  

SciTech Connect (OSTI)

The Coal-Cutting Technology Group at the Bureau of Mines Twin Cities (MN) Research Center is investigating ways to reduce primary dust generated by coal cutting. The progression of research within the program is from fundamental laboratory research, to fundamental field research, to field concept verification. Then the Bureau recommends warranted changes and/or prototype development to industry. Currently the group has several projects in each phase of research. The Bureau's current fundamental studies of bit characteristics are directed toward determining the effects of conical bit wear on primary respirable dust generation, energy, and cutting forces; establishing best conical bit mount condition to increase life by enhancing bit rotation; and comparing chisel-type cutters to conical-type cutters. Additionally, to establish a suitable homogeneous reference material for cutting experiments, a synthetic coal with a plaster base is being developed.

Roepke, W.W.

1983-10-01T23:59:59.000Z

380

Water intrusion in underground structures  

E-Print Network [OSTI]

This thesis presents a study of the permissible groundwater infiltration rates in underground structures, the consequences of this leakage and the effectiveness of mitigation measures. Design guides and codes do not restrict, ...

Nazarchuk, Alex

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Arkansas Natural Gas Underground Storage Volume (Million Cubic Feet)  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import CostsLiquidsYear JanYearVentedYearUnderground Storage

382

Health effects of coal technologies: research needs  

SciTech Connect (OSTI)

In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

Not Available

1980-09-01T23:59:59.000Z

383

Underground caverns for hydrocarbon storage  

SciTech Connect (OSTI)

Large, international gas processing projects and growing LPG imports in developing countries are driving the need to store large quantities of hydrocarbon liquids. Even though underground storage is common in the US, many people outside the domestic industry are not familiar with the technology and the benefits underground storage can offer. The latter include lower construction and operating costs than surface storage, added safety, security and greater environmental acceptance.

Barron, T.F. [Exeter Energy Services, Houston, TX (United States)

1998-12-31T23:59:59.000Z

384

Investigating leaking underground storage tanks  

E-Print Network [OSTI]

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

385

WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water  

SciTech Connect (OSTI)

Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost estimates were then compared to the base-case river source estimate. We found that the use of net-alkaline mine water would under current economic conditions be competitive with a river-source in a comparable-size water cooling system. On the other hand, utilization of net acidic water would be higher in operating cost than the river system by 12 percent. This does not account for any environmental benefits that would accrue due to the treatment of acid mine drainage, in many locations an existing public liability. We also found it likely that widespread adoption of mine-water utilization for power plant cooling will require resolution of potential liability and mine-water ownership issues. In summary, Type A mine-water utilization for power plant cooling is considered a strong option for meeting water needs of new plant in selected areas. Analysis of the thermal and water handling requirements for a 600 megawatt power plant indicated that Type B earth coupled cooling would not be feasible for a power plant of this size. It was determined that Type B cooling would be possible, under the right conditions, for power plants of 200 megawatts or less. Based on this finding the feasibility of a 200 megawatt facility was evaluated. A series of mines were identified where a Type B earth-coupled 200 megawatt power plant cooling system might be feasible. Two water handling scenarios were designed to distribute heated power-plant water throughout the mines. Costs were developed for two different pumping scenarios employing a once-through power-plant cooling circuit. Thermal and groundwater flow simulation models were used to simulate the effect of hot water injection into the mine under both pumping strategies and to calculate the return-water temperature over the design life of a plant. Based on these models, staged increases in required mine-water pumping rates are projected to be part of the design, due to gradual heating and loss of heat-sink efficiency of the rock sequence above the mines. Utilizing pumping strategy No.1 (two mines) capital costs were 25 percent lower a

Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

2004-11-01T23:59:59.000Z

386

Advanced underground Vehicle Power and Control: The locomotive Research Platform  

SciTech Connect (OSTI)

Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.

Vehicle Projects LLC

2003-01-28T23:59:59.000Z

387

Mining (Montana)  

Broader source: Energy.gov [DOE]

This section provides general rules and regulations pertaining to mining practices in the state of Montana. It addresses mining locations and claims, procedures for rights-of-way and eminent domain...

388

Coal assessment and coal quality characterization of the Colorado Plateau area  

SciTech Connect (OSTI)

The goal of the Colorado Plateau Coal Assessment project is to provide an overview of the geologic setting, distribution, resources, and quality of Cretaceous coal in the Colorado Plateau and southernmost Green River Basin. Resources will be estimated by applying restrictions such as coal thickness and depth and will be categorized by land ownership. In some areas these studies will also delineate areas where coal mining may be restricted because of land use, industrial, social, or environmental factors. Emphasis will be placed on areas where the coal is owned or managed by the Federal Government. This assessment, which is part of the US Geological Survey`s National Coal Assessment Program, is different from previous coal assessments in that the major emphasis will be placed on coals that can provide energy for the next few decades. The data is also being collected and stored in digital format that can be updated when new pertinent information becomes available. This study is being completed in cooperation with the US Bureau of Land Management, the US Forest Service, Arizona Geological Survey, Colorado Geological Survey, New Mexico Bureau of Mines and Mineral Resources, and the Utah Geological Survey.

Affolter, R.H.; Brownfield, M.E.; Biewick, L.H.; Kirschbaum, M.A. [Geological Survey, Denver, CO (United States)

1998-12-31T23:59:59.000Z

389

Coal industry annual 1994  

SciTech Connect (OSTI)

This report presents data on coal consumption, distribution, coal stocks, quality, prices, coal production information, and emissions for a wide audience.

NONE

1995-10-01T23:59:59.000Z

390

Injury experience in stone mining, 1992  

SciTech Connect (OSTI)

This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of stone mining in the United States for 1992. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

Not Available

1994-05-01T23:59:59.000Z

391

DOE - Office of Legacy Management -- Hoe Creek Underground Coal  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison Mill Site

392

SUNLAB - The Project of a Polish Underground Laboratory  

SciTech Connect (OSTI)

The project of the first Polish underground laboratory SUNLAB, in the Polkowice-Sieroszowice copper mine, belonging to the KGHM Polska Miedz S.A. holding, is presented. Two stages of the project are foreseen: SUNLAB1 (a small laboratory in the salt layer exhibiting extremely low level of natural radioactivity) and SUNLAB2 (a big laboratory in the anhydrite layer, able to host the next generation liquid argon detector - GLACIER, which is considered within the LAGUNA FP7 project). The results of the natural radioactivity background measurements performed in the Polkowice-Sieroszowice salt cavern are also briefly summarized.

Kisiel, J.; Dorda, J.; Konefall, A.; Mania, S.; Szeglowski, T. [Institute of Physics, University of Silesia, Universytecka 4, 40-007 Katowice (Poland); Budzanowski, M.; Haranczyk, M.; Kozak, K.; Mazur, J.; Mietelski, J. W.; Puchalska, M.; Szarska, M.; Tomankiewicz, E.; Zalewska, A. [Institute of Nuclear Physics PAN, Radzikowskiego 152, Krakow (Poland); Chorowski, M.; Polinski, J. [Wroclaw University of Technology, Wroclaw (Poland); Cygan, S.; Hanzel, S.; Markiewicz, A.; Mertuszka, P. [KGHM CUPRUM CBR, Wroclaw (Poland)

2010-11-24T23:59:59.000Z

393

Coal remains a hot commodity for Australia  

SciTech Connect (OSTI)

Based largely on analyses by the Australian Bureau of Agricultural and Resource Economics in late 2005 and early 2006, the article looks at the recent and near future export market for Australian coal. Demand in Asia is growing; European demand remains steady. Developments existing and new mines in Queensland are summarised in the article. 3 tabs.

Bram, L.

2006-02-15T23:59:59.000Z

394

Health-hazard evaluation report HETA 88-108-2146, Asarco New Market/Young Mines, Mascot, Tennessee  

SciTech Connect (OSTI)

In response to a request from the International Chemical Workers Union, Akron, Ohio, an investigation was made into possible hazardous working conditions at two American Smelting and Refining Company (SIC-1031) zinc mines (New Market and Young) in Mascot, Tennessee. Specifically, exposures to asbestos (1332214), silica (14808607), and diesel emissions were determined. At both mines overexposures were found to nitrogen-dioxide (10102440) (NO2) and coal-tar pitch volatiles. Twenty-four percent of the NO2 measurements taken were above the NIOSH recommended ceiling of 1 part per million (ppm), but none exceeded the Mine Safety and Health Administration's (MSHA) ceiling of 5ppm. Exposure to diesel particulates ranged from 0.24 to 1.06mg/cu m. None of the 52 respirable dust samples collected exceeded the calculated MSHA limits for free silica exposure. A medical evaluation was offered and 83 of the 400 current employees and one retired employee participated. Seven underground employees were found with small opacity readings of greater than 1/0. Pulmonary function tests indicated that four employees had moderate airway obstruction, 17 had mild obstruction and two had mild restriction of lung volume. Three with obstructive lung disease pattern also had positive radiographs for pneumoconiosis. The authors conclude that workers were overexposed to coal-tar pitch volatiles and NO2; radiographic and pulmonary function test results suggest that a chronic respiratory health effect may be related to cumulative workplace exposures. The authors recommend measures for lowering the exposures and the development of a medical surveillance program.

Ferguson, R.P.; Knutti, E.B.

1991-10-01T23:59:59.000Z

395

Dragline mining returns to western Kentucky  

SciTech Connect (OSTI)

Armstrong Coal Co. now owns three Page draglines-one now operating at the Midway Surface mine, one due to go into operation at the Equality surface mine and a third that is being rebuilt also for use there. Armstrong is banking on the economics of scale to once again prove that these older machines are still the most efficient way to move large volumes of overburden. 4 photos.

Buchsbaum, L.

2009-05-15T23:59:59.000Z

396

A Cost Benefit Analysis of California's Leaking Underground Fuel Tanks  

E-Print Network [OSTI]

s Leaking Underground Fuel Tanks (LUFTs)”. Submitted to theCalifornia’s Underground Storage Tank Program”. Submitted tos Leaking Underground Fuel Tanks” by Samantha Carrington

Carrington-Crouch, Robert

1996-01-01T23:59:59.000Z

397

UTILIZATION OF SEISMIC AND INFRASOUND SIGNALS FOR CHARACTERIZING MINING EXPLOSIONS  

E-Print Network [OSTI]

and the Tyrone Mine in New Mexico. The seismo- acoustic station at Ft. Hancock, Texas, and the infrasound upgrade of large-scale cast blasts in Wyoming, copper fragmentation blasts in Arizona and New Mexico, and taconite on the Western US, where a variety of different types of mining operations exist, ranging from surface coal cast

Stump, Brian W.

398

Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis  

SciTech Connect (OSTI)

This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)

Rutledge, G.; Lane, D.; Edblom, G.

1980-01-01T23:59:59.000Z

399

Opportunities for coal to methanol conversion  

SciTech Connect (OSTI)

The accumulations of mining residues in the anthracite coal regions of Pennsylvania offer a unique opportunity to convert the coal content into methanol that could be utilized in that area as an alternative to gasoline or to extend the supplies through blending. Additional demand may develop through the requirements of public utility gas turbines located in that region. The cost to run this refuse through coal preparation plants may result in a clean coal at about $17.00 per ton. After gasification and synthesis in a 5000 ton per day facility, a cost of methanol of approximately $3.84 per million Btu is obtained using utility financing. If the coal is to be brought in by truck or rail from a distance of approximately 60 miles, the cost of methanol would range between $4.64 and $5.50 per million Btu depending upon the mode of transportation. The distribution costs to move the methanol from the synthesis plant to the pump could add, at a minimum, $2.36 per million Btu to the cost. In total, the delivered cost at the pump for methanol produced from coal mining wastes could range between $6.20 and $7.86 per million Btu.

Not Available

1980-04-01T23:59:59.000Z

400

Oxidation of coal and coal pyrite mechanisms and influence on surface characteristics. Technical progress report, September 30, 1992  

SciTech Connect (OSTI)

The objective of this research is to develop a mechanistic understanding of the oxidation of coal and coal pyrite, and to correlate the intrinsic physical and chemical properties of these minerals, along with changes resulting from oxidation, with those surface properties that influence the behavior in physical cleaning processes. The results will provide fundamental insight into oxidation, in terms of the bulk and surface chemistry, the microstructure, and the semiconductor properties of the pyrite. During the eighth quarter, wet chemical and dry oxidation tests were done on Upper Freeport coal from the Troutville {number_sign}2 Mine, Clearfield County, Pennsylvania. In addition electrochemical experiments were done on electrodes prepared from Upper Freeport coal pyrite and Pittsburgh coal pyrite samples provided by the US Bureau of Mines, Pittsburgh Research Center, Pennsylvania.

Doyle, F.M.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Clean and Secure Energy from Coal  

SciTech Connect (OSTI)

The University of Utah, through their Institute for Clean and Secure Energy (ICSE), performed research to utilize the vast energy stored in our domestic coal resources and to do so in a manner that will capture CO2 from combustion from stationary power generation. The research was organized around the theme of validation and uncertainty quantification (V/UQ) through tightly coupled simulation and experimental designs and through the integration of legal, environment, economics and policy issues. The project included the following tasks: • Oxy-Coal Combustion – To ultimately produce predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. • High-Pressure, Entrained-Flow Coal Gasification – To ultimately provide a simulation tool for industrial entrained-flow integrated gasification combined cycle (IGCC) gasifier with quantified uncertainty. • Chemical Looping Combustion (CLC) – To develop a new carbon-capture technology for coal through CLC and to transfer this technology to industry through a numerical simulation tool with quantified uncertainty bounds. • Underground Coal Thermal Treatment – To explore the potential for creating new in-situ technologies for production of synthetic natural gas (SNG) from deep coal deposits and to demonstrate this in a new laboratory-scale reactor. • Mercury Control – To understand the effect of oxy-firing on the fate of mercury. • Environmental, Legal, and Policy Issues – To address the legal and policy issues associated with carbon management strategies in order to assess the appropriate role of these technologies in our evolving national energy portfolio. • Validation/Uncertainty Quantification for Large Eddy Simulations of the Heat Flux in the Tangentially Fired Oxy-Coal Alstom Boiler Simulation Facility – To produce predictive capability with quantified uncertainty bounds for the heat flux in commercial-scale, tangentially fired, oxy-coal boilers.

Smith, Philip; Davies, Lincoln; Kelly, Kerry; Lighty, JoAnn; Reitze, Arnold; Silcox, Geoffrey; Uchitel, Kirsten; Wendt, Jost; Whitty, Kevin

2014-08-31T23:59:59.000Z

402

Underground Storage Tanks: New Fuels and Compatibility  

Broader source: Energy.gov [DOE]

Breakout Session 1C—Fostering Technology Adoption I: Building the Market for Renewables with High Octane Fuels Underground Storage Tanks: New Fuels and Compatibility Ryan Haerer, Program Analyst, Alternative Fuels, Office of Underground Storage Tanks, Environmental Protection Agency

403

Advanced Underground Vehicle Power and Control Fuelcell Mine Locomotive  

E-Print Network [OSTI]

· Design fuelcell powerplant and metal-hydride storage to fit into existing battery compartment · Design -- Tethered -- Diesel -- Battery · Solution by fuelcells will provide cost offsets -- Lower recurring costs available battery-powered 4-ton locomotive · Remove traction battery module and use existing electric drive

404

The Strip and Underground Mine Reclamation Act (Montana)  

Broader source: Energy.gov [DOE]

The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources...

405

The Strip and Underground Mine Siting Act (Montana)  

Broader source: Energy.gov [DOE]

The policy of the state is to provide adequate remedies to protect the environmental life support system from degradation and to prevent unreasonable depletion and degradation of natural resources...

406

Westinghouse Earns Mine Safety Award for Exceptional Underground Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About | CareersEarns

407

Emissions and Durability of Underground Mining Diesel Particulate Filter  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECMConstructionApplications |Applications | Department

408

DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS  

E-Print Network [OSTI]

Pollutants Associated With Coal Combustion. • E.P.A.Control Guidelines for Coal-Derived Pollutants .Forms of Sulfur in Coal • . . . . Coal Desulfurization

Wrathall, James Anthony

2011-01-01T23:59:59.000Z

409

The relationship between coal quality and coal resource parameters of Powder River and Williston Basin coal, Wyoming, Montana, and North Dakota  

SciTech Connect (OSTI)

Clean, compliant coal from mines in the Northern Rocky Mountain and Great Plains region is utilized as fuel for coal-fired power plants in 26 states. More than 30 percent of the nation`s 1997 production was from Montana, North Dakota, and Wyoming. Production of clean, compliant coal from the region is estimated to increase to 415 million short tons by the year 2015. Studies in this region indicate a relationship between percent sulfur and ash and pounds of SO{sub 2} per million Btu and the resource parameters of coal thickness and overburden. The trends that the authors have observed indicate that both coal quality and the thickness of the coal and associated rocks are controlled by paleoenvironment and depositional setting.

Ellis, M.S.; Stricker, G.D.; Gunther, G.; Ochs, A.M.; Flores, R.M.

1998-12-31T23:59:59.000Z

410

CONTRIBUTION TO IMPROVE PILLAR ANALYSIS IN ABANDONED ROOM AND PILLAR SATL MINES  

E-Print Network [OSTI]

, éléments finis, fluage 1. Introduction Several salt deposits in France were exploited using different methods (solution-mining, room and pillar mines, etc.). The depth of a salt deposit can be different from residual voids underground. The existence of such voids, with various sizes, raises the question

Boyer, Edmond

411

High Temperature Superconducting Underground Cable  

SciTech Connect (OSTI)

The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

Farrell, Roger, A.

2010-02-28T23:59:59.000Z

412

TSUAHXETSUAHXE UndergroUnd tank  

E-Print Network [OSTI]

USer waterheatexchange waterheatexchange general exhaUSt lab exhaUSt warmairexhaUSt radiant panel heat radiant panel heat by night air, then stored underground. cold water travels through floors and ceiling panels to absorb heat rain and snowmelt in toilets saves water and reduces stormwater runoff photovoltaic panels turn solar

Schladow, S. Geoffrey

413

Coal preparation: The essential clean coal technology  

SciTech Connect (OSTI)

This chapter is a brief introduction to a broad topic which has many highly specialized areas. The aim is to summarize the essential elements of coal preparation and illustrate its important role in facilitating the clean use of coal. Conventional coal preparation is the essential first step in ensuring the economic and environmentally acceptable use of coal. The aim of coal preparation is to produce saleable products of consistent, specified quality which satisfy customer requirements while optimizing the utilization of the coal resource. Coal preparation covers all aspects of preparing coal for the market. It includes size reduction, blending and homogenization and, most importantly, the process of physical beneficiation or washing, which involves separation of undesirable mineral matter from the coal substance itself. Coal preparation can be performed at different levels of sophistication and cost. The degree of coal preparation required is decided by considering the quality of the raw coal, transport costs and, in particular, the coal quality specified by the consumer. However, the cost of coal beneficiation rises rapidly with the complexity of the process and some coal is lost with the waste matter because of process inefficiencies, therefore each situation requires individual study to determine the optimum coal preparation strategy. The necessary expertise is available within APEC countries such as Australia. Coals destined for iron making are almost always highly beneficiated. Physical beneficiation is mostly confined to the higher rank, hard coals, but all other aspects of coal preparation can be applied to subbituminous and lignitic coals to improve their utilization. Also, there are some interesting developments aimed specifically at reducing the water content of lower rank coals.

Cain, D.

1993-12-31T23:59:59.000Z

414

Study of catalytic effects of mineral matter level on coal reactivity  

SciTech Connect (OSTI)

Coal liquefaction experiments using a 400-lb/day bubble-column reactor tested the catalytic effects of added mineral matter level on coal conversion, desulfurization, and distillate yields in continuous operation under recycle conditions, with specific emphasis on the use of a disposable pyrite catalyst indigenous to the feed coal. Western Kentucky No. 11 run-of-mine (ROM) and washed coals were used as feedstocks to determine the effects of levels of mineral matter, specifically iron compounds. Liquefaction reactivity as characterized by total distillate yield was lower for washed coal, which contained less mineral matter. Liquefaction reactivity was regained when pyrite concentrate was added as a disposable catalyst to the washed coal feed in sufficient quantity to match the feed iron concentration of the run-of-mine coal liquefaction test run.

Mazzocco, Nestor J.; Klunder, Edgar B.; Krastman, Donald

1981-03-01T23:59:59.000Z

415

Upgrading low rank coal using the Koppelman Series C process  

SciTech Connect (OSTI)

Development of the K-Fuel technology began after the energy shortage of the early 1970s in the United States led energy producers to develop the huge deposits of low-sulfur coal in the Powder River Basin (PRB) of Wyoming. PRB coal is a subbituminous C coal containing about 30 wt % moisture and having heating values of about 18.6 megajoules/kg (8150 Btu/lb). PRB coal contains from 0.3 to 0.5 wt % sulfur, which is nearly all combined with the organic matrix in the coal. It is in much demand for boiler fuel because of the low-sulfur content and the low price. However, the low-heating value limits the markets for PRB coal to boilers specially designed for the high- moisture coal. Thus, the advantages of the low-sulfur content are not available to many potential customers having boilers that were designed for bituminous coal. This year about 250 million tons of coal is shipped from the Powder River Basin of Wyoming. The high- moisture content and, consequently, the low-heating value of this coal causes the transportation and combustion of the coal to be inefficient. When the moisture is removed and the heating value increased the same bundle of energy can be shipped using one- third less train loads. Also, the dried product can be burned much more efficiently in boiler systems. This increase in efficiency reduces the carbon dioxide emissions caused by use of the low-heating value coal. Also, the processing used to remove water and restructure the coal removes sulfur, nitrogen, mercury, and chlorides from the coal. This precombustion cleaning is much less costly than stack scrubbing. PRB coal, and other low-rank coals, tend to be highly reactive when freshly mined. These reactive coals must be mixed regularly (every week or two) when fresh, but become somewhat more stable after they have aged for several weeks. PRB coal is relatively dusty and subject to self-ignition compared to bituminous coals. When dried using conventional technology, PRB coal is even more dusty and more susceptible to spontaneous combustion than the raw coal. Also, PRB coal, if dried at low temperature, typically readsorbs about two- thirds of the moisture removed by drying. This readsorption of moisture releases the heat of adsorption of the water which is a major cause of self- heating of low-rank coals at low temperature.

Merriam, N.W., Western Research Institute

1998-01-01T23:59:59.000Z

416

Oil shale mining cost analysis. Volume I. Surface retorting process. Final report  

SciTech Connect (OSTI)

An Oil Shale Mining Economic Model (OSMEM) was developed and executed for mining scenarios representative of commercially feasible mining operations. Mining systems were evaluated for candidate sites in the Piceance Creek Basin. Mining methods selected included: (1) room-and-pillar; (2) chamber-and-pillar, with spent shale backfilling; (3) sublevel stopping; and (4) sublevel stopping, with spent shale backfilling. Mines were designed to extract oil shale resources to support a 50,000 barrels-per-day surface processing facility. Costs developed for each mining scenario included all capital and operating expenses associated with the underground mining methods. Parametric and sensitivity analyses were performed to determine the sensitivity of mining cost to changes in capital cost, operating cost, return on investment, and cost escalation.

Resnick, B.S.; English, L.M.; Metz, R.D.; Lewis, A.G.

1981-01-01T23:59:59.000Z

417

Microbial solubilization of coal  

DOE Patents [OSTI]

The present invention relates to a cell-free preparation and process for the microbial solubilization of coal into solubilized coal products. More specifically, the present invention relates to bacterial solubilization of coal into solubilized coal products and a cell-free bacterial byproduct useful for solubilizing coal. 5 tabs.

Strandberg, G.W.; Lewis, S.N.

1988-01-21T23:59:59.000Z

418

Markets for coal and coal technologies in Asian and Pacific Basin countries  

SciTech Connect (OSTI)

In a new market analysis available from the Utility Data Institute (UDI), Viking Systems International (VSI) of Pittsburgh, PA, argues that the nations in the Pacific Basin and South Asia provide an exciting market opportunity for vendors and suppliers of coal power technology, services, and fuel. Critical market factors for increased coal use include: (1) availability of domestic coal resources; (2) price of competing fuels; (3) infrastructure for mining and transportation; (4) environmental regulations concerning coal use; and (5) the development and application of new coal technologies. An overview is presented of the current energy situation and future development options in thirteen different countries: Afghanistan, Australia, India, Indonesia, Japan, Malaysia, New Zealand, Pakistan, People's Republic of China, Philippines, Republic of China (Taiwan), Republic of Korea (South Korea), and Thailand. More than 150 detailed tables, charts, and maps present analyses of existing coal reserves, coal characteristics, domestic energy production by fuel mix, energy consumption, electric power generation, and regulatory practices in each country. The report was developed by VSI from two computerized data bases---one on coal characteristics and reserves, the other on electric utilities and power plants in Asian countries. A chapter in the report describes the data bases in more detail.

Not Available

1988-01-01T23:59:59.000Z

419

CO2 Sequestration Potential of Texas Low-Rank Coals  

SciTech Connect (OSTI)

The objective of this project is to evaluate the feasibility of carbon dioxide (CO{sub 2}) sequestration in Texas low-rank coals and to determine the potential for enhanced coalbed methane (CBM) recovery as an added benefit of sequestration. The main objectives for this reporting period were to further characterize the three areas selected as potential test sites, to begin assessing regional attributes of natural coal fractures (cleats), which control coalbed permeability, and to interview laboratories for coal sample testing. An additional objective was to initiate discussions with an operating company that has interests in Texas coalbed gas production and CO{sub 2} sequestration potential, to determine their interest in participation and cost sharing in this project. Well-log data are critical for defining depth, thickness, number, and grouping of coal seams at the proposed sequestration sites. Therefore, we purchased 15 well logs from a commercial source to make coal-occurrence maps and cross sections. Log suites included gamma ray (GR), self potential (SP), resistivity, sonic, and density curves. Other properties of the coals in the selected areas were collected from published literature. To assess cleat properties and describe coal characteristics, we made field trips to a Jackson coal outcrop and visited Wilcox coal exposures at the Sandow surface mine. Coal samples at the Sandow mine were collected for CO{sub 2} and methane sorption analyses. We contacted several laboratories that specialize in analyzing coals and selected a laboratory, submitting the Sandow Wilcox coals for analysis. To address the issue of cost sharing, we had fruitful initial discussions with a petroleum corporation in Houston. We reviewed the objectives and status of this project, discussed data that they have already collected, and explored the potential for cooperative data acquisition and exchange in the future. We are pursuing a cooperative agreement with them.

Duane A. McVay; Walter B. Ayers Jr; Jerry L. Jensen

2003-07-01T23:59:59.000Z

420

Process for separating anthracite coal from impurities  

SciTech Connect (OSTI)

A process is described for separating a first mixture including previously mined anthracite coal, klinker-type cinder ash and other refuse consisting of: a. separating the first mixture to produce a refuse portion and a second mixture consisting of anthracite and klinker-type cinder ash, b. reducing the average particle size in the second mixture to a uniform size, c. subjecting the second mixture to a separating magnetic field to produce a klinker-type cinder ash portion and an anthracite coal portion.

Stiller, D.W.; Stiller, A.H.

1985-05-06T23:59:59.000Z

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Clean coal  

SciTech Connect (OSTI)

The article describes the physics-based techniques that are helping in clean coal conversion processes. The major challenge is to find a cost- effective way to remove carbon dioxide from the flue gas of power plants. One industrially proven method is to dissolve CO{sub 2} in the solvent monoethanolamine (MEA) at a temperature of 38{sup o}C and then release it from the solvent in another unit when heated to 150{sup o}C. This produces CO{sub 2} ready for sequestration. Research is in progress with alternative solvents that require less energy. Another technique is to use enriched oxygen in place of air in the combustion process which produces CO{sub 2} ready for sequestration. A process that is more attractive from an energy management viewpoint is to gasify coal so that it is partially oxidized, producing a fuel while consuming significantly less oxygen. Several IGCC schemes are in operation which produce syngas for use as a feedstock, in addition to electricity and hydrogen. These schemes are costly as they require an air separation unit. Novel approaches to coal gasification based on 'membrane separation' or chemical looping could reduce the costs significantly while effectively capturing carbon dioxide. 1 ref., 2 figs., 1 photo.

Liang-Shih Fan; Fanxing Li [Ohio State University, OH (United States). Dept. of Chemical and Biomolecular Engineering

2006-07-15T23:59:59.000Z

422

An assessment of the quality of selected EIA data series: Coal data, 1983--1988  

SciTech Connect (OSTI)

The purpose of this report is to present information on the quality of some of the Energy Information Administration`s (EIA) coal data. This report contains discussions of data on production, direct labor hours, recoverable reserves, and prices from 1983 through 1988. Chapter 2 of this report presents a summary of the EIA coal data collection and identifies other sources providing similar data. Chapters 3 and 4 focus on data on coal production and direct labor hours, respectively. Detailed comparisons with data from the Mine Safety and Health Administration (MSHA) and State mining agencies are presented. Chapter 5 examines recoverable reserves. Included are internal comparisons as well as comparisons with other published reserve-related data, namely those of BXG, Inc. Chapter 6 describes how EIA obtains estimates of coal prices and discusses the variability in the prices caused by factors such as mine type, coal rank, and region. 5 figs., 5 tabs.

Not Available

1991-11-25T23:59:59.000Z

423

Coal liquefaction and hydrogenation  

DOE Patents [OSTI]

Disclosed is a coal liquefaction process using two stages. The first stage liquefies the coal and maximizes the product while the second stage hydrocracks the remainder of the coal liquid to produce solvent.

Schindler, Harvey D. (Fair Lawn, NJ); Chen, James M. (Edison, NJ)

1985-01-01T23:59:59.000Z

424

Longwall mining of thin seams  

SciTech Connect (OSTI)

Thin seam operations pose a challenge to the ingenuity of mining engineers to overcome the factor of human inconvenience in the restricted environment and associated high cost production. Surprisingly, low seam longwalls in the Federal Republic of Germany in an average thickness of 35 in. and dipping less than 18/sup 0/ come close to achieving the average production rate of all German longwall operations. They are all plow faces, and a consistent production of 3300 tons per day and a productivity of 40 tons per man shift are reported from one of the thin seam longwalls. These results were attained by reliable high-capacity equipment and roof support by shields that can be collapsed to as low as 22 inches. Maximum mining height for plow operated faces lies at 31.5 inches. Technology for mechanized mining of flat lying coalbeds less than 31.5 inches in thickness without rock cutting is not available, and firmness of coal, undulation of the strata, coalbed thickness variation, and the necessity of cutting rock, particularly through faults, set limits to plow application. The in-web shearer can be used in firm coal to a minimum mining height of 40 inches, and a daily production of 1650 to 2200 tons is reported from a longwall in the Saar district of Germany equipped with such a shearer and shields. Numerous in-web shearers are employed in the United Kingdom; reports as to their success are contradictory. Also, experience in the United States, though limited, has been negative. The steady increase in output from single drum shearer faces in Pennsylvania is a remarkable achievement, and occasional record breaking peaks in production indicate the potential of such mining. Technology development for the future is discussed.

Curth, E A

1981-01-01T23:59:59.000Z

425

The market for large rigid haul trucks in surface mining  

SciTech Connect (OSTI)

Originally published in 2001 this updated report provides a definition of the market for large rigid haulers in surface mining. The analysis covers changes to the mining market segments buying these machines including the gains made by coal producers, retrenchment in copper mining, the consolidation taking place among gold mining companies, and the expansion of iron ore producers in Australia and Brazil. It includes a detailed accounting of 2001 truck shipments, and an analysis of trends in the Ultra-truck segment. It concludes with a revised forecast for shipments through 2006. 12 charts, 56 tabs., 2 apps.

Gilewicz, P.

2002-04-15T23:59:59.000Z

426

Coal combustion science  

SciTech Connect (OSTI)

The objective of this activity is to support the Office of Fossil Energy in executing research on coal combustion science. This activity consists of basic research on coal combustion that supports both the Pittsburgh Energy Technology Center (PETC) Direct Utilization Advanced Research and Technology Development Program, and the International Energy Agency (IEA) Coal Combustion Science Project. Specific tasks include: coal devolatilization, coal char combustion, and fate of mineral matter during coal combustion. 91 refs., 40 figs., 9 tabs.

Hardesty, D.R. (ed.); Baxter, L.L.; Fletcher, T.H.; Mitchell, R.E.

1990-11-01T23:59:59.000Z

427

Petrography of the Herrin (No. 11) coal in western Kentucky  

SciTech Connect (OSTI)

The Herrin (No.11) coal in western Kentucky is in the upper part of the Pennsylvanian (Des Moinesian) Carbondale Formation. Samples were obtained from 13 mines in Kentucky and one mine in Illinois in three equal benches from two to three channels for a total of 93 samples. The rank of the coal (as vitrinite reflectance) is high volatile C bituminous in the Moorman Syncline and high volatile A bituminous in the Webster Syncline. Reflectance does not vary between mines in the Moorman Syncline. The percentage of total vitrinite macerals for each mine is over 85% and the percentage of total vitrinite plus liptinite macerals is over 89% (average over 90%) (both on dry, mineral-free basis). 37 refs.

Hower, J.C.; Wild, G.D.

1981-06-01T23:59:59.000Z

428

The status of coal briquetting technology in Korea  

SciTech Connect (OSTI)

Anthracite is the only indigenous fossil fuel resource produced in Korea and is an important main source of residential fuel. Due to its particular characteristics, the best way to use Korean coal is in the form of briquettes, called {open_quotes}Yontan.{close_quotes} The ability to use this coal as briquettes was a great discovery made nearly 50 years ago and since then, has made a great contribution to the energy consumption of low and middle income households. Korean anthracite in coal briquette form has been used widely for household heating purposes. Collieries in Korea produced no more than one million tons of anthracite annually in the 1960s. Production, however, increased substantially up to about 17 million tons per year in the mid-1970s. In 1986, Korea succeeded in raising its coal production to 24.2 million tons, which was the maximum production level achieved by the Korean coal industrial sector. Since then, anthracite production has fallen. In 1991, coal output dropped to 15.1 million tons, a decrease of 12.2 percent from the 17.2 million tons produced in 1990, due to falling coal demand and rising labor costs. The role of coal as an energy source will be more important in the future to meet projected economic growth in Korea. While the production of indigenous Korean anthracite is expected to decrease under a coal mining rationalization policy, imports of bituminous coal will increase rapidly and will be used as an oil substitute in industry and power generation. In this chapter, general aspects of the Korean coal industry and coal utilization for residential uses, especially the Yontan coal briquetting techniques, are discussed. In addition, coal briquetting technology applications suitable for the APEC region will be presented.

Choi, Woo-Zin

1993-12-31T23:59:59.000Z

429

Alaska coal gasification feasibility studies - Healy coal-to-liquids plant  

SciTech Connect (OSTI)

The Alaska Coal Gasification Feasibility Study entailed a two-phase analysis of the prospects for greater use of Alaska's abundant coal resources in industrial applications. Phase 1, Beluga Coal Gasification Feasibility Study (Report DOE/NETL 2006/1248) assessed the feasibility of using gasification technology to convert the Agrium fertilizer plant in Nikiski, Alaska, from natural gas to coal feedstock. The Phase 1 analysis evaluated coals from the Beluga field near Anchorage and from the Usibelli Coal Mine near Healy, both of which are low in sulfur and high in moisture. This study expands the results of Phase 1 by evaluating a similar sized gasification facility at the Usibelli Coal mine to supply Fischer-Tropsch (F-T) liquids to central Alaska. The plant considered in this study is small (14,640 barrels per day, bbl/d) compared to the recommended commercial size of 50,000 bbl/d for coal-to-liquid plants. The coal supply requirements for the Phase 1 analysis, four million tons per year, were assumed for the Phase 2 analysis to match the probable capacity of the Usibelli mining operations. Alaska refineries are of sufficient size to use all of the product, eliminating the need for F-T exports out of the state. The plant could produce marketable by-products such as sulfur as well as electric power. Slag would be used as backfill at the mine site and CO{sub 2} could be vented, captured or used for enhanced coalbed methane recovery. The unexpected curtailment of oil production from Prudhoe Bay in August 2006 highlighted the dependency of Alaskan refineries (with the exception of the Tesoro facility in Nikiski) on Alaska North Slope (ANS) crude. If the flow of oil from the North Slope declines, these refineries may not be able to meet the in-state needs for diesel, gasoline, and jet fuel. Additional reliable sources of essential fuel products would be beneficial. 36 refs., 14 figs., 29 tabs., 3 apps.

Lawrence Van Bibber; Charles Thomas; Robert Chaney [Research & Development Solutions, LLC (United States)

2007-07-15T23:59:59.000Z

430

A waterjet mining machine for use in room and pillar mining operations. [Final report  

SciTech Connect (OSTI)

A new mining machine is constructed for use in room and pillar mining operations. This machine uses the action of computer controlled, centrally located high pressure cutting lances to cut deep slots in a coal face. These slots stress relieve the coal ahead of the machine and outline blocks of coal. The movement forward of the machine then wedges up the lower block of coal. This wedging action is assisted by the gathering arms of the loader section of the machine, and by underlying oscillating waterjets which create a slot ahead of the loading wedge as it advances. Finally the top section of coal is brought down by the sequential advance of wedge faced roof support members, again assisted by the waterjet action from the central cutting arms. The machine is designed to overcome major disadvantages of existing room and pillar mining machines in regard to a reduction in respirable dust, the creation of an immediate roof support, and an increase in product size, with concomitant reduction in cleaning costs.

Summers, D.A.

1990-06-01T23:59:59.000Z

431

A waterjet mining machine for use in room and pillar mining operations  

SciTech Connect (OSTI)

A new mining machine is constructed for use in room and pillar mining operations. This machine uses the action of computer controlled, centrally located high pressure cutting lances to cut deep slots in a coal face. These slots stress relieve the coal ahead of the machine and outline blocks of coal. The movement forward of the machine then wedges up the lower block of coal. This wedging action is assisted by the gathering arms of the loader section of the machine, and by underlying oscillating waterjets which create a slot ahead of the loading wedge as it advances. Finally the top section of coal is brought down by the sequential advance of wedge faced roof support members, again assisted by the waterjet action from the central cutting arms. The machine is designed to overcome major disadvantages of existing room and pillar mining machines in regard to a reduction in respirable dust, the creation of an immediate roof support, and an increase in product size, with concomitant reduction in cleaning costs.

Summers, D.A.

1990-06-01T23:59:59.000Z

432

Repowering a small coal-fired power plant  

SciTech Connect (OSTI)

The Arkansas River Power Authority (ARPA) Lamar Repowering Project is moving forward. The new generator, capable of producing 18 MW of electricity, is scheduled to be online in June 2008 bringing the total generation to 43 MW. New coal handling equipment, with infrared fire detectors, is almost complete. The new 18 MW steam turbine will be cooled by an air-cooled condenser. Coal will be delivered in a railroad spur to an unloading site then be unloaded onto a conveyor under the tracks and conveyed to two storage domes each holding 6000 tons of coal. It will be drawn out of these through an underground conveyor system, brought into a crusher, conveyed through overhead conveyors and fed into the new coal- fired fluidized bed boilers. 1 photo.

Miell, R.

2007-11-15T23:59:59.000Z

433

Thirteenth biennial lignite symposium: technology and utilization of low-rank coals proceedings. Volume 2  

SciTech Connect (OSTI)

These proceedings are the collected manuscripts from the 1985 Lignite Symposium held at Bismarck, North Dakota on May 21-23, 1985. Sponsorship of the thirteenth biennial meeting was by the United States Department of Energy, the University of North Dakota Energy Research Center, and the Texas University Coal Research Consortium. Seven technical sessions plus two luncheons and a banquet were held during the two and a half day meeting. The final half day included tours of the Great Plains Gasification Plant; Basin Electric's Antelope Valley Power Station; and the Freedom Mine. Sessions covered diverse topics related to the technology and use of low-rank coals including coal development and public policy, combustion, gasification, environmental systems for low-rank coal utilization, liquefaction, beneficiation and coal mining and coal inorganics. All the papers have been entered individually into EDB and ERA.

Jones, M.L. (ed.)

1986-02-01T23:59:59.000Z

434

Thirteenth biennial lignite symposium: technology and utilization of low-rank coals proceedings. Volume 1  

SciTech Connect (OSTI)

These proceedings are the collected manuscripts from the 1985 Lignite Symposium held at Bismarck, North Dakota on May 21-23. Sponsorship of the thirteenth biennial meeting was by the United States Department of Energy, the University of North Dakota Energy Research Center, and the Texas University Coal Research Consortium. Seven technical sessions were held during the two and a half day meeting. The final half day included tours of the Great Plains Gasification Plant; Basin Electric's Antelope Valley Power Station; and the Freedom Mine. Sessions covered diverse topics related to the technology and use of low-rank coals including coal development and public policy, combustion, gasification, environmental systems for low-rank coal utilization, liquefaction, beneficiation and coal mining and coal inorganics. Twenty-four papers have been entered individually into EDB and ERA.

Jones, M.L. (ed.)

1986-02-01T23:59:59.000Z

435

Primary coal crushers grow to meet demand  

SciTech Connect (OSTI)

Mine operators look for more throughput with less fines generation in primary crushers (defined here as single role crushers and two stage crushers). The article gives advice on crusher selection and application. Some factors dictating selection include the desired product size, capacity, Hard Grove grindability index, percentage of rock to be freed and hardness of that rock. The hardness of coal probably has greatest impact on product fineness. 2 refs., 1 fig., 1 tab.

Fiscor, S.

2009-09-15T23:59:59.000Z

436

Pipelines and Underground Gas Storage (Iowa)  

Broader source: Energy.gov [DOE]

These rules apply to intrastate transport of natural gas and other substances via pipeline, as well as underground gas storage facilities. The construction and operation of such infrastructure...

437

Cryogenic slurry for extinguishing underground fires  

DOE Patents [OSTI]

A cryogenic slurry comprising a mixture of solid carbon dioxide particles suspended in liquid nitrogen is provided which is useful in extinguishing underground fires.

Chaiken, Robert F. (Pittsburgh, PA); Kim, Ann G. (Pittsburgh, PA); Kociban, Andrew M. (Wheeling, WV); Slivon, Jr., Joseph P. (Tarentum, PA)

1994-01-01T23:59:59.000Z

438

Wells, Borings, and Underground Uses (Minnesota)  

Broader source: Energy.gov [DOE]

This section regulates wells, borings, and underground storage with regards to protecting groundwater resources. The Commissioner of the Department of Health has jurisdiction, and can grant permits...

439

WPCF Underground Injection Control Disposal Permit Evaluation...  

Open Energy Info (EERE)

and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Abstract...

440

U.S. Energy Information Administration | Annual Coal Report 2013  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines About U.S. NaturalA. Michael SchaalNovember 26,8, 2012 |NewNumber ofCoalUnderground Coal

Note: This page contains sample records for the topic "underground coal mines" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Coal systems analysis  

SciTech Connect (OSTI)

This collection of papers provides an introduction to the concept of coal systems analysis and contains examples of how coal systems analysis can be used to understand, characterize, and evaluate coal and coal gas resources. Chapter are: Coal systems analysis: A new approach to the understanding of coal formation, coal quality and environmental considerations, and coal as a source rock for hydrocarbons by Peter D. Warwick. Appalachian coal assessment: Defining the coal systems of the Appalachian Basin by Robert C. Milici. Subtle structural influences on coal thickness and distribution: Examples from the Lower Broas-Stockton coal (Middle Pennsylvanian), Eastern Kentucky Coal Field, USA by Stephen F. Greb, Cortland F. Eble, and J.C. Hower. Palynology in coal systems analysis The key to floras, climate, and stratigraphy of coal-forming environments by Douglas J. Nichols. A comparison of late Paleocene and late Eocene lignite depositional systems using palynology, upper Wilcox and upper Jackson Groups, east-central Texas by Jennifer M.K. O'Keefe, Recep H. Sancay, Anne L. Raymond, and Thomas E. Yancey. New insights on the hydrocarbon system of the Fruitland Formation coal beds, northern San Juan Basin, Colorado and New Mexico, USA by W.C. Riese, William L. Pelzmann, and Glen T. Snyder.

Warwick, P.D. (ed.)

2005-07-01T23:59:59.000Z

442

The Coal Logistics System: Documentation and user's guide  

SciTech Connect (OSTI)

The Coal Logistics System (CLS) has the capability to track coal from a US mine or mining area to a foreign consumer's receiving dock. The system contains substantial quantities of information about the types of coal available in different US coalfields, present and potential inland transportation routes to tidewater piers, and shipping routes to and port capabilities in the five importing nations now included. It is designed to facilitate comparisons of coal quality and price at several stages of the export process, including delivered prices at a wide range of destinations from Trieste to Vado Ligure in Italy, and from Muroran in northern Japan, to Sri Racha, near Bangkok, along the Asian Pacific Rim. The CLS can also be used to examine coal quality within or between any of 18 US coalfields, including three in Alaska, or compare alternative routes and associated service prices between coal producing regions and ports-of-exit. It may be used to explore the possibilities of different ship sizes, marine routes, and foreign receiving terminals for coal exports. The CLS interacts with users through a series of menus that provide the user with simple choices. 30 figs.

Not Available

1988-10-01T23:59:59.000Z

443

Future Impacts of Coal Distribution Constraints on Coal Cost  

E-Print Network [OSTI]

transportation component of coal price should also increase;investment. Coal costs and prices are functions of a numberto forecast coal demand, supply, and prices from now to

McCollum, David L

2007-01-01T23:59:59.000Z

444

Active control of underground stresses through rock pressurization  

SciTech Connect (OSTI)

To significantly increase the stability of underground excavations while exploiting the full advantages of confined rock strength, methods must be developed to actively control the distribution of stresses near the excavation. This US Bureau of Mines study examines theoretical and practical aspects of rock pressurization, an active stress control concept that induces compressive stress in the wall rock through repeated hydraulic fracturing with a settable fluid. Numerical analyses performed by incorporating the rock pressurization concept into a variety of boundary-element models indicate that rock pressurization has the potential to improve underground excavation stability in three ways: (1) by relocating stress concentrations away from the weak opening surface to stronger, confined wall rock; (2) by inducing additional stresses in a biaxial stress field to reduce the difference between the principal stress components near the surface of the opening, and (3) by counteracting the tensile stresses induced in the rock around internally loaded openings. Practical aspects of the rock pressurization concept were investigated through a series of hydraulic fracturing experiments. The use of sulfur as a settable fluid for hydraulic fracturing was demonstrated, although problems related to sulfur viscosity suggest that other molten materials, such as wax, may be better suited to practical field application of the rock pressurization concept.

Vandergrift, T.L.

1995-06-01T23:59:59.000Z

445

Underground storage tank management plan  

SciTech Connect (OSTI)

The Underground Storage Tank (UST) Management Program at the Oak Ridge Y-12 Plant was established to locate UST systems in operation at the facility, to ensure that all operating UST systems are free of leaks, and to establish a program for the removal of unnecessary UST systems and upgrade of UST systems that continue to be needed. The program implements an integrated approach to the management of UST systems, with each system evaluated against the same requirements and regulations. A common approach is employed, in accordance with Tennessee Department of Environment and Conservation (TDEC) regulations and guidance, when corrective action is mandated. This Management Plan outlines the compliance issues that must be addressed by the UST Management Program, reviews the current UST inventory and compliance approach, and presents the status and planned activities associated with each UST system. The UST Management Plan provides guidance for implementing TDEC regulations and guidelines for petroleum UST systems. (There are no underground radioactive waste UST systems located at Y-12.) The plan is divided into four major sections: (1) regulatory requirements, (2) implementation requirements, (3) Y-12 Plant UST Program inventory sites, and (4) UST waste management practices. These sections describe in detail the applicable regulatory drivers, the UST sites addressed under the Management Program, and the procedures and guidance used for compliance with applicable regulations.

NONE

1994-09-01T23:59:59.000Z

446

Fire Clay coal and sandstone washouts  

SciTech Connect (OSTI)

The Fire Clay coal bed has been studied in a portion of southeastern Kentucky. This seam is easily recognizable by a distinctive flint clay parting. Mine maps, field descriptions, and laboratory investigations were used to investigate this coal bed. Several elongate sandstone bodies cut the seam in the study area. These sandstone bodies are subparallel roughly east-west, and are typically 10[sup 1] to 10[sup 2] m wide, and 10[sup 2] m to tens of kilometers long. These sandstone washouts occur in areas overlain by a larger channel sandstone, which usually is found associated with the thickest areas of the coal seam. In south-central Perry County, a cross section of one washout area was well exposed. North of the washout, a 4 to 7 cm thick cannel coal was present at the base of the sequence. The coal on the north side of the cutout gradually thins from 2 m to 1.5 m away from the washout. On the south side of the washout, the coal thins abruptly from over 1.5 m to 1.25 m within 30 m of the channel. An island of slumped and slickensided coal is present within the washout region. Postdepositional differential compaction of the peat is inferred to be the control on placement of the channel system. The areas of thickest peat compacted the most, creating topographic lows through which the stream moved. The regions of thick coal were probably the result of several controlling factors. Predepositional differential compaction and erosion may have produced relief which influenced peat development. Lithologic and geochemical continuity across the channel is good, supporting postdepositional emplacement of the sandstone bodies.

Andrews, W.M. Jr.; Hower, J.C. (Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research)

1992-01-01T23:59:59.000Z

447

Quality characterization of western Cretaceous coal from the Colorado Plateau as part of the U.S. Geological Survey's National Coal Resource Assessment Program  

SciTech Connect (OSTI)

The goal of the Colorado Plateau Coal Assessment program is to provide an overview of the geologic setting, distribution, resources, and quality of Cretaceous coal in the Colorado Plateau. This assessment, which is part of the US Geological Survey's National Coal Resource Assessment Program, is different from previous coal assessments in that the major emphasis is placed on coals that are most likely to provide energy over the next few decades. The data is also being collected and stored in digital format that can be updated as new information becomes available. Environmental factors may eventually control how coal will be mined, and determine to what extent measures will be implemented to reduce trace element emissions. In the future, increased emphasis will also be placed on coal combustion products and the challenges of waste product disposal or utilization. Therefore, coal quality characterization is an important aspect of the coal assessment program in that it provides important data that will influence future utilization of this resource. The Colorado Plateau study is being completed in cooperation with the US Bureau of Land Management, US Forest Service, Arizona Geological Survey, Colorado Geological Survey, New Mexico Bureau of Mines and Mineral Resources, and the Utah Geological Survey. Restrictions on coal thickness and overburden will be applied to the resource calculations and the resources will be categorized by land ownership. In some areas these studies will also delineate areas where coal mining may be restricted because of land use, industrial, social, or environmental factors. Emphasis is being placed on areas where the coal is controlled by the Federal Government.

Affolter, R.H.; Brownfield, M.E.

1999-07-01T23:59:59.000Z

448

CO2 Sequestration in Unmineable Coal Seams: Potential Environmental Impacts  

SciTech Connect (OSTI)

An initial investigation into the potential environmental impacts of CO2 sequestration in unmineable coal seams has been conducted, focusing on changes in the produced water during enhanced coalbed methane (ECBM) production using a CO2 injection process (CO2-ECBM). Two coals have been used in this study, the medium volatile bituminous Upper Freeport coal (APCS 1) of the Argonne Premium Coal Samples series, and an as-mined Pittsburgh #8 coal, which is a high volatile bituminous coal. Coal samples were reacted with either synthetic produced water or field collected produced water and gaseous carbon dioxide at 40 ?C and 50 bar to evaluate the potential for mobilizing toxic metals during CO2-ECBM/sequestration. Microscopic and x-ray diffraction analysis of the post-reaction coal samples clearly show evidence of chemical reaction, and chemical analysis of the produced water shows substantial changes in composition. These results suggest that changes to the produced water chemistry and the potential for mobilizing toxic trace elements from coalbeds are important factors to be considered when evaluating deep, unmineable coal seams for CO2 sequestration.

Hedges, S.W.; Soong, Yee; McCarthy Jones, J.R.; Harrison, D.K.; Irdi, G.A.; Frommell, E.A.; Dilmore, R.M.; Pique, P.J.; Brown, T.D

2005-09-01T23:59:59.000Z

449

Economic assessment of coal-burning locomotives: Topical report  

SciTech Connect (OSTI)

The General Electric Company embarked upon a study to evaluate various alternatives for the design and manufacture a coal fired locomotive considering various prime movers, but retaining the electric drive transmission. The initial study was supported by the Burlington-Northern and Norfolk-Southern railroads, and included the following alternatives: coal fired diesel locomotive; direct fired gas turbine locomotives; direct fired gas turbine locomotive with steam injection; raw coal gasifier gas turbine locomotive; and raw coal fluid bed steam turbine locomotive. All alternatives use the electric drive transmission and were selected for final evaluation. The first three would use a coal water slurry as a fuel, which must be produced by new processing plants. Therefore, use of a slurry would require a significant plant capital investment. The last two would use classified run-of-the-mine (ROM) coal with much less capital expenditure. Coal fueling stations would be required but are significantly lower in capital cost than a coal slurry plant. For any coal fired locomotive to be commercially viable, it must pass the following criteria: be technically feasible and environmentally acceptable; meet railroads' financial expectations; and offer an attractive return to the locomotive manufacturer. These three criteria are reviewed in the report.

Not Available

1986-02-01T23:59:59.000Z

450

Injury experience in stone mining, 1991. Information report  

SciTech Connect (OSTI)

This Mine Safety and Health Administration (MSHA) informational report reviews in detail the occupational injury and illness experience of stone mining in the united States for 1991. Data reported by operators of mining establishments concerning work injuries are summarized by work location, accident classification, part of body injured, nature of injury, occupation, and principal type of mineral. Related information on employment, worktime, and operating activity also is presented. Data reported by independent contractors performing certain work at mining locations are depicted separately in this report. For ease of comparison with other metal and nonmetallic mineral mining industries and with coal mining, summary reference tabulations are included at the end of both the operator and the contractor sections of this report.

Not Available

1993-10-01T23:59:59.000Z

451

Carbon Allocation in Underground Storage Organs  

E-Print Network [OSTI]

Carbon Allocation in Underground Storage Organs Studies on Accumulation of Starch, Sugars and Oil Cover: Starch granules in cells of fresh potato tuber visualised by iodine staining. #12;Carbon By increasing knowledge of carbon allocation in underground storage organs and using the knowledge to improve

452

,"Colorado Underground Natural Gas Storage - All Operators"  

U.S. Energy Information Administration (EIA) Indexed Site

"Sourcekey","N5030CO2","N5010CO2","N5020CO2","N5070CO2","N5050CO2","N5060CO2" "Date","Colorado Natural Gas Underground Storage Volume (MMcf)","Colorado Natural Gas in Underground...

453

COAL DESULFURIZATION PRIOR TO COMBUSTION  

E-Print Network [OSTI]

90e COAL DESULFURIZATION PRIOR TO COMBUSTION J. Wrathall, T.of coal during combustion. The process involves the additionCOAL DESULFURIZATION PRIOR TO COMBUSTION Lawrence Berkeley

Wrathall, J.

2013-01-01T23:59:59.000Z

454

Progress Continues Toward Closure of Two Underground Waste Tanks...  

Office of Environmental Management (EM)

Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site Progress Continues Toward Closure of Two Underground Waste Tanks at Savannah River Site...

455

Accident Investigation of the February 5, 2014, Underground Salt...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire...

456

Healy Clean Coal Project: A DOE Assessment  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) Program is to provide the energy marketplace with advanced, more efficient, and environmentally responsible coal utilization options by conducting demonstrations of new technologies. These demonstration projects are intended to establish the commercial feasibility of promising advanced coal technologies that have been developed to a level at which they are ready for demonstration testing under commercial conditions. This document serves as a DOE post-project assessment (PPA) of the Healy Clean Coal Project (HCCP), selected under Round III of the CCT Program, and described in a Report to Congress (U.S. Department of Energy, 1991). The desire to demonstrate an innovative power plant that integrates an advanced slagging combustor, a heat recovery system, and both high- and low-temperature emissions control processes prompted the Alaska Industrial Development and Export Authority (AIDEA) to submit a proposal for this project. In April 1991, AIDEA entered into a cooperative agreement with DOE to conduct this project. Other team members included Golden Valley Electric Association (GVEA), host and operator; Usibelli Coal Mine, Inc., coal supplier; TRW, Inc., Space & Technology Division, combustor technology provider; Stone & Webster Engineering Corp. (S&W), engineer; Babcock & Wilcox Company (which acquired the assets of Joy Environmental Technologies, Inc.), supplier of the spray dryer absorber technology; and Steigers Corporatio