Powered by Deep Web Technologies
Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Prediction of Kizildere reservoir behavior under exploitation  

SciTech Connect (OSTI)

Kizildere geothermal reservoir is under exploitation since 1984. During the four years of operation, electricity production showed a decline from the initially designed power output of 20.4 MW{sub e}. The scaling in wells necessitates periodic mechanical cleaning. However decline in well flow rates even after cleaning, indicate either decrease in productivity index due to scaling in fractures or due to rapid decline in reservoir pressure due to insufficient recharge and strong interference between wells. In this paper the results of a lumped parameter model prepared for Kizildere will be presented with the analysis of natural state of the field.

Okandan, Ender

1988-01-01T23:59:59.000Z

2

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...  

Open Energy Info (EERE)

Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski,...

3

Optimising hydraulic fracture treatments in reservoirs under complex conditions.  

E-Print Network [OSTI]

??Growing global energy demand has prompted the exploitation of non-conventional resources such as Coal Bed Methane (CBM) and conventional resources such as gas-condensate reservoirs. Exploitation (more)

Valencia, Karen Joy

2005-01-01T23:59:59.000Z

4

Analysis of condensate banking dynamics in a gas condensate reservoir under different injection schemes  

E-Print Network [OSTI]

condensate reservoir under natural depletion, and injection of methane, injection of carbon dioxide, produced gas recycling and water injection. To monitor the condensate banking dynamics near the wellbore area, such as oil saturation and compositional...

Sandoval Rodriguez, Angelica Patricia

2002-01-01T23:59:59.000Z

5

Coupled reservoir-geomechanical analysis of CO2 injection and ground deformations at In Salah, Algeria  

SciTech Connect (OSTI)

In Salah Gas Project in Algeria has been injecting 0.5-1 million tonnes CO{sub 2} per year over the past five years into a water-filled strata at a depth of about 1,800 to 1,900 m. Unlike most CO{sub 2} storage sites, the permeability of the storage formation is relatively low and comparatively thin with a thickness of about 20 m. To ensure adequate CO{sub 2} flow-rates across the low-permeability sand-face, the In Salah Gas Project decided to use long-reach (about 1 to 1.5 km) horizontal injection wells. In an ongoing research project we use field data and coupled reservoir-geomechanical numerical modeling to assess the effectiveness of this approach and to investigate monitoring techniques to evaluate the performance of a CO{sub 2}-injection operation in relatively low permeability formations. Among the field data used are ground surface deformations evaluated from recently acquired satellite-based inferrometry (InSAR). The InSAR data shows a surface uplift on the order of 5 mm per year above active CO{sub 2} injection wells and the uplift pattern extends several km from the injection wells. In this paper we use the observed surface uplift to constrain our coupled reservoir-geomechanical model and conduct sensitivity studies to investigate potential causes and mechanisms of the observed uplift. The results of our analysis indicates that most of the observed uplift magnitude can be explained by pressure-induced, poro-elastic expansion of the 20 m thick injection zone, but there could also be a significant contribution from pressure-induced deformations within a 100 m thick zone of shaly sands immediately above the injection zone.

Rutqvist, J.; Vasco, D.W.; Myer, L.

2009-11-01T23:59:59.000Z

6

EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS  

Office of Scientific and Technical Information (OSTI)

EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS FINAL PROGRESS REPORT PERIOD: OCT 1999-MAY 2003 CONTRACT NUMBER: DE-FG26-99FT40615 PROJECT START DATE: October 1999 PROJECT DURATION: October 1999 - May 2003 TOTAL FUNDING REQUESTED: $ 199,320 TECHNICAL POINTS OF CONTACT: Jorge Gabitto Maria Barrufet Prairie View A&M State University Texas A&M University Department of Chemical Engineering Petroleum Engineering Department Prairie View, TX 77429 College Station TX, 77204 TELE:(936) 857-2427 TELE:(979) 845-0314 FAX: (936) 857-4540 FAX:(979) 845-0325 EMAIL:jgabitto@aol.com EMAIL:barrufet@spindletop. tamu.edu 1 EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS

7

European Conference on the Mathematics of Oil Recovery --Freiberg, Germany, 3 -6 September 2002 Prediction under Uncertainty in Reservoir  

E-Print Network [OSTI]

1 8 th European Conference on the Mathematics of Oil Recovery -- Freiberg, Germany, 3 - 6 September 2002 Prediction under Uncertainty in Reservoir Modeling Mike Christie1 , Sam Subbey1 , Malcolm of Advanced Studies, Australian Nat. University, Canberra, ACT 0200, Australia Abstract Reservoir simulation

Sambridge, Malcolm

8

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski, Et Al., Ground Gravity Survey At Under Steamboat Springs Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski, Et Al., 2002) Exploration Activity Details Location Under Steamboat Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes This project consisted of (1) a 3-D surface seismic survey conducted in the fall of 2000, (2) a micro-seismic survey run from November 2000 to April 200 1, and (3) a gravity survey conducted in April and May 2001. The 3-D surface seismic data are still being processed at this time, but initial results indicate that there are two major lineations of high velocity

9

Experimental and Theoretical Determination of Heavy Oil Viscosity Under Reservoir Conditions  

SciTech Connect (OSTI)

The main objective of this research was to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes.

Gabitto, Jorge; Barrufet, Maria

2002-03-11T23:59:59.000Z

10

A low-cost X-ray-transparent experimental cell for synchrotron-based X-ray microtomography studies under geological reservoir conditions  

Science Journals Connector (OSTI)

An X-ray-transparent experimental environment that allows time-resolved studies of porous rocks under geological reservoir conditions using high-energy synchrotron X-ray microtomography is presented.

Fusseis, F.

2013-12-05T23:59:59.000Z

11

Ground movements associated with gas hydrate production. Final report  

SciTech Connect (OSTI)

This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The present study is expected to provide a ``lower bound`` solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ``stress equilibrium`` approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ``cavity`` generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir.

Siriwardane, H.J.; Kutuk, B.

1992-03-01T23:59:59.000Z

12

Modeling effects of diffusion and gravity drainage on oil recovery in naturally fractured reservoirs under gas injection  

E-Print Network [OSTI]

Gas injection in naturally fractured reservoirs maintains the reservoir pressure, and increases oil recovery primarily by gravity drainage and to a lesser extent by mass transfer between the flowing gas in the fracture and the porous matrix...

Jamili, Ahmad

2010-04-22T23:59:59.000Z

13

''Fraud, abuse, or similar grounds'' exception under Section 601(c)(2) of the NGPA  

SciTech Connect (OSTI)

The determination of what constitutes ''fraud, abuse, or similar grounds'' under the Natural Gas Policy Act has been the subject of extensive litigation before the Federal Energy Regulatory Commission (FERC). Although FERC has consistently held that these grounds do not include imprudence, it has also held that ''the same type of actions of a pipeline can be imprudent or abusive.'' A finding of abuse will result in denial of the pipeline's pass through of gas costs to the extent they are excess due to abuse, and a finding of imprudence may result in denial of the pipeline's recovery of fixed costs. The author analyzes the development of FERC's position, and shows that it may be difficult in some cases for an interstate pipeline to be certain it is in compliance with FERC standards.

Puckett, K.T.

1985-01-01T23:59:59.000Z

14

Uncertainty quantification for evaluating impacts of caprock and reservoir properties on pressure buildup and ground surface displacement during geological CO2 sequestration  

SciTech Connect (OSTI)

A series of numerical test cases reflecting broad and realistic ranges of geological formation properties was developed to systematically evaluate and compare the impacts of those properties on geomechanical responses to CO2 injection. A coupled hydro-geomechanical subsurface transport simulator, STOMP (Subsurface Transport over Multiple Phases), was adopted to simulate the CO2 migration process and geomechanical behaviors of the surrounding geological formations. A quasi-Monte Carlo sampling method was applied to efficiently sample a high-dimensional parameter space consisting of injection rate and 14 subsurface formation properties, including porosity, permeability, entry pressure, irreducible gas and aqueous saturation, Youngs modulus, and Poissons ratio for both reservoir and caprock. Generalized cross-validation and analysis of variance methods were used to quantitatively measure the significance of the 15 input parameters. Reservoir porosity, permeability, and injection rate were found to be among the most significant factors affecting the geomechanical responses to the CO2 injection. We used a quadrature generalized linear model to build a reduced-order model that can estimate the geomechanical response instantly instead of running computationally expensive numerical simulations. The injection pressure and ground surface displacement are often monitored for injection well safety, and are believed can partially reflect the risk of fault reactivation and seismicity. Based on the reduced order model and response surface, the input parameters can be screened for control the risk of induced seismicity. The uncertainty of the subsurface structure properties cause the numerical simulation based on a single or a few samples does not accurately estimate the geomechanical response in the actual injection site. Probability of risk can be used to evaluate and predict the risk of injection when there are great uncertainty in the subsurface properties and operation conditions.

Bao, Jie; Hou, Zhangshuan; Fang, Yilin; Ren, Huiying; Lin, Guang

2013-08-12T23:59:59.000Z

15

EXPERIMENTAL AND THEORETICAL DETERMINATION OF HEAVY OIL VISCOSITY UNDER RESERVOIR CONDITIONS  

SciTech Connect (OSTI)

The USA deposits of heavy oils and tar sands contain significant energy reserves. Thermal methods, particularly steam drive and steam soak, are used to recover heavy oils and bitumen. Thermal methods rely on several displacement mechanisms to recover oil, but the most important is the reduction of crude viscosity with increasing temperature. The main objective of this research is to propose a simple procedure to predict heavy oil viscosity at reservoir conditions as a function of easily determined physical properties. This procedure will avoid costly experimental testing and reduce uncertainty in designing thermal recovery processes. First, we reviewed critically the existing literature choosing the most promising models for viscosity determination. Then, we modified an existing viscosity correlation, based on the corresponding states principle in order to fit more than two thousand commercial viscosity data. We collected data for compositional and black oil samples (absence of compositional data). The data were screened for inconsistencies resulting from experimental error. A procedure based on the monotonic increase or decrease of key variables was implemented to carry out the screening process. The modified equation was used to calculate the viscosity of several oil samples where compositional data were available. Finally, a simple procedure was proposed to calculate black oil viscosity from common experimental information such as, boiling point, API gravity and molecular weight.

Dr. Jorge Gabitto; Maria Barrufet

2003-05-01T23:59:59.000Z

16

Focusing of Rayleigh waves generated by high-speed trains under the condition of ground vibration boom  

E-Print Network [OSTI]

In the present paper, the effects of focusing of Rayleigh waves generated by high speed trains in the supporting ground under the condition of ground vibration boom are considered theoretically. These effects are similar to the effects of focusing of sound waves radiated by aircraft under the condition of sonic boom. In particular, if a railway track has a bend to provide the possibility of changing direction of train movement, the Rayleigh surface waves generated by high-speed trains under the condition of ground vibration boom may become focused. This results in concentration of their energy along a simple caustic line at one side of the track and in the corresponding increase in ground vibration amplitudes. The effect of focusing of Rayleigh waves may occur also if a train moves along a straight line with acceleration and its current speed is higher than Rayleigh wave velocity in the ground. The obtained results are illustrated by numerical calculations.

Krylov, Victor V

2015-01-01T23:59:59.000Z

17

Under very extreme conditions a flood that threatens to overtop a dam may be combined with strong winds that generate waves in the reservoir.  

E-Print Network [OSTI]

Under very extreme conditions a flood that threatens to overtop a dam may be combined with strong winds that generate waves in the reservoir. Prolonged wave overtopping or a combination of wave the actions of wind generated waves and wave overtopping. The uneven elevations of the dam crest

Bowles, David S.

18

Biogeochemical Processes Responsible for the Enhanced Transport of Plutonium Under transient Unsaturated Ground Water Conditions  

SciTech Connect (OSTI)

To better understand longer-term vadose zone transport in southeastern soils, field lysimeter experiments were conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980s. Each of the three lysimeters analyzed herein contained a filter paper spiked with different Pu solutions, and they were left exposed to natural environmental conditions (including the growth of annual weed grasses) for 11 years. The resulting Pu activity measurements from each lysimeter core showed anomalous activity distributions below the source, with significant migration of Pu above the source. Such results are not explainable by adsorption phenomena alone. A transient variably saturated flow model with root water uptake was developed and coupled to a soil reactive transport model. Somewhat surprisingly, the fully transient analysis showed results nearly identical to those of a much simpler steady flow analysis performed previously. However, all phenomena studied were unable to produce the upward Pu transport observed in the data. This result suggests another transport mechanism such as Pu uptake by roots and upward transport due to transpiration. Thus, the variably saturated flow and reactive transport model was extended to include uptake and transport of Pu within the root xylem, along with computational methodology and results. In the extended model, flow velocity in the soil was driven by precipitation input along with transpiration and drainage. Water uptake by the roots determined the flow velocity in the root xylem, and this along with uptake of Pu in the transpiration stream drove advection and dispersion of the two Pu species in the xylem. During wet periods with high potential evapotranspiration, maximum flow velocities through the xylem would approached 600 cm/hr, orders of magnitude larger that flow velocities in the soil. Values for parameters and the correct conceptual viewpoint for Pu transport in plant xylem was uncertain. This motivated further experiments devoted to Pu uptake by corn roots and xylem transport. Plants were started in wet paper wrapped around each corn seed. When the tap roots were sufficiently long, the seedlings were transplanted to a soil container with the tap root extending out the container bottom. The soil container was then placed over a nutrient solution container, and the solution served as an additional medium for root growth. To conduct an uptake study, a radioactive substance, such as Pu complexed with the bacterial siderophore DFOB, was added to the nutrient solution. After a suitable elapsed time, the corn plant was sacrificed, cut into 10 cm lengths, and the activity distribution measured. Experimental results clarified the basic nature of Pu uptake and transport in corn plants, and resulting simulations suggested that each growing season Pu in the SRS lysimeters would move into the plant shoots and be deposited on the soil surface during the Fall dieback. Subsequent isotope ratio analyses showed that this did happen. OVERALL RESULTS AND CONCLUSIONS - (1) Pu transport downward from the source is controlled by advection, dispersion and adsorption, along with surface-mediated REDOX reactions. (2) Hysteresis, extreme root distribution functions, air-content dependent oxidation rate constants, and large evaporation rates from the soil surface were not able to explain the observed upward migration of Pu. (3) Small amounts of Pu uptake by plant roots and translocation in the transpiration stream creates a realistic mechanism for upward Pu migration (4) Realistic xylem cross-sectional areas imply high flow velocities under hot, wet conditions. Such flow velocities produce the correct shape for the observed activity distributions in the top 20 cm of the lysimeter soil. (5) Simulations imply that Pu should have moved into the above-ground grass tissue each year during the duration of the experiments, resulting in an activity residual accumulating on the soil surface. An isotope ratio analysis showed that the observed surface Pu residue was from the buried sources, not atmospheric fallout. (6) The

Fred J. Molz, III

2010-05-28T23:59:59.000Z

19

Exergy and Energy analysis of a ground-source heat pump for domestic water heating under simulated occupancy conditions  

SciTech Connect (OSTI)

This paper presents detailed analysis of a water to water ground source heat pump (WW-GSHP) to provide all the hot water needs in a 345 m2 house located in DOE climate zone 4 (mixed-humid). The protocol for hot water use is based on the Building America Research Benchmark Definition (Hendron 2008; Hendron and Engebrecht 2010) which aims to capture the living habits of the average American household and its impact on energy consumption. The entire house was operated under simulated occupancy conditions. Detailed energy and exergy analysis provides a complete set of information on system efficiency and sources of irreversibility, the main cause of wasted energy. The WW-GSHP was sized at 5.275 kW (1.5-ton) for this house and supplied hot water to a 303 L (80 gal) water storage tank. The WW-GSHP shared the same ground loop with a 7.56 kW (2.1-ton) water to air ground source heat pump (WA-GSHP) which provided space conditioning needs to the entire house. Data, analyses, and measures of performance for the WW-GSHP in this paper complements the results of the WA-GSHP published in this journal (Ally, Munk et al. 2012). Understanding the performance of GSHPs is vital if the ground is to be used as a viable renewable energy resource.

Ally, Moonis Raza [ORNL; Munk, Jeffrey D [ORNL; Baxter, Van D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

20

The role of reservoir characterization in the reservoir management process (as reflected in the Department of Energy`s reservoir management demonstration program)  

SciTech Connect (OSTI)

Optimum reservoir recovery and profitability result from guidance of reservoir practices provided by an effective reservoir management plan. Success in developing the best, most appropriate reservoir management plan requires knowledge and consideration of (1) the reservoir system including rocks, and rock-fluid interactions (i.e., a characterization of the reservoir) as well as wellbores and associated equipment and surface facilities; (2) the technologies available to describe, analyze, and exploit the reservoir; and (3) the business environment under which the plan will be developed and implemented. Reservoir characterization is the essential to gain needed knowledge of the reservoir for reservoir management plan building. Reservoir characterization efforts can be appropriately scaled by considering the reservoir management context under which the plan is being built. Reservoir management plans de-optimize with time as technology and the business environment change or as new reservoir information indicates the reservoir characterization models on which the current plan is based are inadequate. BDM-Oklahoma and the Department of Energy have implemented a program of reservoir management demonstrations to encourage operators with limited resources and experience to learn, implement, and disperse sound reservoir management techniques through cooperative research and development projects whose objectives are to develop reservoir management plans. In each of the three projects currently underway, careful attention to reservoir management context assures a reservoir characterization approach that is sufficient, but not in excess of what is necessary, to devise and implement an effective reservoir management plan.

Fowler, M.L. [BDM-Petroleum Technologies, Bartlesville, OK (United States); Young, M.A.; Madden, M.P. [BDM-Oklahoma, Bartlesville, OK (United States)] [and others

1997-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Experimental performance analysis of a solar assisted ground source heat pump system under different heating operation modes  

Science Journals Connector (OSTI)

Abstract This paper presents an experimental study on the influence of operation modes on the heating performance of a solar assisted ground source heat pump system (SAGSHPS). Through experiments conducted in January, the characteristics of the SAGSHPS were investigated under different heating operation modes. The results indicate that the solar thermal could be used to accelerate the soil recovery when the heat pump unit is turned off, but the duration of solar use to recharge boreholes should be optimized according to the water temperature in the solar heat storage water tank to avoid unnecessary power consumption of the circulation pump. In addition, the solar heat storage water tank is beneficial for the stable operation of the SAGSHPS. The volumetric flow rate in the water tank has a significant impact on the electricity consumption of the SAGSHPS. From comprehensive analysis of the integral effect of the SAGSHPS under different modes, the mode in which the water tank is connected with the ground heat exchangers (GHES) in series is the recommended mode for the SAGSHPS in the coldest month in Dalian.

Lanhua Dai; Sufen Li; Lin DuanMu; Xiangli Li; Yan Shang; Ming Dong

2015-01-01T23:59:59.000Z

22

Application of reservoir models to Cherokee Reservoir  

SciTech Connect (OSTI)

As a part of the Cherokee Reservoir Project hydrodynamic-temperature models and water quality models hav

Kim, B.R.; Bruggink, D.J.

1982-01-01T23:59:59.000Z

23

Predicting production performance of CBM reservoirs  

Science Journals Connector (OSTI)

Prediction of gas production from the coalbed methane (CBM) reservoirs is challenging due to the complex interaction of storage and transport mechanisms. The vast majority of the gas in CBM reservoirs is stored by adsorption in the coal matrix which practically has no permeability. The flow to production wells however takes place through the cleats or the natural fracture system which store relatively small amounts of gas. These unique coal characteristics have resulted in classification of CBM as an unconventional gas resource. Gas production from CBM reservoirs is governed by gas diffusion through coal matrix followed by gas desorption into the cleat system through which the gas flows to the wellbore generally under two-phase conditions. As a result, the production profile of the CBM reservoirs greatly differs from conventional gas reservoirs. This precludes the use of common techniques such as decline curves to forecast the recovery, future revenues, and well performance. Numerical reservoir models (simulators) that incorporate the unique flow and storage characteristics of CBM reservoirs are by far the best tools for predicting the gas production from the CBM reservoirs. It is however cumbersome, time consuming, and expensive to use a complex reservoir simulator for evaluating CBM prospects when the required reservoir parameters are not available. Therefore, there is a need for a quick yet reliable tool for predicting production performance of CBM reservoirs. This paper presents a set of production type curves that can be used for predicting gas and water the production from CBM prospects. The type curves are particularly useful for parametric studies when the key characteristics are not well established. A numerical reservoir model that incorporated the unique flow and storage characteristics of CBM reservoirs was employed to develop the type curves. The impact of various reservoir parameters on the type curves was investigated to confirm the uniqueness of the type curves. The application and limitation of the type curves have been also discussed.

K. Aminian; S. Ameri

2009-01-01T23:59:59.000Z

24

Full Reviews: Reservoir Characterization  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer reviewer comments for Reservoir Characterization.

25

Accumulated photon echo in ruby under hydrostatic pressure: Ground-state splitting and spontaneous decay of 2A(2E)  

Science Journals Connector (OSTI)

The technique of accumulated photon echo is used in combination with a high-pressure diamond anvil cell to measure the splitting of the 4A2 ground state and the one-phonon spontaneous decay rate of the 2A(2E) level at 1.5 K in ruby up to 4.3 GPa of hydrostatic pressure. The 4A2 ground-state splitting is found to be 0.3830.001 cm-1 at ambient pressure, and increases with a slope of +(61)10-3 cm-1/GPa. The spontaneous decay rate of 2A(2E) increases only weakly with pressure. The pressure dependences of both quantities are accounted for in terms of the trigonal-field and spin-orbit-coupling parameters.

M. H. F. Overwijk; J. I. Dijkhuis; H. W. de Wijn; R. Vreeker; R. Sprik; A. Lagendijk

1991-06-01T23:59:59.000Z

26

Measured Performance and Analysis of Ground Source Heat Pumps for Space Conditioning and for Water Heating in a Low-Energy Test House Operated under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

In this paper we present measured performance and efficiency metrics of Ground Source Heat Pumps (GSHPs) for space conditioning and for water heating connected to a horizontal ground heat exchanger (GHX) loop. The units were installed in a 345m2 (3700ft2) high-efficiency test house built with structural insulated panels (SIPs), operated under simulated occupancy conditions, and located in Oak Ridge, Tennessee (USA) in US Climate Zone 4 . The paper describes distinctive features of the building envelope, ground loop, and equipment, and provides detailed monthly performance of the GSHP system. Space conditioning needs of the house were completely satisfied by a nominal 2-ton (7.0 kW) water-to-air GSHP (WA-GSHP) unit with almost no auxiliary heat usage. Recommendations for further improvement through engineering design changes are identified. The comprehensive set of data and analyses demonstrate the feasibility and practicality of GSHPs in residential applications and their potential to help achieve source energy and greenhouse gas emission reduction targets set under the IECC 2012 Standard.

Ally, Moonis Raza [ORNL] [ORNL; Munk, Jeffrey D [ORNL] [ORNL; Baxter, Van D [ORNL] [ORNL; Gehl, Anthony C [ORNL] [ORNL

2012-01-01T23:59:59.000Z

27

Techniques of High Performance Reservoir Simulation for Unconventional Challenges  

E-Print Network [OSTI]

48 offshore Alaska 2010 5 high performance computing, execution of compositional simulation in parallel seems to be the apparently feasible way to tackle its computational demand. Although running reservoir simulation in parallel sounds extremely... attractive, developing an efficient parallel reservoir simulator is far more challenging than developing the underlying serial reservoir simulator. For decades there have remained many open problems associated with high performance computing and reservoir...

Wang, Yuhe

2013-12-05T23:59:59.000Z

28

Chelated Indium Activable Tracers for Geothermal Reservoirs  

E-Print Network [OSTI]

SGP-TR-99 Chelated Indium Activable Tracers for Geothermal Reservoirs Constantinos V. Chrysikopoulos Paul Kruger June 1986 Financial support was provided through the Stanford Geothermal Program under University Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD

Stanford University

29

Numerical Investigation of Fractured Reservoir Response to Injection/Extraction Using a Fully Coupled Displacement Discontinuity Method  

E-Print Network [OSTI]

In geothermal reservoirs and unconventional gas reservoirs with very low matrix permeability, fractures are the main routes of fluid flow and heat transport, so the fracture permeability change is important. In fact, reservoir development under...

Lee, Byungtark

2011-10-21T23:59:59.000Z

30

1981). Their basic solution is to find a suitable backfilling material to minimize the contact resistance and to maintain high ground thermal conductivity around the cable even under very  

E-Print Network [OSTI]

#12;1981). Their basic solution is to find a suitable backfilling material to minimize the contact resistance and to maintain high ground thermal conductivity around the cable even under very dry ground contact resistance or soil dry-out or both. This paper presents a mathematical model describing

Oak Ridge National Laboratory

31

Status of Cherokee Reservoir  

SciTech Connect (OSTI)

This is the first in a series of reports prepared by Tennessee Valley Authority (TVA) for those interested in the conditions of TVA reservoirs. This overviews of Cherokee Reservoir summarizes reservoir and watershed characteristics, reservoir uses and use impairments, water quality and aquatic biological conditions, and activities of reservoir management agencies. This information was extracted from the most current reports, publications, and data available, and interviews with water resource professionals in various Federal, state, and local agencies and in public and private water supply and wastewater treatment facilities. 11 refs., 4 figs., 1 tab.

Not Available

1990-08-01T23:59:59.000Z

32

Hydrothermal Reservoirs | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal Reservoirs Hydrothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hydrothermal Reservoirs Dictionary.png Hydrothermal Reservoir: Hydrothermal Reservoirs are underground zones of porous rock containing hot water and steam, and can be naturally occurring or human-made. Other definitions:Wikipedia Reegle Natural, shallow hydrothermal reservoirs naturally occurring hot water reservoirs, typically found at depths of less than 5 km below the Earth's surface where there is heat, water and a permeable material (permeability in rock formations results from fractures, joints, pores, etc.). Often, hydrothermal reservoirs have an overlying layer that bounds the reservoir and also serves as a thermal insulator, allowing greater heat retention. If hydrothermal reservoirs

33

Substation grounding.  

E-Print Network [OSTI]

??Designing a proper substation grounding system is quite complicating. Many parameters affect its design. In order for a grounding design to be safe, it needs (more)

Baleva, Inna

2012-01-01T23:59:59.000Z

34

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

index in estimating reservoir performance. The optimization routine is done with VBA using Excel solver. Model Assumptions The reservoir is in stabilized flow under pseudo-steady state conditions at constant pressure with no aquifer influx... is matched with a type curve to predict field performance. Fetkovich Decline Type Curves 11 is based on analytical solutions to flow equations for production at constant BHP and include both transient and boundary dominated flow periods. These log...

Yusuf, Nurudeen

2008-10-10T23:59:59.000Z

35

Modeling well performance in compartmentalized gas reservoirs  

E-Print Network [OSTI]

index in estimating reservoir performance. ? The optimization routine is done with VBA using Excel solver. Model Assumptions ? The reservoir is in stabilized flow under pseudo-steady state conditions at constant pressure with no aquifer influx... is matched with a type curve to predict field performance. Fetkovich Decline Type Curves 11 is based on analytical solutions to flow equations for production at constant BHP and include both transient and boundary dominated flow periods. These log...

Yusuf, Nurudeen

2009-05-15T23:59:59.000Z

36

5 - Reservoir Engineering  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents the basic fundamentals that are useful to practical petroleum engineers by including basic principles, definitions, and data related to the reservoir engineering. It introduces the topics at a level that can be understood by engineers and geologists who are not expert in the field of reservoir engineering. Various correlations are provided in the chapter to understand the functioning of reservoir engineering, and newer techniques for improving recovery are also discussed. Reservoir engineering covers a broad range of subjects including the occurrence of fluids in a gas or oil-bearing reservoir, movement of those or injected fluids, and evaluation of the factors governing the recovery of oil or gas. The objectives of a reservoir engineer are to maximize producing rates and to recover oil and gas from reservoirs in the most economical manner possible. The advent of programmable calculators and personal computers has changed the approach that the reservoir engineers use to solve problems. In the chapter, many of the charts and graphs that have been historically used are presented for completeness and for illustrative purposes. In addition, separate sections of the chapter are devoted to the use of equations in some of the more common programs suitable for programmable calculators and personal computers.

F. David Martin; Robert M. Colpitts

1996-01-01T23:59:59.000Z

37

Quantification of Libby Reservoir Levels Needed to Maintain or Enhance Reservoir Fisheries, 1983-1987 Methods and Data Summary.  

SciTech Connect (OSTI)

Libby Reservoir was created under an International Columbia River Treaty between the United States and Canada for cooperative water development of the Columbia River Basin. The authorized purpose of the dam is to provide power, flood control, and navigation and other benefits. Research began in May 1983 to determine how operations of Libby dam impact the reservoir fishery and to suggest ways to lessen these impacts. This study is unique in that it was designed to accomplish its goal through detailed information gathering on every trophic level in the reservoir system and integration of this information into a quantitative computer model. The specific study objectives are to: quantify available reservoir habitat, determine abundance, growth and distribution of fish within the reservoir and potential recruitment of salmonids from Libby Reservoir tributaries within the United States, determine abundance and availability of food organisms for fish in the reservoir, quantify fish use of available food items, develop relationships between reservoir drawdown and reservoir habitat for fish and fish food organisms, and estimate impacts of reservoir operation on the reservoir fishery. 115 refs., 22 figs., 51 tabs.

Chisholm, Ian

1989-12-01T23:59:59.000Z

38

Ground Water Ground Sky Sky Water Vegetation Ground Vegetation Water  

E-Print Network [OSTI]

Bear Snow Vegetation RhinoWater Vegetation Ground Water Ground Sky Sky Rhino Water Vegetation Ground Vegetation Water Rhino Water Vegetation Ground Rhino Water Rhino Water Ground Ground Vegetation Water Rhino Vegetation Rhino Vegetation Ground Rhino Vegetation Ground Sky Rhino Vegetation Ground Sky

Chen, Tsuhan

39

Seismicity and Reservoir Fracture Characterization  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Seismicity and Reservoir Fracture Characterization.

40

Chemistry, Reservoir, and Integrated Models  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Chemistry, Reservoir and Integrated Models.

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Reservoir Protection (Oklahoma)  

Broader source: Energy.gov [DOE]

The Oklahoma Water Resource Board has the authority to make rules for the control of sanitation on all property located within any reservoir or drainage basin. The Board works with the Department...

42

Session: Reservoir Technology  

SciTech Connect (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five papers: ''Reservoir Technology'' by Joel L. Renner; ''LBL Research on the Geysers: Conceptual Models, Simulation and Monitoring Studies'' by Gudmundur S. Bodvarsson; ''Geothermal Geophysical Research in Electrical Methods at UURI'' by Philip E. Wannamaker; ''Optimizing Reinjection Strategy at Palinpinon, Philippines Based on Chloride Data'' by Roland N. Horne; ''TETRAD Reservoir Simulation'' by G. Michael Shook

Renner, Joel L.; Bodvarsson, Gudmundur S.; Wannamaker, Philip E.; Horne, Roland N.; Shook, G. Michael

1992-01-01T23:59:59.000Z

43

5 - Reservoir Engineering  

Science Journals Connector (OSTI)

Publisher Summary This chapter presents the basic fundamentals useful to practical petroleum engineers. Topics are introduced at a level that can be understood by engineers and geologists who are not expert in this field. Various correlations are provided in the chapter where useful. Newer techniques for improving recovery are also discussed in the chapter. Reservoir engineering covers a broad range of subjects including the occurrence of fluids in a gas or oil-beating reservoir, movement of those fluids or injected fluids, and evaluation of the factors governing the recovery of oil or gas. The objectives of a reservoir engineer are to maximize production rates and to ultimately recover oil and gas from reservoirs in the most economical manner possible. The chapter includes many of the charts and graphs that have been historically used. While illustrating enhanced oil recovery methods, estimation of waterflood residual oil saturation, fluid movements, material balance with volumetric analysis, the chapter also discusses pressure transient testing, recovery of hydrocarbons, and decline curve analysis. Decline curve analysis estimates primary oil recovery for an individual reservoir. The conventional analysis of production decline curves for oil or gas production consists of plotting the log of flow rate versus time on semilog paper. In case of a decline in the rate of production, the data are extrapolated into the future to provide an estimate of expected production and reserves.

2004-01-01T23:59:59.000Z

44

Optoelectronic Reservoir Computing  

E-Print Network [OSTI]

Reservoir computing is a recently introduced, highly efficient bio-inspired approach for processing time dependent data. The basic scheme of reservoir computing consists of a non linear recurrent dynamical system coupled to a single input layer and a single output layer. Within these constraints many implementations are possible. Here we report an opto-electronic implementation of reservoir computing based on a recently proposed architecture consisting of a single non linear node and a delay line. Our implementation is sufficiently fast for real time information processing. We illustrate its performance on tasks of practical importance such as nonlinear channel equalization and speech recognition, and obtain results comparable to state of the art digital implementations.

Yvan Paquot; Franois Duport; Anteo Smerieri; Joni Dambre; Benjamin Schrauwen; Marc Haelterman; Serge Massar

2011-11-30T23:59:59.000Z

45

Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 | Open Energy  

Open Energy Info (EERE)

Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Reservoir Testing- 1978 To 1980 Details Activities (3) Areas (1) Regions (0) Abstract: The Phase I Hot Dry Rock Geothermal Energy reservoirs at the Fenton Hill field site grew continuously during Run Segments 2 through 5 (January 1978 to December 1980). Reservoir growth was caused not only by pressurization and hydraulic fracturing, but also by heat-extraction and thermal-contraction effects. Reservoir heat-transfer area grew from 8000 to 50,000 m2 and reservoir fracture volume grew from 11 to 266 m3. Despite this reservoir growth, the water loss rate increased only 30%, under similar pressure environments. For comparable temperature and pressure

46

Reservoir geochemistry: A link between reservoir geology and engineering?  

SciTech Connect (OSTI)

Geochemistry provides a natural, but poorly exploited, link between reservoir geology and engineering. The authors summarize some current applications of geochemistry to reservoir description and stress that, because of their strong interactions with mineral surfaces and water, nitrogen and oxygen compounds in petroleum may exert an important influence on the pressure/volume/temperature (PVT) properties of petroleum, viscosity and wettability. The distribution of these compounds in reservoirs is heterogeneous on a submeter scale and is partly controlled by variations in reservoir quality. The implied variations in petroleum properties and wettability may account for some of the errors in reservoir simulations.

Larter, S.R.; Aplin, A.C.; Chen, M.; Taylor, P.N. [Univ. of Newcastle (Australia); Corbett, P.W.M.; Ementon, N. [Heriot-Watt Univ., Edinburgh (United Kingdom)

1997-02-01T23:59:59.000Z

47

Physical model of a fractured reservoir | Open Energy Information  

Open Energy Info (EERE)

model of a fractured reservoir model of a fractured reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Physical model of a fractured reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The objectives of the physical modeling effort are to: (1) evaluate injection-backflow testing for fractured reservoirs under conditions of known reservoir parameters (porosity, fracture width, etc.); (2) study the mechanisms controlling solute transport in fracture systems; and (3) provide data for validation of numerical models that explicitly simulate solute migration in fracture systems. The fracture network is 0.57-m wide, 1.7-m long, and consists of two sets of fractures at right angles to one another with a fracture spacing of 10.2 cm. A series of

48

Energy transport between two pure-dephasing reservoirs  

E-Print Network [OSTI]

A pure-dephasing reservoir acting on an individual quantum system induces loss of coherence without energy exchange. When acting on composite quantum systems, dephasing reservoirs can lead to a radically different behavior. Transport of energy between two pure-dephasing markovian reservoirs is predicted in this work. They are connected through a chain of coupled sites. The baths are kept in thermal equilibrium at distinct temperatures. Quantum coherence between sites is generated in the steady-state regime and results in the underlying mechanism sustaining the effect. A quantum model for the reservoirs is a necessary condition for the existence of stationary energy transport. A microscopic derivation of the non-unitary system-bath interaction is employed, valid in the ultrastrong inter-site coupling regime. The model assumes that each site-reservoir coupling is local.

T. Werlang; D. Valente

2014-08-21T23:59:59.000Z

49

Ground movements associated with gas hydrate production. Progress report, October 1--December 31, 1992  

SciTech Connect (OSTI)

The grantee will evaluate the influence of hydrate production on ground subsidence near the wellbore and the surface. The objective of this research will be achieved by using computer simulations of what is expected in a hydrate reservoir during the production stage as reported by hydrate production models and available data. The model will be based on theories of continuum mechanics, thermomechanics of hydrate production, principles of rock mechanics and geomechanics, and special features of geomaterials under cold temperatures such as those found in permafrost regions. The research work involved in the proposed investigation will be divided into three major tasks; mechanics of subsidence in permafrost regions, modeling of subsidence, and parametric studies.

Siriwardane, H.J.

1992-12-31T23:59:59.000Z

50

Underground Gas Storage Reservoirs (West Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Gas Storage Reservoirs (West Virginia) Gas Storage Reservoirs (West Virginia) Underground Gas Storage Reservoirs (West Virginia) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State West Virginia Program Type Safety and Operational Guidelines Provider West Virginia Department of Commerce Lays out guidelines for the conditions under which coal mining operations must notify state authorities of intentions to mine where underground gas

51

Development of reservoir simulator for hydraulically fractured gas wells in noncontinuous lenticular reservoirs  

SciTech Connect (OSTI)

A mathematical model is presented which forms the basis for a reservoir simulator that can be used to assist in the interpretation and prediction of the performance of hydraulically fractured gas wells completed in the western tight sands area. The model represents a first step in developing a reservoir simulator that can be used as an exploration tool and to analyze proposed gas well tests and future production trends in noncontinuous sand lense formations which are representative of the tight gas sands located in the Rocky Mountain gas provinces. The model developed consists of the necessary mathematical equations to simulate both reservoir and well performance under a variety of operating conditions. The equations developed are general in that they consider the following effects: (1) three-dimensional flow in the reservoir and one-dimensional flow in the fracture; (2) non-Darcy flow in the reservoir and fracture; (3) wellbore and fracture storage; (4) formation damage on the fracture face; (5) frictional pressure drop in the production string; (6) noncontinuous sand lenses; and (7) Klinkenberg effect. As a start toward the development of the final version of the desired reservoir simulator, a two-dimensional simulator was secured, placed on the computer, and debugged, and some test cases were run to ensure its validity. Using this simulator as a starting point, changes to reflect the effects of items 3 and 6 were made since it was believed these were the more important effects to consider at this stage of development. The development of an operational two-dimensional gas reservoir simulator was completed. Further work will be required to extend the simulator to three dimensions and incorporate all the changes reflected in items 1 to 6.

Evans, R.D.; Carroll, H.B. Jr.

1980-10-01T23:59:59.000Z

52

Reservoir Operation in Texas  

E-Print Network [OSTI]

Effective management of its surface water resources is essential to the continued growth and prosperity of the state of Texas. Rapid population and economic growth combined with depleting ground water reserves are resulting in ever increasing...

Wurbs, Ralph A.

53

Reduction of Hexavalent Chromium in Soil and Ground Water Using Zero-Valent Iron Under Batch and Semi-Batch Conditions  

Science Journals Connector (OSTI)

Chemical remediation of soil and groundwater containing hexavalent chromium (Cr(VI)) was carried out under batch and semi-batch conditions using different iron species: (Fe(II) (sulphate solution); Fe0 ...

Dbora V. Franco; Leonardo M. Da Silva; Wilson F. Jardim

2009-02-01T23:59:59.000Z

54

Exergy Analysis and Operational Efficiency of a Horizontal Ground Source Heat Pump System Operated in a Low-Energy Test House under Simulated Occupancy Conditions  

SciTech Connect (OSTI)

This paper presents data, analyses, measures of performance, and conclusions for a ground-source heat pump (GSHP) providing space conditioning to a 345m2 house whose envelope is made of structural insulated panels (SIP). The entire thermal load of this SIP house with RSI-3.7 (RUS-21) walls, triple pane windows with a U-factor of 1.64 W/m2 K (0.29 Btu/h ft2 oF) and solar heat gain coefficient (SHGC) of 0.25, a roof assembly with overall thermal resistance of about RSI-8.8 (RUS-50) and low leakage rates of 0.74 ACH at 50Pa was satisfied with a 2.16-Ton (7.56 kW) GSHP unit consuming negligible (9.83kWh) auxiliary heat during peak winter season. The highest and lowest heating COP achieved was 4.90 (October) and 3.44 (February), respectively. The highest and lowest cooling COP achieved was 6.09 (April) and 3.88 (August). These COPs are calculated on the basis of the total power input (including duct, ground loop, and control power losses ). The second Law (Exergy) analysis provides deep insight into how systemic inefficiencies are distributed among the various GSHP components. Opportunities for design and further performance improvements are identified. Through Exergy analysis we provide a true measure of how closely actual performance approaches the ideal, and it unequivocally identifies, better than energy analysis does, the sources and causes of lost work, the root cause of system inefficiencies.

Ally, Moonis Raza [ORNL; Baxter, Van D [ORNL; Munk, Jeffrey D [ORNL; Gehl, Anthony C [ORNL

2012-01-01T23:59:59.000Z

55

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The  

Open Energy Info (EERE)

Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal Exploration And Reservoir Monitoring Using Earthquakes And The Passive Seismic Method Details Activities (1) Areas (1) Regions (0) Abstract: This paper reviews the use of earthquake studies in the field of geothermal exploration. Local, regional and teleseismic events can all provide useful information about a geothermal area on various scales. It is imperative that data collection is conducted in properly designed, realistic experiments. Ground noise is still of limited usefulness as a prospecting tool. The utility of the method cannot yet be assessed because of its undeveloped methodology and the paucity of case histories.

56

NANOSENSORS AS RESERVOIR ENGINEERING TOOLS TO MAP IN-  

E-Print Network [OSTI]

.................................................................................. 1 1.1.1. The Role of Geothermal Energy........................................................ IN GEOTHERMAL RESERVOIRS By Morgan Ames June 2011 Financial support was provided through the Stanford Geothermal Program under Department of Energy (under contract number DE-FG36-08GO18192). Stanford University Stanford

Stanford University

57

EIS-0404: Los Vaqueros Reservoir Expansion Project, California | Department  

Broader source: Energy.gov (indexed) [DOE]

404: Los Vaqueros Reservoir Expansion Project, California 404: Los Vaqueros Reservoir Expansion Project, California EIS-0404: Los Vaqueros Reservoir Expansion Project, California Summary This EIS/Environmental Impact Report was prepared by the Department of the Interior (Bureau of Reclamation, Mid-Pacific Region) and the Contra Costa Water District to evaluate the environmental impacts of a proposal to enlarge the existing Los Vaqueros Reservoir in Contra Costa County, California. DOE's Western Area Power Administration (Western) was a cooperating agency because it has jurisdiction over transmission facilities that were expected to be relocated under the proposed action. Based on project changes, however, Western has no action and therefore will not adopt the EIS or issue a ROD. Public Comment Opportunities No public comment opportunities available at this time.

58

Simulation and Design of Ground-Penetrating Radar for Mars Exploration C. J. Leuschen1  

E-Print Network [OSTI]

-surface aqueous reservoirs. This paper outlines the simulation and development of a lightweight, low-power, ground life. Finally, any accessible reservoirs could provide crucial resources for future manned exploration the framework of historical geology [3]." It expresses the relationship of the rocks and soils of the terrain

Kansas, University of

59

GEOTHERMAL RESOURCE AND RESERVOIR INVESTIGATIONS OF U.S. BUREAU OF RECLAMATION LEASEHOLDS AT EAST MESA, IMPERIAL VALLEY, CALIFORNIA  

E-Print Network [OSTI]

of geothermal resources in the Imperial Valley ofO N GEOTHERMAL RESOURCE INVESTIGATIONS IMPERIAL VALLEY. C Ageothermal reservoir underlying the East Mesa area, Imperial Valley,

2009-01-01T23:59:59.000Z

60

Data requirements and acquisition for reservoir characterization  

SciTech Connect (OSTI)

This report outlines the types of data, data sources and measurement tools required for effective reservoir characterization, the data required for specific enhanced oil recovery (EOR) processes, and a discussion on the determination of the optimum data density for reservoir characterization and reservoir modeling. The two basic sources of data for reservoir characterization are data from the specific reservoir and data from analog reservoirs, outcrops, and modern environments. Reservoir data can be divided into three broad categories: (1) rock properties (the container) and (2) fluid properties (the contents) and (3)interaction between reservoir rock and fluid. Both static and dynamic measurements are required.

Jackson, S.; Chang, Ming Ming; Tham, Min.

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Peer Reviewed: Experimenting with Hydroelectric Reservoirs  

Science Journals Connector (OSTI)

Peer Reviewed: Experimenting with Hydroelectric Reservoirs ... Researchers created reservoirs in Canada to explore the impacts of hydroelectric developments on greenhouse gas and methylmercury production. ...

R. A. Bodaly; Kenneth G. Beaty; Len H. Hendzel; Andrew R. Majewski; Michael J. Paterson; Kristofer R. Rolfhus; Alan F. Penn; Vincent L. St. Louis; Britt D. Hall; Cory J. D. Matthews; Katharine A. Cherewyk; Mariah Mailman; James P. Hurley; Sherry L. Schiff; Jason J. Venkiteswaran

2004-09-15T23:59:59.000Z

62

FRACTURED PETROLEUM RESERVOIRS  

SciTech Connect (OSTI)

The four chapters that are described in this report cover a variety of subjects that not only give insight into the understanding of multiphase flow in fractured porous media, but they provide also major contribution towards the understanding of flow processes with in-situ phase formation. In the following, a summary of all the chapters will be provided. Chapter I addresses issues related to water injection in water-wet fractured porous media. There are two parts in this chapter. Part I covers extensive set of measurements for water injection in water-wet fractured porous media. Both single matrix block and multiple matrix blocks tests are covered. There are two major findings from these experiments: (1) co-current imbibition can be more efficient than counter-current imbibition due to lower residual oil saturation and higher oil mobility, and (2) tight fractured porous media can be more efficient than a permeable porous media when subjected to water injection. These findings are directly related to the type of tests one can perform in the laboratory and to decide on the fate of water injection in fractured reservoirs. Part II of Chapter I presents modeling of water injection in water-wet fractured media by modifying the Buckley-Leverett Theory. A major element of the new model is the multiplication of the transfer flux by the fractured saturation with a power of 1/2. This simple model can account for both co-current and counter-current imbibition and computationally it is very efficient. It can be orders of magnitude faster than a conventional dual-porosity model. Part II also presents the results of water injection tests in very tight rocks of some 0.01 md permeability. Oil recovery from water imbibition tests from such at tight rock can be as high as 25 percent. Chapter II discusses solution gas-drive for cold production from heavy-oil reservoirs. The impetus for this work is the study of new gas phase formation from in-situ process which can be significantly different from that of gas displacement processes. The work is of experimental nature and clarifies several misconceptions in the literature. Based on experimental results, it is established that the main reason for high efficiency of solution gas drive from heavy oil reservoirs is due to low gas mobility. Chapter III presents the concept of the alteration of porous media wettability from liquid-wetting to intermediate gas-wetting. The idea is novel and has not been introduced in the petroleum literature before. There are significant implications from such as proposal. The most direct application of intermediate gas wetting is wettability alteration around the wellbore. Such an alteration can significantly improve well deliverability in gas condensate reservoirs where gas well deliverability decreases below dewpoint pressure. Part I of Chapter III studies the effect of gravity, viscous forces, interfacial tension, and wettability on the critical condensate saturation and relative permeability of gas condensate systems. A simple phenomenological network model is used for this study, The theoretical results reveal that wettability significantly affects both the critical gas saturation and gas relative permeability. Gas relative permeability may increase ten times as contact angle is altered from 0{sup o} (strongly liquid wet) to 85{sup o} (intermediate gas-wetting). The results from the theoretical study motivated the experimental investigation described in Part II. In Part II we demonstrate that the wettability of porous media can be altered from liquid-wetting to gas-wetting. This part describes our attempt to find appropriate chemicals for wettability alteration of various substrates including rock matrix. Chapter IV provides a comprehensive treatment of molecular, pressure, and thermal diffusion and convection in porous media Basic theoretical analysis is presented using irreversible thermodynamics.

Abbas Firoozabadi

1999-06-11T23:59:59.000Z

63

TEXAS A&M UNIVERSITY Reservoir Geophysics Program  

E-Print Network [OSTI]

includes applications to clastic reservoirs, heavy oil reservoirs, gas/oil shale, gas hydrates. Basic

64

Analysis of real-time reservoir monitoring : reservoirs, strategies, & modeling.  

SciTech Connect (OSTI)

The project objective was to detail better ways to assess and exploit intelligent oil and gas field information through improved modeling, sensor technology, and process control to increase ultimate recovery of domestic hydrocarbons. To meet this objective we investigated the use of permanent downhole sensors systems (Smart Wells) whose data is fed real-time into computational reservoir models that are integrated with optimized production control systems. The project utilized a three-pronged approach (1) a value of information analysis to address the economic advantages, (2) reservoir simulation modeling and control optimization to prove the capability, and (3) evaluation of new generation sensor packaging to survive the borehole environment for long periods of time. The Value of Information (VOI) decision tree method was developed and used to assess the economic advantage of using the proposed technology; the VOI demonstrated the increased subsurface resolution through additional sensor data. Our findings show that the VOI studies are a practical means of ascertaining the value associated with a technology, in this case application of sensors to production. The procedure acknowledges the uncertainty in predictions but nevertheless assigns monetary value to the predictions. The best aspect of the procedure is that it builds consensus within interdisciplinary teams The reservoir simulation and modeling aspect of the project was developed to show the capability of exploiting sensor information both for reservoir characterization and to optimize control of the production system. Our findings indicate history matching is improved as more information is added to the objective function, clearly indicating that sensor information can help in reducing the uncertainty associated with reservoir characterization. Additional findings and approaches used are described in detail within the report. The next generation sensors aspect of the project evaluated sensors and packaging survivability issues. Our findings indicate that packaging represents the most significant technical challenge associated with application of sensors in the downhole environment for long periods (5+ years) of time. These issues are described in detail within the report. The impact of successful reservoir monitoring programs and coincident improved reservoir management is measured by the production of additional oil and gas volumes from existing reservoirs, revitalization of nearly depleted reservoirs, possible re-establishment of already abandoned reservoirs, and improved economics for all cases. Smart Well monitoring provides the means to understand how a reservoir process is developing and to provide active reservoir management. At the same time it also provides data for developing high-fidelity simulation models. This work has been a joint effort with Sandia National Laboratories and UT-Austin's Bureau of Economic Geology, Department of Petroleum and Geosystems Engineering, and the Institute of Computational and Engineering Mathematics.

Mani, Seethambal S.; van Bloemen Waanders, Bart Gustaaf; Cooper, Scott Patrick; Jakaboski, Blake Elaine; Normann, Randy Allen; Jennings, Jim (University of Texas at Austin, Austin, TX); Gilbert, Bob (University of Texas at Austin, Austin, TX); Lake, Larry W. (University of Texas at Austin, Austin, TX); Weiss, Chester Joseph; Lorenz, John Clay; Elbring, Gregory Jay; Wheeler, Mary Fanett (University of Texas at Austin, Austin, TX); Thomas, Sunil G. (University of Texas at Austin, Austin, TX); Rightley, Michael J.; Rodriguez, Adolfo (University of Texas at Austin, Austin, TX); Klie, Hector (University of Texas at Austin, Austin, TX); Banchs, Rafael (University of Texas at Austin, Austin, TX); Nunez, Emilio J. (University of Texas at Austin, Austin, TX); Jablonowski, Chris (University of Texas at Austin, Austin, TX)

2006-11-01T23:59:59.000Z

65

Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment.  

E-Print Network [OSTI]

Optimization of Advanced Ground-Coupled Heat Pump Systems A heat pump is a technology in which heating and cooling are provided by a single piece of equipment. In a Ground Coupled Heat Pump (GCHP) system a length of pipe is buried in the ground and the ground acts as a reservoir to store the heat

Wisconsin at Madison, University of

66

Chickamauga reservoir embayment study - 1990  

SciTech Connect (OSTI)

The objectives of this report are three-fold: (1) assess physical, chemical, and biological conditions in the major embayments of Chickamauga Reservoir; (2) compare water quality and biological conditions of embayments with main river locations; and (3) identify any water quality concerns in the study embayments that may warrant further investigation and/or management actions. Embayments are important areas of reservoirs to be considered when assessments are made to support water quality management plans. In general, embayments, because of their smaller size (water surface areas usually less than 1000 acres), shallower morphometry (average depth usually less than 10 feet), and longer detention times (frequently a month or more), exhibit more extreme responses to pollutant loadings and changes in land use than the main river region of the reservoir. Consequently, embayments are often at greater risk of water quality impairments (e.g. nutrient enrichment, filling and siltation, excessive growths of aquatic plants, algal blooms, low dissolved oxygen concentrations, bacteriological contamination, etc.). Much of the secondary beneficial use of reservoirs occurs in embayments (viz. marinas, recreation areas, parks and beaches, residential development, etc.). Typically embayments comprise less than 20 percent of the surface area of a reservoir, but they often receive 50 percent or more of the water-oriented recreational use of the reservoir. This intensive recreational use creates a potential for adverse use impacts if poor water quality and aquatic conditions exist in an embayment.

Meinert, D.L.; Butkus, S.R.; McDonough, T.A.

1992-12-01T23:59:59.000Z

67

Reservoir characterization of Pennsylvanian Sandstone Reservoirs. Annual report  

SciTech Connect (OSTI)

This annual report describes the progress during the second year of a project on Reservoir Characterization of Pennsylvanian Sandstone Reservoirs. The report is divided into three sections: (i) reservoir description and scale-up procedures; (ii) outcrop investigation; (iii) in-fill drilling potential. The first section describes the methods by which a reservoir can be characterized, can be described in three dimensions, and can be scaled up with respect to its properties, appropriate for simulation purposes. The second section describes the progress on investigation of an outcrop. The outcrop is an analog of Bartlesville Sandstone. We have drilled ten wells behind the outcrop and collected extensive log and core data. The cores have been slabbed, photographed and the several plugs have been taken. In addition, minipermeameter is used to measure permeabilities on the core surface at six inch intervals. The plugs have been analyzed for the permeability and porosity values. The variations in property values will be tied to the geological descriptions as well as the subsurface data collected from the Glen Pool field. The third section discusses the application of geostatistical techniques to infer in-fill well locations. The geostatistical technique used is the simulated annealing technique because of its flexibility. One of the important reservoir data is the production data. Use of production data will allow us to define the reservoir continuities, which may in turn, determine the in-fill well locations. The proposed technique allows us to incorporate some of the production data as constraints in the reservoir descriptions. The technique has been validated by comparing the results with numerical simulations.

Kelkar, M.

1992-09-01T23:59:59.000Z

68

Protecting entangled states of two ions by engineering reservoir  

E-Print Network [OSTI]

We present a proposal for realizing local decoherence-free evolution of given entangled states of two two-level (TL) ions. For two TL ions coupled to a single heavily damped cavity, we can use engineering reservoir scheme to obtain a decoherence-free subspace which can be nonadiabatically controlled by the system and reservoir parameters. Then the local decoherence-free evolution of the entangled states are achieved. And we also discuss the relation between the geometric phases and the entanglement of the two ions under the nonadiabatic coherent evolution.

Dong Xue; Jian Zou; Lin-Guang Yang; Jun-Gang Li; Bin Shao

2011-08-10T23:59:59.000Z

69

THMC Modeling of EGS Reservoirs ? Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity  

Broader source: Energy.gov [DOE]

THMC Modeling of EGS Reservoirs ? Continuum through Discontinuum Representations: Capturing Reservoir Stimulation, Evolution and Induced Seismicity presentation at the April 2013 peer review meeting held in Denver, Colorado.

70

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

71

Modeling of Geothermal Reservoirs: Fundamental Processes, Computer  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Modeling of Geothermal Reservoirs: Fundamental Processes, Computer Simulation and Field Applications Abstract This article attempts to critically evaluate the present state of the art of geothermal reservoir simulation. Methodological aspects of geothermal reservoir modeling are briefly reviewed, with special emphasis on flow in fractured media. We then examine some applications of numerical simulation to studies of reservoir dynamics, well test design and analysis, and modeling of specific fields. Tangible impacts of reservoir simulation

72

NETL: Methane Hydrates - DOE/NETL Projects - Advanced Hydrate Reservoir  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Advanced Hydrate Reservoir Modeling Using Rock Physics Techniques Last Reviewed 11/29/2013 Advanced Hydrate Reservoir Modeling Using Rock Physics Techniques Last Reviewed 11/29/2013 DE-FE0010160 Goal The primary goal of this research is to develop analytical techniques capable of quantitatively evaluating the nature of methane hydrate reservoir systems through modeling of their acoustic response using techniques that integrate rock physics theory, amplitude analysis, and spectral decomposition. Performers Fugro GeoConsulting, Inc., Houston TX Background Past efforts under the DOE-supported Gulf of Mexico Joint Industry project included the selection of well locations utilizing prospectivity analysis based primarily on a petroleum systems approach for gas hydrate using 3-D exploration seismic data and derivative analyses that produced predicted

73

Characterization of oil and gas reservoirs and recovery technology deployment on Texas State Lands  

SciTech Connect (OSTI)

Texas State Lands oil and gas resources are estimated at 1.6 BSTB of remaining mobile oil, 2.1 BSTB, or residual oil, and nearly 10 Tcf of remaining gas. An integrated, detailed geologic and engineering characterization of Texas State Lands has created quantitative descriptions of the oil and gas reservoirs, resulting in delineation of untapped, bypassed compartments and zones of remaining oil and gas. On Texas State Lands, the knowledge gained from such interpretative, quantitative reservoir descriptions has been the basis for designing optimized recovery strategies, including well deepening, recompletions, workovers, targeted infill drilling, injection profile modification, and waterflood optimization. The State of Texas Advanced Resource Recovery program is currently evaluating oil and gas fields along the Gulf Coast (South Copano Bay and Umbrella Point fields) and in the Permian Basin (Keystone East, Ozona, Geraldine Ford and Ford West fields). The program is grounded in advanced reservoir characterization techniques that define the residence of unrecovered oil and gas remaining in select State Land reservoirs. Integral to the program is collaboration with operators in order to deploy advanced reservoir exploitation and management plans. These plans are made on the basis of a thorough understanding of internal reservoir architecture and its controls on remaining oil and gas distribution. Continued accurate, detailed Texas State Lands reservoir description and characterization will ensure deployment of the most current and economically viable recovery technologies and strategies available.

Tyler, R.; Major, R.P.; Holtz, M.H. [Univ. of Texas, Austin, TX (United States)] [and others

1997-08-01T23:59:59.000Z

74

Seismic modeling of complex stratified reservoirs  

E-Print Network [OSTI]

for such complex reservoirs is crucial and necessary to reduce exploration risk. A fast and accurate approach generating synthetic seismograms for such reservoir models combines wavefront construction ray tracing with composite reflection coefficients in a hybrid...

Lai, Hung-Liang

2009-05-15T23:59:59.000Z

75

Simplified methods of modeling multilayer reservoirs  

E-Print Network [OSTI]

The purpose of this study is to develop simplified methods to model multilayer reservoirs. We examined the method to model well responses of multilayer reservoirs with equivalent single layer solutions during transient flow period which Bennett...

Ryou, Sangsoo

1993-01-01T23:59:59.000Z

76

Comparative Evaluation of Generalized River/Reservoir System Models  

E-Print Network [OSTI]

This report reviews user-oriented generalized reservoir/river system models. The terms reservoir/river system, reservoir system, reservoir operation, or river basin management "model" or "modeling system" are used synonymously to refer to computer...

Wurbs, Ralph A.

77

Reservoir compaction loads on casings and liners  

SciTech Connect (OSTI)

Pressure drawdown due to production from a reservoir causes compaction of the reservoir formation which induces axial and radial loads on the wellbore. Reservoir compaction loads increase during the production life of a well, and are greater for deviated wells. Presented here are casing and liner loads at initial and final pressure drawdowns for a particular reservoir and at well deviation angles of 0 to 45 degrees.

Wooley, G.R.; Prachner, W.

1984-09-01T23:59:59.000Z

78

Optimization Online - Managing Hydroelectric Reservoirs over an ...  

E-Print Network [OSTI]

Jul 7, 2013 ... Managing Hydroelectric Reservoirs over an Extended Planning Horizon using a Benders Decomposition Algorithm Exploiting a Memory Loss...

Pierre-Luc Carpentier

2013-07-07T23:59:59.000Z

79

Tenth workshop on geothermal reservoir engineering: proceedings  

SciTech Connect (OSTI)

The workshop contains presentations in the following areas: (1) reservoir engineering research; (2) field development; (3) vapor-dominated systems; (4) the Geysers thermal area; (5) well test analysis; (6) production engineering; (7) reservoir evaluation; (8) geochemistry and injection; (9) numerical simulation; and (10) reservoir physics. (ACR)

Not Available

1985-01-22T23:59:59.000Z

80

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCES Paul Kruger and Henry J . Ramey, Jr . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 THE GEOTHERMAL CHIMNEY MODEL . . . . . . . . . . . . . . . . . . . 3 Current Design of t h e . . . . . . . . . . . . . . . 67 Geothermal Reservoir Phy.Sica1 PIodels . . . . . . . . . . . . 73 RAD3N I N GEOTHERMAL RESERVOIRS

Stanford University

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydroelectric Reservoirs -the Carbon Dioxide and Methane  

E-Print Network [OSTI]

Hydroelectric Reservoirs - the Carbon Dioxide and Methane Emissions of a "Carbon Free" Energy an overview on the greenhouse gas production of hydroelectric reservoirs. The goals are to point out the main how big the greenhouse gas emissions from hydroelectric reservoirs are compared to thermo-power plants

Fischlin, Andreas

82

Ground water and energy  

SciTech Connect (OSTI)

This national workshop on ground water and energy was conceived by the US Department of Energy's Office of Environmental Assessments. Generally, OEA needed to know what data are available on ground water, what information is still needed, and how DOE can best utilize what has already been learned. The workshop focussed on three areas: (1) ground water supply; (2) conflicts and barriers to ground water use; and (3) alternatives or solutions to the various issues relating to ground water. (ACR)

Not Available

1980-11-01T23:59:59.000Z

83

Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III  

SciTech Connect (OSTI)

This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

2001-08-07T23:59:59.000Z

84

IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS - NEAR TERM - CLASS 2  

SciTech Connect (OSTI)

This annual report describes progress during the final year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of the project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. As part of the project, tools and techniques for reservoir description and management were developed, modified and demonstrated, including PfEFFER spreadsheet log analysis software. The world-wide-web was used to provide rapid and flexible dissemination of the project results through the Internet. A summary of demonstration phase at the Schaben and Ness City North sites demonstrates the effectiveness of the proposed reservoir management strategies and technologies. At the Schaben Field, a total of 22 additional locations were evaluated based on the reservoir characterization and simulation studies and resulted in a significant incremental production increase. At Ness City North Field, a horizontal infill well (Mull Ummel No.4H) was planned and drilled based on the results of reservoir characterization and simulation studies to optimize the location and length. The well produced excellent and predicted oil rates for the first two months. Unexpected presence of vertical shale intervals in the lateral resulted in loss of the hole. While the horizontal well was not economically successful, the technology was demonstrated to have potential to recover significant additional reserves in Kansas and the Midcontinent. Several low-cost approaches were developed to evaluate candidate reservoirs for potential horizontal well applications at the field scale, lease level, and well level, and enable the small independent producer to identify efficiently candidate reservoirs and also to predict the performance of horizontal well applications.

Timothy R. Carr; Don W. Green; G. Paul Willhite

2000-04-30T23:59:59.000Z

85

Ground movements associated with gas hydrate production. Progress report, July 1--September 30, 1992  

SciTech Connect (OSTI)

The grantee will evaluate the influence of hydrate production on ground subsidence near the wellbore and the surface. The objective of this research will be achieved by using computer simulations of what is expected in a hydrate reservoir during the production stage as reported by hydrate production models and available data. The model will be based on theories of continuum mechanics, thermomechanics of hydrate production, principles of rock mechanics and geomechanics, and special features of geomaterials under cold temperatures such as those found in permafrost regions. The research work involved in the proposed investigation will be divided into three major tasks: (1) Mechanics of subsidence in permafrost regions; (2) modeling of subsidence; and (3) parametric studies. Progress reports are presented for tasks 1 and 2.

Siriwardane, H.J.

1992-12-31T23:59:59.000Z

86

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

87

4. International reservoir characterization technical conference  

SciTech Connect (OSTI)

This volume contains the Proceedings of the Fourth International Reservoir Characterization Technical Conference held March 2-4, 1997 in Houston, Texas. The theme for the conference was Advances in Reservoir Characterization for Effective Reservoir Management. On March 2, 1997, the DOE Class Workshop kicked off with tutorials by Dr. Steve Begg (BP Exploration) and Dr. Ganesh Thakur (Chevron). Tutorial presentations are not included in these Proceedings but may be available from the authors. The conference consisted of the following topics: data acquisition; reservoir modeling; scaling reservoir properties; and managing uncertainty. Selected papers have been processed separately for inclusion in the Energy Science and Technology database.

NONE

1997-04-01T23:59:59.000Z

88

Factors affecting water quality in Cherokee Reservoir  

SciTech Connect (OSTI)

The purpose was to: (1) define reservoir problems related to water quality conditions; (2) identify the probable causes of these problems; and (3) recommend procedures for achieving needed reservoir water quality improvements. This report presents the project findings to date and suggests steps for upgrading the quality of Cherokee Reservoir. Section II presents background information on the characteristics of the basin, the reservoir, and the beneficial uses of the reservoir. Section III identifies the impacts of existing reservoir water quality on uses of the reservoir for water supply, fishery resources, recreation, and waste assimilation. Section IV presents an assessment of cause-effect relationships. The factors affecting water quality addressed in Section IV are: (1) reservoir thermal stratification and hydrodynamics; (2) dissolved oxygen depletion; (3) eutrophication; (4) toxic substances; and (5) reservoir fisheries. Section V presents a preliminary evaluation of alternatives for improving the quality of Cherokee Reservoir. Section VI presents preliminary conclusions and recommendations for developing and implementing a reservoir water quality management plan. 7 references, 22 figures, 21 tables.

Iwanski, M.L.; Higgins, J.M.; Kim, B.R.; Young, R.C.

1980-07-01T23:59:59.000Z

89

Ground Vibration Measurement  

Science Journals Connector (OSTI)

Measurement of ground vibration is important for checking of amplitudes of ... confirmation of efficiency of control measures of ground vibration. The properties of measuring instruments used can affect the resul...

Dr. Milutin Srbulov

2010-01-01T23:59:59.000Z

90

Numerical Code Comparison Project - A Necessary Step Towards Confidence in Geothermal Reservoir Simulators  

SciTech Connect (OSTI)

A necessary first step in resolving differences and in evaluating the usefulness of numerical simulators for geothermal reservoir analysis is the comparison of simulator results for a set of well-specified problems involving processes applicable in reservoir analysis. Under the direction of DOE'S Geothermal Reservoir Engineering Management Program (GREMP), a set of six test problems has been developed in an attempt to meet this need. The problem set covers a range of reservoir situations including single- and two-phase flow under 1, 2, and 3 dimensional conditions. Each problem has been test run to insure that the parameter specifications will yield workable solutions, and in several cases analytical solutions are available for comparison. Brief descriptions of the problems are given in each problem, the desired grid and time-step sizes were specified to minimize differences in results due to numerical discretization.

Sorey, Michael L.

1980-12-16T23:59:59.000Z

91

Reservoir monitoring: 1990 summary of vital signs and use impairment monitoring on Tennessee Valley Reservoirs  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA) initiated a Reservoir Monitoring Program on 12 TVA reservoirs (the nine main stream Tennessee river reservoirs -- Kentucky through Fort Loudoun and three major tributary storage reservoirs -- Cherokee, Douglas, and Norris) in autumn 1989. The objective of the Reservoir Monitoring Program is to provide basic information on the ``health`` or integrity of the aquatic ecosystem in each TVA reservoir (``Vital Signs``) and to provide screening level information for describing how well each reservoir meets the swimmable and fishable goals of the Clean Water Act (Use Impairments). This is the first time in the history of the agency that a commitment to a long-term, systematic sampling of major TVA reservoirs has been made. The basis of the Vital Signs Monitoring is examination of appropriate physical, chemical, and biological indicators in three areas of each reservoir. These three areas are the forebay immediately upstream of the dam; the transition zone (the mid-reservoir region where the water changes from free flowing to more quiescent, impounded water); and the inflow or headwater region of the reservoir. The Use Impairments monitoring provides screening level information on the suitability of selected areas within TVA reservoirs for water contact activities (swimmable) and suitability of fish from TVA reservoirs for human consumption (fishable).

Dycus, D.L.; Meinert, D.L.

1991-08-01T23:59:59.000Z

92

Reservoir monitoring: 1990 summary of vital signs and use impairment monitoring on Tennessee Valley Reservoirs  

SciTech Connect (OSTI)

The Tennessee Valley Authority (TVA) initiated a Reservoir Monitoring Program on 12 TVA reservoirs (the nine main stream Tennessee river reservoirs -- Kentucky through Fort Loudoun and three major tributary storage reservoirs -- Cherokee, Douglas, and Norris) in autumn 1989. The objective of the Reservoir Monitoring Program is to provide basic information on the health'' or integrity of the aquatic ecosystem in each TVA reservoir ( Vital Signs'') and to provide screening level information for describing how well each reservoir meets the swimmable and fishable goals of the Clean Water Act (Use Impairments). This is the first time in the history of the agency that a commitment to a long-term, systematic sampling of major TVA reservoirs has been made. The basis of the Vital Signs Monitoring is examination of appropriate physical, chemical, and biological indicators in three areas of each reservoir. These three areas are the forebay immediately upstream of the dam; the transition zone (the mid-reservoir region where the water changes from free flowing to more quiescent, impounded water); and the inflow or headwater region of the reservoir. The Use Impairments monitoring provides screening level information on the suitability of selected areas within TVA reservoirs for water contact activities (swimmable) and suitability of fish from TVA reservoirs for human consumption (fishable).

Dycus, D.L.; Meinert, D.L.

1991-08-01T23:59:59.000Z

93

Hydraulic fracturing in a naturally fractured reservoir  

SciTech Connect (OSTI)

Hydraulic fracturing of wells in naturally fractured reservoirs can differ dramatically from fracturing wells in conventional isotropic reservoirs. Fluid leakoff is the primary difference. In conventional reservoirs, fluid leakoff is controlled by reservoir matrix and fracture fluid parameters. The fluid leakoff rate in naturally fractured reservoirs is typically excessive and completely dominated by the natural fractures. This paper presents several field examples of a fracture stimulation program performed on the naturally fractured Devonia carbonate of West Texas. Qualitative pressure decline analysis and net treating pressure interpretation techniques were utilized to evaluate the existence of natural fractures in the Devonian Formation. Quantitative techniques were utilized to assess the importance of the natural fractures to the fracturing process. This paper demonstrates that bottomhole pressure monitoring of fracture stimulations has benefits over conducting minifrac treatments in naturally fractured reservoirs. Finally, the results of this evaluation were used to redesign fracture treatments to ensure maximum productivity and minimize costs.

Britt, L.K.; Hager, C.J.; Thompson, J.W.

1994-12-31T23:59:59.000Z

94

Pressure maintenance in a volatile oil reservoir  

E-Print Network [OSTI]

reservoir. Historically, produced and makeup gas was injected to maintain pressure. In today's economy. gas has an increasing market value compared to the price of oil. Therefore, it becomes increasingly difficult to justify economically the injection... of produced gas and the purchase of additional make up gas to maintain reservoir pressure. Accordingly, water injection to maintain pressure becomes more favorable economically. This research investigated water injection into a volatile oil reservoir...

Schuster, Bruce Alan

2012-06-07T23:59:59.000Z

95

Integrated reservoir study of the 8 reservoir of the Green Canyon 18 field  

E-Print Network [OSTI]

The move into deeper waters in the Gulf of Mexico has produced new opportunities for petroleum production, but it also has produced new challenges as different reservoir problems are encountered. This integrated reservoir characterization effort has...

Aniekwena, Anthony Udegbunam

2004-11-15T23:59:59.000Z

96

Radioactive Marker Measurements in Heterogeneous Reservoirs ...  

E-Print Network [OSTI]

quence of subsurface fluid water, gas, oil production e.g., Gam- ...... reservoirs.'' J. Pet. Technol., 25, 734744. Gonzalez-Moran, T., Rodriguez, R., and Cortes,...

2004-05-04T23:59:59.000Z

97

The internal wave field in Sau reservoir  

Science Journals Connector (OSTI)

The analysis of wind, temperature, and current data from Sau reservoir (Spain) shows that the third vertical mode ..... However, increased computing power.

2005-06-16T23:59:59.000Z

98

Storage capacity in hot dry rock reservoirs  

DOE Patents [OSTI]

A method of extracting thermal energy, in a cyclic manner, from geologic strata which may be termed hot dry rock. A reservoir comprised of hot fractured rock is established and water or other liquid is passed through the reservoir. The water is heated by the hot rock, recovered from the reservoir, cooled by extraction of heat by means of heat exchange apparatus on the surface, and then re-injected into the reservoir to be heated again. Water is added to the reservoir by means of an injection well and recovered from the reservoir by means of a production well. Water is continuously provided to the reservoir and continuously withdrawn from the reservoir at two different flow rates, a base rate and a peak rate. Increasing water flow from the base rate to the peak rate is accomplished by rapidly decreasing backpressure at the outlet of the production well in order to meet periodic needs for amounts of thermal energy greater than a baseload amount, such as to generate additional electric power to meet peak demands. The rate of flow of water provided to the hot dry rock reservoir is maintained at a value effective to prevent depletion of the liquid

Brown, Donald W. (Los Alamos, NM)

1997-01-01T23:59:59.000Z

99

International reservoir operations agreement helps NW fish &...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or 503-230-5131 International reservoir operations agreement helps Northwest fish and power Portland, Ore. - The Bonneville Power Administration and the British Columbia...

100

Evaluation Of Chemical Geothermometers For Calculating Reservoir...  

Open Energy Info (EERE)

Geothermometers For Calculating Reservoir Temperatures At Nevada Geothermal Power Plants Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal: Sponsored by OSTI -- Reservoir Pressure Management  

Office of Scientific and Technical Information (OSTI)

Reservoir Pressure Management Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

102

Analysis of Geothermal Reservoir Stimulation Using Geomechanics...  

Broader source: Energy.gov (indexed) [DOE]

System (EGS) Reservoir; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

103

Mapping Diffuse Seismicity for Geothermal Reservoir Management...  

Broader source: Energy.gov (indexed) [DOE]

Templeton David B. Harris Lawrence Livermore Natl. Lab. Seismicity and Reservoir Fracture Characterization May 18, 2010 This presentation does not contain any proprietary...

104

The internal wave field in Sau reservoir  

Science Journals Connector (OSTI)

The analysis of wind, temperature, and current data from Sau reservoir (Spain) shows that the ... of the total wind energy input into the lake (West and Lorke.

2005-06-16T23:59:59.000Z

105

Safety of Dams and Reservoirs Act (Nebraska)  

Broader source: Energy.gov [DOE]

This act regulates dams and associated reservoirs to protect health and public safety and minimize adverse consequences associated with potential dam failure. The act describes the responsibilities...

106

IMPROVED OIL RECOVERY IN MISSISSIPPIAN CARBONATE RESERVOIRS OF KANSAS--NEAR TERM--CLASS 2  

SciTech Connect (OSTI)

This annual report describes progress during the third year of the project entitled ''Improved Oil Recovery in Mississippian Carbonate Reservoirs in Kansas''. This project funded under the Department of Energy's Class 2 program targets improving the reservoir performance of mature oil fields located in shallow shelf carbonate reservoirs. The focus of this project is development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent. The project introduced a number of potentially useful technologies, and demonstrated these technologies in actual oil field operations. Advanced technology was tailored specifically to the scale appropriate to the operations of Kansas producers. An extensive technology transfer effort is ongoing. Traditional technology transfer methods (e.g., publications and workshops) are supplemented with a public domain relational database and an online package of project results that is available through the Internet. The goal is to provide the independent complete access to project data, project results and project technology on their desktop. Included in this report is a summary of significant project results at the demonstration site (Schaben Field, Ness County, Kansas). The value of cost-effective techniques for reservoir characterization and simulation at Schaben Field were demonstrated to independent operators. All major operators at Schaben have used results of the reservoir management strategy to locate and drill additional infill locations. At the Schaben Demonstration Site, the additional locations resulted in incremental production increases of 200 BOPD from a smaller number of wells.

Timothy R. Carr; Don W. Green; G. Paul Willhite

1999-06-01T23:59:59.000Z

107

Little Climates -- Weather Just Above The Ground  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Weather Just Above The Ground Weather Just Above The Ground Nature Bulletin No. 481-A February 17, 1973 Forest Preserve District of Cook County George W, Dunne, President Roland F. Eisenbeis, Supt. of Conservation LITTLE CLIMATES -- Weather Just Above the Ground In a previous bulletin we talked about little climates, underground, resulting from weather conditions in the soil. Just above the ground there is another "little climate" equally important. We frequently see evidences of it without realizing how and why they were produced. Just above the earth, there lies a narrow layer of changeable weather that is affected at both surfaces by its mighty neighbors: the land below and the restless air in the atmosphere above it. Under the spell of gravity, it clings to the ground in spite of all but the swiftest winds. In this layer there are special weather conditions overlooked by nearly everyone.

108

Multi-phase flow well test analysis in multi-layer reservoirs  

SciTech Connect (OSTI)

This paper investigates the performance of an oil well under multi-phase flow test conditions when the reservoir pressure falls below the bubble point pressure and is correspond with the performance of dissolved gas reservoirs. The model reservoir comprises two commingled layer, where a well test is conducted on a fully perforated interval. The water phase is assumed immobile. The main objective of this work is to interpret the flowing well pressure response and to predict reservoir characteristics based on its performance. The work presented is based on a constant terminal rate analysis, but it can also applied to constant bottomhole pressure and can be used to predict the Inflow Performance Relationship (IPR).

Jatmiko, W.; Archer, J.S. [Imperial College, London (United Kingdom); Daltaban, T.S.

1996-12-31T23:59:59.000Z

109

An adaptive observer for hyperbolic systems with application to UnderBalanced  

E-Print Network [OSTI]

, permeability and 1 This work was supported by the Norwegian Research Council. porosity of the reservoir, gas of creating a borehole up to several thousand meters deep into the ground, until an oil reservoir is reached. The drilling fluid cools down the drillbit, and evacuates rock cuttings. More importantly, it pressurizes

Boyer, Edmond

110

Substation grounding optimization.  

E-Print Network [OSTI]

??Substation grounding is a critical part of the overall electric power system. It is designed to not only provide a path to dissipate electric currents (more)

Balev, Vadim

2014-01-01T23:59:59.000Z

111

Substation grounding programs  

SciTech Connect (OSTI)

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 3, is a users manual and an installation and validation manual for the computer program SGSYS (Substation Grounding SYStem Analysis Program). This program analyzes the substation ground field given the total electric current injected into the ground field and the design of the grounding system. Standard outputs of the program are (1) total ground resistance, (2) step voltage, (3) touch voltage, (4) voltages on a grid of points, (5) voltage profile along straight lines, (6) transfer voltages, (7) ground potential rise, (8) body currents, (9) step voltage profile along straight lines, and (10) touch voltage profile along straight lines. This program can be utilized in an interactive or batch mode. In the interactive mode, the user defines the grounding system geometry, soil parameters, and output requests interactively, with the use of a user friendly conversational program. The users manual describes data requirements and data preparation procedures. An appendix provides forms which facilitate data collection procedures. The installation and validation manual describes the computer files which make up the program SGSYS and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

112

Reservoir characterization using experimental design and response surface methodology  

E-Print Network [OSTI]

This research combines a statistical tool called experimental design/response surface methodology with reservoir modeling and flow simulation for the purpose of reservoir characterization. Very often, it requires large number of reservoir simulation...

Parikh, Harshal

2004-09-30T23:59:59.000Z

113

Optimal Reservoir Management and Well Placement Under Geologic Uncertainty  

E-Print Network [OSTI]

development, the simulation model is calibrated to dynamic data (history matching). One of the aims of the research is to extend the streamline based generalized travel time inversion method for full field models with multimillion cells through the use of grid...

Taware, Satyajit Vijay

2012-10-19T23:59:59.000Z

114

ADVANCED TECHNIQUES FOR RESERVOIR SIMULATION AND MODELING OF NONCONVENTIONAL WELLS  

SciTech Connect (OSTI)

Nonconventional wells, which include horizontal, deviated, multilateral and ''smart'' wells, offer great potential for the efficient management of oil and gas reservoirs. These wells are able to contact larger regions of the reservoir than conventional wells and can also be used to target isolated hydrocarbon accumulations. The use of nonconventional wells instrumented with downhole inflow control devices allows for even greater flexibility in production. Because nonconventional wells can be very expensive to drill, complete and instrument, it is important to be able to optimize their deployment, which requires the accurate prediction of their performance. However, predictions of nonconventional well performance are often inaccurate. This is likely due to inadequacies in some of the reservoir engineering and reservoir simulation tools used to model and optimize nonconventional well performance. A number of new issues arise in the modeling and optimization of nonconventional wells. For example, the optimal use of downhole inflow control devices has not been addressed for practical problems. In addition, the impact of geological and engineering uncertainty (e.g., valve reliability) has not been previously considered. In order to model and optimize nonconventional wells in different settings, it is essential that the tools be implemented into a general reservoir simulator. This simulator must be sufficiently general and robust and must in addition be linked to a sophisticated well model. Our research under this five year project addressed all of the key areas indicated above. The overall project was divided into three main categories: (1) advanced reservoir simulation techniques for modeling nonconventional wells; (2) improved techniques for computing well productivity (for use in reservoir engineering calculations) and for coupling the well to the simulator (which includes the accurate calculation of well index and the modeling of multiphase flow in the wellbore); and (3) accurate approaches to account for the effects of reservoir heterogeneity and for the optimization of nonconventional well deployment. An overview of our progress in each of these main areas is as follows. A general purpose object-oriented research simulator (GPRS) was developed under this project. The GPRS code is managed using modern software management techniques and has been deployed to many companies and research institutions. The simulator includes general black-oil and compositional modeling modules. The formulation is general in that it allows for the selection of a wide variety of primary and secondary variables and accommodates varying degrees of solution implicitness. Specifically, we developed and implemented an IMPSAT procedure (implicit in pressure and saturation, explicit in all other variables) for compositional modeling as well as an adaptive implicit procedure. Both of these capabilities allow for efficiency gains through selective implicitness. The code treats cell connections through a general connection list, which allows it to accommodate both structured and unstructured grids. The GPRS code was written to be easily extendable so new modeling techniques can be readily incorporated. Along these lines, we developed a new dual porosity module compatible with the GPRS framework, as well as a new discrete fracture model applicable for fractured or faulted reservoirs. Both of these methods display substantial advantages over previous implementations. Further, we assessed the performance of different preconditioners in an attempt to improve the efficiency of the linear solver. As a result of this investigation, substantial improvements in solver performance were achieved.

Louis J. Durlofsky; Khalid Aziz

2004-08-20T23:59:59.000Z

115

Electromagnetic Heating Methods for Heavy Oil Reservoirs  

SciTech Connect (OSTI)

The most widely used method of thermal oil recovery is by injecting steam into the reservoir. A well-designed steam injection project is very efficient in recovering oil, however its applicability is limited in many situations. Simulation studies and field experience has shown that for low injectivity reservoirs, small thickness of the oil-bearing zone, and reservoir heterogeneity limits the performance of steam injection. This paper discusses alternative methods of transferring heat to heavy oil reservoirs, based on electromagnetic energy. They present a detailed analysis of low frequency electric resistive (ohmic) heating and higher frequency electromagnetic heating (radio and microwave frequency). They show the applicability of electromagnetic heating in two example reservoirs. The first reservoir model has thin sand zones separated by impermeable shale layers, and very viscous oil. They model preheating the reservoir with low frequency current using two horizontal electrodes, before injecting steam. The second reservoir model has very low permeability and moderately viscous oil. In this case they use a high frequency microwave antenna located near the producing well as the heat source. Simulation results presented in this paper show that in some cases, electromagnetic heating may be a good alternative to steam injection or maybe used in combination with steam to improve heavy oil production. They identify the parameters which are critical in electromagnetic heating. They also discuss past field applications of electromagnetic heating including technical challenges and limitations.

Sahni, A.; Kumar, M.; Knapp, R.B.

2000-05-01T23:59:59.000Z

116

Water quality management plan for Cherokee Reservoir  

SciTech Connect (OSTI)

The management plan provides an assessment of Cherokee Reservoir's current water quality, identifies those factors which affect reservoir water quality, and develops recommendations aimed at restoring or maintaining water quality at levels sufficient to support diverse beneficial uses. 20 references, 8 figures, 15 tables. (ACR)

Not Available

1984-01-01T23:59:59.000Z

117

Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

Reserves in Nonproducing Reservoirs (Million Barrels) Colorado Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

118

INJECTION AND THERMAL BREAKTHROUGH IN FRACTURED GEOTHERMAL RESERVOIRS  

E-Print Network [OSTI]

geothermal reservoirs (except those in the Imperial Valley)Geothermal resource and reservoir investigation of U.S. Bureau of Reclamation Leaseholds at East Mesa, Imperial Valley,

Bodvarsson, Gudmundur S.

2012-01-01T23:59:59.000Z

119

Reservoir Operation by Ant Colony Optimization Algorithms M. R. ...  

E-Print Network [OSTI]

Reservoir Operation by Ant Colony Optimization Algorithms. 1. Reservoir Operation by Ant Colony Optimization Algorithms. M. R. Jalali1; A. Afshar2; and M. A....

Jalali

2000-11-05T23:59:59.000Z

120

Louisiana State Offshore Crude Oil + Lease Condensate New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) Louisiana State Offshore Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade...

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2...

122

ORIGINAL PAPER Photomineralization in a boreal hydroelectric reservoir  

E-Print Network [OSTI]

ORIGINAL PAPER Photomineralization in a boreal hydroelectric reservoir: a comparison with natural dioxide Á Dissolved organic matter Á Boreal hydroelectric reservoir Á Greenhouse gas production

Long, Bernard

123

Predicting Reservoir System Quality and Performance | Open Energy...  

Open Energy Info (EERE)

Predicting Reservoir System Quality and Performance Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Predicting Reservoir System Quality and...

124

The Optimization of Well Spacing in a Coalbed Methane Reservoir.  

E-Print Network [OSTI]

??Numerical reservoir simulation has been used to describe mechanism of methane gas desorption process, diffusion process, and fluid flow in a coalbed methane reservoir. The (more)

Sinurat, Pahala Dominicus

2012-01-01T23:59:59.000Z

125

Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Oklahoma Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

126

Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Wyoming Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0...

127

Utah Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Utah Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

128

An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir...  

Open Energy Info (EERE)

Humeros Geothermal Reservoir (Mexico) Abstract An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed...

129

Use Of Electrical Surveys For Geothermal Reservoir Characterization...  

Open Energy Info (EERE)

Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Abstract The STAR geothermal reservoir simulator was used to model the natural state of...

130

Modeling wettability alteration in naturally fractured carbonate reservoirs.  

E-Print Network [OSTI]

??The demand for energy and new oil reservoirs around the world has increased rapidly while oil recovery from depleted reservoirs has become more difficult. Oil (more)

Goudarzi, Ali

2012-01-01T23:59:59.000Z

131

Substation grounding programs  

SciTech Connect (OSTI)

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. It can be used to compute transient ground potential rise due to lightning or switching, and the ground impedance (i.e. resistance and reactance) at specified frequencies. This report, Volume 4, is a users manual and an installation and validation manual for the computer program TGRND (Transient GRouNDing System Analysis Program). This program computes transient ground potential rise resulting from lightning, switching, or other transient electric currents injected to a grounding system. The program also computes the impedance (i.e. resistance and reactance) of a grounding system as a function of frequency. This program can be utilized in an interactive or batch mode. The users manual describes data requirements and data preparation procedures. The installation and validation manual describes the computer files which make up the program TGRND and provides a test case for validation purposes.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

132

Ground Motion Workshop  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2nd Advanced ICFA Beam Dynamics Workshop 2nd Advanced ICFA Beam Dynamics Workshop on Ground Motion in Future Accelerators November 6 - 9, 2000 SLAC Coordinators: Andrei Seryi & Tor Raubenheimer Proceedings Updated June 26, 2001 Agenda and Presentations Workshop photos Summaries Useful links Poster Goals Introduction to the problems Structure Registration Registered participants Committees Location, Accommodations and Travel Workshop on Ground Motion in Future Accelerators A workshop was held at SLAC that was devoted to ground motion and its effects on future accelerators. Ground motion and vibration can be a limiting effect in synchrotron light sources, hadron circular colliders, and electron/positron linear colliders. Over the last several years, there has been significant progress in the understanding of the ground motion and its effects, however, there are

133

Quantum reservoirs with ion chains  

E-Print Network [OSTI]

Ion chains are promising platforms for studying and simulating quantum reservoirs. One interesting feature is that their vibrational modes can mediate entanglement between two objects which are coupled through the vibrational modes of the chain. In this work we analyse entanglement between the transverse vibrations of two heavy impurity defects embedded in an ion chain, which is generated by the coupling with the chain vibrations. We verify general scaling properties of the defects dynamics and demonstrate that entanglement between the defects can be a stationary feature of these dynamics. We then analyse entanglement in chains composed of tens of ions and propose a measurement scheme which allows one to verify the existence of the predicted entangled state.

B. G. Taketani; T. Fogarty; E. Kajari; Th. Busch; Giovanna Morigi

2014-02-06T23:59:59.000Z

134

The ground state problem for a quantum Hamiltonian model describing friction  

E-Print Network [OSTI]

The ground state problem for a quantum Hamiltonian model describing friction Laurent Bruneau friction introduced in [4]. This model consists of a particle which interacts with a bosonic reservoir is violated in the case of linear friction, but satis#28;ed when the friction force is proportional

135

A dynamic prediction model for gas-water effective permeability in unsaturated coalbed methane reservoirs based on production data  

Science Journals Connector (OSTI)

Abstract Effective permeability of gas and water in coalbed methane (CBM) reservoirs is vital during CBM development. However, few studies have investigated it for unsaturated CBM reservoirs rather than saturated CBM reservoirs. In this work, the dynamic prediction model (PM-Corey model) for average gas-water effective permeability in two-phase flow in saturated CBM reservoirs was improved to describe unsaturated CBM reservoirs. In the improved effective permeability model, Palmer etal. absolute permeability model segmented based on critical desorption pressure and Chen etal. relative permeability model segmented based on critical water saturation were introduced and coupled comprehensively under conditions with the identical reservoir pressures and the identical water saturations through production data and the material balance equations (MBEs) in unsaturated CBM reservoirs. Taking the Hancheng CBM field as an example, the differences between the saturated and unsaturated effective permeability curves were compared. The results illustrate that the new dynamic prediction model could characterize not only the stage of two-phase flow but also the stage of single-phase water drainage. Also, the new model can accurately reflect the comprehensive effects of the positive and negative effects (the matrix shrinking effect and the effective stress effect) and the gas Klinkenberg effect of coal reservoirs, especially for the matrix shrinkage effect and the gas Klinkenberg effect, which can improve the effective permeability of gas production and render the process more economically. The new improved model is more realistic and practical than previous models.

Junlong Zhao; Dazhen Tang; Hao Xu; Yanjun Meng; Yumin Lv; Shu Tao

2014-01-01T23:59:59.000Z

136

MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING  

SciTech Connect (OSTI)

Our analysis and imaging of reservoir properties at the Fullerton Clear Fork field (Figure 1) is in its final stages. Major accomplishments during the past 6 months include: (1) characterization of facies and cyclicity in cores, (2) correlation of cycles and sequences using core-calibrated wireline logs, (3) calculation and modeling of wireline porosity, (4) analysis of new cores for conventional and special core analysis data, (5) construction of full-field reservoir model, and (6) revision of 3D seismic inversion of reservoir porosity and permeability. One activity has been eliminated from the originally proposed tasks. Task 3 (Characterization and Modeling of Rock Mechanics and Fractures) has been deleted because we have determined that fractures are not significant contributing in the reservoir under study. A second project extension has been asked for to extend the project until 7/31/04. Remaining project activities are: (1) interpretation and synthesis of fieldwide data, (2) preparation of 3D virtual reality demonstrations of reservoir model and attributes, (3) transfer of working data sets to the operator for reservoir implementation and decision-making, and (4) preparation and distribution of final reports.

Stephen C. Ruppel

2004-07-20T23:59:59.000Z

137

Simulation of Radon Transport in Geothermal Reservoirs  

SciTech Connect (OSTI)

Numerical simulation of radon transport is a useful adjunct in the study of radon as an in situ tracer of hydrodynamic and thermodynamic numerical model has been developed to assist in the interpretation of field experiments. The model simulates transient response of radon concentration in wellhead geofluid as a function of prevailing reservoir conditions. The radon simulation model has been used to simulate radon concentration response during production drawdown and two flowrate transient tests in vapor-dominated systems. Comparison of model simulation with experimental data from field tests provides insight in the analysis of reservoir phenomena such as propagation of boiling fronts, and estimates of reservoir properties of porosity and permeability thickness.

Semprini, Lewis; Kruger, Paul

1983-12-15T23:59:59.000Z

138

Dispersivity as an oil reservoir rock characteristic  

SciTech Connect (OSTI)

The main objective of this research project is to establish dispersivity, {alpha}{sub d}, as an oil reservoir rock characteristic and to use this reservoir rock property to enhance crude oil recovery. A second objective is to compare the dispersion coefficient and the dispersivity of various reservoir rocks with other rock characteristics such as: porosity, permeability, capillary pressure, and relative permeability. The dispersivity of a rock was identified by measuring the physical mixing of two miscible fluids, one displacing the other in a porous medium. 119 refs., 27 figs., 12 tabs.

Menzie, D.E.; Dutta, S.

1989-12-01T23:59:59.000Z

139

Ground Water Management Act (Virginia) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) Ground Water Management Act (Virginia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Virginia Program Type Environmental Regulations Siting and Permitting Provider Virginia Department of Environmental Quality Under the Ground Water Management Act of 1992, Virginia manages ground water through a program regulating the withdrawals in certain areas called

140

Substation grounding programs  

SciTech Connect (OSTI)

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 2, is a users manual and an installation and validation manual for the computer program SMECC (Substation Maximum Earth Current Computation Program). This program analyzes the electric current distribution among grounded structures inside and outside a substation for different fault conditions. The fault conditions are automatically selected by the program, or they may be specified by the user, or both. The fault condition resulting in maximum substation earth current is identified and reported. Data requirements for this program are: ground impedance, transformer data, transmission line data, transmission line grounding impedances, etc. The program provides four types of standard outputs: (1) a report of voltages and current flow in the unfaulted system, (2) a brief report of the maximum ground potential rise (worst fault condition), (3) a summary report of all fault conditions which have been analyzed by the program, and (4) a detailed report of voltages and current flow for a selected set of fault conditions.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Heat deliverability of homogeneous geothermal reservoirs  

SciTech Connect (OSTI)

For the last two decades, the petroleum industry has been successfully using simple inflow performance relationships (IPR's) to predict oil deliverability. In contrast, the geothermal industry lacked a simple and reliable method to estimate geothermal wells' heat deliverability. To address this gap in the standard geothermal-reservoir-assessment arsenal, we developed generalized dimensionless geothermal inflow performance relationships (GIPR's). These ''reference curves'' may be regarded as an approximate general solution of the equations describing the practically important case of radial 2-phase inflow. Based on this approximate solution, we outline a straightforward approach to estimate the reservoir contribution to geothermal wells heat and mass deliverability for 2-phase reservoirs. This approach is far less costly and in most cases as reliable as numerically modeling the reservoir, which is the alternative for 2-phase inflow.

Iglesias, Eduardo R.; Moya, Sara L.

1991-01-01T23:59:59.000Z

142

Fifteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

Not Available

1990-01-01T23:59:59.000Z

143

Study of induced seismicity for reservoir characterization  

E-Print Network [OSTI]

The main goal of the thesis is to characterize the attributes of conventional and unconventional reservoirs through passive seismicity. The dissertation is comprised of the development and applications of three new methods, ...

Li, Junlun, Ph. D. Massachusetts Institute of Technology

2013-01-01T23:59:59.000Z

144

Sediment resuspension in a monomictic eutrophic reservoir  

Science Journals Connector (OSTI)

During the mixing period sediment traps were placed at 9 different levels of the water column in La Concepcin reservoir (Mlaga-Spain). During the exposure time a benthic nepheloid layer with high suspended matt...

J. A. Glvez; F. X. Niell

1992-07-01T23:59:59.000Z

145

Sediment resuspension in a monomictic eutrophic reservoir  

Science Journals Connector (OSTI)

During the mixing period sediment traps were placed at 9 different levels of the water column in La Concepcin reservoir (Mlaga-Spain). During the exposure time a benthic nepheloid layer with high suspended matt...

J. A. Glvez; F. X. Niell

1992-01-01T23:59:59.000Z

146

Geothermal Reservoir Evaluation Considering Fluid Adsorption  

E-Print Network [OSTI]

SGP-"R- 68 Geothermal Reservoir Evaluation Considering Fluid Adsorption and Composition Michael J. Economides September, 1983 Financial support was provided through the Stanford Geothermal Program Contract No Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD UNIVERSITY Stanford

Stanford University

147

ANNOTATED RESEARCH BIBLIOGRAPHY FOR GEOTHERMAL RESERVOIR ENGINEERING  

E-Print Network [OSTI]

Modeling f o r Geothermal Reservoirs and Power- plants. I'Fumaroles Hunt, 1970 Geothermal power James, 1978 FusionGood a lated perfo : Geothermal Power Systems Compared. 'I

Sudo!, G.A

2012-01-01T23:59:59.000Z

148

Modelling the GHG emission from hydroelectric reservoirs  

Science Journals Connector (OSTI)

A mechanistic model has been constructed to compute the fluxes of CO2 and CH4 emitted from the surface of hydroelectric reservoirs. The structure of the model has been designed to be adaptable to hydroelectric re...

Normand Thrien; Ken Morrison

2005-01-01T23:59:59.000Z

149

Reservoir fracture characterizations from seismic scattered waves  

E-Print Network [OSTI]

The measurements of fracture parameters, such as fracture orientation, fracture density and fracture compliance, in a reservoir is very important for field development and exploration. Traditional seismic methods for ...

Fang, Xinding

2012-01-01T23:59:59.000Z

150

Reservoir Data 6-30-09.xls  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Injection MSL - Mean Sea Level Wl - Water Injection Muddy 2,829 (307) 261-5000 (888) 599-2200 Reservoir Data -- Rocky Mountain Oilfield Testing Center (RMOTC) -- NPR-3Teapot Dome...

151

SEISMIC AND ROCK PHYSICS DIAGNOSTICS OF MULTISCALE RESERVOIR TEXTURES  

SciTech Connect (OSTI)

As part of our study on ''Relationships between seismic properties and rock microstructure'', we have (1) Studied relationships between velocity and permeability. (2) Used independent experimental methods to measure the elastic moduli of clay minerals as functions of pressure and saturation. (3) Applied different statistical methods for characterizing heterogeneity and textures from scanning acoustic microscope (SAM) images of shale microstructures. (4) Analyzed the directional dependence of velocity and attenuation in different reservoir rocks (5) Compared Vp measured under hydrostatic and non-hydrostatic stress conditions in sands. (6) Studied stratification as a source of intrinsic anisotropy in sediments using Vp and statistical methods for characterizing textures in sands.

Gary Mavko

2003-10-01T23:59:59.000Z

152

Understanding the reservoir important to successful stimulation  

SciTech Connect (OSTI)

In anisotropic Bakken shale reservoirs, fracture treatments serve to extend the well bore radius past a disturbed zone and vertically connect discrete intervals. Natural fractures in the near-well bore area strongly control the well deliverability rate. The Bakken is one of the few shale formations in the world with commercial oil production. This article covers the Bakken reservoir properties that influence production and stimulation treatments. The concluding part will discuss the design and effectiveness of the treatments.

Cramer, D.D. (BJ Services Co., Denver, CO (US))

1991-04-22T23:59:59.000Z

153

Oil reservoir properties estimation using neural networks  

SciTech Connect (OSTI)

This paper investigates the applicability as well as the accuracy of artificial neural networks for estimating specific parameters that describe reservoir properties based on seismic data. This approach relies on JPL`s adjoint operators general purpose neural network code to determine the best suited architecture. The authors believe that results presented in this work demonstrate that artificial neural networks produce surprisingly accurate estimates of the reservoir parameters.

Toomarian, N.B. [California Inst. of Tech., Pasadena, CA (United States); Barhen, J.; Glover, C.W. [Oak Ridge National Lab., TN (United States). Center for Engineering Systems Advanced Research; Aminzadeh, F. [UNOCAL Corp., Sugarland, TX (United States)

1997-02-01T23:59:59.000Z

154

Manuscript for Geoscience Data Journal 1 The Egg Model -A Geological Ensemble for Reservoir  

E-Print Network [OSTI]

Simulation J.D. Jansen , R.M. Fonseca , S. Kahrobaei , M.M. Siraj§ , G.M. Van Essen , and P.M.J. Van den Hof relatively small three-dimensional realizations of a channelized oil reservoir produced under water flooding to demonstrate a variety of aspects related to computer-assisted flooding optimization and history matching

Van den Hof, Paul

155

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON  

E-Print Network [OSTI]

HYDROPOWER RESERVOIR FOR FLOOD CONTROL: A CASE STUDY ON RINGLET RESERVOIR, CAMERON HIGHLANDS, Malaysia 4 Professor, Department of Civil Engineering, Colorado State University, USA ABSTRACT: Hydropower as possible for daily hydropower generation as well as to prevent any spillage at dam. However

Julien, Pierre Y.

156

Substation grounding programs  

SciTech Connect (OSTI)

This document is a users manual and applications guide for the software package SGA. This package comprises four computer programs, namely SOMIP, SMECC, SGSYS, and TGRND. The first three programs are analysis models which are to be used in the design process of substation grounding systems. The fourth program, TGRND, is an analysis program for determining the transient response of a grounding system. This report, Volume 5, is an applications guide of the three computer programs. SOMIP, SMECC, and SGSYS, for the purpose of designing a safe substation grounding system. The applications guide utilizes four example substation grounding systems for the purpose of illustrating the application of the programs, SOMIP, SMECC, and SGSYS. The examples are based on data provided by four contributing utilities, namely, Houston Lighting and Power Company, Southern Company Services, Puget Sound Power and Light Company, and Arizona Public Service Company. For the purpose of illustrating specific capabilities of the computer programs, the data have been modified. As a result, the final designs of the four systems do not necessarily represent actual grounding system designs by these utilities. The example system 1 is a 138 kV/35 kV distribution substation. The example system 2 is a medium size 230 kV/115 kV transmission substation. The third example system is a generation substation while the last is a large 525 kV/345 kV/230 kV transmission substation. The four examples cover most of the practical problems that a user may encounter in the design of substation grounding systems.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). Electric Power Lab.)

1992-05-01T23:59:59.000Z

157

Damage and collapse of double hull tankers in groundings  

SciTech Connect (OSTI)

This paper will discuss and analyze the mechanics of ships in groundings on rock. A damage estimate model in grounding of ships is proposed. The accuracy and applicability of the model are verified by a comparison of experimental results. The progressive collapse analysis of damaged hull sections, under vertical bending moments by use of the ALPS/ISUM computer code, is described. The procedure is applied to grounding simulation of a double hull tanker with transverseless system.

Paik, J.K.; Lee, T.K. [Pusan National Univ. (Korea, Republic of). Dept. of Naval Architecture and Ocean Engineering

1995-12-31T23:59:59.000Z

158

Reservoir Characterization, Production Characteristics, and Research Needs for Fluvial/Alluvial Reservoirs in the United States  

SciTech Connect (OSTI)

The Department of Energy's (DOE's) Oil Recovery Field Demonstration Program was initiated in 1992 to maximize the economically and environmentally sound recovery of oil from known domestic reservoirs and to preserve access to this resource. Cost-shared field demonstration projects are being initiated in geology defined reservoir classes which have been prioritized by their potential for incremental recovery and their risk of abandonment. This document defines the characteristics of the fifth geological reservoir class in the series, fluvial/alluvial reservoirs. The reservoirs of Class 5 include deposits of alluvial fans, braided streams, and meandering streams. Deposit morphologies vary as a complex function of climate and tectonics and are characterized by a high degree of heterogeneity to fluid flow as a result of extreme variations in water energy as the deposits formed.

Cole, E.L.; Fowler, M.L.; Jackson, S.R.; Madden, M.P.; Raw-Schatzinger, V.; Salamy, S.P.; Sarathi, P.; Young, M.A.

1999-04-28T23:59:59.000Z

159

An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir  

Open Energy Info (EERE)

Humeros Geothermal Reservoir Humeros Geothermal Reservoir (Mexico) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Updated Conceptual Model Of The Los Humeros Geothermal Reservoir (Mexico) Details Activities (0) Areas (0) Regions (0) Abstract: An analysis of production and reservoir engineering data of 42 wells from the Los Humeros geothermal field (Mexico) allowed obtaining the pressure and temperature profiles for the unperturbed reservoir fluids and developing 1-D and 2-D models for the reservoir. Results showed the existence of at least two reservoirs in the system: a relatively shallow liquid-dominant reservoir located between 1025 and 1600 m above sea level (a.s.l.) the pressure profile of which corresponds to a 300-330°C boiling water column and a deeper low-liquid-saturation reservoir located between

160

E-Print Network 3.0 - advanced reservoir characterization Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

<< < 1 2 3 4 5 > >> 1 TEXAS A&M UNIVERSITY Reservoir Geophysics Program Summary: and fracture analysis, multi-component seismic reservoir characterization, quantitative reservoir...

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Surfactant-enhanced spontaneous imbibition process in highly fractured carbonate reservoirs.  

E-Print Network [OSTI]

??Highly fractured carbonate reservoirs are a class of reservoirs characterized by high conductivity fractures surrounding low permeability matrix blocks. In these reservoirs, wettability alteration is (more)

Chen, Peila

2011-01-01T23:59:59.000Z

162

Damage tolerance of well-completion and stimulation techniques in coalbed methane reservoirs  

SciTech Connect (OSTI)

Coalbed methane (CBM) reservoirs are characterized as naturally fractured, dual porosity, low permeability, and water saturated gas reservoirs. Initially, the gas, water and coal are at thermodynamic equilibrium under prevailing reservoir conditions. Dewatering is essential to promote gas production. This can be accomplished by suitable completion and stimulation techniques. This paper investigates the efficiency and performance of the openhole cavity, hydraulic fractures, frack and packs, and horizontal wells as potential completion methods which may reduce formation damage and increase the productivity in coalbed methane reservoirs. Considering the dual porosity nature of CBM reservoirs, numerical simulations have been carried out to determine the formation damage tolerance of each completion and, stimulation approach. A new comparison parameter named as the normalized productivity index is defined as the ratio of the productivity index of a stimulated well to that of a nondamaged vertical well as a function of time. Typical scenarios have been considered to evaluate the CBM properties, including reservoir heterogeneity, anisotropy, and formation damage, for their effects on this index over the production time. The results for each stimulation technique show that the value of the index declines over the time of production with a rate which depends upon the applied technique and the prevailing reservoir conditions. The results also show that horizontal wells have the best performance if drilled orthogonal to the butt cleats. Open-hole cavity completions outperform vertical fractures if the fracture conductivity is reduced by any damage process. When vertical permeability is much lower than horizontal permeability, production of vertical wells will improve while productivity of horizontal wells will decrease.

Jahediesfanjani, H.; Civan, F. [University of Oklahoma, Norman, OK (United States)

2005-09-01T23:59:59.000Z

163

Integral cesium reservoir: Design and transient operation  

SciTech Connect (OSTI)

An electrically heated thermionic converter has been designed built and successfully tested in air (Homer et.al., 1995). One of the unique features of this converter was an integral cesium reservoir thermally coupled to the emitter. The reservoir consisted of fifteen cesiated graphite pins located in pockets situated in the emitter lead with thermal coupling to the emitter, collector and the emitter terminal; there were no auxiliary electric heaters on the reservoir. Test results are described for conditions in which the input thermal power to the converter was ramped up and down between 50% and 100% of full power in times as short as 50 sec, with data acquisition occurring every 12 sec. During the ramps the emitter and collector temperature profiles. the reservoir temperature and the electric output into a fixed load resistor are reported. The converter responded promptly to the power ramps without excessive overshoot and with no tendency to develop instabilities. This is the rust demonstration of the performance of a cesium-graphite integral reservoir in a fast transient

Smith, J.N. Jr.; Horner, M.H.; Begg, L.L. [General Atomics, San Diego, CA (United States); Wrobleski, W.J. [Westinghouse Electric Corp., West Mifflin, PA (United States). Bettis Atomic Power Lab.

1995-01-01T23:59:59.000Z

164

Substation grounding programs  

SciTech Connect (OSTI)

The five volume report comprises the user manual, installation, and validation manual and an applications guide for the SGA (Substation Grounding Analysis) software package. SGA consists of four computer programs: (1) SOMIP, (2) SMECC, (3) SGSYS, and (4) TGRND. The first three programs provide a comprehensive analysis tool for the design of substation grounding systems to meet safety standards. The fourth program, TGRND, provides a state of the art analysis tool for computing transient ground potential rise and ground system impedance. This part of the report, Volume 1, is a users manual and an installation and validation manual for the computer program SOMIP (SOil Measurement Interpretation Program). This program computes the best estimate of the parameters of a two layer soil model from usual soil resistivity measurements. Four pin or three pin soil measurements can be accommodated. In addition, it provides error bounds on the soil parameters for a given confidence level. The users manual describes data requirements and data preparation procedures. The installation and validation manual describes the computer files which make up the program SOMIP and provides two test cases for validation purposes. 4 refs.

Meliopoulos, A.P.S. (Georgia Inst. of Tech., Atlanta, GA (United States). School of Electrical Engineering)

1992-05-01T23:59:59.000Z

165

Evaluation of Reservoir Wettability and its Effect on Oil Recovery,10/96,659,264  

Office of Scientific and Technical Information (OSTI)

EVALUATION OF RESERVOIR WETTABILITY AND ITS EFFECT ON OIL RECOVERY EVALUATION OF RESERVOIR WETTABILITY AND ITS EFFECT ON OIL RECOVERY First Annual Report by Jill S. Buckley Work Performed under Cooperative Agreement Number DE-FC22-96ID13421 Reporting Period: July 1, 1996 - June 30, 1997 Prepared for U.S. Department of Energy Assistant Secretary for Fossil Energy Jerry Casteel, Project Manager National Petroleum Technology Center P.O. Box 3628 Tulsa OK 74101 Prepared by Petroleum Recovery Research Center New Mexico Institute of Mining and Technology 801 Leroy Place Socorro, NM 87801 ii ABSTRACT We report on the first year of the project, "Evaluation of Reservoir Wettability and its Effect on Oil Recovery." The objectives of this five-year project are (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with

166

Integrated reservoir characterization: Improvement in heterogeneities stochastic modelling by integration of additional external constraints  

SciTech Connect (OSTI)

The classical approach to construct reservoir models is to start with a fine scale geological model which is informed with petrophysical properties. Then scaling-up techniques allow to obtain a reservoir model which is compatible with the fluid flow simulators. Geostatistical modelling techniques are widely used to build the geological models before scaling-up. These methods provide equiprobable images of the area under investigation, which honor the well data, and which variability is the same than the variability computed from the data. At an appraisal phase, when few data are available, or when the wells are insufficient to describe all the heterogeneities and the behavior of the field, additional constraints are needed to obtain a more realistic geological model. For example, seismic data or stratigraphic models can provide average reservoir information with an excellent areal coverage, but with a poor vertical resolution. New advances in modelisation techniques allow now to integrate this type of additional external information in order to constrain the simulations. In particular, 2D or 3D seismic derived information grids, or sand-shale ratios maps coming from stratigraphic models can be used as external drifts to compute the geological image of the reservoir at the fine scale. Examples are presented to illustrate the use of these new tools, their impact on the final reservoir model, and their sensitivity to some key parameters.

Doligez, B.; Eschard, R. [Institut Francais du Petrole, Rueil Malmaison (France); Geffroy, F. [Centre de Geostatistique, Fontainebleau (France)] [and others

1997-08-01T23:59:59.000Z

167

A combination of streamtube and geostatical simulation methodologies for the study of large oil reservoirs  

SciTech Connect (OSTI)

The application of streamtube models for reservoir simulation has an extensive history in the oil industry. Although these models are strictly applicable only to fields under voidage balance, they have proved to be useful in a large number of fields provided that there is no solution gas evolution and production. These models combine the benefit of very fast computational time with the practical ability to model a large reservoir over the course of its history. These models do not, however, directly incorporate the detailed geological information that recent experience has taught is important. This paper presents a technique for mapping the saturation information contained in a history matched streamtube model onto a detailed geostatistically derived finite difference grid. With this technique, the saturation information in a streamtube model, data that is actually statistical in nature, can be identified with actual physical locations in a field and a picture of the remaining oil saturation can be determined. Alternatively, the streamtube model can be used to simulate the early development history of a field and the saturation data then used to initialize detailed late time finite difference models. The proposed method is presented through an example application to the Ninian reservoir. This reservoir, located in the North Sea (UK), is a heterogeneous sandstone characterized by a line drive waterflood, with about 160 wells, and a 16 year history. The reservoir was satisfactorily history matched and mapped for remaining oil saturation. A comparison to 3-D seismic survey and recently drilled wells have provided preliminary verification.

Chakravarty, A.; Emanuel, A.S.; Bernath, J.A. [Chevron Petroleum Technology Company, LaHabra, CA (United States)

1997-08-01T23:59:59.000Z

168

Seismic signatures of the Lodgepole fractured reservoir in Utah-Wyoming overthrust belt  

SciTech Connect (OSTI)

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based upon the effects of such conditions on the propagation of acoustic and seismic waves in the rock. We present the feasibility of using seismic measurement techniques to map the fracture zones between wells spaced 2400 ft at depths of about 1000 ft. For this purpose we constructed computer models (which include azimuthal anisotropy) using Lodgepole reservoir parameters to predict seismic signatures recorded at the borehole scale, crosswell scale, and 3 D seismic scale. We have integrated well logs with existing 2D surfaces seismic to produce petrophysical and geological cross sections to determine the reservoir parameters and geometry for the computer models. In particular, the model responses are used to evaluate if surface seismic and crosswell seismic measurements can capture the anisotropy due to vertical fractures. Preliminary results suggested that seismic waves transmitted between two wells will propagate in carbonate fracture reservoirs, and the signal can be received above the noise level at the distance of 2400 ft. In addition, the large velocities contrast between the main fracture zone and the underlying unfractured Boundary Ridge Member, suggested that borehole reflection imaging may be appropriate to map and fracture zone thickness variation and fracture distributions in the reservoir.

Parra, J.; Collier, H.; Angstman, B.

1997-08-01T23:59:59.000Z

169

Shale Reservoir Characterization | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Oil & Gas » Shale Gas » Shale Reservoir Oil & Gas » Shale Gas » Shale Reservoir Characterization Shale Reservoir Characterization Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Geologist examining the base of the Marcellus Shale at an outcrop near Bedford, PA. Gas-producing shales are predominantly composed of consolidated clay-sized particles with a high organic content. High subsurface pressures and temperatures convert the organic matter to oil and gas, which may migrate to conventional petroleum traps and also remains within the shale. However, the clay content severely limits gas and fluid flow within the shales. It is, therefore, necessary to understand the mineral and organic content, occurrence of natural fractures, thermal maturity, shale volumes, porosity

170

Magic Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Magic Reservoir Geothermal Area Magic Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Magic Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.32833333,"lon":-114.3983333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

171

New method for evaluating composite reservoir systems  

SciTech Connect (OSTI)

A simple new technique has been developed for evaluating interference test data in radially symmetric composite reservoirs. The technique is based on the realization that systematic variations in the apparent storage coefficient (calculated from semi-log analysis of the late-time data are indicative of a two-mobility (k/..mu..) reservoir. By analyzing variations in the apparent storage coefficient, both the mobility and size of the inner region can be calculated. The technique is particularly useful for evaluating heterogeneous geothermal systems where the intersection of several faults, or hydrothermal alteration has created a high permeability region in the center of the geothermal field. The technique is applied to an extensive interference test in the geothermal reservoir at Klamath Falls, Oregon. 7 refs., 7 figs.

Benson, S.M.; Lai, C.H.

1985-03-01T23:59:59.000Z

172

Exploring the effects of data quality, data worth, and redundancy of CO2 gas pressure and saturation data on reservoir characterization through PEST Inversion  

SciTech Connect (OSTI)

This study examined the impacts of reservoir properties on CO2 migration after subsurface injection and evaluated the possibility of characterizing reservoir properties using CO2 monitoring data such as saturation distribution. The injection reservoir was assumed to be located 1400-1500 m below the ground surface such that CO2 remained in the supercritical state. The reservoir was assumed to contain layers with alternating conductive and resistive properties, which is analogous to actual geological formations such as the Mount Simon Sandstone unit. The CO2 injection simulation used a cylindrical grid setting in which the injection well was situated at the center of the domain, which extended up to 8000 m from the injection well. The CO2 migration was simulated using the PNNL-developed simulator STOMP-CO2e (the water-salt-CO2 module). We adopted a nonlinear parameter estimation and optimization modeling software package, PEST, for automated reservoir parameter estimation. We explored the effects of data quality, data worth, and data redundancy on the detectability of reservoir parameters using CO2 saturation monitoring data, by comparing PEST inversion results using data with different levels of noises, various numbers of monitoring wells and locations, and different data collection spacing and temporal sampling intervals. This study yielded insight into the use of CO2 saturation monitoring data for reservoir characterization and how to design the monitoring system to optimize data worth and reduce data redundancy.

Fang, Zhufeng; Hou, Zhangshuan; Lin, Guang; Engel, David W.; Fang, Yilin; Eslinger, Paul W.

2014-04-01T23:59:59.000Z

173

Characterization of oil and gas reservoir heterogeneity  

SciTech Connect (OSTI)

Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a heterogeneity matrix'' based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

1992-10-01T23:59:59.000Z

174

Water salinity of the First Eocene reservoir: Its unique behaviour and influence on reservoir engineering calculations  

SciTech Connect (OSTI)

The salinity of the produced water from First Eocene reservoir of Wafra field was studied through its past history. The change in the salinity of the initially produced water (from about 500 to 20,000 ppm NaCl) was attributed to the meteoric water which might have entered the reservoir through its outcrops to the west of the field. The correct value of the connate water salinity (23,000 ppm) that should be used in estimating the original oil in place by the volumetric method was determined by three different approaches. In addition, a technique to be followed in calculating the volumetric original oil in place for the First Eocene reservoir is outlined to overcome the complex behaviour of aquifer salinity. The change in the produced water salinity of the First Eocene reservoir with time was studied and proved that water is dumping from an upper water bearing zone into First Eocene reservoir. Upper water dumping, which apparently has supported the reservoir pressure, was confirmed to occur behind casing in many deeper wells penetrating the First Eocene reservoir by the analysis of their temperature and noise logs.

Ghoniem, S.A.A.; Al-Zanki, F.H.

1985-03-01T23:59:59.000Z

175

Water salinity of First Eocene reservoir: Unique behavior and influence on reservoir engineering calculations  

SciTech Connect (OSTI)

The salinity of the produced water from the First Eocene reservoir of the Wafra field was studied through its history. The change in the salinity of the initially produced water (from about 500 to 20,000 ppm NaCl) was attributed to meteoric water that might have entered the reservoir through outcrops west of the field. The correct value of the interstitial water salinity (23,000ppm) that should be used in estimating the original oil in place (OOIP) by the volumetric method was determined by three different approaches. In addition, a technique to overcome the complex behavior of aquifer salinity in calculating the volumetric OOIP for the First Eocene reservoir is outlined. A study of the change in the produced water salinity of the First Eocene reservoir with time proved that water is dumping from an upper water-bearing zone into the reservoir. Analysis of temperature and noise logs confirmed that this upper water dumping, which apparently has supported the reservoir pressure, occurred behind casing in many deeper wells penetrating the First Eocene reservoir.

Ghoniem, S.A.; Al-Zanki, F.H.

1987-09-01T23:59:59.000Z

176

Pesticide use in Kentucky reservoir watershed  

SciTech Connect (OSTI)

This report summarizes information on the types, uses, and amounts of pesticides applied to Kentucky Reservoir and its immediate watershed. Estimates for the quantities and types of the various pesticides used are based primarily on the land uses in the watershed. A listing of commonly used pesticides is included describing their uses, mode of action, and potential toxicological effects. This report will inform the the public and the Kentucky Reservoir Water Resources Task Force of the general extent of pesticide usage and is not an assessment of pesticide impacts. 10 refs., 5 figs., 9 tabs.

Butkus, S.R.

1988-06-01T23:59:59.000Z

177

Geothermal reservoir engineering code: comparison and validation  

SciTech Connect (OSTI)

INTERCOMP has simulated six geothermal reservoir problems. INTERCOMP's geothermal reservoir model was used for all problems. No modifications were made to this model except to provide tabular output of the simulation results in the units used in RFP No. DE-RP03-80SF-10844. No difficulty was encountered in performing the problems described herein, although setting up the boundary and grid conditions exactly as specified were sometimes awkward, and minor modifications to the grid system were necessitated. The results of each problem are presented in tabular and (for many) graphical form.

Not Available

1981-02-27T23:59:59.000Z

178

Improved characterization of reservoir behavior by integration of reservoir performances data and rock type distributions  

SciTech Connect (OSTI)

An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.

Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others

1997-08-01T23:59:59.000Z

179

INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT  

SciTech Connect (OSTI)

This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

2002-02-28T23:59:59.000Z

180

Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields...  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Colorado Dry Natural Gas New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1 Year-2...

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Feasibility of waterflooding Soku E7000 gas-condensate reservoir  

E-Print Network [OSTI]

We performed a simple 3D compositional reservoir simulation study to examine the possibility of waterflooding the Soku E7 gas-condensate reservoir. This study shows that water injection results in higher condensate recovery than natural depletion...

Ajayi, Arashi

2012-06-07T23:59:59.000Z

182

Evaluating human fecal contamination sources in Kranji Reservoir Catchment, Singapore  

E-Print Network [OSTI]

Singapore government through its Public Utilities Board is interested in opening Kranji Reservoir to recreational use. However, water courses within the Kranji Reservoir catchment contain human fecal indicator bacteria ...

Nshimyimana, Jean Pierre

2010-01-01T23:59:59.000Z

183

U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Billion Cubic Feet) U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic Feet) Decade Year-0 Year-1...

184

Petroleum reservoir porosity versus depth: Influence of geological age  

Science Journals Connector (OSTI)

...in late Carboniferous sandstone reservoirs, Bothamsall oilfield, E. Midlands: Journal of the Geological Society of...carbonate reservoir quality: Examples from Abu Dhabi and the Amu Darya Basin: Marine and Petroleum Geology, v.-15, p...

S. N. Ehrenberg; P. H. Nadeau; . Steen

185

Optimal Hydropower Reservoir Operation with Environmental Requirements MARCELO ALBERTO OLIVARES  

E-Print Network [OSTI]

Optimal Hydropower Reservoir Operation with Environmental Requirements By MARCELO ALBERTO OLIVARES Engineering Optimal Hydropower Reservoir Operation with Environmental Requirements Abstract Engineering solutions to the environmental impacts of hydropower operations on downstream aquatic ecosystem are studied

Lund, Jay R.

186

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

187

Reducing temperature uncertainties by stochastic geothermal reservoir modelling  

Science Journals Connector (OSTI)

......economically successful geothermal reservoirs. To this...An increased use of geothermal energy requires reliable estimates...exploration and development of geothermal reservoirs. Suitable...risk of failure and cost may be reduced and estimated......

C. Vogt; D. Mottaghy; A. Wolf; V. Rath; R. Pechnig; C. Clauser

2010-04-01T23:59:59.000Z

188

Optimizing Development Strategies to Increase Reserves in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

spacing in highly uncertain and risky unconventional gas reservoirs. To achieve the research objectives, an integrated reservoir and decision modeling tool that fully incorporates uncertainty was developed. Monte Carlo simulation was used with a fast...

Turkarslan, Gulcan

2011-10-21T23:59:59.000Z

189

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir  

Broader source: Energy.gov [DOE]

Project objectives: Better understand and model fluid injection into a tight reservoir on the edges of a hydrothermal field. Use seismic data to constrain geomechanical/hydrologic/thermal model of reservoir.

190

Ground Squirrels and Gophers  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Squirrels and Gophers Squirrels and Gophers Nature Bulletin No. 224-A April 2, 1966 Forest Preserve District of Cook County Seymour Simon, President Roland F. Eisenbeis, Supt. of Conservation GROUND SQUIRRELS AND GOPHERS On sunny summer days, a dusty-colored animal with yellowish and brown stripes, about the size of a small rat, often may be noticed creeping through the grass of prairies, pastures, golf courses or lawns. Watch him. He pauses every few feet to sit up, look and listen for a moment. Nervous and timid, he crouches low at every distant sound or passing shadow. Startle him and he scurries away, and then may suddenly halt and freeze, bolt upright, as stiff and straight as a stake driven in the ground. If approached, he gives a loud shrill trilling whistle and, with a flip of his tail, pops out of sight. Watch that spot closely and, in less than a minute, a snaky head appears. Be quiet. He has many enemies above ground and he also has a lot of curiosity. Presently he sits up upon his haunches again.

191

The Ahuachapan geothermal field, El Salvador: Reservoir analysis  

SciTech Connect (OSTI)

The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA); Lawrence Berkeley Lab., CA (USA))

1989-08-01T23:59:59.000Z

192

Prediction of Gas Injection Performance for Heterogeneous Reservoirs  

SciTech Connect (OSTI)

This report describes research carried out in the Department of Petroleum Engineering at Stanford University from September 1997 - September 1998 under the second year of a three-year grant from the Department of Energy on the "Prediction of Gas Injection Performance for Heterogeneous Reservoirs." The research effort is an integrated study of the factors affecting gas injection, from the pore scale to the field scale, and involves theoretical analysis, laboratory experiments, and numerical simulation. The original proposal described research in four areas: (1) Pore scale modeling of three phase flow in porous media; (2) Laboratory experiments and analysis of factors influencing gas injection performance at the core scale with an emphasis on the fundamentals of three phase flow; (3) Benchmark simulations of gas injection at the field scale; and (4) Development of streamline-based reservoir simulator. Each state of the research is planned to provide input and insight into the next stage, such that at the end we should have an integrated understanding of the key factors affecting field scale displacements.

Blunt, Martin J.; Orr, Franklin M.

1999-05-17T23:59:59.000Z

193

Semi-analytical solutions for multilayer reservoirs  

E-Print Network [OSTI]

, we develop, validate, and present five new approximate solutions for the case of a multilayer reservoir system - these solutions are: [ Solution p[wDj(tD)] Description 1 a[j] Constant p[wDj(tD)] Case 2 a[j tD] Linear p[wDj(tD)] Zero...

Lolon, Elyezer Pabibak

2012-06-07T23:59:59.000Z

194

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS Henry J. Ramey, Jr., and A. Louis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Stanford Geothermal Project Reports . . . . . . . . . . . . . . 69 Papers Presented a t the Second United Nations Symposium on t h e Development and Use of Geothermal Resources, May 19-29, 1975, San

Stanford University

195

Fourteenth workshop geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-01-01T23:59:59.000Z

196

Fourteenth workshop geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

1989-12-31T23:59:59.000Z

197

Underground natural gas storage reservoir management  

SciTech Connect (OSTI)

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

198

Type curve analysis for naturally fractured reservoirs (infinite-acting reservoir case): a new approach  

E-Print Network [OSTI]

analysis methods are sometimes inconclusive for pressure transient analysis of wells completed in naturally fractured reservoirs. This is due to wellbore storage effects which mask the early time "straight-line" that is expected on the semilog plot...

Angel Restrepo, Juan Alejandro

2012-06-07T23:59:59.000Z

199

Reservoir Simulation for Improving Water Flooding Performance in Low-Permeability Reservoirs  

Science Journals Connector (OSTI)

We studied the YSL oil field in Daqing, China with reservoir permeability 10-3 ?m2 that has been developed by water flooding. From the results of a preliminary estimate ... we have used as the basis for numerical...

Huiying Zhong; Hongjun Yin

2013-07-01T23:59:59.000Z

200

Maximizing output from oil reservoirs without water breakthrough  

E-Print Network [OSTI]

Maximizing output from oil reservoirs without water breakthrough S.K. Lucas School of Mathematics, revised May 2003, published 45(3), 2004, 401­422 Abstract Often in oil reservoirs a layer of water lies, for example, Muskat [8], Bear [1]). When oil is removed from the reservoir by an oil well, it will generate

Lucas, Stephen

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Parallel Finite Element Simulation of Tracer Injection in Oil Reservoirs  

E-Print Network [OSTI]

Parallel Finite Element Simulation of Tracer Injection in Oil Reservoirs Alvaro L.G.A. Coutinho In this work, parallel finite element techniques for the simulation of tracer injection in oil reservoirs. Supercomputers have made it possible to consider global reservoir effects which can not be represented using

Coutinho, Alvaro L. G. A.

202

Analysis of reservoir performance and forecasting for the eastern area of the C-2 Reservoir, Lake Maracaibo, Venezuela  

E-Print Network [OSTI]

This research developed a numerical simulation based on the latest reservoir description to evaluate the feasibility of new infill wells to maximize the recovery specifically in the eastern region of the reservoir operated by Petroleos de Venezuela...

Urdaneta Anez, Jackeline C

2001-01-01T23:59:59.000Z

203

Genesis field, Gulf of Mexico: Recognizing reservoir compartments on geologic and production time scales in deep-water reservoirs  

Science Journals Connector (OSTI)

...Factors for the Pleistocene Reservoirs of Genesis Field Reservoir EOD Reserves (MMBOE) Recovery Factor () Drive Mechanism Completions...49-63 Weak water drive 5 All completions are fracture packed. EOD environment of deposition. Table 2 Cumulative Production and...

Michael L. Sweet; Larry T. Sumpter

204

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The work plan for October 1, 1997 to September 30, 1998 consisted of investigation of a number of topical areas. These topical areas were reported in four quarterly status reports, which were submitted to DOE earlier. These topical areas are reviewed in this volume. The topical areas covered during the year were: (1) Development of preliminary tests of a production method for determining areas of natural fracturing. Advanced Resources has demonstrated that such a relationship exists in the southern Piceance basin tight gas play. Natural fracture clusters are genetically related to stress concentrations (also called stress perturbations) associated with local deformation such a faulting. The mechanical explanation of this phenomenon is that deformation generally initiates at regions where the local stress field is elevated beyond the regional. (2) Regional structural and geologic analysis of the Greater Green River Basin (GGRB). Application of techniques developed and demonstrated during earlier phases of the project for sweet-spot delineation were demonstrated in a relatively new and underexplored play: tight gas from continuous-typeUpper Cretaceous reservoirs of the Greater Green River Basin (GGRB). The effort included data acquisition/processing, base map generation, geophysical and remote sensing analysis and the integration of these data and analyses. (3) Examination of the Table Rock field area in the northern Washakie Basin of the Greater Green River Basin. This effort was performed in support of Union Pacific Resources- and DOE-planned horizontal drilling efforts. The effort comprised acquisition of necessary seismic data and depth-conversion, mapping of major fault geometry, and analysis of displacement vectors, and the development of the natural fracture prediction. (4) Greater Green River Basin Partitioning. Building on fundamental fracture characterization work and prior work performed under this contract, namely structural analysis using satellite and potential field data, the GGRB was divided into partitions that will be used to analyze the resource potential of the Frontier and Mesaverde Upper Cretaceous tight gas play. A total of 20 partitions were developed, which will be instrumental for examining the Upper Cretaceous play potential. (5) Partition Analysis. Resource assessment associated with individual partitions was initiated starting with the Vermilion Sub-basin and the Green River Deep (which include the Stratos well) partitions (see Chapter 5). (6) Technology Transfer. Tech transfer was achieved by documenting our research and presenting it at various conferences.

NONE

1998-11-30T23:59:59.000Z

205

Ground Water Recovery and Treatment  

Science Journals Connector (OSTI)

Until the environmental revolution, the only ground water that was routinely treated to remove contamination was the impacted ground water that was extracted for beneficial use. With ... the recognition that cont...

Tie Li Ph.D.; Raaj U. Patel P.G.; David K. Ramsden Ph.D.

2003-01-01T23:59:59.000Z

206

Characterization and reservoir evaluation of a hydraulically fractured, shaly gas reservoir  

E-Print Network [OSTI]

, Shaly Gas Reservoir. ( December 1991 ) Cesar Alfonso Santiago Molina, Ingeniero de Petroleos, Universidad Nacional de Colombia; Chair of Advisory Committee: Dr. Steven W. Poston Shale content in reservoir rocks affect their petrophysical properties... for their support. The author also wishes to express his deepest appreciation to Dr. H. Chen for all the help and suggestions he made in this study. The author expresses his gratitude to every one in Empresa Colombiana de Petroleos, Ecopetrol, who made possible...

Santiago Molina, Cesar Alfonso

1991-01-01T23:59:59.000Z

207

Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing  

SciTech Connect (OSTI)

A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed.

Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L. [MSE Inc., Butte, MT (United States)

1995-12-31T23:59:59.000Z

208

3D Sedimentological and geophysical studies of clastic reservoir analogs: Facies architecture, reservoir properties, and flow behavior within delta front facies elements of the Cretaceous Wall Creek Member, Frontier Formation, Wyoming  

SciTech Connect (OSTI)

Significant volumes of oil and gas occur in reservoirs formed by ancient river deltas. This has implications for the spatial distribution of rock types and the variation of transport properties. A between mudstones and sandstones may form baffles that influence productivity and recovery efficiency. Diagenetic processes such as compaction, dissolution, and cementation can also alter flow properties. A better understanding of these properties and improved methods will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high-resolution view of variability. Insights gleaned from these exposures can be used to model analogous reservoirs, for which data is sparser. The Frontier Formation in central Wyoming provides an opportunity for high-resolution models. The same rocks exposed in the Tisdale anticline are productive in nearby oil fields. Kilometers of exposure are accessible, and bedding-plane exposures allow use of high-resolution ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct geostatistical and flow models. Strata-conforming grids were use to reproduce the observed geometries. A new Bayesian method integrates outcrop, core, and radar amplitude and phase data. The proposed method propagates measurement uncertainty and yields an ensemble of plausible models for calcite concretions. These concretions affect flow significantly. Models which integrate more have different flow responses from simpler models, as demonstrated an exhaustive two-dimensional reference image and in three dimensions. This method is simple to implement within widely available geostatistics packages. Significant volumes of oil and gas occur in reservoirs that are inferred to have been formed by ancient river deltas. This geologic setting has implications for the spatial distribution of rock types (\\Eg sandstones and mudstones) and the variation of transport properties (\\Eg permeability and porosity) within bodies of a particular rock type. Both basin-wide processes such as sea-level change and the autocyclicity of deltaic processes commonly cause deltaic reservoirs to have large variability in rock properties; in particular, alternations between mudstones and sandstones may form baffles and trends in rock body permeability can influence productivity and recovery efficiency. In addition, diagenetic processes such as compaction, dissolution, and cementation can alter the spatial pattern of flow properties. A better understanding of these properties, and improved methods to model the properties and their effects, will allow improved reservoir development planning and increased recovery of oil and gas from deltaic reservoirs. Surface exposures of ancient deltaic rocks provide a high resolution, low uncertainty view of subsurface variability. Patterns and insights gleaned from these exposures can be used to model analogous reservoirs, for which data is much sparser. This approach is particularly attractive when reservoir formations are exposed at the surface. The Frontier Formation in central Wyoming provides an opportunity for high resolution characterization. The same rocks exposed in the vicinity of the Tisdale anticline are productive in nearby oil fields, including Salt Creek. Many kilometers of good-quality exposure are accessible, and the common bedding-plane exposures allow use of shallow-penetration, high-resolution electromagnetic methods known as ground-penetrating radar. This study combined geologic interpretations, maps, vertical sections, core data, and ground-penetrating radar to construct high-resolution geostatistical and flow models for the Wall Creek Member of the Frontier Formation. Stratal-conforming grids were use to reproduce the progradational and aggradational geometries observed in outcrop and radar data. A new, Bayesian method integrates outcrop--derived statistics, core observations of concretions, and radar amplitude and

Christopher D. White

2009-12-21T23:59:59.000Z

209

Photovoltaic ground fault and blind spot electrical simulations.  

SciTech Connect (OSTI)

Ground faults in photovoltaic (PV) systems pose a fire and shock hazard. To mitigate these risks, AC-isolated, DC grounded PV systems in the United States use Ground Fault Protection Devices (GFPDs), e.g., fuses, to de-energize the PV system when there is a ground fault. Recently the effectiveness of these protection devices has come under question because multiple fires have started when ground faults went undetected. In order to understand the limitations of fuse-based ground fault protection in PV systems, analytical and numerical simulations of different ground faults were performed. The numerical simulations were conducted with Simulation Program with Integrated Circuit Emphasis (SPICE) using a circuit model of the PV system which included the modules, wiring, switchgear, grounded or ungrounded components, and the inverter. The derivation of the SPICE model and the results of parametric fault current studies are provided with varying array topologies, fuse sizes, and fault impedances. Closed-form analytical approximations for GFPD currents from faults to the grounded current carrying conductor-known as %E2%80%9Cblind spot%E2%80%9D ground faults-are derived to provide greater understanding of the influence of array impedances on fault currents. The behavior of the array during various ground faults is studied for a range of ground fault fuse sizes to determine if reducing the size of the fuse improves ground fault detection sensitivity. The results of the simulations show that reducing the amperage rating of the protective fuse does increase fault current detection sensitivity without increasing the likelihood of nuisance trips to a degree. Unfortunately, this benefit reaches a limit as fuses become smaller and their internal resistance increases to the point of becoming a major element in the fault current circuit.

Flicker, Jack David; Johnson, Jay

2013-06-01T23:59:59.000Z

210

NGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 111118 111 2011, The Author(s)  

E-Print Network [OSTI]

NGWA.org Ground Water Monitoring & Remediation 31, no. 3/ Summer 2011/pages 111­118 111 © 2011, The Author(s) Ground Water Monitoring & Remediation © 2011, National Ground Water Association. doi: 10.1111/j under- ground storage tank containing biofuel blends. Benzene is of particular concern due to its

Alvarez, Pedro J.

211

Geotechnical studies of geothermal reservoirs | Open Energy Information  

Open Energy Info (EERE)

Geotechnical studies of geothermal reservoirs Geotechnical studies of geothermal reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geotechnical studies of geothermal reservoirs Details Activities (7) Areas (7) Regions (0) Abstract: It is proposed to delineate the important factors in the geothermal environment that will affect drilling. The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. The geologic environment and reservoir characteristics of several geothermal areas were studied, and drill bits were obtained from most of the areas. The geothermal areas studied are: (1) Geysers, California, (2) Imperial Valley, California, (3) Roosevelt Hot

212

The LOFT Ground Segment  

E-Print Network [OSTI]

LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book 1 . We...

Bozzo, E; Argan, A; Barret, D; Binko, P; Brandt, S; Cavazzuti, E; Courvoisier, T; Herder, J W den; Feroci, M; Ferrigno, C; Giommi, P; Gtz, D; Guy, L; Hernanz, M; Zand, J J M in't; Klochkov, D; Kuulkers, E; Motch, C; Lumb, D; Papitto, A; Pittori, C; Rohlfs, R; Santangelo, A; Schmid, C; Schwope, A D; Smith, P J; Webb, N A; Wilms, J; Zane, S

2014-01-01T23:59:59.000Z

213

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

This volume contains reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25/sup 0/ API gravity range and are susceptible to recovery by in situ combustion and steam drive. The reservoirs for steam recovery are less than 2500 feet deep to comply with state-of-the-art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collectd from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

Kujawa, P.

1981-02-01T23:59:59.000Z

214

Multicomponent 3-D characterization of a coalbed methane reservoir  

SciTech Connect (OSTI)

Methane is produced from fractured coalbed reservoirs at Cedar Hill Field in the San Juan Basin. Fracturing and local stress are critical to production because of the absence of matrix permeability in the coals. Knowledge of the direction of open fractures, the degree of fracturing, reservoir pressure, and compartmentalization is required to understand the flow of fluids through the reservoir. A multicomponent 3-D seismic survey was acquired to aid in coalbed methane reservoir characterization. Coalbed reservoir heterogeneities, including isolated pressure cells, zones of increased fracture density, and variable fracture directions, have been interpreted through the analysis of the multicomponent data and integration with petrophysical and reservoir engineering studies. Strike-slip faults, which compartmentalize the reservoir, have been identified by structural interpretation of the 3-D P-wave seismic data. These faults form boundaries for pressure cells that have been identified by P-wave reflection amplitude anomalies.

Shuck, E.L. [Advance Geophysical Corp., Englewood, CO (United States)] [Advance Geophysical Corp., Englewood, CO (United States); Davis, T.L.; Benson, R.D. [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.] [Colorado School of Mines, Golden, CO (United States). Geophysics Dept.

1996-03-01T23:59:59.000Z

215

Development of general inflow performance relationships (IPR's) for slanted and horizontal wells producing heterogeneous solution-gas drive reservoirs  

SciTech Connect (OSTI)

Since 1968, the Vogel equation has been used extensively and successfully for analyzing the inflow performance relationship (IPR) of flowing vertical wells producing by solution-gas drive. Oil well productivity can be rapidly estimated by using the Vogel IPR curve and well outflow performance. With recent interests on horizontal well technology, several empirical IPRs for solution-gas drive horizontal and slanted wells have been developed under homogeneous reservoir conditions. This report presents the development of IPRs for horizontal and slanted wells by using a special vertical/horizontal/slanted well reservoir simulator under six different reservoir and well parameters: ratio of vertical to horizontal permeability, wellbore eccentricity, stratification, perforated length, formation thickness, and heterogeneous permeability. The pressure and gas saturation distributions around the wellbore are examined. The fundamental physical behavior of inflow performance for horizontal wells is described.

Cheng, A.M.

1992-04-01T23:59:59.000Z

216

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2004-03-05T23:59:59.000Z

217

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-09-04T23:59:59.000Z

218

INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES  

SciTech Connect (OSTI)

The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the existing steam drive area to improve thermal efficiency. (7) Installing an 2400 foot insulated, subsurface harbor channel crossing to supply steam to an island location. (8) Test a novel alkaline steam completion technique to control well sanding problems and fluid entry profiles. (9) Advanced reservoir management through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation.

Scott Hara

2003-06-04T23:59:59.000Z

219

Evaluation of target oil in 50 major reservoirs in the Texas Gulf Coast for enhanced oil recovery. [Steam injection, in-situ combustion, CO/sub 2/ flood, surfactant flood, and polymer flood  

SciTech Connect (OSTI)

This investigation determines the target oil available for enhanced oil recovery (EOR) from 50 major oil reservoirs in the Texas Gulf Coast. A preliminary screening process was used to determine which of five EOR methods, if any, were suitable for each of these reservoirs. Target oil in the 50 reservoirs is estimated to be 4.4 billion barrels of oil unrecoverable under present operating conditions, with about 1.5 billion barrels susceptible to EOR processes. None of the reservoirs have an outstanding potential for thermal recovery; however, seven reservoirs have carbon dioxide miscible flood potential, seven haven surfactant flood potential, and nine have polymer flood potential. None of the five methods was considered suitable for the remaining 27 reservoirs.

Hicks, J.N.; Foster, R.S.

1980-02-01T23:59:59.000Z

220

Enhancing Reservoir Management in the Appalach  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reservoir Management in the Appalachian Basin by Identifying Technical Reservoir Management in the Appalachian Basin by Identifying Technical Barrier and Preferred Practices Final Report Reporting Period Start Date: September 1, 2001 Reporting Period End Date: September 15, 2003 Principal Author(s): Ronald R. McDowell Khashayar Aminian Katharine L. Avary John M. Bocan Michael Ed. Hohn Douglas G. Patchen September 2003 DE-FC26-01BC15273 West Virginia University Research Corporation West Virginia Geological and Economic Survey (subcontractor) ii DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Chapter 5 - Coal Composition and Reservoir Characterization  

Science Journals Connector (OSTI)

Abstract Coal consists of organic and mineral matter. Fixed carbon from organic matter measures the energy output of coal during combustion. Mineral matter determines how coal responds to combustion and affects reservoir porosity and permeability. Minerals infill pores, cleats, or fractures and replace the organic composition of coal. Organic composition is grouped into maceral association as microlithotypes and macrolithotypes, the latter for megascopic field descriptions (e.g. coal cores and mine face). Coal composition controls reservoir properties such as gas adsorption capacity, gas content, porosity, and permeability. Permeability is important to gas transport from coal matrix pores to the production well. Coal permeability is a function of the width, length, and height of cleats or fractures as well as the aperture, spacing, frequency or density, and connectivity of cleats or fractures. Coal cleats or fractures formed during burial, compaction, and coalification (endogenetic) and after coalification during deformation, uplift, and erosion of the basin of deposition.

Romeo M. Flores

2014-01-01T23:59:59.000Z

222

Salinity routing in reservoir system modeling  

E-Print Network [OSTI]

.......................39 Figure 3.6 Sulfate concentration at Seymour gauge observed by USGS..........................39 Figure 3.7 TDS concentration at Richmond gauge observed by USGS............................40 Figure 3.8 Chloride concentration at Richmond... and three major upper reservoirs in the Brazos River Basin.......36 Figure 3.4 TDS concentration at Seymour gauge observed by USGS..............................38 Figure 3.5 Chloride concentration at Seymour gauge observed by USGS...

Ha, Mi Ae

2007-04-25T23:59:59.000Z

223

Ground potential rise monitor  

DOE Patents [OSTI]

A device and method for detecting ground potential rise (GPR) comprising positioning a first electrode and a second electrode at a distance from each other into the earth. The voltage of the first electrode and second electrode is attenuated by an attenuation factor creating an attenuated voltage. The true RMS voltage of the attenuated voltage is determined creating an attenuated true RMS voltage. The attenuated true RMS voltage is then multiplied by the attenuation factor creating a calculated true RMS voltage. If the calculated true RMS voltage is greater than a first predetermined voltage threshold, a first alarm is enabled at a local location. If user input is received at a remote location acknowledging the first alarm, a first alarm acknowledgment signal is transmitted. The first alarm acknowledgment signal is then received at which time the first alarm is disabled.

Allen, Zachery W. (Mandan, ND); Zevenbergen, Gary A. (Arvada, CO)

2012-04-03T23:59:59.000Z

224

Geothermal field case studies that document the usefulness of models in predicting reservoir and well behavior  

SciTech Connect (OSTI)

The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant art of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Falls in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources. 14 refs., 6 figs.

Lippmann, M.J.

1989-03-01T23:59:59.000Z

225

Geothermal Field Case Studies that Document the Usefulness of Models in Predicting Reservoir and Well Behavior  

SciTech Connect (OSTI)

The geothermal industry has shown significant interest in case histories that document field production histories and demonstrate the techniques which work best in the characterization and evaluation of geothermal systems. In response to this interest, LBL has devoted a significant part of its geothermal program to the compilation and analysis of data from US and foreign fields (e.g., East Mesa, The Geysers, Susanville, and Long Valley in California; Klamath Fall in Oregon; Valles Caldera, New Mexico; Cerro Prieto and Los Azufres in Mexico; Krafla and Nesjavellir in Iceland; Larderello in Italy; Olkaria in Kenya). In each of these case studies we have been able to test and validate in the field, or against field data, the methodology and instrumentation developed under the Reservoir Technology Task of the DOE Geothermal Program, and to add to the understanding of the characteristics and processes occurring in geothermal reservoirs. Case study results of the producing Cerro Prieto and Olkaria geothermal fields are discussed in this paper. These examples were chosen because they illustrate the value of conceptual and numerical models to predict changes in reservoir conditions, reservoir processes, and well performance that accompany field exploitation, as well as to reduce the costs associated with the development and exploitation of geothermal resources.

Lippmann, Marcelo J.

1989-03-21T23:59:59.000Z

226

Evaluation of dichalcogenide compounds as possible sorption reservoirs for thermionic converters  

SciTech Connect (OSTI)

Recently a metal matrix sorption reservoir (MMSR) was developed for use as a self-regulating internal cesium reservoir for thermionic converters. The MMSR contains powdered graphite in a sintered refractory metal matrix. This innovation opens up the possibility of using alternative intercalating compounds previously overlooked because they are typically only available in powder form. One such alternative is the general class of materials known as dichalcogenides of metals. The dichalcogenide compounds are of the form MX[sub 2] where M is a metal and X is either S, Se or Te. The dichalcogenides have the laminar structure required for intercalation and some have been shown to intercalate liquid metals under certain conditions. Selected refractory metal dichalcogenides have been evaluated as potential cesium sorption reservoirs in thermionic converters. Testing showed the majority of the dichalcogenides are not stable in the thermal environment of current Thermionic Fuel Element (TFE) designs. Of the seven compounds that can survive the high temperatures and vacuum, four are not compatible with the cesium vapor at converter temperatures. The three remaining dichalcogenide compounds suitable for use in thermionic converters did not intercalate cesium at typical converter operating conditions. The result of this work allow the continued effort towards developing an internal self-regulating cesium reservoir to be concentrated on graphite contained in MMSRs.

Garner, S.D.; Horner-Richardson, K.D. (Thermacore, Inc., 780 Eden Road, Lancaster, Pennsylvania 17601 (United States)); Kim, K.Y. (WL/POOC, Wright-Patterson AFB, Ohio 45433-6563 (United States))

1993-01-20T23:59:59.000Z

227

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

SciTech Connect (OSTI)

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

228

Preliminary Three-Dimensional Simulation of Sediment and Cesium Transport in the Ogi Dam Reservoir using FLESCOT Task 6, Subtask 2  

SciTech Connect (OSTI)

After the accident at the Fukushima Daiichi Nuclear Power Plant in March 2011, the Japan Atomic Energy Agency and the Pacific Northwest National Laboratory initiated a collaborative project on environmental restoration. In October 2013, the collaborative team started a task of three-dimensional modeling of sediment and cesium transport in the Fukushima environment using the FLESCOT (Flow, Energy, Salinity, Sediment Contaminant Transport) code. As the first trial, we applied it to the Ogi Dam Reservoir that is one of the reservoirs in the Japan Atomic Energy Agencys (JAEAs) investigation project. Three simulation cases under the following different temperature conditions were studied: incoming rivers and the Ogi Dam Reservoir have the same water temperature incoming rivers have lower water temperature than that of the reservoir incoming rivers have higher water temperature than that of the reservoir. The preliminary simulations suggest that seasonal temperature changes influence the sediment and cesium transport. The preliminary results showed the following: Suspended sand, and cesium adsorbed by sand, coming into the reservoirs from upstream rivers is deposited near the reservoir entrance. Suspended silt, and cesium adsorbed by silt, is deposited farther in the reservoir. Suspended clay, and cesium adsorbed by clay, travels the farthest into the reservoir. With sufficient time, the dissolved cesium reaches the downstream end of the reservoir. This preliminary modeling also suggests the possibility of a suitable dam operation to control the cesium migration farther downstream from the dam. JAEA has been sampling in the Ogi Dam Reservoir, but these data were not yet available for the current model calibration and validation for this reservoir. Nonetheless these preliminary FLESCOT modeling results were qualitatively valid and confirmed the applicability of the FLESCOT code to the Ogi Dam Reservoir, and in general to other reservoirs in the Fukushima environment. The issues to be addressed in future are the following: Validate the simulation results by comparison with the investigation data. Confirm the applicability of the FLESCOT code to Fukushima coastal areas. Increase computation speed by parallelizing the FLESCOT code.

Onishi, Yasuo; Kurikami, Hiroshi; Yokuda, Satoru T.

2014-03-28T23:59:59.000Z

229

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

230

SEISMIC DETERMINATION OF RESERVOIR HETEROGENEITY: APPLICATION TO THE CHARACTERIZATION OF HEAVY OIL RESERVOIRS  

SciTech Connect (OSTI)

The objective of the project was to examine how seismic and geologic data can be used to improve characterization of small-scale heterogeneity and their parameterization in reservoir models. The study focused on West Coalinga Field in California. The project initially attempted to build reservoir models based on different geologic and geophysical data independently using different tools, then to compare the results, and ultimately to integrate them all. We learned, however, that this strategy was impractical. The different data and tools need to be integrated from the beginning because they are all interrelated. This report describes a new approach to geostatistical modeling and presents an integration of geology and geophysics to explain the formation of the complex Coalinga reservoir.

Matthias G. Imhof; James W. Castle

2005-02-01T23:59:59.000Z

231

Cherokee Reservoir: supplement to factors affecting water quality in Cherokee Reservoir  

SciTech Connect (OSTI)

Several rates and/or measurements were assumed in preparation of the Factors Affecting Water Quality in Cherokee Reservoir report prepared by Iwanski, et al. (1980). The following discussions and data were generated to support future modeling efforts of Cherokee Reservoir water quality. These discussions are not wholly intended to define conclusions or new findings, but rather lend support to assumed parameters in the modeling effort. The data include: (1) long-term BOD analyses; (2) limiting nutrient studies algal assays; (3) phytoplankton biomass; (4) primary productivity; and (5) solids transport. 10 references, 3 figures, 5 tables. (ACR)

Poppe, W.L.

1981-09-14T23:59:59.000Z

232

PROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, January 31 -February 2, 2011  

E-Print Network [OSTI]

their untapped geothermal resources) for cost effective power production and direct-use applications. As part for further study). INTRODUCTION Geothermal energy is an under exploited resource throughout the world, yetPROCEEDINGS, Thirty-Sixth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

233

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR | Open Energy  

Open Energy Info (EERE)

FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID STRATIGRAPHY OF THE COSO GEOTHERMAL RESERVOIR Details Activities (1) Areas (1) Regions (0) Abstract: A fluid model for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Models are created using cross-sections and fence diagrams. A thick condensate and boiling zone is indicated across the western portion

234

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

235

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

236

Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic  

Broader source: Energy.gov (indexed) [DOE]

Ground mounted solar Ground mounted solar photovoltaic power at San Joaquin National Cemetery Department of Veterans Affairs, FONSI - Ground mounted solar photovoltaic power at San Joaquin National Cemetery An Environmental Assessment (EA) has been prepared under the direction of an interdisciplinary team analyzing theproposed construction of a Photovoltaic System at the San Joaquin National Cemetery (SNC) in San Joaquin,Calofornia. CX rulemaking files More Documents & Publications Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery Department of Energy Technical Support Document National Environmental Policy Act Implementing Procedures Supplement to Notice of Proposed Rulemaking Proposed Changes and Supplemental Supporting Basis

237

Using precision gravity data in geothermal reservoir engineering modeling studies  

SciTech Connect (OSTI)

Precision gravity measurements taken at various times over a geothermal field can be used to derive information about influx into the reservoir. Output from a reservoir simulation program can be used to compute surface gravity fields and time histories. Comparison of such computer results with field-measured gravity data can add confidence to simulation models, and provide insight into reservoir processes. Such a comparison is made for the Bulalo field in the Philippines.

Atkinson, Paul G.; Pederseen, Jens R.

1988-01-01T23:59:59.000Z

238

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

SciTech Connect (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

239

Oxygenation cost estimates for Cherokee, Douglas, and Norris reservoirs  

SciTech Connect (OSTI)

The capital and annual costs associated with reoxygenation of the turbine releases at Cherokee, Douglas and Norris Reservoirs using the small bubble injection technique developed for Ft. Patrick Henry Dam were computed. The weekly average dissolved oxygen (DO) deficits were computed for each reservoir for an average year (based on 16 years of records). The total annual cost of an oxygen supply and injection system for each reservoir is presented. 5 refs., 6 figs., 5 tabs.

Fain, T.G.

1980-10-01T23:59:59.000Z

240

Analysis of a geopressured gas reservoir using solution plot method  

E-Print Network [OSTI]

dependent formation compressibility and water influx require extensive study of the reservoir core samples and aquifer characteristics that are not commonly conducted. Poston and Chen solved this problem by re-arranging the material balance equation... of water compressibility (c~) and formation compressibility (c/ ). Studies of geopressured gas reservoirs have shown such reservoirs to be generally associated with either interbedded shales and or an aquifer. Each of these conditions can provide...

Hussain, Syed Muqeedul

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Inversion of reservoir quality: An example from the Triassic Buntsandstein, offshore Netherlands  

SciTech Connect (OSTI)

Sandstones from the Triassic Main Buntsandstein form a major gas reservoir in the Netherlands offshore. The sequence is dominated by siliciclastics deposited in an arid continental setting, and include dune, interdune, sheetsand, and fluvial sandstones. Reduction in reservoir quality is caused primarily by dolomite, halite, and anhydrite cementation, with minor authigenic illite and chlorite. Integration of petrographic and isotopic data has allowed the origins and relative timing of the different cements to be constrained. The carbon and oxygen isotopic composition of dolomite ([delta][sup 13]C = -3.76 to -9.3%, [delta][sup 18]O = -3 to +2.9% PDB) combined with strontium isotopic data (0.7091 to 0.7109 [sup 86]Sr/[sup 87]Sr) suggest that is precipitated from meteoric groundwater. Halite and anhydrite formed from a mixture of meteoric water and saline fluids expelled from underlying evaporites and claystones. Sulfur isotopic data (+4.2 to +12.1 CDT) support6 this interpretation for the origin of the anhydrite. Precipitation of the major authigenic minerals occurred during early diagenesis, prior to burial depths of 500 m. Cementation and groundwater flow followed the zones of highest permeability and caused an inversion of reservoir quality. Sandstones with the highest depositional porosity and permeability (i.e., dune sandstones) are the most cemented, and have poorer reservoir quality compared to the fluvial and interdune sandstones, which originally had lower depositional porosity/permeability. Formation of authigenic illite and chlorite occurred during burial and has significantly reduced permeability. Information on the depositional settings and paleogeography, combined with expected groundwater flow, has helped define potential exploration areas of reduced reservoir quality as a result of extensive early cementation.

Purvis, K.; Okkerman, J. (Koninklijke/Shell Exploratie en Producktie Laboratorium, Rijswijk (Netherlands))

1993-09-01T23:59:59.000Z

242

OUTDOOR RECREATION DEMAND AND EXPENDITURES: LOWER SNAKE RIVER RESERVOIRS  

E-Print Network [OSTI]

i OUTDOOR RECREATION DEMAND AND EXPENDITURES: LOWER SNAKE RIVER RESERVOIRS John R. Mc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v SECTION ONE - OUTDOOR RECREATION DEMAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Recreation Demand Methods

O'Laughlin, Jay

243

5641_FrozenReservoirs | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

parallel to the structure. These fractures could play a major role in enhancing vertical permeability and vertical connectivity in a reservoir that is otherwise highly...

244

Field Algae Measurements Using Empirical Correlations at Deer Creek Reservoir.  

E-Print Network [OSTI]

??Deer Creek Reservoir in Utah has a history of high algae concentrations. Despite recent nutrient reduction efforts, seasonal algae continue to present problems. Cost effective, (more)

Stephens, Ryan A.

2011-01-01T23:59:59.000Z

245

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon...  

Broader source: Energy.gov (indexed) [DOE]

the carbonation reaction mechanisms between supercritical carbon dioxide (scCO2) and reservoir rocks consisting of different mineralogical compositions in aqueous and...

246

Texas State Offshore Crude Oil + Lease Condensate New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Reservoir Discoveries in Old Fields...

247

California State Offshore Crude Oil + Lease Condensate New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

disclosure of individual company data. Release Date: 4102014 Next Release Date: 4302015 Referring Pages: Crude Oil plus Lease Condensate New Reservoir Discoveries in Old Fields...

248

,"New York Crude Oil Reserves in Nonproducing Reservoirs (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

249

,"Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Texas--State Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels)",1,"Annual",2013...

250

Evaluation of testing and reservoir parameters in geothermal...  

Open Energy Info (EERE)

testing and reservoir parameters in geothermal wells at Raft River and Boise, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

251

Hydraulics and Well Testing of Engineered Geothermal Reservoirs...  

Open Energy Info (EERE)

Hydraulics and Well Testing of Engineered Geothermal Reservoirs Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Hydraulics and Well Testing of...

252

Lower Watts Bar Reservoir Clinch River/Poplar Creek  

Broader source: Energy.gov [DOE]

This document explains the cleanup activities and any use limitations for the land surrounding the Lower Watts Bar Reservoir Clinch River/Poplar Creek.

253

Three-dimensional Modeling of Fracture Clusters in Geeothermal Reservoirs  

Broader source: Energy.gov [DOE]

Three-dimensional Modeling of Fracture Clusters in Geeothermal Reservoirs presentation at the April 2013 peer review meeting held in Denver, Colorado.

254

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

255

Monitoring and Modeling Fluid Flow in a Developing EGS Reservoir...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Imaging, Characterizing, and Modeling of Fracture Networks and Fluid Flow in EGS Reservoirs Detection and Characterization of Natural...

256

Application of thermal depletion model to geothermal reservoirs...  

Open Energy Info (EERE)

of thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

257

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir  

Broader source: Energy.gov [DOE]

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir presentation at the April 2013 peer review meeting held in Denver, Colorado.

258

Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...  

Open Energy Info (EERE)

correlations. Downhole measurements of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer...

259

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR...  

Open Energy Info (EERE)

RESERVOIR ASSESSMENT PRELIMINARY RESULTS Abstract Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids....

260

Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry  

Broader source: Energy.gov [DOE]

Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry presentation at the April 2013 peer review meeting held in Denver, Colorado.

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Prediction of coalbed methane reservoir performance with type curves.  

E-Print Network [OSTI]

??Coalbed methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoirs are dual-porosity systems that are characterized by (more)

Bhavsar, Amol Bhaskar.

2005-01-01T23:59:59.000Z

262

WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS.  

E-Print Network [OSTI]

??WATERJETTING: A NEW DRILLING TECHNIQUE IN COALBED METHANE RESERVOIRS Applications of waterjeting to drill horizontal wells for the purpose of degassing coalbeds prior to mining (more)

Funmilayo, Gbenga M.

2010-01-01T23:59:59.000Z

263

,"U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Coalbed Methane Proved Reserves New Reservoir Discoveries in Old Fields (Billion Cubic...

264

Impact of Langmuir isotherm on production behavior of CBM reservoirs.  

E-Print Network [OSTI]

??Coalbed Methane is an unconventional gas resource that consists of methane production from the coal seams. CBM reservoir performance is also influenced by the interrelationship (more)

Arrey, Efundem Ndipanquang.

2004-01-01T23:59:59.000Z

265

THMC Modeling of EGS Reservoirs ?Continuum through Discontinuum...  

Broader source: Energy.gov (indexed) [DOE]

Evolution and Induced Seismicity Derek Elsworth Pennsylvania State University Chemistry, Reservoir and Integrated Models May 19, 2010 This presentation does not contain any...

266

Variations in dissolved gas compositions of reservoir fluids...  

Open Energy Info (EERE)

A. E.; Copp, J. F. . 111991. Variations in dissolved gas compositions of reservoir fluids from the Coso geothermal field. Proceedings of () ; () : Sixteenth workshop on...

267

IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT  

SciTech Connect (OSTI)

The first horizontal well ever in the Marchand sandstone has been drilled. Although major difficulties arose with certain aspects of the drilling operation, a horizontal section of approximately 1300 was drilled. The section was left open hole as planned. The shales just above and between the Marchand sands appear to be very water-sensitive, requiring careful drilling practices. These shales were encountered in the middle part of the curve (45{sup o}-60{sup o}), which can be the most difficult part of a directional well to clean. Difficulties with these shales and cleaning this section led to a parted drill string, requiring a sidetrack. There were no major geologic ''surprises'', such as formation tops coming in much shallower or deeper than expected, or unexpected faults. Thin kaolinite beds were encountered in the horizontal section of the well. Previous descriptions of the mineralogy of this formation did not mention any kaolinite. The lateral extent of these beds is unknown. Completion of the well is under way. One additional injection profile was gathered during the quarter. Results are consistent with other recently profiles that show gas within the C Sand is overriding the oil and failing to sweep the deeper parts of the reservoir. International Reservoir Technologies, Inc. has completed the construction of the pilot area reservoir simulation model and the updating of historical production and injection data. They have begun fine-tuning the history match to better match production data and recently acquired pressure and profile data.

Joe Sinner

2001-08-10T23:59:59.000Z

268

APPLICATION OF RESERVOIR CHARACTERIZATION AND ADVANCED TECHNOLOGY TO IMPROVE RECOVERY AND ECONOMICS IN A LOWER QUALITY SHALLOW SHELF SANANDRES RESERVOIR  

SciTech Connect (OSTI)

The Class 2 Project at West Welch was designed to demonstrate the use of advanced technologies to enhance the economics of improved oil recovery (IOR) projects in lower quality Shallow Shelf Carbonate (SSC) reservoirs, resulting in recovery of additional oil that would otherwise be left in the reservoir at project abandonment. Accurate reservoir description is critical to the effective evaluation and efficient design of IOR projects in the heterogeneous SSC reservoirs. Therefore, the majority of Budget Period 1 was devoted to reservoir characterization. Technologies being demonstrated include: (1) Advanced petrophysics; (2) Three-dimensional (3-D) seismic; (3) Crosswell bore tomography; (4) Advanced reservoir simulation; (5) Carbon dioxide (CO{sub 2}) stimulation treatments; (6) Hydraulic fracturing design and monitoring; (7) Mobility control agents.

Unknown

2003-01-15T23:59:59.000Z

269

Shear-slip analysis in multiphase fluid-flow reservoir engineering ap plications using TOUGH-FLAC  

E-Print Network [OSTI]

IN MULTIPHASE FLUID-FLOW RESERVOIR ENGINEERING APPLICATIONSin multiphase fluid-flow reservoir-engineering applications.in multiphase fluid-flow reservoir engineering applications.

Rutqvist, Jonny; Birkholzer, Jens; Cappa, Frederic; Oldenburg, Curt; Tsang, Chin-Fu

2008-01-01T23:59:59.000Z

270

CO2 gas/oil ratio prediction in a multi-component reservoir by combined seismic and electromagnetic imaging  

E-Print Network [OSTI]

CO 2 flooding of an oil reservoir are inverted to producein a complex reservoir containing oil, water, hydrocarbonincluding oil, water and gas) and reservoir pressure. The

Hoversten, G.M.; Gritto, Roland; Washbourne, John; Daley, Tom

2002-01-01T23:59:59.000Z

271

EPA Final Ground Water Rule  

Broader source: Energy.gov (indexed) [DOE]

Office of Nuclear Safety and Environment Office of Nuclear Safety and Environment Nuclear Safety and Environment Information Brief HS-20-IB-2007-02 (March 2007) EPA Final Ground Water Rule Safe Drinking Water Act: National Primary Drinking Water Regulations Ground Water Rule - 40 CFR Parts 9, 141 and 142 Final Rule: 71 FR 65574 Effective Date: January 8, 2007 1 RULE SYNOPSIS On November 8, 2006, the U.S. Environmental Protection Agency (EPA) published a final Ground Water Rule (GWR) to promote increased protection against microbial pathogens that may be present in public water systems (PWSs) that use ground water sources for their supply (these systems are known as ground water systems). This Rule establishes a risk-targeted approach

272

On LHCb muon MWPC grounding  

E-Print Network [OSTI]

My goal is to study how a big MWPC system, in particular the LHCb muon system, can be protected against unstable operation and multiple spurious hits, produced by incorrect or imperfect grounding in the severe EM environment of the LHCb experiment. A mechanism of penetration of parasitic current from the ground loop to the input of the front-end amplifier is discussed. A new model of the detector cell as the electrical bridge is considered. As shown, unbalance of the bridge makes detector to be sensitive to the noise in ground loop. Resonances in ground loop are specified. Tests of multiple-point and single-point grounding conceptions made on mock-up are presented.

Kashchuk, A

2006-01-01T23:59:59.000Z

273

Assessment of halite-cemented reservoir zones  

SciTech Connect (OSTI)

This paper describes the techniques used to identify the presence and distribution of halite-cemented layers in a sandstone oil reservoir. The distribution of these layers in the wells was found by matching the core data with two independent halite identifiers from the well logs. Numerical well models were used to assess the dimensions and spatial distribution of the halite-cemented layers. Multiple simulation runs in which the spatial distribution, the dimensions, and the vertical permeability were varied resulted in a stochastic model that best matched the production history. Gas and water coning are retarded by the halite-cemented layers if the perforations are properly located.

Huurdeman, A.J.M.; Floris, F.J.T.; Lutgert, J.E. (TNO Inst. of Applied Geoscience (NL)); Breunese, J.N. (Geological Survey of the Netherlands (NL)); Al-Asbahl, A.M.S. (Ministry of Oil and Mineral Resources (YE))

1991-05-01T23:59:59.000Z

274

Regional analysis of ground and above-ground climate  

SciTech Connect (OSTI)

The regional suitability of underground construction as a climate control technique is discussed with reference to (1) a bioclimatic analysis of long-term weather data for 29 locations in the United States to determine appropriate above ground climate control techniques, (2) a data base of synthesized ground temperatures for the coterminous United States, and (3) monthly dew point ground temperature comparisons for identifying the relative likelihood of condensation from one region to another. It is concluded that the suitability of earth tempering as a practice and of specific earth-sheltered design stereotypes varies geographically; while the subsurface almost always provides a thermal advantage on its own terms when compared to above ground climatic data, it can, nonetheless, compromise the effectiveness of other, regionally more important climate control techniques. Also contained in the report are reviews of above and below ground climate mapping schemes related to human comfort and architectural design, and detailed description of a theoretical model of ground temperature, heat flow, and heat storage in the ground. Strategies of passive climate control are presented in a discussion of the building bioclimatic analysis procedure which has been applied in a computer analysis of 30 years of weather data for each of 29 locations in the United States.

Not Available

1981-12-01T23:59:59.000Z

275

A better understanding of a Uinta Basin channelized analog reservoir through geostatistics and reservoir simulation  

E-Print Network [OSTI]

the behavior of channelized oil and gas reservoirs. Results show that the number of channels in the model can have a significant effect on performance. The rock properties in these channels and the channel paths are also important factors that determine...

Robbana, Enis

2012-06-07T23:59:59.000Z

276

A petrophysics and reservoir performance-based reservoir characterization of Womack Hill (Upper Smackover) Field (Alabama)  

E-Print Network [OSTI]

as well as to optimize the operating practices in the field. We used a non-parametric regression algorithm (ACE) to develop correlations between the core and well log data. These correlations allow us to estimate reservoir permeability at the "flow unit...

Avila Urbaneja, Juan Carlos

2012-06-07T23:59:59.000Z

277

Application of integrated reservoir management and reservoir characterization to optimize infill drilling. Annual report, June 13, 1994--June 12, 1995  

SciTech Connect (OSTI)

This project has used a multi-disciplinary approach employing geology, geophysics, and engineering to conduct advanced reservoir characterization and management activities to design and implement an optimized infill drilling program at the North Robertson (Clearfork) Unit in Gaines County, Texas. The activities during the first Budget Period have consisted of developing an integrated reservoir description from geological, engineering, and geostatistical studies, and using this description for reservoir flow simulation. Specific reservoir management activities are being identified and tested. The geologically targeted infill drilling program will be implemented using the results of this work. A significant contribution of this project is to demonstrate the use of cost-effective reservoir characterization and management tools that will be helpful to both independent and major operators for the optimal development of heterogeneous, low permeability shallow-shelf carbonate (SSC) reservoirs. The techniques that are outlined for the formulation of an integrated reservoir description apply to all oil and gas reservoirs, but are specifically tailored for use in the heterogeneous, low permeability carbonate reservoirs of West Texas.

Pande, P.K.

1996-11-01T23:59:59.000Z

278

CO{sub 2} Huff-n-Puff process in a light oil shallow shelf carbonate reservoir  

SciTech Connect (OSTI)

The application of cyclic CO{sub 2}, often referred to as the CO{sub 2} Huff-n-Puff process, may find its niche in the maturing waterfloods of the Permian Basin. Coupling the CO{sub 2} H-n-P process to miscible flooding applications could provide the needed revenue to sufficiently mitigate near-term negative cash flow concerns in the capital intensive miscible projects. Texaco Exploration and Production Inc. and the US Department of Energy have teamed up in an attempt to develop the CO{sub 2} Huff-n-Puff process in the Grayburg and San Andres formations, a light oil, shallow shelf carbonate reservoir that exists throughout the Permian Basin. This cost-shared effort is intended to demonstrate the viability of this underutilized technology in a specific class of domestic reservoir. The selected site for this demonstration project is the Central Vacuum Unit waterflood in Lea County, New Mexico. The goals of the project are the development of guidelines for cost-effective selection of candidate reservoirs and wells, along with estimating recovery potential. This project has two defined budget periods. The first budget period primarily involves tasks associated with reservoir analysis and characterization, characterizing existing producibility problems, and reservoir simulation of the proposed technology. The final budget period covers the actual field demonstration of the proposed technology. Technology transfer spans the entire course of the project. This report covers the concluding tasks performed under the second budget period.

NONE

1998-06-01T23:59:59.000Z

279

Twentieth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

None

1995-01-26T23:59:59.000Z

280

Rabi multi-sector reservoir simulation model  

SciTech Connect (OSTI)

To ensure optimum ultimate recovery of the 46 meter thick oil rim of the Rabi Field in Gabon, a full field simulation model was required. Due to it`s size and complexity, with local cusping, coning and geological circumstances dominating individual well behavior, a single full field model would be too large for existing hardware. A method was developed to simulate the full field with 5 separate sector models, whilst allowing the development in one sector model to have an effect on the boundary conditions of another sector. In this manner, the 13 x 4.5 km field could be simulated with a horizontal well spacing down to 175 meter. This paper focuses on the method used to attach single 3-phase tank cells to a sector simulation grid in order to represent non-simulated parts of the field. It also describes the history matching methodology and how to run a multisector model in forecasting mode. This method can be used for any reservoir, where size and complexity require large reservoir simulation models that normally could not be modeled within the constraints of available computer facilities. Detailed studies can be conducted on specific parts of a field, whilst allowing for dynamic flow and pressure effects caused by the rest of the field.

Bruijnzeels, C.; O`Halloran, C.

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Reservoir permeability from seismic attribute analysis  

SciTech Connect (OSTI)

In case of porous fluid-saturated medium the Biot's poroelasticity theory predicts a movement of the pore fluid relative to the skeleton on seismic wave propagation through the medium. This phenomenon opens an opportunity for investigation of the flow properties of the hydrocarbon-saturated reservoirs. It is well known that relative fluid movement becomes negligible at seismic frequencies if porous material is homogeneous and well cemented. In this case the theory predicts an underestimated seismic wave velocity dispersion and attenuation. Based on Biot's theory, Helle et al. (2003) have numerically demonstrated the substantial effects on both velocity and attenuation by heterogeneous permeability and saturation in the rocks. Besides fluid flow effect, the effects of scattering (Gurevich, et al., 1997) play very important role in case of finely layered porous rocks and heterogeneous fluid saturation. We have used both fluid flow and scattering effects to derive a frequency-dependent seismic attribute which is proportional to fluid mobility and applied it for analysis of reservoir permeability.

Silin, Dmitriy; Goloshubin, G.; Silin, D.; Vingalov, V.; Takkand, G.; Latfullin, M.

2008-02-15T23:59:59.000Z

282

Improved efficiency of miscible CO2 floods and enhanced prospects for CO2 flooding heterogeneous reservoirs. Final report, April 17, 1991--May 31, 1997  

SciTech Connect (OSTI)

From 1986 to 1996, oil recovery in the US by gas injection increased almost threefold, to 300,000 bbl/day. Carbon dioxide (CO{sub 2}) injection projects make up three-quarters of the 191,139 bbl/day production increase. This document reports experimental and modeling research in three areas that is increasing the number of reservoirs in which CO{sub 2} can profitably enhance oil recovery: (1) foams for selective mobility reduction (SMR) in heterogeneous reservoirs, (2) reduction of the amount of CO{sub 2} required in CO{sub 2} floods, and (3) low interfacial tension (97) processes and the possibility of CO{sub 2} flooding in naturally fractured reservoirs. CO{sub 2} injection under miscible conditions can effectively displace oil, but due to differences in density and viscosity the mobility of CO{sub 2} is higher than either oil or water. High CO{sub 2} mobility causes injection gas to finger through a reservoir, causing such problems as early gas breakthrough, high gas production rates, excessive injection gas recycling, and bypassing of much of the reservoir oil. These adverse effects are exacerbated by increased reservoir heterogeneity, reaching an extreme in naturally fractured reservoirs. Thus, many highly heterogeneous reservoirs have not been considered for CO{sub 2} injection or have had disappointing recoveries. One example is the heterogeneous Spraberry trend in west Texas, where only 10% of its ten billion barrels of original oil in place (OOIP) are recoverable by conventional methods. CO{sub 2} mobility can be reduced by injecting water (brine) alternated with CO{sub 2} (WAG) and then further reduced by adding foaming agents-surfactants. In Task 1, we studied a unique foam property, selective mobility reduction (SMR), that effectively reduces the effects of reservoir heterogeneity. Selective mobility reduction creates a more uniform displacement by decreasing CO{sub 2} mobility in higher permeability zones more than in lower permeability zones.

Grigg, R.B.; Schechter, D.S.

1998-02-01T23:59:59.000Z

283

Sixth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

INTRODUCTION TO THE PROCEEDINGS OF THE SIXTH GEOTHERMAL RESERVOIR ENGINEERING WORKSHOP, STANFORD GEOTHERMAL PROGRAM Henry J. Ramey, Jr., and Paul Kruger Co-Principal Investigators Ian G. Donaldson Program Manager Stanford Geothermal Program The Sixth Workshop on Geothermal Reservoir Engineering convened at Stanford University on December 16, 1980. As with previous Workshops the attendance was around 100 with a significant participation from countries other than the United States (18 attendees from 6 countries). In addition, there were a number of papers from foreign contributors not able to attend. Because of the success of all the earlier workshops there was only one format change, a new scheduling of Tuesday to Thursday rather than the earlier Wednesday through Friday. This change was in general considered for the better and will be retained for the Seventh Workshop. Papers were presented on two and a half of the three days, the panel session, this year on the numerical modeling intercomparison study sponsored by the Department of Energy, being held on the second afternoon. This panel discussion is described in a separate Stanford Geothermal Program Report (SGP-TR42). This year there was a shift in subject of the papers. There was a reduction in the number of papers offered on pressure transients and well testing and an introduction of several new subjects. After overviews by Bob Gray of the Department of Energy and Jack Howard of Lawrence Berkeley Laboratory, we had papers on field development, geopressured systems, production engineering, well testing, modeling, reservoir physics, reservoir chemistry, and risk analysis. A total of 51 papers were contributed and are printed in these Proceedings. It was, however, necessary to restrict the presentations and not all papers printed were presented. Although the content of the Workshop has changed over the years, the format to date has proved to be satisfactory. The objectives of the Workshop, the bringing together of researchers, engineers and managers involved in geothermal reservoir study and development and the provision of a forum for the prompt and open reporting of progress and for the exchange of ideas, continue to be met . Active discussion by the majority of the participants is apparent both in and outside the workshop arena. The Workshop Proceedings now contain some of the most highly cited geothermal literature. Unfortunately, the popularity of the Workshop for the presentation and exchange of ideas does have some less welcome side effects. The major one is the developing necessity for a limitation of the number of papers that are actually presented. We will continue to include all offered papers in the Summaries and Proceedings. As in the recent past, this sixth Workshop was supported by a grant from the Department of Energy. This grant is now made directly to Stanford as part of the support for the Stanford Geothermal Program (Contract No. DE-AT03-80SF11459). We are certain that all participants join us in our appreciation of this continuing support. Thanks are also due to all those individuals who helped in so many ways: The members of the program committee who had to work so hard to keep the program to a manageable size - George Frye (Aminoil USA), Paul G. Atkinson (Union Oil Company). Michael L. Sorey (U.S.G.S.), Frank G. Miller (Stanford Geothermal Program), and Roland N. Horne (Stanford Geothermal Program). The session chairmen who contributed so much to the organization and operation of the technical sessions - George Frye (Aminoil USA), Phillip H. Messer (Union Oil Company), Leland L. Mink (Department of Energy), Manuel Nathenson (U.S.G.S.), Gunnar Bodvarsson (Oregon State University), Mohindar S. Gulati (Union Oil Company), George F. Pinder (Princeton University), Paul A. Witherspoon (Lawrence Berkeley Laboratory), Frank G. Miller (Stanford Geothermal Program) and Michael J. O'Sullivan (Lawrence Berkeley Laboratory). The many people who assisted behind the scenes, making sure that everything was prepared and organized - in particular we would like to t

Ramey, H.J. Jr.; Kruger, P. (eds.)

1980-12-18T23:59:59.000Z

284

Methods and systems using encapsulated tracers and chemicals for reservoir interrogation and manipulation  

DOE Patents [OSTI]

An apparatus, method, and system of reservoir interrogation. A tracer is encapsulating in a receptacle. The receptacle containing the tracer is injected into the reservoir. The tracer is analyzed for reservoir interrogation.

Roberts, Jeffery; Aines, Roger D; Duoss, Eric B; Spadaccini, Christopher M

2014-11-04T23:59:59.000Z

285

Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs  

E-Print Network [OSTI]

Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

Ma, Xiaodan

2013-12-10T23:59:59.000Z

286

A Hierarchical Multiscale Approach to History Matching and Optimization for Reservoir Management in Mature Fields  

E-Print Network [OSTI]

Reservoir management typically focuses on maximizing oil and gas recovery from a reservoir based on facts and information while minimizing capital and operating investments. Modern reservoir management uses history-matched simulation model...

Park, Han-Young

2012-10-19T23:59:59.000Z

287

Fracture Modeling and Flow Behavior in Shale Gas Reservoirs Using Discrete Fracture Networks  

E-Print Network [OSTI]

Fluid flow process in fractured reservoirs is controlled primarily by the connectivity of fractures. The presence of fractures in these reservoirs significantly affects the mechanism of fluid flow. They have led to problems in the reservoir which...

Ogbechie, Joachim Nwabunwanne

2012-02-14T23:59:59.000Z

288

Thermo-Poroelastic Modeling of Reservoir Stimulation and Microseismicity Using Finite Element Method with Damage Mechanics  

E-Print Network [OSTI]

Stress and permeability variations around a wellbore and in the reservoir are of much interest in petroleum and geothermal reservoir development. Water injection causes significant changes in pore pressure, temperature, and stress in hot reservoirs...

Lee, Sang Hoon

2012-02-14T23:59:59.000Z

289

NLS ground states on graphs  

E-Print Network [OSTI]

We investigate the existence of ground states for the subcritical NLS energy on metric graphs. In particular, we find out a topological assumption that guarantees the nonexistence of ground states, and give an example in which the assumption is not fulfilled and ground states actually exist. In order to obtain the result, we introduce a new rearrangement technique, adapted to the graph where it applies. Owing to such a technique, the energy level of the rearranged function is improved by conveniently mixing the symmetric and monotone rearrangement procedures.

Riccardo Adami; Enrico Serra; Paolo Tilli

2014-06-16T23:59:59.000Z

290

Flood Operation Rules for a Single Reservoir Licheng Dong  

E-Print Network [OSTI]

, University of California - Davis 2012-12-12 Abstract This paper examines the theoretical behavior ecosystems. 2. Simple Inflow Hydrographs Three main factors affect the reservoir's inflow flood volume and peak outflow (Ergish, 2010): 1) inflow hydrograph volume and shape; 2) controllable reservoir storage

Lund, Jay R.

291

General inflow performance relationship for solution-gas reservoir wells  

SciTech Connect (OSTI)

Two equations are developed to describe the inflow performance relationship (IPR) of wells producing from solution-gas drive reservoirs. These are general equations (extensions of the currently available IPR's) that apply to wells with any drainage-area shape at any state of completion flow efficiency and any stage of reservoir depletion. 7 refs.

Dias-Couto, L.E.; Golan, M.

1982-02-01T23:59:59.000Z

292

WestVirginiaUniversity SPE 65675 Reservoir Characterization  

E-Print Network [OSTI]

to measure effective porosity (MPHI) and irreducible water saturation (MBVI) in the reservoir rock to accurately characterize effective porosity, fluid saturation and permeability. WestVirginiaUniversity #12WestVirginiaUniversity SPE 65675 SPE 65675 Reservoir Characterization Through Synthetic Logs Shahab

Mohaghegh, Shahab

293

Resolution of reservoir scale electrical anisotropy from marine CSEM data  

SciTech Connect (OSTI)

A combination of 1D and 3D forward and inverse solutions is used to quantify the sensitivity and resolution of conventional controlled source electromagnetic (CSEM) data collected using a horizontal electric dipole source to transverse electrical anisotropy located in a deep-water exploration reservoir target. Since strongly anisotropic shale layers have a vertical resistivity that can be comparable to many reservoirs, we examine how CSEM can discriminate confounding shale layers through their characteristically lower horizontal resistivity. Forward modeling demonstrates that the sensitivity to reservoir level anisotropy is very low compared to the sensitivity to isotropic reservoirs, especially when the reservoir is deeper than about 2 km below the seabed. However, for 1D models where the number of inversion parameters can be fixed to be only a few layers, both vertical and horizontal resistivity of the reservoir can be well resolved using a stochastic inversion. We find that the resolution of horizontal resistivity increases as the horizontal resistivity decreases. We show that this effect is explained by the presence of strong horizontal current density in anisotropic layers with low horizontal resistivity. Conversely, when the reservoir has a vertical to horizontal resistivity ratio of about 10 or less, the current density is vertically polarized and hence has little sensitivity to the horizontal resistivity. Resistivity anisotropy estimates from 3D inversion for 3D targets suggest that resolution of reservoir level anisotropy for 3D targets will require good a priori knowledge of the background sediment conductivity and structural boundaries.

Brown, V.; Hoversten, G.M.; Key, K.; Chen, J.

2011-10-01T23:59:59.000Z

294

Evidence for an Ancient Osmium Isotopic Reservoir in Earth  

Science Journals Connector (OSTI)

...ophiolites in the Klamath mountains have extremely...ancient platinum group element reservoir...Oregon Josephine Creek Klamath Mountains mass spectra...platinum platinum group plutonic rocks...ophiolites in the Klamath mountains have extremely...ancient platinum group element reservoir...

Anders Meibom; Robert Frei

2002-04-19T23:59:59.000Z

295

SEDIMENTATION OF THE PANAMA CANAL RESERVOIR: COSMOGENIC NUCLIDE  

E-Print Network [OSTI]

SEDIMENTATION OF THE PANAMA CANAL RESERVOIR: COSMOGENIC NUCLIDE ESTIMATES OF BACKGROUND SEDIMENT, Livermore, CA 94550 The Panama Canal is an engineering marvel. Vital to the operation of the canal, the reservoir to the Panama Canal. In addition to water, the headwater basins supply sediment that reduces

Nichols, Kyle K.

296

Gradient-based Methods for Production Optimization of Oil Reservoirs  

E-Print Network [OSTI]

Gradient-based Methods for Production Optimization of Oil Reservoirs Eka Suwartadi Doctoral Thesis oil reservoirs. Gradient- based optimization, which utilizes adjoint-based gradient computation optimization for water flooding in the secondary phase of oil recovery is the main topic in this thesis

Foss, Bjarne A.

297

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs,  

Open Energy Info (EERE)

Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Pattern Of Shallow Ground Water Flow At Mount Princeton Hot Springs, Colorado, Using Geoelectrical Methods Details Activities (2) Areas (1) Regions (0) Abstract: In geothermal fields, open faults and fractures often act as high permeability pathways bringing hydrothermal fluids to the surface from deep reservoirs. The Mount Princeton area, in south-central Colorado, is an area that has an active geothermal system related to faulting and is therefore a suitable natural laboratory to test geophysical methods. The Sawatch range-front normal fault bordering the half-graben of the Upper Arkansas

298

Characterization of geothermal reservoir crack patterns using shear-wave  

Open Energy Info (EERE)

geothermal reservoir crack patterns using shear-wave geothermal reservoir crack patterns using shear-wave splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Characterization of geothermal reservoir crack patterns using shear-wave splitting Details Activities (1) Areas (1) Regions (0) Abstract: Microearthquakes recorded by a downhole, three-component seismic network deployed around the Coso, California, geothermal reservoir since 1992 display distinctive shear-wave splitting and clear polarization directions. From the polarizations the authors estimated three predominant subsurface fracture directions, and from the time delays of the split waves they determined tomographically the 3-D fracture density distribution in the reservoir. Author(s): Lou, M.; Rial, J.A. Published: Geophysics, 3/1/1997

299

Tectonic setting of the Coso geothermal reservoir | Open Energy Information  

Open Energy Info (EERE)

Tectonic setting of the Coso geothermal reservoir Tectonic setting of the Coso geothermal reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Tectonic setting of the Coso geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: The Coso geothermal reservoir is being developed in Sierran-type crystalline bedrock of the Coso Mountains, a small desert mountain range just to the east of the Sierra Nevada and Rose Valley, which is the southern extension of the Owens Valley of eastern California Optimum development of this reservoir requires an understanding of the fracture hydrology of the Coso Mountains crystalline terrain and its hydrologic connection to regional groundwater and thermal sources. An interpreted, conceptually balanced regional cross section that extends from the Sierra

300

Dams and Reservoirs Safety Act (South Carolina) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dams and Reservoirs Safety Act (South Carolina) Dams and Reservoirs Safety Act (South Carolina) Dams and Reservoirs Safety Act (South Carolina) < Back Eligibility Utility Commercial Agricultural Investor-Owned Utility Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Institutional Savings Category Water Buying & Making Electricity Program Info State South Carolina Program Type Siting and Permitting Provider South Carolina Department of Health and Environmental Control The Dams and Reservoirs Safety Act provides for the certification and inspection of dams in South Carolina and confers regulatory authority on the Department of Health and Environmental Control. Owners of dams and reservoirs are responsible for maintaining the safety of the structures,

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada |  

Open Energy Info (EERE)

Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Integrated Seismic Studies At The Rye Patch Geothermal Reservoir, Nevada Details Activities (2) Areas (1) Regions (0) Abstract: A 3-D surface seismic reflection survey, covering an area of over 3 square miles, was conducted at the Rye Patch geothermal reservoir (Nevada) to explore the structural features that may control geothermal production in the area. In addition to the surface sources and receivers, a high-temperature three-component seismometer was deployed in a borehole at a depth of 3900 ft within the basement below the reservoir, which recorded the waves generated by all surface sources. A total of 1959 first-arrival travel times were determined out of 2134 possible traces. Two-dimensional

302

Geothermal Reservoir Assessment Case Study, Northern Basin and Range  

Open Energy Info (EERE)

Reservoir Assessment Case Study, Northern Basin and Range Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Abstract N/A Authors Elaine J. Bell, Lawrence T. Larson and Russell W. Juncal Published U.S. Department of Energy, 1980 Report Number GLO2386 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province, Northern Dixie Valley, Nevada Citation Elaine J. Bell,Lawrence T. Larson,Russell W. Juncal. 1980. Geothermal Reservoir Assessment Case Study, Northern Basin and Range Province,

303

Opportunities to improve oil productivity in unstructured deltaic reservoirs  

SciTech Connect (OSTI)

This report contains presentations presented at a technical symposium on oil production. Chapter 1 contains summaries of the presentations given at the Department of Energy (DOE)-sponsored symposium and key points of the discussions that followed. Chapter 2 characterizes the light oil resource from fluvial-dominated deltaic reservoirs in the Tertiary Oil Recovery Information System (TORIS). An analysis of enhanced oil recovery (EOR) and advanced secondary recovery (ASR) potential for fluvial-dominated deltaic reservoirs based on recovery performance and economic modeling as well as the potential resource loss due to well abandonments is presented. Chapter 3 provides a summary of the general reservoir characteristics and properties within deltaic deposits. It is not exhaustive treatise, rather it is intended to provide some basic information about geologic, reservoir, and production characteristics of deltaic reservoirs, and the resulting recovery problems.

Not Available

1991-01-01T23:59:59.000Z

304

High resolution reservoir geological modelling using outcrop information  

SciTech Connect (OSTI)

This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

Zhang Changmin; Lin Kexiang; Liu Huaibo [Jianghan Petroleum Institute, Hubei (China)] [and others

1997-08-01T23:59:59.000Z

305

Property:AvgReservoirDepth | Open Energy Information  

Open Energy Info (EERE)

AvgReservoirDepth AvgReservoirDepth Jump to: navigation, search Property Name AvgReservoirDepth Property Type Quantity Description Average depth to reservoir Use this type to express a quantity of length. The default unit is the meter (m). Acceptable units (and their conversions) are: Meters - 1 m, meter, meters Meter, Meters, METER, METERS Kilometers - 0.001 km, kilometer, kilometers, Kilometer, Kilometers, KILOMETERS, KILOMETERS Miles - 0.000621371 mi, mile, miles, Mile, Miles, MILE, MILES Feet - 3.28084 ft, foot, feet, Foot, Feet, FOOT, FEET Yards - 1.09361 yd, yard, yards, Yard, Yards, YARD, YARDS Pages using the property "AvgReservoirDepth" Showing 24 pages using this property. A Amedee Geothermal Area + 213 m0.213 km 0.132 mi 698.819 ft 232.939 yd + B Beowawe Hot Springs Geothermal Area + 850 m0.85 km

306

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal  

Open Energy Info (EERE)

Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Lithology and alteration mineralogy of reservoir rocks at Coso Geothermal Area, California Details Activities (1) Areas (1) Regions (0) Abstract: Coso is one of several high-temperature geothermal systems associated with recent volcanic activity in the Basin and Range province. Chemical and fluid inclusion data demonstrate that production is from a narrow, asymmetric plume of thermal water that originates from a deep reservoir to the south and then flows laterally to the north. Geologic controls on the geometry of the upwelling plume were investigated using petrographic and analytical analyses of reservoir rock and vein material.

307

Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir  

SciTech Connect (OSTI)

Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. The successful development of HPAI technology has tremendous potential for increasing the flow of oil from deep carbonate reservoirs in the Permian Basin, a target resource that can be conservatively estimated at more than 1.5 billion barrels. Successful implementation in the field chosen for demonstration, for example, could result in the recovery of more than 34 million barrels of oil that will not otherwise be produced. Geological and petrophysical analysis of available data at Barnhart field reveals the following important observations: (1) the Barnhart Ellenburger reservoir is similar to most other Ellenburger reservoirs in terms of depositional facies, diagenesis, and petrophysical attributes; (2) the reservoir is characterized by low to moderate matrix porosity much like most other Ellenburger reservoirs in the Permian Basin; (3) karst processes (cave formation, infill, and collapse) have substantially altered stratigraphic architecture and reservoir properties; (4) porosity and permeability increase with depth and may be associated with the degree of karst-related diagenesis; (5) tectonic fractures overprint the reservoir, improving overall connectivity; (6) oil-saturation profiles show that the oil-water contact (OWC) is as much as 125 ft lower than previous estimations; (7) production history and trends suggest that this reservoir is very similar to other solution-gas-drive reservoirs in the Permian Basin; and (8) reservoir simulation study showed that the Barnhart reservoir is a good candidate for HPAI and that application of horizontal-well technology can improve ultimate resource recovery from the reservoir.

Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

2006-09-30T23:59:59.000Z

308

Calibrating Pesticide Application Ground Equipment  

E-Print Network [OSTI]

This pocket-sized guide gives step-by-step instructions for calibrating ground sprayers. Tables provide instructions, examples and sample formulas for determining speed of application, flow rate and the amount of pesticide to add to the tank....

Shaw, Bryan W.

2000-07-05T23:59:59.000Z

309

Ground Water Management Regulations (Louisiana)  

Broader source: Energy.gov [DOE]

The rules and regulations apply to the management of the state's ground water resources. In addition, the Commissioner of Conservation has recommended that oil and gas operators with an interest...

310

Simulation study to investigate development options for a super-heavy oil reservoir.  

E-Print Network [OSTI]

??A reservoir simulation study was performed on a heavy oil reservoir with the main objective of evaluating possible development options beyond the existing cold production (more)

Diaz Franco, Jose Manuel

2012-01-01T23:59:59.000Z

311

Sizing of a hot dry rock reservoir from a hydraulic fracturing experiment  

SciTech Connect (OSTI)

Hot dry rock (HDR) reservoirs do not lend themselves to the standard methods of reservoir sizing developed in the petroleum industry such as the buildup/drawdown test. In a HDR reservoir the reservoir is created by the injection of fluid. This process of hydraulic fracturing of the reservoir rock usually involves injection of a large volume (5 million gallons) at high rates (40BPM). A methodology is presented for sizing the HDR reservoir created during the hydraulic fracturing process. The reservoir created during a recent fracturing experiment is sized using the techniques presented. This reservoir is then investigated for commercial potential by simulation of long term power production. 5 refs., 7 figs.

Zyvoloski, G.

1985-01-01T23:59:59.000Z

312

U.S. Federal Offshore Crude Oil + Lease Condensate New Reservoir...  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields (Million Barrels) U.S. Federal Offshore Crude Oil + Lease Condensate New Reservoir Discoveries in Old Fields (Million Barrels) Decade Year-0...

313

U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs...  

U.S. Energy Information Administration (EIA) Indexed Site

Reserves in Nonproducing Reservoirs (Million Barrels) U.S. Federal Offshore Crude Oil Reserves in Nonproducing Reservoirs (Million Barrels) Decade Year-0 Year-1 Year-2 Year-3...

314

E-Print Network 3.0 - ardross reservoir gridblock Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

sections. Reservoir Reservoir gridblock Idealized gridblockSingle matrix block Fracture Matrix 12;SPE... gridblocks is applied for ... Source: Arbogast, Todd - Center for...

315

Sensitivity analysis of modeling parameters that affect the dual peaking behaviour in coalbed methane reservoirs.  

E-Print Network [OSTI]

??Coalbed methane reservoir (CBM) performance is controlled by a complex set of reservoir, geologic, completion and operational parameters and the inter-relationships between those parameters. Therefore (more)

Okeke, Amarachukwu Ngozi

2006-01-01T23:59:59.000Z

316

EVALUATION OF PERFORMANCE OF CYCLIC STEAM INJECTION IN NATURALLY FRACTURED RESERVOIRS AN ARTIFICIAL NEURAL NETWORK APPLICATION.  

E-Print Network [OSTI]

??With increasing demand on oil, it is important to improve the recovery factor of oil reservoirs. Naturally fractured reservoirs constitute a major portion of worlds (more)

Chintalapati, Santosh Phani Bhushan

2011-01-01T23:59:59.000Z

317

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly  

E-Print Network [OSTI]

GHG Emissions from Hydropower Reservoirs The role of hydropower reservoirs in contributing to greenhouse gas (GHG) emissions is poorly understood, but recent studies have indicated that GHG emissions; and over 5 weeks in August--September, the peak GHG emission period, during 2012. (Pacific Northwest

318

Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 3. Historical Ground-Water  

E-Print Network [OSTI]

............................................................................................................................................................... 9 Mine history and ground-water development ....................................................................................................................................................... 11 Ground-water quality database.......................................................................................................................................................... 29 Compilation of complete database

319

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

The goal of the work this quarter has been to partition and high-grade the Greater Green River basin for exploration efforts in the Upper Cretaceous tight gas play and to initiate resource assessment of the basin. The work plan for the quarter of July 1-September 30, 1998 comprised three tasks: (1) Refining the exploration process for deep, naturally fractured gas reservoirs; (2) Partitioning of the basin based on structure and areas of overpressure; (3) Examination of the Kinney and Canyon Creek fields with respect to the Cretaceous tight gas play and initiation of the resource assessment of the Vermilion sub-basin partition (which contains these two fields); and (4) Initiation analysis of the Deep Green River Partition with respect to the Stratos well and assessment of the resource in the partition.

NONE

1998-11-30T23:59:59.000Z

320

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

Building upon the partitioning of the Greater Green River Basin (GGRB) that was conducted last quarter, the goal of the work this quarter has been to conclude evaluation of the Stratos well and the prototypical Green River Deep partition, and perform the fill resource evaluation of the Upper Cretaceous tight gas play, with the goal of defining target areas of enhanced natural fracturing. The work plan for the quarter of November 1-December 31, 1998 comprised four tasks: (1) Evaluation of the Green River Deep partition and the Stratos well and examination of potential opportunity for expanding the use of E and P technology to low permeability, naturally fractured gas reservoirs, (2) Gas field studies, and (3) Resource analysis of the balance of the partitions.

NONE

1999-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Naturally fractured tight gas reservoir detection optimization  

SciTech Connect (OSTI)

During this quarter, work began on the regional structural and geologic analysis of the greater Green River basin (GGRB) in southwestern Wyoming, northwestern Colorado and northeastern Utah. The ultimate objective of the regional analysis is to apply the techniques developed and demonstrated during earlier phases of the project to sweet-spot delineation in a relatively new and underexplored play: tight gas from continuous-type Upper Cretaceous reservoirs of the GGRB. The primary goal of this work is to partition and high-grade the greater Green River basin for exploration efforts in the Cretaceous tight gas play. The work plan for the quarter of January 1, 1998--March 31, 1998 consisted of three tasks: (1) Acquire necessary data and develop base map of study area; (2) Process data for analysis; and (3) Initiate structural study. The first task and second tasks were completed during this reporting period. The third task was initiated and work continues.

NONE

1998-09-30T23:59:59.000Z

322

Real time monitoring of multiple wells flowing under pseudosteady state condition by using Kalman filtering  

E-Print Network [OSTI]

This work develops a method for the real time monitoring of well performance by using Kalman filtering. A system of two or more wells draining the same reservoir under pseudo steady state condition is monitored simultaneously to estimate both...

Jacob, Suresh

2012-06-07T23:59:59.000Z

323

Eighteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

1993-01-28T23:59:59.000Z

324

Inflow performance relationships for solution-gas-drive reservoirs  

SciTech Connect (OSTI)

In this theoretical study, a numerical model was used to examine the influence of pressure level and skin factor on the inflow performance relationships (IPR's) of wells producing under solution-gas-drive systems. Examination of the synthetic deliverability curves suggests that the exponent of the deliverability curve is a function of time and that the exponent is usually greater than unity. The implication of this observation to field data is discussed. The accuracy of procedures given in the literature to predict oilwell deliverabilities is also examined. It is shown that these methods can be used to predict future performance provided that the exponent of the deliverability curve is known and that extrapolations over large time ranges are avoided. If single-point tests are used to predict future performance (such tests assume that the exponent of the deliverability curve is constant), then errors in predictions will be minimized. Although relative permeability and fluid property data are required, the Muskat material-balance equation and the assumption that GOR is independent of distance can be used to predict future production rates. This method avoids problems associated with other methods in the literature and always yields reliable results. New methods to modify the IPR curve to incorporate changes in skin factor are presented. A new flow-efficiency definition based on the structure of the deliverability equations for solution-gas-drive reservoirs is proposed. This definition avoids problems that result when the currently available methods are applied to heavily stimulated wells.

Camacho-V, R.G.; Raghavan, R.

1989-05-01T23:59:59.000Z

325

Submarine fan lobe models: Implications for reservoir properties  

SciTech Connect (OSTI)

A multitude of submarine fan lobe models, advocating widely different reservoir properties, has been introduced into the sedimentologic literature. Four of these models are compared to show their differences in reservoir properties. Braided suprafan lobes are characterized by stacked sand bodies with good lateral and vertical communication, and they constitute excellent reservoir facies. The unchanneled depositional lobes, composed of sheetlike sand bodies with good lateral and moderate vertical communication, exhibit properties of good reservoir facies. Fanlobes, which refer to meandering channels and associated levee facies of large mud-rich submarine fans such as the Mississippi Fan in the Gulf of Mexico, are characterized by offset stacked sand bodies with poor lateral and vertical communication. These lenticular sands have the potential to be moderately good reservoir facies. Ponded lobes, which represent mud-rich slump facies of slope environments, comprise poor reservoir facies because of poor sand content and poor sand-body connectivity caused by chaotic bedding. Furthermore, the presence of slumped mud layers in ponded lobes is expected to hinder fluid flow. Because different lobe models vary significantly from one another in terms of reservoir properties, caution must be exercised to apply the proper lobe model to ancient fan sequences in hydrocarbon exploration and production.

Shanmugam, G.; Moiola, R.J. (Mobil Research and Development Corp., Dallas, TX (USA))

1990-09-01T23:59:59.000Z

326

Putting integrated reservoir characterization into practice - in house training  

SciTech Connect (OSTI)

The need for even more efficient reservoir characterization and management has forced a change in the way Mobil Oil provides technical support to its production operations. We`ve learned that to be successful, a good understanding of the reservoir is essential. This includes an understanding of the technical and business significance of reservoir heterogeneities at different stages of field development. A multi-disciplinary understanding of the business of integrated reservoir characterization is essential and to facilitate this understanding, Mobil has developed a highly successful {open_quotes}Reservoir Characterization Field Seminar{close_quotes}. Through specific team based case studies that incorporate outcrop examples and data the program provides participants the opportunity to explore historic and alternative approaches to reservoir description, characterization and management. We explore appropriate levels and timing of data gathering, technology applications, risk assessment and management practices at different stages of field development. The case studies presented throughout the course are a unique element of the program which combine real life and hypothetical problem sets that explore how different technical disciplines interact, the approaches to a problem solving they use, the assumptions and uncertainties contained in their contributions and the impact those conclusions may have on other disciplines involved in the overall reservoir management process. The team building aspect of the course was an added bonus.

Wright, F.M. Jr.; Best, D.A.; Clarke, R.T. [Mobile Exploration and Producing Technical Center, Dallas, TX (United States)

1997-08-01T23:59:59.000Z

327

3-D description of fracture surfaces and stress-sensitivity analysis for naturally fractured reservoirs  

SciTech Connect (OSTI)

Three kinds of reservoir cores (limestone, sandstone, and shale with natural fractures) were used to study the effect of morphology of fracture surfaces on stress sensitivity. The cores, obtained from the reservoirs with depths of 2170 to 2300 m, have fractures which are mated on a large scale, but unmated on a fine scale. A specially designed photoelectric scanner with a computer was used to describe the topography of the fracture surfaces. Then, theoretical analysis of the fracture closure was carried out based on the fracture topography generated. The scanning results show that the asperity has almost normal distributions for all three types of samples. For the tested samples, the fracture closure predicted by the elastic-contact theory is different from the laboratory measurements because plastic deformation of the aspirates plays an important role under the testing range of normal stresses. In this work, the traditionally used elastic-contact theory has been modified to better predict the stress sensitivity of reservoir fractures. Analysis shows that the standard deviation of the probability density function of asperity distribution has a great effect on the fracture closure rate.

Zhang, S.Q.; Jioa, D.; Meng, Y.F.; Fan, Y.

1997-08-01T23:59:59.000Z

328

Analysis of stress sensitivity and its influence on oil productionfrom tight reservoirs  

SciTech Connect (OSTI)

This paper presents a study of the relationship betweenpermeability and effective stress in tight petroleum reservoirformations. Specifically, a quantitative method is developed to describethe correlation between permeability and effective stress, a method basedon the original in situ reservoir effective stress rather than ondecreased effective stress during development. The experimental resultsshow that the relationship between intrinsic permeability and effectivestress in reservoirs in general follows a quadratic polynomial functionalform, found to best capture how effective stress influences formationpermeability. In addition, this experimental study reveals that changesin formation permeability, caused by both elastic and plasticdeformation, are permanent and irreversible. Related pore-deformationtests using electronic microscope scanning and constant-rate mercuryinjection techniques show that while stress variation generally has smallimpact onrock porosity, the size and shape of pore throats have asignificant impact on permeability-stress sensitivity. Based on the testresults and theoretical analyses, we believe that there exists a cone ofpressure depression in the area near production within suchstress-sensitive tight reservoirs, leading to a low-permeability zone,and that well production will decrease under the influence of stresssensitivity.

Lei, Qun; Xiong, Wei; Yuan, Cui; Wu, Yu-Shu

2007-08-28T23:59:59.000Z

329

Geothermal reservoir simulation to enhance confidence in predictions for nuclear waste disposal  

SciTech Connect (OSTI)

Numerical simulation of geothermal reservoirs is useful and necessary in understanding and evaluating reservoir structure and behavior, designing field development, and predicting performance. Models vary in complexity depending on processes considered, heterogeneity, data availability, and study objectives. They are evaluated using computer codes written and tested to study single and multiphase flow and transport under nonisothermal conditions. Many flow and heat transfer processes modeled in geothermal reservoirs are expected to occur in anthropogenic thermal (AT) systems created by geologic disposal of heat-generating nuclear waste. We examine and compare geothermal systems and the AT system expected at Yucca Mountain, Nevada, and their modeling. Time frames and spatial scales are similar in both systems, but increased precision is necessary for modeling the AT system, because flow through specific repository locations will affect long-term ability radionuclide retention. Geothermal modeling experience has generated a methodology, used in the AT modeling for Yucca Mountain, yielding good predictive results if sufficient reliable data are available and an experienced modeler is involved. Codes used in geothermal and AT modeling have been tested extensively and successfully on a variety of analytical and laboratory problems.

Kneafsey, Timothy J.; Pruess, Karsten; O'Sullivan, Michael J.; Bodvarsson, Gudmundur S.

2002-06-15T23:59:59.000Z

330

Productivity evaluation and influential factor analysis for Sarvak reservoir in South Azadegan oil field, Iran  

Science Journals Connector (OSTI)

Abstract Production pattern of oil wells and influential factors on productivity for the massive carbonate reservoir in the Middle East were researched by productivity evaluation on Sarvak and analysis of properties impact on production. Based on dynamic performance of Sarvak production test, the relationship between daily oil production, tubing pressure, cumulative oil production and choke size was analyzed and reasonable productivity prediction model was established by applying Poettman model, and the effect of physical properties and fluid parameters on productivity were analyzed further by numerical simulation. The study shows that daily oil production is linearly correlated with oil pressure under certain working regime, and daily oil production is power law correlated with choke sizes before and after working regime adjustment. The average designed single well productivity should be about 270 m3/d by depletion to ensure a three-year plateau period. Sarvak is a blocky carbonate reservoir, when developed with horizontal wells, interbeds distributed between layers and permeability property have the strongest impact on production of horizontal wells. So, highly deviated wells should be used to reduce the effect of interbeds and acidizing should be considered to improve the reservoir physical properties.

Hui LIU; Rui GUO; Junchang DONG; Li LIU; Yang LIU; Yingjie YI

2013-01-01T23:59:59.000Z

331

On Some Movements of the Ground in Geneva  

Science Journals Connector (OSTI)

......construction and alignment of the 25 GeV proton synchroton at CERN. On Some Movements of the Ground...and align- ment of the 25 GeV proton synchroton at CERN. The 25000 million electron volt synchroton (the Eurotron) that has been under construction......

A. Decae

1960-03-01T23:59:59.000Z

332

MASSIVELY PARALLEL FULLY COUPLED IMPLICIT MODELING OF COUPLED THERMAL-HYDROLOGICAL-MECHANICAL PROCESSES FOR ENHANCED GEOTHERMAL SYSTEM RESERVOIRS  

SciTech Connect (OSTI)

Development of enhanced geothermal systems (EGS) will require creation of a reservoir of sufficient volume to enable commercial-scale heat transfer from the reservoir rocks to the working fluid. A key assumption associated with reservoir creation/stimulation is that sufficient rock volumes can be hydraulically fractured via both tensile and shear failure, and more importantly by reactivation of naturally existing fractures (by shearing) to create the reservoir. The advancement of EGS greatly depends on our understanding of the dynamics of the intimately coupled rock-fracture-fluid system and our ability to reliably predict how reservoirs behave under stimulation and production. In order to increase our understanding of how reservoirs behave under these conditions, we have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a continuum multiphase flow and heat transport model. In DEM simulations, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external load is applied. DEM models have been applied to a very wide range of fracturing processes from the molecular scale (where thermal fluctuations play an important role) to scales on the order of 1 km or greater. In this approach, the continuum flow and heat transport equations are solved on an underlying fixed finite element grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms and fractures. Such deformation/fracturing in turn changes the permeability, which again changes the evolution of fluid pressure, coupling the two phenomena. The intimate coupling between fracturing and fluid flow makes the meso-scale DEM simulations necessary, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed.

Robert Podgorney; Hai Huang; Derek Gaston

2010-02-01T23:59:59.000Z

333

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

334

Tarmat behavior calculated for reservoir with sealing fault  

SciTech Connect (OSTI)

The Minagish Oolite oil reservoir in Kuwait is one of many Middle East reservoirs characterized by the presence of a tarmat (heavy to tar-like crude) at the oil-water contact. Since a waterflood project is planned for the Minagish Oolite, which contains a radial pattern of faults, a study was made to consider tarmat behavior upon water injection below it when the injection well is located near a sealing fault. The study resulted in a technique to predict the time of tarmat breakdown, response time at the nearest observation well, and differential pressure at the tarmat anywhere in the reservoir.

Osman, M.E.S.

1986-08-01T23:59:59.000Z

335

Recreation land policies of Texas river authorities operating reservoirs  

E-Print Network [OSTI]

for future water in Texas by the Texas Department of Water Resources: Present use of lakes and reservoirs for water- oriented recreation demonstrates the need to include recreation as one of the many purposes of water 13 development projects... by the reservoir owner. 26 3. Another factor is that most reservoir owners do not let the1r land stand idle. Uses are found which either increase the benefits of the project' to the owner or public, or at least balance the costs of holding the land pending...

Ruesink, Lou Ellen

1979-01-01T23:59:59.000Z

336

Ground Magnetics | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics Ground Magnetics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Magnetics Details Activities (15) Areas (12) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Magnetic Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

337

Sixteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate the audiovisual equipment and to Michael Riley who coordinated the meeting arrangements for a second year. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program) [Stanford Geothermal Program

1991-01-25T23:59:59.000Z

338

The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs  

Broader source: Energy.gov [DOE]

Project objective: Develop Improved Methods For Maintaining Permeable Fracture Volumes In EGS Reservoirs.

339

Robust Optimization of Oil Reservoir Flooding G.M. van Essen, M.J. Zandvliet,  

E-Print Network [OSTI]

Robust Optimization of Oil Reservoir Flooding G.M. van Essen, M.J. Zandvliet, P.M.J. Van den Hof the reservoir to the subsurface. The injection wells inject water into the oil reservoir with the aim to push reservoirs, the oil-water front does not travel uniformly towards the pro- duction wells, but is usually

Van den Hof, Paul

340

Bayes Linear Uncertainty Analysis for Oil Reservoirs Based on Multiscale Computer Experiments  

E-Print Network [OSTI]

Bayes Linear Uncertainty Analysis for Oil Reservoirs Based on Multiscale Computer Experiments, 2008 1 Introduction Reservoir simulators are important and widely-used tools for oil reservoir for reservoirs, where the model inputs are physical parameters, such as the permeability and porosity of various

Oakley, Jeremy

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Development of general inflow performance relationships (IPR`s) for slanted and horizontal wells producing heterogeneous solution-gas drive reservoirs  

SciTech Connect (OSTI)

Since 1968, the Vogel equation has been used extensively and successfully for analyzing the inflow performance relationship (IPR) of flowing vertical wells producing by solution-gas drive. Oil well productivity can be rapidly estimated by using the Vogel IPR curve and well outflow performance. With recent interests on horizontal well technology, several empirical IPRs for solution-gas drive horizontal and slanted wells have been developed under homogeneous reservoir conditions. This report presents the development of IPRs for horizontal and slanted wells by using a special vertical/horizontal/slanted well reservoir simulator under six different reservoir and well parameters: ratio of vertical to horizontal permeability, wellbore eccentricity, stratification, perforated length, formation thickness, and heterogeneous permeability. The pressure and gas saturation distributions around the wellbore are examined. The fundamental physical behavior of inflow performance for horizontal wells is described.

Cheng, A.M.

1992-04-01T23:59:59.000Z

342

Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"  

SciTech Connect (OSTI)

The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the geomechanical characteristics of the producing formations. The objectives were to further improve reservoir characterization of the heterogeneous turbidite sands, test the proficiency of the three-dimensional geologic and thermal reservoir simulation models, identify the high permeability thief zones to reduce water breakthrough and cycling, and analyze the nonuniform distribution of the remaining oil in place. This work resulted in the redevelopment of the Tar II-A and Tar V post-steamflood projects by drilling several new wells and converting idle wells to improve injection sweep efficiency and more effectively drain the remaining oil reserves. Reservoir management work included reducing water cuts, maintaining or increasing oil production, and evaluating and minimizing further thermal-related formation compaction. The BP2 project utilized all the tools and knowledge gained throughout the DOE project to maximize recovery of the oil in place.

Scott Hara

2007-03-31T23:59:59.000Z

343

Advanced Oil Recovery Technologies for Improved Recovery from Slope Basin Clastic Reservoirs, Nash Draw Brushy Canyon Pool, Eddy County, NM  

SciTech Connect (OSTI)

The Nash Draw Brushy Canyon Pool in Eddy County New Mexico was a cost-shared field demonstration project in the U.S. Department of Energy Class III Program. A major goal of the Class III Program was to stimulate the use of advanced technologies to increase ultimate recovery from slope-basin clastic reservoirs. Advanced characterization techniques were used at the Nash Draw Pool (NDP) project to develop reservoir management strategies for optimizing oil recovery from this Delaware reservoir. The objective of the project was to demonstrate that a development program, which was based on advanced reservoir management methods, could significantly improve oil recovery at the NDP. Initial goals were (1) to demonstrate that an advanced development drilling and pressure maintenance program can significantly improve oil recovery compared to existing technology applications and (2) to transfer these advanced methodologies to other oil and gas producers. Analysis, interpretation, and integration of recently acquired geological, geophysical, and engineering data revealed that the initial reservoir characterization was too simplistic to capture the critical features of this complex formation. Contrary to the initial characterization, a new reservoir description evolved that provided sufficient detail regarding the complexity of the Brushy Canyon interval at Nash Draw. This new reservoir description was used as a risk reduction tool to identify 'sweet spots' for a development drilling program as well as to evaluate pressure maintenance strategies. The reservoir characterization, geological modeling, 3-D seismic interpretation, and simulation studies have provided a detailed model of the Brushy Canyon zones. This model was used to predict the success of different reservoir management scenarios and to aid in determining the most favorable combination of targeted drilling, pressure maintenance, well stimulation, and well spacing to improve recovery from this reservoir. An Advanced Log Analysis technique developed from the NDP project has proven useful in defining additional productive zones and refining completion techniques. This program proved to be especially helpful in locating and evaluating potential recompletion intervals, which has resulted in low development costs with only small incremental increases in lifting costs. To develop additional reserves at lower costs, zones behind pipe in existing wells were evaluated using techniques developed for the Brushy Canyon interval. These techniques were used to complete uphole zones in thirteen of the NDP wells. A total of 14 recompletions were done: four during 1999, four during 2000, two during 2001, and four during 2002-2003. These workovers added reserves of 332,304 barrels of oil (BO) and 640,363 MCFG (thousand cubic feet of gas) at an overall weighted average development cost of $1.87 per BOE (barrel of oil equivalent). A pressure maintenance pilot project in a developed area of the field was not conducted because the pilot area was pressure depleted, and the reservoir in that area was found to be compartmentalized and discontinuous. Economic analyses and simulation studies indicated that immiscible injection of lean hydrocarbon gas for pressure maintenance was not warranted at the NDP and would need to be considered for implementation in similar fields very soon after production has started. Simulation studies suggested that the injection of miscible carbon dioxide (CO{sub 2}) could recover significant quantities of oil at the NDP, but a source of low-cost CO{sub 2} was not available in the area. Results from the project indicated that further development will be under playa lakes and potash areas that were beyond the regions covered by well control and are not accessible with vertical wells. These areas, covered by 3-D seismic surveys that were obtained as part of the project, were accessed with combinations of deviated/horizontal wells. Three directional/horizontal wells have been drilled and completed to develop reserves under surface-restricted areas and potash mines. The third

Mark B. Murphy

2005-09-30T23:59:59.000Z

344

Geothermal reservoir temperatures estimated from the oxygen isotope  

Open Energy Info (EERE)

reservoir temperatures estimated from the oxygen isotope reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Geothermal reservoir temperatures estimated from the oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes Details Activities (3) Areas (3) Regions (0) Abstract: The oxygen isotope compositions of dissolved sulfate and water from hot springs and shallow drillholes have been tested as a geothermometer in three areas of the western United States. Limited analyses of spring and borehole fluids and existing experimental rate studies suggest that dissolved sulfate and water are probably in isotopic equilibrium in all reservoirs of significant size with temperatures above

345

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR  

Open Energy Info (EERE)

FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: FLUID INCLUSION STRATIGRAPHY: NEW METHOD FOR GEOTHERMAL RESERVOIR ASSESSMENT PRELIMINARY RESULTS Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a new technique developed for the oil industry in order to map borehole fluids. This method is being studied for application to geothermal wells and is funded by the California Energy Commission. Fluid inclusion gas geochemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow

346

Shear-wave splitting and reservoir crack characterization: the Coso  

Open Energy Info (EERE)

Shear-wave splitting and reservoir crack characterization: the Coso Shear-wave splitting and reservoir crack characterization: the Coso geothermal field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Shear-wave splitting and reservoir crack characterization: the Coso geothermal field Details Activities (1) Areas (1) Regions (0) Abstract: This paper aims to improve current understanding of the subsurface fracture system in the Coso geothermal field, located in east-central California. The Coso reservoir is in active economic development, so that knowledge of the subsurface fracture system is of vital importance for an accurate evaluation of its geothermal potential and day-to-day production. To detect the geometry and density of fracture systems we applied the shear-wave splitting technique to a large number of

347

Property:SanyalTempReservoir | Open Energy Information  

Open Energy Info (EERE)

SanyalTempReservoir SanyalTempReservoir Jump to: navigation, search Property Name SanyalTempReservoir Property Type Page Description see Sanyal_Temperature_Classification Allows Values Extremely Low Temperature;Very Low Temperature;Low Temperature;Moderate Temperature;High Temperature;Ultra High Temperature;Steam Field Pages using the property "SanyalTempReservoir" Showing 16 pages using this property. A Amedee Geothermal Area + Very Low Temperature + B Beowawe Hot Springs Geothermal Area + Moderate Temperature + Blue Mountain Geothermal Area + High Temperature + C Chena Geothermal Area + Very Low Temperature + D Desert Peak Geothermal Area + Moderate Temperature + K Kilauea East Rift Geothermal Area + High Temperature + L Lightning Dock Geothermal Area + High Temperature +

348

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in six wells penetrating a geothermalreservoir associated with the Stillwater fault zone inDixie Valley, Nevada, were used to investigate therelationship between reservoir permeability and thecontemporary in situ stress field. Data from wellsdrilled into productive and nonproductive segments ofthe Stillwater fault zone indicate that permeability inall wells is dominated by a relatively small number offractures striking parallel to the local trend of

349

Use Of Electrical Surveys For Geothermal Reservoir Characterization-  

Open Energy Info (EERE)

Use Of Electrical Surveys For Geothermal Reservoir Characterization- Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Use Of Electrical Surveys For Geothermal Reservoir Characterization- Beowawe Geothermal Field Details Activities (4) Areas (1) Regions (0) Abstract: The STAR geothermal reservoir simulator was used to model the natural state of the Beowawe geothermal field, and to compute the subsurface distributions of temperature and salinity which were in turn employed to calculate pore-fluid resistivity. Archie's law, which relates formation resistivity to porosity and pore-fluid resistivity, was adopted to infer formation resistivity distribution. Subsequently, DC, MT and SP postprocessors were used to compute the expected response corresponding to

350

Update on the Raft River Geothermal Reservoir | Open Energy Information  

Open Energy Info (EERE)

on the Raft River Geothermal Reservoir on the Raft River Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Update on the Raft River Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Since the last conference, a fourth well has been drilled to an intermediate depth and tested as a production well, with plans to use this well in the long term for injection of fluids into the strata above the production strata. The third, triple legged well has been fully pump tested, and the recovery of the second well from an injection well back to production status has revealed very interesting data on the reservoir conditions around that well. Both interference testing and geochemistry analysis shows that the third well is producing from a different aquifer

351

Characterization of Fractures in Geothermal Reservoirs Using Resistivity |  

Open Energy Info (EERE)

Characterization of Fractures in Geothermal Reservoirs Using Resistivity Characterization of Fractures in Geothermal Reservoirs Using Resistivity Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characterization of Fractures in Geothermal Reservoirs Using Resistivity Abstract The optimal design of production in fractured geothermal reservoirs requires knowledge of the resource's connectivity, therefore making fracture characterization highly important. This study aims to develop methodologies to use resistivity measurements to infer fracture properties in geothermal fields. The resistivity distribution in the field can be estimated by measuring potential differences between various points and the data can then be used to infer fracture properties due to the contrast in resistivity between water and rock.

352

Sunset Reservoir Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Reservoir Solar Power Plant Reservoir Solar Power Plant Jump to: navigation, search Name Sunset Reservoir Solar Power Plant Facility Sunset Reservoir Sector Solar Facility Type Photovoltaic Developer Recurrent Energy Location San Francisco, California Coordinates 37.7749295°, -122.4194155° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7749295,"lon":-122.4194155,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

353

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir  

Open Energy Info (EERE)

Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Abstract Temperature, pressure, and spinner (TPS) logs have been recorded in several wells from the Dixie Valley Geothermal Reservoir in west central Nevada. A variety of well-test analyses has been performed with these data to quantify the hydrologic properties of this fault-dominated geothermal resource. Four complementary analytical techniques were employed, their individual application depending upon availability and quality of data and validity of scientific assumptions. In some instances, redundancy in

354

Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA,  

Open Energy Info (EERE)

model for possible geothermal reservoir, Coso Hot Springs KGRA, model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Exploration model for possible geothermal reservoir, Coso Hot Springs KGRA, Inyo Co. , California Details Activities (1) Areas (1) Regions (0) Abstract: The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and Jarzabek (1977). Gravity data collected by the USGS (Isherwood and Plouff, 1978) was plotted and compared with the geology of the area, which is well known. An east-west trending Bouguer gravity profile was constructed through the center of the heat flow anomaly described by Combs (1976). The best fit model for the observed gravity at

355

Shale Oil Production Performance from a Stimulated Reservoir Volume  

E-Print Network [OSTI]

The horizontal well with multiple transverse fractures has proven to be an effective strategy for shale gas reservoir exploitation. Some operators are successfully producing shale oil using the same strategy. Due to its higher viscosity and eventual...

Chaudhary, Anish Singh

2011-10-21T23:59:59.000Z

356

Scattering Characteristics In Heterogeneous Fractured Reservoirs From Waveform Estimation  

E-Print Network [OSTI]

Offset-dependent characteristics of seismic scattering are useful in the interpretation of fractured reservoirs. Synthetic seismograms generated by a 3-D finite difference modeling are used to study elastic wave propagation ...

Shen, Feng

1998-01-01T23:59:59.000Z

357

The Role of Acidizing in Proppant Fracturing in Carbonate Reservoirs  

E-Print Network [OSTI]

of the most widely considered alternatives for application in carbonate reservoirs. Especially in areas that have high closure stress, the non-smoothly etched surface created by acid fracturing may not remain open upon closing, resulting in decrease...

Densirimongkol, Jurairat

2010-10-12T23:59:59.000Z

358

Acidizing of Sandstone Reservoirs Using HF and Organic Acids  

E-Print Network [OSTI]

Mud acid, which is composed of HCl and HF, is commonly used to remove the formation damage in sandstone reservoirs. However, many problems are associated with HCl, especially at high temperatures. Formic-HF acids have served as an alternative...

Yang, Fei

2012-10-19T23:59:59.000Z

359

REVIEW PLAN John Redmond Dam Reservoir, Coffee County, Kansas  

E-Print Network [OSTI]

#12;#12;REVIEW PLAN John Redmond Dam Reservoir, Coffee County, Kansas Reallocation Study Tulsa...................................................................................................................11 12. REVIEW PLAN APPROVAL AND UPDATES........................................................................................11 13. REVIEW PLAN POINTS OF CONTACT

US Army Corps of Engineers

360

Reservoir Characterization with Limited Sample Data using Geostatistics  

E-Print Network [OSTI]

Kansas City Formation. The main tool of the study was geostatistics, since only geostatistics can incorporate data from variety of sources to estimate reservoir properties. Three different subjects in geostatistical methods were studied, analyzed...

Ghoraishy, Sayyed Mojtaba

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

This volume contains reservoir, production, and project data for target reservoirs thermally recoverable by steam drive which are equal to or greater than 2500 feet deep and contain heavy oil in the 8 to 25/sup 0/ API gravity range. Data were collected from three source types: hands-on (A), once-removed (B), and twice-removed (C). In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. This volume also contains a complete listing of operators and projects, as well as a bibliography of source material.

Kujawa, P.

1981-02-01T23:59:59.000Z

362

Optimal Fuzzy Management of Reservoir based on Genetic Algorithm  

Science Journals Connector (OSTI)

This chapter deals with water resource management problems faced from an Automatic Control point of view. The motivation for the study is the need for an automated management policy for an artificial reservoir...

Alberto Cavallo; Armando Di Nardo

2008-01-01T23:59:59.000Z

363

Problems of fluid flow in a deformable reservoir  

E-Print Network [OSTI]

itself and the surrounding rock mass. The change in the stress-strain state of the system is induced by pressure change in the layers of the reservoir. Numerical results qualitatively agree with observed field behavior. Such behavior includes (1...

Diyashev, Ildar

2006-04-12T23:59:59.000Z

364

Analyzing aquifer driven reservoirs using a computer-oriented approach  

E-Print Network [OSTI]

A new computer-oriented approach for analyzing aquifer driven reservoirs incorporates both geological and historical pressure data to determine original hydrocarbons-in-place and to forecast production. This new approach does not rely entirely...

Flumerfelt, Raymond William

1996-01-01T23:59:59.000Z

365

Collection and Analysis of Reservoir Data from Testing and Operation...  

Open Energy Info (EERE)

Reservoir Data from Testing and Operation of the Raft River 5 MW Power Plant Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Collection...

366

Seismic characterization of fractured reservoirs by focusing Gaussian beams  

E-Print Network [OSTI]

Naturally fractured reservoirs occur worldwide, and they account for the bulk of global oil production. The most important impact of fractures is their influence on fluid flow. To maximize oil production, the characterization ...

Zheng, Yingcai

367

Reducing temperature uncertainties by stochastic geothermal reservoir modelling  

Science Journals Connector (OSTI)

......Section 4) for a current geothermal district heating project in The Hague...Geothermal Reservoir A geothermal district heating project in The Hague...2008. The Den Haag Geothermal District Heating Project-3-D Models......

C. Vogt; D. Mottaghy; A. Wolf; V. Rath; R. Pechnig; C. Clauser

2010-04-01T23:59:59.000Z

368

Borehole Stability Analysis of Horizontal Drilling in Shale Gas Reservoirs  

Science Journals Connector (OSTI)

Serious wellbore instability occurs frequently during horizontal drilling in shale gas reservoirs. The conventional forecast model of in ... not suitable for wellbore stability analysis in laminated shale gas for...

Jun-Liang Yuan; Jin-Gen Deng; Qiang Tan; Bao-Hua Yu

2013-09-01T23:59:59.000Z

369

An Integrated Study Method For Exploration Of Gas Hydrate Reservoirs...  

Open Energy Info (EERE)

approach for exploration of gas hydrate reservoirs in marine areas. Authors C. Y. Sun, B. H. Niu, P. F. Wen, Y. Y. Huang, H. Y. Wang, X. W. Huang and J. Li Published Journal...

370

Fracture Evolution Following a Hydraulic Stimulation within an EGS Reservoir  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. This project will provide the first ever formal evaluation of fracture and fracture flow evolution in an EGS reservoir following a hydraulic stimulation.

371

Exploration model for possible geothermal reservoir, Coso Hot...  

Open Energy Info (EERE)

Abstract The purpose of this study was to test the hypothesis that a steam-filled fracture geothermal reservoir exists at Coso Hot Springs KGRA, as proposed by Combs and...

372

Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs  

Broader source: Energy.gov [DOE]

Project objective: to develop a 3-D numerical model for simulating mode I; II; and III (tensile; shear; and tearing propagation of multiple fractures using the virtual multi-dimensional internal bond (VMIB); to predict geothermal reservoir stimulation.

373

Seismic characterization of fractured reservoirs using 3D double beams  

E-Print Network [OSTI]

We propose an efficient target-oriented method to characterize seismic properties of fractured reservoirs: the spacing between fractures and the fracture orientation. We use both singly scattered and multiply scattered ...

Zheng, Yingcai

2012-01-01T23:59:59.000Z

374

Understanding reservoir mechanisms using phase and component streamline tracing  

E-Print Network [OSTI]

explored. The power and utility of the phase and component streamlines have been demonstrated using synthetic examples and two field cases. The new formulation of streamline tracing provides additional information about the reservoir drive mechanisms...

Kumar, Sarwesh

2009-05-15T23:59:59.000Z

375

Integrated seismic studies at the Rye Patch geothermal reservoir...  

Open Energy Info (EERE)

studies at the Rye Patch geothermal reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Integrated seismic studies at the Rye Patch...

376

Reservoir Simulation Used to Plan Diatomite Developement in Mountainous Region  

E-Print Network [OSTI]

In Santa Barbara County, Santa Maria Pacific (an exploration and production company) is expanding their cyclic steam project in a diatomite reservoir. The hilly or mountainous topography and cut and fill restrictions have interfered with the company...

Powell, Richard

2012-10-19T23:59:59.000Z

377

Hydroacoustic Estimates of Fish Density Distributions in Cougar Reservoir, 2011  

SciTech Connect (OSTI)

Day and night mobile hydroacoustic surveys were conducted once each month from April through December 2011 to quantify the horizontal and vertical distributions of fish throughout Cougar Reservoir, Lane County, Oregon.

Ploskey, Gene R.; Zimmerman, Shon A.; Hennen, Matthew J.; Batten, George W.; Mitchell, T. D.

2012-09-01T23:59:59.000Z

378

Geothermal reservoir engineering computer code comparison and validation  

SciTech Connect (OSTI)

The results of computer simulations for a set of six problems typical of geothermal reservoir engineering applications are presented. These results are compared to those obtained by others using similar geothermal reservoir simulators on the same problem set. The purpose of this code comparison is to check the performance of participating codes on a set of typical reservoir problems. The results provide a measure of the validity and appropriateness of the simulators in terms of major assumptions, governing equations, numerical accuracy, and computational procedures. A description is given of the general reservoir simulator - its major assumptions, mathematical formulation, and numerical techniques. Following the description of the model is the presentation of the results for the six problems. Included with the results for each problem is a discussion of the results; problem descriptions and result tabulations are included in appendixes. Each of the six problems specified in the contract was successfully simulated. (MHR)

Faust, C.R.; Mercer, J.W.; Miller, W.J.

1980-11-12T23:59:59.000Z

379

MULTIDISCIPLINARY IMAGING OF ROCK PROPERTIES IN CARBONATE RESERVOIRS FOR FLOW-UNIT TARGETING  

SciTech Connect (OSTI)

Despite declining production rates, existing reservoirs in the US contain large quantities of remaining oil and gas that constitute a huge target for improved diagnosis and imaging of reservoir properties. The resource target is especially large in carbonate reservoirs, where conventional data and methodologies are normally insufficient to resolve critical scales of reservoir heterogeneity. The objectives of the research described in this report were to develop and test such methodologies for improved imaging, measurement, modeling, and prediction of reservoir properties in carbonate hydrocarbon reservoirs. The focus of the study is the Permian-age Fullerton Clear Fork reservoir of the Permian Basin of West Texas. This reservoir is an especially appropriate choice considering (a) the Permian Basin is the largest oil-bearing basin in the US, and (b) as a play, Clear Fork reservoirs have exhibited the lowest recovery efficiencies of all carbonate reservoirs in the Permian Basin.

Stephen C. Ruppel

2005-02-01T23:59:59.000Z

380

REAL-TIME TRACER MONITORING OF RESERVOIR STIMULATION PROCEDURES  

SciTech Connect (OSTI)

Ongoing Phase 2 work comprises the development and field-testing of a real-time reservoir stimulation diagnostic system. Phase 3 work commenced in June 2001, and involved conducting research, development and field-testing of real-time enhanced dual-fluid stimulation processes. Experimental field-testing to date includes three well tests. Application of these real-time stimulation processes and diagnostic technologies has been technically successful with commercial production from the ''marginal'' reservoirs in the first two well tests. The third well test proved downhole-mixing is an efficient process for acid stimulation of a carbonate reservoir that produced oil and gas with 2200 psi bottomhole reservoir pressure, however, subsequent shut-in pressure testing indicated the reservoir was characterized by low-permeability. Realtimezone continues to seek patent protection in foreign markets to the benefit of both RTZ and NETL. Realtimezone and the NETL have licensed the United States patented to Halliburton Energy Services (HES). Ongoing Phase 2 and Phase 3 field-testing continues to confirm applications of both real-time technologies, from well testing conducted over the last 12-month work period and including well test scheduled for year-end of 2002. Technical data transfer to industry is ongoing via Internet tech-transfer, public presentations and industry publications. Final Phase 3 test work will be focused on further field-testing the innovational process of blending stimulation fluids downhole. This system provides a number of advantages in comparison to older industry fracturing techniques and allows the operator to control reservoir fracture propagation and concentrations of proppant placed in the reservoir, in real-time. Another observed advantage is that lower friction pressures result, which results in lower pump treating pressures and safer reservoir hydraulic fracturing jobs.

George Scott III

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Heavy oil reservoirs recoverable by thermal technology. Annual report  

SciTech Connect (OSTI)

The purpose of this study was to compile data on reservoirs that contain heavy oil in the 8 to 25/sup 0/ API gravity range, contain at least ten million barrels of oil currently in place, and are non-carbonate in lithology. The reservoirs within these constraints were then analyzed in light of applicable recovery technology, either steam-drive or in situ combustion, and then ranked hierarchically as candidate reservoirs. The study is presented in three volumes. Volume I presents the project background and approach, the screening analysis, ranking criteria, and listing of candidate reservoirs. The economic and environmental aspects of heavy oil recovery are included in appendices to this volume. This study provides an extensive basis for heavy oil development, but should be extended to include carbonate reservoirs and tar sands. It is imperative to look at heavy oil reservoirs and projects on an individual basis; it was discovered that operators, and industrial and government analysts will lump heavy oil reservoirs as poor producers, however, it was found that upon detailed analysis, a large number, so categorized, were producing very well. A study also should be conducted on abandoned reservoirs. To utilize heavy oil, refiners will have to add various unit operations to their processes, such as hydrotreaters and hydrodesulfurizers and will require, in most cases, a lighter blending stock. A big problem in producing heavy oil is that of regulation; specifically, it was found that the regulatory constraints are so fluid and changing that one cannot settle on a favorable recovery and production plan with enough confidence in the regulatory requirements to commit capital to the project.

Kujawa, P.

1981-02-01T23:59:59.000Z

382

Performance of petroleum reservoirs containing random vertical fractures  

E-Print Network [OSTI]

PERFORMANCE OF PETROLEUM RESERVOIRS CONTAINING RANDOM VERTICAL FRACTURES A Thesis By WILLIAM LYMAN HUSKEY Approved as to style and content by: Chairxnan o Coxnxnittee ead of Departxnent PERFORMANCE OF PETROLEUM RESERVOIRS CONTAINING RANDOM...: Petroleum Engineering TABLE OF CONTENTS Page SUMMARY Z. INTRODUCTION . 3. EQUIPMENT AND PROCEDURE 4. PRESENTATION AND DISCUSSION OF RESULTS 5. CONCLUSIONS 6. ACKNOWLEDGMENTS . . 44 7. REFERENCES 8. BIBLIOGRAPHY . 47 TABLE QF GRAPHS AND FIGURES...

Huskey, William Lyman

2012-06-07T23:59:59.000Z

383

Low permeability gas reservoir production using large hydraulic fractures  

E-Print Network [OSTI]

LOVT PERMEABILITY GAS RESERVOIR PRODUCTION USING LARGE HYDRAULIC FRACTURES A Thesis by STEPHEN ALLEN HOLDITCH Approved as to style and content by: ( airman of Committee) (Head of Department) (Me er) (Member) (Membe r) (Member) (Member...) August 1970 111 ABSTRACT Low Permeability Gas Reservoir Production Using Large Hydraulic Fractures. (August 1970) Stephen Allen Holditch, B. S. , Texas ARM University Directed by: Dr, R. A. Morse There has been relatively little work published...

Holditch, Stephen A

2012-06-07T23:59:59.000Z

384

Analyzing aquifers associated with gas reservoirs using aquifer influence functions  

E-Print Network [OSTI]

ANALYZING AQUIFERS ASSOCIATED WITH GAS RESERVOIRS USING AQUIFER INFLUENCE FUNCTIONS A Thesis by GARY WAYNE TARGAC Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE V z May 1988 z V z z I- Major Subject: Petroleum Engineering ANALYZING AQUIFERS ASSOCIATED WITH GAS RESERVOIRS USING AQUIFER INFLUENCE FUNCTIONS A Thesis by GARY WAYNE TARGAC Approved as to style and content by: (Chair of Committ R...

Targac, Gary Wayne

1988-01-01T23:59:59.000Z

385

The recovery of oil from carbonate reservoirs by fluid injection  

E-Print Network [OSTI]

Hole 70 Neasured and Calculated Productivities Obtained on Wells Completed Through Perforations 39 Cumulative Oil Recovery Versus Total Water and Oil Throughf low for Stratified Reservoirs- lj. O Cumulative Oil Recovery Versus Total Water and Oil... for Field A 12, Cumulative Oil Recovery Versus Total Water and Oil Throughflow for Field B 13, -20, Permeability Distribution Plots $5-52 The object of this project was to study the extent of the variations of the permeability in carbonate reservoirs...

Coleman, Dwayne Marvin

2012-06-07T23:59:59.000Z

386

The Optimization of Well Spacing in a Coalbed Methane Reservoir  

E-Print Network [OSTI]

THE OPTIMIZATION OF WELL SPACING IN A COALBED METHANE RESERVOIR A Thesis by PAHALA DOMINICUS SINURAT Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 2010 Major Subject: Petroleum Engineering THE OPTIMIZATION OF WELL SPACING IN A COALBED METHANE RESERVOIR A Thesis by PAHALA DOMINICUS SINURAT Submitted to the Office of Graduate Studies of Texas A...

Sinurat, Pahala Dominicus

2012-02-14T23:59:59.000Z

387

Decoherence in a single trapped ion due to engineered reservoir  

E-Print Network [OSTI]

The decoherence in trapped ion induced by coupling the ion to the engineered reservoir is studied in this paper. The engineered reservoir is simulated by random variations in the trap frequency, and the trapped ion is treated as a two-level system driven by a far off-resonant plane wave laser field. The dependence of the decoherence rate on the amplitude of the superposition state is given.

X. X. Yi; D. L. Zhou; C. P. Sun

2000-04-18T23:59:59.000Z

388

US production of natural gas from tight reservoirs  

SciTech Connect (OSTI)

For the purposes of this report, tight gas reservoirs are defined as those that meet the Federal Energy Regulatory Commission`s (FERC) definition of tight. They are generally characterized by an average reservoir rock permeability to gas of 0.1 millidarcy or less and, absent artificial stimulation of production, by production rates that do not exceed 5 barrels of oil per day and certain specified daily volumes of gas which increase with the depth of the reservoir. All of the statistics presented in this report pertain to wells that have been classified, from 1978 through 1991, as tight according to the FERC; i.e., they are ``legally tight`` reservoirs. Additional production from ``geologically tight`` reservoirs that have not been classified tight according to the FERC rules has been excluded. This category includes all producing wells drilled into legally designated tight gas reservoirs prior to 1978 and all producing wells drilled into physically tight gas reservoirs that have not been designated legally tight. Therefore, all gas production referenced herein is eligible for the Section 29 tax credit. Although the qualification period for the credit expired at the end of 1992, wells that were spudded (began to be drilled) between 1978 and May 1988, and from November 5, 1990, through year end 1992, are eligible for the tax credit for a subsequent period of 10 years. This report updates the EIA`s tight gas production information through 1991 and considers further the history and effect on tight gas production of the Federal Government`s regulatory and tax policy actions. It also provides some high points of the geologic background needed to understand the nature and location of low-permeability reservoirs.

Not Available

1993-10-18T23:59:59.000Z

389

Recovery of oil from fractured reservoirs by gas displacement  

E-Print Network [OSTI]

RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNE BE RG Submitted to the Graduate College of Texas AlkM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE August 1974... Major Subject: Petroleum Engineering RECOVERY OF OIL FROM FRACTURED RESERVOIRS BY GAS DISPLACEMENT A Thesis by ARILD UNNEBERG Approved as, to style and content by: . ( y (Chairman of Cornrnittee) (Head of Depar nt) / (Membe r) (Member) M b...

Unneberg, Arild

2012-06-07T23:59:59.000Z

390

Well performance under solutions gas drive  

SciTech Connect (OSTI)

A fully implicit black-oil simulator was written to predict the drawdown and buildup responses for a single well under Solution Gas Drive. The model is capable of handling the following reservoir behaviors: Unfractured reservoir, Double-Porosity system, and Double Permeability-Double Porosity model of Bourdet. The accuracy of the model results is tested for both single-phase liquid flow and two-phase flow. The results presented here provide a basis for the empirical equations presented in the literature. New definitions of pseudopressure and dimensionless time are presented. By using these two definitions, the multiphase flow solutions correlate with the constant rate liquid flow solution for both transient and boundary-dominated flow. For pressure buildup tests, an analogue for the liquid solution is constructed from the drawdown pseudopressure, similar to the reservoir integral of J. Jones. The utility of using the producing gas-oil ration at shut in to compute pseudopressures and pseudotimes is documented. The influence of pressure level and skin factor on the Inflow Performance Relationship (IPR) of wells producing solution gas drive systems is examined. A new definition of flow efficiency that is based on the structure of the deliverability equations is proposed. This definition avoids problems that result when the presently available methods are applied to heavily stimulated wells. The need for using pseudopressures to analyze well test data for fractured reservoirs is shown. Expressions to compute sandface saturations for fractured systems are presented.

Camacho-Velazquez, R.G.

1987-01-01T23:59:59.000Z

391

Characterizing hydraulically fractured reservoirs using induced microearthquakes  

SciTech Connect (OSTI)

Hydraulic fracturing is a common method employed to increase the production of oil and gas fields. Recently, there has been increased interest in monitoring the microearthquakes induced by hydraulic fracturing as a means of obtaining data to characterize reservoir changeS induced by the injection. Two types of microearthquakes have been observed during hydraulic fracturing. Tensile events have been observed and modeled as the parting of the surfaces of a fracture. A majority of the events observed have been shear-slip events, where two sides of a fault plane slip parallel to each other but in opposite directions. The locations of the microearthquakes can be analyzed to determine regions where significant seismic energy was released, which presumably are regions where injected fluid penetrated into the rock along pre-existing fractures or zones of weakness. The spatial patterns in the locations can be analyzed to fine regions where events cluster along planes, which are interpreted to be the dominant fluid flow paths. Imaging methods can also be applied to the travel time and waveform data to obtain direct evidence for the locations of the fractures or fracture zones. 27 refs., 2 figs.

Fehler, M.

1991-01-01T23:59:59.000Z

392

Broadband Ground-Plane Cloak  

Science Journals Connector (OSTI)

...automated design process. The ground-plane...Maxwell's equations implies that...number of simulations of the metamaterial...cloak-design process and makes...Jacobian matrix {lambda...Jacobian matrix). In our...retrieval process, modified...numerical simulation. A regression...a single Matlab program...Adobe Acrobat PDF format...

R. Liu; C. Ji; J. J. Mock; J. Y. Chin; T. J. Cui; D. R. Smith

2009-01-16T23:59:59.000Z

393

Cooking with Ground Pork (Spanish)  

E-Print Network [OSTI]

? 10 minutos, o hasta que las tiras de tortilla est?n suaves. S?rvalo caliente. Adaptado de Commodity Fact Sheet for USDA Household Programs: Frozen Ground Pork (folleto de informaci?n sobre productos preparado para los Programas del Hogar del...

Anding, Jenna

2008-12-09T23:59:59.000Z

394

Reservoir characterization of a Permian Giant: Yates Field, West Texas  

SciTech Connect (OSTI)

The Yates Field reservoir characterization project provided the geologic framework, data, and tools that support the ongoing reservoir management of Yates Field. Geologic and engineering data from 1800 wells with digital log data, 23,000 feet of quantified core analysis and description, and six decades of production data, were integrated, analyzed, and displayed in a format which could be used for field evaluation, management, and simulation. The Yates Field reservoir characterization products include: quantified, standardized, digital core descriptions for 118 cores in the field; 2-D digital cross section through every well in the field; 2-D structure and isochore maps for major and internal marker horizons, net and gross reservoir maps, net and gross shale maps, secondary calcite distribution maps, cave distribution maps, and fracture distribution maps; a 6.8 million cell 3-D geologic model of the complete reservoir that includes log, core, and production data. The reservoir characterization project resulted in a quantified description of the heterogeneous matrix and fracture network in Yates Field. It is the efficient, ongoing management of this classic dual-porosity system that has stabilized production from this sixty-eight year old, 4.2 billion barrel field.

Tinker, S.W. [Marathon Oil Co., Littleton, CO (United States); Mruk, D.H. [Marathon Oil Co., Midland, TX (United States)

1995-06-01T23:59:59.000Z

395

Application of horizontal drilling to tight gas reservoirs  

SciTech Connect (OSTI)

Vertical fractures and lithologic heterogeneity are extremely important factors controlling gas flow rates and total gas recovery from tight (very low permeability) reservoirs. These reservoirs generally have in situ matrix permeabilities to gas of less than 0.1 md. Enhanced gas recovery methods have usually involved hydraulic fracturing; however, the induced vertical hydraulic fractures almost always parallel the natural fracture and may not be an efficient method to establish a good conduit to the wellbore. Horizontal drilling appears to be an optimum method to cut across many open vertical fractures. Horizontal holes will provide an efficient method to drain heterogeneous tight reservoirs even in unfractured rocks. Although many horizontal wells have now been completed in coalbed methane and oil reservoirs, very few have been drilled to exclusively evaluate tight gas reservoirs. The U.S. Department of Energy (DOE) has funded some horizontal and slanthole drilling in order to demonstrate the applicability of these techniques for gas development. Four DOE holes have been drilled in Devonian gas shales in the Appalachian basin, and one hole has been drilled in Upper Cretaceous tight sandstones in the Piceance basin of Colorado. The Colorado field experiment has provided valuable information on the abundance and openness of deeply buried vertical fractures in tight sandstones. These studies, plus higher gas prices, should help encourage industry to begin to further utilize horizontal drilling as a new exploitation method for tight gas reservoirs.

Spencer, C.W. (U.S. Geological Survey, Lakewood, CO (United States)); Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Brown, C.A. (Synder Oil Co., Denver, CO (United States))

1991-03-01T23:59:59.000Z

396

Quantification of uncertainty in reservoir simulations influenced by varying input geological parameters, Maria Reservoir, CaHu Field  

E-Print Network [OSTI]

to krig thickness layers, 2) morphology around well 14, 3) shelf edge orientation, 4) bathymetry ranges attributed for each facies, 5) variogram range used to simulate facies distribution, 6) extension of the erosion at top of the reservoir. The parameters...

Schepers, Karine Chrystel

2005-02-17T23:59:59.000Z

397

Advances on Reduced Reservoir Representation for Fast Analysis of Oil Recovery Opportunities This seminar presents recent results of a strategy that uses a reduced representation of reservoirs.  

E-Print Network [OSTI]

Advances on Reduced Reservoir Representation for Fast Analysis of Oil Recovery Opportunities of reservoirs. The strategy facilitates the task of producing recovery projections on individual or a portfolio of reservoirs, by using space reduction techniques and analytical simulations. The drive for this type

Sukop, Mike

398

Estimation of original gas in place from short-term shut-in pressure data for commingled tight gas reservoirs with no crossflow  

E-Print Network [OSTI]

gas production (GP) under these circumstances. This research studies different empirical methods to estimate the original gas in place (OGIP) for one-layer or commingled two-layer tight gas reservoirs without crossflow, from short-term (72-hour) shut...

Khuong, Chan Hung

2012-06-07T23:59:59.000Z

399

Ground Motion Studies at NuMI  

SciTech Connect (OSTI)

Ground motion can cause significant deterioration in the luminosity of a linear collider. Vibration of numerous focusing magnets causes continuous misalignments, which makes the beam emittance grow. For this reason, understanding the seismic vibration of all potential LC sites is essential and related efforts in many sites are ongoing. In this document we summarize the results from the studies specific to Fermilab grounds as requested by the LC project leader at FNAL, Shekhar Mishra in FY04-FY06. The Northwestern group focused on how the ground motion effects vary with depth. Knowledge of depth dependence of the seismic activity is needed in order to decide how deep the LC tunnel should be at sites like Fermilab. The measurements were made in the NuMI tunnel, see Figure 1. We take advantage of the fact that from the beginning to the end of the tunnel there is a height difference of about 350 ft and that there are about five different types of dolomite layers. The support received allowed to pay for three months of salary of Michal Szleper. During this period he worked a 100% of his time in this project. That include one week of preparation: 2.5 months of data taking and data analysis during the full period of the project in order to guarantee that we were recording high quality data. We extended our previous work and made more systematic measurements, which included detailed studies on stability of the vibration amplitudes at different depths over long periods of time. As a consequence, a better control and more efficient averaging out of the daytime variation effects were possible, and a better study of other time dependences before the actual depth dependence was obtained. Those initial measurements were made at the surface and are summarized in Figure 2. All measurements are made with equipment that we already had (two broadband seismometers KS200 from GEOTECH and DL-24 portable data recorder). The offline data analysis took advantage of the full Fourier spectra information and the noise was properly subtracted. The basic formalism is summarized if Figure 3. The second objective was to make a measurement deeper under ground (Target hall, Absorber hall and Minos hall - 150 ft to 350 ft), which previous studies did not cover. All results are summarized in Figure 3 and 4. The measurements were covering a frequency range between 0.1 to 50 Hz. The data was taken continuously for at least a period of two weeks in each of the locations. We concluded that the dependence on depth is weak, if any, for frequencies above 1 Hz and not visible at all at lower frequencies. Most of the attenuation (factor of about 2-3) and damping of ground motion that is due to cultural activity at the surface is not detectable once we are below 150 ft underground. Therefore, accelerator currently under consideration can be build at the depth and there is no need to go deeper underground is built at Fermi National Laboratory.

Mayda M. Velasco; Michal Szleper

2012-02-20T23:59:59.000Z

400

Ground Magnetics (Nannini, 1986) | Open Energy Information  

Open Energy Info (EERE)

Ground Magnetics (Nannini, 1986) Ground Magnetics (Nannini, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics (Nannini, 1986) Exploration Activity Details Location Unspecified Exploration Technique Ground Magnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes Detection and quantitative assessment of such intrusive events can be facilitated by magnetic surveys (ground or aerial magnetic field measurements). These surveys are based on the magnetic susceptibility contrast between magmatic rocks at depth and the sedimentary formations above. References Raffaello Nannini (1986) Some Aspects Of Exploration In Non-Volcanic Areas Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_(Nannini,_1986)&oldid=388291

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Data Integration for the Generation of High Resolution Reservoir Models  

SciTech Connect (OSTI)

The goal of this three-year project was to develop a theoretical basis and practical technology for the integration of geologic, production and time-lapse seismic data in a way that makes best use of the information for reservoir description and reservoir performance predictions. The methodology and practical tools for data integration that were developed in this research project have been incorporated into computational algorithms that are feasible for large scale reservoir simulation models. As the integration of production and seismic data require calibrating geological/geostatistical models to these data sets, the main computational tool is an automatic history matching algorithm. The following specific goals were accomplished during this research. (1) We developed algorithms for calibrating the location of the boundaries of geologic facies and the distribution of rock properties so that production and time-lapse seismic data are honored. (2) We developed and implemented specific procedures for conditioning reservoir models to time-lapse seismic data. (3) We developed and implemented algorithms for the characterization of measurement errors which are needed to determine the relative weights of data when conditioning reservoir models to production and time-lapse seismic data by automatic history matching. (4) We developed and implemented algorithms for the adjustment of relative permeability curves during the history matching process. (5) We developed algorithms for production optimization which accounts for geological uncertainty within the context of closed-loop reservoir management. (6) To ensure the research results will lead to practical public tools for independent oil companies, as part of the project we built a graphical user interface for the reservoir simulator and history matching software using Visual Basic.

Albert Reynolds; Dean Oliver; Gaoming Li; Yong Zhao; Chaohui Che; Kai Zhang; Yannong Dong; Chinedu Abgalaka; Mei Han

2009-01-07T23:59:59.000Z

402

Well testing model for multi-fractured horizontal well for shale gas reservoirs with consideration of dual diffusion in matrix  

Science Journals Connector (OSTI)

Abstract Shale gas reservoir is typical unconventional reservoir, it's necessary to take advantage of multi-stage fractured horizontal well so as to develop those kinds of reservoirs, which can form high conductivity hydraulic fractures and activate natural fractures. Due to the existence of concentration gap between matrix and fractures, desorption gas can simultaneously diffuse into the natural fractures and hydraulic fractures. This process can be called dual diffusion. Based on the triple-porosity cubic model, this paper establishes a new well testing model of multi-stage fractured horizontal well in shale gas reservoir with consideration of the unique mechanisms of desorption and dual diffusion in matrix. Laplace transformation is employed to solve this new model. The pseudo pressure transient responses are inverted into real time space with stehfest numerical inversion algorithm. Type curves are plotted, and different flow regimes in shale gas reservoirs are identified and the effects of relevant parameters are analyzed as well. Considering the mechanism of dual diffusion in matrix, the flow can be divided into five regimes: early linear flow; pseudo-steady state inter-porosity flow; the diffusion from matrix into micro-fractures; the diffusion from matrix into hydraulic fractures and boundary-dominated flow. There are large distinctions of pressure response between pseudo steady state diffusion and unsteady state diffusion under different value of pore volume ratio. It's similar to the feature of pseudo-steady state inter-porosity flow, diffusion coefficient and Langmuir parameters reflect the characters of pseudo-steady state diffusion. The numbers of stage of hydraulic fractures have certain impact on the shape factor of matrix and the inter-porosity coefficient. This new model is validated compared with some existing models. Finally, coupled with an application, this mew model can be approximately reliable and make some more precise productivity prediction.

Leng Tian; Cong Xiao; Mingjin Liu; Daihong Gu; Guangyu Song; Helong Cao; Xianglong Li

2014-01-01T23:59:59.000Z

403

INVESTIGATION OF EFFICIENCY IMPROVEMENTS DURING CO2 INJECTION IN HYDRAULICALLY AND NATURALLY FRACTURED RESERVOIRS  

SciTech Connect (OSTI)

For many years many efforts have been performed in the laboratory experiments to duplicate the reservoir conditions. In this study, we will investigate the permeability change at different overburden conditions. The reduction in permeability with overburden pressure has been well known. Fatt and Davis (1952) presented the changes in permeability with pressure at range 0 to 15,000 psig and found that overburden pressure caused a reduction in permeability of the consolidated oil-bearing sandstone samples by as much as 50% at 10,000 psig. Wyble (1958) performed similar experiments on three different sandstone samples to determine the changes in conductivity, porosity and permeability at pressure range 0 to 5,000 psig. His results were consistent with the observation by Fatt and Davis (1952). During the experiments, different overburden pressures (radial force) were applied only to the cylinder core while the axial direction was kept at constant atmospheric pressure. Gray et al. (1963) enhanced the previous experiments by applying axial force and combining with overburden pressure (radial force) to measure the anisotropy permeability changes at more representative reservoir stress-state condition. They showed that permeability reduction subjected to overburden pressure as a function of the ratio of radial to axial stress and the permeability reduction under non-uniform stress (radial pressure {ne} axial pressure) is less than that under uniform stress. Although extensive work has been established on the effect of overburden pressure and stress-state on matrix permeability but there are some very interesting details of fractured rock behavior under stress that have not been investigated. In this study we will show the effect of fracture aperture and fracture permeability on the fluid flow under different overburden pressure. This study is a precursor to investigating fracture apertures under different stress-state conditions (confining stress, hydrostatic stress and triaxial stress) and imaging fracture aperture distributions using X-ray CT.

David S. Schechter

2002-04-01T23:59:59.000Z

404

Worldwide Occurrences of Arsenic in Ground Water  

Science Journals Connector (OSTI)

...decision-making process of water managers, remediation specialists, and...The geologic and ground-water conditions that promote...water managers, remediation specialists, and...The geologic and ground-water conditions that promote...

D. Kirk Nordstrom

2002-06-21T23:59:59.000Z

405

Montana Ground Water Assessment Act (Montana)  

Broader source: Energy.gov [DOE]

This statute establishes a program to systematically assess and monitor the state's ground water and to disseminate the information to interested persons in order to improve the quality of ground...

406

Warm or Steaming Ground | Open Energy Information  

Open Energy Info (EERE)

Warm or Steaming Ground Warm or Steaming Ground Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Warm or Steaming Ground Dictionary.png Warm or Steaming Ground: An area where geothermal heat is conducted to the earth's surface, warming the ground and sometimes causing steam to form when water is present. Other definitions:Wikipedia Reegle Modern Geothermal Features Typical list of modern geothermal features Hot Springs Fumaroles Warm or Steaming Ground Mudpots, Mud Pools, or Mud Volcanoes Geysers Blind Geothermal System Steam rising from the ground at Eldvorp, a 10 km row of craters, in Southwestern Iceland. http://www.visiticeland.com/SearchResults/Attraction/eldvorp Warm or steaming ground is often an indicator of a geothermal system beneath the surface. In some cases a geothermal system may not show any

407

Property:MeanReservoirTemp | Open Energy Information  

Open Energy Info (EERE)

MeanReservoirTemp MeanReservoirTemp Jump to: navigation, search Property Name MeanReservoirTemp Property Type Temperature Description Mean estimated reservoir temperature at location based on the USGS 2008 Geothermal Resource Assessment if the United States Pages using the property "MeanReservoirTemp" Showing 25 pages using this property. (previous 25) (next 25) A Abraham Hot Springs Geothermal Area + 363.15 K90 °C 194 °F 653.67 °R + Adak Geothermal Area + 428.15 K155 °C 311 °F 770.67 °R + Akun Strait Geothermal Area + 353.15 K80 °C 176 °F 635.67 °R + Akutan Fumaroles Geothermal Area + 523.15 K250 °C 482 °F 941.67 °R + Alvord Hot Springs Geothermal Area + 408.15 K135 °C 275 °F 734.67 °R + Amedee Geothermal Area + 388.15 K115 °C 239 °F 698.67 °R + Arrowhead Hot Springs Geothermal Area + 388.15 K115 °C

408

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide  

Open Energy Info (EERE)

Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Carbonation Mechanism of Reservoir Rock by Supercritical Carbon Dioxide Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Project Description Supercritical CO2 is currently becoming a more common fluid for extracting volatile oil and fragrance compounds from various raw materials that are used in perfumery. Furthermore, its use as a heat transmission fluid is very attractive because of the greater uptake capability of heat from hot reservoir rock, compared with that of water. However, one concern was the reactivity of CO2 with clay and rock minerals in aqueous and non-aqueous environments. So if this reaction leads to the formation of water-soluble carbonates, such formation could be detrimental to the integrity of wellbore infrastructure.

409

Prediction of future well performance, including reservoir depletion effects  

SciTech Connect (OSTI)

In the past, the reservoir material balance (voidage) effects occurring between the end of the measured (known) production history and future Inflow Performance Relationship (IPR) time levels have been commonly ignored in the computation of the future IPR behavior. Neglecting the reservoir voidage that occurs during the time interval between the end of the known production history and the future IPR time levels results in erroneous estimates of the future IPR behavior. A detailed description is given of the mathematically rigorous technique that has been used in the development of a multilayer well performance simulator that properly accounts for the reservoir voidage effects. Some of the more significant results are also presented of an extensive effort to develop an accurate and computationally efficient well performance simulation model. The reservoir can be considered to be multilayered, with mixed reservoir layer completion types and outer boundary shapes, drainage areas and boundary conditions. The well performance model can be used to simulate performance in three different operating modes: (1) constant wellhead rate, (2) constant bottomhole pressure, and (3) constant wellhead pressure. The transient performance of vertical, vertically fractured and horizontal wells can be simulated with this well performance model. The well performance model uses mathematically rigorous transient solutions and not simply the approximate solutions for each of the well types, as do most of the other commercially available well performance models.

Poe, B.D. Jr.; Elbel, J.L.; Spath, J.B.; Wiggins, M.L.

1995-12-31T23:59:59.000Z

410

Oil composition variation and reservoir continuity: Unity field, Sudan  

Science Journals Connector (OSTI)

A suite of oils from stacked reservoirs in the Unity Field in Sudan has been analyzed by various geochemical techniques for molecular information to elucidate the geological processes which cause variations in oil composition and their resulting oil fingerprints in different reservoir units. Analyses of these highly paraffinic oils indicate that the chromatographic fingerprint variations are due to differences in the abundances of saturated compounds, including branched and cyclic alkanes. Neither aromatics nor NSO compounds have any significant effect on the observed fingerprint variations. This association of saturates, instead of aromatics and NSO compounds, with the fingerprint variations precludes rock-fluid interactions as a cause of the variations. Biomarker analyses show that variations in thermal maturity and organic facies of the source rock are responsible for the fingerprint variations. Thermal maturity increases with the depth of the reservoir, suggesting a multiple-charge process for the oils to fill these reservoirs over an extended period of time. Apparently the source rock generated and expelled progressively more mature oils and little mixing occurred during migration. Thus, knowledge of oil compositional variations from one reservoir to another, organic facies variation and source rock maturity combined with tectonic history may help explain charging and timing of oil emplacement.

R.J. Hwang; A.S. Ahmed; J.M. Moldowan

1994-01-01T23:59:59.000Z

411

US Geological Survey publications on western tight gas reservoirs  

SciTech Connect (OSTI)

This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

Krupa, M.P.; Spencer, C.W.

1989-02-01T23:59:59.000Z

412

Twelfth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

Preface The Twelfth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 20-22, 1987. The year ending December 1986 was very difficult for the domestic geothermal industry. Low oil prices caused a sharp drop in geothermal steam prices. We expected to see some effect upon attendance at the Twelfth Workshop. To our surprise, the attendance was up by thirteen from previous years, with one hundred and fifty-seven registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, Japan, Mexico, New Zealand, and Turkey. Despite a worldwide surplus of oil, international geothermal interest and development is growing at a remarkable pace. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Seven technical papers not presented at the Workshop are also published; they concern geothermal developments and research in Iceland, Italy, and New Zealand. In addition to these forty-eight technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was John R. Berg from the Department of Energy. We thank him for sharing with the Workshop participants his thoughts on the expectations of this agency in the role of alternative energy resources, specifically geothermal, within the country???s energy framework. His talk is represented as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: M. Gulati, K. Goyal, G.S. Bodvarsson, A.S. Batchelor, H. Dykstra, M.J. Reed, A. Truesdell, J.S. Gudmundsson, and J.R. Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and students. We would like to thank Jean Cook, Marilyn King, Amy Osugi, Terri Ramey, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, specially Jim Lovekin. The Twelfth Workshop was supported by the Geothermal Technology Division of the U. S. Department of Energy through Contract Nos. DE-AS03-80SF11459 and DE-AS07- 84ID12529. We deeply appreciate this continued support. January 1987 Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jesus Rivera

Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Rivera, J. (Stanford Geothermal Program)

1987-01-22T23:59:59.000Z

413

Thirteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones, Yasmin Gulamani, and Rosalee Benelli for their valued help with the meeting arrangements and preparing the Proceedings. We also owe great thanks to our students who arranged and operated the audio-visual equipment, especially Jeralyn Luetkehans. The Thirteenth Workshop was supported by the Geothermal Technology Division of the U.S. Department of Energy through Contract No. DE-AS07-84ID12529. We deeply appreciate this continued support. Henry J. Ramey, Jr. Paul Kruger Roland N. Horne William E. Brigham Frank G. Miller Jean W. Cook

Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

1988-01-21T23:59:59.000Z

414

Ground Source Heat Pump Demonstration Projects  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Ground Source Heat Pump Demonstration Projects.

415

Ground Source Heat Pump Subprogram Overview  

Broader source: Energy.gov [DOE]

This overview of GTP's Ground Source Heat Pump subprogram was given at GTP's Program Peer Review on May 18, 2010.

416

North Village Ground Source Heat Pumps  

Broader source: Energy.gov [DOE]

Overview: Installation of Ground Source Heat Pumps. Replacement of Aging Heat Pumps. Alignment with Furmans Sustainability Goals.

417

Computer simulation models relevant to ground water contamination from EOR or other fluids - state-of-the-art  

SciTech Connect (OSTI)

Ground water contamination is a serious national problem. The use of computers to simulate the behavior of fluids in the subsurface has proliferated extensively over the last decade. Numerical models are being used to solve water supply problems, various kinds of enertgy production problems, and ground water contamination problems. Modeling techniques have progressed to the point that their accuracy is only limited by the modeller's ability to describe the reservoir in question and the heterogeneities therein. Pursuant to the Task and Milestone Update of Project BE3A, this report summarizes the state of the art of computer simulation models relevant to contamination of ground water by enhanced oil recovery (EOR) chemicals and/or waste fluids. 150 refs., 6 tabs.

Kayser, M.B.; Collins, A.G.

1986-03-01T23:59:59.000Z

418

Advanced Reservoir Characterization in the Antelope Shale to Establish the Viability of CO2 Enhanced Oil Recovery in California's Monterey Formation Siliceous Shales, Class III  

SciTech Connect (OSTI)

This report describes the evaluation, design, and implementation of a DOE funded CO2 pilot project in the Lost Hills Field, Kern County, California. The pilot consists of four inverted (injector-centered) 5-spot patterns covering approximately 10 acres, and is located in a portion of the field, which has been under waterflood since early 1992. The target reservoir for the CO2 pilot is the Belridge Diatomite. The pilot location was selected based on geology, reservoir quality and reservoir performance during the waterflood. A CO2 pilot was chosen, rather than full-field implementation, to investigate uncertainties associated with CO2 utilization rate and premature CO2 breakthrough, and overall uncertainty in the unproven CO2 flood process in the San Joaquin Valley.

Perri, Pasquale R.

2001-04-04T23:59:59.000Z

419

IMPROVED MISCIBLE NITROGEN FLOOD PERFORMANCE UTILIZING ADVANCED RESERVOIR CHARACTERIZATION AND HORIZONTAL LATERALS IN A CLASS I RESERVOIR - EAST BINGER (MARCHAND) UNIT  

SciTech Connect (OSTI)

Progress on the East Binger Unit (EBU) project has slowed as difficulties have been encountered with obtaining satisfactory production from well EBU 37G-3H, the new horizontal well. Remedial operations have been conducted and stimulation operations were about to get under way at the end of the reporting period. International Reservoir Technologies, Inc. has made additional progress on the pilot area simulation model, reaching a point with the history match that we are awaiting more definitive production data from the horizontal well. Planning future development of the EBU hinges on evaluating the results of well EBU 37G-3H. Performance of this well must be understood in order to evaluate development scenarios involving horizontal wells and compare them with development scenarios involving vertical wells.

Joe Sinner

2001-10-26T23:59:59.000Z

420

Application of Integrated Reservoir Management and Reservoir Characterization to Optimize Infill Drillings. Annual technical progress report, June 13, 1996 to June 12, 1998  

SciTech Connect (OSTI)

Infill drilling of wells on a uniform spacing, without regard to reservoir performance and characterization, does not optimize reservoir development because it fails to account for the complex nature of reservoir heterogeneities present in many low permeability reservoirs, and carbonate reservoirs in particular. New and emerging technologies, such as geostatistical modeling, rigorous decline curve analysis, reservoir rock typing, and special core analysis can be used to develop a 3-D simulation model for prediction of infill locations. Other technologies, such as inter-well injection tracers and magnetic flow conditioners, can also aid in the efficient evaluation and operation of both injection and producing wells. The purpose of this project was to demonstrate useful and cost effective methods of exploitation of the shallow shelf carbonate reservoirs of the Permian Basin located in West Texas.

Nevans, Jerry W.; Blasingame, Tom; Doublet, Louis; Kelkar, Mohan; Freeman, George; Callard, Jeff; Moore, David; Davies, David; Vessell, Richard; Pregger, Brian; Dixon, Bill

1999-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Stability of ice-sheet grounding lines  

Science Journals Connector (OSTI)

...81 73 Stability of ice-sheet grounding lines Richard F. Katz 1 * M. Grae Worster 2...ice sheets are sensitive to grounding-line position and variation, characteristics...models. We present a theory for grounding-line dynamics in three spatial dimensions and...

2010-01-01T23:59:59.000Z

422

The Cerro Prieto IV (Mexico) geothermal reservoir: Pre-exploitation thermodynamic conditions and main processes related to exploitation (20002005)  

Science Journals Connector (OSTI)

The Cerro Prieto IV (CP IV) reservoir, located in the northeastern part of the Cerro Prieto (Mexico) geothermal field, was studied in order to define its pre-exploitation conditions and initial (20002005) response to exploitation. Bottomhole thermodynamic conditions were estimated by modeling heat and fluid flows using the WELLSIM program and well production data. Produced fluid chemical and isotopic data were also analyzed to investigate characteristic patterns of behavior over time, which were then compared against simulation results to obtain a conceptual model of the CP IV reservoir. According to the proposed model, two zones in the reservoir separated by Fault H and producing fluids of different characteristics were identified under pre-exploitation conditions. Wells in the area to the east-southeast (south block) produce very high-enthalpy fluids (?2000kJ/kg), with very low chloride (?7000mg/kg) and high CO2 (>6 molar) and ?D (wells toward the west-northwest (north block) show moderate-enthalpy fluids (14001800kJ/kg), with high chloride (?12,000mg/kg) and relatively low CO2 (<6 molar) and ?D (reservoir processes associated with exploitation. Also, it was found that the dynamics of the CP IV reservoir is controlled by the Fault H system.

Vctor Manuel Arellano; Rosa Mara Barragn; Alfonso Aragn; Marco Helio Rodrguez; Alfredo Prez

2011-01-01T23:59:59.000Z

423

The Northwest Geysers High-Temperature Reservoir- Evidence For Active  

Open Energy Info (EERE)

Geysers High-Temperature Reservoir- Evidence For Active Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: The Northwest Geysers High-Temperature Reservoir- Evidence For Active Magmatic Degassing And Implications For The Origin Of The Geysers Geothermal Field Details Activities (2) Areas (1) Regions (0) Abstract: Noble gas isotope abundances in steam from the Coldwater Creek field of the Northwest Geysers, California, show mixing between a nearly pure mid-ocean ridge (MOR) type magmatic gas with high 3He/4He and low radiogenic 40*Ar (R/Ra > 8.3 and 40*Ar/4He < 0.07), and a magmatic gas diluted with crustal gas (R/Ra 0.25). The

424

Precise Gravimetry and Geothermal Reservoir Management | Open Energy  

Open Energy Info (EERE)

Precise Gravimetry and Geothermal Reservoir Management Precise Gravimetry and Geothermal Reservoir Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Precise Gravimetry and Geothermal Reservoir Management Abstract Modern portable gravimeters can routinely achieve a5 ugal uncertainty with careful measurementprocedures involving multiple station occupations inthe same day, and stacking of readings over at least15 minutes during each occupation. Although furtherimprovements in gravimeter accuracy are feasible,other practical factors relating to repeat surveys ofgeothermal fields make such improvements oflimited value. The two most important factors arebenchmark elevation variations (3 ugal/cm) andgroundwater level fluctuations (5-10 ugal/m). Dualfrequency GPS receivers can give elevations

425

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation-  

Open Energy Info (EERE)

Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Selecting The Optimal Logging Suite For Geothermal Reservoir Evaluation- Results From The Alum 25-29 Well, Nevada Details Activities (6) Areas (1) Regions (0) Abstract: This paper presents the results of analysis of a state of the art set of wireline petrophysical and wellbore image logs recorded in the Alum 25-29 well, southwestern Nevada. The Alum well penetrated nearly 2000 ft (610 m) of volcano-clastic rocks and more than 1000 ft of basement, separated from the sediments by a shallowly dipping detachment fault. The logs were acquired both to characterize the site and also to select the

426

DOE - Office of Legacy Management -- Pantex Sewage Reservoir - TX 03  

Office of Legacy Management (LM)

Pantex Sewage Reservoir - TX 03 Pantex Sewage Reservoir - TX 03 FUSRAP Considered Sites Site: Pantex Sewage Reservoir (TX.03 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is one of a group of 77 FUSRAP considered sites for which few, if any records are available in their respective site files to provide an historical account of past operations and their relationship, if any, with MED/AEC operations. Reviews of contact lists, accountable station lists, health and safety records and other documentation of the period do not provide sufficient information to warrant further search of historical records for information on these sites. These site files remain "open" to

427

State of Seismic Methods For Geothermal Reservoir Exploration and Assessment  

Office of Scientific and Technical Information (OSTI)

3-D Seismic Methods For Geothermal Reservoir Exploration 3-D Seismic Methods For Geothermal Reservoir Exploration and Assessment - Summary E.L Majer Lawrence Berkeley National Laboratory Introduction A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally fractured reservoirs. The application could be for exploration of new resources or for in-fill/step-out drilling in existing fields. In most geothermal environments the

428

True-Temperature Determination Of Geothermal Reservoirs | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » True-Temperature Determination Of Geothermal Reservoirs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: True-Temperature Determination Of Geothermal Reservoirs Details Activities (0) Areas (0) Regions (0) Abstract: Parameters governing the resistivity in geothermal areas are analyzed. A method for the calculation of the true temperature of geothermal reservoirs is explained, and the effectiveness of the method is evidenced. Author(s): Jin Doo Jung Published: Geoexploration, 1977 Document Number: Unavailable DOI: 10.1016/0016-7142(77)90002-3 Source: View Original Journal Article

429

Statistical study of seismicity associated with geothermal reservoirs in  

Open Energy Info (EERE)

study of seismicity associated with geothermal reservoirs in study of seismicity associated with geothermal reservoirs in California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Statistical study of seismicity associated with geothermal reservoirs in California Details Activities (5) Areas (5) Regions (0) Abstract: Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related events are identified by the distribution of the interoccurrence times. The regions studied to date include the Imperial Valley, Coso, The Geysers, Lassen, and the San Jacinto fault. The spatial characteristics of the random and clustered components of the seismicity

430

Reservoir response to tidal and barometric effects | Open Energy  

Open Energy Info (EERE)

to tidal and barometric effects to tidal and barometric effects Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Reservoir response to tidal and barometric effects Details Activities (2) Areas (2) Regions (0) Abstract: Solid earth tidal strain and surface loading due to fluctuations in barometric pressure have the effect, although extremely minute, of dilating or contracting the effective pore volume in a porous reservoir. If a well intersects the formation, the change in pore pressure can be measured with sensitive quartz pressure gauges. Mathematical models of the relevant fluid dynamics of the well-reservoir system have been generated and tested against conventional well pumping results or core data at the Salton Sea Geothermal Field (SSGF), California and at the Raft River,

431

Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir  

Open Energy Info (EERE)

Patterns In The Geysers Geothermal Reservoir Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Characterization Of Fracture Patterns In The Geysers Geothermal Reservoir By Shear-Wave Splitting Details Activities (1) Areas (1) Regions (0) Abstract: The authors have analyzed the splitting of shear waves from microearthquakes recorded by a 16-station three-component seismic network at the Northwest Geysers geothermal field, Geysers, California, to determine the preferred orientation of subsurface fractures and cracks. Average polarization crack directions with standard deviation were computed for each station. Also, graphical fracture characterizations in the form of equal-area projections and rose diagrams were created to depict the

432

Dynamics of entropic measurement-induced nonlocality in structured reservoirs  

SciTech Connect (OSTI)

We propose the entropic measurement-induced nonlocality (MIN) as the maximal increment of von Neumann entropy induced by the locally non-disturbing measurement, and study its behaviors in both the independent and common structured reservoirs. We present schemes for preserving the MIN, and show that for certain initial states the MIN, including the quantum correlations, can even be enhanced by the common reservoir. Additionally, we also show that the different measures of MIN may give different qualitative characterizations of nonlocal properties, i.e., it is rather measure dependent than state dependent. - Highlights: Black-Right-Pointing-Pointer Features of the entropic measurement-induced nonlocality (MIN). Black-Right-Pointing-Pointer Comparison of MIN with other quantum correlation measures. Black-Right-Pointing-Pointer Enhancement of MIN and other quantum correlations by common reservoir. Black-Right-Pointing-Pointer Relativity of the geometric and entropic MIN measures.

Hu, Ming-Liang, E-mail: mingliang0301@163.com [School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710061 (China)] [School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710061 (China); Fan, Heng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)] [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

2012-09-15T23:59:59.000Z

433

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

The West Carney Field in Lincoln County, Oklahoma is one of few newly discovered oil fields in Oklahoma. Although profitable, the field exhibits several unusual characteristics. These include decreasing water-oil ratios, decreasing gas-oil ratios, decreasing bottomhole pressures during shut-ins in some wells, and transient behavior for water production in many wells. This report explains the unusual characteristics of West Carney Field based on detailed geological and engineering analyses. We propose a geological history that explains the presence of mobile water and oil in the reservoir. The combination of matrix and fractures in the reservoir explains the reservoir's flow behavior. We confirm our hypothesis by matching observed performance with a simulated model and develop procedures for correlating core data to log data so that the analysis can be extended to other, similar fields where the core coverage may be limited.

Mohan Kelkar

2002-03-31T23:59:59.000Z

434

Seismic and Rockphysics Diagnostics of Multiscale Reservoir Textures  

SciTech Connect (OSTI)

This final technical report summarizes the results of the work done in this project. The main objective was to quantify rock microstructures and their effects in terms of elastic impedances in order to quantify the seismic signatures of microstructures. Acoustic microscopy and ultrasonic measurements were used to quantify microstructures and their effects on elastic impedances in sands and shales. The project led to the development of technologies for quantitatively interpreting rock microstructure images, understanding the effects of sorting, compaction and stratification in sediments, and linking elastic data with geologic models to estimate reservoir properties. For the public, ultimately, better technologies for reservoir characterization translates to better reservoir development, reduced risks, and hence reduced energy costs.

Gary Mavko

2005-07-01T23:59:59.000Z

435

Reservoir simulation improves implementation of Midway Sunset steamflood  

SciTech Connect (OSTI)

Thermal reservoir simulation was utilized to understand, make development recommendations, and project the performance of the Monarch C steamflood in a portion of Mobil`s South Midway Sunset field. The Monarch, a thick sequence of complex turbidite deposition, is characterized by extreme geological heterogeneity (lithofacies-controlled permeability and saturation variation, and mudstone barrier layers). Steamflood performance in the Monarch is related directly to the reservoir quality, and the path of steam flow is significantly influenced by the numerous laterally extensive mudstone barriers. The fine grain clay-bearing sediments were deposited on the anticline, distal from the source, whereas the coarser grain sediments, with little clay, were deposited on the more proximal syncline and steep dip areas. Consequently, steamflood performance improves relative to the crest since reservoir quality improves (including oil saturation), clay content decreases, and structure (dip) becomes more pronounced.

Ellison, T.K.; Clayton, C.A.

1995-12-31T23:59:59.000Z

436

Reservoir Stimulation Optimization with Operational Monitoring for Creation of EGS  

SciTech Connect (OSTI)

EGS field projects have not sustained production at rates greater than of what is needed for economic viability. The primary limitation that makes commercial EGS infeasible is our current inability to cost-effectively create high-permeability reservoirs from impermeable, igneous rock within the 3,000-10,000 ft depth range. Our goal is to develop a novel fracturing fluid technology that maximizes reservoir permeability while reducing stimulation cost and environmental impact. Laboratory equipment development to advance laboratory characterization/monitoring is also a priority of this project to study and optimize the physicochemical properties of these fracturing fluids in a range of reservoir conditions. Barrier G is the primarily intended GTO barrier to be addressed as well as support addressing barriers D, E and I.

Carlos A. Fernandez

2013-09-25T23:59:59.000Z

437

Reservoir characterization of the Smackover Formation in southwest Alabama  

SciTech Connect (OSTI)

The Upper Jurassic Smackover Formation is found in an arcuate belt in the subsurface from south Texas to panhandle Florida. The Smackover is the most prolific hydrocarbon-producing formation in Alabama and is an important hydrocarbon reservoir from Florida to Texas. In this report Smackover hydrocarbon reservoirs in southwest Alabama are described. Also, the nine enhanced- and improved-recovery projects that have been undertaken in the Smackover of Alabama are evaluated. The report concludes with recommendations about potential future enhanced- and improved-recovery projects in Smackover reservoirs in Alabama and an estimate of the potential volume of liquid hydrocarbons recoverable by enhanced- and improved-recovery methods from the Smackover of Alabama.

Kopaska-Merkel, D.C.; Hall, D.R.; Mann, S.D.; Tew, B.H.

1993-02-01T23:59:59.000Z

438

Seismic imaging of reservoir flow properties: Time-lapse pressurechanges  

SciTech Connect (OSTI)

Time-lapse fluid pressure and saturation estimates are sensitive to reservoir flow properties such as permeability. In fact, given time-lapse estimates of pressure and saturation changes, one may define a linear partial differential equation for permeability variations within the reservoir. The resulting linear inverse problem can be solved quite efficiently using sparse matrix techniques. An application to a set of crosswell saturation and pressure estimates from a CO{sub 2} flood at the Lost Hills field in California demonstrates the utility of this approach. From the crosswell estimates detailed estimates of reservoir permeability are produced. The resulting permeability estimates agree with a permeability log in an adjacent well and are in accordance with water and CO{sub 2} saturation changes in the interwell region.

Vasco, Don W.

2003-04-08T23:59:59.000Z

439

Salt tectonics, patterns of basin fill, and reservoir distribution  

SciTech Connect (OSTI)

Salt structures, which develop due to sediment loading, gravity creep, and/or buoyance, include boundary-fault grabens and half grabens, rollers, anticlines, domes and walls, diapirs, sills, massifs, and compressional toe structure. Associated features include fault systems and turtle structures. Of these, six directly relate to basin fill and all directly influence the distribution of reservoir facies. Salt structuring is initiated by sedimentation, which in turn is localized by salt withdrawal. Withdrawal produces individual salt structures, migrating sills, dissected massifs, and regional depocenters bordered by salt walls. Composite withdrawals dictate the patterns of basin fill. Relative rates of structural growth and sedimentation control the distribution of reservoir facies. When growth dominates, sands are channeled into lows. When sedimentation dominates and maintains flat surfaces, facies distribution is not impacted except where faulting develops. This paper presents techniques for using seismic data to determine the controls on salt structural growth and sedimentation and the patterns of basin fill and reservoir distribution.

Yorston, H.J.; Miles, A.E.

1988-01-01T23:59:59.000Z

440

3-D Seismic Methods For Geothermal Reservoir Exploration And  

Open Energy Info (EERE)

Methods For Geothermal Reservoir Exploration And Methods For Geothermal Reservoir Exploration And Assessment-Summary Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: 3-D Seismic Methods For Geothermal Reservoir Exploration And Assessment-Summary Details Activities (5) Areas (1) Regions (0) Abstract: A wide variety of seismic methods covering the spectrum from DC to kilohertz have been employed at one time or the other in geothermal environments. The reasons have varied from exploration for a heat source to attempting to find individual fractures producing hot fluids. For the purposes here we will assume that overall objective of seismic imaging is for siting wells for successful location of permeable pathways (often fracture permeability) that are controlling flow and transport in naturally

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions | Open  

Open Energy Info (EERE)

Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Jump to: navigation, search Geothermal Lab Call Projects for Supercritical Carbon Dioxide / Reservoir Rock Chemical Interactions Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

442

Application of thermal depletion model to geothermal reservoirs with  

Open Energy Info (EERE)

thermal depletion model to geothermal reservoirs with thermal depletion model to geothermal reservoirs with fracture and pore permeability Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Application of thermal depletion model to geothermal reservoirs with fracture and pore permeability Details Activities (2) Areas (2) Regions (0) Abstract: If reinjection and production wells intersect connected fractures, it is expected that reinjected fluid would cool the production well much sooner than would be predicted from calculations of flow in a porous medium. A method for calculating how much sooner that cooling will occur was developed. Basic assumptions of the method are presented, and possible application to the Salton Sea Geothermal Field, the Raft River System, and to reinjection of supersaturated fluids is discussed.

443

Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mercury Speciation in Piscivorous Mercury Speciation in Piscivorous Fish from Mining-impacted Reservoirs Mercury toxicity generates environmental concerns in diverse aquatic systems because methylmercury enters the water column in diverse ways then biomagnifies through food webs. At the apex of many freshwater food webs, piscivorous fish can then extend that trophic transfer and potential for neurotoxicity to wildlife and humans. Mining activities, particularly those associated with the San Francisco Bay region, can generate both point and non-point mercury sources. Replicate XANES analyses on largemouth bass and hybrid striped bass from Guadalupe Reservoir (GUA), California and Lahontan Reservoir (LAH), Nevada, were performed to determine predominant chemical species of mercury accumulated by high-trophic-level piscivores that are exposed to elevated mercury in both solution and particulate phases in the water column.

444

Characterization of oil and gas reservoir heterogeneity. Final report  

SciTech Connect (OSTI)

Research described In this report addresses the internal architecture of two specific reservoir types: restricted-platform carbonates and fluvial-deltaic sandstones. Together, these two reservoir types contain more than two-thirds of the unrecovered mobile oil remaining ill Texas. The approach followed in this study was to develop a strong understanding of the styles of heterogeneity of these reservoir types based on a detailed outcrop description and a translation of these findings into optimized recovery strategies in select subsurface analogs. Research targeted Grayburg Formation restricted-platform carbonate outcrops along the Algerita Escarpment and In Stone Canyon In southeastern New Mexico and Ferron deltaic sandstones in central Utah as analogs for the North Foster (Grayburg) and Lake Creek (Wilcox) units, respectively. In both settings, sequence-stratigraphic style profoundly influenced between-well architectural fabric and permeability structure. It is concluded that reservoirs of different depositional origins can therefore be categorized Into a ``heterogeneity matrix`` based on varying intensity of vertical and lateral heterogeneity. The utility of the matrix is that it allows prediction of the nature and location of remaining mobile oil. Highly stratified reservoirs such as the Grayburg, for example, will contain a large proportion of vertically bypassed oil; thus, an appropriate recovery strategy will be waterflood optimization and profile modification. Laterally heterogeneous reservoirs such as deltaic distributary systems would benefit from targeted infill drilling (possibly with horizontal wells) and improved areal sweep efficiency. Potential for advanced recovery of remaining mobile oil through heterogeneity-based advanced secondary recovery strategies In Texas is projected to be an Incremental 16 Bbbl. In the Lower 48 States this target may be as much as 45 Bbbl at low to moderate oil prices over the near- to mid-term.

Tyler, N.; Barton, M.D.; Bebout, D.G.; Fisher, R.S.; Grigsby, J.D.; Guevara, E.; Holtz, M.; Kerans, C.; Nance, H.S.; Levey, R.A.

1992-10-01T23:59:59.000Z

445

Reservoir vital signs monitoring, 1990: Physical and chemical characteristics of water and sediments  

SciTech Connect (OSTI)

As part of Tennessee Valley Authority`s (TVA`s) Reservoir Vital Signs Monitoring program, physical/chemical measurements of water and sediment were made in 1990 on twelve TVA reservoirs (the nine main steam Tennessee river reservoirs - Kentucky through Fort Loudoun and three major tributary reservoirs - Cherokee, Douglas, and Norris). The objective of this monitoring program is to assess the health or integrity of these aquatic ecosystems. The physical/chemical water quality data collected in 1990 showed the water quality of these reservoirs to be very good. However, hypolimnetic anoxia during the summer months in Watts bars, Douglas, and Cherokee reservoir continues to be a concern. High concentrations of nutrients were measured in the transition zones of Cherokee and Douglas reservoirs, resulting in highly productive and eutrophic conditions in the transition zones of these reservoirs. Fecal coliform organisms were frequently detected in the forebay area of Guntersville reservoir, and higher than expected ammonia nitrogen concentrations were found at the transition zone of Wheeler reservoir. Elevated concentrations of mercury were found in Pickwick and Watts bar reservoir sediment, and high lead concentrations were found in a sediment sample collected from Guntersville reservoir. A TVA Reservoir Water Quality Index (RWQI) was developed and used to summarize water quality conditions on a scale from 0 (worst) to 100 (best).

Meinert, D.L.

1991-05-01T23:59:59.000Z

446

Reservoir vital signs monitoring, 1990: Physical and chemical characteristics of water and sediments  

SciTech Connect (OSTI)

As part of Tennessee Valley Authority's (TVA's) Reservoir Vital Signs Monitoring program, physical/chemical measurements of water and sediment were made in 1990 on twelve TVA reservoirs (the nine main steam Tennessee river reservoirs - Kentucky through Fort Loudoun and three major tributary reservoirs - Cherokee, Douglas, and Norris). The objective of this monitoring program is to assess the health or integrity of these aquatic ecosystems. The physical/chemical water quality data collected in 1990 showed the water quality of these reservoirs to be very good. However, hypolimnetic anoxia during the summer months in Watts bars, Douglas, and Cherokee reservoir continues to be a concern. High concentrations of nutrients were measured in the transition zones of Cherokee and Douglas reservoirs, resulting in highly productive and eutrophic conditions in the transition zones of these reservoirs. Fecal coliform organisms were frequently detected in the forebay area of Guntersville reservoir, and higher than expected ammonia nitrogen concentrations were found at the transition zone of Wheeler reservoir. Elevated concentrations of mercury were found in Pickwick and Watts bar reservoir sediment, and high lead concentrations were found in a sediment sample collected from Guntersville reservoir. A TVA Reservoir Water Quality Index (RWQI) was developed and used to summarize water quality conditions on a scale from 0 (worst) to 100 (best).

Meinert, D.L.

1991-05-01T23:59:59.000Z

447

Prediction of reservoir properties of the N-sand, vermilion block 50, Gulf of Mexico, from multivariate seismic attributes  

E-Print Network [OSTI]

The quantitative estimation of reservoir properties directly from seismic data is a major goal of reservoir characterization. Integrated reservoir characterization makes use of different varieties of well and seismic data to construct detailed...

Jaradat, Rasheed Abdelkareem

2005-08-29T23:59:59.000Z

448

Numerical modeling of time-lapse seismic data from fractured reservoirs including fluid flow and geochemical processes  

E-Print Network [OSTI]

Discrete Fracture Network (DFN) models. My seismic simulation study suggests that CO2 saturated reservoir shows approximately ten times more attenuation than brine saturated reservoir. Similarly, large P-wave velocity variation in CO2 saturated reservoir...

Shekhar, Ravi

2009-05-15T23:59:59.000Z

449

Numerical simulations of the Macondo well blowout reveal strong control of oil flow by reservoir permeability and exsolution of gas  

E-Print Network [OSTI]

simulation of reservoir depletion and oil flow from themodel included the oil reservoir and the well with a toppressures of the deep oil reservoir, to a two-phase oil-gas

Oldenburg, C.M.

2013-01-01T23:59:59.000Z

450

Mills, Dams, and Reservoirs (Massachusetts) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Mills, Dams, and Reservoirs (Massachusetts) Mills, Dams, and Reservoirs (Massachusetts) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Massachusetts Program Type Siting and Permitting Provider Department of Conservation and Recreation This chapter of the Massachusetts General Laws outlines procedures to

451

Criteria for displacement by gas versus water in oil reservoirs  

E-Print Network [OSTI]

on of a Two-Dimensional Technique for Computing Performance of Gas-Or ive Reservoirs", Soc. Pet. Enq. J. {Mar. 1963), 19-27; Trans. , AINE, 228. 15. Cardwell, W. T. , Jr. and Parsons, R. L. : 0Gravity Drainage Theory", Trans. , AIME (1949) 179, 199... on of a Two-Dimensional Technique for Computing Performance of Gas-Or ive Reservoirs", Soc. Pet. Enq. J. {Mar. 1963), 19-27; Trans. , AINE, 228. 15. Cardwell, W. T. , Jr. and Parsons, R. L. : 0Gravity Drainage Theory", Trans. , AIME (1949) 179, 199...

Piper, Larry Dean

2012-06-07T23:59:59.000Z

452

Upscaling verticle permeability within a fluvio-aeolian reservoir  

SciTech Connect (OSTI)

Vertical permeability (k{sub v}) is a crucial factor in many reservoir engineering issues. To date there has been little work undertaken to understand the wide variation of k{sub v} values measured at different scales in the reservoir. This paper presents the results of a study in which we have modelled the results of a downhole well tester using a statistical model and high resolution permeability data. The work has demonstrates and quantifies a wide variation in k{sub v} at smaller, near wellbore scales and has implications for k{sub v} modelling at larger scales.

Thomas, S.D.; Corbett, P.W.M.; Jensen, J.L. [Heriot-Watt Univ., Edinburgh (United Kingdom)

1997-08-01T23:59:59.000Z

453

Atlas SCT/Pixel Grounding and Shielding ATLAS SCT/Pixel Grounding and Shielding Note  

E-Print Network [OSTI]

Atlas SCT/Pixel Grounding and Shielding 1 ATLAS SCT/Pixel Grounding and Shielding Note November 22 mostly connects existing mechanical electrical conductive #12; Atlas SCT/Pixel Grounding and Shielding 2 that equivalent. The barrel outer heat shield (150 aluminum) main element shield. #12; Atlas SCT/Pixel Grounding

California at Santa Cruz, University of

454

Engine ground demonstration test approach  

SciTech Connect (OSTI)

The hardware portion of the current phase of the Integrated Solar Upper Stage (ISUS) program culminates in a system ground demonstration test. The potential application of ISUS technology to a wide array of future missions complicates the process of selecting from among demonstration system design options and test approaches. The approach to this system demonstration has been to maximize system technology readiness level for the entire array of potential missions within the constraints of the program. To this end, system design and test operations planning has been carried out with a premium on demonstrating those elements of the system common to all missions. In addition, test planning has been managed to allow margin for testing those portions of the system envelope needed to confirm acceptable operation for scenarios within the mission set that are specific to a given mission or mission type. Examples drawn from the specific Engine Ground Demonstration (EGD) design selections are used to illuminate this approach, with the result that the EGD system design is not only described, but the reasons for its particular characteristics are made evident.

Kudija, C.T. [Rockwell Aerospace, Canoga Park, CA (United States). Rocketdyne Div.

1996-12-31T23:59:59.000Z

455

EXPLOITATION AND OPTIMIZATION OF RESERVOIR PERFORMANCE IN HUNTON FORMATION, OKLAHOMA  

SciTech Connect (OSTI)

This report presents the work done so far on Hunton Formation in West Carney Field in Lincoln County, Oklahoma. West Carney Field produces oil and gas from the Hunton Formation. The field was developed starting in 1995. Some of the unique characteristics of the field include decreasing water oil ratio over time, decreasing gas-oil ratio at the beginning of production, inability to calculate oil reserves in the field based on log data, and sustained oil rates over long periods of time. To understand the unique characteristics of the field, an integrated evaluation was undertaken. Production data from the field were meticulously collected, and over forty wells were cored and logged to better understand the petrophysical and engineering characteristics. Based on the work done in this budget period so far, some of the preliminary conclusions can be listed as follows: (1) Based on PVT analysis, the field most likely contains volatile oil with bubble point close to initial reservoir pressure of 1,900 psia. (2) The initial oil in place, which is contact with existing wells, can be determined by newly developed material balance technique. The oil in place, which is in communication, is significantly less than determined by volumetric analysis, indicating heterogeneous nature of the reservoir. The oil in place, determined by material balance, is greater than determined by decline curve analysis. This difference may lead to additional locations for in fill wells. (3) The core and log evaluation indicates that the intermediate pores (porosity between 2 and 6 %) are very important in determining production potential of the reservoir. These intermediate size pores contain high oil saturation. (4) The limestone part of the reservoir, although low in porosity (mostly less than 6 %) is much more prolific in terms of oil production than the dolomite portion of the reservoir. The reason for this difference is the higher oil saturation in low porosity region. As the average porosity increases, the remaining oil saturation decreases. This is evident from log and core analysis. (5) Using a compositional simulator, we are able to reproduce the important reservoir characteristics by assuming a two layer model. One layer is high permeability region containing water and the other layer is low permeability region containing mostly oil. The results are further verified by using a dual porosity model. Assuming that most of the volatile oil is contained in the matrix and the water is contained in the fractures, we are able to reproduce important reservoir performance characteristics. (6) Evaluation of secondary mechanisms indicates that CO{sub 2} flooding is potentially a viable option if CO{sub 2} is available at reasonable price. We have conducted detailed simulation studies to verify the effectiveness of CO{sub 2} huff-n-puff process. We are in the process of conducting additional lab tests to verify the efficacy of the same displacement. (7) Another possibility of improving the oil recovery is to inject surfactants to change the near well bore wettability of the rock from oil wet to water wet. By changing the wettability, we may be able to retard the water flow and hence improve the oil recovery as a percentage of total fluid produced. If surfactant is reasonably priced, other possibility is also to use huff-n-puff process using surfactants. Laboratory experiments are promising, and additional investigation continues. (8) Preliminary economic evaluation indicates that vertical wells outperform horizontal wells. Future work in the project would include: (1) Build multi-well numerical model to reproduce overall reservoir performance rather than individual well performance. Special emphasis will be placed on hydrodynamic connectivity between wells. (2) Collect data from adjacent Hunton reservoirs to validate our understanding of what makes it a productive reservoir. (3) Develop statistical methods to rank various reservoirs in Hunton formation. This will allow us to evaluate other Hunton formations based on old well logs, and determine, apriori, if

Mohan Kelkar

2003-10-01T23:59:59.000Z

456

Characterization of Thin-Bedded Reservoir in the Gulf of Mexico: An Integrated Approach.  

E-Print Network [OSTI]

An important fraction of the reservoirs in the Outer Continental Shelf of the Gulf of Mexico is comprised of thin-bedded deposits from channel-levee systems. These reservoirs are particularly difficult to describe. Not only is their architecture...

Lalande, Severine

2004-09-30T23:59:59.000Z

457

Radon Transect Studies in Vapor- and Liquid-Dominated Geothermal Reservoirs  

SciTech Connect (OSTI)

This communication describes the transect analysis conducted at the vapor-dominated reservoirs at The Geysers in California and the liquid-dominated reservoirs at Cerro Prieto in Baja, California.

Semprini, Lewis; Kruger, Paul

1980-12-16T23:59:59.000Z

458

Socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin, West Texas  

E-Print Network [OSTI]

This investigative study presents results on the socioeconomic impact of infill drilling recovery from carbonate reservoirs in the Permian Basin. The amount of incremental oil and gas production from infill drilling in 37 carbonate reservoir units...

Jagoe, Bryan Keith

2012-06-07T23:59:59.000Z

459

A Novel Approach For the Simulation of Multiple Flow Mechanisms and Porosities in Shale Gas Reservoirs  

E-Print Network [OSTI]

The state of the art of modeling fluid flow in shale gas reservoirs is dominated by dual porosity models that divide the reservoirs into matrix blocks that significantly contribute to fluid storage and fracture networks which principally control...

Yan, Bicheng

2013-07-15T23:59:59.000Z

460

Improved Oil Recovery in Mississippian Carbonate Reservoirs of Kansas - Near-Term, Class II  

SciTech Connect (OSTI)

The focus of this project was development and demonstration of cost-effective reservoir description and management technologies to extend the economic life of mature reservoirs in Kansas and the mid-continent.

Carr, Timothy R.; Green, Don W.; Willhite, G. Paul

2001-10-30T23:59:59.000Z

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

High-Resolution Characterization of Reservoir Heterogeneity and Connectivity in Clastic Environments  

E-Print Network [OSTI]

This study developed new concepts and interpretative methods for mapping reservoir heterogeneity and connectivity of a fault controlled Wilcox clastic reservoir in Texas, USA. The application of high-resolution seismic enhancement in this study...

Hull, Thomas Frederick

2011-10-21T23:59:59.000Z

462

Rock Physics-Based Carbonate Reservoir Pore Type Evaluation by Combining Geological, Petrophysical and Seismic Data  

E-Print Network [OSTI]

model, similar to modern marine hydrological environments within carbonate islands. How to evaluate carbonate reservoir permeability heterogeneity from 3 D seismic data has been a dream for reservoir geoscientists, which is a key factor to optimize...

Dou, Qifeng

2012-07-16T23:59:59.000Z

463

Microbial risk assessment for recreational use of the Kranji Reservoir, Singapore  

E-Print Network [OSTI]

The Public Utilities Board of Singapore is responsible for management of the Kranji drinking water reservoir and wishes to open the reservoir for recreational water use as part of their "Active, Beautiful, and Clean Waters ...

Dixon, Cameron Chaffee

2009-01-01T23:59:59.000Z

464

Experimental Design in reservoir simulation: an integrated solution for uncertainty analysis, a case study  

Science Journals Connector (OSTI)

Quantification of uncertain parameters in oil reservoirs is one of the major issues of concern. In underdeveloped reservoirs, there are many uncertain parameters affecting production forecast which plays a mai...

Fatemeh Moeinikia; Nasser Alizadeh

2012-07-01T23:59:59.000Z

465

Impact of Reservoir Evaporation and Evaporation Suppression on Water Supply Capabilities  

E-Print Network [OSTI]

Reservoir storage is essential for developing dependable water supplies and is a major component of the river system water budget. The storage contents of reservoirs fluctuate greatly with variations in water use and climatic conditions that range...

Ayala, Rolando A

2013-04-01T23:59:59.000Z

466

Assessing Ecosystem Effects of Reservoir Operations Using Food WebEnergy Transfer and Water Quality Models  

Science Journals Connector (OSTI)

We investigated the effects on the reservoir food web of a new temperature control device (TCD) on the dam at Shasta Lake, California. We followed a linked modeling approach that used a specialized reservoir wate...

Laurel Saito; Brett M. Johnson; John Bartholow; R. Blair Hanna

2001-03-01T23:59:59.000Z

467

A comparison of Bayesian versus deterministic formulation for dynamic data integration into reservoir models  

E-Print Network [OSTI]

Into Reservoir Models. (Decmnber 200 I) Danny LL Rojas Paico, B. S. , Universidad Nacional de Ingenieria, Peru Chair of Advisory Committee: Dr. Akhil Datta-Gupta The integration of dynamic data into reservoir models is known as automatic history matching...

Rojas Paico, Danny H.

2001-01-01T23:59:59.000Z

468

Data quality enhancement in oil reservoir operations : an application of IPMAP  

E-Print Network [OSTI]

This thesis presents a study of data quality enhancement opportunities in upstream oil and gas industry. Information Product MAP (IPMAP) methodology is used in reservoir pressure and reservoir simulation data, to propose ...

Lin, Paul Hong-Yi

2012-01-01T23:59:59.000Z

469

FRAC-STIM: A Physics-Based Fracture Simulation, /reservoir Flow...  

Broader source: Energy.gov (indexed) [DOE]

FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat Transport Simulator(aka FALCON) FRAC-STIM: A Physics-Based Fracture Simulation, reservoir Flow and Heat...

470

Anomalously High Porosity and Permeability in Deeply Buried Sandstone Reservoirs: Origin and Predictability  

Science Journals Connector (OSTI)

...reservoirs, Bothamsall oilfield, E. Midlands: Journal...from Abu Dhabi and the Amu Darya basin: Marine and Petroleum...reservoirs, Bothamsall oilfield, E. Midlands: Journal...from Abu Dhabi and the Amu Darya basin: Marine and Petroleum...

Salman Bloch; Robert H. Lander; Linda Bonnell

471

Summary of Hot-Dry-Rock Geothermal Reservoir Testing 1978-1980...  

Open Energy Info (EERE)

fracturing, but also by heat extraction and thermal contraction effects. Reservoir heat- transfer area grew from 8000 to 50 000 m2 and reservoir fracture volume grew from 11...

472

Seismic characterization of reservoirs with variable fracture spacing by double focusing Gaussian beams  

E-Print Network [OSTI]

Fractured reservoirs account for a majority of the oil production worldwide and often have low recovery rate. Fracture characterization is important in building reservoir flow models for enhanced oil recovery. Information ...

Zheng, Yingcai

2013-01-01T23:59:59.000Z

473

Fractured reservoir discrete feature network technologies. Final report, March 7, 1996 to September 30, 1998  

SciTech Connect (OSTI)

This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.

Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta

1998-12-01T23:59:59.000Z

474

Layered Pseudo-Steady-State Models for tight commingled gas reservoirs  

E-Print Network [OSTI]

Fig. 5 - Typical Production Rate Performance for a Two-Layer Commingled Reservoir with constant p?& 18 Fig. 6 - Typical Average Reservoir Pressure Performance for Two-Layer Commingled Reservoirs 19 Fig. 7 - Fetkovich Decline Curves 21 Fig. 8... ? Matching Single-Layer Rate Decline With Fetkovich Curves 23 Fig. 9 - Matching a Two-Layer Commingled Reservoir With Fetkovich Curves 24 Fig. 10 - Schematic Flow Chart of the Layered PSS Program 29 Fig. 11 - Matching the Rate for Case b (Optimization...

El-Banbi, Ahmed

1995-01-01T23:59:59.000Z

475

Reservoir Simulation and Uncertainty Analysis of Enhanced CBM Production Using Artificial Neural Networks  

E-Print Network [OSTI]

Coalbed methane is becoming one of the major natural gas resources. CO2 injection into CBM reservoirs

Mohaghegh, Shahab

476

Ground motion modeling of Hayward fault scenario earthquakes II:Simulation of long-period and broadband ground motions  

SciTech Connect (OSTI)

We simulate long-period (T > 1.0-2.0 s) and broadband (T > 0.1 s) ground motions for 39 scenarios earthquakes (Mw 6.7-7.2) involving the Hayward, Calaveras, and Rodgers Creek faults. For rupture on the Hayward fault we consider the effects of creep on coseismic slip using two different approaches, both of which reduce the ground motions compared with neglecting the influence of creep. Nevertheless, the scenario earthquakes generate strong shaking throughout the San Francisco Bay area with about 50% of the urban area experiencing MMI VII or greater for the magnitude 7.0 scenario events. Long-period simulations of the 2007 Mw 4.18 Oakland and 2007 Mw 4.5 Alum Rock earthquakes show that the USGS Bay Area Velocity Model version 08.3.0 permits simulation of the amplitude and duration of shaking throughout the San Francisco Bay area, with the greatest accuracy in the Santa Clara Valley (San Jose area). The ground motions exhibit a strong sensitivity to the rupture length (or magnitude), hypocenter (or rupture directivity), and slip distribution. The ground motions display a much weaker sensitivity to the rise time and rupture speed. Peak velocities, peak accelerations, and spectral accelerations from the synthetic broadband ground motions are, on average, slightly higher than the Next Generation Attenuation (NGA) ground-motion prediction equations. We attribute at least some of this difference to the relatively narrow width of the Hayward fault ruptures. The simulations suggest that the Spudich and Chiou (2008) directivity corrections to the NGA relations could be improved by including a dependence on the rupture speed and increasing the areal extent of rupture directivity with period. The simulations also indicate that the NGA relations may under-predict amplification in shallow sedimentary basins.

Aagaard, B T; Graves, R W; Rodgers, A; Brocher, T M; Simpson, R W; Dreger, D; Petersson, N A; Larsen, S C; Ma, S; Jachens, R C

2009-11-04T23:59:59.000Z

477

Electrochromically switched, gas-reservoir metal hydride devices with  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrochromically switched, gas-reservoir metal hydride devices with Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Title Electrochromically switched, gas-reservoir metal hydride devices with application to energy-efficient windows Publication Type Journal Article LBNL Report Number LBNL-1089E Year of Publication 2008 Authors Anders, André, Jonathan L. Slack, and Thomas J. Richardson Journal Thin Solid Films Volume 1 Date Published 08/2003 Call Number LBNL-1089E Abstract Proof-of-principle gas-reservoir MnNiMg electrochromic mirror devices have been investigated. In contrast to conventional electrochromic approaches, hydrogen is stored (at low concentration) in the gas volume between glass panes of the insulated glass units (IGUs). The elimination of a solid state ion storage layer simplifies the layer stack, enhances overall transmission, and reduces cost. The cyclic switching properties were demonstrated and system durability improved with the incorporation a thin Zr barrier layer between the MnNiMg layer and the Pd catalyst. Addition of 9% silver to the palladium catalyst further improved system durability. About 100 full cycles have been demonstrated before devices slow considerably. Degradation of device performance appears to be related to Pd catalyst mobility, rather than delamination or metal layer oxidation issues originally presumed likely to present significant challenges.

478

Property:EstReservoirVol | Open Energy Information  

Open Energy Info (EERE)

EstReservoirVol EstReservoirVol Jump to: navigation, search Property Name EstReservoirVol Property Type Quantity Description Mean estimated reservoir volume at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this type to express a quantity of three-dimensional space. The default unit is the cubic meter (m³). Acceptable units (and their conversions) are: Cubic Meters - 1 m³,m3,m^3,cubic meter,cubic meters,Cubic Meter,Cubic Meters,CUBIC METERS Cubic Kilometers - 0.000000001 km³,km3,km^3,cubic kilometer,cubic kilometers,cubic km,Cubic Kilometers,CUBIC KILOMETERS Cubic Miles - 0.000000000239912759 mi³,mi3,mi^3,mile³,cubic mile,cubic miles,cubic mi,Cubic Miles,CUBIC MILES Cubic Feet - 35.314666721 ft³,ft3,ft^3,cubic feet,cubic foot,FT³,FT3,FT^3,Cubic Feet, Cubic Foot

479

Solutions for vertically fractured injection wells in heterogeneous reservoirs  

E-Print Network [OSTI]

be found in the studies of Lefkovits, et al. 7, Cobb, er a!. 8 Tariq9, and Larsento. The current trend in studying layered reservoirs is the generalization of the solution procedure to account for as many different layer parameters as possible. Ehlig...

Spath, Jeffrey Bernard

2012-06-07T23:59:59.000Z

480

Petro-electric modeling for CSEM reservoir characterization and monitoring  

E-Print Network [OSTI]

for Geophysics, Austin, Texas, USA. Presently BP North America Inc., Reservoir Geophysics R&D, Houston, Texas and recorded by ocean bottom EM receivers. Successful applications are documented in several studies (e authors in the literature. Wright et al. (2002) present time-lapse transient EM sur- veys over a shallow

Key, Kerry

Note: This page contains sample records for the topic "under ground reservoirs" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.