National Library of Energy BETA

Sample records for unconventional gas resources

  1. Unconventional Oil and Gas Resources

    SciTech Connect (OSTI)

    2006-09-15

    World oil use is projected to grow to 98 million b/d in 2015 and 118 million b/d in 2030. Total world natural gas consumption is projected to rise to 134 Tcf in 2015 and 182 Tcf in 2030. In an era of declining production and increasing demand, economically producing oil and gas from unconventional sources is a key challenge to maintaining global economic growth. Some unconventional hydrocarbon sources are already being developed, including gas shales, tight gas sands, heavy oil, oil sands, and coal bed methane. Roughly 20 years ago, gas production from tight sands, shales, and coals was considered uneconomic. Today, these resources provide 25% of the U.S. gas supply and that number is likely to increase. Venezuela has over 300 billion barrels of unproven extra-heavy oil reserves which would give it the largest reserves of any country in the world. It is currently producing over 550,000 b/d of heavy oil. Unconventional oil is also being produced in Canada from the Athabasca oil sands. 1.6 trillion barrels of oil are locked in the sands of which 175 billion barrels are proven reserves that can be recovered using current technology. Production from 29 companies now operating there exceeds 1 million barrels per day. The report provides an overview of continuous petroleum sources and gives a concise overview of the current status of varying types of unconventional oil and gas resources. Topics covered in the report include: an overview of the history of Oil and Natural Gas; an analysis of the Oil and Natural Gas industries, including current and future production, consumption, and reserves; a detailed description of the different types of unconventional oil and gas resources; an analysis of the key business factors that are driving the increased interest in unconventional resources; an analysis of the barriers that are hindering the development of unconventional resources; profiles of key producing regions; and, profiles of key unconventional oil and gas producers.

  2. Unconventional gas outlook: resources, economics, and technologies

    SciTech Connect (OSTI)

    Drazga, B.

    2006-08-15

    The report explains the current and potential of the unconventional gas market including country profiles, major project case studies, and new technology research. It identifies the major players in the market and reports their current and forecasted projects, as well as current volume and anticipated output for specific projects. Contents are: Overview of unconventional gas; Global natural gas market; Drivers of unconventional gas sources; Forecast; Types of unconventional gas; Major producing regions Overall market trends; Production technology research; Economics of unconventional gas production; Barriers and challenges; Key regions: Australia, Canada, China, Russia, Ukraine, United Kingdom, United States; Major Projects; Industry Initiatives; Major players. Uneconomic or marginally economic resources such as tight (low permeability) sandstones, shale gas, and coalbed methane are considered unconventional. However, due to continued research and favorable gas prices, many previously uneconomic or marginally economic gas resources are now economically viable, and may not be considered unconventional by some companies. Unconventional gas resources are geologically distinct in that conventional gas resources are buoyancy-driven deposits, occurring as discrete accumulations in structural or stratigraphic traps, whereas unconventional gas resources are generally not buoyancy-driven deposits. The unconventional natural gas category (CAM, gas shales, tight sands, and landfill) is expected to continue at double-digit growth levels in the near term. Until 2008, demand for unconventional natural gas is likely to increase at an AAR corresponding to 10.7% from 2003, aided by prioritized research and development efforts. 1 app.

  3. Projects Selected to Boost Unconventional Oil and Gas Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources September 27, 2010 - 1:00pm Addthis Washington, DC - Ten ...

  4. Research Portfolio Report Unconventional Oil & Gas Resources:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subsurface Geology and Engineering Cover image: "Fragments below exposure of fissile Marcellus black shale at Marcellus, N.Y." by Lvklock is licensed under CC by SA-3.0. Research Portfolio Report Unconventional Oil & Gas Resources: Subsurface Geology and Engineering DOE/NETL-2015/1691 Prepared by: Velda Frisco, Mari Nichols-Haining, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract

  5. Unconventional Resources Technology Advisory Committee | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research...

  6. Unconventional Resources Technology Advisory Committee | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. Mission The Secretary of Energy, in response to provisions of

  7. Development of an Improved Methodology to Assess Potential Unconventional Gas Resources

    SciTech Connect (OSTI)

    Salazar, Jesus; McVay, Duane A. Lee, W. John

    2010-12-15

    Considering the important role played today by unconventional gas resources in North America and their enormous potential for the future around the world, it is vital to both policy makers and industry that the volumes of these resources and the impact of technology on these resources be assessed. To provide for optimal decision making regarding energy policy, research funding, and resource development, it is necessary to reliably quantify the uncertainty in these resource assessments. Since the 1970s, studies to assess potential unconventional gas resources have been conducted by various private and governmental agencies, the most rigorous of which was by the United States Geological Survey (USGS). The USGS employed a cell-based, probabilistic methodology which used analytical equations to calculate distributions of the resources assessed. USGS assessments have generally produced distributions for potential unconventional gas resources that, in our judgment, are unrealistically narrow for what are essentially undiscovered, untested resources. In this article, we present an improved methodology to assess potential unconventional gas resources. Our methodology is a stochastic approach that includes Monte Carlo simulation and correlation between input variables. Application of the improved methodology to the Uinta-Piceance province of Utah and Colorado with USGS data validates the means and standard deviations of resource distributions produced by the USGS methodology, but reveals that these distributions are not right skewed, as expected for a natural resource. Our investigation indicates that the unrealistic shape and width of the gas resource distributions are caused by the use of narrow triangular input parameter distributions. The stochastic methodology proposed here is more versatile and robust than the USGS analytic methodology. Adoption of the methodology, along with a careful examination and revision of input distributions, should allow a more realistic assessment of the uncertainty surrounding potential unconventional gas resources.

  8. Unconventional Energy Resources: 2013 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists, Energy Minerals Division

    2013-11-30

    This report contains nine unconventional energy resource commodity summaries and an analysis of energy economics prepared by committees of the Energy Minerals Division of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight-gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and U and Th resources and associated rare earth elements of industrial interest. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report.

  9. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...

    Office of Environmental Management (EM)

    Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The...

  10. Unconventional Energy Resources: 2011 Review

    SciTech Connect (OSTI)

    Collaboration: American Association of Petroleum Geologists

    2011-12-15

    This report contains nine unconventional energy resource commodity summaries prepared by committees of the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and uranium resources. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report. Coal and uranium are expected to supply a significant portion of the world's energy mix in coming years. Coalbed methane continues to supply about 9% of the U.S. gas production and exploration is expanding in other countries. Recently, natural gas produced from shale and low-permeability (tight) sandstone has made a significant contribution to the energy supply of the United States and is an increasing target for exploration around the world. In addition, oil from shale and heavy oil from sandstone are a new exploration focus in many areas (including the Green River area of Wyoming and northern Alberta). In recent years, research in the areas of geothermal energy sources and gas hydrates has continued to advance. Reviews of the current research and the stages of development of these unconventional energy resources are described in the various sections of this report.

  11. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect (OSTI)

    Russell E. Fray

    2007-05-31

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Significant progress has been made in establishing the program administration policies, procedures, and strategic foundation for future research awards. RPSEA has concluded an industry-wide collaborative effort to identify focus areas for research awards under this program. This effort is summarized in the RPSEA Draft Annual Plan, which is currently under review by committees established by the Secretary of Energy.

  12. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources

    SciTech Connect (OSTI)

    Russell E. Fray

    2007-06-30

    RPSEA is currently in its first year of performance under contract DE-AC26-07NT42677, Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Administration. Progress continues to be made in establishing the program administration policies, procedures, and strategic foundation for future research awards. Significant progress was made in development of the draft program solicitations. In addition, RPSEA personnel continued an aggressive program of outreach to engage the industry and ensure wide industry participation in the research award solicitation process.

  13. DEPARTMENT OF ENERGY CHARTER UNCONVENTIONAL RESOURCES TECHNOLOGY...

    Broader source: Energy.gov (indexed) [DOE]

    the Energy Policy Act of 2005, Publi I No. 109-58, related to unconventional natural gas and other petroleum resources and (B) provide to the Secretary written comments...

  14. Unconventional gas: truly a game changer?

    SciTech Connect (OSTI)

    2009-08-15

    If prices of natural gas justify and/or if concerns about climate change push conventional coal off the table, vast quantities of unconventional gas can be brought to market at reasonable prices. According to a report issued by PFC Energy, global unconventional natural gas resources that may be ultimately exploited with new technologies could be as much as 3,250,000 billion cubic feet. Current conventional natural gas resources are estimated around 620,000 billion cubic feet.

  15. Unconventional Energy Resources: 2007-2008 Review

    SciTech Connect (OSTI)

    2009-06-15

    This paper summarizes five 2007-2008 resource commodity committee reports prepared by the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Current United States and global research and development activities related to gas hydrates, gas shales, geothermal resources, oil sands, and uranium resources are included in this review. These commodity reports were written to advise EMD leadership and membership of the current status of research and development of unconventional energy resources. Unconventional energy resources are defined as those resources other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks. Gas hydrate resources are potentially enormous; however, production technologies are still under development. Gas shale, geothermal, oil sand, and uranium resources are now increasing targets of exploration and development, and are rapidly becoming important energy resources that will continue to be developed in the future.

  16. Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)

    SciTech Connect (OSTI)

    Paul Glavinovich

    2002-11-01

    Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

  17. Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Program | Department of Energy Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a public/private partnership valued at $400 million over eight years that is designed to benefit consumers by developing

  18. Unconventional Resources Technology Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Unconventional Resources Technology Advisory Committee Comments and Recommendations 2014 Annual Plan November 2013 Attachment 3 2 TABLE OF CONTENTS 1.0 INTRODUCTION..............................................................................................................3 2.0 EXECUTIVE SUMMARY AND RECOMMENDATION HIGHLIGHTS .................5 3.0 TOPICAL REPORTS .......................................................................................................7 3.1 POLICY FINDINGS AND

  19. Unconventional Resources Technology Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Unconventional Resources Technology Advisory Committee Comments and Recommendations 2014 Annual Plan December 2013 2 TABLE OF CONTENTS 1.0 INTRODUCTION..............................................................................................................3 2.0 EXECUTIVE SUMMARY AND RECOMMENDATION HIGHLIGHTS .................5 3.0 TOPICAL REPORTS .......................................................................................................7 3.1 POLICY FINDINGS AND

  20. Unconventional Oil and Gas Projects Help Reduce Environmental Impact of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development | Department of Energy Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17, 2014 - 11:30am Addthis Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Since the first commercial oil well was drilled in the United States in 1859, most of the nation's oil and natural gas has come from reservoirs from which the resources are

  1. Progress Report SEAB Recommendations on Unconventional Resource

    Energy Savers [EERE]

    | P a g e Progress Report SEAB Recommendations on Unconventional Resource Development Introduction Recent Secretary of Energy Advisory Board (SEAB) reports provide important frames of reference for stimulating actions that can ensure the development of U.S. oil and natural gas is safe and environmentally responsible. This overview outlines near term actions being taken by the U.S. Department of Energy (DOE) in response to the SEAB's March 2014 report on FracFocus 2.0, and also highlights

  2. How unconventional gas prospers without tax incentives

    SciTech Connect (OSTI)

    Kuuskraa, V.A.; Stevens, S.H.

    1995-12-11

    It was widely believed that the development of unconventional natural gas (coalbed methane, gas shales, and tight gas) would die once US Sec. 29 credits stopped. Quieter voices countered, and hoped, that technology advances would keep these large but difficult to produce gas resources alive and maybe even healthy. Sec. 29 tax credits for new unconventional gas development stopped at the end of 1992. Now, nearly three years later, who was right and what has happened? There is no doubt that Sec. 29 tax credits stimulated the development of coalbed methane, gas shales, and tight gas. What is less known is that the tax credits helped spawn and push into use an entire new set of exploration, completion, and production technologies founded on improved understanding of unconventional gas reservoirs. As set forth below, while the incentives inherent in Sec. 29 provided the spark, it has been the base of science and technology that has maintained the vitality of these gas sources. The paper discusses the current status; resource development; technology; unusual production, proven reserves, and well completions if coalbed methane, gas shales, and tight gas; and international aspects.

  3. Unconventional gas recovery: state of knowledge document

    SciTech Connect (OSTI)

    Geffen, C.A.

    1982-01-01

    This report is a synthesis of environmental data and information relevant to the four areas of unconventional gas recovery (UGR) resource recovery: methane from coal, tight western sands, Devonian shales and geopressurized aquifers. Where appropriate, it provides details of work reviewed; while in other cases, it refers the reader to relevant sources of information. This report consists of three main sections, 2, 3, and 4. Section 2 describes the energy resource base involved and characteristics of the technology and introduces the environmental concerns of implementing the technology. Section 3 reviews the concerns related to unconventional gas recovery systems which are of significance to the environment. The potential health and safety concerns of the recovery of natural gas from these resources are outlined in Section 4.

  4. A Methodology for the Assessment of Unconventional (Continuous) Resources with an Application to the Greater Natural Buttes Gas Field, Utah

    SciTech Connect (OSTI)

    Olea, Ricardo A.; Cook, Troy A.; Coleman, James L.

    2010-12-15

    The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of the main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes. A second approach illustrates the application of multiple-point simulation to assess a hypothetical frontier area for which there is no production information but which is regarded as being similar to Greater Natural Buttes.

  5. Unconventional Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 4.2.1.1 Shale Gas Drilling and Fracturing Fluids ......86 4.2.1.2 Coalbed Methane Drilling and Fracturing ...

  6. Unconventional Oil and Gas Projects Help Reduce Environmental...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17, ...

  7. Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research

    Broader source: Energy.gov [DOE]

    Three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation’s abundant unconventional natural gas and oil resources.

  8. Global Unconventional Gas Market | OpenEI Community

    Open Energy Info (EERE)

    Global Unconventional Gas Market Home There are currently no posts in this category. Syndicate content...

  9. 2013 Unconventional Oil and Gas Project Selections

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory...

  10. Unconventional Resources Technology Advisory Committee

    Energy Savers [EERE]

    of members who are employees or representatives of Independent Producers of natural gas and other petroleum, including small producers; Individuals with extensive research...

  11. Microsoft Word - Unconventional Resources Tech Adv Committee - signed

    Office of Environmental Management (EM)

    UNCONVENTIONAL RESOURCES TECHNOLOGY ADVISORY COMMITTEE U.S. DEPARTMENT OF ENERGY Advisory Committee Charter 1. Committee's Official Designation. Unconventional Resources Technical Advisory Committee (URTAC). 2. Authority. This charter establishes the Unconventional Resources Technical Advisory Committee (URTAC) pursuant to Section 999 of the Energy Policy Act of 2005, Public Law 109-58. The URTAC is being renewed in accordance with the provisions of the Federal Advisory Committee Act (FACA), as

  12. National Strategic Unconventional Resource Model | Department of Energy

    Office of Environmental Management (EM)

    National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model This is the second revision to the National Strategic Unconventional Resources Model that was developed in 2005-2006 to support the Task Force mandated by Congress in subsection 369(h) of the Energy Policy Act of 2005. The primary function of the first Model was to evaluate varying economic scenarios for four technologies: Surface Mining, Underground Mining, Modified In-Situ, and True In-Situ. In

  13. 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Petroleum Resources Research and Development Program | Department of Energy 7 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Annual report on ultra-deepwater, etc. natural gas research program required by Energy Policy Act of 2005, Subtitle J, Section 999 PDF icon 2007

  14. Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research

    Broader source: Energy.gov [DOE]

    Today, three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation’s abundant unconventional natural gas and oil resources.

  15. unconventional-resources | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to be economical to develop. Other heavy oil producing formations are Ugnu, Tabasco, Orion, and Polaris. Unconventional Sources Development of advanced enhanced oil recovery...

  16. Innovative Technology Improves Upgrading Process for Unconventional Oil Resources

    Broader source: Energy.gov [DOE]

    An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy-funded project.

  17. Annual Report: Unconventional Fossil Energy Resource Program (30 September

    Office of Scientific and Technical Information (OSTI)

    2013) (Technical Report) | SciTech Connect Unconventional Fossil Energy Resource Program (30 September 2013) Citation Details In-Document Search Title: Annual Report: Unconventional Fossil Energy Resource Program (30 September 2013) Yee Soong, Technical Coordinator, George Guthrie, Focus Area Lead, UFER Annual Report, NETL-TRS-UFER-2013, NETL Technical Report Series, U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA, 2013, p 14. Authors: Soong, Yee ; Guthrie,

  18. Expert system technology for natural gas resource development

    SciTech Connect (OSTI)

    Munro, R.G.

    1997-12-31

    Materials data are used in all aspects of the development of natural gas resources. Unconventional gas resources require special attention in their development and may benefit from heuristic assessments of the materials data, geological site conditions, and the knowledge base accumulated from previous unconventional site developments. Opportunities for using expert systems in the development of unconventional natural gas resources are discussed. A brief introduction to expert systems is provided in a context that emphasizes the practical nature of their service. The discussion then focuses on the development of unconventional gas reserves. Whenever possible, the likelihood of success in constructing useful expert systems for gas resource development is indicated by comparisons to existing expert systems that perform comparable functions in other industries. Significant opportunities are found for applications to site assessment, the interpretation of well log data, and the monitoring and optimization of gas processing in small-scale recovery operations.

  19. Preparation of environmental analyses for synfuel and unconventional gas technologies

    SciTech Connect (OSTI)

    Reed, R.M.

    1982-09-01

    Government agencies that offer financial incentives to stimulate the commercialization of synfuel and unconventional gas technologies usually require an analysis of environmental impacts resulting from proposed projects. This report reviews potentially significant environmental issues associated with a selection of these technologies and presents guidance for developing information and preparing analyses to address these issues. The technologies considered are western oil shale, tar sand, coal liquefaction and gasification, peat, unconventional gas (western tight gas sands, eastern Devonian gas shales, methane from coal seams, and methane from geopressured aquifers), and fuel ethanol. Potentially significant issues are discussed under the general categories of land use, air quality, water use, water quality, biota, solid waste disposal, socioeconomics, and health and safety. The guidance provided in this report can be applied to preparation and/or review of proposals, environmental reports, environmental assessments, environmental impact statements, and other types of environmental analyses. The amount of detail required for any issue discussed must, by necessity, be determined on a case-by-case basis.

  20. Unconventional Energy Resources and Geospatial Information: 2006 Review

    SciTech Connect (OSTI)

    2007-09-15

    This article contains a brief summary of some of the 2006 annual committee reports presented to the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. The purpose of the reports is to advise EMD leadership and members of the current status of research and developments of energy resources (other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks), energy economics, and geospatial information. This summary presented here by the EMD is a service to the general geologic community. Included in this summary are reviews of the current research and activities related to coal, coalbed methane, gas hydrates, gas shales, geospatial information technology related to energy resources, geothermal resources, oil sands, and uranium resources.

  1. Research Portfolio Report Unconventional Oil & Gas Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    apparatus, product, or process disclosed; or represents ... report, including Karl Lang of Leonardo Technologies, Inc. ... materials (NORMS); vortex-gener- ating and ...

  2. Research Portfolio Report Unconventional Oil & Gas Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In-field data collection for hydraulic fracturing and drilling equipment is on- going. The team recently completed emissions and fuel efficien- cy testing with Baker-Hughes at ...

  3. NETL: Natural Gas Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Natural Gas Resources Useful for heating, manufacturing, and as chemical feedstock, natural gas has the added benefit of producing fewer greenhouse gas emissions than other fossil...

  4. Impacts of Unconventional Gas Technology in the Annual Energy Outlook 2000

    Reports and Publications (EIA)

    2000-01-01

    This paper describes the methodology used in the National Energy Modeling System (NEMS) to represent unconventional gas technologies and their impacts on projections in the Annual Energy Outlook 2000 (AEO2000).

  5. Advanced Hydraulic Fracturing Technology for Unconventional Tight Gas Reservoirs

    SciTech Connect (OSTI)

    Stephen Holditch; A. Daniel Hill; D. Zhu

    2007-06-19

    The objectives of this project are to develop and test new techniques for creating extensive, conductive hydraulic fractures in unconventional tight gas reservoirs by statistically assessing the productivity achieved in hundreds of field treatments with a variety of current fracturing practices ranging from 'water fracs' to conventional gel fracture treatments; by laboratory measurements of the conductivity created with high rate proppant fracturing using an entirely new conductivity test - the 'dynamic fracture conductivity test'; and by developing design models to implement the optimal fracture treatments determined from the field assessment and the laboratory measurements. One of the tasks of this project is to create an 'advisor' or expert system for completion, production and stimulation of tight gas reservoirs. A central part of this study is an extensive survey of the productivity of hundreds of tight gas wells that have been hydraulically fractured. We have been doing an extensive literature search of the SPE eLibrary, DOE, Gas Technology Institute (GTI), Bureau of Economic Geology and IHS Energy, for publicly available technical reports about procedures of drilling, completion and production of the tight gas wells. We have downloaded numerous papers and read and summarized the information to build a database that will contain field treatment data, organized by geographic location, and hydraulic fracture treatment design data, organized by the treatment type. We have conducted experimental study on 'dynamic fracture conductivity' created when proppant slurries are pumped into hydraulic fractures in tight gas sands. Unlike conventional fracture conductivity tests in which proppant is loaded into the fracture artificially; we pump proppant/frac fluid slurries into a fracture cell, dynamically placing the proppant just as it occurs in the field. From such tests, we expect to gain new insights into some of the critical issues in tight gas fracturing, in particular the roles of gel damage, polymer loading (water-frac versus gel frac), and proppant concentration on the created fracture conductivity. To achieve this objective, we have designed the experimental apparatus to conduct the dynamic fracture conductivity tests. The experimental apparatus has been built and some preliminary tests have been conducted to test the apparatus.

  6. Unconventional interaction between vortices in a polarized Fermi gas

    SciTech Connect (OSTI)

    Stojanovic, Vladimir M.; Vincent Liu, W. Kim, Yong Baek

    2008-04-15

    Recently, a homogeneous superfluid state with a single gapless Fermi surface was predicted to be the ground state of an ultracold Fermi gas with spin population imbalance in the regime of molecular Bose-Einstein condensation. We study vortices in this novel state using a symmetry-based effective field theory, which captures the low-energy physics of gapless fermions and superfluid phase fluctuations. This theory is applicable to all spin-imbalanced ultracold Fermi gases in the superfluid regime, regardless of whether the original fermion-pairing interaction is weak or strong. We find a remarkable, unconventional form of the interaction between vortices. The presence of gapless fermions gives rise to a spatially oscillating potential, akin to the RKKY indirect-exchange interaction in non-magnetic metals. We compare the parameters of the effective theory to the experimentally measurable quantities and further discuss the conditions for the verification of the predicted new feature. Our study opens up an interesting question as to the nature of the vortex lattice resulting from the competition between the usual repulsive logarithmic (2D Coulomb) and predominantly attractive fermion-induced interactions.

  7. Unconventional gas recovery program. Semi-annual report for the period ending September 30, 1979

    SciTech Connect (OSTI)

    Manilla, R.D.

    1980-04-01

    This document is the third semi-annual report describing the technical progress of the US DOE projects directed at gas recovery from unconventional sources. Currently the program includes Methane Recovery from Coalbeds Project, Eastern Gas Shales Project, Western Gas Sands Project, and Geopressured Aquifers Project.

  8. Unconventional gas hydrate seals may trap gas off southeast US. [North Carolina, South Carolina

    SciTech Connect (OSTI)

    Dillion, W.P.; Grow, J.A.; Paull, C.K.

    1980-01-07

    Seismic profiles have indicated to the US Geological Survey that an unconventional seal, created by gas hydrates that form in near-bottom sediments, may provide gas traps in continental slopes and rises offshore North and South Carolina. The most frequently cited evidence for the presence of gas hydrate in ocean sediments is the observation of a seismic reflection event that occurs about 1/2 s below and parallel with the seafloor. If gas-hydrate traps do exist, they will occur at very shallow sub-bottom depths of about 1600 ft (500m). Exploration of such traps will probably take place in the federally controlled Blake Ridge area off the coast of South Carolina where seismic data suggest a high incidence of gas hydrates. However, drilling through the gas-hydrate-cemented layer may require new engineering techniques for sealing the casing.

  9. A review of water and greenhouse gas impacts of unconventional natural gas development in the United States

    SciTech Connect (OSTI)

    Arent, Doug; Logan, Jeff; Macknick, Jordan; Boyd, William; Medlock , Kenneth; O'Sullivan, Francis; Edmonds, James A.; Clarke, Leon E.; Huntington, Hill; Heath, Garvin; Statwick, Patricia M.; Bazilian, Morgan

    2015-01-01

    This paper reviews recent developments in the production and use of unconventional natural gas in the United States with a focus on water and greenhouse gas emission implications. If unconventional natural gas in the U.S. is produced responsibly, transported and distributed with little leakage, and incorporated into integrated energy systems that are designed for future resiliency, it could play a significant role in realizing a more sustainable energy future; however, the increased use of natural gas as a substitute for more carbon intensive fuels will alone not substantially alter world carbon dioxide concentration projections.

  10. Unconventional Gas Market Study 2018 | OpenEI Community

    Open Energy Info (EERE)

    technical recoverable shale gas reserves, but currently does not hold any shale gas production. However, the growth is expected to commence by 2015. Growth of Shale Gas, Tight...

  11. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  12. Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository

    SciTech Connect (OSTI)

    Smith, M.W.; Shadle, L.J.; Hill, D.

    2007-01-01

    The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

  13. Obama Administration Announces New Partnership on Unconventional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research April 13, 2012 - 3:01pm Addthis ...

  14. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to...

  15. Deepwater Oil & Gas Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deepwater Oil & Gas Resources Deepwater Oil & Gas Resources The United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to ...

  16. Unconventional Lasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unconventional Lasing - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  17. Semi-annual report for the unconventional gas recovery program, period ending September 30, 1980

    SciTech Connect (OSTI)

    Manilla, R.D.

    1980-11-01

    Progress is reported in research on methane recovery from coalbeds, eastern gas shales, western gas sands, and geopressured aquifers. In the methane from coalbeds project, data on information evaluation and management, resource and site assessment and characterization, model development, instrumentation, basic research, and production technology development are reported. In the methane from eastern gas shales project, data on resource characterization and inventory, extraction technology, and technology testing and verification are presented. In the western gas sands project, data on resource assessments, field tests and demonstrations and project management are reported. In the methane from geopressured aquifers project, data on resource assessment, supporting research, field tests and demonstrations, and technology transfer are reported.

  18. Reservoir Engineering for Unconventional Gas Reservoirs: What Do We Have to Consider?

    SciTech Connect (OSTI)

    Clarkson, Christopher R

    2011-01-01

    The reservoir engineer involved in the development of unconventional gas reservoirs (UGRs) is required to integrate a vast amount of data from disparate sources, and to be familiar with the data collection and assessment. There has been a rapid evolution of technology used to characterize UGR reservoir and hydraulic fracture properties, and there currently are few standardized procedures to be used as guidance. Therefore, more than ever, the reservoir engineer is required to question data sources and have an intimate knowledge of evaluation procedures. We propose a workflow for the optimization of UGR field development to guide discussion of the reservoir engineer's role in the process. Critical issues related to reservoir sample and log analysis, rate-transient and production data analysis, hydraulic and reservoir modeling and economic analysis are raised. Further, we have provided illustrations of each step of the workflow using tight gas examples. Our intent is to provide some guidance for best practices. In addition to reviewing existing methods for reservoir characterization, we introduce new methods for measuring pore size distribution (small-angle neutron scattering), evaluating core-scale heterogeneity, log-core calibration, evaluating core/log data trends to assist with scale-up of core data, and modeling flow-back of reservoir fluids immediately after well stimulation. Our focus in this manuscript is on tight and shale gas reservoirs; reservoir characterization methods for coalbed methane reservoirs have recently been discussed.

  19. 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...

    Energy Savers [EERE]

    2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and...

  20. Annual Report: EPAct Complementary Program's Ultra-Deepwater R&D Portfolio and Unconventional Resources R&D Portfolio (30 September 2012)

    SciTech Connect (OSTI)

    none,; Rose, Kelly; Hakala, Alexandra; Guthrie, George

    2012-09-30

    This report summarizes FY13 research activities performed by the National Energy Technology Laboratory (NETL), Office of Research and Development (ORD), along with its partners in the Regional University Alliance (RUA) to fulfill research needs under the Energy Policy Act of 2005 (EPAct) Section 999ïżœs Complementary Program. Title IX, Subtitle J, Section 999A(d) of EPAct 2005 authorizes $50 million per year of federal oil and gas royalties, rents and bonus payments for an oil and natural gas research and development effort, the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program. Section 999 further prescribes four program elements for the effort, one of which is the Complementary Research Program that is to be performed by NETL. This document lays out the plan for the research portfolio for the Complementary Research Program, with an emphasis on the 2013 funding. The Complementary Program consists of two research portfolios focused on domestic resources: (1) the Deepwater and Ultra-Deepwater Portfolio (UDW) (focused on hydrocarbons in reservoirs in extreme environments) and (2) the Unconventional Resources Portfolio (UCR) (focused on hydrocarbons in shale reservoirs). These two portfolios address the science base that enables these domestic resources to be produced responsibly, informing both regulators and operators. NETL is relying on a core Department of Energy-National Energy Technology Laboratory (DOE-NETL) competency in engineered-natural systems to develop this science base, allowing leveraging of decades of investment. NETLïżœs Complementary Research Program research portfolios support the development of unbiased research and information for policymakers and the public, performing rapid predictions of possible outcomes associated with unexpected events, and carrying out quantitative assessments for energy policy stakeholders that accurately integrate the risks of safety and environmental impacts. The objective of this body of work is to build the scientific understanding and assessment tools necessary to develop the confidence that key domestic oil and gas resources can be produced safely and in an environmentally sustainable way. For the Deepwater and Ultra-Deepwater Portfolio, the general objective is to develop a scientific base for predicting and quantifying potential risks associated with exploration and production in extreme offshore environments. This includes: (1) using experimental studies to improve understanding of key parameters (e.g., properties and behavior of materials) tied to loss-of-control events in deepwater settings, (2) compiling data on spatial variability for key properties used to characterize and simulate the natural and engineered components involved in extreme offshore settings, and (3) utilizing findings from (1) and (2) in conjunction with integrated assessment models to model worst-case scenarios, as well as assessments of most likely scenarios relative to potential risks associated with flow assurance and loss of control. This portfolio and approach is responsive to key Federal-scale initiatives including the Ocean Energy Safety Advisory Committee (OESC). In particular, the findings and recommendations of the OESCïżœs Spill Prevention Subcommittee are addressed by aspects of the Complementary Program research. The Deepwater and Ultra-Deepwater Portfolio is also aligned with some of the goals of the United States- Department of the Interior (US-DOI) led Alaska Interagency Working Group (AIWG) which brings together state, federal, and tribal government personnel in relation to energy-related issues and needs in the Alaskan Arctic. For the Unconventional Fossil Resources Portfolio, the general objective is to develop a sufficient scientific base for predicting and quantifying potential risks associated with the oil/gas resources in shale reservoirs that require hydraulic fracturing and/or other engineering measures to produce. The major areas of focus include: (1) improving predictions of fugitive methane and greenhouse gas emissions, (2) predicting the composition and volume of waters produced during shale gas development, (3) predicting subsurface fluid and gas migration, and (4) predicting subsurface phenomena (e.g., geophysical and geomechanical responses) using the application of field measurements and observations. The portfolio is building a general understanding of: (1) spatial variations in reservoir properties that impact risk, (2) wellbore integrity (particularly for pre-existing wellbores), (3) fracture propagation dynamics, (4) groundwater geochemistry and hydrogeology, and (5) air quality. This portfolio and approach is responsive to key Federal-scale initiatives including the Multi-Agency Collaboration on Unconventional Oil and Gas Research.

  1. Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.

    2008-11-18

    This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

  2. Primer on gas integrated resource planning

    SciTech Connect (OSTI)

    Goldman, C.; Comnes, G.A.; Busch, J.; Wiel, S.

    1993-12-01

    This report discusses the following topics: gas resource planning: need for IRP; gas integrated resource planning: methods and models; supply and capacity planning for gas utilities; methods for estimating gas avoided costs; economic analysis of gas utility DSM programs: benefit-cost tests; gas DSM technologies and programs; end-use fuel substitution; and financial aspects of gas demand-side management programs.

  3. Semi-annual report for the unconventional gas recovery program, period ending March 31, 1980

    SciTech Connect (OSTI)

    Manilla, R.D.

    1980-06-01

    Four subprograms are reported on: methane recovery from coalbeds, Eastern gas shales, Western gas sands, and methane from geopressured aquifers. (DLC)

  4. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Tight Western Sands

    SciTech Connect (OSTI)

    Riedel, E.F.; Cowan, C.E.; McLaughlin, T.J.

    1980-02-01

    Results of a study to identify and evaluate potential public health and safety problems and the potential environmental impacts from recovery of natural gas from Tight Western Sands are reported. A brief discussion of economic and technical constraints to development of this resource is also presented to place the environmental and safety issues in perspective. A description of the resource base, recovery techniques, and possible environmental effects associated with tight gas sands is presented.

  5. RESOURCE CHARACTERIZATION AND QUANTIFICATION OF NATURAL GAS-HYDRATE AND ASSOCIATED FREE-GAS ACCUMULATIONS IN THE PRUDHOE BAY - KUPARUK RIVER AREA ON THE NORTH SLOPE OF ALASKA

    SciTech Connect (OSTI)

    Robert Hunter; Shirish Patil; Robert Casavant; Tim Collett

    2003-06-02

    Interim results are presented from the project designed to characterize, quantify, and determine the commercial feasibility of Alaska North Slope (ANS) gas-hydrate and associated free-gas resources in the Prudhoe Bay Unit (PBU), Kuparuk River Unit (KRU), and Milne Point Unit (MPU) areas. This collaborative research will provide practical input to reservoir and economic models, determine the technical feasibility of gas hydrate production, and influence future exploration and field extension of this potential ANS resource. The large magnitude of unconventional in-place gas (40-100 TCF) and conventional ANS gas commercialization evaluation creates industry-DOE alignment to assess this potential resource. This region uniquely combines known gas hydrate presence and existing production infrastructure. Many technical, economical, environmental, and safety issues require resolution before enabling gas hydrate commercial production. Gas hydrate energy resource potential has been studied for nearly three decades. However, this knowledge has not been applied to practical ANS gas hydrate resource development. ANS gas hydrate and associated free gas reservoirs are being studied to determine reservoir extent, stratigraphy, structure, continuity, quality, variability, and geophysical and petrophysical property distribution. Phase 1 will characterize reservoirs, lead to recoverable reserve and commercial potential estimates, and define procedures for gas hydrate drilling, data acquisition, completion, and production. Phases 2 and 3 will integrate well, core, log, and long-term production test data from additional wells, if justified by results from prior phases. The project could lead to future ANS gas hydrate pilot development. This project will help solve technical and economic issues to enable government and industry to make informed decisions regarding future commercialization of unconventional gas-hydrate resources.

  6. Sandia Energy - Unconventional Lasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Unconventional Lasing Home Energy Research EFRCs Solid-State Lighting Science EFRC Unconventional Lasing Unconventional LasingTara Camacho-Lopez2015-05-07T13:48:57+00:00...

  7. Oil & Gas Research | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Research Unconventional Resources NETL's onsite research in unconventional resources is focused on developing the data and modeling tools needed to predict and quantify potential risks associated with oil and gas resources in shale reservoirs that require hydraulic fracturing or other engineering measures to produce. Fugitive Emissions | Produced Water Management | Subsurface Fluid & Gas Migration | Induced Seismicity Offshore Resources Building the scientific understanding and

  8. Technically Recoverable Shale Oil and Shale Gas Resources

    Gasoline and Diesel Fuel Update (EIA)

    EIA/ARI World Shale Gas and Shale Oil Resource Assessment May, 17, 2013 2-1 SHALE GAS AND SHALE OIL RESOURCE ASSESSMENT METHODOLOGY INTRODUCTION This report sets forth Advanced Resources' methodology for assessing the in-place and recoverable shale gas and shale oil resources for the EIA/ARI "World Shale Gas and Shale Oil Resource Assessment." The methodology relies on geological information and reservoir properties assembled from the technical literature and data from publically

  9. California Division of Oil, Gas, and Geothermal Resources | Open...

    Open Energy Info (EERE)

    reservoirs. Division requirements encourage wise development of California's oil, gas, and geothermal resources while protecting the environment.2 References "CDOGGR...

  10. Assessment of environmental health and safety issues associated with the commercialization of unconventional gas recovery: Devonian shale

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    The purpose of this study is to identify and examine potential public health and safety issues and the potential environmental impacts from recovery of natural gas from Devonian age shale. This document will serve as background data and information for planners within the government to assist in development of our new energy technologies in a timely and environmentally sound manner. This report describes the resource and the DOE eastern gas shales project in Section 2. Section 3 describes the new and developing recovery technologies associated with Devonian shale. An assessment of the environment, health and safety impacts associated with a typical fields is presented in Section 4. The typical field for this assessment occupies ten square miles and is developed on a 40-acre spacing (that is, there is a well in each 40-acre grid). This field thus has a total of 160 wells. Finally, Section 5 presents the conclusions and recommendations. A reference list is provided to give a greater plant. Based on the estimated plant cost and the various cases of operating income, an economic analysis was performed employing a profitability index criterion of discounted cash flow to determine an interest rate of return on the plant investment.

  11. Characterization of Gas Shales by X-ray Raman Spectroscopy |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - 3:30pm SSRL Conference Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as...

  12. Natural Gas Modernization Clearinghouse Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Modernization Clearinghouse Resources Natural Gas Modernization Clearinghouse Resources << back to clearinghouse home NOTE: The resources provided here are intended for informational purposes only and inclusion in this clearinghouse does not necessarily reflect an endorsement by the U.S. Government or the U.S. Department of Energy. Category Subcategory Keyword Reports and Data Sources

  13. DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional

    Energy Savers [EERE]

    Energy Resources | Department of Energy Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into

  14. Federal Utility Partnership Working Group: Atlanta Gas Light Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—lists Altanta Gas Light (AGL) resources and features a map of its footprint.

  15. Oil & Gas Research | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research Oil & Gas Research Section 999 Report to Congress Section 999 Report to Congress DOE issues the 2013 annual plan for the ultra-deepwater and unconventional fuels program. Read more DOE Signs MOU with Alaska DOE Signs MOU with Alaska New accord to help develop Alaska's potentially vast and important unconventional energy resources. Read more Methane Hydrate R&amp;D Methane Hydrate R&D DOE is conducting groundbreaking research to unlock the energy potential of gas hydrates.

  16. Unconventional Resources Technology Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Recommendation: The DOE should: Recommend that the Section 999 be extended to further ... of oil from other external sources, and job creation. 1 EnergyFromShale.org 12 3.2 ...

  17. Unconventional Resources Technology Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Recommendation: The DOE should: Recommend that the Section. 999 be extended to further ... of oil from other external sources, and job creation. 1 EnergyFromShale.org Attachment ...

  18. World Natural Gas Model

    Energy Science and Technology Software Center (OSTI)

    1994-12-01

    RAMSGAS, the Research and Development Analysis Modeling System World Natural Gas Model, was developed to support planning of unconventional gaseoues fuels research and development. The model is a scenario analysis tool that can simulate the penetration of unconventional gas into world markets for oil and gas. Given a set of parameter values, the model estimates the natural gas supply and demand for the world for the period from 1980 to 2030. RAMSGAS is based onmore » a supply/demand framwork and also accounts for the non-renewable nature of gas resources. The model has three fundamental components: a demand module, a wellhead production cost module, and a supply/demand interface module. The demand for gas is a product of total demand for oil and gas in each of 9 demand regions and the gas share. Demand for oil and gas is forecast from the base year of 1980 through 2030 for each demand region, based on energy growth rates and price-induced conservation. For each of 11 conventional and 19 unconventional gas supply regions, wellhead production costs are calculated. To these are added transportation and distribution costs estimates associated with moving gas from the supply region to each of the demand regions and any economic rents. Based on a weighted average of these costs and the world price of oil, fuel shares for gas and oil are computed for each demand region. The gas demand is the gas fuel share multiplied by the total demand for oil plus gas. This demand is then met from the available supply regions in inverse proportion to the cost of gas from each region. The user has almost complete control over the cost estimates for each unconventional gas source in each year and thus can compare contributions from unconventional resources under different cost/price/demand scenarios.« less

  19. The Resource Potential of Natural Gas Hydrates

    Energy Savers [EERE]

    International Gas Hydrate Research March 2014 International Gas Hydrate Projects - Overview Gas Hydrate Field Projects * MH21 - Japan * UBGH-1 & UBGH-2 - Republic of Korea * GMGS-1 & GMGS-2, Qinghai-Tibet Projects - P.R. China * NGHP01 - India * Arctic Permafrost Gas Hydrate Testing -Mallik & Mackenzie Delta - Canada -Alaska North Slope (Statoil and JOGMEC interest) Summary and Recommendations Presentation Outline Contents 4. Methane Hydrate Research Drilling Expeditions 4.1. ODP Leg

  20. Minnesota Energy Resources (Gas) - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Tankless Water Heater Program Info Sector Name Utility Administrator Minnesota Energy Resources Website http:www.minnesotaenergyresources.comhomerebates.aspx State Minnesota...

  1. Oil Shale and Other Unconventional Fuels Activities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reserves » Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. The Fossil Energy program in oil shale focuses on reviewing the potential of oil shale as a strategic resource for liquid fuels. It is generally agreed that worldwide petroleum supply will eventually reach its productive limit, peak, and begin a

  2. Development of Alaskan gas hydrate resources

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  3. Oil and gas resources in the West Siberian Basin, Russia

    SciTech Connect (OSTI)

    1997-12-01

    The primary objective of this study is to assess the oil and gas potential of the West Siberian Basin of Russia. The study does not analyze the costs or technology necessary to achieve the estimates of the ultimate recoverable oil and gas. This study uses reservoir data to estimate recoverable oil and gas quantities which were aggregated to the field level. Field totals were summed to a basin total for discovered fields. An estimate of undiscovered oil and gas, from work of the US Geological Survey (USGS), was added to give a total basin resource volume. Recent production decline points out Russia`s need to continue development of its discovered recoverable oil and gas. Continued exploration is required to discover additional oil and gas that remains undiscovered in the basin.

  4. Accounting for Depletion of Oil and Gas Resources in Malaysia

    SciTech Connect (OSTI)

    Othman, Jamal Jafari, Yaghoob

    2012-12-15

    Since oil and gas are non-renewable resources, it is important to identify the extent to which they have been depleted. Such information will contribute to the formulation and evaluation of appropriate sustainable development policies. This paper provides an assessment of the changes in the availability of oil and gas resources in Malaysia by first compiling the physical balance sheet for the period 2000-2007, and then assessing the monetary balance sheets for the said resource by using the Net Present Value method. Our findings show serious reduction in the value of oil reserves from 2001 to 2005, due to changes in crude oil prices, and thereafter the depletion rates decreased. In the context of sustainable development planning, albeit in the weak sustainability sense, it will be important to ascertain if sufficient reinvestments of the estimated resource rents in related or alternative capitals are being attempted by Malaysia. For the study period, the cumulative resource rents were to the tune of RM61 billion. Through a depletion or resource rents policy, the estimated quantum may guide the identification of a reinvestment threshold (after considering needed capital investment for future development of the industry) in light of ensuring the future productive capacity of the economy at the time when the resource is exhausted.

  5. The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.

    SciTech Connect (OSTI)

    Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

    2009-11-02

    Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

  6. oil and gas portfolio reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Gas Research Portfolio Reports Natural Gas & Oil Program Research Portfolio Reports The Office of Fossil Energy (FE)/National Energy Technology Laboratory (NETL) is releasing a series of nine Research Portfolio Reports to provide a snapshot of results and accomplishments completed to-date for active and completed projects under three focus areas: Unconventional Oil & Gas Resources; Ultra-Deepwater; and Small Producers. The reports capture research conducted over the last ten years

  7. Gas-Fired Distributed Energy Resource Technology Characterizations

    SciTech Connect (OSTI)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Algeria Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Argentina Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Australia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Canada Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Chad Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    China Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Eastern Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Egypt Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  16. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    India and Pakistan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  17. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Jordan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  18. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Kazakhstan Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  19. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Libya Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  20. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Mexico Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  1. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Mongolia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  2. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Morocco Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  3. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Northern South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  4. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Western Europe Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  5. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Oman Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  6. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    South America Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  7. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Poland Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Russia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    South Africa Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Spain Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  11. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Thailand Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  12. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Tunisia Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  13. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Turkey Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the

  14. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Arab Emirates Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    Kingdom Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 September 2015 September 2015 U.S. Energy Information Administration | Technically Recoverable Shale Oil and Shale Gas Resources i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of

  16. World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States

    Reports and Publications (EIA)

    2011-01-01

    The Energy Information Administration sponsored Advanced Resources International, Inc., to assess 48 gas shale basins in 32 countries, containing almost 70 shale gas formations. This effort has culminated in the report: World Shale Gas Resources: An Initial Assessment of 14 Regions Outside the United States.

  17. New basins invigorate U.S. gas shales play

    SciTech Connect (OSTI)

    Reeves, S.R.; Kuuskraa, V.A.; Hill, D.G.

    1996-01-22

    While actually the first and oldest of unconventional gas plays, gas shales have lagged the other main unconventional gas resources--tight gas and coalbed methane--in production and proved reserves. Recently, however, with active drilling of the Antrim shales in Michigan and promising results from the Barnett shales of North Texas, this gas play is growing in importance. While once thought of as only an Appalachian basin Devonian-age Ohio shales play and the exclusive domain of regional independents, development of gas shales has expanded to new basins and has began to attract larger E and P firms. Companies such as Amoco, Chevron, and Shell in the Michigan basin and Mitchell Energy and Development and Anadarko Petroleum Corporation in the Fort Worth basin are aggressively pursuing this gas resource. This report, the third of a four part series assessing unconventional gas development in the US, examines the state of the gas shales industry following the 1992 expiration of the Sec. 29 Nonconventional Fuels Tax Credit. The main questions being addressed are first, to what extent are these gas sources viable without the tax credit, and second, what advances in understanding of these reservoirs and what progress in extraction technologies have changed the outlook for this large but complex gas resource?

  18. Annual Report: Unconventional Fossil Energy Resource Program...

    Office of Scientific and Technical Information (OSTI)

    English Subject: 02 PETROLEUM; 58 GEOSCIENCES CO2 EOR; CO2-soluble surfactants; enhanced oil recovery Word Cloud More Like This Full Text preview image File size NAView Full Text...

  19. Progress Report SEAB Recommendations on Unconventional Resource

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... techniques allow rig operators to drill groups of wells with reduced rig movements. ... that effectively balance environmental, social, and economic considerations. 9 See ...

  20. Challenges and Opportunities of Unconventional Resources Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... For example, to support the economics of carbon capture and storage (CCS) technology - ... way to use the off-take from CCS projects to be treated as an asset instead of waste. ...

  1. Oil and Gas Resources of the Fergana Basin (Uzbekistan, Tadzhikistan, and Kyrgysztan)

    Reports and Publications (EIA)

    1994-01-01

    Provides the most comprehensive assessment publicly available for oil and gas resources in the Fergana Basin. Includes projections of potential oil supply and U.S. Geological Survey estimates of undiscovered recoverable oil and gas.

  2. Development of Alaskan gas hydrate resources: Annual report, October 1986--September 1987

    SciTech Connect (OSTI)

    Sharma, G.D.; Kamath, V.A.; Godbole, S.P.; Patil, S.L.; Paranjpe, S.G.; Mutalik, P.N.; Nadem, N.

    1987-10-01

    Solid ice-like mixtures of natural gas and water in the form of natural gas hydrated have been found immobilized in the rocks beneath the permafrost in Arctic basins and in muds under the deep water along the American continental margins, in the North Sea and several other locations around the world. It is estimated that the arctic areas of the United States may contain as much as 500 trillion SCF of natural gas in the form of gas hydrates (Lewin and Associates, 1983). While the US Arctic gas hydrate resources may have enormous potential and represent long term future source of natural gas, the recovery of this resource from reservoir frozen with gas hydrates has not been commercialized yet. Continuing study and research is essential to develop technologies which will enable a detailed characterization and assessment of this alternative natural gas resource, so that development of cost effective extraction technology.

  3. Natural Gas and Other Petroleum

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress June 2013 United States Department of Energy Washington, DC 20585 Department of Energy |June 2013 Department of Energy |June 2013 Message from the Secretary The Nation needs to deploy American assets, innovation, and technology so that it can safely and responsibly develop more energy here at home and be a leader in the global energy economy. To this end,

  4. Natural Gas and Other Petroleum

    Office of Environmental Management (EM)

    Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress June 2013 United States Department of Energy Washington, DC 20585 Department of Energy |June 2013 Department of Energy |June 2013 Message from the Secretary The Nation needs to deploy American assets, innovation, and technology so that it can safely and responsibly develop more energy here at home and be a leader in the global energy economy. To this end,

  5. Anadarko's Proposed Acquisition of Kerr-McGee and Western Gas Resources

    Reports and Publications (EIA)

    2006-01-01

    Presentation of company-level, non-proprietary data and relevant aggregate data for worldwide oil and natural gas reserves and production of Anadarko, Kerr-McGee, and Western Gas Resources to inform discussions of Anadarko Petroleum Corp.'s proposed acquisition of both Kerr-McGee Corp. and Western Gas Resources Inc. for a total of $23.3 billion, which was announced June 23, 2006.

  6. X-ray Induced Quasiparticles: New Window on Unconventional

    Office of Science (SC) Website

    Superconductivity | U.S. DOE Office of Science (SC) X-ray Induced Quasiparticles: New Window on Unconventional Superconductivity Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) Community Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594

  7. Minnesota Energy Resources (Gas) - Low-Income New Construction...

    Broader source: Energy.gov (indexed) [DOE]

    State Minnesota Program Type Rebate Program Rebate Amount Gas Furnace: 500 Integrated Space and Water Heating System: 900 Electronic Programmable Set-Back...

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... natural gas that could be produced with current technology, regardless of oil and natural ... a northeast- southwest trending trough related to the Atlantic Ocean continental breakup. ...

  9. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN...

    Office of Scientific and Technical Information (OSTI)

    with wilderness character could impact access to unconventional fuels resources, and ... On December 22, 2010, Secretary of the Interior Ken Salazar issued Secretarial Order 3310, ...

  10. LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN...

    Office of Scientific and Technical Information (OSTI)

    prospective unconventional fuel developers is the ability to access these resources. ... On December 22, 2010, Secretary of the Interior Ken Salazar issued Secretarial Order 3310, ...

  11. Development of Alaskan gas hydrate resources. Final report

    SciTech Connect (OSTI)

    Kamath, V.A.; Sharma, G.D.; Patil, S.L.

    1991-06-01

    The research undertaken in this project pertains to study of various techniques for production of natural gas from Alaskan gas hydrates such as, depressurization, injection of hot water, steam, brine, methanol and ethylene glycol solutions through experimental investigation of decomposition characteristics of hydrate cores. An experimental study has been conducted to measure the effective gas permeability changes as hydrates form in the sandpack and the results have been used to determine the reduction in the effective gas permeability of the sandpack as a function of hydrate saturation. A user friendly, interactive, menu-driven, numerical difference simulator has been developed to model the dissociation of natural gas hydrates in porous media with variable thermal properties. A numerical, finite element simulator has been developed to model the dissociation of hydrates during hot water injection process.

  12. Singlet-Triplet Excitations in the Unconventional Spin-Peierls...

    Office of Scientific and Technical Information (OSTI)

    Singlet-Triplet Excitations in the Unconventional Spin-Peierls TiOBr Compound Citation Details In-Document Search Title: Singlet-Triplet Excitations in the Unconventional ...

  13. Oil Shale and Other Unconventional Fuels Activities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on ...

  14. Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays

    Reports and Publications (EIA)

    2011-01-01

    To gain a better understanding of the potential U.S. domestic shale gas and shale oil resources, the Energy Information Administration (EIA) commissioned INTEK, Inc. to develop an assessment of onshore lower 48 states technically recoverable shale gas and shale oil resources. This paper briefly describes the scope, methodology, and key results of the report and discusses the key assumptions that underlie the results.

  15. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... Source: Sachsenhofer et al., 2012 The Kovel-1 petroleum well is a key stratigraphic test ... have pursued shale gas leasing in Bulgaria but only one shale test well has been drilled. ...

  16. DOE Showcases Websites for Tight Gas Resource Development

    Broader source: Energy.gov [DOE]

    Two U.S. Department of Energy projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays.

  17. Resource planning for gas utilities: Using a model to analyze pivotal issues

    SciTech Connect (OSTI)

    Busch, J.F.; Comnes, G.A.

    1995-11-01

    With the advent of wellhead price decontrols that began in the late 1970s and the development of open access pipelines in the 1980s and 90s, gas local distribution companies (LDCs) now have increased responsibility for their gas supplies and face an increasingly complex array of supply and capacity choices. Heretofore this responsibility had been share with the interstate pipelines that provide bundled firm gas supplies. Moreover, gas supply an deliverability (capacity) options have multiplied as the pipeline network becomes increasing interconnected and as new storage projects are developed. There is now a fully-functioning financial market for commodity price hedging instruments and, on interstate Pipelines, secondary market (called capacity release) now exists. As a result of these changes in the natural gas industry, interest in resource planning and computer modeling tools for LDCs is increasing. Although in some ways the planning time horizon has become shorter for the gas LDC, the responsibility conferred to the LDC and complexity of the planning problem has increased. We examine current gas resource planning issues in the wake of the Federal Energy Regulatory Commission`s (FERC) Order 636. Our goal is twofold: (1) to illustrate the types of resource planning methods and models used in the industry and (2) to illustrate some of the key tradeoffs among types of resources, reliability, and system costs. To assist us, we utilize a commercially-available dispatch and resource planning model and examine four types of resource planning problems: the evaluation of new storage resources, the evaluation of buyback contracts, the computation of avoided costs, and the optimal tradeoff between reliability and system costs. To make the illustration of methods meaningful yet tractable, we developed a prototype LDC and used it for the majority of our analysis.

  18. Oil and Gas Resources of the West Siberian Basin, Russia

    Reports and Publications (EIA)

    1997-01-01

    Provides an assessment of the oil and gas potential of the West Siberian Basin of Russia. The report was prepared in cooperation with the U. S. Geological Survey (USGS) and is part of the Energy Information Administration's (EIA) Foreign Energy Supply Assessment Program (FESAP).

  19. Table 4.1 Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009

    U.S. Energy Information Administration (EIA) Indexed Site

    Technically Recoverable Crude Oil and Natural Gas Resource Estimates, 2009 Region Proved Reserves 1 Unproved Resources Total Technically Recoverable Resources 2 Crude Oil and Lease Condensate (billion barrels)<//td> 48 States 3 Onshore 14.2 112.6 126.7 48 States 3 Offshore 4.6 50.3 54.8 Alaska 3.6 35.0 38.6 Total U.S. 22.3 197.9 220.2 Dry Natural Gas 4 (trillion cubic feet)<//td> Conventionally Reservoired Fields 5 105.5 904.0 1,009.5 48 States 3 Onshore Gas 6 81.4 369.7 451.1 48

  20. New Project To Improve Characterization of U.S. Gas Hydrate Resources |

    Office of Environmental Management (EM)

    Department of Energy Project To Improve Characterization of U.S. Gas Hydrate Resources New Project To Improve Characterization of U.S. Gas Hydrate Resources October 22, 2014 - 10:02am Addthis WASHINGTON, D.C. -The U.S. Department of Energy (DOE) today announced the selection of a multi-year, field-based research project designed to gain further insight into the nature, formation, occurrence and physical properties of methane hydrate-bearing sediments for the purpose of methane hydrate

  1. Models, Simulators, and Data-driven Resources for Oil and Natural Gas Research

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    NETL provides a number of analytical tools to assist in conducting oil and natural gas research. Software, developed under various DOE/NETL projects, includes numerical simulators, analytical models, databases, and documentation.[copied from http://www.netl.doe.gov/technologies/oil-gas/Software/Software_main.html] Links lead users to methane hydrates models, preedictive models, simulators, databases, and other software tools or resources.

  2. Characterization of Gas Shales by X-ray Raman Spectroscopy | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Characterization of Gas Shales by X-ray Raman Spectroscopy Thursday, February 23, 2012 - 10:30am SSRL Third Floor Conference Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy, dramatically altering America's energy landscape. Despite their importance, the basic chemistry and physics of shales are not understood as well as

  3. Characterization of Gas Shales by X-ray Raman Spectroscopy | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Characterization of Gas Shales by X-ray Raman Spectroscopy Monday, May 14, 2012 - 3:30pm SSRL Conference Room 137-322 Drew Pomerantz, Schlumberger Unconventional hydrocarbon resources such as gas shale and oil-bearing shale have emerged recently as economically viable sources of energy, dramatically altering America's energy landscape. Despite their importance, the basic chemistry and physics of shales are not understood as well as conventional reservoirs.

  4. Shale Gas Application in Hydraulic Fracturing Market is likely...

    Open Energy Info (EERE)

    on unconventional reservoirs such as coal bed methane, tight gas, tight oil, shale gas, and shale oil. Over the period of time, hydraulic fracturing technique has found...

  5. Innovative Telemetry System Will Help Tap Hard-to-Reach Natural Gas Resources

    Broader source: Energy.gov [DOE]

    The commercialization of an innovative telemetry communications system developed through a U.S. Department of Energy research program will help U.S. producers tap previously hard-to-reach natural gas resources deep underground, resulting in access to additional supplies that will help enhance national energy security.

  6. Analysis of Critical Permeabilty, Capillary Pressure and Electrical Properties for Mesaverde Tight Gas Sandstones from Western U.S. Basins

    SciTech Connect (OSTI)

    Alan Byrnes; Robert Cluff; John Webb; John Victorine; Ken Stalder; Daniel Osburn; Andrew Knoderer; Owen Metheny; Troy Hommertzheim; Joshua Byrnes; Daniel Krygowski; Stefani Whittaker

    2008-06-30

    Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS are estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.

  7. Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.

    SciTech Connect (OSTI)

    Singh, M. K.; Moore, J. S.

    2002-03-04

    Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

  8. Design and life-cycle considerations for unconventional-reservoir wells

    SciTech Connect (OSTI)

    Miskimins, J.L.

    2009-05-15

    This paper provides an overview of design and life-cycle considerations for certain unconventional-reservoir wells. An overview of unconventional-reservoir definitions is provided. Well design and life-cycle considerations are addressed from three aspects: upfront reservoir development, initial well completion, and well-life and long-term considerations. Upfront-reservoir-development issues discussed include well spacing, well orientation, reservoir stress orientations, and tubular metallurgy. Initial-well-completion issues include maximum treatment pressures and rates, treatment diversion, treatment staging, flowback and cleanup, and dewatering needs. Well-life and long-term discussions include liquid loading, corrosion, refracturing and associated fracture reorientation, and the cost of abandonment. These design considerations are evaluated with case studies for five unconventional-reservoir types: shale gas (Barnett shale), tight gas (Jonah feld), tight oil (Bakken play), coalbed methane (CBM) (San Juan basin), and tight heavy oil (Lost Hills field). In evaluating the life cycle and design of unconventional-reservoir wells, 'one size' does not fit all and valuable knowledge and a shortening of the learning curve can be achieved for new developments by studying similar, more-mature fields.

  9. Natural gas cost for evaluating energy resource opportunities at Fort Stewart

    SciTech Connect (OSTI)

    Stucky, D.J.; Shankle, S.A.

    1993-01-01

    Ft. Stewart, a United States Army Forces Command (FORSCOM) installation located near Hinesville, Georgia, is currently undergoing an evaluation of its energy usage, which is being performed by Pacific Northwest Laboratory. In order to examine the energy resource opportunities (EROs) at Ft. Stewart, marginal fuel costs must be calculated. The marginal, or avoided, cost of gas service is used in conjunction with the estimated energy savings of an ERO to calculate the dollar value of those savings. In the case of natural gas, the costing becomes more complicated due to the installation of a propane-air mixing station. The propane-air station is being built under a shared energy savings (SES) contract. The building of a propane-air station allows Ft. Stewart to purchase natural gas from their local utility at an interruptible rate, which is lower than the rate for contracting natural gas on a firm basis. The propane-air station will also provide Ft. Stewart with fuel in the event that the natural gas supply is curtailed. While the propane-air station does not affect the actual cost of natural gas, it does affect the cost of services provided by gas. Because the propane-air station and the SES contract affect the cost of gas service, they must be included in the analysis. Our analysis indicates a marginal cost of gas service of 30.0 cents per therm, assuming a total propane usage by the mixing station of 42,278 gallons (38,600 therms) annually. Because the amount of propane that may be required in the event of a curtailment is small relative to the total service requirement, variations in the actual amount should not significantly affect the cost per therm.

  10. Resources

    Broader source: Energy.gov [DOE]

    Case studies and additional resources on implementing renewable energy in Federal new construction and major renovations are available.

  11. Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Policies, Manuals & References Map Transportation Publications ⇒ Navigate Section Resources Policies, Manuals & References Map Transportation Publications Getting Help or Information IT Help Desk (or call x4357) Facilities Work Request Center Telephone Services Travel Site Info Laboratory Map Construction Updates Laboratory Shuttle Buses Cafeteria Menu News and Events Today at Berkeley Lab News Center Press Releases Feature Stories Videos Contact Calendar Health and

  12. Neutron scattering study of unconventional superconductors

    SciTech Connect (OSTI)

    Lee, Seunghun

    2014-06-30

    My group’s primary activity at the University of Virginia supported by DOE is to study novel electronic, magnetic, and structural phenomena that emerge out of strong interactions between electrons. Some of these phenomena are unconventional superconductivity, exotic states in frustrated magnets, quantum spin liquid states, and magneto-electricity. The outcome of our research funded by the grant advanced microscopic understanding of the emergence of the collective states in the systems.

  13. Oil and gas resources of the Fergana basin (Uzbekistan, Tadzhikistan, and Kyrgyzstan). Advance summary

    SciTech Connect (OSTI)

    Not Available

    1993-12-07

    The Energy Information Administration (EIA), in cooperation with the US Geological Survey (USGS), has assessed 13 major petroleum producing regions outside of the United States. This series of assessments has been performed under EIA`s Foreign Energy Supply Assessment Program (FESAP). The basic approach used in these assessments was to combine historical drilling, discovery, and production data with EIA reserve estimates and USGS undiscovered resource estimates. Field-level data for discovered oil were used for these previous assessments. In FESAP, supply projections through depletion were typically formulated for the country or major producing region. Until now, EIA has not prepared an assessment of oil and gas provinces in the former Soviet Union (FSU). Before breakup of the Soviet Union in 1991, the Fergana basin was selected for a trial assessment of its discovered and undiscovered oil and gas. The object was to see if enough data could be collected and estimated to perform reasonable field-level estimates of oil and gas in this basin. If so, then assessments of other basins in the FSU could be considered. The objective was met and assessments of other basins can be considered. Collected data for this assessment cover discoveries through 1987. Compared to most other oil and gas provinces in the FSU, the Fergana basin is relatively small in geographic size, and in number and size of most of its oil and gas fields. However, with recent emphasis given to the central graben as a result of the relatively large Mingbulak field, the basin`s oil and gas potential has significantly increased. At least 7 additional fields to the 53 fields analyzed are known and are assumed to have been discovered after 1987.

  14. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    rig count suggests the development of unconventional shale gas plays remains stable. On a State level, Texas and Louisiana recorded the largest weekly declines in their combined,...

  15. Smart Sensing Networks for Renewables, Oil & Gas | GE Global...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability and robustness of the data points being collected. sensor-500x333 As oil and gas production moves to unconventional environments, it will require more rugged sensors...

  16. Human resource needs and development for the gas industry of the future

    SciTech Connect (OSTI)

    Klass, D.L.

    1991-01-01

    The natural gas industry will confront many challenges in the 1990s and beyond, one of which is the development of human resources to meet future needs. An efficient, trained work force in this era of environmental concern, high technology, and alternative fuels is essential for the industry to continue to meet the competition and to safely deliver our product and service to all customers. Unfortunately, during this period there will be an increasing shortfall of technical personnel to replace those lost to attrition and a steady decline in the availability of new employees who are able to read, write, and perform simple math. Technological and government developments that will impact the industry and the skill levels needed by the industry employees are reviewed. In-house and external training of professional and nonprofessional personnel and the benefits and disadvantages of selected advanced training methods are discussed. Recommendations are presented that can help improve the training of gas industry employees to meet future needs. 22 refs.

  17. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2005-07-01

    This report summarizes activities that have taken place in the last six (6) months (January 2005-June 2005) under the DOE-NETL cooperative agreement ''Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields, New Mexico and Wyoming'' DE-FC26-02NT15445. This project examines the practices and results of cultural resource investigation and management in two different oil and gas producing areas of the United States: southeastern New Mexico and the Powder River Basin of Wyoming. The project evaluates how cultural resource investigations have been conducted in the past and considers how investigation and management could be pursued differently in the future. The study relies upon full database population for cultural resource inventories and resources and geomorphological studies. These are the basis for analysis of cultural resource occurrence, strategies for finding and evaluating cultural resources, and recommendations for future management practices. Activities can be summarized as occurring in either Wyoming or New Mexico. Gnomon as project lead, worked in both areas.

  18. Recovery of Fresh Water Resources from Desalination of Brine Produced During Oil and Gas Production Operations

    SciTech Connect (OSTI)

    David B. Burnett; Mustafa Siddiqui

    2006-12-29

    Management and disposal of produced water is one of the most important problems associated with oil and gas (O&G) production. O&G production operations generate large volumes of brine water along with the petroleum resource. Currently, produced water is treated as a waste and is not available for any beneficial purposes for the communities where oil and gas is produced. Produced water contains different contaminants that must be removed before it can be used for any beneficial surface applications. Arid areas like west Texas produce large amount of oil, but, at the same time, have a shortage of potable water. A multidisciplinary team headed by researchers from Texas A&M University has spent more than six years is developing advanced membrane filtration processes for treating oil field produced brines The government-industry cooperative joint venture has been managed by the Global Petroleum Research Institute (GPRI). The goal of the project has been to demonstrate that treatment of oil field waste water for re-use will reduce water handling costs by 50% or greater. Our work has included (1) integrating advanced materials into existing prototype units and (2) operating short and long-term field testing with full size process trains. Testing at A&M has allowed us to upgrade our existing units with improved pre-treatment oil removal techniques and new oil tolerant RO membranes. We have also been able to perform extended testing in 'field laboratories' to gather much needed extended run time data on filter salt rejection efficiency and plugging characteristics of the process train. The Program Report describes work to evaluate the technical and economical feasibility of treating produced water with a combination of different separation processes to obtain water of agricultural water quality standards. Experiments were done for the pretreatment of produced water using a new liquid-liquid centrifuge, organoclay and microfiltration and ultrafiltration membranes for the removal of hydrocarbons from produced water. The results of these experiments show that hydrocarbons from produced water can be reduced from 200 ppm to below 29 ppm level. Experiments were also done to remove the dissolved solids (salts) from the pretreated produced water using desalination membranes. Produced water with up to 45,000 ppm total dissolved solids (TDS) can be treated to agricultural water quality water standards having less than 500 ppm TDS. The Report also discusses the results of field testing of various process trains to measure performance of the desalination process. Economic analysis based on field testing, including capital and operational costs, was done to predict the water treatment costs. Cost of treating produced water containing 15,000 ppm total dissolved solids and 200 ppm hydrocarbons to obtain agricultural water quality with less than 200 ppm TDS and 2 ppm hydrocarbons range between $0.5-1.5 /bbl. The contribution of fresh water resource from produced water will contribute enormously to the sustainable development of the communities where oil and gas is produced and fresh water is a scarce resource. This water can be used for many beneficial purposes such as agriculture, horticulture, rangeland and ecological restorations, and other environmental and industrial application.

  19. Ultrasonic imaging of materials under unconventional circumstances...

    Office of Scientific and Technical Information (OSTI)

    testing of thin plates in structural health monitoring can be used in combination ... OSTI Identifier: 22391245 Resource Type: Journal Article Resource Relation: Journal Name: ...

  20. Unconventional Fermi surface in an insulating state

    SciTech Connect (OSTI)

    Harrison, Neil; Tan, B. S.; Hsu, Y. -T.; Zeng, B.; Hatnean, M. Ciomaga; Zhu, Z.; Hartstein, M.; Kiourlappou, M.; Srivastava, A.; Johannes, M. D.; Murphy, T. P.; Park, J. -H.; Balicas, L.; Lonzarich, G. G.; Balakrishnan, G.; Sebastian, Suchitra E.

    2015-07-17

    Insulators occur in more than one guise; a recent finding was a class of topological insulators, which host a conducting surface juxtaposed with an insulating bulk. Here, we report the observation of an unusual insulating state with an electrically insulating bulk that simultaneously yields bulk quantum oscillations with characteristics of an unconventional Fermi liquid. We present quantum oscillation measurements of magnetic torque in high-purity single crystals of the Kondo insulator SmB6, which reveal quantum oscillation frequencies characteristic of a large three-dimensional conduction electron Fermi surface similar to the metallic rare earth hexaborides such as PrB6 and LaB6. As a result, the quantum oscillation amplitude strongly increases at low temperatures, appearing strikingly at variance with conventional metallic behavior.

  1. Addendum To Environmental Review Documents Concerning Exports Of Natural Gas From The United States

    Broader source: Energy.gov [DOE]

    The purpose of the Addendum is to provide additional information to the public regarding the potential environmental impacts of unconventional natural gas exploration and production activities. DOE...

  2. Toward Production From Gas Hydrates: Current Status, Assessment of Resources, and Simulation-Based Evaluationof Technology and Potential

    SciTech Connect (OSTI)

    Reagan, Matthew; Moridis, George J.; Collett, Timothy; Boswell, Ray; Kurihara, M.; Reagan, Matthew T.; Koh, Carolyn; Sloan, E. Dendy

    2008-02-12

    Gas hydrates are a vast energy resource with global distribution in the permafrost and in the oceans. Even if conservative estimates are considered and only a small fraction is recoverable, the sheer size of the resource is so large that it demands evaluation as a potential energy source. In this review paper, we discuss the distribution of natural gas hydrate accumulations, the status of the primary international R&D programs, and the remaining science and technological challenges facing commercialization of production. After a brief examination of gas hydrate accumulations that are well characterized and appear to be models for future development and gas production, we analyze the role of numerical simulation in the assessment of the hydrate production potential, identify the data needs for reliable predictions, evaluate the status of knowledge with regard to these needs, discuss knowledge gaps and their impact, and reach the conclusion that the numerical simulation capabilities are quite advanced and that the related gaps are either not significant or are being addressed. We review the current body of literature relevant to potential productivity from different types of gas hydrate deposits, and determine that there are consistent indications of a large production potential at high rates over long periods from a wide variety of hydrate deposits. Finally, we identify (a) features, conditions, geology and techniques that are desirable in potential production targets, (b) methods to maximize production, and (c) some of the conditions and characteristics that render certain gas hydrate deposits undesirable for production.

  3. Before the Subcommittee on Energy and Environment- House Committee on Science, Space, and Technology

    Broader source: Energy.gov [DOE]

    Subject: Unconventional Oil and Natural Gas Resources By: Anthony V. Cugini, Director National Energy Technology Laboratory

  4. Kondo Physics and Unconventional Superconductivity in the U Intermetal...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Kondo Physics and Unconventional Superconductivity in the U Intermetallic U2PtC2 Revealed by NMR Citation Details In-Document Search Title: Kondo Physics and ...

  5. Ultrasonic imaging of materials under unconventional circumstances (Journal

    Office of Scientific and Technical Information (OSTI)

    Article) | SciTech Connect Ultrasonic imaging of materials under unconventional circumstances Citation Details In-Document Search Title: Ultrasonic imaging of materials under unconventional circumstances This paper reflects the contents of the plenary talk given by Nico Felicien Declercq. "Ultrasonic Imaging of materials" covers a wide technological area with main purpose to look at and to peek inside materials. In an ideal world one would manage to examine materials like a

  6. ADAPTIVE MANAGEMENT AND PLANNING MODELS FOR CULTURAL RESOURCES IN OIL & GAS FIELDS IN NEW MEXICO AND WYOMING

    SciTech Connect (OSTI)

    Peggy Robinson

    2004-07-01

    This report contains a summary of activities of Gnomon, Inc. and five subcontractors that have taken place during the first six months of 2004 (January 1, 2004-June 30, 2004) under the DOE-NETL cooperative agreement: ''Adaptive Management and Planning Models for Cultural Resources in Oil & Gas Fields in New Mexico and Wyoming'', DE-FC26-02NT15445. Although Gnomon and all five subcontractors completed tasks during these six months, most of the technical experimental work was conducted by the subcontractor, SRI Foundation (SRIF). SRIF created a sensitivity model for the Azotea Mesa area of southeastern New Mexico that rates areas as having a very good chance, a good chance, or a very poor chance of containing cultural resource sites. SRIF suggested that the results of the sensitivity model might influence possible changes in cultural resource management (CRM) practices in the Azote Mesa area of southeastern New Mexico.

  7. Greenhouse Emission Reductions and Natural Gas Vehicles: A Resource Guide on Technology Options and Project Development

    SciTech Connect (OSTI)

    Orestes Anastasia; NAncy Checklick; Vivianne Couts; Julie Doherty; Jette Findsen; Laura Gehlin; Josh Radoff

    2002-09-01

    Accurate and verifiable emission reductions are a function of the degree of transparency and stringency of the protocols employed in documenting project- or program-associated emissions reductions. The purpose of this guide is to provide a background for law and policy makers, urban planners, and project developers working with the many Greenhouse Gas (GHG) emission reduction programs throughout the world to quantify and/or evaluate the GHG impacts of Natural Gas Vehicle (NGVs). In order to evaluate the GHG benefits and/or penalties of NGV projects, it is necessary to first gain a fundamental understanding of the technology employed and the operating characteristics of these vehicles, especially with regard to the manner in which they compare to similar conventional gasoline or diesel vehicles. Therefore, the first two sections of this paper explain the basic technology and functionality of NGVs, but focus on evaluating the models that are currently on the market with their similar conventional counterparts, including characteristics such as cost, performance, efficiency, environmental attributes, and range. Since the increased use of NGVs, along with Alternative Fuel Vehicle (AFVs) in general, represents a public good with many social benefits at the local, national, and global levels, NGVs often receive significant attention in the form of legislative and programmatic support. Some states mandate the use of NGVs, while others provide financial incentives to promote their procurement and use. Furthermore, Federal legislation in the form of tax incentives or procurement requirements can have a significant impact on the NGV market. In order to implement effective legislation or programs, it is vital to have an understanding of the different programs and activities that already exist so that a new project focusing on GHG emission reduction can successfully interact with and build on the experience and lessons learned of those that preceded it. Finally, most programs that deal with passenger vehicles--and with transportation in general--do not address the climate change component explicitly, and thus there are few GHG reduction goals that are included in these programs. Furthermore, there are relatively few protocols that exist for accounting for the GHG emissions reductions that arise from transportation and, specifically, passenger vehicle projects and programs. These accounting procedures and principles gain increased importance when a project developer wishes to document in a credible manner, the GHG reductions that are achieved by a given project or program. Section four of this paper outlined the GHG emissions associated with NGVs, both upstream and downstream, and section five illustrated the methodology, via hypothetical case studies, for measuring these reductions using different types of baselines. Unlike stationary energy combustion, GHG emissions from transportation activities, including NGV projects, come from dispersed sources creating a need for different methodologies for assessing GHG impacts. This resource guide has outlined the necessary context and background for those parties wishing to evaluate projects and develop programs, policies, projects, and legislation aimed at the promotion of NGVs for GHG emission reduction.

  8. Before the House Natural Resources Subcommittee on Energy and Mineral

    Energy Savers [EERE]

    Resources | Department of Energy Natural Resources Subcommittee on Energy and Mineral Resources Before the House Natural Resources Subcommittee on Energy and Mineral Resources Before the House Natural Resources Subcommittee on Energy and Mineral Resources By: Dr. Ray Boswell, Senior Management and Technology Advisor, National Energy Technology Laboratory Subject: Unconventional Fuels, Part II: The Promise of Methane Hydrates PDF icon 7-30-09_Final_Testimony_(Boswell).pdf More Documents &

  9. Property-rights application in utilization of natural resources: the case of Iran's natural gas

    SciTech Connect (OSTI)

    Abghari, M.H.

    1982-01-01

    The concessionaries produce more oil in Iran because of fear of nationalization, lower oil production costs in the Middle East, and more investment opportunities around the globe. This higher discount rate means more oil production and also, more natural gas, a joint product, is produced. Produced natural gas could have been used in the Iranian market, or exported. Low oil prices and high transportation costs of natural gas resulted in the low well-head value of natural gas. The fear of nationalization kept concessionaires from utilizing natural gas in Iran's domestic market. The high transportation costs of natural gas was a negative factor in export utilization. Also, if natural gas, which can be substituted for oil in many uses, were to be utilized, concessionaires would have had to produce less oil. Because oil had a well-established market, it would have been contrary to their interest to leave a lot of oil underground while their concessions ran out. Consequently, they chose to take the oil and flare natural gas. The Iranian government must take responsibility in this matter also. The country's rulers were not concerned with maximizing the country's wealth, but maximizing the security of their regimes, and their personal wealth and pleasure.

  10. Resources for EFRC Researchers | Center for Gas SeparationsRelevant to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Clean Energy Technologies | Blandine Jerome Resources for EFRC Researchers Previous Next List Acknowledgments Guide for CGS Publications Slide3 Slide1 Slide2 EFRC Highlight Slide Slide1 EFRC Talk Templates Slide3 Slide1 Slide2

  11. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; et al

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richnessmore » in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.« less

  12. Benefits of Greenhouse Gas Mitigation on the Supply, Management, and Use of Water Resources in the United States

    SciTech Connect (OSTI)

    Strzepek, K.; Neumann, Jim; Smith, Joel; Martinich, Jeremy; Boehlert, Brent; Hejazi, Mohamad I.; Henderson, Jim; Wobus, Cameron; Jones, Russ; Calvin, Katherine V.; Johnson, D.; Monier, Erwan; Strzepek, J.; Yoon, Jin-Ho

    2014-11-29

    Climate change impacts on water resources in the U.S. are likely to be far-reaching and substantial, because the water sector spans many parts of the economy, from supply and demand for agriculture, industry, energy production, transportation and municipal use to damages from natural hazards. This paper provides impact and damage estimates from five water resource-related models in the CIRA frame work, addressing drought risk, flooding damages, water supply and demand, and global water scarcity. The four models differ in the water system assessed, their spatial scale, and the units of assessment, but together they provide a quantitative and descriptive richness in characterizing water resource sector effects of climate change that no single model can capture. The results also address the sensitivity of these estimates to greenhouse gas emission scenarios, climate sensitivity alternatives, and global climate model selection. While calculating the net impact of climate change on the water sector as a whole may be impractical, because each of the models applied here uses a consistent set of climate scenarios, broad conclusions can be drawn regarding the patterns of change and the benefits of GHG mitigation policies for the water sector. Two key findings emerge: 1) climate mitigation policy substantially reduces the impact of climate change on the water sector across multiple dimensions; and 2) the more managed the water resources system, the more tempered the climate change impacts and the resulting reduction of impacts from climate mitigation policies.

  13. DOE Expedition Discovers the First Gulf of Mexico Resource-Quality Gas Hydrate Deposits

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has established that gas hydrate can and does occur at high saturations within reservoir-quality sands in the Gulf of Mexico.

  14. Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming

    SciTech Connect (OSTI)

    Eckerle, William; Hall, Stephen

    2005-12-30

    In 2002, Gnomon, Inc., entered into a cooperative agreement with the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) for a project entitled, Adaptive Management and Planning Models for Cultural Resources in Oil and Gas Fields in New Mexico and Wyoming (DE-FC26-02NT15445). This project, funded through DOE’s Preferred Upstream Management Practices grant program, examined cultural resource management practices in two major oil- and gas-producing areas, southeastern New Mexico and the Powder River Basin of Wyoming (Figure 1). The purpose of this project was to examine how cultural resources have been investigated and managed and to identify more effective management practices. The project also was designed to build information technology and modeling tools to meet both current and future management needs. The goals of the project were described in the original proposal as follows: Goal 1. Create seamless information systems for the project areas. Goal 2. Examine what we have learned from archaeological work in the southeastern New Mexico oil fields and whether there are better ways to gain additional knowledge more rapidly or at a lower cost. Goal 3. Provide useful sensitivity models for planning, management, and as guidelines for field investigations. Goal 4. Integrate management, investigation, and decision- making in a real-time electronic system. Gnomon, Inc., in partnership with the Wyoming State Historic Preservation Office (WYSHPO) and Western GeoArch Research, carried out the Wyoming portion of the project. SRI Foundation, in partnership with the New Mexico Historic Preservation Division (NMHPD), Statistical Research, Inc., and Red Rock Geological Enterprises, completed the New Mexico component of the project. Both the New Mexico and Wyoming summaries concluded with recommendations how cultural resource management (CRM) processes might be modified based on the findings of this research.

  15. Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Regenauer-Lieb, Klaus; Bunger, Andrew; Chua, Hui Tong; Dyskin, Arcady; Fusseis, Florian; Gaede, Oliver; Jeffrey, Rob; Karrech, Ali; Kohl, Thomas; Liu, Jie; et al

    2015-01-30

    Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stressmore » or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new paradigm for reservoir stimulation by reactivating pre-existing faults at reservoir scale in a reservoir scale aseismic, ductile manner. A side effect of the new “soft” stimulation method is that owing to the design specification of a macroscopic ductile response, the proposed method offers the potential of a safer control over the stimulation process compared to conventional stimulation protocols such as currently employed in shale gas reservoirs.« less

  16. Deep geothermal: The ‘Moon Landing’ mission in the unconventional energy and minerals space

    SciTech Connect (OSTI)

    Regenauer-Lieb, Klaus; Bunger, Andrew; Chua, Hui Tong; Dyskin, Arcady; Fusseis, Florian; Gaede, Oliver; Jeffrey, Rob; Karrech, Ali; Kohl, Thomas; Liu, Jie; Lyakhovsky, Vladimir; Pasternak, Elena; Podgorney, Robert; Poulet, Thomas; Rahman, Sheik; Schrank, Christoph; Trefry, Mike; Veveakis, Manolis; Wu, Bisheng; Yuen, David A.; Wellmann, Florian; Zhang, Xi

    2015-01-30

    Deep geothermal from the hot crystalline basement has remained an unsolved frontier for the geothermal industry for the past 30 years. This poses the challenge for developing a new unconventional geomechanics approach to stimulate such reservoirs. While a number of new unconventional brittle techniques are still available to improve stimulation on short time scales, the astonishing richness of failure modes of longer time scales in hot rocks has so far been overlooked. These failure modes represent a series of microscopic processes: brittle microfracturing prevails at low temperatures and fairly high deviatoric stresses, while upon increasing temperature and decreasing applied stress or longer time scales, the failure modes switch to transgranular and intergranular creep fractures. Accordingly, fluids play an active role and create their own pathways through facilitating shear localization by a process of time-dependent dissolution and precipitation creep, rather than being a passive constituent by simply following brittle fractures that are generated inside a shear zone caused by other localization mechanisms. We lay out a new paradigm for reservoir stimulation by reactivating pre-existing faults at reservoir scale in a reservoir scale aseismic, ductile manner. A side effect of the new “soft” stimulation method is that owing to the design specification of a macroscopic ductile response, the proposed method offers the potential of a safer control over the stimulation process compared to conventional stimulation protocols such as currently employed in shale gas reservoirs.

  17. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power

    SciTech Connect (OSTI)

    Milbrandt, A.; Mann, M.

    2009-02-01

    This paper estimates the quantity of hydrogen that could be produced from coal, natural gas, nuclear, and hydro power by county in the United States. The study estimates that more than 72 million tonnes of hydrogen can be produced from coal, natural gas, nuclear, and hydro power per year in the country (considering only 30% of their total annual production). The United States consumed about 396 million tonnes of gasoline in 2007; therefore, the report suggests the amount of hydrogen from these sources could displace about 80% of this consumption.

  18. Water Treatment in Oil and Gas Production | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Treatment and Reuse in Unconventional Gas Production Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in...

  19. Analysis of Restricted Natural Gas Supply Cases

    Reports and Publications (EIA)

    2004-01-01

    The four cases examined in this study have progressively greater impacts on overall natural gas consumption, prices, and supply. Compared to the Annual Energy Outlook 2004 reference case, the no Alaska pipeline case has the least impact; the low liquefied natural gas case has more impact; the low unconventional gas recovery case has even more impact; and the combined case has the most impact.

  20. Drilling and Production Testing the Methane Hydrate Resource Potential Associated with the Barrow Gas Fields

    SciTech Connect (OSTI)

    Steve McRae; Thomas Walsh; Michael Dunn; Michael Cook

    2010-02-22

    In November of 2008, the Department of Energy (DOE) and the North Slope Borough (NSB) committed funding to develop a drilling plan to test the presence of hydrates in the producing formation of at least one of the Barrow Gas Fields, and to develop a production surveillance plan to monitor the behavior of hydrates as dissociation occurs. This drilling and surveillance plan was supported by earlier studies in Phase 1 of the project, including hydrate stability zone modeling, material balance modeling, and full-field history-matched reservoir simulation, all of which support the presence of methane hydrate in association with the Barrow Gas Fields. This Phase 2 of the project, conducted over the past twelve months focused on selecting an optimal location for a hydrate test well; design of a logistics, drilling, completion and testing plan; and estimating costs for the activities. As originally proposed, the project was anticipated to benefit from industry activity in northwest Alaska, with opportunities to share equipment, personnel, services and mobilization and demobilization costs with one of the then-active exploration operators. The activity level dropped off, and this benefit evaporated, although plans for drilling of development wells in the BGF's matured, offering significant synergies and cost savings over a remote stand-alone drilling project. An optimal well location was chosen at the East Barrow No.18 well pad, and a vertical pilot/monitoring well and horizontal production test/surveillance well were engineered for drilling from this location. Both wells were designed with Distributed Temperature Survey (DTS) apparatus for monitoring of the hydrate-free gas interface. Once project scope was developed, a procurement process was implemented to engage the necessary service and equipment providers, and finalize project cost estimates. Based on cost proposals from vendors, total project estimated cost is $17.88 million dollars, inclusive of design work, permitting, barging, ice road/pad construction, drilling, completion, tie-in, long-term production testing and surveillance, data analysis and technology transfer. The PRA project team and North Slope have recommended moving forward to the execution phase of this project.

  1. Natural Gas Resources of the Greater Green River and Wind River Basins of Wyoming (Assessing the Technology Needs of Sub-economic Resources, Phase I: Greater Green River and Wind river Basins, Fall 2002)

    SciTech Connect (OSTI)

    Boswell, Ray; Douds, Ashley; Pratt, Skip; Rose, Kelly; Pancake, Jim; Bruner, Kathy; Kuuskraa, Vello; Billingsley, Randy

    2003-02-28

    In 2000, NETL conducted a review of the adequacy of the resource characterization databases used in its Gas Systems Analysis Model (GSAM). This review indicated that the most striking deficiency in GSAM’s databases was the poor representation of the vast resource believed to exist in low-permeability sandstone accumulations in western U.S. basins. The model’s databases, which are built primarily around the United States Geological Survey (USGS) 1995 National Assessment (for undiscovered resources), reflected an estimate of the original-gas-inplace (OGIP) only in accumulations designated “technically-recoverable” by the USGS –roughly 3% to 4% of the total estimated OGIP of the region. As these vast remaining resources are a prime target of NETL programs, NETL immediately launched an effort to upgrade its resource characterizations. Upon review of existing data, NETL concluded that no existing data were appropriate sources for its modeling needs, and a decision was made to conduct new, detailed log-based, gas-in-place assessments.

  2. Mineral resources: Timely processing can increase rent revenue from certain oil/gas leases

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    Federal regulations require that onshore oil and gas leases that are subsequently determined to overlie a known geologic structure are to have their rental rates increased. The Bureau of Land Management does not have internal controls that ensure that such rental increases are processed consistently and in a timely manner. Although BLM'S state offices in Colorado and Wyoming generally increased rental rates for leases determined to overlie known geologic structures, these increases were not made in a timely manner during calendar years 1984 and 1985. These delays resulted in lost revenue of $552,614. There were also a few instances in the two states in which the rental rates had not been increased at all, causing an additional revenue loss of at least $15,123.

  3. Oil and Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil and Gas Oil and Gas R&D focus on the use of conventional and unconventional fossil fuels, including associated environmental challenges Contact thumbnail of Business Development Executive John Russell Business Development Executive Richard P. Feynman Center for Innovation (505) 665-3941 Email thumbnail of Business Development Executive Don Hickmott Business Development Executive Richard P. Feynman Center for Innovation (505) 667-8753 Email Los Alamos' efforts in fossil energy R&D

  4. Using Carbon Dioxide to Enhance Recovery of Methane from Gas Hydrate Reservoirs: Final Summary Report

    SciTech Connect (OSTI)

    McGrail, B. Peter; Schaef, Herbert T.; White, Mark D.; Zhu, Tao; Kulkarni, Abhijeet S.; Hunter, Robert B.; Patil, Shirish L.; Owen, Antionette T.; Martin, P F.

    2007-09-01

    Carbon dioxide sequestration coupled with hydrocarbon resource recovery is often economically attractive. Use of CO2 for enhanced recovery of oil, conventional natural gas, and coal-bed methane are in various stages of common practice. In this report, we discuss a new technique utilizing CO2 for enhanced recovery of an unconventional but potentially very important source of natural gas, gas hydrate. We have focused our attention on the Alaska North Slope where approximately 640 Tcf of natural gas reserves in the form of gas hydrate have been identified. Alaska is also unique in that potential future CO2 sources are nearby, and petroleum infrastructure exists or is being planned that could bring the produced gas to market or for use locally. The EGHR (Enhanced Gas Hydrate Recovery) concept takes advantage of the physical and thermodynamic properties of mixtures in the H2O-CO2 system combined with controlled multiphase flow, heat, and mass transport processes in hydrate-bearing porous media. A chemical-free method is used to deliver a LCO2-Lw microemulsion into the gas hydrate bearing porous medium. The microemulsion is injected at a temperature higher than the stability point of methane hydrate, which upon contacting the methane hydrate decomposes its crystalline lattice and releases the enclathrated gas. Small scale column experiments show injection of the emulsion into a CH4 hydrate rich sand results in the release of CH4 gas and the formation of CO2 hydrate

  5. Tight gas reservoirs: A visual depiction

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    Future gas supplies in the US will depend on an increasing contribution from unconventional sources such as overpressured and tight gas reservoirs. Exploitation of these resources and their conversion to economically producible gas reserves represents a major challenge. Meeting this challenge will require not only the continuing development and application of new technologies, but also a detailed understanding of the complex nature of the reservoirs themselves. This report seeks to promote understanding of these reservoirs by providing examples. Examples of gas productive overpressured tight reservoirs in the Greater Green River Basin, Wyoming are presented. These examples show log data (raw and interpreted), well completion and stimulation information, and production decline curves. A sampling of wells from the Lewis and Mesaverde formations are included. Both poor and good wells have been chosen to illustrate the range of productivity that is observed. The second section of this document displays decline curves and completion details for 30 of the best wells in the Greater Green River Basin. These are included to illustrate the potential that is present when wells are fortuitously located with respect to local stratigraphy and natural fracturing, and are successfully hydraulically fractured.

  6. Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource for Project Development

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2002-07-31

    The transportation sector accounts for a large and growing share of global greenhouse gas (GHG) emissions. Worldwide, motor vehicles emit well over 900 million metric tons of carbon dioxide (CO2) each year, accounting for more than 15 percent of global fossil fuel-derived CO2 emissions.1 In the industrialized world alone, 20-25 percent of GHG emissions come from the transportation sector. The share of transport-related emissions is growing rapidly due to the continued increase in transportation activity.2 In 1950, there were only 70 million cars, trucks, and buses on the world’s roads. By 1994, there were about nine times that number, or 630 million vehicles. Since the early 1970s, the global fleet has been growing at a rate of 16 million vehicles per year. This expansion has been accompanied by a similar growth in fuel consumption.3 If this kind of linear growth continues, by the year 2025 there will be well over one billion vehicles on the world’s roads.4 In a response to the significant growth in transportation-related GHG emissions, governments and policy makers worldwide are considering methods to reverse this trend. However, due to the particular make-up of the transportation sector, regulating and reducing emissions from this sector poses a significant challenge. Unlike stationary fuel combustion, transportation-related emissions come from dispersed sources. Only a few point-source emitters, such as oil/natural gas wells, refineries, or compressor stations, contribute to emissions from the transportation sector. The majority of transport-related emissions come from the millions of vehicles traveling the world’s roads. As a result, successful GHG mitigation policies must find ways to target all of these small, non-point source emitters, either through regulatory means or through various incentive programs. To increase their effectiveness, policies to control emissions from the transportation sector often utilize indirect means to reduce emissions, such as requiring specific technology improvements or an increase in fuel efficiency. Site-specific project activities can also be undertaken to help decrease GHG emissions, although the use of such measures is less common. Sample activities include switching to less GHG-intensive vehicle options, such as electric vehicles (EVs) or hybrid electric vehicles (HEVs). As emissions from transportation activities continue to rise, it will be necessary to promote both types of abatement activities in order to reverse the current emissions path. This Resource Guide focuses on site- and project-specific transportation activities. .

  7. Taking Oil & Gas Pumping to a New Level | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Pumping Technology for Unconventional Oil and Gas Wells Jeremy Van Dam 2014.04.16 ... A photo of Jeremy Van Dam. About the Author Jeremy Van Dam Senior Mechanical Engineer ...

  8. Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    The U.S. offshore is estimated to contain substantial resources of both crude oil and natural gas, but until recently some of the areas of the lower 48 states Outer Continental Shelf (OCS) have been under leasing moratoria. The Presidential ban on offshore drilling in portions of the lower 48 OCS was lifted in July 2008, and the Congressional ban was allowed to expire in September 2008, removing regulatory obstacles to development of the Atlantic and Pacific OCS.

  9. Impacts of Increased Access to Oil & Natural Gas Resources in the Lower 48 Federal Outer Continental Shelf (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    This analysis was updated for Annual Energy Outlook 2009 (AEO): Impact of Limitations on Access to Oil and Natural Gas Resources in the Federal Outer Continental Shelf (OCS). The OCS is estimated to contain substantial resources of crude oil and natural gas; however, some areas of the OCS are subject to drilling restrictions. With energy prices rising over the past several years, there has been increased interest in the development of more domestic oil and natural gas supply, including OCS resources. In the past, federal efforts to encourage exploration and development activities in the deep waters of the OCS have been limited primarily to regulations that would reduce royalty payments by lease holders. More recently, the states of Alaska and Virginia have asked the federal government to consider leasing in areas off their coastlines that are off limits as a result of actions by the President or Congress. In response, the Minerals Management Service (MMS) of the U.S. Department of the Interior has included in its proposed 5-year leasing plan for 2007-2012 sales of one lease in the Mid-Atlantic area off the coastline of Virginia and two leases in the North Aleutian Basin area of Alaska. Development in both areas still would require lifting of the current ban on drilling.

  10. Water management technologies used by Marcellus Shale Gas Producers.

    SciTech Connect (OSTI)

    Veil, J. A.; Environmental Science Division

    2010-07-30

    Natural gas represents an important energy source for the United States. According to the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), about 22% of the country's energy needs are provided by natural gas. Historically, natural gas was produced from conventional vertical wells drilled into porous hydrocarbon-containing formations. During the past decade, operators have increasingly looked to other unconventional sources of natural gas, such as coal bed methane, tight gas sands, and gas shales.

  11. Oil shale mining studies and analyses of some potential unconventional uses for oil shale

    SciTech Connect (OSTI)

    McCarthy, H.E.; Clayson, R.L.

    1989-07-01

    Engineering studies and literature review performed under this contract have resulted in improved understanding of oil shale mining costs, spent shale disposal costs, and potential unconventional uses for oil shale. Topics discussed include: costs of conventional mining of oil shale; a mining scenario in which a minimal-scale mine, consistent with a niche market industry, was incorporated into a mine design; a discussion on the benefits of mine opening on an accelerated schedule and quantified through discounted cash flow return on investment (DCFROI) modelling; an estimate of the costs of disposal of spent shale underground and on the surface; tabulation of potential increases in resource recovery in conjunction with underground spent shale disposal; the potential uses of oil shale as a sulfur absorbent in electric power generation; the possible use of spent shale as a soil stabilizer for road bases, quantified and evaluated for potential economic impact upon representative oil shale projects; and the feasibility of co-production of electricity and the effect of project-owned and utility-owned power generation facilities were evaluated. 24 refs., 5 figs., 19 tabs.

  12. Secure Fuels from Domestic Resources - Oil Shale and Tar Sands | Department

    Energy Savers [EERE]

    of Energy Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Secure Fuels from Domestic Resources - Oil Shale and Tar Sands Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development PDF icon Profiles of Companies Engaged in Domestic Oil Shale and Tar Sands Resource and Technology Development More Documents & Publications Oil Shale RD&D Leases in the United States National Strategic Unconventional Resource Model Oil Shale

  13. Natural resources law handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This book covers legal topics ranging from ownership-related issues (including disposition, use and management of privately and publicly-owned lands, resources, minerals and waters) to the protection and maintenance of our nation's natural resources. It contains chapters on oil and gas resources, coal resources, and minerals and mining.

  14. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Development Challenges -

    Office of Environmental Management (EM)

    Water Key Points: * As with conventional oil and gas development, requirements from eight federal (including the Clean Water Act) and numerous state and local environmental and public health laws apply to shale gas and other unconventional oil and gas development. Consequently, the fracturing of wells is a process that is highly engineered, controlled and monitored. * Shale gas operations use water for drilling; water is also the primary component of fracturing fluid. * This water is likely to

  15. Fuel-Induced System Responses The Role Unconventional Fuels May Play in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Altering Exhaust Conditions from Conventional and Low Temperature Modes of Combustion | Department of Energy Fuel-Induced System Responses The Role Unconventional Fuels May Play in Altering Exhaust Conditions from Conventional and Low Temperature Modes of Combustion Fuel-Induced System Responses The Role Unconventional Fuels May Play in Altering Exhaust Conditions from Conventional and Low Temperature Modes of Combustion Fuel properties and low temperature combustion e alters conditions

  16. Singlet-Triplet Excitations in the Unconventional Spin-Peierls TiOBr

    Office of Scientific and Technical Information (OSTI)

    Compound (Journal Article) | SciTech Connect Singlet-Triplet Excitations in the Unconventional Spin-Peierls TiOBr Compound Citation Details In-Document Search Title: Singlet-Triplet Excitations in the Unconventional Spin-Peierls TiOBr Compound Authors: Clancy, J. P. ; Gaulin, B. D. ; Adams, C. P. ; Granroth, G. E. ; Kolesnikov, A. I. ; Sherline, T. E. ; Chou, F. C. Publication Date: 2011-03-18 OSTI Identifier: 1100073 Type: Publisher's Accepted Manuscript Journal Name: Physical Review

  17. USE OF POLYMERS TO RECOVER VISCOUS OIL FROM UNCONVENTIONAL RESERVOIRS

    SciTech Connect (OSTI)

    Randall Seright

    2011-09-30

    This final technical progress report summarizes work performed the project, 'Use of Polymers to Recover Viscous Oil from Unconventional Reservoirs.' The objective of this three-year research project was to develop methods using water soluble polymers to recover viscous oil from unconventional reservoirs (i.e., on Alaska's North Slope). The project had three technical tasks. First, limits were re-examined and redefined for where polymer flooding technology can be applied with respect to unfavorable displacements. Second, we tested existing and new polymers for effective polymer flooding of viscous oil, and we tested newly proposed mechanisms for oil displacement by polymer solutions. Third, we examined novel methods of using polymer gels to improve sweep efficiency during recovery of unconventional viscous oil. This report details work performed during the project. First, using fractional flow calculations, we examined the potential of polymer flooding for recovering viscous oils when the polymer is able to reduce the residual oil saturation to a value less than that of a waterflood. Second, we extensively investigated the rheology in porous media for a new hydrophobic associative polymer. Third, using simulation and analytical studies, we compared oil recovery efficiency for polymer flooding versus in-depth profile modification (i.e., 'Bright Water') as a function of (1) permeability contrast, (2) relative zone thickness, (3) oil viscosity, (4) polymer solution viscosity, (5) polymer or blocking-agent bank size, and (6) relative costs for polymer versus blocking agent. Fourth, we experimentally established how much polymer flooding can reduce the residual oil saturation in an oil-wet core that is saturated with viscous North Slope crude. Finally, an experimental study compared mechanical degradation of an associative polymer with that of a partially hydrolyzed polyacrylamide. Detailed results from the first two years of the project may be found in our first and second annual reports. Our latest research results, along with detailed documentation of our past work, can be found on our web site at http://baervan.nmt.edu/randy/. As an overall summary of important findings for the project, polymer flooding has tremendous potential for enhanced recovery of viscous oil. Fear of substantial injectivity reduction was a primary hurdle that limited application of polymer flooding. However, that concern is largely mitigated by (1) use of horizontal wells and (2) judicious injection above the formation parting pressure. Field cases now exist where 200-300-cp polymer solutions are injected without significant reductions in injectivity. Concern about costs associated with injection of viscous polymer solutions was a second major hurdle. However, that concern is reduced substantially by realization that polymer viscosity increases approximately with the square of polymer concentration. Viscosity can be doubled with only a 40% increase in polymer concentration. Up to a readily definable point, increases in viscosity of the injected polymer solution are directly related to increases in sweep efficiency and oil recovery. Previously published simulation results - suggesting that shear-thinning polymer solutions were detrimental to sweep efficiency - were shown to be unfounded (both theoretically and experimentally).

  18. Unconventional Staging Package Selection Leads to Cost Savings

    SciTech Connect (OSTI)

    ,

    2012-06-07

    In late 2010, U.S. Department of Energy (DOE) Deputy Secretary of Energy, Daniel Poneman, directed that an analysis be conducted on the U-233 steel-clad, Zero Power Reactor (ZPR) fuel plates that were stored at Oak Ridge National Laboratory (ORNL), focusing on cost savings and any potential DOE programmatic needs for the special nuclear material (SNM). The NA-162 Nuclear Criticality Safety Program requested retention of these fuel plates for use in experiments at the Nevada National Security Site (NNSS). A Secretarial Initiative challenged ORNL to make the first shipment to the NNSS by the end of the 2011 calendar year, and this effort became known as the U-233 Project Accelerated Shipping Campaign. To meet the Secretarial Initiative, National Security Technologies, LLC (NSTec), the NNSS Management and Operations contractor, was asked to facilitate the receipt and staging of the U-233 fuel plates in the Device Assembly Facility (DAF). Because there were insufficient staging containers available for the fuel plates, NSTec conducted an analysis of alternatives. The project required a staging method that would reduce the staging footprint while addressing nuclear criticality safety and radiation exposure concerns. To accommodate an intermediate staging method of approximately five years, the NSTec project team determined that a unique and unconventional staging package, the AT-400R, was available to meet the project requirements. By using the AT-400R containers, NSTec was able to realize a cost savings of approximately $10K per container, a total cost savings of nearly $450K.

  19. Unconventional Nuclear Warfare Defense (UNWD) containment and mitigation subtask.

    SciTech Connect (OSTI)

    Wente, William Baker

    2005-06-01

    The objective of this subtask of the Unconventional Nuclear Warfare Design project was to demonstrate mitigation technologies for radiological material dispersal and to assist planners with incorporation of the technologies into a concept of operations. The High Consequence Assessment and Technology department at Sandia National Laboratories (SNL) has studied aqueous foam's ability to mitigate the effects of an explosively disseminated radiological dispersal device (RDD). These benefits include particle capture of respirable radiological particles, attenuation of blast overpressure, and reduction of plume buoyancy. To better convey the aqueous foam attributes, SNL conducted a study using the Explosive Release Atmospheric Dispersion model, comparing the effects of a mitigated and unmitigated explosive RDD release. Results from this study compared health effects and land contamination between the two scenarios in terms of distances of effect, population exposure, and remediation costs. Incorporating aqueous foam technology, SNL created a conceptual design for a stationary containment area to be located at a facility entrance with equipment that could minimize the effects from the detonation of a vehicle transported RDD. The containment design was evaluated against several criteria, including mitigation ability (both respirable and large fragment particle capture as well as blast overpressure suppression), speed of implementation, cost, simplicity, and required space. A mock-up of the conceptual idea was constructed at SNL's 9920 explosive test site to demonstrate the containment design.

  20. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    SciTech Connect (OSTI)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on two general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.

  1. Low-Temperature and Coproduced Resources Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Fact Sheet Low-Temperature and Coproduced Resources Fact Sheet Geothermal waters bubble up to the surface in a natural hot spring. Source: Ted Clutter Geothermal waters bubble up to the surface in a natural hot spring. Source: Ted Clutter Low-temperature and coproduced resources represent a growing sector of development in the geothermal industry. These underutilized resources, considered unconventional below 300°F, are bringing valuable returns on investment in the near-term through

  2. Hypersensitive switching behavior in the Q-phase of unconventional...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: 2016 Annual Postdoc Research Day ; 2016-05-03 - 2016-05-03 ; LOS ALAMOS, New Mexico, United States Research Org: Los Alamos National Laboratory ...

  3. Variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource

    SciTech Connect (OSTI)

    Goldsberry, F.L.

    1982-03-01

    A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

  4. Improving the Availability and Delivery of Critical Information for Tight Gas Resource Development in the Appalachian Basin

    SciTech Connect (OSTI)

    Mary Behling; Susan Pool; Douglas Patchen; John Harper

    2008-12-31

    To encourage, facilitate and accelerate the development of tight gas reservoirs in the Appalachian basin, the geological surveys in Pennsylvania and West Virginia collected widely dispersed data on five gas plays and formatted these data into a large database that can be accessed by individual well or by play. The database and delivery system that were developed can be applied to any of the 30 gas plays that have been defined in the basin, but for this project, data compilation was restricted to the following: the Mississippian-Devonian Berea/Murrysville sandstone play and the Upper Devonian Venango, Bradford and Elk sandstone plays in Pennsylvania and West Virginia; and the 'Clinton'/Medina sandstone play in northwestern Pennsylvania. In addition, some data were collected on the Tuscarora Sandstone play in West Virginia, which is the lateral equivalent of the Medina Sandstone in Pennsylvania. Modern geophysical logs are the most common and cost-effective tools for evaluating reservoirs. Therefore, all of the well logs in the libraries of the two surveys from wells that had penetrated the key plays were scanned, generating nearly 75,000 scanned e-log files from more than 40,000 wells. A standard file-naming convention for scanned logs was developed, which includes the well API number, log curve type(s) scanned, and the availability of log analyses or half-scale logs. In addition to well logs, other types of documents were scanned, including core data (descriptions, analyses, porosity-permeability cross-plots), figures from relevant chapters of the Atlas of Major Appalachian Gas Plays, selected figures from survey publications, and information from unpublished reports and student theses and dissertations. Monthly and annual production data from 1979 to 2007 for West Virginia wells in these plays are available as well. The final database also includes digitized logs from more than 800 wells, sample descriptions from more than 550 wells, more than 600 digital photos in 1-foot intervals from 11 cores, and approximately 260 references for these plays. A primary objective of the research was to make data and information available free to producers through an on-line data delivery model designed for public access on the Internet. The web-based application that was developed utilizes ESRI's ArcIMS GIS software to deliver both well-based and play-based data that are searchable through user-originated queries, and allows interactive regional geographic and geologic mapping that is play-based. System tools help users develop their customized spatial queries. A link also has been provided to the West Virginia Geological Survey's 'pipeline' system for accessing all available well-specific data for more than 140,000 wells in West Virginia. However, only well-specific queries by API number are permitted at this time. The comprehensive project web site (http://www.wvgs.wvnet.edu/atg) resides on West Virginia Geological Survey's servers and links are provided from the Pennsylvania Geological Survey and Appalachian Oil and Natural Gas Research Consortium web sites.

  5. Geothermal Energy Production from Low Temperature Resources,...

    Open Energy Info (EERE)

    Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Jump to: navigation, search Geothermal ARRA Funded...

  6. California PRC Section 6903, Definitions for Geothermal Resources...

    Open Energy Info (EERE)

    Resources Act, as provided by the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources: "For the purposes of this chapter, 'geothermal resources'...

  7. completed-ng-projects | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Completed Natural Gas and Unconventional Resources Projects DE-FE0001175 Targeted Technology Transfer for Oil and Natural Gas Petroleum Technology Transfer Council...

  8. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  9. Heavy fermions, quantum criticality, and unconventional superconductivity in filled skutterudites and related materials

    SciTech Connect (OSTI)

    Andraka, Bohdan

    2015-05-14

    The main goal of this program was to explore the possibility of novel states and behaviors in Pr-based system exhibiting quantum critical behavior, PrOs?Sb??. Upon small changes of external parameter, such as magnetic field, physical properties of PrOs?Sb?? are drastically altered from those corresponding to a superconductor, to heavy fermion, to field-induced ordered phase with primary quadrupolar order parameter. All these states are highly unconventional and not understood in terms of current theories thus offer an opportunity to expand our knowledge and understanding of condensed matter. At the same time, these novel states and behaviors are subjects to intense international controversies. In particular, two superconducting phases with different transition temperatures were observed in some samples and not observed in others leading to speculations that sample defects might be partially responsible for these exotic behaviors. This work clearly established that crystal disorder is important consideration, but contrary to current consensus this disorder suppresses exotic behavior. Superconducting properties imply unconventional inhomogeneous state that emerges from unconventional homogeneous normal state. Comprehensive structural investigations demonstrated that upper superconducting transition is intrinsic, bulk, and unconventional. The high quality of in-house synthesized single crystals was indirectly confirmed by de Haas-van Alphen quantum oscillation measurements. These measurements, for the first time ever reported, spanned several different phases, offering unprecedented possibility of studying quantum oscillations across phase boundaries.

  10. The National Response Plan and the Problems in the Evaluation and Assessment of the Unconventional Modes of Terrorism

    SciTech Connect (OSTI)

    LeMone, David V.; Gibbs, Shawn G.; Winston, John W. Jr.

    2006-07-01

    In the wake of the events of 9/11, a presidential mandate ordered the development of a master plan to enable governmental agencies to not only seamlessly cooperate but also rapidly react to disasters. The National Response Plan (NRP) is the document in force (December 2004). It was developed to provide a framework for response to catastrophic events whether those events are natural or man-made. Homeland Security, the coordinating entity, is an integral and critical part of that plan. The NRP is a direct outgrowth of the Initial National Response Plan and operates in tandem with the National Incident Management System (NIMS). NIMS was the first real attempt to amalgamate the capabilities and resources of some 22 governmental entities, non-governmental organizations (NGOs), and the private sector. The effectiveness of this system's response to natural disasters has been tested with reference to its performance during the 2005 late summer-early fall series of catastrophic hurricanes (Katrina, Rita, and Wilma). Ongoing evaluation of the response by the system indicates that there are significant lessons to be learned from system errors that occurred from the federal to local levels of government. Nevertheless, the conclusion would seem to be that Homeland Security's organizational structure of NIMS combined with protocols developed in the NRP represents an excellent response to both natural and man-made catastrophes. The lessons learned in these natural occurrences (chain of command failures and missteps from first responders to national level, periodic inaccurate and irresponsible news reporting, evacuation capabilities, quarantine problems, etc.) are directly applicable to potential man-made disaster events. In the yet largely untested areas of man-made disasters, the NRP document forms the basis for responding to terrorism as well as accidental man-made related incidents. There are two major categories of terrorism: conventional and unconventional. Conventional terrorism would include such acts as: assassination, kidnapping, hostage taking, non-nuclear explosive devices, etc. The two NRP categories of catastrophic events and oil and hazardous materials contain sections considered to be in the area of conventional terrorism. Of potentially greater immediate concern are the four major modes of unconventional terrorism that are recognized: cyber-, biological (including agro-), chemical, and nuclear. The problem is to arrive at a mutually agreed upon order of importance of both conventional and unconventional terrorism categories. Consequent ranking of these modes enables the prioritization of those areas in which our limited national human and financial resources are to be expended and allocated (funding of research and development, commitment and selection of personnel, costs distribution, operational time-frame, information distribution level, etc.). Ranking of the terror modes will at best be difficult because of a lack of understanding of the potential impacts of each mode as well as the inherent vested bureaucratic and non-bureaucratic interests and biases. All cases of radiation-related incidents may be considered to be manmade with a potentially significant majority of those incidents assigned to a terrorism origin. Man-made accidental occurrences would be handled with a similar NRP response as would be expected in the case of a terrorist event. Radiation-related devices include the RDDs (Radioactive Dispersal Devices) and nuclear fission and fusion weapons of mass destruction (WMD). Pragmatically, the most likely scenario to develop would involve RDD utilization. This conclusion would seem to be reasonable in view of the current apparent capabilities and sophistication required to construct, transport, and deliver a nuclear WMD. (authors)

  11. The Canoe Ridge Natural Gas Storage Project

    SciTech Connect (OSTI)

    Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

    2003-06-18

    In 1999 the Pacific Gas and Electric Gas Transmission Northwest (GTN) drilled a borehole to investigate the feasibility of developing a natural gas-storage facility in a structural dome formed in Columbia River basalts in the Columbia Basin of south-central Washington State. The proposed aquifer storage facility will be an unconventional one where natural gas will be initially injected (and later retrieved) in one or multiple previous horizons (interflow zones) that are confined between deep (>700 meters) basalt flows of the Columbia River Basalt Group. This report summarizes the results of joint investigations on that feasibility study by GTN and the US Department of Energy.

  12. Sixty-sixth annual report of the state oil and gas supervisor

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report contains tabulated oil and gas statistics compiled during 1980 in California. On-shore and off-shore oil production, gas production, reserves, drilling activity, enhanced recovery activity, unconventional heavy oil recovery, geothermal operations and financial data are reported. (DMC)

  13. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    SciTech Connect (OSTI)

    Vimmerstedt, Laura; Brown, Austin; Newes, Emily; Markel, Tony; Schroeder, Alex; Zhang, Yimin; Chipman, Peter; Johnson, Shawn

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  14. Geohydrologic feasibility study of the Piceance Basin of Colorado for the potential applicability of Jack W. McIntyre`s patented gas/produced water separation process

    SciTech Connect (OSTI)

    Kieffer, F.

    1994-02-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Piceance Basin through literature surveys. Jack McIntyre`s tool separates produced water from gas and disposes of the water downhole into aquifers unused because of poor water quality, uneconomic lifting costs or poor aquifer deliverability. The beneficial aspects of this technology are two fold. The process increases the potential for recovering previously uneconomic gas resources by reducing produced water lifting, treatment and disposal costs. Of greater importance is the advantage of lessening the environmental impact of produced water by downhole disposal. Results from the survey indicate that research in the Piceance Basin includes studies of the geologic, hydrogeologic, conventional and unconventional recovery oil and gas technologies. Available information is mostly found centered upon the geology and hydrology for the Paleozoic and Mesozoic sediments. Lesser information is available on production technology because of the limited number of wells currently producing in the basin. Limited information is available on the baseline geochemistry of the coal/sand formation waters and that of the potential disposal zones. No determination was made of the compatibility of these waters. The study also indicates that water is often produced in variable quantities with gas from several gas productive formations which would indicate that there are potential applications for Jack McIntyre`s patented tool in the Piceance Basin.

  15. Hydrogen Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Hydrogen Resources Hydrogen can be produced from diverse, domestic resources. Currently, most hydrogen is produced from fossil fuels, specifically natural gas. Electricity-from the grid or from renewable sources such as wind, solar, geothermal, or biomass-is also currently used to produce hydrogen. In the longer term, solar energy and biomass can be used more directly to generate hydrogen. Natural Gas and Other Fossil Fuels Fossil fuels can be reformed to release the hydrogen from

  16. California Department of Conservation, Division of Oil, Gas,...

    Open Energy Info (EERE)

    Conservation, Division of Oil, Gas, and Geothermal Resources Jump to: navigation, search Name: California Department of Conservation, Division of Oil, Gas, and Geothermal Resources...

  17. Colorado Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public...

  18. Colorado Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    gas natural resources. Responsible development results in: The efficient exploration and production of oil and gas resources in a manner consistent with the protection of public...

  19. Natural Gas Weekly Update

    Gasoline and Diesel Fuel Update (EIA)

    oil and gas resources will be necessary even as efficiency improvements reduce demand and renewable sources become more available. In order to retain public trust environmentally...

  20. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Inventory of Onshore Federal Lands' Oil and Gas Resources and the Extent and Nature of Restrictions or Impediments to Their Development. The report, which was...

  1. Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Reagan, Matthew T.; Moridis, George J.; Keen, Noel D.; Johnson, Jeffrey N.

    2015-04-18

    Hydrocarbon production from unconventional resources and the use of reservoir stimulation techniques, such as hydraulic fracturing, has grown explosively over the last decade. However, concerns have arisen that reservoir stimulation creates significant environmental threats through the creation of permeable pathways connecting the stimulated reservoir with shallower freshwater aquifers, thus resulting in the contamination of potable groundwater by escaping hydrocarbons or other reservoir fluids. This study investigates, by numerical simulation, gas and water transport between a shallow tight-gas reservoir and a shallower overlying freshwater aquifer following hydraulic fracturing operations, if such a connecting pathway has been created. We focus on twomore » general failure scenarios: (1) communication between the reservoir and aquifer via a connecting fracture or fault and (2) communication via a deteriorated, preexisting nearby well. We conclude that the key factors driving short-term transport of gas include high permeability for the connecting pathway and the overall volume of the connecting feature. Production from the reservoir is likely to mitigate release through reduction of available free gas and lowering of reservoir pressure, and not producing may increase the potential for release. We also find that hydrostatic tight-gas reservoirs are unlikely to act as a continuing source of migrating gas, as gas contained within the newly formed hydraulic fracture is the primary source for potential contamination. Such incidents of gas escape are likely to be limited in duration and scope for hydrostatic reservoirs. Reliable field and laboratory data must be acquired to constrain the factors and determine the likelihood of these outcomes.« less

  2. fe0013689-WVU | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessing Fugitive Methane Emissions Using Natural Gas Engines in Unconventional Resource Development Last Reviewed 1212015 DE-FE0013689 Goal The project goal is to create an...

  3. Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology (EPAct...

  4. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    safety and minimizing the environmental impacts of activities related to unconventional natural gas and other petroleum resource exploration and production technology (EPAct...

  5. ultra_deepwater | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    commercial application of technologies for ultra-deepwater and unconventional natural gas and other petroleum resource exploration and production to maximize the value of U.S....

  6. Microsoft Word - 10121-4502-01 - Final Report - 9-21-14

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for the project is provided through the "Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program" authorized by the...

  7. de-fe0010808-uta | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the lower 48 states will come from unconventional resources-shales, low permeability sands, and heavy oil. Production of virtually all the oil and gas from...

  8. rpsea | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    programmatic research and development activities pertaining to the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program. In May 2006, RPSEA was...

  9. 2007 Annual Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Plan More Documents & Publications 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program...

  10. Meeting Our Partners in Saudi Arabia and U.S. Military Forces...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    about their work around vehicle emissions, engine efficiency, energy use modeling, unconventional gas development and enhanced imaging tools for resource mapping, much of...

  11. NREL: Energy Analysis: Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment NREL has developed maps and tools to conduct renewable energy resource assessments at the state, national and international level. Around the world, interest is growing in renewable energy as a strategy to mitigate greenhouse gas emissions and increase energy security. The starting point for new renewable energy projects is a characterization of the renewable resources available across a region, a resource assessment. NREL uses geospatial data sets to identify regions that

  12. South Dakota Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    development in South Dakota related to the exploration and development of oil and gas resources. References "South Dakota Department of Natural Resources" Retrieved...

  13. DOE-Sponsored Project to Study Shale Gas Production | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Study Shale Gas Production DOE-Sponsored Project to Study Shale Gas Production June 26, 2015 - 8:55am Addthis The Department of Energy's National Energy Technology Laboratory (NETL) and its partners, West Virginia University (WVU), Northeast Natural Energy (NNE), and The Ohio State University, are moving forward on a project to monitor the process and progress of unconventional gas production at a Marcellus Shale well near Morgantown, WV. The Marcellus Shale Energy and Environmental

  14. Marketing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expand Utility Resources News & Events Expand News & Events Skip navigation links Marketing Resources Marketing Portal Reports, Publications, and Research Utility Toolkit...

  15. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    SciTech Connect (OSTI)

    Hofstetter, Jasmin; del Cańizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled to effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.

  16. Material requirements for the adoption of unconventional silicon crystal and wafer growth techniques for high-efficiency solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hofstetter, Jasmin; del Cañizo, Carlos; Wagner, Hannes; Castellanos, Sergio; Buonassisi, Tonio

    2015-10-15

    Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer-growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect-management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled tomore » effective control of fast-diffusing species during cell processing, is critical to enable high cell efficiencies. As a result, to accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection-dependent lifetime measurements.« less

  17. Multi-scale Detection of Organic and Inorganic Signatures Provides Insights into Gas Shale Properties and Evolution

    SciTech Connect (OSTI)

    Bernard, S.; Horsfield, B; Schultz, H; Schreiber, A; Wirth, R; Thi AnhVu, T; Perssen, F; Konitzer, S; Volk, H; et. al.

    2010-01-01

    Organic geochemical analyses, including solvent extraction or pyrolysis, followed by gas chromatography and mass spectrometry, are generally conducted on bulk gas shale samples to evaluate their source and reservoir properties. While organic petrology has been directed at unravelling the matrix composition and textures of these economically important unconventional resources, their spatial variability in chemistry and structure is still poorly documented at the sub-micrometre scale. Here, a combination of techniques including transmission electron microscopy and a synchrotron-based microscopy tool, scanning transmission X-ray microscopy, have been used to characterize at a multiple length scale an overmature organic-rich calcareous mudstone from northern Germany. We document multi-scale chemical and mineralogical heterogeneities within the sample, from the millimetre down to the nanometre-scale. From the detection of different types of bitumen and authigenic minerals associated with the organic matter, we show that the multi-scale approach used in this study may provide new insights into gaseous hydrocarbon generation/retention processes occurring within gas shales and may shed new light on their thermal history.

  18. Shale gas is natural gas trapped inside

    Energy Savers [EERE]

    Shale gas is natural gas trapped inside formations of shale - fine grained sedimentary rocks that can be rich sources of petroleum and natural gas. Just a few years ago, much of this resource was considered uneconomical to produce. But Office of Fossil Energy (FE) research helped refine cost-effective horizontal drilling and hydraulic fracturing technologies, protective environmental practices and data development, making hundreds of trillions of cubic feet of gas technically recoverable where

  19. EIA - Analysis of Natural Gas Exploration & Reserves

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Exploration & Reserves 2009 U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves 2008 Annual Report Categories: Resources & Reserves (Released, 10292009, PDF, XLS, and...

  20. World Shale Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deputy Administrator The U.S. has experienced a rapid increase in natural gas and oil production from shale and other tight resources 2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0...

  1. Feed Resource Recovery | Open Energy Information

    Open Energy Info (EERE)

    search Name: Feed Resource Recovery Place: Wellesley, Massachusetts Product: Start-up planning to convert waste to fertilizer and biomethane gas. Coordinates: 42.29776,...

  2. CONTENTS Gas Hydrate Assessment in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gas Hydrate Assessment in the Northern Gulf of Mexico: Preliminary Results Reveal New Prospects .........................................1 A Global Review of Gas Hydrate Resource Potential ........................5 Prospecting for Gas Hydrate Resources .........................................9 Announcements ...................... 14 * AGU Technical Sessions on Methane Hydrates * Ninth International Methane Hydrate Workshop in Hyderabad, India * Gulf of Mexico JIP Leg II Well Logs Available

  3. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public...

  4. Teacher Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teachers » Teacher Resources Teacher Resources The Bradbury Science Museum offers teacher resources for your visit. Scavenger Hunts Scavenger Hunt (pdf) Scavenger Hunt Key (pdf) Bradbury Science Museum newsletter The current issue can be found at the Newsletter page. Los Alamos Teachers' Resource Book Informal educators throughout the Los Alamos School District gather periodically to share ideas and collaborate. We have assembled a collection of flyers about our programs that serve classroom

  5. Resources - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0 Resources Hero.jpg Resources Research Introduction Thrusts Library Resources Research Introduction Why Solar Fuels? Goals & Objectives Thrusts Thrust 1 Thrust 2 Thrust 3 Thrust 4 Library Publications Research Highlights Videos Resources User Facilities Expert Team Benchmarking Database Device Simulation Tool XPS Spectral Database JCAP offers a number of databases and simulation tools for solar-fuel generator researchers and developers. User Facilities Expert Team solarfuels1.jpg

  6. Oil & Gas Research | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to produce. Fugitive Emissions | Produced Water Management | Subsurface Fluid & Gas Migration | Induced Seismicity Offshore Resources Building the scientific understanding and...

  7. Unconventional minimal subtraction and Bogoliubov-Parasyuk-Hepp-Zimmermann method: Massive scalar theory and critical exponents

    SciTech Connect (OSTI)

    Carvalho, Paulo R. S.; Leite, Marcelo M.

    2013-09-15

    We introduce a simpler although unconventional minimal subtraction renormalization procedure in the case of a massive scalar ??{sup 4} theory in Euclidean space using dimensional regularization. We show that this method is very similar to its counterpart in massless field theory. In particular, the choice of using the bare mass at higher perturbative order instead of employing its tree-level counterpart eliminates all tadpole insertions at that order. As an application, we compute diagrammatically the critical exponents ? and ? at least up to two loops. We perform an explicit comparison with the Bogoliubov-Parasyuk-Hepp-Zimmermann (BPHZ) method at the same loop order, show that the proposed method requires fewer diagrams and establish a connection between the two approaches.

  8. Transport in unconventional superconductors: Application to liquid {sup 3}He in aerogel

    SciTech Connect (OSTI)

    Einzel, Dietrich; Parpia, Jeevak M.

    2005-12-01

    We consider quite generally the transport of energy and momentum in unconventional superconductors and Fermi superfluids to which both impurity scattering (treated within the t-matrix approximation) and inelastic scattering contributes. A new interpolation scheme for the temperature dependence of the transport parameters is presented which preserves all analytical results available for T{yields}0 and T{yields}T{sub c} and allows for a particularly transparent physical representation of the results. The two scattering processes are combined using Matthiessen's rule coupling. This procedure is applied for the first time to {sup 3}He-B in aerogel. Here, at the lowest temperatures, a universal ratio of the thermal conductivity and the shear viscosity is found in the unitary limit, which is akin to the Wiedemann-Franz law.

  9. Transportation Infrastructure Requirement Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Requirement Resources Transportation Infrastructure Requirement Resources Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992, though they are also entitled to choose a petroleum reduction path as an alternative to the mandate. Find infrastructure requirement resources below. DOE Resource Alternative Fuels Data Center: Natural Gas Fueling Infrastructure Development. Other Resource National

  10. Natural Gas Treatment and Fuel Gas Conditioning: Membrane Technology

    Office of Science (SC) Website

    Applied to New Gas Finds | U.S. DOE Office of Science (SC) Natural Gas Treatment and Fuel Gas Conditioning: Membrane Technology Applied to New Gas Finds Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) SBIR/STTR Home About Funding Opportunity Announcements (FOAs) Applicant and Awardee Resources Commercialization Assistance Other Resources Awards SBIR/STTR Highlights Reporting Fraud Contact Information Small Business Innovation Research and Small

  11. 2010 Annual Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Plan 2010 Annual Plan PDF icon Section 999: 2010 Annual Plan More Documents & Publications 2010 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2009 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2009 Annual Plan

  12. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment » Environmental Stewardship » Subcontactor Resources Subcontractor Resources We make it easy for you to work for Environmental Programs. Contact Environmental Programs Directorate Office (505) 606-2337 Points of Contact Subcontracts Manager Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge request form (docx) Injury illness card (pdf) Laboratory

  13. Business resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business resources Business resources Setting new standards and small business initiatives within NNSA that will contribute to developing and strengthening our strategic partners for national security challenges. Contact Small Business Office (505) 667-4419 Email Broaden your market-find more resources with other labs, organizations LANL encourages business owners to fully research the Laboratory and to also market their services and products to other businesses, small business programs of other

  14. Additional Resources

    Broader source: Energy.gov [DOE]

    The following resources are focused on Federal new construction and major renovation projects, sustainable construction, and the role of renewable energy technologies in such facilities. These...

  15. Subcontractor Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Robin Reynolds Badging LANL TRU Program (LTP) - Mary Thronas Corrective Actions Program (CAP) - Tammie Fredenburg Records Debi Guffee Training Lisarae Lattin Resources Badge...

  16. Pore-scale mechanisms of gas flow in tight sand reservoirs

    SciTech Connect (OSTI)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.; Nico, P.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at which the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.

  17. Global Natural Gas Market Trends, 2. edition

    SciTech Connect (OSTI)

    2007-07-15

    The report provides an overview of major trends occurring in the natural gas industry and includes a concise look at the drivers behind recent rapid growth in gas usage and the challenges faced in meeting that growth. Topics covered include: an overview of Natural Gas including its history, the current market environment, and its future market potential; an analysis of the overarching trends that are driving a need for change in the Natural Gas industry; a description of new technologies being developed to increase production of Natural Gas; an evaluation of the potential of unconventional Natural Gas sources to supply the market; a review of new transportation methods to get Natural Gas from producing to consuming countries; a description of new storage technologies to support the increasing demand for peak gas; an analysis of the coming changes in global Natural Gas flows; an evaluation of new applications for Natural Gas and their impact on market sectors; and, an overview of Natural Gas trading concepts and recent changes in financial markets.

  18. Facilities, Partnerships, and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities, Partnerships, and Resources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  19. Distributed Energy Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Resources - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  20. Health and environmental effects of oil and gas technologies: research needs

    SciTech Connect (OSTI)

    Brown, R. D.

    1981-07-01

    This report discusses health and environmental issues associated with oil and gas technologies as they are currently perceived - both those that exist and those that are expected to emerge over the next two decades. The various sections of this report contain discussions of specific problem areas and relevant new research activities which should be pursued. This is not an exhaustive investigation of all problem areas, but the report explores a wide range of issues to provide a comprehensive picture of existing uncertainties, trends, and other factors that should serve as the focus of future research. The problem areas of major concern include: effects of drilling fluids, offshore accidents, refineries and worker health, and biota and petroleum spills, indoor air pollution, information transfer, and unconventional resources. These are highlighted in the Executive Summary because they pose serious threats to human health and the environment, and because of the sparcity of accumulated knowledge related to their definition. Separate abstracts have been prepared for selected sections of this report for inclusion in the Energy Data Base. (DMC)

  1. Alaskan Natural Gas Pipeline Developments (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01

    The Annual Energy Outlook 2007 reference case projects that an Alaska natural gas pipeline will go into operation in 2018, based on the Energy Information Administration's current understanding of the projects time line and economics. There is continuing debate, however, about the physical configuration and the ownership of the pipeline. In addition, the issue of Alaskas oil and natural gas production taxes has been raised, in the context of a current market environment characterized by rising construction costs and falling natural gas prices. If rates of return on investment by producers are reduced to unacceptable levels, or if the project faces significant delays, other sources of natural gas, such as unconventional natural gas production and liquefied natural gas imports, could fulfill the demand that otherwise would be served by an Alaska pipeline.

  2. Archaeological Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Archaeological Resources Archaeological Resources Our environmental stewardship commitment: we will cleanup the past, minimize impacts for current environmental operations, and create a sustainable future. April 12, 2012 Nake'muu Standing and previously collapsed walls at Nake'muu - note the window opening in the wall in the forefront of the photograph. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The results of the

  3. Online Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Online Resources Fusion and Plasma Physics Fusion Energy Education FuseEdWeb: Fusion Energy Education A Webby-award-winning site sponsored by LLNL and the Princeton Plasma Physics Laboratory with information and links to the world of fusion and plasma physics. General Atomics Fusion Education General Atomics Fusion Education Fusion education resources for teachers and students from General Atomics. Lasers and Photon Science Optics for Kids Optics 4 Kids Learn about optics-the "science of

  4. Title 20 AAC 25.705-.740 Geothermal Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    ResourcesLegal Abstract Title 20 of the Alaska Administrative Code Chapter 25, Alaska Oil and Gas Conservation Commission Article 7, Geothermal Resources, Sections 705-740....

  5. North American Natural Gas Markets

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group's findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  6. Arkansas Oil and Gas Commission | Open Energy Information

    Open Energy Info (EERE)

    Oil and Gas Commission Jump to: navigation, search Name: Arkansas Oil and Gas Commission Address: 301 Natural Resources Dr. Ste 102 Place: Arkansas Zip: 72205 Website:...

  7. NATURAL RESOURCES ASSESSMENT

    SciTech Connect (OSTI)

    D.F. Fenster

    2000-12-11

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this report, but are planned to be included in the hydrology section of future revisions of the ''Yucca Mountain Site Description'' (CRWMS M&O 2000c).

  8. Texture evolution in Fe-3% Si steel treated under unconventional annealing conditions

    SciTech Connect (OSTI)

    Stoyka, Vladimir; Kovac, Frantisek; Stupakov, Oleksandr; Petryshynets, Ivan

    2010-11-15

    The present work investigates texture evolution stages in grain-oriented steel heat-treated using unconventional conditions. The Fe-3%Si steel taken after final cold rolling reduction from an industrial line was subjected to a laboratory isothermal annealing at different temperatures. The annealing temperatures were varied in a range of 850-1150 deg. C. During the annealing each specimen was heated at 10 deg. C/s and kept at the stated temperature for 5 min. Development of microstructure and texture in the annealed specimens were followed by the DC measurements of magnetic properties. The grain oriented steel, taken from the same industrial line after final box annealing was also analyzed and compared with the laboratory annealed specimens. It was shown that there is an optimal temperature region that, with combination of a fast heating rate, led to the best conditions of a drastically reduced development time of the {l_brace}110{r_brace} < 001 > crystallographic texture in the cold rolled grain-oriented steel. Materials heat treated below the optimum temperature region account for a primary recrystallization, while applying heat above this region leads to a secondary recrystallization without abnormal grain growth. Moreover, in the optimum temperature range, there was a particular temperature leading to the most optimal microstructure and texture. The magnetic properties, measured after the optimal heat treatment, were close to that measured on specimens taken after the final box annealing. The electron back scattered diffraction measurement technique revealed that sharpness of the {l_brace}110{r_brace} < 001 > crystallographic texture, developed at the optimum temperature is comparable to the steel taken after the industrial final box annealing. This fact is evidence that there is a temperature where the abnormal grain growth proceeds optimally.

  9. Unconventional states and geometric effects in mesoscopic systems of ultra-cold atomic Fermi gases

    SciTech Connect (OSTI)

    Bolech, C. J.

    2014-10-15

    During the last decade, experiments all over the world started to test the superconducting state of matter using a newly developed mesoscopic tunable system: trapped ultra-cold atomic gases. Theorists and experimentalists hand-in-hand are now able to advance our understanding of the superconducting state by asking new questions that probe further into the physical mechanisms underlying the phenomenon and the door is open to the exploration of exotic unconventional superconducting states. In particular, a series of experiments on systems of trapped cold atomic gases were aimed at studying the effects of polarization on superconducting pairing. Two different experimental groups encountered surprising qualitative and quantitative discrepancies which seemed to be a function of the confining geometry and the cooling protocol. Our numerical studies demonstrate a tendency towards metastability and suggest an explanation for the observed discrepancy. From our calculations, the most likely solution which is consistent with the experiments supports a state strikingly similar to the so called FFLO state (after Ferrell, Fulde, Larkin and Ovchinnikov), which had been theorized long ago but eluded detection so far. Moreover, the three-dimensional scenario described above is reminiscent of predictions for one-dimensional systems of dilute polarized attractive gases and another set of ultra-cold-atom experiments incorporates optical lattices to study this reduced-dimensionality setting. The measurements are in quantitative agreement with theoretical calculations (using a wide array of numerical and analytic techniques) in which a partially polarized phase is found to be the one-dimensional analogue of the FFLO state. Moreover, exploring the dimensional-crossover regime, our latest findings indicate that the mesoscopic nature of these quasi-one-dimensional systems favors the appearance of a new type of Mott phase transition involving an emergent pair-superfluid of equal-spin fermions.

  10. Training Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Learning and Workforce Development » Training Resources Training Resources Training Resources Type Training Resources

  11. Alternative Fuels Data Center: Natural Gas

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Vehicles » Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Natural Gas on Google Bookmark Alternative Fuels Data Center: Natural Gas on Delicious Rank Alternative Fuels Data Center: Natural Gas on Digg Find More places to share Alternative Fuels Data

  12. Alternative Fuels Data Center: Natural Gas Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Vehicles to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Vehicles on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Vehicles on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Google Bookmark Alternative Fuels Data Center: Natural Gas Vehicles on Delicious Rank Alternative Fuels Data Center: Natural Gas Vehicles on Digg Find

  13. Hydrothermal Resources Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This constitutes the majority of current global geothermal resource developments. Low-Temperature Resources Low-temperature resources are hydrothermal resources with temperatures ...

  14. Geothermal Power/Oil & Gas Coproduction Opportunity

    SciTech Connect (OSTI)

    DOE

    2012-02-01

    Coproduced geothermal resources can deliver near-term energy savings, diminish greenhouse gas emissions, extend the economic life of oil and gas fields, and profitably utilize oil and gas field infrastructure. This two-pager provides an overview of geothermal coproduced resources.

  15. untitled

    Broader source: Energy.gov (indexed) [DOE]

    Unconventional Resources Technology Advisory Committee (URTAC) Meeting January 29, 2008 Meeting Minutes July 2, 2008 A Federal Advisory Committee to the U.S. Secretary of Energy 2 A Federal Advisory Committee to the U.S. Secretary of Energy 3 Unconventional Resources Technology Advisory Committee January 29, 2008 Meeting Minutes Crowne Plaza Houston North Greenspoint, Houston, Texas Introduction and DOE Oil and Natural Gas Programs At 8:00 a.m., Mr. Guido DeHoratiis called the Unconventional

  16. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Broader source: Energy.gov [DOE]

    Domestic natural gas production was largely stagnant from the mid-1970s until about 2005. However, beginning in the late 1990s, advances linking horizontal drilling techniques with hydraulic fracturing allowed drilling to proceed in shale and other formations at much lower cost. The result was a slow, steady increase in unconventional gas production. The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset from the wider dialogue on natural gas; regarding the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity; existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and changes in response to the rapid industry growth and public concerns; natural gas production companies changing their water-related practices; and demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years.

  17. Statement by Guido DeHoratiis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will only address a subset of unconventional resources: shale gas, tight gas, shale oil, and tight oil, and a robust Federal research and development (R&D) plan is...

  18. Anthony V. Cugini Director, National Energy Technology Laboratory

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the safe and responsible development of the Nation's unconventional oil and natural gas resources. As you know, since 2008, U.S. oil and natural gas production has increased...

  19. Before the Subcommittees on Energy and Environment- House Committee on Science, Space, and Technology

    Broader source: Energy.gov [DOE]

    Subject: Interagency Working Group to Support Safe and Responsible Development of Unconventional Domestic Natural Gas Resources By: Guido DeHoratiis, Acting Deputy Assistant Secretary for Oil and Gas, Office of Fossil Energy

  20. Results from DOE Expedition Confirm Existence of Resource-Quality...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... DOE Expedition Discovers the First Gulf of Mexico Resource-Quality Gas Hydrate Deposits Status of DOE Research Efforts in Gas Hydrates USGS technicians Eric Moore and Jenny White ...

  1. Georgia Department of Natural Resources (GDNR) | Open Energy...

    Open Energy Info (EERE)

    References Retrieved from "http:en.openei.orgwindex.php?titleGeorgiaDepartmentofNaturalResources(GDNR)&oldid765343" Categories: Organizations Oil and Gas State Oil and...

  2. Hydrogen Resource Assessment: Hydrogen Potential from Coal, Natural...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60-42773 February 2009 Hydrogen Resource Assessment Hydrogen Potential from Coal, Natural Gas, Nuclear, and Hydro Power Anelia Milbrandt and Margaret Mann National Renewable Energy...

  3. Electric Power Generation from Low-Temperature Geothermal Resources...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  4. Washington Department of Natural Resources | Open Energy Information

    Open Energy Info (EERE)

    of Natural Resources is located in Olympia, Washington. About About 600 gas and oil wells have been drilled in Washington, but large-scale commercial production has never...

  5. DeKalb County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Radiance Solar Resource Services Group (RSG) Servidyne SilvaGas Corporation FERCO Enterprises Inc Solar Systems USA Suniva Inc formerly Solarity Sustainable World Capital TCE...

  6. Georgia's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Radiance Solar Resource Services Group (RSG) Servidyne SilvaGas Corporation FERCO Enterprises Inc Solar Systems USA Suniva Inc formerly Solarity Sustainable World Capital TCE...

  7. URTAC Meeting - September 2010 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 URTAC Meeting - September 2010 PDF icon Meeting minutes PDF icon Federal Register notice PDF icon Natural Gas and the Clean Energy Economy PDF icon Unconventional Resources Technology Advisory Committee PDF icon Oil & Gas Program Overview PDF icon Unconventional Onshore & Small Producer FACA Meeting More Documents & Publications URTAC Meeting - January 2012 URTAC Meeting - July 2009 URTAC Meeting - September

  8. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  9. Hard truths: facing the hard truths about energy. A comprehensive view to 2030 of global oil and natural gas

    SciTech Connect (OSTI)

    2007-07-01

    In response to the questions posed by the US Secretary of Energy in October 2005, the National Petroleum Council conducted a comprehensive study considering the future of oil and natural gas to 2030 in the context of the global energy system. The Council proposed five core strategies to assist markets in meeting the energy challenges to 2030 and beyond. All five strategies are essential; there is no single, easy solution to the multiple challenges we face. However, we are confident that the prompt adoption of these strategies, along with a sustained commitment to implementation, will promote U.S. competitiveness by balancing economic, security, and environmental goals. The United States must: Moderate the growing demand for energy by increasing efficiency of transportation, residential, commercial, and industrial uses; Expand and diversify production from clean coal, nuclear, biomass, other renewables, and unconventional oil and gas; moderate the decline of conventional domestic oil and gas production; and increase access for development of new resources; Integrate energy policy into trade, economic, environmental, security, and foreign policies; strengthen global energy trade and investment; and broaden dialogue with both producing and consuming nations to improve global energy security; Enhance science and engineering capabilities and create long-term opportunities for research and development in all phases of the energy supply and demand system; and Develop the legal and regulatory framework to enable carbon capture and sequestration. In addition, as policymakers consider options to reduce carbon dioxide emissions, provide an effective global framework for carbon management, including establishment of a transparent, predictable, economy-wide cost for carbon dioxide emissions. The report, details findings and recommendations based on comprehensive analyses developed by the study teams. 5 apps.

  10. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cluster-Image TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computing Resources The TRACC Computational Clusters With the addition of a new cluster called Zephyr that was made operational in September of this year (2012), TRACC now offers two clusters to choose from: Zephyr and our original cluster that has now been named Phoenix. Zephyr was acquired from Atipa technologies, and it is a 92-node system with each node having two AMD

  11. Legal Resources

    Broader source: Energy.gov [DOE]

    The Office of the General Counsel provides legal advice, counsel, and support to the Secretary, the Deputy Secretary, and program offices throughout DOE to further the Department’s mission of advancing the national, economic, and energy security of the United States through scientific and technological innovation and the environmental cleanup of the national nuclear weapons complex. A collection of relevant legal resources can be found below.

  12. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Resources Resources Filter by Agency Filter by Audience Filter by Resource Type description partner_agency resource_type stakeholder_group publication_date node_url link

  13. NATURAL GAS FROM SHALE: Questions and Answers Why is Shale Gas Important?

    Office of Environmental Management (EM)

    Why is Shale Gas Important? With the advance of extraction technology, shale gas production has led to a new abundance of natural gas supply in the United States over the past decade, and is expected to continue to do so for the foreseeable future. According to the Energy Information Administration (EIA), the unproved technically recoverable U.S. shale gas resource is estimated at 482 trillion cubic feet. 1 Estimated proved and unproved shale gas resources amount to a combined 542 trillion cubic

  14. Minnesota Energy Resources (Gas) - Commercial and Industrial...

    Broader source: Energy.gov (indexed) [DOE]

    on energy saving opportunities, and estimated costs and savings. Free facility benchmarking services which analyze energy usage are available as well. Applications for audits...

  15. Surface Gas Sampling | Open Energy Information

    Open Energy Info (EERE)

    In The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff &...

  16. ARPA-E Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » ARPA-E Resources ARPA-E Resources ARPA-E Resources The Advanced Projects Research Agency-Energy (ARPA-E) was established in 2007 to fund the development and deployment of transformational energy technologies in the United States. ARPA-E's mission is to decrease our nation's dependence on foreign energy sources, reduce greenhouse gas emissions, improve energy efficiency across the board, and maintain or reestablish U.S. scientific leadership in the energy sector. The Office of the

  17. Computing Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources This page is the repository for sundry items of information relevant to general computing on BooNE. If you have a question or problem that isn't answered here, or a suggestion for improving this page or the information on it, please mail boone-computing@fnal.gov and we'll do our best to address any issues. Note about this page Some links on this page point to www.everything2.com, and are meant to give an idea about a concept or thing without necessarily wading through a whole website

  18. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    of the Alaska gas pipeline. The opening of ANWR might reduce the gas resource risk of building an Alaska gas pipeline, as the area has an estimated 3.6 trillion cubic...

  19. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    SciTech Connect (OSTI)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2012-11-01

    The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

  20. Natural Gas Infrastructure Modernization | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Infrastructure Modernization Natural Gas Infrastructure Modernization A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. In order to help modernize the nation's natural gas

  1. Sandia Energy - Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Home Stationary Power Energy Conversion Efficiency Wind Energy Resources ResourcesTara Camacho-Lopez2015-06-10T19:29:54+00:00...

  2. Resources | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources The Critical Materials Institute offers connections to resources, including: List of resources U.S. Rare Earth Magnet Patents Table Government agency contacts CMI unique...

  3. ORISE Resources: Consumer Health Resource Information Service...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumer Health Resource Information Service (CHRIS) guide The Consumer Health Resource Information Service (CHRIS) guide for faith-based organizations and communities was...

  4. Technical resource document for assured thermal processing of wastes

    SciTech Connect (OSTI)

    Farrow, R.L.; Fisk, G.A.; Hartwig, C.M.; Hurt, R.H.; Ringland, J.T.; Swansiger, W.A.

    1994-06-01

    This document is a concise compendium of resource material covering assured thermal processing of wastes (ATPW), an area in which Sandia aims to develop a large program. The ATPW program at Sandia is examining a wide variety of waste streams and thermal processes. Waste streams under consideration include municipal, chemical, medical, and mixed wastes. Thermal processes under consideration range from various incineration technologies to non-incineration processes such as supercritical water oxidation or molten metal technologies. Each of the chapters describes the element covered, discusses issues associated with its further development and/or utilization, presents Sandia capabilities that address these issues, and indicates important connections to other ATPW elements. The division of the field into elements was driven by the team`s desire to emphasize areas where Sandia`s capabilities can lead to major advances and is therefore somewhat unconventional. The report will be valuable to Sandians involved in further ATPW program development.

  5. NETL: Oil & Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas Efficient recovery of our nation's fossil fuel resources in an environmentally safe manner requires the development and application of new technologies that address the unique nature and challenging locations of many of our remaining oil and natural gas accumulations. The National Energy Technology Laboratory's (NETL) research projects are designed to help catalyze the development of these new technologies, provide objective data to help quantify the environmental and safety risks

  6. Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    1998-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian/Antrim shale and coalbeds. Crude oil and natural gas projections are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted profitability to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region. Foreign gas trade may occur via either pipeline (Canada or Mexico), or via transport ships as liquefied natural gas (LNG). These import supply functions are critical elements of any market modeling effort.

  7. Natural gas hydrates on the North Slope of Alaska

    SciTech Connect (OSTI)

    Collett, T.S.

    1991-01-01

    Gas hydrates are crystalline substances composed of water and gas, mainly methane, in which a solid-water lattice accommodates gas molecules in a cage-like structure, or clathrate. These substances often have been regarded as a potential (unconventional) source of natural gas. Significant quantities of naturally occurring gas hydrates have been detected in many regions of the Arctic including Siberia, the Mackenzie River Delta, and the North Slope of Alaska. On the North Slope, the methane-hydrate stability zone is areally extensive beneath most of the coastal plain province and has thicknesses as great as 1000 meters in the Prudhoe Bay area. Gas hydrates have been identified in 50 exploratory and production wells using well-log responses calibrated to the response of an interval in one well where gas hydrates were recovered in a core by ARCO Alaska and EXXON. Most of these gas hydrates occur in six laterally continuous Upper Cretaceous and lower Tertiary sandstone and conglomerate units; all these gas hydrates are geographically restricted to the area overlying the eastern part of the Kuparuk River Oil Field and the western part of the Prudhoe Bay Oil Field. The volume of gas within these gas hydrates is estimated to be about 1.0 {times} 10{sup 12} to 1.2 {times} 10{sup 12} cubic meters (37 to 44 trillion cubic feet), or about twice the volume of conventional gas in the Prudhoe Bay Field. Geochemical analyses of well samples suggest that the identified hydrates probably contain a mixture of deep-source thermogenic gas and shallow microbial gas that was either directly converted to gas hydrate or first concentrated in existing traps and later converted to gas hydrate. The thermogenic gas probably migrated from deeper reservoirs along the same faults thought to be migration pathways for the large volumes of shallow, heavy oil that occur in this area. 51 refs., 11 figs., 3 tabs.

  8. State Oil and Gas Board State Oil and Gas Board Address Place...

    Open Energy Info (EERE)

    Suite Arizona http www azogcc az gov Arkansas Oil and Gas Commission Arkansas Oil and Gas Commission Natural Resources Dr Ste Arkansas http www aogc state ar us JDesignerPro...

  9. U.S. Natural Gas Markets: Mid-Term Prospects for Natural Gas Supply

    Reports and Publications (EIA)

    2001-01-01

    This service report describes the recent behavior of natural gas markets with respect to natural gas prices, their potential future behavior, the potential future supply contribution of liquefied natural gas and increased access to federally restricted resources, and the need for improved natural gas data.

  10. Arctic Oil and Natural Gas Potential

    Reports and Publications (EIA)

    2009-01-01

    This paper examines the discovered and undiscovered Arctic oil and natural gas resource base with respect to their location and concentration. The paper also discusses the cost and impediments to developing Arctic oil and natural gas resources, including those issues associated with environmental habitats and political boundaries.

  11. NATURAL GAS FROM SHALE: Questions and Answers

    Office of Environmental Management (EM)

    Where is shale gas found in the United States? Shale gas is located in many parts of the United States. These deposits occur in shale "plays" - a set of discovered, undiscovered or possible natural gas accumulations that exhibit similar geological characteristics. Shale plays are located within large-scale basins or accumulations of sedimentary rocks, often hundreds of miles across, that also may contain other oil and gas resources. 1 Shale gas production is currently occurring in 16

  12. North American Natural Gas Markets. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1989-02-01

    This report summarizes die research by an Energy Modeling Forum working group on the evolution of the North American natural gas markets between now and 2010. The group`s findings are based partly on the results of a set of economic models of the natural gas industry that were run for four scenarios representing significantly different conditions: two oil price scenarios (upper and lower), a smaller total US resource base (low US resource case), and increased potential gas demand for electric generation (high US demand case). Several issues, such as the direction of regulatory policy and the size of the gas resource base, were analyzed separately without the use of models.

  13. Class I cultural resource overview for oil shale and tar sands areas in Colorado, Utah and Wyoming.

    SciTech Connect (OSTI)

    O'Rourke, D.; Kullen, D.; Gierek, L.; Wescott, K.; Greby, M.; Anast, G.; Nesta, M.; Walston, L.; Tate, R.; Azzarello, A.; Vinikour, B.; Van Lonkhuyzen, B.; Quinn, J.; Yuen, R.; Environmental Science Division

    2007-11-01

    In August 2005, the U.S. Congress enacted the Energy Policy Act of 2005, Public Law 109-58. In Section 369 of this Act, also known as the 'Oil Shale, Tar Sands, and Other Strategic Unconventional Fuels Act of 2005', Congress declared that oil shale and tar sands (and other unconventional fuels) are strategically important domestic energy resources that should be developed to reduce the nation's growing dependence on oil from politically and economically unstable foreign sources. The Bureau of Land Management (BLM) is developing a Programmatic Environmental Impact Statement (PEIS) to evaluate alternatives for establishing commercial oil shale and tar sands leasing programs in Colorado, Wyoming, and Utah. This PEIS evaluates the potential impacts of alternatives identifying BLM-administered lands as available for application for commercial leasing of oil shale resources within the three states and of tar sands resources within Utah. The scope of the analysis of the PEIS also includes an assessment of the potential effects of future commercial leasing. This Class I cultural resources study is in support of the Draft Oil Shale and Tar Sands Resource Management Plan Amendments to Address Land Use Allocations in Colorado, Utah, and Wyoming and Programmatic Environmental Impact Statement and is an attempt to synthesize archaeological data covering the most geologically prospective lands for oil shale and tar sands in Colorado, Utah, and Wyoming. This report is based solely on geographic information system (GIS) data held by the Colorado, Utah, and Wyoming State Historic Preservation Offices (SHPOs). The GIS data include the information that the BLM has provided to the SHPOs. The primary purpose of the Class I cultural resources overview is to provide information on the affected environment for the PEIS. Furthermore, this report provides recommendations to support planning decisions and the management of cultural resources that could be impacted by future oil shale and tar sands resource development.

  14. Shale Gas R&D | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shale Gas R&D Shale Gas R&D Shale Gas R&D Natural gas from shales has the potential to significantly increase America's security of energy supply, reduce greenhouse gas emissions, and lower prices for consumers. Although shale gas has been produced in the United State for many decades, it was not considered to be a significant resource until the last decade when new horizontal drilling and hydraulic fracturing technology facilitated economic production. Shale gas currently

  15. Alternative Fuels Data Center: Natural Gas Related Links

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Related Links to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Related Links on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Related Links on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Related Links on Google Bookmark Alternative Fuels Data Center: Natural Gas Related Links on Delicious Rank Alternative Fuels Data Center: Natural Gas

  16. State & Local Renewable Power Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Power Resources State & Local Renewable Power Resources State & Local Renewable Power Resources The DOE Office of Energy Efficiency and Renewable Energy provides tools, resources, and more on solar, geothermal, wind, and water to help state and local governments use renewable energy technologies to produce sustainable, clean energy that has the potential to strengthen a community's energy security, improve environmental quality by reducing greenhouse gas emissions, and

  17. Water energy resources of the United States with emphasis on low head/low power resources

    SciTech Connect (OSTI)

    Hall, Douglas G.; Cherry, Shane J.; Reeves, Kelly S.; Lee, Randy D.; Carroll, Gregory R.; Sommers, Garold L.; Verdin, Kristine L.

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A, and similar presentations for each of the 50 states are made in Appendix B.

  18. Alternative Fuel Vehicle Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alternative Fuel Vehicle Resources Alternative Fuel Vehicle Resources Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these alternatives often produce less harmful emissions and contribute to a reduction in petroleum dependence. Federal agencies and certain state governments are required to acquire alternative fuel vehicles as part of the Energy Policy Act of 1992,

  19. Adaptive control system for gas producing wells

    SciTech Connect (OSTI)

    Fedor, Pashchenko; Sergey, Gulyaev; Alexander, Pashchenko

    2015-03-10

    Optimal adaptive automatic control system for gas producing wells cluster is proposed intended for solving the problem of stabilization of the output gas pressure in the cluster at conditions of changing gas flow rate and changing parameters of the wells themselves, providing the maximum high resource of hardware elements of automation.

  20. Sandia Energy - Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Assessment Home Stationary Power Energy Conversion Efficiency Water Power Resource Assessment Resource AssessmentAshley Otero2016-01-05T19:06:04+00:00 Characterizing wave...

  1. Before the House Natural Resources Subcommittee on Energy and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Technology Laboratory Subject: Unconventional Fuels, Part II: The Promise of Methane Hydrates PDF icon 7-30-09FinalTestimony(Boswell).pdf More Documents & Publications...

  2. Solar Resource Assessment

    Broader source: Energy.gov [DOE]

    DOE solar resource research focuses on understanding historical solar resource patterns and making future predictions, both of which are needed to support reliable power system operation. As solar...

  3. NREL: Renewable Resource Data Center - Biomass Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data The following biomass resource data collections can be found in the Renewable Resource Data Center (RReDC). Current Biomass Resource Supply An estimate of biomass resources...

  4. NREL: Renewable Resource Data Center - Wind Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information Solar Resource Information Wind Resource Information Wind Data Models & Tools Publications...

  5. Microsoft Word - 2014 Annual Plan DRAFT 9-5-13

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress Draft September 2013 United States Department of Energy Washington, DC 20585 Department of Energy |Draft September 2013 Department of Energy |Draft September 2013 Executive Summary This 2014 Annual Plan is the eighth research plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program since the launch of the

  6. Microsoft Word - Sec 999 Annual Plan - January 2008 revOMB final agreement.doc

    Office of Environmental Management (EM)

    07 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program January 2008 DOE/NETL-2007/1294 Provided in Response to Energy Policy Act of 2005 Section 999, Subtitle J DISCLAIMER The Administration has submitted a legislative proposal to repeal the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program. However, the Department of Energy is currently implementing the Subtitle J program

  7. No Slide Title

    Office of Environmental Management (EM)

    Unconventional Resources Technology Advisory Committee Guide DeHoratiis Acting Deputy Assistant Secretary Office of Oil and Natural Gas Acting Designated Federal Officer Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Member Responsibilities * SGE [special Government employees] - Federal ethics laws and regulations - avoid any action creating the appearance that they are violating the law or the ethical standards - provide expert opinion * Representative members -

  8. Microsoft Word - 2008 Annual Plan 8-11-08 final.doc

    Office of Environmental Management (EM)

    08 DOE/NETL-2008/1315 Provided in Response to Energy Policy Act of 2005 Title IX, Subtitle J 2008 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program DISCLAIMER The Administration has submitted to Congress a legislative proposal to repeal Subtitle J of Title IX of the Energy Policy Act of 2005 which authorized the Ultra- Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program. However,

  9. Microsoft Word - 2014 Annual Plan DRAFT 9-5-13

    Office of Environmental Management (EM)

    4 Annual Plan Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Report to Congress Draft September 2013 United States Department of Energy Washington, DC 20585 Department of Energy |Draft September 2013 Department of Energy |Draft September 2013 Executive Summary This 2014 Annual Plan is the eighth research plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program since the launch of the

  10. Sandia Energy - Solar Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Assessment Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Resource Assessment Solar Resource AssessmentTara...

  11. Eastern gas shales bibliography selected annotations: gas, oil, uranium, etc. Citations in bituminous shales worldwide

    SciTech Connect (OSTI)

    Hall, V.S.

    1980-06-01

    This bibliography contains 2702 citations, most of which are annotated. They are arranged by author in numerical order with a geographical index following the listing. The work is international in scope and covers the early geological literature, continuing through 1979 with a few 1980 citations in Addendum II. Addendum I contains a listing of the reports, well logs and symposiums of the Unconventional Gas Recovery Program (UGR) through August 1979. There is an author-subject index for these publications following the listing. The second part of Addendum I is a listing of the UGR maps which also has a subject-author index following the map listing. Addendum II includes several important new titles on the Devonian shale as well as a few older citations which were not found until after the bibliography had been numbered and essentially completed. A geographic index for these citations follows this listing.

  12. Fermilab Office of General Counsel - Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Links Documents

  13. Maps: Exploration, Resources, Reserves, and Production - Energy Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Administration Maps: Exploration, Resources, Reserves, and Production Summary Maps: Natural gas in the Lower 48 States and North America Gas production in conventional fields, Lower 48 States PDF (2.8 MB) JPG (2.5 MB) Gas production in offshore fields, Lower 48 States PDF (0.4 MB) JPG (1.5 MB) Shale gas and oil plays, Lower 48 States (4/13/2015) PDF (1.4 MB) JPG (0.6 MB) Shale gas and oil plays, North America (5/9/2011) PDF (0.4 MB) JPG (1.2 MB) Major tight gas plays, Lower 48 States PDF

  14. NATURAL GAS FROM SHALE: Questions and Answers It Seems Like Shale Gas Came Out

    Office of Environmental Management (EM)

    It Seems Like Shale Gas Came Out of Nowhere - What Happened? Knowledge of gas shale resources and even production techniques has been around a long time (see "Technological Highlights" timeline). But even as recently as a few years ago, very little of the resource was considered economical to produce. Innovative advances - especially in horizontal drilling, hydraulic fracturing and other well stimulation technologies - did much to make hundreds of trillions of cubic feet of shale gas

  15. Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows operators to monitor every function of the accelerator and to make adjustments as needed. JEFFERSON LAB RESOURCES Read more Policymakers Resources U.S. Energy Secretary Steven Chu Former U.S. Energy Secretary Steven Chu speaks during Jefferson Lab's 25th Anniversary celebration. Read more News Media Resources Jefferson Lab

  16. Gas Hydrates Research Programs: An International Review (Technical...

    Office of Scientific and Technical Information (OSTI)

    a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource....

  17. FE Oil and Natural Gas News | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    by the U.S. Department of Energy. March 30, 2010 Results from DOE Expedition Confirm Existence of Resource-Quality Gas Hydrate in Gulf of Mexico Gas hydrate, a potentially immense...

  18. The Greenhouse Gas Protocol Initiative: Measurement and Estimation...

    Open Energy Info (EERE)

    GHG Emissions AgencyCompany Organization: World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Greenhouse Gas Phase:...

  19. Natural Gas Weekly Update, Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    oil and gas resources will be necessary even as efficiency improvements reduce demand and renewable sources become more available. In order to retain public trust environmentally...

  20. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    Inventory of Onshore Federal Lands' Oil and Gas Resources and the Extent and Nature of Restrictions or Impediments to Their Development. The report, which was...

  1. Kansas Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    service and safety of public utilities, common carriers, motor carriers, and regulate oil and gas production by protecting correlative rights and environmental resources....

  2. The Greenhouse Gas Protocol Initiative: Sector Specific Tools...

    Open Energy Info (EERE)

    World Resources Institute, World Business Council for Sustainable Development Sector: Energy, Climate Focus Area: Industry, Greenhouse Gas Phase: Determine Baseline, Evaluate...

  3. NextEra Energy Resources formerly FPL Energy LLC | Open Energy...

    Open Energy Info (EERE)

    Independent Power Producer active in wind, solar, hydroelectric, natural gas and nuclear References: NextEra Energy Resources (formerly FPL Energy LLC)1 This article is a...

  4. RESEARCH AND DEVELOPMENT OF AN INTEGRAL SEPARATOR FOR A CENTRIFUGAL GAS PROCESSING FACILITY

    SciTech Connect (OSTI)

    LANCE HAYS

    2007-02-27

    A COMPACT GAS PROCESSING DEVICE WAS INVESTIGATED TO INCREASE GAS PRODUCTION FROM REMOTE, PREVIOUSLY UN-ECONOMIC RESOURCES. THE UNIT WAS TESTED ON AIR AND WATER AND WITH NATURAL GAS AND LIQUID. RESULTS ARE REPORTED WITH RECOMMENDATIONS FOR FUTURE WORK.

  5. Alternative Fuels Data Center: Natural Gas Laws and Incentives

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Natural Gas Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Natural Gas Laws and Incentives on Delicious Rank Alternative

  6. Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Natural Gas Printable Version Share this resource Send a link to Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling Stations on Google Bookmark Alternative Fuels Data Center: Compressed Natural Gas Fueling

  7. fe0013902-groundmetrics | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas, USA Background Approximately 45 percent of the world's recoverable natural gas reserves are classified as unconventional. Worldwide, the share of unconventional gas...

  8. Natural Gas as a Fuel Option for Heavy Vehicles

    SciTech Connect (OSTI)

    James E. Wegrzyn; Wai Lin Litzke; Michael Gurevich

    1999-04-26

    The U.S. Department of Energy (DOE), Office of Heavy Vehicle Technologies (OHVT) is promoting the use of natural gas as a fuel option in the transportation energy sector through its natural gas vehicle program [1]. The goal of this program is to eliminate the technical and cost barriers associated with displacing imported petroleum. This is achieved by supporting research and development in technologies that reduce manufacturing costs, reduce emissions, and improve vehicle performance and consumer acceptance for natural gas fueled vehicles. In collaboration with Brookhaven National Laboratory, projects are currently being pursued in (1) liquefied natural gas production from unconventional sources, (2) onboard natural gas storage (adsorbent, compressed, and liquefied), (3) natural gas delivery systems for both onboard the vehicle and the refueling station, and (4) regional and enduse strategies. This paper will provide an overview of these projects highlighting their achievements and current status. In addition, it will discuss how the individual technologies developed are being integrated into an overall program strategic plan.

  9. Unconventional Switching Behavior in La0.7Sr0.3MnO3/La0.7Sr0.3CoO3

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Exchange-spring Bilayer | Stanford Synchrotron Radiation Lightsource Unconventional Switching Behavior in La0.7Sr0.3MnO3/La0.7Sr0.3CoO3 Exchange-spring Bilayer Monday, March 30, 2015 Interfacial magnetic interactions between ferromagnetic/antiferromagnetic (FM/AFM) and FM/FM materials play a key role in numerous magnetic technologies such as high performance permanent magnets and magnetic read heads. High performance permanent magnets with large coercivity and high magnetization can be

  10. Solar Resource Assessment

    SciTech Connect (OSTI)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  11. Business Planning Resources

    Broader source: Energy.gov [DOE]

    Business Planning Resources, a presentation of the U.S. Department of Energy's Better Buildings Neighborhood Program.

  12. Women's Employee Resource Group

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group Women's Employee Resource Group The Women's Employee Resource Group encourages women's contributions, professional development opportunities, and shared support across the Laboratory. Contact Us Office of Diversity and Strategic Staffing (505) 667-2602 Email Computational scientist Hai Ah Nam, a member of the Women's Employee Resource Group Computational scientist Hai Ah Nam, a member of the Women's Employee Resource Group, works on the Laboratory's new Trinity supercomputing system.

  13. Hydrothermal Resources Fact Sheet

    SciTech Connect (OSTI)

    U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy

    2012-08-31

    This two-page fact sheet provides an overview of hydrothermal resources and hydrothermal reservoir creation and operation.

  14. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Resources The Office of Technology Transitions links to the following resources to assist industry, government, academia, small business and other organizations to make use of the many innovations from the Department of Energy and its National Laboratories. Energy Innovation Portal The Energy Innovation Portal (http://techportal.eere.energy.gov/) is a one-stop resource to locate energy-related technologies developed with EERE funding and available for licensing from national

  15. Workplace Charging Challenge Partner: Dominion Resources, Inc. | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Dominion Resources, Inc. Workplace Charging Challenge Partner: Dominion Resources, Inc. Dominion is actively participating in the deployment of alternative vehicle technologies to help lower greenhouse gas emissions and reduce our nation's dependence on foreign oil. Dominion Virginia Power (DVP), Dominion Resources, Inc.'s regulated electric subsidiary, currently owns several plug-in electric vehicles (PEVs), including Chevy Volts, a Nissan LEAF, and Toyota Prius plug-in

  16. Resource Assessment and Land Use Change | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Assessment and Land Use Change Resource Assessment and Land Use Change Presented at the U.S. Department of Energy Light Duty Vehicle Workshop in Washington, D.C. on July 26, 2010. PDF icon resource_assessment_landuse.pdf More Documents & Publications GREET Bioenergy Life Cycle Analysis and Key Issues for Woody Feedstocks Quantitative Analysis of Biofuel Sustainability, Including Land Use Change GHG Emissions Biofuels & Greenhouse Gas Emissions: Myths versus Facts

  17. Retrofit Program Lead-by-Example Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofit Program Lead-by-Example Resources Retrofit Program Lead-by-Example Resources State and local governments can lead by example by promoting energy efficiency programs and policies for public facilities, equipment, and government operations. Find retrofit program lead-by-example resources below. Local Government Climate and Energy Strategy Series: Energy Efficiency in Local Government Operations: A Guide to Developing and Implementing Greenhouse Gas Reduction Programs ACEEE: Comprehensive

  18. General Resources - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beryllium Program General Resources About Us Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources General Resources Email Email Page | Print Print Page

  19. Hawaii Energy Resource Overviews. Volume 4. Impact of geothermal resource development in Hawaii (including air and water quality)

    SciTech Connect (OSTI)

    Siegel, S.M.; Siegel, B.Z.

    1980-06-01

    The environmental consequences of natural processes in a volcanic-fumerolic region and of geothermal resource development are presented. These include acute ecological effects, toxic gas emissions during non-eruptive periods, the HGP-A geothermal well as a site-specific model, and the geothermal resources potential of Hawaii. (MHR)

  20. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye Z. [Newton, MA

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  1. Gas separating

    DOE Patents [OSTI]

    Gollan, Arye (Newton, MA)

    1988-01-01

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing.

  2. NREL: Renewable Resource Data Center - Solar Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data The following solar resource data collections can be found in the Renewable Resource Data Center (RReDC). Cooperative Networks for Renewable Resource Measurements (CONFRRM)...

  3. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  4. Gas evolution from geopressured brines

    SciTech Connect (OSTI)

    Matthews, C.S.

    1980-06-01

    The process of gas evolution from geopressured brine is examined using as a basis the many past studies of gas evolution from liquids in porous media. A discussion of a number of speculations that have been made concerning gas evolution from geopressured brines is provided. According to one, rapid pressure reduction will cause methane gas to evolve as when one opens a champagne bottle. It has been further speculated that evolved methane gas would migrate up to form an easily producible cap. As a result of detailed analyses, it can be concluded that methane gas evolution from geopressured brines is far too small to ever form a connected gas saturation except very near to the producing well. Thus, no significant gas cap could ever form. Because of the very low solubility of methaned in brine, the process of methane gas evolution is not at all analogous to evolution of carbon dioxide from champagne. A number of other speculations and questions on gas evolution are analyzed, and procedures for completing wells and testing geopressured brine reservoirs are discussed, with the conclusion that presently used procedures will provide adequate data to enable a good evaluation of this resource.

  5. Preliminary Geospatial Analysis of Arctic Ocean Hydrocarbon Resources

    SciTech Connect (OSTI)

    Long, Philip E.; Wurstner, Signe K.; Sullivan, E. C.; Schaef, Herbert T.; Bradley, Donald J.

    2008-10-01

    Ice coverage of the Arctic Ocean is predicted to become thinner and to cover less area with time. The combination of more ice-free waters for exploration and navigation, along with increasing demand for hydrocarbons and improvements in technologies for the discovery and exploitation of new hydrocarbon resources have focused attention on the hydrocarbon potential of the Arctic Basin and its margins. The purpose of this document is to 1) summarize results of a review of published hydrocarbon resources in the Arctic, including both conventional oil and gas and methane hydrates and 2) develop a set of digital maps of the hydrocarbon potential of the Arctic Ocean. These maps can be combined with predictions of ice-free areas to enable estimates of the likely regions and sequence of hydrocarbon production development in the Arctic. In this report, conventional oil and gas resources are explicitly linked with potential gas hydrate resources. This has not been attempted previously and is particularly powerful as the likelihood of gas production from marine gas hydrates increases. Available or planned infrastructure, such as pipelines, combined with the geospatial distribution of hydrocarbons is a very strong determinant of the temporal-spatial development of Arctic hydrocarbon resources. Significant unknowns decrease the certainty of predictions for development of hydrocarbon resources. These include: 1) Areas in the Russian Arctic that are poorly mapped, 2) Disputed ownership: primarily the Lomonosov Ridge, 3) Lack of detailed information on gas hydrate distribution, and 4) Technical risk associated with the ability to extract methane gas from gas hydrates. Logistics may control areas of exploration more than hydrocarbon potential. Accessibility, established ownership, and leasing of exploration blocks may trump quality of source rock, reservoir, and size of target. With this in mind, the main areas that are likely to be explored first are the Bering Strait and Chukchi Sea, in spite of the fact that these areas do not have highest potential for future hydrocarbon reserves. Opportunities for improving the mapping and assessment of Arctic hydrocarbon resources include: 1) Refining hydrocarbon potential on a basin-by-basin basis, 2) Developing more realistic and detailed distribution of gas hydrate, and 3) Assessing the likely future scenarios for development of infrastructure and their interaction with hydrocarbon potential. It would also be useful to develop a more sophisticated approach to merging conventional and gas hydrate resource potential that considers the technical uncertainty associated with exploitation of gas hydrate resources. Taken together, additional work in these areas could significantly improve our understanding of the exploitation of Arctic hydrocarbons as ice-free areas increase in the future.

  6. Virginia Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Virginia Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  7. Colorado Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Colorado Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  8. Nebraska Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Nebraska Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  9. Missouri Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Missouri Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  10. Michigan Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Michigan Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  11. Kentucky Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Kentucky Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  12. Tennessee Natural Gas Number of Gas and Gas Condensate Wells...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Tennessee Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  13. Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Pennsylvania Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  14. Mississippi Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Mississippi Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

  15. Oklahoma Natural Gas Number of Gas and Gas Condensate Wells ...

    Gasoline and Diesel Fuel Update (EIA)

    Gas and Gas Condensate Wells (Number of Elements) Oklahoma Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  16. Illinois Natural Gas Number of Gas and Gas Condensate Wells ...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas and Gas Condensate Wells (Number of Elements) Illinois Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  17. Arkansas Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Arkansas Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  18. Maryland Natural Gas Number of Gas and Gas Condensate Wells ...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Maryland Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  19. Louisiana Natural Gas Number of Gas and Gas Condensate Wells...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas and Gas Condensate Wells (Number of Elements) Louisiana Natural Gas Number of Gas and Gas Condensate Wells (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

  20. Gradient Resources | Open Energy Information

    Open Energy Info (EERE)

    Gradient Resources Jump to: navigation, search Logo: Gradient Resources Name: Gradient Resources Address: 9670 Gateway Drive, Suite 200 Place: Reno, Nevada Zip: 89521 Region:...

  1. No Slide Title

    Office of Environmental Management (EM)

    Deepwater and Unconventional Natural Gas and Other Petroleum Resources 2008 - 2010 Unconventional Resources Technology Advisory Committee Member Appointment Process January 2008 Inquire: member interest in reappointment for 2008-2010 Submit re-charter documents for 2 advisory committees Invite/review resumes Prepare Slate of Committee Members for DFO review General Counsel review of Slate of Committee Members General Counsel review of SGE financial disclosure General Counsel concurrence on final

  2. Gas Hydrates Research Programs: An International Review

    SciTech Connect (OSTI)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  3. American Gas Association | Department of Energy

    Energy Savers [EERE]

    Association American Gas Association Memorandum Summarizing Ex Parte Communication PDF icon 111011_Ex_Parte.pdf More Documents & Publications Ex Parte Memorandum - Natural Resources Defense Council American Gas Association Ex Parte Communication Microsoft Word - AGA Comments on 2011 Regulatory Burden RFI

  4. Rapid gas hydrate formation processes: Will they work?

    SciTech Connect (OSTI)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuous formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.

  5. Rapid gas hydrate formation processes: Will they work?

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Thomas D.; Taylor, Charles E.; Bernardo, Mark P.

    2010-06-07

    Researchers at DOE’s National Energy Technology Laboratory (NETL) have been investigating the formation of synthetic gas hydrates, with an emphasis on rapid and continuous hydrate formation techniques. The investigations focused on unconventional methods to reduce dissolution, induction, nucleation and crystallization times associated with natural and synthetic hydrates studies conducted in the laboratory. Numerous experiments were conducted with various high-pressure cells equipped with instrumentation to study rapid and continuous hydrate formation. The cells ranged in size from 100 mL for screening studies to proof-of-concept studies with NETL’s 15-Liter Hydrate Cell. The results from this work demonstrate that the rapid and continuousmore » formation of methane hydrate is possible at predetermined temperatures and pressures within the stability zone of a Methane Hydrate Stability Curve.« less

  6. Morphological variations as nonstandard test parameters for the response to pollutant gas concentration: An application to Ruthenium Phthalocyanine sensing films

    SciTech Connect (OSTI)

    Generosi, A.; Paci, B.; Albertini, V. Rossi; Perfetti, P.; Paoletti, A.M.; Pennesi, G.; Rossi, G.; Caminiti, R.

    2006-03-06

    A systematic time-resolved energy dispersive x-ray reflectometry study was performed in situ on Ruthenium Phthalocyanine thin fims to estimate the morphological detection limits of this material as NO{sub 2} transducer and the influence of the gas concentration on the gas-film interaction mechanisms. The work validates the use of this unconventional method--based on the observation of the morphological parameters change--for evaluating the response of novel sensing materials in alternative to more standard procedures. Indeed, the morphological monitoring is shown to be sensitive to the gas concentration in a range comparable to the usual electroresistive measurements. Moreover, while the latter is only able to give the information on whether the gas is interacting with the sensor, the former is also able to discriminate among interaction processes of a different nature (in the present case the interaction limited to the film surface and the one involving the material bulk)

  7. Human Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Employee Relations Human Resources Installation Of A Cryomodule Workers prepare to install a cryomodule in Jefferson Lab's accelerator. Read more Business Services Human Resources Jefferson Lab Business Services Jefferson Lab provides opportunities for both large and small businesses to engage with the lab and its scientific mission. Read more Training Human Resources Training Programs at Jefferson Lab There exist many exciting career opportunities at Jefferson Lab, and the lab provides training

  8. Contacts & Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts & Resources Contacts & Resources Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 envoutreach@lanl.gov Public Information LANL environmental website Public meetings and tours Mailing and emailing lists Public notification in local newspapers Events calendar Intellus database Information repositories Resources Illustrated Long-Term Strategy for Environmental Stewardship and Sustainability (pdf) Annual Sitewide

  9. Energy Resource Potential

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Potential of Methane Hydrate Energy Resource Potential An introduction to the science and energy potential of a unique resource Disclaimer Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. Neither the United States Government nor any agency thereof, nor any of their

  10. LANSCE | User Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From the initial proposal process to the completion of the experiment, LANSCE provides its users with resources critical to their experiements and their experience. Lujan Resources WNR Resources Submit a proposal for beam time Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews Submit a proposal for beam time Visit Registration Schedules Experiment Reports User Satisfaction Survey Reviews User Program Administration lujan-uo@lanl.gov Ph: 505.667.6069 User Program

  11. ARM - CHAPS: Campaign Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHAPS: Campaign Resources Campaign Details News Field Participants Resources Status and Actions ARM Data Discovery Browse Data CHAPS: Campaign Resources CHAPS Status 4-4-2007 ASP Lessons Learned 2007 CHAPS Fact Sheet Daily Flight Plan Schedule Overview of Protocol and Flight Plans for the NASA King Air G-1 Floorplan G-1 Flight Hours G-1 Flight Plan G-1 Stack Patterns G-1 Calendar of Activities G-1 Payload Instruments and the Probes to which they are attached HSRL Fact Sheet

  12. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Resources The following tools and resources have been useful to DOE programs and partners as they build and maintain their residential energy efficiency programs. Home Energy Pros Online Community Better Buildings Network View Current Issue Past Issues Voluntary Initiative Toolkits Social Media Toolkit Designing Incentives Toolkit Partnerships Toolkit Tools Solution Center Cost-Effectiveness Tool (Beta Version) Home Energy Advisor Publications Peer Exchange Call Summaries Lessons

  13. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Resources The Office of Indian Energy provides the following resources to assist Tribes with energy development, capacity building, energy infrastructure, energy costs, and electrification of Indian lands and homes. Alaska Native Villages Get information about the Office of Indian Energy's programs and initiatives to advance community energy efficiency, renewable energy, and energy infrastructure projects in Alaska. Education and Training Access renewable energy curriculum, webinars,

  14. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix C - Validation Study

    SciTech Connect (OSTI)

    Hall, Douglas

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated.

  15. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    Washington voters passed Initiative 937 in 2006, creating a renewable energy standard and an energy efficiency resource standard for the state's electric utilities. Initiative 937, enacted as th...

  16. Renewable Resource Standard

    Broader source: Energy.gov [DOE]

    Eligible Technologies Eligible renewable resources include wind; solar; geothermal; existing hydroelectric projects (10 megawatts or less); certain new hydroelectric projects (up to 15 megawatts...

  17. Jefferson Lab - Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    https:www.jlab.orgresources

    Resources04.png"...

  18. Resources for Local Policymakers

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to local policymakers, organized by topic.

  19. Resources for Utility Regulators

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to utility regulators, organized by topic.

  20. Resources | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Career Postdoctoral Factsheet: Before You Arrive Newsletters Professional Development Mentoring Resources Postdoctoral Society of Argonne LinkedIn Group National Postdoctoral...

  1. Central American resource studies

    SciTech Connect (OSTI)

    Van Eeckhout, E.; Laughlin, A.W.

    1989-01-01

    Los Alamos National Laboratory has been working with five Central American countries to assist in the development of their energy and mineral resources. Since 1985, mineral resources in Costa Rica, peat resources in Costa Rica and Panama, geothermal energy resources in Honduras and Guatemala, and geothermal field development in El Salvador and Costa Rica have been topics of study. This paper presents an overview of this work -- within these proceedings are papers that deal with specific aspects of each topic, and these will be duly noted. 15 refs., 4 figs.

  2. I/O Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I/O Resources I/O Resources Motivation Many users must run jobs that read datasets that are too large to transfer to the /scratch directory. When large numbers of these jobs run simultaneously, it can have an adverse affect on the performance of the disks serving the data causing your jobs to run very inefficiently. We have configured a resource in the batch system that should help manage the amount of concurrent access. These are called IO resources, and they depend on the bandwidth available

  3. Visual Resources | Open Energy Information

    Open Energy Info (EERE)

    Visual Resources Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleVisualResources&oldid612333...

  4. Range Resources | Open Energy Information

    Open Energy Info (EERE)

    Range Resources Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleRangeResources&oldid612320...

  5. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting Resources Ames Laboratory Human Resources Forms Ames Laboratory Travel Forms Ames Laboratory Forms (Select Department) ISU Intramural PO Request...

  6. Gas separating

    DOE Patents [OSTI]

    Gollan, A.Z.

    1990-12-25

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  7. Gas separating

    DOE Patents [OSTI]

    Gollan, A.

    1988-03-29

    Feed gas is directed tangentially along the non-skin surface of gas separation membrane modules comprising a cylindrical bundle of parallel contiguous hollow fibers supported to allow feed gas to flow from an inlet at one end of a cylindrical housing through the bores of the bundled fibers to an outlet at the other end while a component of the feed gas permeates through the fibers, each having the skin side on the outside, through a permeate outlet in the cylindrical casing. 3 figs.

  8. Using FRAMES to Manage Environmental and Water Resources

    SciTech Connect (OSTI)

    Whelan, Gene; Millard, W. David; Gelston, Gariann M.; Khangaonkar, Tarang P.; Pelton, Mitch A.; Strenge, Dennis L.; Yang, Zhaoqing; Lee, Cheegwan; Sivaraman, Chitra; Stephan, Alex J.; Hoopes, Bonnie L.; Castleton, Karl J.

    2007-05-16

    The Framework for Risk Analysis in Multimedia Environmental Systems FRAMES) is decision-support middleware that provides users the ability to design software solutions for complex problems. It is a software platform that provides seamless and transparent communication between modeling components by using a multi-thematic approach to provide a flexible and holistic understanding of how environmental factors potentially affect humans and the environment. It incorporates disparate components (e.g., models, databases, and other frameworks) that integrate across scientific disciplines, allowing for tailored solutions to specific activities. This paper discusses one example application of FRAMES, where several commercialoff-the-shelf (COTS) software products are seamlessly linked into a planning and decision-support tool that helps manage water-based emergency situations and sustainable response. Multiple COTS models, including three surface water models, and a number of databases are linked through FRAMES to assess the impact of three asymmetric and simultaneous events, two of which impact water resources. The asymmetric events include 1) an unconventional radioactive release into a large potable water body, 2) a conventional contaminant (oil) release into navigable waters, and 3) an instantaneous atmospheric radioactive release.

  9. NM Energy Minerals & Natural Resources Department

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Minerals & Natural Resources Department - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  10. Utilize Available Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Storage of Gases Data Transfer Considerations for ALS Scientists and Users ALS Chemistry Lab ALS Biology Lab Floor Operators (for after hours gas connections only)...

  11. EIA model documentation: Documentation of the Oil and Gas Supply Module (OGSM)

    SciTech Connect (OSTI)

    1997-01-01

    The purpose of this report is to define the objectives of the Oil and Gas Supply Model (OGSM), to describe the model`s basic approach, and to provide detail on how the model works. This report is intended as a reference document for model analysts, users, and the public. Projected production estimates of US crude oil and natural gas are based on supply functions generated endogenously within National Energy Modeling System (NEMS) by the OGSM. OGSM encompasses domestic crude oil and natural gas supply by both conventional and nonconventional recovery techniques. Nonconventional recovery includes enhanced oil recovery (EOR), and unconventional gas recovery (UGR) from tight gas formations, Devonian shale and coalbeds. Crude oil and natural gas projects are further disaggregated by geographic region. OGSM projects US domestic oil and gas supply for six Lower 48 onshore regions, three offshore regions, and Alaska. The general methodology relies on forecasted drilling expenditures and average drilling costs to determine exploratory and developmental drilling levels for each region and fuel type. These projected drilling levels translate into reserve additions, as well as a modification of the production capacity for each region. OGSM also represents foreign trade in natural gas, imports and exports by entry region.

  12. EFRC Resources-Resources-PHaSe-EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    EFRC Resources EFRC map Last update 30 April 2015. The following links mostly provide information about accessing specialty equipment and the main instrument facilities that were created by PHaSE during 2009-2015. The last three links guide readers to information that is useful to anyone seriously interested in photovoltaics. Photovoltaic & Spectroscopy Facility Specialty Equipment for Electronic Materials Facility User Reservation Site NREL AM1.5 Solar Radiance Standard NREL Solar Cell

  13. Kondo Physics and Unconventional Superconductivity in the U Intermetallic U2PtC2 Revealed by NMR

    SciTech Connect (OSTI)

    Mounce, Andrew M.; Thompson, Joe David

    2015-12-17

    The set of slides begins by discussing the topic NMR of heavy fermion superconductors under the topics heavy fermion materials, superconductivity, and nuclear magnetic resonance. The history of these phenomena is sketched, with particular mention made of CeCu2Si2, UPt3, and UBe13. Unconventional superconductivity, which is non-phonon mediated superconductivity, presents a high Tc (up to ~150 K), and involves a more complicated spin/orbital wave function. The presentation then goes on to give experimental NMR results for U2PtC2 and Pu-115’s.

  14. SLURM Resource Manager is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLURM Resource Manager is Coming to NERSC - 1 - Helen He NUG Meeting, 11/06/2015 What is SLURM * In simple word, SLURM is a workload manager, or a batch scheduler. * SLURM stands for Simple Linux U?lity for Resource Management. * SLURM unites the cluster resource management (such as Torque) and job scheduling (such as Moab) into one system. Avoids inter-tool complexity. * As of June 2015, SLURM is used in 6 of the top 10 computers, including the #1 system, Tianhe-2, with over 3M cores. - 2 -

  15. Vermont Agency of Natural Resources Natural Resources Atlas ...

    Open Energy Info (EERE)

    Vermont Agency of Natural Resources Natural Resources Atlas Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Vermont Agency of Natural Resources Natural...

  16. Human Resource Management Delegation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-06-28

    The notice is to clarifies and updates existing Human Resource Management Delegation Authorities and the levels to which they are delegated. Expired 6-28-97. Does not cancel any directives.

  17. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    In 2008, New Mexico enacted H.B. 305, the Efficient Use of Energy Act, which created an Energy Efficiency Resource Standard (EERS) for New Mexico’s electric utilities, and a requirement that all ...

  18. Save Energy Now Resources

    SciTech Connect (OSTI)

    2008-03-01

    The U.S. Department of Energy (DOE) provides information resources to industrial energy users and partnering organizations to help the nation’s industrial sector save energy and improve productivity.

  19. Distributed Energy Resource Program

    Broader source: Energy.gov [DOE]

    Note: A series of orders issued on July 15, 2015 in  Docket 2015-53-E, Docket 2015-54-E, and Docket 2015-55-E approved the incentive programs for South Carolina's Distributed Energy Resource...

  20. Office of Information Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Joanne Csordas (HS-1.21), Office of Business Operations, Office of Resource ... DOE has not previously employed (e.g., monitoring software, Smart Cards, Caller-ID)? No. ...

  1. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab Diversity Policies 200 Human Resources 202 Equal Employment Opportunity and Affirmative Action 203 Employment 208 Employee Performance and Conduct 209 Staff Development 210 Employee Concerns and Grievances Employee Concerns Program (EDP)

  2. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  3. "Just do it (replicate)" with Plans, Tools, and Resources | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy "Just do it (replicate)" with Plans, Tools, and Resources "Just do it (replicate)" with Plans, Tools, and Resources This presentation addresses various plans, tools, and resources needed for replication. PDF icon "Just do it (replicate)" with Plans, Tools, and Resources (June 28, 2011) More Documents & Publications Measuring Energy Achievements Capturing Waste Gas: Saves Energy, Lower Costs - Case Study, 2013 Determine and Communicate the Value of

  4. Factors that will influence oil and gas supply and demand in the 21st century

    SciTech Connect (OSTI)

    Holditch, S.A.; Chianelli, R.R.

    2008-04-15

    A recent report published by the National Petroleum Council (NPC) in the United States predicted a 50-60% growth in total global demand for energy by 2030. Because oil, gas, and coal will continue to be the primary energy sources during this time, the energy industry will have to continue increasing the supply of these fuels to meet this increasing demand. Achieving this goal will require the exploitation of both conventional and unconventional reservoirs of oil and gas in (including coalbed methane) an environmentally acceptable manner. Such efforts will, in turn, require advancements in materials science, particularly in the development of materials that can withstand high-pressure, high-temperature, and high-stress conditions.

  5. Manhattan Project: Resources

    Office of Scientific and Technical Information (OSTI)

    RESOURCES RELATING TO THE MANHATTAN PROJECT In addition to the events, people, places, processes, and science pages that comprise the bulk of this web site, a number of additional resources are also provided: Reference Materials Maps Photo Gallery To Learn More Library Suggested Readings Background on this Site About this Site How to Navigate this Site Site Map Sources Note on Sources, A Nuclear Energy and the Public's Right to Know Sources and Notes (for each page) Sources and notes for this

  6. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources The Human Resources team is fully integrated with Jefferson Lab's mission, committed to providing quality customer service based on expertise, innovation and integrity. For general HR inquiries, contact (757) 269-7598. Announcements TIAA-CREF Retirement Counseling Session: To sign up for an appointment with Robert Jean, the TIAA-CREF Individual Consultant, go to http://www.tiaa-cref.org click on Meetings & Counseling and follow the menu. The sessions will be held in Support

  7. Jefferson Lab Human Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Human Resources Human Resources Forms Benefits 2011 Anthem Information Anthem General Mail Order Form (For KeyCare, BlueCare & HealthKeepers) Anthem Customer Claim Form Anthem Enrollment Form Anthem HealthKeepers Vision Claim Form Anthem Member Change Form Anthem Vision Services Claim Form (For KeyCare & BlueCare) 2011 Optima Information Optima Enrollment Form Prescription Home Delivery Order Form (For Optima) 2011 Delta Dental Information Delta Dental Change Form Delta Dental

  8. ARM - Other Science Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SitesOther Science Resources Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Other Science Resources AIMS Education Foundation This website offers tools, activities, and information "designed by teachers for teachers." AIMS activities and curricula are extensively field tested and

  9. Fermilab | Resources for ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    feature photo feature photo feature photo feature photo feature photo Resources for ... Navbar Toggle About Quick Info Science History Organization Photo and video gallery Diversity Education Safety Sustainability and environment Contact Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, Postdocs and Graduate Students Job Seekers Neighbors Industry K-12 Students, Teachers and Undergraduates Media

  10. Fermilab | Resources | Industrial Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Navbar Toggle About Quick Info Science History Organization Photo and video gallery Diversity Education Safety Sustainability and environment Contact Newsroom Spotlight Press releases Fact sheets and brochures symmetry Interactions.org Photo and video archive Resources for ... Employees Researchers, Postdocs and Graduate Students Job Seekers Neighbors Industry K-12 Students, Teachers and Undergraduates Media Science Particle Physics Neutrinos Fermilab and the LHC Dark matter and dark

  11. Resources | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Machine Control Center Display Jefferson Lab's accelerator is operated from the Machine Control Center. The MCC features a full-wall display that allows operators to monitor every function of the accelerator and to make adjustments as needed. JEFFERSON LAB RESOURCES Founded in 1985, Jefferson Lab is a world-leading nuclear physics research facility whose mission it is to explore the nucleus of the atom. The lab employs more than 800 physicists, engineers, computer specialists,

  12. WINDExchange: Information Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Resources A range of WINDExchange resources are available, including links to relevant publications, podcasts, and webinars about wind energy topics. Annual Reports Cover of the 2013 Wind Technologies Market Report. 2014 Wind Technologies Market Report The report provides a comprehensive overview of 2014 trends in the U.S. wind industry and wind power market. DOE's Lawrence Berkeley National Laboratory draws from a variety of data sources and covers a broad range of topics. Cover of

  13. Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Resources About one in every three federal employees is a military Veteran. At the Department of Energy, 21 percent of our workforce is made up of preference veterans. Veterans, their spouses, and dependent children are eligible for a variety of benefits provided by the Federal government. Some of these benefits are connected with service disabilities; others depend on amount of time served and in what capacity. Regardless, any Veteran seeking employment with a Federal agency should be

  14. Resource Recovery Opportunities at America's Water Resource Recovery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities | Department of Energy Resource Recovery Opportunities at America's Water Resource Recovery Facilities Resource Recovery Opportunities at America's Water Resource Recovery Facilities Breakout Session 3A-Conversion Technologies III: Energy from Our Waste (Will we Be Rich in Fuel or Knee Deep in Trash by 2025?) Resource Recovery Opportunities at America's Water Resource Recovery Facilities Todd Williams, Deputy Leader for Wastewater Infrastructure Practice, CH2M HILL PDF icon

  15. NREL: Renewable Resource Data Center - Biomass Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass Resource Information Photo of corn stover biomass resource Corn stover The Renewable Resource Data Center (RReDC) offers a collection of data and tools to assist with biomass resource research. Learn more about RReDC's biomass resource: Data Models and tools Publications Related links Biomass Resource Assessment is available for the United States by county and includes the following feedstock categories: crop residues, forest residues, primary and secondary mill residues, urban wood

  16. Energy Efficiency Resource Standards Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resource Standards Resources Energy Efficiency Resource Standards Resources Energy efficiency resource standards (EERS) mandate a quantified energy efficiency goal for an energy provider or jurisdiction within a predetermined timeframe. The standards may encourage more efficient energy use or generation, may include a demand-side management program, and may be coupled with a state's renewable portfolio standard. Find EERS resources below. Coordination of Energy Efficiency and Demand Response

  17. Coordinated Collaboration between Heterogeneous Distributed Energy Resources

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abdollahy, Shahin; Lavrova, Olga; Mammoli, Andrea

    2014-01-01

    A power distribution feeder, where a heterogeneous set of distributed energy resources is deployed, is examined by simulation. The energy resources include PV, battery storage, natural gas GenSet, fuel cells, and active thermal storage for commercial buildings. The resource scenario considered is one that may exist in a not too distant future. Two cases of interaction between different resources are examined. One interaction involves a GenSet used to partially offset the duty cycle of a smoothing battery connected to a large PV system. The other example involves the coordination of twenty thermal storage devices, each associated with a commercial building.more » Storage devices are intended to provide maximum benefit to the building, but it is shown that this can have a deleterious effect on the overall system, unless the action of the individual storage devices is coordinated. A network based approach is also introduced to calculate some type of effectiveness metric to all available resources which take part in coordinated operation. The main finding is that it is possible to achieve synergy between DERs on a system; however this required a unified strategy to coordinate the action of all devices in a decentralized way.« less

  18. Favorable Supplies, Costs, Environmental Profile for Natural Gas Revealed in New Department of Energy Study

    Broader source: Energy.gov [DOE]

    The nation’s large resource base of natural gas can be used for cost-effective power generation, with environmental burdens coming primarily from fuel combustion, not resource extraction, according to a new Department of Energy study.

  19. Proceedings of the natural gas research and development contractors review meeting

    SciTech Connect (OSTI)

    Malone, R.D.; Shoemaker, H.D.; Byrer, C.W.

    1990-11-01

    The purpose of this meeting was to present results of the research in the DOE-sponsored Natural Gas Program, and simultaneously to provide a forum for real-time technology transfer, to the active research community, to the interested public, and to the natural gas industry, who are the primary users of this technology. The current research focus is to expand the base of near-term and mid-term economic gas resources through research activities in Eastern Tight Gas, Western Tight Gas, Secondary Gas Recovery (increased recovery of gas from mature fields); to enhance utilization, particularly of remote gas resources through research in Natural Gas to Liquids Conversion; and to develop additional, long term, potential gas resources through research in Gas Hydrates and Deep Gas. With the increased national emphasis on the use of natural gas, this forum has been expanded to include summaries of DOE-sponsored research in energy-related programs and perspectives on the importance of gas to future world energy. Thirty-two papers and fourteen poster presentations were given in seven formal, and one informal, sessions: Three general sessions (4 papers); Western Tight Gas (6 papers); Eastern Tight Gas (8 papers); Conventional/Speculative Resources (8 papers); and Gas to Liquids (6 papers). Individual reports are processed separately on the data bases.

  20. Vehicle Technologies Office: Resources for Consumers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consumers Vehicle Technologies Office: Resources for Consumers As technologies supported by the Vehicle Technologies Office (VTO) come on to the market, regular drivers will benefit from lower fuel costs and less time spent at the gas station. Through FuelEconomy.gov and the Alternative Fuels Data Center, VTO provides a variety of resources to help drivers choose the most efficient vehicle that meets their needs and get the most out of the vehicle they have now. Green Racing highlights the

  1. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    The Colorado legislature enacted H.B. 1037 in 2007, requiring electricity and natural gas investor-owned utilities (IOUs) to engage in demand response and adopt demand-side management (DSM)...

  2. Energy Efficiency Resource Standard

    Broader source: Energy.gov [DOE]

    In 2007, the Minnesota legislature passed the Next Generation Energy Act (NGEA), which requires both electric and natural gas investor-owned utilities to reduce energy sales, and spend a minimum ...

  3. The Department of Energy's Role in Liquefied Natural Gas Export

    Energy Savers [EERE]

    Applications | Department of Energy The Department of Energy's Role in Liquefied Natural Gas Export Applications The Department of Energy's Role in Liquefied Natural Gas Export Applications November 8, 2011 - 11:34am Addthis Statement of Christopher Smith, Deputy Assistant Secretary for Oil and Natural Gas, Office of Fossil Energy before the Senate Committee on Energy and Natural Resources on DOE's Role in Liquefied Natural Gas Export Applications. Thank you Chairman Bingaman, Ranking Member

  4. North American Shale Gas | OSTI, US Dept of Energy, Office of...

    Office of Scientific and Technical Information (OSTI)

    and why is it important? (EIA) Review of Emerging Resources: U.S. Shale Gas and Shale Oil Plays (EIA) Shale Gas: Applying Technology to Solve America's Energy Challenges (NETL ...

  5. NATURAL GAS FROM SHALE: Questions and Answers Shale Gas Glossary

    Office of Environmental Management (EM)

    Glossary Acquifer - A single underground geological formation, or group of formations, containing water. Antrim Shale - A shale deposit located in the northern Michigan basin that is a Devonian age rock formation lying at a relatively shallow depth of 1,000 feet. Gas has been produced from this formation for several decades primarily via vertical, rather than horizontal, wells. The Energy Information Administration (EIA) estimates the technically recoverable Antrim shale resource at 20 trillion

  6. Fisheries Resources | Open Energy Information

    Open Energy Info (EERE)

    Fisheries Resources Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleFisheriesResources&oldid612306" Feedback Contact needs updating Image...

  7. Sage Resources | Open Energy Information

    Open Energy Info (EERE)

    Sage Resources Jump to: navigation, search Name: Sage Resources Place: Missoula, Montana Zip: 59803 Sector: Geothermal energy, Solar Product: A company specializing in geothermal...

  8. BPA Resource Program Announcement Letter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    types available to fill any projected deficits. The Resource Program will analyze the costs, risks and environmental characteristics of resource portfolios BPA could pursue and...

  9. Paleontological Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titlePaleontologicalResources&oldid647801" Feedback Contact needs updating Image...

  10. Fire Resources | Open Energy Information

    Open Energy Info (EERE)

    Fire Resources Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleFireResources&oldid612392" Feedback Contact needs updating Image needs...

  11. Wildlife Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWildlifeResources&oldid612286" Feedback Contact needs updating Image needs...

  12. Protection of the Groundwater Resource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection of the Groundwater Resource Protection of the Groundwater Resource Monitoring wells act as sentinels between suspected LANL contamination and the water supply. August 1,...

  13. resource | OpenEI Community

    Open Energy Info (EERE)

    overview cleanweb hackathon resource webinar Today, Ian Kalin, a presidential innovation fellow, and the OpenEI team recorded an "energy resource" overview for developers of...

  14. Wind Career Map: Resource List

    Broader source: Energy.gov [DOE]

    The following resources were used in the development of the Wind Career Map, associated job profile information, or are potential resources for interested Wind Career Map viewers.

  15. Produce More Oil Gas via eBusiness Data Sharing

    SciTech Connect (OSTI)

    Paul Jehn; Mike Stettner

    2004-09-30

    GWPC, DOGGR, and other state agencies propose to build eBusiness applications based on a .NET front-end user interface for the DOE's Energy 100 Award-winning Risk Based Data Management System (RBDMS) data source and XML Web services. This project will slash the costs of regulatory compliance by automating routine regulatory reporting and permit notice review and by making it easier to exchange data with the oil and gas industry--especially small, independent operators. Such operators, who often do not have sophisticated in-house databases, will be able to use a subset of the same RBDMS tools available to the agencies on the desktop to file permit notices and production reports online. Once the data passes automated quality control checks, the application will upload the data into the agency's RBDMS data source. The operators also will have access to state agency datasets to focus exploration efforts and to perform production forecasting, economic evaluations, and risk assessments. With the ability to identify economically feasible oil and gas prospects, including unconventional plays, over the Internet, operators will minimize travel and other costs. Because GWPC will coordinate these data sharing efforts with the Bureau of Land Management (BLM), this project will improve access to public lands and make strides towards reducing the duplicative reporting to which industry is now subject for leases that cross jurisdictions. The resulting regulatory streamlining and improved access to agency data will make more domestic oil and gas available to the American public while continuing to safeguard environmental assets.

  16. Oil- and gas-supply modeling

    SciTech Connect (OSTI)

    Gass, S.I.

    1982-05-01

    The symposium on Oil and Gas Supply Modeling, held at the Department of Commerce, Washington, DC (June 18-20, 1980), was funded by the Energy Information Administration of the Department of Energy and co-sponsored by the National Bureau of Standards' Operations Research Division. The symposium was organized to be a forum in which the theoretical and applied state-of-the-art of oil and gas supply models could be presented and discussed. Speakers addressed the following areas: the realities of oil and gas supply, prediction of oil and gas production, problems in oil and gas modeling, resource appraisal procedures, forecasting field size and production, investment and production strategies, estimating cost and production schedules for undiscovered fields, production regulations, resource data, sensitivity analysis of forecasts, econometric analysis of resource depletion, oil and gas finding rates, and various models of oil and gas supply. This volume documents the proceedings (papers and discussion) of the symposium. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base.

  17. Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation„Including a Natural Gas Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Perspective on Opportunities for Hydrogen and Natural Gas for Transportation Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles - Workshop American Gas Association, Washington, D.C. Fred Joseck Fuel Cell Technologies Office Office of Sustainable Transportation U.S. Department of Energy September 9, 2014 2 | Fuel Cell Technologies Office eere.energy.gov The Potential for Natural Gas in Transportation With ample NG resources available , four potential pathways to

  18. A Path to Reduce Methane Emissions from Gas Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Path to Reduce Methane Emissions from Gas Systems A Path to Reduce Methane Emissions from Gas Systems July 29, 2014 - 3:33pm Addthis A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy Department. A researcher evaluates methane produced in a unique conservation process. Methane is both a potent greenhouse gas and valuable energy resource.| Photo courtesy of the Energy

  19. Mineral resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, Sweetwater County, Wyoming

    SciTech Connect (OSTI)

    Gibbons, A.B.; Barbon, H.N.; Kulik, D.M. (Geological Survey, Reston, VA (USA)); McDonnell, J.R. Jr. (US Bureau of Mines (US))

    1990-01-01

    The authors present a study to assess the potential for undiscovered mineral resources and appraise the identified resources of the Buffalo Hump and Sand Dunes Addition Wilderness Study Areas, southwestern Wyoming, There are no mines, prospects, or mineralized areas nor any producing oil or gas wells; however, there are occurrences of coal, claystone and shale, and sand. There is a moderate resource potential for oil shale and natural gas and a low resource potential for oil, for metals, including uranium, and for geothermal sources.

  20. Solar Energy Resource Center | Department of Energy

    Energy Savers [EERE]

    Resource Center Solar Energy Resource Center Sub Program Topic Resource Search Results Title Date Author SubProgram Topic Description

  1. Employee, Retiree Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources /about/_assets/images/icon-70th.jpg Employee, Retiree Resources Employees and retirees are the building blocks of the Lab's success. Our employees get to contribute to the most pressing issues facing the nation. Clearances» New-Hire Process» Payroll, Taxes» Benefits Plan Reports & Notices» Retiree Benefits» Travel Reimbursement» Verification of Employment» TOP STORIES - highlights of our science, people, technologies close If you map it, they will come When the Weapon

  2. NREL: Renewable Resource Data Center - Geothermal Resource Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resource Data The following geothermal resource data collections can be found in the Renewable Resource Data Center (RReDC). Geothermal Resource Data The datasets on this page offer a qualitative assessment of geothermal potential for the U.S. using Enhanced Geothermal Systems (EGS) and based on the levelized cost of electricity, and the Texas Geopressured Geothermal Resource Estimate. Geothermal data sites Data related to geothermal technology and energy

  3. NREL: Renewable Resource Data Center - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information Solar Resource Information Wind Resource Information Did you find what you needed? Yes 1...

  4. The United States has significant natural gas

    Energy Savers [EERE]

    United States has significant natural gas and oil reserves. But many of these resources are increasingly harder to locate and bring into production. To help meet this challenge, the U.S. Department of Energy's Office of Fossil Energy over the years has amassed wide ranging expertise in areas related to deepwater resource location, production, safety and environmental protection. The goal of these activities has been to not only help overcome production and technical hurdles, but also improve the

  5. Resources | Energy Frontier Research Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Home Click here to visit the Department of Energy, EFRC Website

  6. Information Resources | Department of Energy

    Office of Environmental Management (EM)

    Information Resources Information Resources Information Resources EGS Data Library Data includes fact sheets, reports, and webinars developed through the Geothermal Technologies Office. Multimedia View and download recent infographics and additional visuals created through FORGE. For other Information Resources, please visit the Geothermal Technologies Office website at energy.gov/geothermal.

  7. Information Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources Information Resources Information Resources Photo of NREL employee Michael Deru using a desktop computer. The Geothermal Technologies Office is a source of current, relevant information about enhanced geothermal systems (EGS) technologies and other geothermal technologies and applications. On these pages you'll find helpful publications, software, and websites for the geothermal community and stakeholders. Geothermal information resources: Publications Technical Roadmaps

  8. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... depends on three factors: the costs of drilling and completing wells, the amount of oil ... with critical expertise and suitable drilling rigs and, preexisting gathering and ...

  9. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... the La Luna-1 stratigraphic test in the MMVB later that year (results not disclosed). ... ConocoPhillips expects to drill its first exploration well to test the La Luna Shale in ...

  10. Technically Recoverable Shale Oil and Shale Gas Resources:

    Gasoline and Diesel Fuel Update (EIA)

    ... 2013 to clarify these significant changes and clear up the current regulatory uncertainty. ... a result of the Indian Ocean plate subducting at an oblique angle beneath Southeast Asia. ...

  11. Technically Recoverable Shale Oil and Shale Gas Resources

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    logs from 100 horizontal wells showed an enormous discrepancy in production between perforation clusters that is likely due to rock heterogeneity." One reason why...

  12. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  13. Oil and Gas Research| GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oil & Gas We're balancing the increasing demand for finite resources with technology that ensures access to energy for generations to come. Home > Innovation > Oil & Gas How Healthcare + Industry Breeds Better Inspection Technology Healthcare and industrial inspection technologies seem worlds apart; but overlapping areas of expertise like those are among the... Read More » From Blood to Mud: Microclarifier Technology At first glance, blood and mud have absolutely nothing in

  14. NATURAL GAS FROM SHALE: Questions and Answers

    Office of Environmental Management (EM)

    Challenges are Associated with Shale Gas Production? Developing any energy resource - whether conventional or non-conventional like shale - carries with it the possibility and risk of environmental, public health, and safety issues. Some of the challenges related to shale gas production and hydraulic fracturing include: * Increased consumption of fresh water (volume and sources); * Induced seismicity (earthquakes) from shale flowback water disposal;Chemical disclosure of fracture fluid

  15. Physical Properties of Gas Hydrates: A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  16. Hanford Cultural Resources - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Hanford Site Wide Programs Hanford's Tribal Program Hanford Cultural Resources About Us Hanford's Tribal Program Home Hanford Cultural Resources DOE American Indian Tribal Government Policy (PDF) Hanford Cultural Resources Email Email Page | Print Print Page |Text Increase Font Size Decrease Font Size Cultural Resources Hanford Cultural Resources Tribal staffs are regularly consulted at the earliest opportunity for recommendations and advice on DOE-RL activities potentially affecting

  17. Developer Resources | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Developer Resources Developer Resources Apps for Energy Apps for Energy The Energy Department is challenging developers to use the Green Button data access program to bring residential and commercial utility data to life with fun and creative apps. Read more Learn about Green Button Learn about Green Button Apps for Energy submissions must use Green Button data. To learn more, start here. Read more NREL Resources NREL Resources NREL offers a number resources for Green Button app developers. Find

  18. Valuation of ecological resources

    SciTech Connect (OSTI)

    Scott, M.J.; Bilyard, G.R.; Link, S.O.; Ricci, P.F.; Seely, H.E.; Ulibarri, C.A.; Westerdahl, H.E.

    1995-04-01

    Ecological resources are resources that have functional value to ecosystems. Frequently, these functions are overlooked in terms of the value they provide to humans. Environmental economics is in search of an appropriate analysis framework for such resources. In such a framework, it is essential to distinguish between two related subsets of information: (1) ecological processes that have intrinsic value to natural ecosystems; and (2) ecological functions that are values by humans. The present study addresses these concerns by identifying a habitat that is being displaced by development, and by measuring the human and ecological values associated with the ecological resources in that habitat. It is also essential to determine which functions are mutually exclusive and which are, in effect, complementary or products of joint production. The authors apply several resource valuation tools, including contingent valuation methodology (CVM), travel cost methodology (TCM), and hedonic damage-pricing (HDP). One way to derive upper-limit values for more difficult-to-value functions is through the use of human analogs, because human-engineered systems are relatively inefficient at supplying the desired services when compared with natural systems. Where data on the relative efficiencies of natural systems and human analogs exist, it is possible to adjust the costs of providing the human analog by the relative efficiency of the natural system to obtain a more realistic value of the function under consideration. The authors demonstrate this approach in an environmental economic case study of the environmental services rendered by shrub-steppe habitats of Benton County, Washington State.

  19. Before the House Subcommittee on Energy and Environment- Committee on Science, Space, and Technology

    Broader source: Energy.gov [DOE]

    Subject: Unconventional Fossil Resources By: Charles McConnell, Assistant Secretary for Fossil Energy

  20. Nebraska Oil and Gas Conservation Commission | Open Energy Information

    Open Energy Info (EERE)

    was founded in 1959. Its mission is to foster, encourage and promote the development, production and utilization of natural resources of oil and gas in the state. The mission...

  1. Task 6.5 - Gas Separation and Hot-Gas Cleanup (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Task 6.5 - Gas Separation and Hot-Gas Cleanup Citation Details In-Document Search Title: Task 6.5 - Gas Separation and Hot-Gas Cleanup × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for

  2. Resource Contingency Program : Draft Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1995-02-01

    In 1990, the Bonneville Power Administration (BPA) embarked upon the Resource Contingency Program (RCP) to fulfill its statutory responsibilities to supply electrical power to its utility, industrial and other customers in the Pacific Northwest. Instead of buying or building generating plants now, BPA has purchased options to acquire power later if needed. Three option development agreements were signed in September 1993 with three proposed natural gas-fired, combined cycle combustion turbine CT projects near Chehalis and Satsop Washington and near Hermiston, Oregon. This environmental impact statement addresses the environmental consequences of purchasing power from these options. This environmental impact statement addresses the environmental consequences of purchasing power from these options.

  3. PUCT Substantive Rule 25.173 Renewable Energy Resources and Use...

    Open Energy Info (EERE)

    73 Renewable Energy Resources and Use of Natural Gas Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: PUCT Substantive Rule...

  4. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    natural gas demand, thereby contributing to larger net injections of natural gas into storage. Other Market Trends: EIA Releases The Natural Gas Annual 2006: The Energy...

  5. Natural Gas Applications

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Gas Applications. If you need assistance viewing this page, please call (202) 586-8800. Energy Information Administration Home Page Home > Natural Gas > Natural Gas Applications...

  6. Compression set in Gas Blown Condensation Cured Polysiloxane Elastomers

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Compression set in Gas Blown Condensation Cured Polysiloxane Elastomers Citation Details In-Document Search Title: Compression set in Gas Blown Condensation Cured Polysiloxane Elastomers Authors: Patel, M ; Chinn, S C ; Maxwell, R S ; Wilson, T S ; Birdsell, S A Publication Date: 2010-06-28 OSTI Identifier: 1124817 Report Number(s): LLNL-JRNL-439176 DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource Relation: Journal Name: Polymer

  7. Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  8. Lignocellulosic feedstock resource assessment

    SciTech Connect (OSTI)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  9. The Resource Hierarchy Relationship

    Gasoline and Diesel Fuel Update (EIA)

    Resource Hierarchy Relationship Troy Cook September 27, 2015 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy Information Administration. WORKING PAPER SERIES September 2015 Troy Cook | U.S. Energy Information Administration This paper is released to

  10. LANSCE | Lujan Center | Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Resources The links below describe equipment, laboratories, capabilities, and sample environments that are available to users. Users must plan ahead and specify their needs when they submit beamtime proposals so that proper coordination can be planned. For more information about a specific area you would like to use, please contact the appropriate listed lead person: Chemical and Sample Preparation Sample and Equipment Shipping Instructions Ancillary Equipment and Sample Environment

  11. Jefferson Lab Information Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Search Online Catalog Subject Pathfinders Databases E-Books Online Journals Print Journals/Backfiles Ask a Librarian Interlibrary Loan Request Additional Resources Library Information Location and Hours Staff Circulation Policy Lab Libraries Give us your Feedback AVS Historical Book Collection Whats New ! Mobile Catalog Access Cryocooler fundamentals and space applications course notes AIP Digital Archives Applied Physics Letters Journal of Applied Physics Review of Scientific

  12. Response Resources Demonstration

    Energy Savers [EERE]

    Interoperability of Demand Response Resources Demonstration in NY Final Technical Report Award Number: DE-FC26-08NT02869 Project Type: Regional Demonstration Principal Investigator: Andre Wellington, Project Manager, Smart Grid Implementation Group Recipient: Consolidated Edison Company of New York, Inc. Team members: Innoventive Power and Verizon Communications Consolidated Edison Company of New York, Inc. Taxpayer ID Number: 13-5009340 Organizational DUNS: 00-698-2359 4 Irving Place New York,

  13. Using wastes as resources

    SciTech Connect (OSTI)

    Prakasam, T.B.S.; Lue-Hing, C. )

    1992-09-01

    The collection, treatment, and disposal of domestic and industrial wastewater, garbage, and other wastes present considerable problems in urban and semiurban areas of developing countries. Major benefits of using integrated treatment and resource recovery systems include waste stabilization, recovering energy as biogas, producing food from algae and fish, irrigation, improved public health, and aquatic weed control and use. Information and research are needed, however, to assesss the appropriateness, benefits, and limitations of such technology on a large scale. System configuration depends on the types and quantities of wastes available for processing. There must be enough collectable waste for the system to be viable. Information should be gathered to asses whether there is a net public health benefit by implementing a waste treatment and resource recovery system. Benefits such as savings in medical expenses and increased worker productivity due to improved health may be difficult to quantify. The potential health risks created by implementing a resource recovery system should be studied. The most difficult issues to contend with are socioeconomic in nature. Often, the poor performance of a proven technology is attributed to a lack of proper understanding of its principles by the operators, lack of community interest, improper operator training, and poor management. Public education to motivate people to accept technologies that are beneficial to them is important.

  14. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  15. Information technology resources assessment

    SciTech Connect (OSTI)

    Stevens, D.F.

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  16. NREL: Renewable Resource Data Center - Geothermal Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Resource Information Geothermal Prospector Start exploring U.S. geothermal resources with an easy-to-use map by selecting data layers that are NGDS compatible. Photo of...

  17. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  18. NREL: Renewable Resource Data Center - Geothermal Resource Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications For a list of Geothermal publications, go to Geothermal Technologies Publication page. For a list of legacy Geothermal publications, check out Geothermal Technologies Legacy Collection. NREL Publications Database For a comprehensive list of other NREL geothermal resource publications, explore NREL's Publications Database. When searching the database, search on "geothermal resources". Printable Version RReDC Home Biomass Resource Information Geothermal Resource Information

  19. NREL: Renewable Resource Data Center - Solar Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Resource Information The Renewable Resource Data Center (RReDC) offers a collection of data and tools to assist with solar resource research. Learn more about RReDC's solar resource: Data Models and tools Publications Related links The proper siting of any renewable energy system is critical to its success. However, siting a solar energy system can be particularly challenging because of the varying nature of the sun. Daily weather fluctuations and seasonal position changes can have

  20. NREL: Resource Assessment and Forecasting - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources National Solar Radiation Database NREL resource assessment and forecasting research information is available from the following sources. Renewable Resource Data Center (RReDC) Provides information about biomass, geothermal, solar, and wind energy resources. Measurement and Instrumentation Data Center Provides irradiance and meteorological data from stations throughout the United States. Baseline Measurement System (BMS) Provides live solar radiation data from approximately 70