Powered by Deep Web Technologies
Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Oil Shale and Other Unconventional Fuels Activities | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Reserves Oil Shale and Other Unconventional Fuels Activities Oil Shale and Other Unconventional Fuels Activities The Fossil Energy program in oil shale focuses on...

2

Oil Shale and Other Unconventional Fuels Activities  

Energy.gov (U.S. Department of Energy (DOE))

It is generally agreed that worldwide petroleum supply will eventually reach its productive limit, peak, and begin a long term decline. What should the United States do to prepare for this event?...

3

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Presentation covers stationary fuel cells...

4

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

5

LANDS WITH WILDERNESS CHARACTERISTICS, RESOURCE MANAGEMENT PLAN CONSTRAINTS, AND LAND EXCHANGES: CROSS-JURISDICTIONAL MANAGEMENT AND IMPACTS ON UNCONVENTIONAL FUEL DEVELOPMENT IN UTAH’S UINTA BASIN  

SciTech Connect

Utah is rich in oil shale and oil sands resources. Chief among the challenges facing prospective unconventional fuel developers is the ability to access these resources. Access is heavily dependent upon land ownership and applicable management requirements. Understanding constraints on resource access and the prospect of consolidating resource holdings across a fragmented management landscape is critical to understanding the role Utah’s unconventional fuel resources may play in our nation’s energy policy. This Topical Report explains the historic roots of the “crazy quilt” of western land ownership, how current controversies over management of federal public land with wilderness character could impact access to unconventional fuels resources, and how land exchanges could improve management efficiency. Upon admission to the Union, the State of Utah received the right to title to more than one-ninth of all land within the newly formed state. This land is held in trust to support public schools and institutions, and is managed to generate revenue for trust beneficiaries. State trust lands are scattered across the state in mostly discontinuous 640-acre parcels, many of which are surrounded by federal land and too small to develop on their own. Where state trust lands are developable but surrounded by federal land, federal land management objectives can complicate state trust land development. The difficulty generating revenue from state trust lands can frustrate state and local government officials as well as citizens advocating for economic development. Likewise, the prospect of industrial development of inholdings within prized conservation landscapes creates management challenges for federal agencies. One major tension involves whether certain federal public lands possess wilderness character, and if so, whether management of those lands should emphasize wilderness values over other uses. On December 22, 2010, Secretary of the Interior Ken Salazar issued Secretarial Order 3310, Protecting Wilderness Characteristics on Lands Managed by the Bureau of Land Management. Supporters argue that the Order merely provides guidance regarding implementation of existing legal obligations without creating new rights or duties. Opponents describe Order 3310 as subverting congressional authority to designate Wilderness Areas and as closing millions of acres of public lands to energy development and commodity production. While opponents succeeded in temporarily defunding the Order’s implementation and forcing the Bureau of Land Management (BLM) to adopt a more collaborative approach, the fundamental questions remain: Which federal public lands possess wilderness characteristics and how should those lands be managed? The closely related question is: How might management of such resources impact unconventional fuel development within Utah? These questions remain pressing independent of the Order because the BLM, which manages the majority of federal land in Utah, is statutorily obligated to maintain an up-to-date inventory of federal public lands and the resources they contain, including lands with wilderness characteristics. The BLM is also legally obligated to develop and periodically update land use plans, relying on information obtained in its public lands inventory. The BLM cannot sidestep these hard choices, and failure to consider wilderness characteristics during the planning process will derail the planning effort. Based on an analysis of the most recent inventory data, lands with wilderness characteristics — whether already subject to mandatory protection under the Wilderness Act, subject to discretionary protections as part of BLM Resource Management Plan revisions, or potentially subject to new protections under Order 3310 — are unlikely to profoundly impact oil shale development within Utah’s Uinta Basin. Lands with wilderness characteristics are likely to v have a greater impact on oil sands resources, particularly those resources found in the southern part of the state. Management requirements independent of l

Keiter, Robert; Ruple, John; Holt, Rebecca; Tanana, Heather; McNeally, Phoebe; Tribby, Clavin

2012-10-01T23:59:59.000Z

6

Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

8/5/2011 eere.energy.gov 8/5/2011 eere.energy.gov 5 th International Conference on Polymer Batteries & Fuel Cells Argonne, Illinois Hydrogen and Fuel Cell Activities Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager August 4, 2011 2 | Fuel Cell Technologies Program Source: US DOE 8/5/2011 eere.energy.gov Fuel Cells: Benefits & Market Potential The Role of Fuel Cells Key Benefits Very High Efficiency Reduced CO 2 Emissions * 35-50%+ reductions for CHP systems (>80% with biogas) * 55-90% reductions for light- duty vehicles * up to 60% (electrical) * up to 70% (electrical, hybrid fuel cell / turbine) * up to 85% (with CHP) Reduced Oil Use * >95% reduction for FCEVs (vs. today's gasoline ICEVs)

7

EPAct Transportation Regulatory Activities: Alternative Fuel Petitions  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternative Fuel Petitions to someone by E-mail Share EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Facebook Tweet about EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Twitter Bookmark EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Google Bookmark EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Delicious Rank EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on Digg Find More places to share EPAct Transportation Regulatory Activities: Alternative Fuel Petitions on AddThis.com... Home About Covered Fleets Compliance Methods Alternative Fuel Petitions Resources Alternative Fuel Petitions Section 301(2) of the Energy Policy Act of 1992 (EPAct 1992) defines

8

Overview of Hydrogen and Fuel Cell Activities: February 2011...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel...

9

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop...

10

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...  

Energy Savers (EERE)

DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel...

11

Unconventional Energy Resources: 2011 Review  

SciTech Connect

This report contains nine unconventional energy resource commodity summaries prepared by committees of the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. Unconventional energy resources, as used in this report, are those energy resources that do not occur in discrete oil or gas reservoirs held in structural or stratigraphic traps in sedimentary basins. These resources include coal, coalbed methane, gas hydrates, tight gas sands, gas shale and shale oil, geothermal resources, oil sands, oil shale, and uranium resources. Current U.S. and global research and development activities are summarized for each unconventional energy commodity in the topical sections of this report. Coal and uranium are expected to supply a significant portion of the world's energy mix in coming years. Coalbed methane continues to supply about 9% of the U.S. gas production and exploration is expanding in other countries. Recently, natural gas produced from shale and low-permeability (tight) sandstone has made a significant contribution to the energy supply of the United States and is an increasing target for exploration around the world. In addition, oil from shale and heavy oil from sandstone are a new exploration focus in many areas (including the Green River area of Wyoming and northern Alberta). In recent years, research in the areas of geothermal energy sources and gas hydrates has continued to advance. Reviews of the current research and the stages of development of these unconventional energy resources are described in the various sections of this report.

Collaboration: American Association of Petroleum Geologists

2011-12-15T23:59:59.000Z

12

Fuel Cell Technologies Office: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities to Key Activities to someone by E-mail Share Fuel Cell Technologies Office: Key Activities on Facebook Tweet about Fuel Cell Technologies Office: Key Activities on Twitter Bookmark Fuel Cell Technologies Office: Key Activities on Google Bookmark Fuel Cell Technologies Office: Key Activities on Delicious Rank Fuel Cell Technologies Office: Key Activities on Digg Find More places to share Fuel Cell Technologies Office: Key Activities on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Key Activities The Fuel Cell Technologies Office conducts work in several key areas to

13

Fuel-Induced System Responses The Role Unconventional Fuels May Play in Altering Exhaust Conditions from Conventional and Low Temperature Modes of Combustion  

Energy.gov (U.S. Department of Energy (DOE))

Fuel properties and low temperature combustion e alters conditions thereby affecting exhaust-based thermoelectric device performance

14

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& & Renewable Energy Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities Pete Devlin Fuel Cell Technologies Program United States Department of Energy Federal Utility Partnership Working Group April 14 th , 2010 2 * DOE Fuel Cell Market Transformation Overview * Overview of CHP Concept * Stationary Fuel Cells for CHP Applications * Partnering and Financing (Sam Logan) * Example Project Outline 3 Fuel Cells: Addressing Energy Challenges Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution:  Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP & backup power)

15

Activities Related to Storage of Spent Nuclear Fuel | Department...  

Office of Environmental Management (EM)

Activities Related to Storage of Spent Nuclear Fuel Activities Related to Storage of Spent Nuclear Fuel Activities Related to Storage of Spent Nuclear Fuel More Documents &...

16

Hydrogen and Fuel Cell Activities, Progress,  

E-Print Network (OSTI)

Hydrogen and Fuel Cell Activities, Progress, and Plans: August 2007 to August 2010 Second Report |August 2013 Hydrogen and Fuel Cell Activities, Progress, and Plans: Second Report to Congress | Page 1, Hydrogen and Fuel Cell Activities, Progress and Plans, is provided in response to section 811(a

17

Alternative Fuels Data Center: Active Transit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Active Transit to Active Transit to someone by E-mail Share Alternative Fuels Data Center: Active Transit on Facebook Tweet about Alternative Fuels Data Center: Active Transit on Twitter Bookmark Alternative Fuels Data Center: Active Transit on Google Bookmark Alternative Fuels Data Center: Active Transit on Delicious Rank Alternative Fuels Data Center: Active Transit on Digg Find More places to share Alternative Fuels Data Center: Active Transit on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Active Transit Photo of people riding bikes. Active transit is human-powered transportation such as biking and walking. Active transportation eliminates vehicle miles traveled altogether, so this

18

Hydrogen and Fuel Cell Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

electrolysis, using renewable electricity * Conventional fuels - including natural gas, propane, diesel 3 | Fuel Cell Technologies Program Source: US DOE 852011...

19

January 2009 Hydrogen and Fuel Cell Activities,  

E-Print Network (OSTI)

January 2009 Hydrogen and Fuel Cell Activities, Progress, and Plans Report to Congress #12;Preface describing-- (1) activities carried out by the Department under this title, for hydrogen and fuel cell to the strategy relating to hydrogen and fuel cell technology to reflect the results of learning demonstrations

20

Fuel Cell R&D Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell R&D Activities Fuel Cell R&D Activities Photo of electric motor under the hood of fuel cell car The Fuel Cell Technologies fuel cell research and development (R&D)...

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Overview of Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

& Deputy Program Manager & Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Military Energy and Alternative Fuels Conference March 17-18, 2010 San Diego, CA 2 1. Overview, Challenges & Technology Status 2. DOE Program Activities and Progress 3. Market Transformation Outline 3 Fuel Cells: Addressing Energy Challenges Energy Efficiency and Resource Diversity  Fuel cells offer a highly efficient way to use diverse fuels and energy sources. Greenhouse Gas Emissions and Air Pollution:  Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources. Stationary Power (including CHP & backup power) Auxiliary & Portable Power Transportation Benefits * Efficiencies can be 60% (electrical)

22

Overview of Hydrogen and Fuel Cell Activities: 2010 Military...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and Alternative Fuels Conference Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and...

23

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference...

24

Hydrogen and Fuel Cell Activities: 5th International Conference...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer...

25

Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Overview of Hydrogen and Fuel Cell Activities: 2011 IPHE Stationary Fuel Cell Workshop Presentation by Rick Farmer at the...

26

Overview of Hydrogen and Fuel Cell Activities: February 2011...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting Overview of Hydrogen and Fuel Cell Activities: February...

27

Hydrogen and Fuel Cell Activity  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell Activity Cell Activity USFCC - Matching Federal Government Needs Presented by: Mr. John Christensen, PE Chief Logistics R&D Division, DLA 26 April 2007 The DLA Enterprise $21.5B $25B $28B $31.8B $35.5B $34.6B FY02 Sales/Services: FY03 Sales/Services: FY04 Sales/Services: FY05 Sales/Services: FY06 Sales/Services: FY07 Projected: * ~95% of Services' repair parts * 100% of Services' subsistence, fuels, medical, clothing & textile, construction & barrier materiel Foreign Military Sales * Sales: $1.02B * Shipments: 520K * Supporting 126 Nations Scope of Business * 54,000 Requisitions/Day * 8,200 Contracts/Day * #58 Fortune 500 - Above Sprint Nextel * #3 in Top 50 Distribution Warehouses * 26 Distribution Depots * 5.2 Million Items - eight supply chains

28

Fuel Cell Technologies Office: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities Key Activities The Fuel Cell Technologies Office conducts work in several key areas to advance the development and commercialization of hydrogen and fuel cell technologies. Research, Development, and Demonstration Key areas of research, development, and demonstration (RD&D) include the following: Fuel Cell R&D, which seeks to improve the durability, reduce the cost, and improve the performance of fuel cell systems, through advances in fuel cell stack and balance of plant components Hydrogen Fuel R&D, which focuses on enabling the production of low-cost hydrogen fuel from diverse renewable pathways and addressing key challenges to hydrogen delivery and storage Manufacturing R&D, which works to develop and demonstrate advanced manufacturing technologies and processes that will reduce the cost of fuel cell systems and hydrogen technologies

29

Overview of Hydrogen & Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Source: US DOE 2/25/2011 Source: US DOE 2/25/2011 eere.energy.gov Overview of Hydrogen & Fuel Cell Activities FUEL CELL TECHNOLOGIES PROGRAM IPHE - Stationary Fuel Cell Workshop Rick Farmer U.S. Department of Energy Fuel Cell Technologies Program Deputy Program Manager March 1, 2011 2 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov * Overview * R&D Progress * Market Transformation * Budget * Policies * Collaborations Agenda 3 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov Fuel Cells: Addressing Energy Challenges 4 | Fuel Cell Technologies Program Source: US DOE 2/25/2011 eere.energy.gov Technology Barriers* Economic & Institutional Barriers Fuel Cell Cost & Durability Targets*: Stationary Systems: $750 per kW,

30

Overview of Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Activities Activities FUEL CELL TECHNOLOGIES PROGRAM HTAC Meeting Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 17, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Overview - EERE Priorities * FY12 Budget * Examples of Collaboration & Leveraging Activities - Office of Science, DOD, DOT, SBIRs, International - Conferences and Workshops * Analysis Update * Recent HTAC Input & Future Needs Agenda 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov High Impact Innovation Examples of Innovative Applied R&D Developed high surface area nanostructures for fuel cell electrodes that helped increase fuel cell power density and reduce fuel cell system cost by >45%

31

Overview of Hydrogen and Fuel Cell Activities: 6th International...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell...

32

Advanced Fuel Cycles Activities in IAEA  

SciTech Connect

Considerable scientific and technical progress in many areas of Partitioning and Transmutation (P and T) has been recognized as probable answers to ever-growing issues threatening sustainability, environmental protection and non-proliferation. These recent global developments such as Russian initiative on Global Nuclear Infrastructure-International Fuel Centre and the US initiative on Global Nuclear Energy Partnership (GNEP) have made advanced fuel cycles as one of the decisive influencing factor for the future growth of nuclear energy. International Atomic Energy Agency has initiated the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) with overall objective of bringing together technology holders and technology users to consider jointly the international and national actions required achieving desired innovations in nuclear reactors and fuel cycles. One of the interesting common features of these initiatives (INPRO, GNEP and GNI-IFC) is closed fast reactor fuel cycles and proliferation resistance. Any fuel cycle that integrate P and T into it is also known as 'Advanced Fuel Cycle' (AFC) that could achieve reduction of plutonium and Minor Actinide (MA) elements (namely Am, Np, Cm, etc.). In this regard, some Member States are also evaluating alternative concepts involving the use of thorium fuel cycle, inert-matrix fuel or coated particle fuel. Development of 'fast reactors with closed fuel cycles' would be the most essential step for implementation of P and T. The scale of realization of any AFC depends on the maturity of the development of all these elemental technologies such as recycling MA, Pu as well as reprocessed uranium. In accordance with the objectives of the Agency, the programme B entitled 'Nuclear Fuel cycle technologies and materials' initiated several activities aiming to strengthen the capabilities of interested Member States for policy making, strategic planning, technology development and implementation of safe, reliable, economically efficient, proliferation resistant, environmentally sound and secure nuclear fuel cycle programmes. The paper describes some on-going IAEA activities in the area of: MA-fuel and target, thorium fuel cycle, coated particle fuel, MA-property database, inert matrix fuels, liquid metal cooled fast reactor fuels and fuel cycles, management of reprocessed uranium and proliferation resistance in fuel cycle. (authors)

Nawada, H.P.; Ganguly, C. [Nuclear Fuel Cycle and Materials Section, Division of Nuclear Fuel Cycle and Waste Technology, Department of Nuclear Energy, International Atomic Energy Agency, Vienna (Austria)

2007-07-01T23:59:59.000Z

33

Hydrogen and Fuel Cell Activities, Progress, and Plans: August...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Hydrogen and Fuel Cell Activities, Progress, and Plans: August 2007 to August 2010 Hydrogen and Fuel Cell Activities, Progress, and Plans: August 2007 to August 2010 The Department...

34

DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by...

35

Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...  

Energy Savers (EERE)

and Fuel Cell Activities, Progress, and Plans: Report to Congress Hydrogen and Fuel Cell Activities, Progress, and Plans: Report to Congress The Department of Energy is conducting...

36

Unconventional Fossil Energy Resource Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fields, and enormous amounts of hydrocarbons are locked in unconventional reservoirs (oil shale, heavy oil, tar sands). * Economic extraction of these resources will require...

37

Unconventional Resources Technology Advisory Committee | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unconventional Resources Unconventional Resources Technology Advisory Committee Unconventional Resources Technology Advisory Committee The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. The Unconventional Resources Technology Advisory Committee advises DOE on its research in unconventional oil and natural gas resources, such as shale gas. Mission The Secretary of Energy, in response to provisions of Subtitle J, Sec. 999 of the Energy Policy Act of 2005, must carry out a program of research, development, demonstration, and commercial application of technologies for ultra-deepwater and onshore unconventional natural gas and other petroleum resource exploration and production, as well as addressing the technology

38

Obama Administration Announces New Partnership on Unconventional...  

Energy Savers (EERE)

Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil...

39

Microsoft Word - Unconventional Resources Tech Adv Committee - signed  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UNCONVENTIONAL RESOURCES TECHNOLOGY UNCONVENTIONAL RESOURCES TECHNOLOGY ADVISORY COMMITTEE U.S. DEPARTMENT OF ENERGY Advisory Committee Charter 1. Committee's Official Designation. Unconventional Resources Technical Advisory Committee (URTAC). 2. Authority. This charter establishes the Unconventional Resources Technical Advisory Committee (URTAC) pursuant to Section 999 of the Energy Policy Act of 2005, Public Law 109-58. The URTAC is being renewed in accordance with the provisions of the Federal Advisory Committee Act (FACA), as amended, 5 U.S.C., App. 2. This charter establishes the Committee under the authority of the U.S. Department of Energy (DOE). 3. Objectives and Scope of Activities. The activities of the Committee include: * Advice on the development and implementation of programs under Section 999 of the Energy

40

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Neutron scattering study of unconventional superconductors  

SciTech Connect

My group’s primary activity at the University of Virginia supported by DOE is to study novel electronic, magnetic, and structural phenomena that emerge out of strong interactions between electrons. Some of these phenomena are unconventional superconductivity, exotic states in frustrated magnets, quantum spin liquid states, and magneto-electricity. The outcome of our research funded by the grant advanced microscopic understanding of the emergence of the collective states in the systems.

Lee, Seunghun

2014-06-30T23:59:59.000Z

42

Effect of shear rate on the activity of enzymes used in hydraulic fracture cleanup of tight unconventional reservoirs  

Science Journals Connector (OSTI)

Injection of polymeric solutions in order to propagate a fracture and carry proppants to keep the fracture open is a common practice in hydraulic fracturing of ultra-tight formations. Polymeric fluids open and extend the already existing network of fractures. Considering the low permeability of the formation, small width of the micro-fractures, and the importance of fracture cleanup during the production phase, using breakers is recommended to degrade the more concentrated polymeric fluid and increase the conductivity of the fractures. Enzymes are typically used successfully as breakers for fracturing fluids. In this study, the effect of high shear rates on the activity of enzymes was studied. Enzyme activity decreased at increasing shear rates. However, this activity reduction is reversible. This proves insignificant damage to the enzyme structure due to shear effects. This will assure the activity of the enzymes after reaching the fracture and the more efficient cleanup of the fracture(s). [Received: 31 July 2013; Accepted: 26 January 2014].

Chris Ouyang; Reza Barati

2014-01-01T23:59:59.000Z

43

The contested landscape of unconventional energy development: a report from Ohio's shale gas country  

Science Journals Connector (OSTI)

Portions of Ohio are experiencing a surge in the development of unconventional sources of natural gas and other fossil fuels using controversial hydraulic fracturing technologies. Natural gas has been celebrated ...

Anna J. Willow; Rebecca Zak…

2014-03-01T23:59:59.000Z

44

Compare All CBECS Activities: Fuel Oil Use  

Gasoline and Diesel Fuel Update (EIA)

of fuel oil in 1999. Only six building types had any statistically significant fuel oil usage, with education buildings using the most total fuel oil. Figure showing total fuel oil...

45

Alternative Fuels Used in Transportation (5 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

Gasoline is the most commonly used fuel for transportation; however, there are multiple alternative fuels that are making their way to the market. These alternative fuels include propane, natural gas, electric hybrids, hydrogen fuel cells, and bio-diesel. Students will probably have heard of some of these alternative fuels, but they may not understand how and why they are better then ordinary gasoline.

46

Unconventional Resources Technology Advisory Committee | Department...  

Energy Savers (EERE)

and environmental mitigation (including reduction of greenhouse gas emissions and sequestration of carbon). The Department's Unconventional Resources Technology Advisory...

47

Stationary Fuel Cells: Overview of Hydrogen and Fuel Cell Activities  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers stationary fuel cells and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

48

Connecticut Fuel Cell Activities: Markets, Programs, & Models  

E-Print Network (OSTI)

) Passenger Car Light Truck Transit Bus Hydrogen Fuel Cell Gasoline Powered Car Hydrogen Fuel Cell Gasoline, 2009 Joel M. Rinebold #12;2 2 · Connecticut Hydrogen Roadmap (Fuel Cell Economic Development Plan) · A National "Green Energy" Economic Stimulus Plan based on Investment in the Hydrogen and Fuel Cell Industry

49

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Accord Seeks Accelerated Development of Alaska's Vast DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17. Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17.

50

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accord Seeks Accelerated Development of Alaska's Vast Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17. Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17.

51

DEPARTMENT OF ENERGY CHARTER UNCONVENTIONAL RESOURCES TECHNOLOGY ADVISORY COMMITTEE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHARTER CHARTER UNCONVENTIONAL RESOURCES TECHNOLOGY ADVISORY COMMITTEE Committee's Official Designation: Unconventional Resources Technology Advisory Committee (URTAC) 2. Committee's Objectives and Scope of Activities and Duties: I The Advisory Committee is to (A) advise the Secretary on the development and implementation of programs under Section 999 of the Energy Policy Act of 2005, Publi / I No. 109-58, related to unconventional natural gas and other petroleum resources and (B) provide to the Secretary written comments regarding the draf't annual plan that is required by Section 999B(e) of the Energy Policy Act of 2005. Further, the Committee will not make recommendations on funding awards to particular consortia or other entities, or for specific

52

Overview of U.S. Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

United States Hydrogen and Fuel United States Hydrogen and Fuel Cell Activities U.S. Department of Energy Dr. Sunita Satyapal Fuel Cell Technologies Program CNG and Hydrogen Lessons Learned Workshop December 10, 2009 2 Workshop Objectives * To coordinate lessons learned from compressed natural gas and hydrogen vehicles * Collect feedback from demonstration activities and real world applications in the United States and internationally * Identify additional RD&D to ensure safe use of onboard and bulk storage hydrogen and compressed natural gas tanks * Enhance domestic and international codes and standards harmonization * Identify potential future collaborations, workshops, education and communication strategies 3 Hydrogen and Fuel Cells - Where are we today? Fuel Cells for Transportation

53

UNCONVENTIONAL FUELS CONFERENCE UNIVERSITY OF UTAH  

E-Print Network (OSTI)

(proven) resource (identified) 0.3% 8% 28%64% Oil Shale (domestic U.S.) Monday, June 13, 2011 #12;· need

Utah, University of

54

The future of oil: unconventional fossil fuels  

Science Journals Connector (OSTI)

...revolutionizing the energy outlook in...revolutionizing the energy outlook in...estimate what the price of oil will...terminals in the USA to meet projected...and its history is instructive...domestic oil prices that followed...and for the USA as a whole...are used. -Energy return on...geological history, which could...

2014-01-01T23:59:59.000Z

55

The future of oil: unconventional fossil fuels  

Science Journals Connector (OSTI)

...groundwater contamination. Nevertheless, innovative solutions have been found to many of...long project lead times, environmental remediation and the future oil price. Canadian...operations, being cheaper than mining; -innovative technology; -co-generation to reduce...

2014-01-01T23:59:59.000Z

56

Fuels options conference  

SciTech Connect

The proceedings of the Fuels Options Conference held May 9-10, 1995 in Atlanta, Georgia are presented. Twenty-three papers were presented at the conference that dealt with fuels outlook; unconventional fuels; fuel specification, purchasing, and contracting; and waste fuels applications. A separate abstract was prepared for each paper for inclusion in the Energy Science and Technology Database.

NONE

1995-09-01T23:59:59.000Z

57

Overview of Hydrogen and Fuel Cell Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

economy. DOD-DOE MOU Jet Fuel 53% Marine Diesel 12% Electricity 12% Fuel Oil 3% Natural Gas 8% Coal 2% Steam 1% Other 0.2% Auto Gas 1% Auto Diesel 8% Percent of FY06 Total DoD...

58

DOE's Fuel Cell Catalyst R&D Activities | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Catalyst R&D Activities DOE's Fuel Cell Catalyst R&D Activities Presentation about the U.S. Department of Energy's (DOE) fuel cell catalyst R&D activities, presented by...

59

Used Fuel Disposition Campaign International Activities Implementation Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Activities International Activities Implementation Plan Used Fuel Disposition Campaign International Activities Implementation Plan The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through

60

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum...  

Energy Savers (EERE)

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The...

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

E-Print Network 3.0 - accomplishments unconventional nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

to unconventional oil undermine... of transition to unconventional oil resources. No political or environmental ... Source: Oak Ridge National Laboratory, Center for...

62

Unconventional Oil and Gas Projects Help Reduce Environmental...  

Office of Environmental Management (EM)

Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development April 17,...

63

U.S. Department of Energy Fuel Cell Activities: Progress and...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Fuel Cell Activities: Progress and Future Directions: Total Energy USA 2012 U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions:...

64

Hydrogen and Fuel Cell Activities, Progress, and Plans: Report...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

January 2009 Hydrogen and Fuel Cell Activities, Progress, and Plans Report to Congress Preface This Department of Energy report addresses subsection 811(a) of Public Law 109-58,...

65

Unconventional Resources Technology Advisory Committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advisory Committee (URTAC) Meeting Crowne Plaza Hotel, Houston, Texas July 25, 2007 Welcome Sally Zinke, Chair of the Unconventional Resources Technology Advisory Committee (Committee), convened the meeting at 8:30 a.m. on July 25 in Houston, Texas. She introduced Bill Hochheiser, the Committee Management Officer, who presented a "Safety Moment" focusing on the emergency procedures for exiting the conference room and reminding people of the importance of wearing seat belts. Appendix 1 contains the Committee sign-in sheet for the meeting. Jim Mosher's resignation from the Committee due to his recent appointment to the Department of Interior was announced. For the record, his resignation letter is included in these minutes as Appendix 2.

66

Overview of Hydrogen and Fuel Cell Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Richard Farmer Richard Farmer Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy Mountain States Hydrogen Business Council September 14, 2010  Double Renewable Energy Capacity by 2012  Invest $150 billion over ten years in energy R&D to transition to a clean energy economy  Reduce GHG emissions 83% by 2050 Administration's Clean Energy Goals 2 U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 3 4 Technology Barriers* Economic & Institutional Barriers Fuel Cell Cost & Durability Targets*: Stationary Systems: $750 per kW, 40,000-hr durability Vehicles: $30 per kW, 5,000-hr durability Safety, Codes & Standards Development

67

DOE Hydrogen and Fuel Cell Activities Panel Discussion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy 1 DOE Hydrogen and Fuel Cell Activities Panel Discussion Dr. Sunita Satyapal Chief Engineer & Deputy Program Manager Fuel Cell Technologies Program United States Department of Energy SAE World Congress SAE World Congress April 15, 2010 April 15, 2010 U. S. Department of Energy 2 2 Technology Barriers* Economic & Institutional Barriers Fuel Cell Cost & Durability Targets*: Vehicles: $30 per kW, 5,000-hr durability Stationary Systems: $750 per kW, 40,000-hr durability Safety, Codes & Standards Development Domestic Manufacturing & Supplier Base Public Awareness & Acceptance Hydrogen Supply & Delivery Infrastructure Hydrogen Cost Target: $2 - 3 /gge, delivered Key Challenges Technology Validation: Technologies must

68

Challenges and Opportunities of Unconventional Resources Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology May 10, 2012 - 1:01pm Addthis Statement of Mr. Charles McConnell, Assistant Secretary for Fossil Energy, U.S. Department of Energy, before the Subcommittee on Energy and Environment, Committee on Science, Space and Technology, U.S. House of Representatives. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, I appreciate the opportunity to discuss the role that the Department of Energy's Office of Fossil Energy continues to play in the safe and responsible development of the Nation's unconventional fossil resources. As you know, in March 2011, the President laid out a specific goal for our Nation: to reduce imports of oil by a third over the next 10 years. This is

69

Challenges and Opportunities of Unconventional Resources Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology Challenges and Opportunities of Unconventional Resources Technology May 10, 2012 - 1:01pm Addthis Statement of Mr. Charles McConnell, Assistant Secretary for Fossil Energy, U.S. Department of Energy, before the Subcommittee on Energy and Environment, Committee on Science, Space and Technology, U.S. House of Representatives. Chairman Harris, Ranking Member Miller, and members of the Subcommittee, I appreciate the opportunity to discuss the role that the Department of Energy's Office of Fossil Energy continues to play in the safe and responsible development of the Nation's unconventional fossil resources. As you know, in March 2011, the President laid out a specific goal for our Nation: to reduce imports of oil by a third over the next 10 years. This is

70

2013 Unconventional Oil and Gas Project Selections  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory...

71

Building interactive systems using unconventional electronics  

Science Journals Connector (OSTI)

Many interactive systems use "conventional" silicon- based sensors and electronics that limit their functionality and scalability. Organic, amorphous inorganic, and other "unconventional" electronics are ideal for applications that require mechanical ... Keywords: fabrication, large-area, organic light- emitting diode, piezoelectric

John Sarik; Ioannis Kymissis

2011-01-01T23:59:59.000Z

72

Unconventional plasmon-phonon coupling in graphene  

E-Print Network (OSTI)

We predict the existence of coupled plasmon-phonon excitations in graphene by using the self-consistent linear response formalism. The unique electron-phonon interaction in graphene leads to unconventional mixing of plasmon ...

Jablan, Marinko

73

Unconventional gas: truly a game changer?  

SciTech Connect

If prices of natural gas justify and/or if concerns about climate change push conventional coal off the table, vast quantities of unconventional gas can be brought to market at reasonable prices. According to a report issued by PFC Energy, global unconventional natural gas resources that may be ultimately exploited with new technologies could be as much as 3,250,000 billion cubic feet. Current conventional natural gas resources are estimated around 620,000 billion cubic feet.

NONE

2009-08-15T23:59:59.000Z

74

Spent Fuel Storage Operational Experience With Increased Crud Activities  

SciTech Connect

A significant part of the electricity production in Hungary is provided by 4 units of VVER 440 nuclear reactors at the Paks Nuclear Power Plant. Interim dry storage of the spent fuel assemblies that are generated during the operation of the reactors is provided in a Modular Vault Dry Storage (MVDS) facility that is located in the immediate vicinity of the Paks Nuclear Power Plant. The storage capacity of the MVDS is being continuously extended in accordance with spent the fuel production rate from the four reactors. An accident occurred at unit 2 of the Paks Nuclear Power Plant in 2003, when thirty irradiated fuel assemblies were damaged during a cleaning process. The fuel assemblies were not inside the reactor at the time of the accident, but in a separate tank within the adjacent fuel decay pool. As a result of this accident, contamination from the badly damaged fuel assemblies spread to the decay pool water and also became deposited onto the surface of (hermetic) spent fuel assemblies within the decay pool. Therefore, it was necessary to review the design basis of the MVDS and assess the effects of taking the surface contaminated spent fuel assemblies into dry storage. The contaminated hermetic assemblies were transferred from the unit 2 pool to the interim storage facility in the period between 2005 and 2007. Continuous inspection and measurement was carried out during the transfer of these fuel assemblies. On the basis of the design assessments and measurement of the results during the fuel transfer, it was shown that radiological activity values increased due to the consequences of the accident but that these levels did not compromise the release and radiation dose limits for the storage facility. The aim of this paper is to show the effect on the operation of the MVDS interim storage facility as a result of the increased activity values due to the accident that occurred in 2003, as well as to describe the measurements that were taken, and their results and experience gained. In summary: On the basis of the design assessments and measurement of the results during the fuel transfer operations, it was shown that radiological activity values increased due to the consequences of the 2003 accident but that these levels did not compromise the release and dose limits for the fuel storage facility. In the environment there was no measurable radioactivity as a result of the operation of the Paks ISFSI. The exposure of the surrounding population was calculated on measured releases and meteorological data. The calculations show negligible doses until 2004. Due to the increased surface contamination on the spent fuel assemblies the dose rate increased almost 5 times compared to the least annual value, but still less then 0.01 percent of the allowed dose restriction. (authors)

Barnabas, I. [Public Agency for Radioactive Waste, Management (PURAM) (Hungary); Eigner, T. [Paks NPP (Hungary); Gresits, I. [Technical University of Budapest (Hungary); Ordagh, M. [SOM System Llc, (Hungary)

2008-07-01T23:59:59.000Z

75

Unconventional Groundwater System Proves Effective in Reducing  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Unconventional Groundwater System Proves Effective in Reducing Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project Unconventional Groundwater System Proves Effective in Reducing Contamination at West Valley Demonstration Project July 22, 2013 - 12:00pm Addthis In the two years prior to the operation of the permeable treatment wall, pictured here, WVDP conducted extensive engineering and planning to ensure it would effectively remove strontium-90. In the two years prior to the operation of the permeable treatment wall, pictured here, WVDP conducted extensive engineering and planning to ensure it would effectively remove strontium-90. This 2009 photo shows a trenching machine, which is capable of cutting a continuous trench up to 30 feet deep and 3 feet wide. The machine was used in a pilot study to evaluate the effectiveness of zeolite placement as the trench was dug. This ensured a consistent depth and width for the zeolite placement along the entire length of the permeable treatment wall.

76

Unconventional Integer Quantum Hall effect in graphene  

E-Print Network (OSTI)

Monolayer graphite films, or graphene, have quasiparticle excitations that can be described by 2+1 dimensional Dirac theory. We demonstrate that this produces an unconventional form of the quantized Hall conductivity $\\sigma_{xy} = - (2 e^2/h)(2n+1)$ with $n=0,1,...$, that notably distinguishes graphene from other materials where the integer quantum Hall effect was observed. This unconventional quantization is caused by the quantum anomaly of the $n=0$ Landau level and was discovered in recent experiments on ultrathin graphite films.

V. P. Gusynin; S. G. Sharapov

2005-06-22T23:59:59.000Z

77

Hydrogen & Fuel Cell Activity USFCC -Matching Federal Government Needs  

E-Print Network (OSTI)

Hydrogen & Fuel Cell Activity USFCC - Matching Federal Government Needs Presented by: Mr. John Christensen, PE Chief Logistics R&D Division, DLA 26 April 2007 The DLA Enterprise $21.5B $25B $28B $31.8B $35 · Aviation: $3.4B · Troop Support: $12.7B · Energy: $12.5B · Distribution: $1.5B · Other: $1.1B 1 #12;2 DOD

78

Unconventional Staging Package Selection Leads to Cost Savings  

SciTech Connect

In late 2010, U.S. Department of Energy (DOE) Deputy Secretary of Energy, Daniel Poneman, directed that an analysis be conducted on the U-233 steel-clad, Zero Power Reactor (ZPR) fuel plates that were stored at Oak Ridge National Laboratory (ORNL), focusing on cost savings and any potential DOE programmatic needs for the special nuclear material (SNM). The NA-162 Nuclear Criticality Safety Program requested retention of these fuel plates for use in experiments at the Nevada National Security Site (NNSS). A Secretarial Initiative challenged ORNL to make the first shipment to the NNSS by the end of the 2011 calendar year, and this effort became known as the U-233 Project Accelerated Shipping Campaign. To meet the Secretarial Initiative, National Security Technologies, LLC (NSTec), the NNSS Management and Operations contractor, was asked to facilitate the receipt and staging of the U-233 fuel plates in the Device Assembly Facility (DAF). Because there were insufficient staging containers available for the fuel plates, NSTec conducted an analysis of alternatives. The project required a staging method that would reduce the staging footprint while addressing nuclear criticality safety and radiation exposure concerns. To accommodate an intermediate staging method of approximately five years, the NSTec project team determined that a unique and unconventional staging package, the AT-400R, was available to meet the project requirements. By using the AT-400R containers, NSTec was able to realize a cost savings of approximately $10K per container, a total cost savings of nearly $450K.

,

2012-06-07T23:59:59.000Z

79

Obama Administration Announces New Partnership on Unconventional Natural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obama Administration Announces New Partnership on Unconventional Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research April 13, 2012 - 3:01pm Addthis WASHINGTON, DC - Today, three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation's abundant unconventional natural gas and oil resources. The partnership exemplifies the cross-government coordination required under President Obama's Executive Order released earlier today, which created a new Interagency Working Group to Support Safe and Responsible Development of Unconventional Domestic Natural Gas Resources. This new partnership will help coordinate current and future

80

Obama Administration Announces New Partnership on Unconventional Natural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obama Administration Announces New Partnership on Unconventional Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research April 13, 2012 - 1:00pm Addthis Washington, DC - Today, three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation's abundant unconventional natural gas and oil resources. The partnership exemplifies the cross-government coordination required under President Obama's Executive Order released earlier today, which created a new Interagency Working Group to Support Safe and Responsible Development of Unconventional Domestic Natural Gas Resources. This new partnership will help coordinate current and future

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Obama Administration Announces New Partnership on Unconventional Natural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Obama Administration Announces New Partnership on Unconventional Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research April 13, 2012 - 1:00pm Addthis Washington, DC - Today, three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation's abundant unconventional natural gas and oil resources. The partnership exemplifies the cross-government coordination required under President Obama's Executive Order released earlier today, which created a new Interagency Working Group to Support Safe and Responsible Development of Unconventional Domestic Natural Gas Resources. This new partnership will help coordinate current and future

82

Desalination 209 (2007) 319327 R&D activities of fuel cell Research at KFUPM  

E-Print Network (OSTI)

(reformat feed) and PEM fuel cell system. Our research group at KFUPM is actively involved in fuel cell research since 1980s. Current focus is to develop PEM fuel cell system emphasizing three different aspects: PEM fuel cell; Membranes; Electrochemical filter; Reformate #12;

Zaidi, S. M. Javaid

83

Used fuel disposition campaign international activities implementation plan.  

SciTech Connect

The management of used nuclear fuel and nuclear waste is required for any country using nuclear energy. This includes the storage, transportation, and disposal of low and intermediate level waste (LILW), used nuclear fuel (UNF), and high level waste (HLW). The Used Fuel Disposition Campaign (UFDC), within the U.S. Department of Energy (DOE), Office of Nuclear Energy (NE), Office of Fuel Cycle Technology (FCT), is responsible for conducting research and development pertaining to the management of these materials in the U.S. Cooperation and collaboration with other countries would be beneficial to both the U.S. and other countries through information exchange and a broader participation of experts in the field. U.S. participation in international UNF and HLW exchanges leads to safe management of nuclear materials, increased security through global oversight, and protection of the environment worldwide. Such interactions offer the opportunity to develop consensus on policy, scientific, and technical approaches. Dialogue to address common technical issues helps develop an internationally recognized foundation of sound science, benefiting the U.S. and participating countries. The UNF and HLW management programs in nuclear countries are at different levels of maturity. All countries utilizing nuclear power must store UNF, mostly in wet storage, and HLW for those countries that reprocess UNF. Several countries either utilize or plan to utilize dry storage systems for UNF, perhaps for long periods of time (several decades). Geologic disposal programs are at various different states, ranging from essentially 'no progress' to selected sites and pending license applications to regulators. The table below summarizes the status of UNF and HLW management programs in several countriesa. Thus, the opportunity exists to collaborate at different levels ranging from providing expertise to those countries 'behind' the U.S. to obtaining access to information and expertise from those countries with more mature programs. The U.S. fuel cycle is a once through fuel cycle involving the direct disposal of UNF, as spent nuclear fuel, in a geologic repository (previously identified at Yucca Mountain, Nevada), following at most a few decades of storage (wet and dry). The geology at Yucca Mountain, unsaturated tuff, is unique among all countries investigating the disposal of UNF and HLW. The decision by the U.S. Department of Energy to no longer pursue the disposal of UNF at Yucca Mountain and possibly utilize very long term storage (approaching 100 years or more) while evaluating future fuel cycle alternatives for managing UNF, presents a different UNF and HLW management R&D portfolio that has been pursued in the U.S. In addition, the research and development activities managed by OCRWM have been transferred to DOE-NE. This requires a reconsideration of how the UFDC will engage in cooperative and collaborative activities with other countries. This report presents the UFDC implementation plan for international activities. The DOE Office of Civilian Radioactive Waste Management (OCRWM) has cooperated and collaborated with other countries in many different 'arenas' including the Nuclear Energy Agency (NEA) within the Organization for Economic Co-operation and Development (OECD), the International Atomic Energy Agency (IAEA), and through bilateral agreements with other countries. These international activities benefited OCRWM through the acquisition and exchange of information, database development, and peer reviews by experts from other countries. DOE-NE cooperates and collaborates with other countries in similar 'arenas' with similar objectives and realizing similar benefits. However the DOE-NE focus has not typically been in the area of UNF and HLW management. This report will first summarize these recent cooperative and collaborative activities. The manner that the UFDC will cooperate and collaborate in the future is expected to change as R&D is conducted regarding long-term storage and the potential disposal of UNF and HLW in different geolo

Nutt, W. M. (Nuclear Engineering Division)

2011-06-29T23:59:59.000Z

84

High-Activity Dealloyed Catalysts 2010 DOE Hydrogen Program Fuel Cell  

E-Print Network (OSTI)

High-Activity Dealloyed Catalysts 2010 DOE Hydrogen Program Fuel Cell Project Kick-active-area fuel cells, to be made available for DOE testing Reduce catalyst cost while achieving the required · Subcontractors: ­ Technical University of Berlin ­ Johnson Matthey Fuel Cells ­ Massachusetts Institute

85

Transportation Fuels: The Future is Today (6 Activities)  

K-12 Energy Lesson Plans and Activities Web site (EERE)

This teacher guide provides extensive background information on transportation fuels to help your students learn about conventional and alternative transportation fuels by evaluating their advantages and disadvantages.

86

Hydrogen and Fuel Cell Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

fupwgfall11devlin.pdf More Documents & Publications Expanding the Use of Biogas with Fuel Cell Technologies Fuel Cell Technologies Office Multi-Year Research,...

87

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Sunita Satyapal at the 2010 Gordon Research Conference on Fuel Cells, August 1, 2010.

88

Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon  

E-Print Network (OSTI)

biological, and chemical weapons of warfare and terrorism.Threat and Unconventional Weapon Robert Jones, MD Brandonand as a terrorist weapon. This review will summarize recent

Jones, Robert; Wills, Brandon; Kang, Christopher

2010-01-01T23:59:59.000Z

89

Experimental investigation of geomechanical aspects of hydraulic fracturing unconventional formations.  

E-Print Network (OSTI)

??Understanding the mechanisms that govern hydraulic fracturing applications in unconventional formations, such as gas-bearing shales, is of increasing interest to the petroleum upstream industry. Among… (more)

Alabbad, Emad Abbad

2014-01-01T23:59:59.000Z

90

Analysis of Fuel Ethanol Transportation Activity and Potential Distribution Constraints  

SciTech Connect

This paper provides an analysis of fuel ethanol transportation activity and potential distribution constraints if the total 36 billion gallons of renewable fuel use by 2022 is mandated by EPA under the Energy Independence and Security Act (EISA) of 2007. Ethanol transport by domestic truck, marine, and rail distribution systems from ethanol refineries to blending terminals is estimated using Oak Ridge National Laboratory s (ORNL s) North American Infrastructure Network Model. Most supply and demand data provided by EPA were geo-coded and using available commercial sources the transportation infrastructure network was updated. The percentage increases in ton-mile movements by rail, waterways, and highways in 2022 are estimated to be 2.8%, 0.6%, and 0.13%, respectively, compared to the corresponding 2005 total domestic flows by various modes. Overall, a significantly higher level of future ethanol demand would have minimal impacts on transportation infrastructure. However, there will be spatial impacts and a significant level of investment required because of a considerable increase in rail traffic from refineries to ethanol distribution terminals.

Das, Sujit [ORNL; Peterson, Bruce E [ORNL; Chin, Shih-Miao [ORNL

2010-01-01T23:59:59.000Z

91

Unconventional gas resources. [Eastern Gas Shales, Western Gas Sands, Coalbed Methane, Methane from Geopressured Systems  

SciTech Connect

This document describes the program goals, research activities, and the role of the Federal Government in a strategic plan to reduce the uncertainties surrounding the reserve potential of the unconventional gas resources, namely, the Eastern Gas Shales, the Western Gas Sands, Coalbed Methane, and methane from Geopressured Aquifers. The intent is to provide a concise overview of the program and to identify the technical activities that must be completed in the successful achievement of the objectives.

Komar, C.A. (ed.)

1980-01-01T23:59:59.000Z

92

Overview of Hydrogen and Fuel Cell Activities: 2010 Military Energy and Alternative Fuels Conference  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by DOE's Sunita Satyapal was given at the Military Energy and Alternative Fuels Conference in March 2010.

93

WWER Expert System for Fuel Failure Analysis Using Data on Primary Coolant Activity  

SciTech Connect

The computer expert system for fuel failure analysis of WWER during operation is presented. The diagnostics is based on the measurement of specific activity of reference nuclides in reactor primary coolant and application of a computer code for the data interpretation. The data analysis includes an evaluation of tramp uranium mass in reactor core, detection of failures by iodine and caesium spikes, evaluation of burnup of defective fuel. Evaluation of defective fuel burnup was carried out by applying the relation of caesium nuclides activity in spikes and relations of activities of gaseous fission products for steady state operational conditions. The method of burnup evaluation of defective fuel by use of fission gas activity is presented in detail. The neural-network analysis is performed for determination of failed fuel rod number and defect size. Results of the expert system application are illustrated for several fuel campaigns on operating WWER NPPs. (authors)

Likhanskii, V.V.; Evdokimov, I.A.; Sorokin, A.A.; Khromov, A.G.; Kanukova, V.D.; Apollonova, O.V. [SRC RF TRINITI, 142190, Troitsk, Moscow Reg. (Russian Federation); Ugryumov, A.V. [JSC TVEL, 119017, 24/26 Bolshaya Ordynka st., Moscow (Russian Federation)

2007-07-01T23:59:59.000Z

94

U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Fuel Cell Activities: U.S. Department of Energy Fuel Cell Activities: Progress and Future Directions Total Energy USA Houston, Texas Dr. Sunita Satyapal 11/27/2012 Director, Office of Fuel Cell Technologies Energy Efficiency and Renewable Energy U.S. Department of Energy Overview Fuel Cells - An Emerging Global Industry United States 46% Germany 7% Korea 7% Canada 3% Taiwan 1% Great Britain 1% France 1% Other 3% Japan 31% Fuel Cell Patents Geographic Distribution 2002-2011 Top 10 companies: GM, Honda, Samsung, Toyota, UTC Power, Nissan, Ballard, Plug Power, Panasonic, Delphi Technologies Clean Energy Patent Growth Index Source: Clean Energy Patent Growth Index Clean Energy Patent Growth Index [1] shows that fuel cell patents lead in the clean energy field with over 950 fuel cell patents issued in 2011.

95

Projects Selected to Boost Unconventional Oil and Gas Resources |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources Projects Selected to Boost Unconventional Oil and Gas Resources September 27, 2010 - 1:00pm Addthis Washington, DC - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next

96

Obama Administration Announces New Partnership on Unconventional Natural  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partnership on Unconventional Partnership on Unconventional Natural Gas and Oil Research Obama Administration Announces New Partnership on Unconventional Natural Gas and Oil Research April 13, 2012 - 3:01pm Addthis WASHINGTON, DC - Today, three federal agencies announced a formal partnership to coordinate and align all research associated with development of our nation's abundant unconventional natural gas and oil resources. The partnership exemplifies the cross-government coordination required under President Obama's Executive Order released earlier today, which created a new Interagency Working Group to Support Safe and Responsible Development of Unconventional Domestic Natural Gas Resources. This new partnership will help coordinate current and future research and scientific studies undertaken by the U.S. Department of

97

International Atomic Energy Agency (IAEA) activities on spent fuel management options  

SciTech Connect

Many countries have in the past several decades opted for storage of spent fuel for undefined periods of time. They have adopted the 'wait and see' strategy for spent fuel management. A relatively small number of countries have adopted reprocessing and use of MOX fuel as part of their strategy in spent fuel management. From the 10, 000 tonnes of heavy metal that is removed annually from nuclear reactors throughout the world, only approximately 30 % is currently being reprocessed. Continuous re-evaluation of world energy resources, announcement of the Global Nuclear Energy Partnership (GNEP) and the Russian initiative to form international nuclear centers, including reprocessing, are changing the stage for future development of nuclear energy. World energy demand is expected to more than double by 2050, and expansion of nuclear energy is a key to meeting this demand while reducing pollution and greenhouse gases. Since its foundation, the International Atomic Energy Agency (IAEA) has served as an interface between countries in exchanging information on the peaceful development of nuclear energy and at the same time guarding against proliferation of materials that could be used for nuclear weapons. The IAEA's Department of Nuclear Energy has been generating technical documents, holding meetings and conferences, and supporting technical cooperation projects to facilitate this exchange of information. This paper focuses on the current status of IAEA activities in the field of spent fuel management being carried out by the Division of Nuclear Fuel Cycle and Waste Technology. Information on those activities could be found on the web site link www.iaea.org/OurWork/ST/NE/NEFW/nfcms. To date, the IAEA has given priority in its spent fuel management activities to supporting Member States in their efforts to deal with growing accumulations of spent power reactor fuel. There is technical consensus that the present technologies for spent fuel storage, wet and dry, provide adequate protection to people and environment. As storage durations grow, the IAEA has expanded its work related to the implications of extended storage periods. Operation and maintenance of containers for storage and transport have also been investigated related to long term storage periods. In addition, as international interest in reprocessing of spent fuel increases, the IAEA continues to serve as a crossroads for sharing the latest developments in spent fuel treatment options. A Coordinated Research Project is currently addressing spent fuel performance assessment and research to evaluate long term effects of storage on spent fuel. The effect of increased burnup and mixed oxide fuels on spent fuel management is also the focus of interest as it follows the trend in optimizing the use of nuclear fuel. Implications of damaged fuel on storage and transport as well as burnup credit in spent fuel applications are areas that the IAEA is also investigating. Since spent fuel management considerations require social stability and institutional control, those aspects are taken into account in most IAEA activities. Data requirements and records management as storage durations extend were also investigated as well as the potential for regional spent fuel storage facilities. Spent fuel management activities continue to be coordinated with others in the IAEA to ensure compliance and consistency with efforts in the Department of Safety and Security and the Department of Safeguards, as well as with activities related to geologic disposal. Either disposal of radioactive waste or spent fuel will be an ultimate consideration in all spent fuel management options. Updated information on spent fuel treatment options that include fuel reprocessing as well as transmutation of minor actinides are investigated to optimize the use of nuclear fuel and minimize impact on environment. Tools for spent fuel management economics are also investigated to facilitate assessment of industrial applicability for these options. Most IAEA spent fuel management activities will ultimately be reported in o

Lovasic, Z.; Danker, W. [International Atomic Energy Agency (IAEA) Vienna (Austria)

2007-07-01T23:59:59.000Z

98

Overview of Hydrogen and Fuel Cell Activities: 6th International Hydrogen and Fuel Cell Expo  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by DOE's Sunita Satyapal was given at the 6th International Hydrogen and Fuel Cell Expo on March 3, 2010.

99

Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells  

Energy.gov (U.S. Department of Energy (DOE))

Plenary presentation by Sunita Satyapal at the 5th International Conference on Polymer Batteries and Fuel Cells on August 4, 2011.

100

Connecticut Fuel Cell Activities: Markets, Programs, and Models  

Energy.gov (U.S. Department of Energy (DOE))

Presented by the Connecticut Center for Advanced Technology, Inc. at the bi-monthly informational call for the DOE Fuel Cell Technologies Program on December 16, 2009

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

OECD/NEA Ongoing activities related to the nuclear fuel cycle  

SciTech Connect

As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

Cornet, S.M. [OECD Nuclear Energy Agency, 12 Boulevard des Iles, 92130 Issy-les-Moulineaux (France); McCarthy, K. [Idaho Nat. Lab. - P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Chauvin, N. [CEA Saclay, Nuclear Energy Division, 91191 Gif/Yvette (France)

2013-07-01T23:59:59.000Z

102

Analysis of influence of fuel price on individual activity-travel time expenditure  

Science Journals Connector (OSTI)

Abstract Fluctuation in fuel prices may lead to adaptations in people?s activity-travel behavior. Compared to other triggers of behavioral change, the impact of fuel prices has received only scant attention in the literature, especially with respect to short-run change in activity-travel behavior. To gain insight into this issue, travel diaries of a representative sample of individuals in the Netherlands who use the car for daily travel were analyzed. Seemingly unrelated regression analysis was used to examine the effects of fuel price on people?s travel time expenditures for different kinds of activities, differentiating between weekdays and weekends. The results indicate that fuel price is negatively correlated with travel time expenditures by car, and that this relationship differs between weekdays and weekends. When faced with increasing fuel prices, people seem to prefer reducing travel time expenditure by car for compulsory trips more than for leisure trips.

Dujuan Yang; Harry Timmermans

2013-01-01T23:59:59.000Z

103

Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy’s Fuel Cell Technologies Office announces the launch of the National Laboratory Tech-to-Market activities taking place at the 2014 Fuel Cell Seminar and Energy Exposition on November 11 in Los Angeles, California.

104

Overview of DOE Hydrogen and Fuel Cell Activities  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Sunita Satyapal, U.S. Department of Energy Fuel Cell Technologies Program, at the DOD-DOE Aircraft Petroleum Use Reduction Workshop, September 30, 2010, in Washington, DC.

105

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative Technology Improves Upgrading Process for Unconventional Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology.

106

National Strategic Unconventional Resource Model | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model This is the second revision to the National Strategic Unconventional Resources Model that was developed in 2005-2006 to support the Task Force mandated by Congress in subsection 369(h) of the Energy Policy Act of 2005. The primary function of the first Model was to evaluate varying economic scenarios for four technologies: Surface Mining, Underground Mining, Modified In-Situ, and True In-Situ. In 2009 the Model was revised to update the cost data in the first Model. This second revision of the Model adds a fifth Hybrid technology that can be evaluated economically; and it also adds the capability of determining water requirements, CO2 production, and energy efficiency for the first four technologies. Subject to the

107

National Strategic Unconventional Resource Model | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model National Strategic Unconventional Resource Model This is the second revision to the National Strategic Unconventional Resources Model that was developed in 2005-2006 to support the Task Force mandated by Congress in subsection 369(h) of the Energy Policy Act of 2005. The primary function of the first Model was to evaluate varying economic scenarios for four technologies: Surface Mining, Underground Mining, Modified In-Situ, and True In-Situ. In 2009 the Model was revised to update the cost data in the first Model. This second revision of the Model adds a fifth Hybrid technology that can be evaluated economically; and it also adds the capability of determining water requirements, CO2 production, and energy efficiency for the first four technologies. Subject to the

108

Innovative Technology Improves Upgrading Process for Unconventional Oil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Improves Upgrading Process for Unconventional Technology Improves Upgrading Process for Unconventional Oil Resources Innovative Technology Improves Upgrading Process for Unconventional Oil Resources April 9, 2013 - 1:57pm Addthis Washington, DC - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil

109

A New Global Unconventional Natural Gas Resource Assessment  

E-Print Network (OSTI)

. Very little is known publicly about technically recoverable unconventional gas resource potential on a global scale. Driven by a new understanding of the size of gas shale resources in the United States, we estimated original gas in place (OGIP...

Dong, Zhenzhen

2012-10-19T23:59:59.000Z

110

Optimizing Development Strategies to Increase Reserves in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

spacing in highly uncertain and risky unconventional gas reservoirs. To achieve the research objectives, an integrated reservoir and decision modeling tool that fully incorporates uncertainty was developed. Monte Carlo simulation was used with a fast...

Turkarslan, Gulcan

2011-10-21T23:59:59.000Z

111

NREL Team Creates High-Activity, Durable Platinum Extended Surface Catalyst for Fuel Cells (Fact Sheet)  

SciTech Connect

Researchers with NREL's Fuel Cell team showed that platinum can replace copper nanowires in such a way that high-surface-area and high-specific-activity catalysts are produced, potentially allowing for lower-cost catalysts.

Not Available

2011-02-01T23:59:59.000Z

112

ith fossil-fuel combustion and land-use activities threatening to double  

E-Print Network (OSTI)

W ith fossil-fuel combustion and land- use activities threatening to double atmospheric carbon and now use this model to explore the response of the central Amazonian forest to an increase in biomass

Chambers, Jeff

113

Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Goals > Fuels Goals > Fuels XMAT for nuclear fuels XMAT is ideally suited to explore all of the radiation processes experienced by nuclear fuels.The high energy, heavy ion accleration capability (e.g., 250 MeV U) can produce bulk damage deep in the sample, achieving neutron type depths (~10 microns), beyond the range of surface sputtering effects. The APS X-rays are well matched to the ion beams, and are able to probe individual grains at similar penetrations depths. Damage rates to 25 displacements per atom per hour (DPA/hr), and doses >2500 DPA can be achieved. MORE» Fuels in LWRs are subjected to ~1 DPA per day High burn-up fuel can experience >2000 DPA. Traditional reactor tests by neutron irradiation require 3 years in a reactor and 1 year cool down. Conventional accelerators (>1 MeV/ion) are limited to <200-400 DPAs, and

114

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black  

E-Print Network (OSTI)

Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black-based materials that have good catalytic activity, but the electrical conductivity of the AC is poor compared as a binder, as opposed to Nafion with Pt, which greatly reduces the cost of the cathode materials. AC

115

Biomass and Other Unconventional Energy Resources  

E-Print Network (OSTI)

. The primary technologies used to convert biomass to energy are direct combustion systems and Ithe gasification/pyrolysis method. IThe latter method creates a gaseous, li~uid or solid fuel to be used by an industry. Gasification involves the destr.... The primary technologies used to convert biomass to energy are direct combustion systems and Ithe gasification/pyrolysis method. IThe latter method creates a gaseous, li~uid or solid fuel to be used by an industry. Gasification involves the destr...

Gershman, H. G.

1982-01-01T23:59:59.000Z

116

Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ultra-Deepwater and Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Program The Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research Program, launched by the Energy Policy Act of 2005 (EPAct), is a public/private partnership valued at $400 million over eight years that is designed to benefit consumers by developing technologies to increase America's domestic oil and gas production and reduce the Nation's dependency on foreign imports. Key aspects of the program include utilizing a non-profit consortium to manage the research, establishing two federal advisory committees, and funding of $50 million per year derived from royalties, rents, and bonuses from federal onshore

117

DOE's Fuel Cell Catalyst R&D Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test and Polarization Curve Protocols (http:www.uscar.orgcommandsfilesdownload.php?filesid267), Catalyst Support Cycle and Metrics (Table 2). Activity loss is based on...

118

Market Transformation Activities - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Market Transformation sub-program is conducting activities to help promote and implement commercial and pre-commercial hydrogen and fuel cell systems in real-world operating environments and to provide feedback to research programs, U.S. industry manufacturers, and potential technology users. One of the sub-program's goals is to achieve sufficient manufacturing volumes in emerging commercial applications that will enable cost reductions through economies of scale, which will help address the current high cost of fuel cells (currently the capital and installation costs of fuel cells are from five to six times higher than

119

Hydrogen and Fuel Cell Activities, Progress, and Plans: August 2007 to August 2010  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy (DOE) is conducting a comprehensive program that fulfills the provisions of Title VIII of the Energy Policy Act of 2005 (EPACT)--this second report to Congress presents an overview of the Department's hydrogen and fuel cell-related activities from August 2007 to August 2010.

120

Effect of Microstructure of Nitrogen-Doped Graphene on Oxygen Reduction Activity in Fuel Cells  

Science Journals Connector (OSTI)

Effect of Microstructure of Nitrogen-Doped Graphene on Oxygen Reduction Activity in Fuel Cells ... The optimized structures for OOH, OOH+ or O2 adsorption (ads) to graphene were obtained through structural optimization calculations. ... Thus, to optimize the catalytic performance, materials structures should be controlled to have small N doping clusters in combination with material defects. ...

Lipeng Zhang; Jianbing Niu; Liming Dai; Zhenhai Xia

2012-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts  

SciTech Connect

Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal–air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal–air batteries. We demonstrate the core–shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity–strain relationship that provides guidelines for tuning electrocatalytic activity.

Strasser, Peter; Shirlaine, Koh; Anniyev, Toyli; Greeley, Jeffrey P.; More, Karren L.; Yu, Chengfei; Liu, Zengcai; Kaya, Sarp; Nordlund, Dennis; Ogasawara, Hirohito; Toney, Michael F.; Nilsson, Anders R.

2010-04-30T23:59:59.000Z

122

Lattice-Strain Control of the Activity in Dealloyed Core-Shell Fuel Cell Catalysts  

SciTech Connect

Electrocatalysis will play a key role in future energy conversion and storage technologies, such as water electrolysers, fuel cells and metal-air batteries. Molecular interactions between chemical reactants and the catalytic surface control the activity and efficiency, and hence need to be optimized; however, generalized experimental strategies to do so are scarce. Here we show how lattice strain can be used experimentally to tune the catalytic activity of dealloyed bimetallic nanoparticles for the oxygen-reduction reaction, a key barrier to the application of fuel cells and metal-air batteries. We demonstrate the core-shell structure of the catalyst and clarify the mechanistic origin of its activity. The platinum-rich shell exhibits compressive strain, which results in a shift of the electronic band structure of platinum and weakening chemisorption of oxygenated species. We combine synthesis, measurements and an understanding of strain from theory to generate a reactivity-strain relationship that provides guidelines for tuning electrocatalytic activity.

Strasser, P. [Berlin Institute of Technology (Technische Universitat Berlin); Koh, Shirlaine [University of Houston, Houston; Anniyev, Toyli [SLAC National Accelerator Laboratory; Greeley, Jeff [Argonne National Laboratory (ANL); More, Karren Leslie [ORNL; Yu, Chengfei [University of Houston, Houston; Liu, Zengcai [University of Houston, Houston; Kaya, Sarpa [SLAC National Accelerator Laboratory; Nordlund, Dennis [SLAC National Accelerator Laboratory; Ogasawara, Hirohito [SLAC National Accelerator Laboratory; Toney, Michael F. [SLAC National Accelerator Laboratory; Anders, Nilsson [SLAC National Accelerator Laboratory

2010-01-01T23:59:59.000Z

123

Selection and preparation of activated carbon for fuel gas storage  

DOE Patents (OSTI)

Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

1990-10-02T23:59:59.000Z

124

US RERTR Program, its fuel development activities, and application in the KUHFR  

SciTech Connect

The goals, structure, and accomplishments to date of the Reduced-Enrichment Research and Test Reactor (RERTR) Program are described in detail. Plans and schedules for future program activities are outlined with the effect these activities may potentially have on the research reactor community. The fuel development activities of the program are discussed in detail, with particular emphasis on the new low-enrichment, high uranium density fuels the RERTR Program is developing for application in research reactors in the near future. The results of a joint study program between the RERTR Program and the Kyoto University Research Reactor Institute (KURRI), aimed at converting the Kyoto University High-Flux reactor (KUHFR) to the use of reduced-enrichment uranium, are presented.

Travelli, A. (Argonne National Lab., IL); Stahl, D.; Shibata, T.

1981-01-01T23:59:59.000Z

125

US RERTR program, its fuel-development activities, and application in the KUHFR  

SciTech Connect

The goals, structure, and accomplishments to date of the Reduced Enrichment Research and Test Reactor (RERTR) Program are described in detail. Plans and schedules for future program activities are outlined with the effect which these activities may potentially have on the research-reactor community. The fuel-development activities of the program are discussed in detail, with particular emphasis on the new low-enrichment, high-uranium-density fuels which the RERTR Program is developing for application in research reactors in the near future. The results of a joint study program between the RERTR Program and the Kyoto University Research Reactor Institute (KURRI), aimed at converting the Kyoto University High-Flux Reactor (KUHFR) to the use of reduced-enrichment uranium, are presented. It is shown that the study has resulted in a positive decision and in a cooperative, well-structured plan for the KUHFR conversion.

Travelli, A.; Stahl, D.

1981-01-01T23:59:59.000Z

126

Activity and structure of perovskites as diesel reforming catalysts for solid oxide fuel cells.  

SciTech Connect

Recent progress in developing perovskite materials as more cost-effective catalysts in autothermal reforming (ATR) of diesel fuel to hydrogen-rich reformate for solid oxide fuel cell (SOFC) application is reported. Perovskite-type metal oxides with B sites partially exchanged by ruthenium were prepared and evaluated under ATR reaction conditions. The hydrogen yield, reforming efficiency, and CO{sub x} selectivity of these catalysts were investigated using diesel surrogate fuel with 50 ppm sulfur. The catalyst performances have approached or exceeded a benchmark, high-cost rhodium-based material. In parallel with the reactivity study, we also investigated the physical properties of B-site doped perovskites and their impact on the reforming performance using various characterization techniques such as BET, X-ray powder diffraction, temperature programmable reduction, scanning electron microscopy, and synchrotron X-ray absorption spectroscopy. We found that ruthenium is highly dispersed into perovskite lattice and its redox behavior is directly associated with reforming activity.

Liu, D.-J.; Krumpelt, M.; Chemical Engineering

2005-01-01T23:59:59.000Z

127

U.S. DOE Hydrogen and Fuel Cell Activities: 2010 International Hydrogen Fuel and Pressure Vessel Forum  

Energy.gov (U.S. Department of Energy (DOE))

Presentation at the International Hydrogen Fuel and Pressure Vessel Forum on September 27–29, 2010, in Beijing, China.

128

Overview of Hydrogen and Fuel Cell Activities: February 2011 Hydrogen and Fuel Cell Technical Advisory Committee Meeting  

Energy.gov (U.S. Department of Energy (DOE))

Presentation by Sunita Satyapal at the Hydrogen and Fuel Cell Technical Advisory Committee meeting on February 17, 2011.

129

UNCONVENTIONAL ENERGY RESOURCES NETL Team Technical Coordinator: Alexandra Hakala  

NLE Websites -- All DOE Office Websites (Extended Search)

UNCONVENTIONAL ENERGY RESOURCES NETL Team Technical Coordinator: Alexandra Hakala UNCONVENTIONAL ENERGY RESOURCES NETL Team Technical Coordinator: Alexandra Hakala Name Title Affiliation Hakala, Alexandra Physical Scientist NETL Sames, Gary Physical Scientist NETL Dilmore, Robert General Eng NETL Peckney, Natalie General Eng NETL Veloski, Garret Research Chemist NETL Diehl, Rod Physical Scientist NETL Hammack, Richard Physical Scientist NETL Wells, Art Research Chemist NETL Stanko, Denny Phy Sci Tech NETL Hedges, Sheila Research Chemist NETL Lopano, Christina Physical Scientist NETL Edenborn, Harry Microbiologist NETL Goodman, Angela Physical Scientist NETL McIntyre, Dustin Mechanical Eng NETL Soeder, Daniel Physical Scientist NETL Mroz, Thomas Geologist NETL Strazisar, Brian Physical Scientist NETL Kutchko, Barbara Physical Scientist NETL Rose, Kelly Geologist NETL Brohmal, Grant

130

Industrial Process Heat Pumps--Some Unconventional Wisdom  

E-Print Network (OSTI)

INDUSTRIAL PROCESS HEAT PUMPS--SOME UNCONVENTIONAL WISDOM ALAN KARP Project Manager Electric Power Research Institute Palo Alto, California ABSTRACT Recent research on the cost-effective use of industrial process heat pumps challenges... integration insights. BUilding on previously formulated prin ciples of "appropriate placement," a generic metho dology has been developed for examining heat pump ing as an alternative to increased heat integration in any process. PC-based software...

Karp, A.

131

Selective adsorption of tert-butylmercaptan and tetrahydrothiophene on modified activated carbons for fuel processing in fuel cell applications  

Science Journals Connector (OSTI)

Abstract The effects of surface oxidation and KOH impregnation on activated carbon for the selective adsorption of tert-butylmercaptan (TBM) and tetrahydrothiophene (THT) present in natural fuel gas were studied. Physicochemical properties of the adsorbents were characterized by N2 adsorption, X-ray diffraction (XRD), temperature programmed desorption (TPD), scanning electron microscopy (SEM), and surface pH measurements. Oxidation treatments by HNO3 or H2O2 gave rise to considerable increases in both TBM and THT adsorption capacity, about a threefold enhancement from those on pristine activated carbon. Notably, it was found that the oxidative modifications led to an enhancement in THT adsorption selectivity, whereas KOH impregnation led to a marked increase in TBM adsorption selectivity. The properties of the adsorption sites and the adsorption strength of TBM and THT on the sites were characterized. These results agree well with the experimental sulfur adsorption capacities of the samples and can be explained by an adsorption model proposed in this work.

Phuoc Hoang Ho; So-Yun Lee; Doohwan Lee; Hee-Chul Woo

2014-01-01T23:59:59.000Z

132

Innovative Technology Improves Upgrading Process for Unconventional Oil  

NLE Websites -- All DOE Office Websites (Extended Search)

09, 2013 09, 2013 Innovative Technology Improves Upgrading Process for Unconventional Oil Resources Washington, D.C. - An innovative oil-upgrading technology that can increase the economics of unconventional petroleum resources has been developed under a U.S. Department of Energy -funded project. The promising technology, developed by Ceramatec of Salt Lake City, Utah, and managed by the Office of Fossil Energy's National Energy Technology Laboratory, has been licensed to Western Hydrogen of Calgary for upgrading bitumen or heavy oil from Canada. A new company, Field Upgrading (Calgary, Alberta), has been formed dedicated to developing and commercializing the technology. Heavy oil is crude oil that is viscous and requires thermally enhanced oil recovery methods, such as steam and hot water injection, to reduce its viscosity and enable it to flow. The largest U.S. deposits of heavy oil are in California and on Alaska's North Slope. Estimates for the U.S. heavy oil resource total about 104 billion barrels of oil in place - nearly five times the United States' proved reserves. In addition, although no commercial-scale development of U.S. oil sands or oil shale has yet occurred, both represent another potential future domestic unconventional oil resource.

133

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas Annual report on ultra-deepwater natural gas, etc, required by Energy Policy Act of 2005, Subtitle J, Section 999 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program More Documents & Publications 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan

134

The Fuel Cell Mobile Light Project- A DOE Market Transformation Activity  

Energy.gov (U.S. Department of Energy (DOE))

Presentation slides from the Fuel Cell Technologies Program webinar, Fuel Cell Mobile Lighting, held on November 13, 2012.

135

THE CALCULATION OF BURNABLE POISON CORRECTION FACTORS FOR PWR FRESH FUEL ACTIVE COLLAR MEASUREMENTS  

SciTech Connect

Verification of commercial low enriched uranium light water reactor fuel takes place at the fuel fabrication facility as part of the overall international nuclear safeguards solution to the civilian use of nuclear technology. The fissile mass per unit length is determined nondestructively by active neutron coincidence counting using a neutron collar. A collar comprises four slabs of high density polyethylene that surround the assembly. Three of the slabs contain {sup 3}He filled proportional counters to detect time correlated fission neutrons induced by an AmLi source placed in the fourth slab. Historically, the response of a particular collar design to a particular fuel assembly type has been established by careful cross-calibration to experimental absolute calibrations. Traceability exists to sources and materials held at Los Alamos National Laboratory for over 35 years. This simple yet powerful approach has ensured consistency of application. Since the 1980's there has been a steady improvement in fuel performance. The trend has been to higher burn up. This requires the use of both higher initial enrichment and greater concentrations of burnable poisons. The original analytical relationships to correct for varying fuel composition are consequently being challenged because the experimental basis for them made use of fuels of lower enrichment and lower poison content than is in use today and is envisioned for use in the near term. Thus a reassessment of the correction factors is needed. Experimental reassessment is expensive and time consuming given the great variation between fuel assemblies in circulation. Fortunately current modeling methods enable relative response functions to be calculated with high accuracy. Hence modeling provides a more convenient and cost effective means to derive correction factors which are fit for purpose with confidence. In this work we use the Monte Carlo code MCNPX with neutron coincidence tallies to calculate the influence of Gd{sub 2}O{sub 3} burnable poison on the measurement of fresh pressurized water reactor fuel. To empirically determine the response function over the range of historical and future use we have considered enrichments up to 5 wt% {sup 235}U/{sup tot}U and Gd weight fractions of up to 10 % Gd/UO{sub 2}. Parameterized correction factors are presented.

Croft, Stephen [Los Alamos National Laboratory; Favalli, Andrea [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory

2012-06-19T23:59:59.000Z

136

2002-2003 Engineering Accomplishments: Unconventional Nuclear Weapons Detection  

SciTech Connect

The Defense Threat Reduction Agency, DTRA, is a federal agency charged with safeguarding the nation from weapons of mass destruction, in particular nuclear weapons such as crude devices, and radiological dispersal devices (RDD), also known as dirty bombs. Both of which could be delivered using unconventional means such as by transporting them by a car or boat. Two years ago DTRA partnered with NNSA to evaluate commercially available technologies that could be deployed quickly to defend against threats posed by unconventional nuclear weapons under a program called the Unconventional Nuclear Warfare Defense (UNWD) Program. Lawrence Livermore National Laboratory (LLNL) was one of several National laboratories that participated in this program, which consisted in developing, deploying, and demonstrating detection systems suitable for military base protection. Two key contributions to this program by the LLNL team were the development of two Radiation Detection Buoys (RDB) deployed at Naval Base in Kings Bay in Georgia, and the Detection and Tracking System (DTS) demonstrated at Fort Leonard Wood Missouri, headquarters for the Total Force's Maneuver Support Center (MANSCEN). The RDB's were designed to detect the potential transportation of an unconventional nuclear or radiological weapon by a boat. The RDB's consisted of two commercial marine buoys instrumented with several types of detectors sensitive to gamma rays and neutrons, two key modes of energy emitted by radioactive materials. The engineering team selected a standard marine buoy as the overall system platform for this deployment since buoys are already designed to sustain the harsh marine environment, and also for their covertness, since once deployed, they look just like any other buoy on the water. Since this was the first time such a system was ever deployed, the team choose to instrument the buoys with a suite of different types of detectors with the goal to learn which detectors would be best suited for future deployments of this kind. This goal has now being achieved, and through a combination of computer modeling and experimental data, the team has gain the necessary knowledge to better understand the capabilities and limitations of RDB's, and the tradeoffs involve in the selection of the different detectors. The two LLNL RDB's are currently operational at Kings Bay, and the team is looking forward to another opportunity to design the next generation RDB's.

Hernandez, J E; Valentine, J

2004-04-09T23:59:59.000Z

137

Integrated Multi-Well Reservoir and Decision Model to Determine Optimal Well Spacing in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

on unconventional gas has increased with tight gas sands, gas shales and coalbed methane being the primary contributors. Elsewhere, the potential of unconventional gas formations is just beginning to be explored, with assessments under way in Europe, South...

Ortiz Prada, Rubiel Paul

2012-02-14T23:59:59.000Z

138

Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign  

SciTech Connect

Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

Blackston, Matthew A [ORNL; Hausladen, Paul [ORNL

2010-04-01T23:59:59.000Z

139

DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)  

SciTech Connect

Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-05-12T23:59:59.000Z

140

Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay  

Science Journals Connector (OSTI)

Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, \\{PAHs\\} and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources.

Jingxian Wang; Wenzhong Wu; Bernhard Henkelmann; Li You; Antonius Kettrup; Karl-Werner Schramm

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Annual Plan for the Ultra-Deepwater and Unconventional Natural 7 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program Annual report on ultra-deepwater, etc. natural gas research program required by Energy Policy Act of 2005, Subtitle J, Section 999 2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program More Documents & Publications 2007 Annual Plan Recommendations: Draft 2008 Section 999 Annual Plan 2008 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program

142

Fuels & Lubricant Technologies- FEERC  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels & Lubricants Technology Fuels & Lubricants Technology Fuels and lubricants research at FEERC involves study of the impacts of fuel and lubricant properties on advanced combustion processes as well as on emissions and emission control strategies and devices. The range of fuels studied includes liquid fuels from synthetic and renewable sources as well as conventional and unconventional fossil-based sources. Combustion and emissions studies are leveraged with relevant single and multi-cylinder engine setups in the FEERC and access to a suite of unique diagnostic tools and a vehicle dynamometer laboratory. ORNL/DOE research has been cited by EPA in important decisions such as the 2006 diesel sulfur rule and the 2010/2011 E15 waiver decision. Major program categories and examples

143

Electroreduction of Oxygen in Polymer Electrolyte Fuel Cells by Activated Carbon Coated Cobalt Nanocrystallites Produced by Electric Arc Discharge  

Science Journals Connector (OSTI)

Electroreduction of Oxygen in Polymer Electrolyte Fuel Cells by Activated Carbon Coated Cobalt Nanocrystallites Produced by Electric Arc Discharge ... A recent review of the encapsulation of rare earth and iron group metals (Fe, Co, Ni) using electric arc discharge has been published by Saito. ... Nanotubes have been observed after activation of catalytically inactive carbon-coated Co nanocrystallites generated by electric arc discharge. ...

G. Lalande; D. Guay; J. P. Dodelet; S. A. Majetich; M. E. McHenry

1997-03-18T23:59:59.000Z

144

Activity and Evolution of Vapor Deposited Pt-Pd Oxygen Reduction Catalysts for Solid Acid Fuel Cells  

SciTech Connect

The performance of hydrogen fuel cells based on the crystalline solid proton conductor CsH2PO4 is circumscribed by the mass activity of platinum oxygen reduction catalysts in the cathode. Here we report on the first application of an alloy catalyst in a solid acid fuel cell, and demonstrate an activity 4.5 times greater than Pt at 0.8 V. These activity enhancements were obtained with platinum-palladium alloys that were vapor-deposited directly on CsH2PO4 at 210 C. Catalyst mass activity peaks at a composition of 84 at% Pd, though smaller activity enhancements are observed for catalyst compositions exceeding 50 at% Pd. Prior to fuel cell testing, Pd-rich catalysts display lattice parameter expansions of up to 2% due to the presence of interstitial carbon. After fuel cell testing, a Pt-Pd solid solution absent of lattice dilatation and depleted in carbon is recovered. The structural evolution of the catalysts is correlated with catalyst de-activation.

Papandrew, Alexander B [ORNL; Chisholm, Calum R [ORNL; Zecevic, strahinja [LiOx, Inc., Pasadena, California 91106, United States; Veith, Gabriel M [ORNL; Zawodzinski, Thomas A [ORNL

2013-01-01T23:59:59.000Z

145

DOE Solar Decathlon: Cornell University: Making an Unconventional Choice  

NLE Websites -- All DOE Office Websites (Extended Search)

Silo House at Solar Decathlon 2009. Enlarge image Silo House at Solar Decathlon 2009. Enlarge image Silo House is now a private residence on Martha's Vineyard. Forty solar panels rise above three cylinders and a courtyard to provide Silo House with 8 kW of power. (Credit: Jim Tetro/U.S. Department of Energy Solar Decathlon) Who: Cornell University What: Silo House Where: Martha's Vineyard Vineyard Haven, MA 02568 Map This House Public tours: Not available Solar Decathlon 2009 Cornell University: Making an Unconventional Choice Like the two U.S. Department of Energy Solar Decathlon houses before it, Cornell University's Silo House now serves as a residence and is located within 30 miles of campus. Having competed in Solar Decathlon 2005 and 2007, the Cornell team knew it wanted to try something different in 2009. The team decided to create a

146

Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells  

Science Journals Connector (OSTI)

...26 See supporting material on Science Online. 27 U. S. Department of Energy, Technical Plan: Fuel Cells, 2007 (www1.eere.energy.gov/hydrogenandfuelcells/mypp/pdfs/fuel_cells.pdf). 28 F. Charreteur , S. Ruggeri, F. Jaouen, J...

Michel Lefèvre; Eric Proietti; Frédéric Jaouen; Jean-Pol Dodelet

2009-04-03T23:59:59.000Z

147

U. S. Department of Energy1 DOE Hydrogen and Fuel Cell Activities  

E-Print Network (OSTI)

.Ruth@nrel.gov Cost Sensitivity Analysis & Summary Preliminary Fuel Cell Vehicle Cost Analysis Example of Risk Satyapal Chief Engineer & Deputy Program Manager Fuel Cell Technologies Program United States Department 2 Technology Barriers* Economic& Institutional Barriers Fuel Cell Cost & Durability Targets

148

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources Program) Energy Policy Act of 2005 (Ultra-deepwater and Unconventional Resources Program) NETL-ORD Project Information Resource Assessment | Drilling Under Extreme Conditions | Environmental Impacts Enhanced and Unconventional Oil Recovery Enhanced Oil Recovery from Fractured Media Read Detailed Project Information [PDF] Read project abstract Oil recovery from unconventional media is often difficult. However, significant hydrocarbon resources can be found in fractured reservoirs. As the supply of oil from conventional reservoirs is depleted, fractured media will provide a greater proportion of the country's oil reserves. One example of such a resource is the Bakken shale, part of the Williston Basin in North and South Dakota and Montana. It is estimated that over 100-176 billion barrels of oil are present in the Bakken shale. However, due to the low permeability of the formation and the apparent oil-wet nature of the shale, production from this formation presents considerable problems.

149

New Field Laboratories and Related Research To Help Promote Environmentally Prudent Development of Unconventional Resources  

Energy.gov (U.S. Department of Energy (DOE))

Today, the Department of Energy announced the selection of three multiyear, field laboratories and six other multiyear research projects for continued research to promote environmentally prudent development of unconventional oil and natural gas resources.

150

2008 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2008 Annual Plan for the Ultra-Deepwater and...

151

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural...  

Energy Savers (EERE)

2007 Annual Plan for the Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources Research and Development Program 2007 Annual Plan for the Ultra-Deepwater and...

152

Integrated Hydraulic Fracture Placement and Design Optimization in Unconventional Gas Reservoirs  

E-Print Network (OSTI)

Unconventional reservoir such as tight and shale gas reservoirs has the potential of becoming the main source of cleaner energy in the 21th century. Production from these reservoirs is mainly accomplished through engineered hydraulic fracturing...

Ma, Xiaodan

2013-12-10T23:59:59.000Z

153

Development of an improved methodology to assess potential unconventional gas resources in North America  

E-Print Network (OSTI)

(USGS) has assessed the amount of unconventional gas resources in North America, and its estimates are used by other government agencies as the basis for their resource estimates. While the USGS employs a probabilistic methodology, it is apparent from...

Salazar Vanegas, Jesus

2007-09-17T23:59:59.000Z

154

Unconventional Oil and Gas Projects Help Reduce Environmental Impact of Development  

Energy.gov (U.S. Department of Energy (DOE))

The Office of Fossil Energy’s National Energy Technology Laboratory has an unconventional oil and gas program devoted to research in this important area of energy development. The laboratory partners with industry and academia through cost-sharing agreements to develop scientific knowledge and advance technologies that can improve the environmental performance of unconventional resource development. Once the resulting technologies are deployed for commercial use, our nation stands to reap huge benefits.

155

Effect of aerodynamic uncertainties on unconventional lateral control at high angle of attack  

E-Print Network (OSTI)

EFFECT OF AERODYNAMIC UNCERTAINTIES ON UNCONVENTIONAL LATERAL CONTROL AT HIGH ANGLE OF ATTACK A Thesis by BOB GENSEN ELLER Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1987 Major Subject: Aerospace Engineering EFFECT OF AERODYNAMIC UNCERTAINTIES ON UNCONVENTIONAL LATEHAI CONTROL AT HIGH ANGI. E (&F A'I'TACK A Thesis by BOB GENSEN ELLER Approved as to style and content by: Donald T...

Eller, Bob Gensen

1987-01-01T23:59:59.000Z

156

Control authority of unconventional control surface deflections on a fighter aircraft  

E-Print Network (OSTI)

OF SCIENCE May 1985 Major Subject: Aerospace Engineering CONTROL AUTHORITY OF UNCONVENTIONAL CONTROL SURFACE DEFLECTIONS ON A FIGHTER AIRCRAFT A Thesis by LLOYD JOE STOUT Approved as to style and content by: Donald T. Ward (Chairman of Committee...CONTROL AUTHORITY OF UNCONVENTIONAL CONTROL SURFACE DEFLECTIONS ON A FIGHTER AIRCRAFT A Thesis LLOYD JOE STOUT Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER...

Stout, Lloyd Joe

1985-01-01T23:59:59.000Z

157

Modeling the cathode compartment of polymer electrolyte fuel cells: Dead and active reaction zones  

SciTech Connect

A two-dimensional model of the cathode compartment of a polymer electrolyte fuel cell has been developed. The existence of gas channels in the current collector is taken into account. The model is based on continuity equations for concentrations of the gases and Poisson's equations for potentials of membrane and carbon phase, coupled by Tafel relation for reaction kinetics. Stefan-Maxwell and Knudsen diffusion of gases are taken into account. The simulations were performed for high and low values of carbon phase conductivity. The results revealed (i) for a low value of carbon phase conductivity, a dead zone in the active layer in front of the gas channel is formed, where the reaction rate is small. The catalyst may be removed from this zone without significant loss in cell performance; (ii) For a high carbon phase conductivity value, such a zone is absent, but removal of the catalyst from the same part of the active layer forces the reaction to proceed more rapidly in the remaining parts, with only marginal losses in performance. This conclusion is valid for high diffusivity of oxygen. For low diffusivity, dead zones are formed in front of the current collector, so that catalyst can be removed from these zones. The results, thus, show the possibilities for a considerable reduction of the amount of catalyst.

Kulikovsky, A.A.; Divisek, J.; Kornyshev, A.A.

1999-11-01T23:59:59.000Z

158

Spent Fuel and Waste Management Activities for Cleanout of the 105 F Fuel Storage Basin at Hanford  

SciTech Connect

Clean-out of the F Reactor fuel storage basin (FSB) by the Environmental Restoration Contractor (ERC) is an element of the FSB decontamination and decommissioning and is required to complete interim safe storage (ISS) of the F Reactor. Following reactor shutdown and in preparation for a deactivation layaway action in 1970, the water level in the F Reactor FSB was reduced to approximately 0.6 m (2 ft) over the floor. Basin components and other miscellaneous items were left or placed in the FSB. The item placement was performed with a sense of finality, and no attempt was made to place the items in an orderly manner. The F Reactor FSB was then filled to grade level with 6 m (20 ft) of local surface material (essentially a fine sand). The reactor FSB backfill cleanout involves the potential removal of spent nuclear fuel (SNF) that may have been left in the basin unintentionally. Based on previous cleanout of four water-filled FSBs with similar designs (i.e., the B, C, D, and DR FSBs in the 1980s), it was estimated that up to five SNF elements could be discovered in the F Reactor FSB (1). In reality, a total of 10 SNF elements have been found in the first 25% of the F Reactor FSB excavation. This paper discusses the technical and programmatic challenges of performing this decommissioning effort with some of the controls needed for SNF management. The paper also highlights how many various technologies were married into a complete package to address the issue at hand and show how no one tool could be used to complete the job; but by combining the use of multiple tools, progress is being made.

Morton, M. R.; Rodovsky, T. J.; Day, R. S.

2002-02-25T23:59:59.000Z

159

Urban form and long-term fuel supply decline: A method to investigate the peak oil risks to essential activities  

Science Journals Connector (OSTI)

The issue of a peak in world oil supply has become a mainstream concern over the past several years. The petroleum geology models of post-peak oil production indicate supply declines from 1.5% to 6% per year. Travel requires fuel energy, but current transportation planning models do not include the impacts of constrained fuel supply on private travel demand. This research presents a method to assess the risk to activities due to a constrained fuel supply relative to projected unconstrained travel demand. The method assesses the probability of different levels of fuel supply over a given planning horizon, then calculates impact due to the energy supply not meeting the planning expectations. A new travel demand metric which characterizes trips as essential, necessary, and optional to wellbeing is used in the calculation. A case study explores four different urban forms developed from different future growth options for the urban development strategy of Christchurch, New Zealand to 2041. Probable fuel supply availability was calculated, and the risk to transport activities in the 2041 transport model was assessed. The results showed all the urban forms had significantly reduced trip numbers and lower energy mode distributions from the current planning projections, but the risk to activities differed among the planning options. Density is clearly one of the mitigating factors, but density alone does not provide a solution to reduced energy demand. The method clearly shows how risk to participation in activities is lower for an urban form which has a high degree of human powered and public transport access to multiple options between residential and commercial/industrial/service destinations. This analysis has led to new thinking about adaptation and reorganization of urban forms as a strategy for energy demand reduction rather than just densification.

Susan Krumdieck; Shannon Page; André Dantas

2010-01-01T23:59:59.000Z

160

High-activity fuel cell catalyst layers via block copolymer nanocomposites.  

E-Print Network (OSTI)

??Current polymer electrolyte membrane fuel cell (PEMFC) catalyst layers are disordered blends of carbon-supported platinum catalyst in an ionomeric matrix. The objective of this research… (more)

Alabi, Toheeb Bola

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Effects on Hydrogen Adsorption and Activation on Platinum in a Fuel Cell Catalyst.  

E-Print Network (OSTI)

??Proton exchange membrane fuel cells are a highly efficient source of power generation that is needed to sustain the energy demands of today's more environmentally… (more)

Zhang, Jack

2011-01-01T23:59:59.000Z

162

Translating Lessons Learned From Unconventional Natural Gas R&D To  

E-Print Network (OSTI)

Abstract. The gloomy, almost crisis-like outlook for the future of domestic natural gas in the late 1970’s set in motion a set of national-level energy initiatives for adding new gas supplies. Two of the most valuable of these were: (1) the joint government/industry R&D programs in tight gas, gas shales and coalbed methane by the Department of Energy’s Office of Fossil Energy (DOE/FE) that established the essential exploration and production technology for these resources; and, (2) the unconventional gas economic incentives (Section 29 tax credits) that buffered the economic risks faced by the early set of unconventional gas developers and helped attract scarce investment capital to this emerging resource. Now, twenty years later, unconventional gas offers one of the impressive technology success stories. A poorly understood, high cost energy resource is now providing major volumes of annual gas supplies and helping meet the growing domestic demand for natural gas. Unconventional natural gas provided 4,500 Bcf of supply in 1999, up threefold from about 1,600 Bcf twenty years ago. Proved reserves of unconventional gas are 53 Tcf, up from less than 20 Tcf when the R&D and incentive programs started.

Geologic Sequestration Technology; Vello A. Kuuskraa; Hugh D. Guthrie

163

Hydrous oxide species as inhibitors of oxygen reduction at platinum activated fuel cell cathodes  

Science Journals Connector (OSTI)

The successful development of a methanol/air fuel cell requires optimum performance of the air/ oxygen cathode at about 0.8 V vs RHE. ... oxygen gas reduction on platinum (the best electrocatalyst for this reacti...

L. D. Burke; J. K. Casey; J. A. Morrissey…

1994-01-01T23:59:59.000Z

164

Electrocatalytic activities of supported Pt nanoparticles for low-temperature fuel cell applications  

E-Print Network (OSTI)

Low-temperature fuel cells (FCs) are highly efficient and environmentally friendly energy conversion devices that have been in the spotlight of many energy research efforts in the past few decades. However, FC commercialization ...

Sheng, Wenchao, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

165

NETL: News Release - Projects Selected to Boost Unconventional Oil and Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

7, 2010 7, 2010 Projects Selected to Boost Unconventional Oil and Gas Resources Simulation and Visualization Tools, CO2 Enhanced Oil Recovery Targeted for Advancement Washington, D.C. - Ten projects focused on two technical areas aimed at increasing the nation's supply of "unconventional" fossil energy, reducing potential environmental impacts, and expanding carbon dioxide (CO2) storage options have been selected for further development by the U.S. Department of Energy (DOE). The projects include four that would develop advanced computer simulation and visualization capabilities to enhance understanding of ways to improve production and minimize environmental impacts associated with unconventional energy development; and six seeking to further next generation CO2 enhanced oil recovery (EOR) to the point where it is ready for pilot (small) scale testing.

166

Unconventional photon blockade in doubly resonant microcavities with second-order nonlinearity  

E-Print Network (OSTI)

It is shown that non-centrosymmetric materials with bulk second-order nonlinear susceptibility can be used to generate strongly antibunched radiation at an arbitrary wavelength, solely determined by the resonant behavior of suitably engineered coupled microcavities. The proposed scheme exploits the unconventional photon blockade of a coherent driving field at the input of a coupled cavity system, where one of the two cavities is engineered to resonate at both fundamental and second harmonic frequencies, respectively. Remarkably, the unconventional blockade mechanism occurs with reasonably low quality factors at both harmonics, and does not require a sharp doubly-resonant condition for the second cavity, thus proving its feasibility with current semiconductor technology.

Gerace, Dario

2014-01-01T23:59:59.000Z

167

Unconventional Relationshipsfor Hemicellulose Hydrolysis and Subsequent Cellulose Digestion  

E-Print Network (OSTI)

be pretreated with dilute sulfuric acid to recover high yields of sugars directly from hemicellulose and subsequently by enzymatic hydrolysis of the residual cellulose, and these sugars can be used to produce fuels and needed technology advances. Hemicellulose removal is affected by solids concentration and flow through

California at Riverside, University of

168

Semester project Lattice Boltzmann simulations of fluid flow: An unconventional approach to CFD  

E-Print Network (OSTI)

Semester project Lattice Boltzmann simulations of fluid flow: An unconventional approach to CFD Background: The lattice Boltzmann method is a new numerical method of computational fluid dynamics (CFD). Con on a continuous picture of matter. The lattice Boltzmann method instead relies on discrete particles having

Müller,Bernhard

169

This work was supported by the USDepartment of Energy, UnconventionalGas Recovery Research Program.  

E-Print Network (OSTI)

#12;This work was supported by the USDepartment of Energy, UnconventionalGas Recovery Research the world's first Hot Dry Rock geothermalenergyextractionsystemat FentonHill,New Mexico. The system-specifiedtools should be capableof operatingfor sustained periodsin hot wells; have automaticgain controland

170

Unconventional gas recovery program. Semi-annual report for the period ending September 30, 1979  

SciTech Connect

This document is the third semi-annual report describing the technical progress of the US DOE projects directed at gas recovery from unconventional sources. Currently the program includes Methane Recovery from Coalbeds Project, Eastern Gas Shales Project, Western Gas Sands Project, and Geopressured Aquifers Project.

Manilla, R.D. (ed.)

1980-04-01T23:59:59.000Z

171

Cite this: Lab Chip, 2013, 13, 1457 Unconventional microfluidics: expanding the discipline  

E-Print Network (OSTI)

Cite this: Lab Chip, 2013, 13, 1457 Unconventional microfluidics: expanding the discipline DOI: 10*a Since its inception, the discipline of microfluidics has been harnessed for innovations-effect of stereotyping microfluidics as a platform for medical diagnostics and miniaturized lab processes

172

Green Fuel | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Green Fuel Green Fuel Below is information about the student activitylesson plan from your search. Grades 9-12 Subject Solar Summary This activity allows students the opportunity...

173

Reference concepts for the final disposal of LWR spent fuel and other high activity wastes in Spain  

SciTech Connect

Studies over the last three years have been recently concluded with the selection of a reference repository concept for the final disposal of spent fuel and other high activity wastes in deep geological formations. Two non-site specific preliminary designs, at a conceptual level, have been developed; one considers granite as the host rock and the other rock salt formations. The Spanish General Radioactive Waste Program also considers clay as a potential host rock for HLW deep disposal; conceptualization for a deep repository in clay is in the initial phase of development. The salt repository concept contemplates the disposal of the HLW in self-shielding casks emplaced in the drifts of an underground facility, excavated at a depth of 850 m in a bedded salt formation. The Custos Type I(7) cask admits up to seven intact PWR fuel assemblies or 21 of BWR type. The final repository facilities are planned to accept a total of 20,000 fuel assemblies (PWR and BWR) and 50 vitrified waste canisters over a period of 25 years. The total space needed for the surface facilities amounts to 322,000 m{sup 2}, including the rock salt dump. The space required for the underground facilities amounts to 1.2 km{sup 2}, approximately. The granite repository concept contemplates the disposal of the HLW in carbon steel canisters, embedded in a 0.75 m thick buffer of swelling smectite clay, in the drifts of an underground facility, excavated at a depth of 55 m in granite. Each canister can host 3 PWR or 9 BWR fuel assemblies. For this concept the total number of canisters needed amounts to 4,860. The space required for the surface and underground facilities is similar to that of the salt concept. The technical principles and criteria used for the design are discussed, and a description of the repository concept is presented.

Huertas, F.; Ulibarri, A. [ENRESA, Madrid (Spain)

1993-12-31T23:59:59.000Z

174

PEMFC Catalyst Layers: The Role of Micropores and Mesopores on Water Sorption and Fuel Cell Activity  

Science Journals Connector (OSTI)

Polymer electrolyte membranes were catalyzed by direct application of thin film layers cast from solns. of suspended Pt/C catalyst and solubilized Nafion ionomer. ... The improvement in the performance of both CO tolerant anodes and cathodes with enhanced oxygen redn. ... The effect of Nafion loading in the cathode catalyst layer of p exchange membrane fuel cell (PEMFC) electrodes was studied by impedance spectroscopy, cyclic voltammetry, and polarization expts. ...

Tatyana Soboleva; Kourosh Malek; Zhong Xie; Titichai Navessin; Steven Holdcroft

2011-05-16T23:59:59.000Z

175

Low-frequency RF Coupling To Unconventional (Fat Unbalanced) Dipoles  

SciTech Connect

The report explains radio frequency (RF) coupling to unconventional dipole antennas. Normal dipoles have thin equal length arms that operate at maximum efficiency around resonance frequencies. In some applications like high-explosive (HE) safety analysis, structures similar to dipoles with ''fat'' unequal length arms must be evaluated for indirect-lightning effects. An example is shown where a metal drum-shaped container with HE forms one arm and the detonator cable acts as the other. Even if the HE is in a facility converted into a ''Faraday cage'', a lightning strike to the facility could still produce electric fields inside. The detonator cable concentrates the electric field and carries the energy into the detonator, potentially creating a hazard. This electromagnetic (EM) field coupling of lightning energy is the indirect effect of a lightning strike. In practice, ''Faraday cages'' are formed by the rebar of the concrete facilities. The individual rebar rods in the roof, walls and floor are normally electrically connected because of the construction technique of using metal wire to tie the pieces together. There are two additional requirements for a good cage. (1) The roof-wall joint and the wall-floor joint must be electrically attached. (2) All metallic penetrations into the facility must also be electrically connected to the rebar. In this report, it is assumed that these conditions have been met, and there is no arcing in the facility structure. Many types of detonators have metal ''cups'' that contain the explosives and thin electrical initiating wires, called bridge wires mounted between two pins. The pins are connected to the detonator cable. The area of concern is between the pins supporting the bridge wire and the metal cup forming the outside of the detonator. Detonator cables usually have two wires, and in this example, both wires generated the same voltage at the detonator bridge wire. This is called the common-mode voltage. The explosive component inside a detonator is relatively sensitive, and any electrical arc is a concern. In a safety analysis, the pin-to-cup voltage, i.e., detonator voltage, must be calculated to decide if an arc will form. If the electric field is known, the voltage between any two points is simply the integral of the field along a line between the points. Eq. 1.1. For simplicity, it is assumed that the electric field and dipole elements are aligned. Calculating the induced detonator voltage is more complex because of the field concentration caused by metal components. If the detonator cup is not electrically connected to the metal HE container, the portion of the voltage generated by the dipole at the detonator will divide between the container-to-cup and cup-to-pin gaps. The gap voltages are determined by their capacitances. As a simplification, it will be assumed the cup is electrically attached, short circuited, to the HE container. The electrical field in the pin-to-cup area is determined by the field near the dipole, the length of the dipole, the shape of the arms, and the orientation of the arms. Given the characteristics of a lightning strike and the inductance of the facility, the electric fields in the ''Faraday cage'' can be calculated. The important parameters for determining the voltage in an empty facility are the inductance of the rebars and the rate of change of the current, Eq. 1.3. The internal electric fields are directly related to the facility voltages, however, the electric fields in the pin-to-cup space is much higher than the facility fields because the antenna will concentrate the fields covered by the arms. Because the lightning current rise-time is different for every strike, the maximum electric field and the induced detonator voltage should be described by probability distributions. For pedantic purposes, the peak field in the simulations will be simply set to 1 V/m. Lightning induced detonator voltages can be calculated by scaling up with the facility fields. Any metal object around the explosives, such as a work stand, will also distort the electric

Ong, M M; Brown, C G; Perkins, M P; Speer, R D; Javedani, J B

2010-12-07T23:59:59.000Z

176

Design Principles for Oxygen-Reduction Activity on Perovskite Oxide Catalysts for Fuel Cells and Metal-air Batteries  

SciTech Connect

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal-air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to {sigma}*-orbital (e{sub g}) occupation and the extent of B-site transition-metal-oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the {sigma}* orbital and metal-oxygen covalency on the competition between O{sub 2}{sup 2-}/OH{sup -} displacement and OH{sup -} regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

J Suntivich; H Gasteiger; N Yabuuchi; H Nakanishi; J Goodenough; Y Shao-Horn

2011-12-31T23:59:59.000Z

177

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

person whose only activities with respect to motor fuel are: 1) the conversion of any biomass materials into biodiesel fuel that is produced exclusively for personal use and not...

178

EIA - International Energy Outlook 2008-Liquid Fuels  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Chapter 2 - Liquid Fuels World liquids consumption increases from 84 million barrels per day in 2005 to 99 million barrels per day in 2030 in the IEO2008 high price case. In the reference case, which reflects a price path that departs significantly from prices prevailing in the first 8 months of 2008, liquids use rises to 113 million barrels per day in 2030. Figure 26. World Liquids Production in the Reference Case, 1990-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800. Figure Data Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 (Million Barrels Oil Equivalent per Day). Need help, contact the National Energy Information Center at 202-586-8800.

179

ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS  

SciTech Connect

This report summarizes the work done during the first quarter of the project. Effort was directed in three areas: (1) The determination of the role of ionic conductor morphology, used in composite cathodes, on the ionic conductivity of the ionic conductor. It was shown that if the particles are not well sintered, the necks formed between particles will be very narrow, and the resulting conductivity will be too low (resistivity will be too high). Specifically, a mathematical equation was derived to demonstrate the singular nature of conductivity. (2) Nanosize powders of Sc-doped CeO{sub 2} were prepared by combustion synthesis. The rationale is that the particle size of the composite electrode must be as small as possible to ensure a high ionic conductivity--and resulting in high performance in fuel cells. Di-gluconic acid (DGA) was used as fuel. The process led to the formation of nanosize Sc-doped CeO{sub 2}. The powder was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). (3) Samples were sintered to form materials containing various levels of porosity, from {approx}3% to {approx}43%. Conductivity was measured over a range of temperatures by four probe DC method. It was observed that in highly porous samples, the conductivity was far lower than can be expected purely based on total porosity. The difference could be rationalized on the basis of the theoretical model developed.

Professor Anil V. Virkar

2003-04-14T23:59:59.000Z

180

Popular Epidemiology and “Fracking”: Citizens’ Concerns Regarding the Economic, Environmental, Health and Social Impacts of Unconventional Natural Gas Drilling Operations  

Science Journals Connector (OSTI)

Pennsylvania sits atop the Marcellus Shale, a reservoir of natural gas that was untapped until the 2004 introduction of unconventional natural gas drilling operations (UNGDO) in the state. Colloquially known as fracking

Martha Powers; Poune Saberi; Richard Pepino; Emily Strupp…

2014-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Biodiesel Producer Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Producer Biodiesel Producer Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Producer Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Producer Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Producer Fuel Tax on Google Bookmark Alternative Fuels Data Center: Biodiesel Producer Fuel Tax on Delicious Rank Alternative Fuels Data Center: Biodiesel Producer Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Producer Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Producer Fuel Tax Municipalities, counties, or school districts producing biodiesel must file a return documenting their biodiesel production activities and pay $0.03 of

182

List of Fuel Cells using Renewable Fuels Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Cells using Renewable Fuels Incentives Fuel Cells using Renewable Fuels Incentives Jump to: navigation, search The following contains the list of 192 Fuel Cells using Renewable Fuels Incentives. CSV (rows 1 - 192) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Advanced Energy Fund (Ohio) Public Benefits Fund Ohio Commercial Industrial Institutional Residential Utility Biomass CHP/Cogeneration Fuel Cells Fuel Cells using Renewable Fuels Geothermal Electric Hydroelectric energy Landfill Gas Microturbines Municipal Solid Waste Photovoltaics Solar Space Heat Solar Thermal Electric Solar Water Heat Wind energy Yes AlabamaSAVES Revolving Loan Program (Alabama) State Loan Program Alabama Commercial Industrial Institutional Building Insulation Doors Energy Mgmt. Systems/Building Controls

183

Conserved and Unconventional Responses to DNA Damage in Tetrahymena  

E-Print Network (OSTI)

in the transition G1/S phase to promote the loading of DNA polymerases. Additionally CDK prevent any further activation of pre-RC. CDK also induce phosphorylation of Sld2, Sld3 and Mcm5 that promotes the initiation of DNA synthesis. Diagram modified from Sclafani... and Holzen (2007). Cdc45 Sld2-3 S-CDK Initiation G1 phase G1/S transition S phase 21 21 mechanism to restrict pre-RC formation to only once per cell cycle (Lutzmann et al., 2006). Cdc6 in budding yeast stimulates the Abf1 binding activity...

Sandoval Oporto, Pamela

2012-07-16T23:59:59.000Z

184

UNCONVENTIONAL COMPUTING FOR MUSIC: SOUND SYNTHESIS WITH SLIME MOULD  

E-Print Network (OSTI)

and a number of measurement electrodes and cover them with blobs of non-nutrient agar gel; the naked part-to-digital converter. At the beginning of each run, a piece of plasmodium is placed on the reference electrode's agar be measured with electrodes [5]. Recently Adamatzky and Jones studied the electrical activity

Miranda, Eduardo Reck

185

Compatibility Study of Protective Relaying in a Grid-Connected Fuel Cell  

SciTech Connect

A 200-kW fuel cell produced by International Fuel Cells (IFC), a United Technologies Company, began operation at the National Transportation Research Center (NTRC) in early June 2003. The NTRC is a joint Oak Ridge National laboratory (ORNL) and University of Tennessee research facility located in Knoxville, Tennessee. This research activity investigated the protective relaying functions of this fully commercialized fuel cell power plant, which uses ''synthesized'' protective relays. The project's goal is to characterize the compatibility between the fuel cell's interconnection protection system and the local distribution system or electric power system (EPS). ORNL, with assistance from the Electric Power Research Institute-Power Electronics Applications Center (EPRI-PEAC) in Knoxville, Tennessee, monitored and characterized the system compatibility over a period of 6 months. Distribution utility engineers are distrustful of or simply uncomfortable with the protective relaying and hardware provided as part of distributed generation (DG) plants. Part of this mistrust is due to the fact that utilities generally rely on hardware from certain manufacturers whose reliability is well established based on performance over many years or even decades. Another source of concern is the fact that fuel cells and other types of DG do not use conventional relays but, instead, the protective functions of conventional relays are simulated by digital circuits in the distributed generator's grid interface control unit. Furthermore, the testing and validation of internal protection circuits of DG are difficult to accomplish and can be changed by the vendor at any time. This study investigated and documented the safety and protective relaying present in the IFC fuel cell, collected data on the operation of the fuel cell, recorded event data during EPS disturbances, and assessed the compatibility of the synthesized protective circuits and the local distribution system. The project also addressed other important and timely issues. For instance, the study includes an evaluation of the effectiveness of the fuel cell's synthesized relay protection scheme relative to the recently issued IEEE 1547 interconnection standard. Together, these activities should serve to reduce the number of unknowns pertaining to unconventional protective circuits, to the benefit of DG manufacturers, vendors, prospective and current users of DG, and electricity suppliers/distributors. Although more grid-connect fuel cell interruptions were encountered in this study than originally anticipated, and the investigation and findings became quite complex, every effort was made to clearly summarize the interconnection causes and issues throughout the report and especially in the summary found in Sect. 4. ORNL's funding of this study is sponsored equally by (1) the Department of Energy's (DOE's) Office of Distributed Energy Resources and (2) the Distributed Generation Technologies program of the Tennessee Valley Authority (TVA).

Staunton, R.H.

2004-04-15T23:59:59.000Z

186

Novel Non-Precious metals for PEMFC A major impediment to the commercialization of fuel cell technology is the low activity  

E-Print Network (OSTI)

Novel Non-Precious metals for PEMFC Abstract: A major impediment to the commercialization of fuel cell technology is the low activity of platinum electrocatalyst used for oxygen reduction. Pt has been is of interest. The overall objective of this project is to synthesize non-precious metal electrocatalysts

Popov, Branko N.

187

Specific activity of243Am and243Cm in the fuel of the 4th power-generating unit of the Chernobyl nuclear power plant  

Science Journals Connector (OSTI)

The activity ratios241Am/241Am.243Cm/244Cm, and242Cm/244Cm in core samples taken at the industrial site of the object “Cover” were measured. The content of243Am and243Cm in the fuel in the 4th power-generating un...

V. A. Ageev; S. L. Vyrichek; A. P. Lashko; T. N. Lashko; A. A. Odintsov

1999-11-01T23:59:59.000Z

188

FCT Fuel Cells: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Basics to someone by E-mail Share FCT Fuel Cells: Basics on Facebook Tweet about FCT Fuel Cells: Basics on Twitter Bookmark FCT Fuel Cells: Basics on Google Bookmark FCT Fuel Cells: Basics on Delicious Rank FCT Fuel Cells: Basics on Digg Find More places to share FCT Fuel Cells: Basics on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Basics Photo of a fuel cell stack A fuel cell uses the chemical energy of hydrogen to cleanly and efficiently produce electricity with water and heat as byproducts. (How much water?) Fuel cells are unique in terms of the variety of their potential applications; they can provide energy for systems as large as a utility

189

Advanced Fuels Synthesis  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Fuels Synthesis Advanced Fuels Synthesis Coal and Coal/Biomass to Liquids Advanced Fuels Synthesis The Advanced Fuels Synthesis Key Technology is focused on catalyst and reactor optimization for producing liquid hydrocarbon fuels from coal/biomass mixtures, supports the development and demonstration of advanced separation technologies, and sponsors research on novel technologies to convert coal/biomass to liquid fuels. Active projects within the program portfolio include the following: Fischer-Tropsch fuels synthesis Small Scale Coal Biomass Liquids Production Using Highly Selective Fischer Tropsch Catalyst Small Scale Pilot Plant for the Gasification of Coal and Coal/Biomass Blends and Conversion of Derived Syngas to Liquid Fuels Via Fischer-Tropsch Synthesis Coal Fuels Alliance: Design and Construction of Early Lead Mini Fischer-Tropsch Refinery

190

HTGR Fuel performance basis  

SciTech Connect

The safety characteristics of the high-temperature gas-cooled reactor (HTGR) during normal and accident conditions are determined in part by HTGR fuel performance. During normal operation, less than 0.1% fuel failure occurs, primarily from defective particles. This low fuel failure fraction limits circulating activity to acceptable levels. During severe accidents, the radiological consequence is influenced by high-temperature fuel particle behavior. An empirical fuel failure model, supported by recent experimental data, is presented. The onset of significant fuel particle failure occurs at temperatures in excess of 1600/sup 0/C, and complete fuel failure occurs at 2660/sup 0/C. This indicates that the fuel is more retentive at higher temperatures than previously assumed. The more retentive nature of the fuel coupled with the high thermal capacitance of the core results in slow release of fission products from the core during severe accidents.

Shamasundar, B.I.; Stansfield, O.M.; Jensen, D.D.

1982-05-01T23:59:59.000Z

191

The Future of Low Carbon Transportation Fuels  

E-Print Network (OSTI)

" Nuclear" Oil resources" Unconventional:" oil shale liquid, " oil sands" Coal resources" Transport! Elec

Kammen, Daniel M.

192

US DRIVE Fuel Cell Technical Team Roadmap | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technical Team Roadmap US DRIVE Fuel Cell Technical Team Roadmap The Fuel Cell Technical Team (FCTT) conducts the following activities: (1) Reviews and evaluates...

193

Update on uranium-molybdenum fuel foil fabrication development activities at the Y-12 National Security Complex in 2007  

SciTech Connect

In support of the RERTR Program, efforts are underway at Y-12 to develop and validate a production oriented, monolithic uranium molybdenum (U-Mo) foil fabrication process adaptable for potential implementation in a manufacturing environment. These efforts include providing full-scale prototype depleted and enriched U-Mo foils in support of fuel qualification testing. The work has three areas of focus; develop and demonstrate a feasible foil fabrication process utilizing depleted uranium-molybdenum (DU-Mo) source material, transition these production techniques to enriched uranium (EU-Mo) source material, and evaluate full-scale implementation of the developed production techniques. In 2006, Y-12 demonstrated successful fabrication of full-size DU-10Mo foils. In 2007, Y-12 activities were expanded to include continued DU-Mo foil fabrication with a focus on process refinement, source material impurity effects (specifically carbon), and the feasibility of physical vapor deposition (PVD) on DU-10Mo mini-foils. FY2007 activities also included a transition to EU-Mo and fabrication of full-size enriched foils. The purpose of this report is to update the RERTR audience on Y-12 efforts in 2007 that support the overall RERTR Program goals. (author)

DeMint, Amy; Gooch, Jack [Technology Development, Y-12 National Security Complex, Oak Ridge, TN 37830 (United States); Dunavant, Randy J.; Andes, Trent C. [National Security Programs, Y-12 National Security Complex, Oak Ridge, TN 37830 (United States)

2008-07-15T23:59:59.000Z

194

Palladium selenides as active methanol tolerant cathode materials for direct methanol fuel cell  

Science Journals Connector (OSTI)

Palladium selenides, PdSe, Pd3Se and PdSe2 have been prepared by the hydrothermal method and investigated for their structural and electrocatalytic properties toward the oxygen reduction reaction (ORR) using SEM/TEM, XRD, cyclic and linear sweep voltammetries. The crystallites of PdSe and PdSe2 are found to follow tetragonal and orthorhombic crystal structures, respectively. The PdSe electrode in 0.5 M H2SO4 exhibits significantly higher electrocatalytic activity than the Pd3Se or PdSe2 electrode under similar experimental conditions. Further, a change in the palladium/selenium ratio from unity in the catalyst results in low ORR activity.

Madhu; R.N. Singh

2011-01-01T23:59:59.000Z

195

2014 Annual Merit Review Results Report - Fuels & Lubricants...  

Energy Savers (EERE)

Fuels & Lubricants Technologies 2014 Annual Merit Review Results Report - Fuels & Lubricants Technologies Merit review of DOE Vehicle Technologies research activities...

196

Projection of world fossil fuels by country  

Science Journals Connector (OSTI)

Abstract Detailed projections of world fossil fuel production including unconventional sources were created by country and fuel type to estimate possible future fossil fuel production. Four critical countries (China, USA, Canada and Australia) were examined in detail with projections made on the state/province level. Ultimately Recoverable Resources (URR) for fossil fuels were estimated for three scenarios: Low = 48.4 ZJ, Best Guess (BG) = 75.7 ZJ, High = 121.5 ZJ. The scenarios were developed using Geologic Resources Supply-Demand Model (GeRS-DeMo). The Low and Best Guess (BG) scenarios suggest that world fossil fuel production may peak before 2025 and decline rapidly thereafter. The High scenario indicates that fossil fuels may have a strong growth till 2025 followed by a plateau lasting approximately 50 years before declining. All three scenarios suggest that world coal production may peak before 2025 due to peaking Chinese production and that only natural gas could have strong growth in the future. In addition, by converting the fossil fuel projections to greenhouse gas emissions, the projections were compared to IPCC scenarios which indicated that based on current estimates of URR there are insufficient fossil fuels to deliver the higher emission IPCC scenarios \\{A1Fl\\} and RCP8.5.

S.H. Mohr; J. Wang; G. Ellem; J. Ward; D. Giurco

2015-01-01T23:59:59.000Z

197

Unconventional Energy Resources and Geospatial Information: 2006 Review  

SciTech Connect

This article contains a brief summary of some of the 2006 annual committee reports presented to the Energy Minerals Division (EMD) of the American Association of Petroleum Geologists. The purpose of the reports is to advise EMD leadership and members of the current status of research and developments of energy resources (other than conventional oil and natural gas that typically occur in sandstone and carbonate rocks), energy economics, and geospatial information. This summary presented here by the EMD is a service to the general geologic community. Included in this summary are reviews of the current research and activities related to coal, coalbed methane, gas hydrates, gas shales, geospatial information technology related to energy resources, geothermal resources, oil sands, and uranium resources.

NONE

2007-09-15T23:59:59.000Z

198

Evaluation of storing Shippingport Core II spent blanket fuel assemblies in the T Plant PWR Core II fuel pool without active cooling  

SciTech Connect

PWR Core II fuel pool chiller-off test was conducted because it appeared possible that acceptable pool-water temperatures could be maintained without operating the chillers, thus saving hundreds of thousands of dollars in maintenance and replacement costs. Test results showed that the water-cooling capability is no longer needed to maintain pool temperature below 38{degrees}C (100{degrees}F).

Gilbert, E.R.; Lanning, D.D. [Pacific Northwest Lab., Richland, WA (United States); Dana, C.M.; Hedengren, D.C. [Westinghouse Hanford Co., Richland, WA (United States)

1994-10-01T23:59:59.000Z

199

Oil Shale Development from the Perspective of NETL's Unconventional Oil Resource Repository  

SciTech Connect

The history of oil shale development was examined by gathering relevant research literature for an Unconventional Oil Resource Repository. This repository contains over 17,000 entries from over 1,000 different sources. The development of oil shale has been hindered by a number of factors. These technical, political, and economic factors have brought about R&D boom-bust cycles. It is not surprising that these cycles are strongly correlated to market crude oil prices. However, it may be possible to influence some of the other factors through a sustained, yet measured, approach to R&D in both the public and private sectors.

Smith, M.W. (REM Engineering Services, Morgantown, WV); Shadle, L.J.; Hill, D. (REM Engineering Services, Morgantown, WV)

2007-01-01T23:59:59.000Z

200

U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Advanced Vehicle Testing Activity, Hydrogen/CNG Blended Fuels Performance Testing in a Ford F-150  

SciTech Connect

Federal regulation requires energy companies and government entities to utilize alternative fuels in their vehicle fleets. To meet this need, several automobile manufacturers are producing compressed natural gas (CNG)-fueled vehicles. In addition, several converters are modifying gasoline-fueled vehicles to operate on both gasoline and CNG (Bifuel). Because of the availability of CNG vehicles, many energy company and government fleets have adopted CNG as their principle alternative fuel for transportation. Meanwhile, recent research has shown that blending hydrogen with CNG (HCNG) can reduce emissions from CNG vehicles. However, blending hydrogen with CNG (and performing no other vehicle modifications) reduces engine power output, due to the lower volumetric energy density of hydrogen in relation to CNG. Arizona Public Service (APS) and the U.S. Department of Energy’s Advanced Vehicle Testing Activity (DOE AVTA) identified the need to determine the magnitude of these effects and their impact on the viability of using HCNG in existing CNG vehicles. To quantify the effects of using various blended fuels, a work plan was designed to test the acceleration, range, and exhaust emissions of a Ford F-150 pickup truck operating on 100% CNG and blends of 15 and 30% HCNG. This report presents the results of this testing conducted during May and June 2003 by Electric Transportation Applications (Task 4.10, DOE AVTA Cooperative Agreement DEFC36- 00ID-13859).

James E. Francfort

2003-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies SHARE Fuel Cell and Hydrogen Technologies Oak Ridge National Laboratory pursues activities that address the barriers facing the development and deployment of...

202

Fuel Cell School Buses: Report to Congress  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Fuel Cell Activities, Progress, and Plans: Report to Congress ii December 2008 Fuel Cell School Buses Report to Congress Fuel Cell School Buses: Report to Congress Preface This...

203

Fuel Cells for Transportation | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE R&D Activities Fuel Cells for Transportation Fuel Cells for Transportation Photo of Ford Focus fuel cell car in front of windmills The transportation sector is the single...

204

Unconventional Hydrocarbons:  

Science Journals Connector (OSTI)

...to further development of domestic gas markets in North America and liquefied natural...business revitalization, the creation of markets for new by-products, greater energy...gallon-equivalent basis compared to gasoline or diesel. Fugitive Methane Emissions from Extraction...

Michael A. Arthur; David R. Cole

205

Unconventional Hydrocarbons:  

Science Journals Connector (OSTI)

...indicate a relationship to fracking. However, other researchers...into shallow freshwater aquifers or, at worst, has...volume of water for fracking. Research is needed...concentrations, will affect fracking efficiency. The Need...bond logs to prevent aquifer contamination; (2...

Michael A. Arthur; David R. Cole

206

Unconventional Hydrocarbons:  

Science Journals Connector (OSTI)

...and water-quality impacts loom large for oil sand...development. Environmental impacts may be the most challenging...development. Potential impacts include problems with...induced seismicity from fracking and disposal, potential...deposited in deeper marine environments, in lakes, or in associated...

Michael A. Arthur; David R. Cole

207

Unconventional Hydrocarbons:  

Science Journals Connector (OSTI)

...drilling in a low-commodity-price environment is not clear, yet drilling and production...Economist (2013) American industry and fracking: From sunset to a new dawn. The Economist...563-598 Wolak FA , Patrick RH (2001) The Impact of Market Rules and Market Structure...

Seth Blumsack

208

Unconventional Hydrocarbons:  

Science Journals Connector (OSTI)

...Environmental impacts may be the most...development. Potential impacts include problems...seismicity from fracking and disposal...deeper marine environments, in lakes...10-or-90-how-much-fracking-waste-is...to assess the impacts of extraction...impacts on the environment. A fundamental...

Michael A. Arthur; David R. Cole

209

Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Fueling Infrastructure Incentives to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Fueling Infrastructure Incentives on AddThis.com... More in this section... Federal State Advanced Search

210

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

211

Fuels Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

R&D activities, including fuels for advanced combustion engines, advanced petroleum-based and non-petroleum based fuels, and biofuels. deer08stork.pdf More Documents &...

212

Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity Advanced Petroleum-Based fuels - Diesel Emissions Control (APBF-DEC) Activity 2003 DEER Conference...

213

The Fuel Cell Mobile Light Project - A DOE Market Transformation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity Download the presentation slides...

214

Fuel Cell Technologies Office Launches National Laboratory Tech...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities Fuel Cell Technologies Office Launches National Laboratory Tech-to-Market Activities November...

215

Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach  

E-Print Network (OSTI)

SPE 159172 Petrophysical Properties of Unconventional Low-Mobility Reservoirs (Shale Gas and Heavy Oil) by Using Newly Developed Adaptive Testing Approach Hamid Hadibeik, The University of Texas the dynamics of water- and oil- base mud-filtrate invasion that produce wellbore supercharging were developed

Torres-Verdín, Carlos

216

NREL: Vehicles and Fuels Research - Fuel Combustion Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Combustion Lab Fuel Combustion Lab NREL's Fuel Combustion Laboratory focuses on characterizing fuels at the molecular level. This information can then be used to understand and predict the fuel's effect on engine performance and emissions. By understanding the effects of fuel chemistry on ignition we can develop fuels that enable more efficient engine designs, using both today's technology and future advanced combustion concepts. This lab supports the distributed Renewable Fuels and Lubricants (ReFUEL) Laboratory, and the Biofuels activity. Photo of assembled IQT. Ignition Quality Tester The central piece of equipment in the Fuel Combustion Laboratory is the Ignition Quality Tester (IQT(tm)). The IQT(tm) is a constant volume combustion vessel that is used to study ignition properties of liquid

217

Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use and Alternative Fuel Vehicle (AFV) Acquisition Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

218

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants and Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative

219

Transport in unconventional superconductors: Application to liquid He3 in aerogel  

Science Journals Connector (OSTI)

We consider quite generally the transport of energy and momentum in unconventional superconductors and Fermi superfluids to which both impurity scattering (treated within the t-matrix approximation) and inelastic scattering contributes. A new interpolation scheme for the temperature dependence of the transport parameters is presented which preserves all analytical results available for T?0 and T?Tc and allows for a particularly transparent physical representation of the results. The two scattering processes are combined using Matthiessen’s rule coupling. This procedure is applied for the first time to He3-B in aerogel. Here, at the lowest temperatures, a universal ratio of the thermal conductivity and the shear viscosity is found in the unitary limit, which is akin to the Wiedemann-Franz law.

Dietrich Einzel and Jeevak M. Parpia

2005-12-28T23:59:59.000Z

220

DOE Hydrogen and Fuel Cells Program Plan (September 2011)  

Fuel Cell Technologies Publication and Product Library (EERE)

The Department of Energy Hydrogen and Fuel Cells Program Plan outlines the strategy, activities, and plans of the DOE Hydrogen and Fuel Cells Program, which includes hydrogen and fuel cell activities

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Review of Fuels for Direct Carbon Fuel Cells  

Science Journals Connector (OSTI)

Review of Fuels for Direct Carbon Fuel Cells ... After optimization for minimum activation polarization, the authors then produced impedance spectra to assess cell performance and achieved a peak power density of around 18 and 53 mW cm–2 at 700 and 800 °C, respectively. ... solid oxide fuel cell system under 600° just by optimizing the anode microstructure and operating conditions. ...

Adam C. Rady; Sarbjit Giddey; Sukhvinder P. S. Badwal; Bradley P. Ladewig; Sankar Bhattacharya

2012-01-31T23:59:59.000Z

222

Control-theoretic cyber-physical system modeling and synthesis: A case study of an active direct methanol fuel cell  

Science Journals Connector (OSTI)

A joint optimization of the physical system and the cyber world is one of the key problems in the design of a cyber-physical system (CPS). The major mechanical forces and/or chemical reactions in a plant are commonly modified by actuators in the balance-of-plant ... Keywords: Balance of plants system, Cyber-physical systems, Direct methanol fuel cell

Donghwa Shin; Jaehyun Park; Younghyun Kim; Jaeam Seo; Naehyuck Chang

2012-12-01T23:59:59.000Z

223

Fuel pin  

DOE Patents (OSTI)

A fuel pin for a liquid metal nuclear reactor is provided. The fuel pin includes a generally cylindrical cladding member with metallic fuel material disposed therein. At least a portion of the fuel material extends radially outwardly to the inner diameter of the cladding member to promote efficient transfer of heat to the reactor coolant system. The fuel material defines at least one void space therein to facilitate swelling of the fuel material during fission.

Christiansen, D.W.; Karnesky, R.A.; Leggett, R.D.; Baker, R.B.

1987-11-24T23:59:59.000Z

224

List of Renewable Fuel Vehicles Incentives | Open Energy Information  

Open Energy Info (EERE)

Vehicles Incentives Vehicles Incentives Jump to: navigation, search The following contains the list of 33 Renewable Fuel Vehicles Incentives. CSV (rows 1 - 33) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuel Vehicle Rebate (Colorado) State Rebate Program Colorado Schools Local Government State Government Renewable Fuel Vehicles No Alternative Fuel Vehicle Tax Credit (West Virginia) Personal Tax Credit West Virginia Residential Renewable Fuel Vehicles No

225

Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)  

SciTech Connect

Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

Paul Glavinovich

2002-11-01T23:59:59.000Z

226

Fuel Cell Development Status  

NLE Websites -- All DOE Office Websites (Extended Search)

Development Status Michael Short Systems Engineering Manager United Technologies Corporation Research Center Hamilton Sundstrand UTC Power UTC Fire & Security Fortune 50 corporation $52.9B in annual sales in 2009 ~60% of Sales are in building technologies Transportation Stationary Fuel Cells Space & Defense * Fuel cell technology leader since 1958 * ~ 550 employees * 768+ Active U.S. patents, more than 300 additional U.S. patents pending * Global leader in efficient, reliable, and sustainable fuel cell solutions UTC Power About Us PureCell ® Model 400 Solution Process Overview Power Conditioner Converts DC power to high-quality AC power 3 Fuel Cell Stack Generates DC power from hydrogen and air 2 Fuel Processor Converts natural gas fuel to hydrogen

227

NETL - Fuel Reforming Facilities  

ScienceCinema (OSTI)

Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.

None

2014-06-27T23:59:59.000Z

228

Apparatus and method for grounding compressed fuel fueling operator  

DOE Patents (OSTI)

A safety system for grounding an operator at a fueling station prior to removing a fuel fill nozzle from a fuel tank upon completion of a fuel filling operation is provided which includes a fuel tank port in communication with the fuel tank for receiving and retaining the nozzle during the fuel filling operation and a grounding device adjacent to the fuel tank port which includes a grounding switch having a contact member that receives physical contact by the operator and where physical contact of the contact member activates the grounding switch. A releasable interlock is included that provides a lock position wherein the nozzle is locked into the port upon insertion of the nozzle into the port and a release position wherein the nozzle is releasable from the port upon completion of the fuel filling operation and after physical contact of the contact member is accomplished.

Cohen, Joseph Perry (Bethlehem, PA); Farese, David John (Riegelsville, PA); Xu, Jianguo (Wrightstown, PA)

2002-06-11T23:59:59.000Z

229

RERTR program activities related to the development and application of new LEU fuels. [Reduced Enrichment Research and Test Reactor; low-enriched uranium  

SciTech Connect

The statue of the U.S. Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of RERTR Program objectives and goals, program accomplishments are discussed with emphasis on the development, demonstration and application of new LEU fuels. Most program activities have proceeded as planned, and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) holds excellent promise for achieving the long-term program goals. Current plans and schedules project the uranium density of qualified RERTR fuels for plate-type reactors to grow by approximately 1 g U/cm/sup 3/ each year, from the current 1.7 g U/cm/sup 3/ to the 7.0 g U/cm/sup 3/ which will be reached in late 1988. The technical needs of research and test reactors for HEU exports are also forecasted to undergo a gradual but dramatic decline in the coming years.

Travelli, A.

1983-01-01T23:59:59.000Z

230

Activation of Hydrogen with Bi-Functional Ambiphillic Catalyst Complexes - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program Tom Autrey (Primary Contact), Greg Schenter, Don Camaioni, Abhi Karkamkar, Herman Cho, Bojana Ginovska-Pangovska Pacific Northwest National Laboratory P.O. Box 999 MS#K2-57 Richland, WA 99352 Phone: (509) 375-3792 Email: tom.autrey@pnnl.gov DOE Program Officer: Raul Miranda Objectives The objective of our research is to develop fundamental insight into small molecule activation in molecular complexes that will provide the basis for developing rational approaches

231

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Fueling Infrastructure Funding and Technical Assistance and Fueling Infrastructure Funding and Technical Assistance to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Funding and Technical Assistance on Digg

232

Fuel System and Fuel Measurement  

Science Journals Connector (OSTI)

Fuel management provides optimal solutions to reduce fuel consumption. Merchant vessels, such as container ships, drive at a reduced speed to save fuel since the reduction of the speed from...?1 lowers consumption

Michael Palocz-Andresen

2013-01-01T23:59:59.000Z

233

Feasibility study for alternate fuels production: unconventional natural gas from wastewater treatment plants. Volume II, Appendix D. Final report  

SciTech Connect

Data are presented from a study performed to determined the feasibility of recovering methane from sewage at a typical biological secondary wastewater treatment plant. Three tasks are involved: optimization of digester gas; digester gas scrubbing; and application to the East Bay Municipal Utility District water pollution control plant. Results indicate that excess digester gas can be used economically at the wastewater treatment plant and that distribution and scrubbing can be complex and costly. (DMC) 193 references, 93 figures, 26 tables.

Overly, P.; Tawiah, K.

1981-12-01T23:59:59.000Z

234

PEMFC R&D at the DOE Fuel Cell Technologies Program | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting Hydrogen and Fuel Cell Activities: 5th International Conference on Polymer Batteries and Fuel Cells Fuel Cell Technologies Overview: 2012 Flow Cells for Energy...

235

EIA - International Energy Outlook 2008-Liquid Fuels Graphic Data  

Gasoline and Diesel Fuel Update (EIA)

Liquid Fuels Liquid Fuels International Energy Outlook 2008 Figure 26. World Liquids Production in the Reference Case, 1990-2030 Figure 26 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 27. World Production of Unconventional Liquid Fuels, 2005-2030 Figure 27 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 28. World Liquids Consumption by Sector, 2005-2030 Figure 28 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 29. World Liquids Consumption by Region and Country Group, 2005 and 2030 Figure 29 Data. Need help, contact the National Energy Information Center at 202-586-8800. Figure 30. Nominal World Oil Prices in three Cases, 1980-2030 Figure 30 Data. Need help, contact the National Energy Information Center at 202-586-8800.

236

Fuel Cell Technologies Office: About  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Fuel Cell Technologies Office About the Fuel Cell Technologies Office The Fuel Cell Technologies Office conducts comprehensive efforts to overcome the technological, economic, and institutional barriers to the widespread commercialization of hydrogen and fuel cells. The office is aligned with the strategic vision and goals of the U.S. Department of Energy (DOE). The office's efforts will help secure U.S. leadership in clean energy technologies and advance U.S. economic competitiveness and scientific innovation. What We Do DOE is the lead federal agency for directing and integrating activities in hydrogen and fuel cell R&D as authorized in the Energy Policy Act of 2005. The Fuel Cell Technologies Office is responsible for coordinating the R&D activities for DOE's Hydrogen and Fuel Cells Program, which includes activities within four DOE offices (Office of Energy Efficiency and Renewable Energy [EERE], Office of Fossil Energy, Office of Nuclear Energy, and Office of Science).

237

Alternative Fuels Data Center: Alternative Fuel and Special Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Special Fuel Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Special Fuel Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Special Fuel Definitions

238

Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Motor Fuel Motor Carrier Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Motor Carrier Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Motor Carrier Fuel Tax Effective January 1, 2014, a person who operates a commercial motor vehicle

239

Microstructured Hydrogen Fuel Cells  

Science Journals Connector (OSTI)

Micro fuel cells ; Polymer electrolyte membrane fuel cells ; Proton exchange membrane fuel cells ...

Luc G. Frechette

2014-05-01T23:59:59.000Z

240

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The definition of an alternative fuel includes natural gas, liquefied petroleum gas, electricity, hydrogen, fuel mixtures containing not less

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Alternative Fuels Data Center: Ethanol Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Stations on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Stations on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Ethanol Fueling Stations Photo of an ethanol fueling station. Thousands of ethanol fueling stations are available in the United States.

242

Alternative Fuels Data Center: Alternative Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Promotion The Missouri Alternative Fuels Commission (Commission) promotes the continued production and use of alternative transportation fuels in

243

Alternative Fuels Data Center: Hydrogen Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Google Bookmark Alternative Fuels Data Center: Hydrogen Fueling Stations on Delicious Rank Alternative Fuels Data Center: Hydrogen Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fueling Stations on AddThis.com... More in this section... Hydrogen Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Hydrogen Fueling Stations Photo of a hydrogen fueling station. A handful of hydrogen fueling stations are available in the United States

244

Alternative Fuels Data Center: Biodiesel Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Stations to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Google Bookmark Alternative Fuels Data Center: Biodiesel Fueling Stations on Delicious Rank Alternative Fuels Data Center: Biodiesel Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fueling Stations on AddThis.com... More in this section... Biodiesel Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Biodiesel Fueling Stations Photo of a biodiesel fueling station. Hundreds of biodiesel fueling stations are available in the United States.

245

Life-cycle analysis of alternative aviation fuels in GREET  

SciTech Connect

The Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model, developed at Argonne National Laboratory, has been expanded to include well-to-wake (WTWa) analysis of aviation fuels and aircraft. This report documents the key WTWa stages and assumptions for fuels that represent alternatives to petroleum jet fuel. The aviation module in GREET consists of three spreadsheets that present detailed characterizations of well-to-pump and pump-to-wake parameters and WTWa results. By using the expanded GREET version (GREET1{_}2011), we estimate WTWa results for energy use (total, fossil, and petroleum energy) and greenhouse gas (GHG) emissions (carbon dioxide, methane, and nitrous oxide) for (1) each unit of energy (lower heating value) consumed by the aircraft or (2) each unit of distance traveled/ payload carried by the aircraft. The fuel pathways considered in this analysis include petroleum-based jet fuel from conventional and unconventional sources (i.e., oil sands); Fisher-Tropsch (FT) jet fuel from natural gas, coal, and biomass; bio-jet fuel from fast pyrolysis of cellulosic biomass; and bio-jet fuel from vegetable and algal oils, which falls under the American Society for Testing and Materials category of hydroprocessed esters and fatty acids. For aircraft operation, we considered six passenger aircraft classes and four freight aircraft classes in this analysis. Our analysis revealed that, depending on the feedstock source, the fuel conversion technology, and the allocation or displacement credit methodology applied to co-products, alternative bio-jet fuel pathways have the potential to reduce life-cycle GHG emissions by 55-85 percent compared with conventional (petroleum-based) jet fuel. Although producing FT jet fuel from fossil feedstock sources - such as natural gas and coal - could greatly reduce dependence on crude oil, production from such sources (especially coal) produces greater WTWa GHG emissions compared with petroleum jet fuel production unless carbon management practices, such as carbon capture and storage, are used.

Elgowainy, A.; Han, J.; Wang, M.; Carter, N.; Stratton, R.; Hileman, J.; Malwitz, A.; Balasubramanian, S. (Energy Systems)

2012-07-23T23:59:59.000Z

246

Effect of particle size on the activity and durability of the Pt/C electrocatalyst for proton exchange membrane fuel cells  

Science Journals Connector (OSTI)

Carbon supported Pt (Pt/C) with various average particle sizes ranging from sub 3 nm to 6.5 nm were in situ prepared and characterized at the cathode of proton exchange membrane fuel cells (PEMFCs). A clear Pt particle size effect on both the catalytic activity for oxygen reduction reaction (ORR) and the durability of the electrocatalyst was revealed. With the Pt particle size increase, both the surface specific activity and the electrochemical stability of Pt/C improved; however, the mass specific activity of Pt/C is balanced by the electrochemical surface area loss. The reduced occupation of corner and edge atoms on the Pt surface during the Pt particle size increase is believed to weaken the adsorption of the oxygenated species on Pt, and thereafter releases more available active sites for ORR and also renders the Pt surface a stronger resistance against potential cycling. It is therefore proposed that by designing the Pt microstructure with more face atoms on the surface, cathode electrocatalyst with both improved activity and enhanced durability would be developed for PEMFCs.

Zhuang Xu; Huamin Zhang; Hexiang Zhong; Qiuhong Lu; Yunfeng Wang; Dangsheng Su

2012-01-01T23:59:59.000Z

247

List of Other Alternative Fuel Vehicles Incentives | Open Energy  

Open Energy Info (EERE)

Fuel Vehicles Incentives Fuel Vehicles Incentives Jump to: navigation, search The following contains the list of 8 Other Alternative Fuel Vehicles Incentives. CSV (rows 1 - 8) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Fuel Vehicle Loan Program (Missouri) State Loan Program Missouri Schools Local Government Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations No Alternative Fuels Incentive Grant Fund (AFIG) (Pennsylvania) State Grant Program Pennsylvania Commercial Industrial Residential General Public/Consumer Nonprofit Schools Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Other Alternative Fuel Vehicles Refueling Stations Ethanol Methanol Biodiesel No Alternative Vehicle Conversion Credits - Corporate (Louisiana) Corporate Tax Credit Louisiana Commercial Renewable Fuel Vehicles

248

X-RAY NUCLEAR ACTIVITY IN S{sup 4}G BARRED GALAXIES: NO LINK BETWEEN BAR STRENGTH AND CO-OCCURRENT SUPERMASSIVE BLACK HOLE FUELING  

SciTech Connect

Stellar bars can lead to gas inflow toward the center of a galaxy and stimulate nuclear star formation. However, there is no compelling evidence on whether they also feed a central supermassive black hole: by measuring the fractions of barred active and inactive galaxies, previous studies have yielded conflicting results. In this paper, we aim to understand the lack of observational evidence for bar-driven active galactic nucleus (AGN) activity by studying a sample of 41 nearby (d < 35 Mpc) barred galaxies from the Spitzer Survey for Stellar Structure in Galaxies. We use Chandra observations to measure nuclear 2-10 keV X-ray luminosities and estimate Eddington ratios, together with Spitzer 3.6 ?m imaging to quantify the strength of the stellar bar in two independent ways: (1) from its structure, as traced by its ellipticity and boxiness, and (2) from its gravitational torque Q{sub b} , taken as the maximum ratio of the tangential force to the mean background radial force. In this way, rather than discretizing the presence of both stellar bars and nuclear activity, we are able to account for the continuum of bar strengths and degrees of AGN activity. We find nuclear X-ray sources in 31 out of 41 galaxies with median X-ray luminosity and Eddington ratio of L{sub X} = 4.3 × 10{sup 38} erg s{sup –1} and L{sub bol}/L{sub Edd} = 6.9 × 10{sup –6}, respectively, consistent with low-luminosity AGN activity. Including upper limits for those galaxies without nuclear detections, we find no significant correlation between any of the bar strength indicators and the degree of nuclear activity, irrespective of galaxy luminosity, stellar mass, Hubble type, or bulge size. Strong bars do not favor brighter or more efficient nuclear activity, implying that at least for the low-luminosity regime, supermassive black hole fueling is not closely connected to large-scale features.

Cisternas, Mauricio; Knapen, Johan H.; González-Martín, Omaira; Erroz-Ferrer, Santiago [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Gadotti, Dimitri A.; Kim, Taehyun [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Díaz-García, Simón; Laurikainen, Eija; Salo, Heikki; Comerón, Sébastien; Laine, Jarkko [Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu FI-90014 (Finland); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Elmegreen, Bruce G. [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Zaritsky, Dennis; Hinz, Joannah L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Sheth, Kartik [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Athanassoula, E.; Bosma, Albert [Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Gil de Paz, Armando [Departamento de Astrofísica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Holwerda, Benne W., E-mail: mauricio@iac.es [European Space Agency, ESTEC, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); and others

2013-10-10T23:59:59.000Z

249

Oil shale mining studies and analyses of some potential unconventional uses for oil shale  

SciTech Connect

Engineering studies and literature review performed under this contract have resulted in improved understanding of oil shale mining costs, spent shale disposal costs, and potential unconventional uses for oil shale. Topics discussed include: costs of conventional mining of oil shale; a mining scenario in which a minimal-scale mine, consistent with a niche market industry, was incorporated into a mine design; a discussion on the benefits of mine opening on an accelerated schedule and quantified through discounted cash flow return on investment (DCFROI) modelling; an estimate of the costs of disposal of spent shale underground and on the surface; tabulation of potential increases in resource recovery in conjunction with underground spent shale disposal; the potential uses of oil shale as a sulfur absorbent in electric power generation; the possible use of spent shale as a soil stabilizer for road bases, quantified and evaluated for potential economic impact upon representative oil shale projects; and the feasibility of co-production of electricity and the effect of project-owned and utility-owned power generation facilities were evaluated. 24 refs., 5 figs., 19 tabs.

McCarthy, H.E.; Clayson, R.L.

1989-07-01T23:59:59.000Z

250

Overview of Hydrogen Fuel Cell Budget  

NLE Websites -- All DOE Office Websites (Extended Search)

Budget Budget FUEL CELL TECHNOLOGIES PROGRAM Stakeholders Webinar - Budget Briefing Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager February 24, 2011 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel Cells: For Diverse Applications 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov INTRODUCTION: FY 2012 Budget in Brief Continues New Sub-programs for: * Fuel Cell Systems R&D - Consolidates four sub-programs: Fuel Cell Stack Components R&D, Transportation Fuel Cell Systems, Distributed Energy Fuel Cell Systems, and Fuel Processor R&D - Technology-neutral fuel cell systems R&D for diverse applications * Hydrogen Fuel R&D - Consolidates Hydrogen Production & Delivery and Hydrogen Storage activities

251

Identification of bimetallic electrocatalysts for ethanol and acetaldehyde oxidation: Probing C2-pathway and activity for hydrogen oxidation for indirect hydrogen fuel cells  

Science Journals Connector (OSTI)

Abstract Hydrogen, in the ethanol molecule, can be utilized in indirect hydrogen fuel cells. In this device, ethanol can be dehydrogenated producing H2 and acetaldehyde in an external fuel processor, and the H2 molecules are electro-oxidized in the anode. The anode electrocatalyst can, additionally, be active for the electro-oxidation of residual ethanol or acetaldehyde, but must catalyze the reaction via the C2-pathway (intact CC bond), in order to avoid the formation poisoning species. This work investigated potential materials that are active for H2 and catalyze the selective electro-oxidation of ethanol and acetaldehyde via the C2-pathway. The bimetallic electrocatalysts were formed by W, Ru and Sn-modified Pt nanoparticles. The reaction products were followed by on-line differential electrochemical mass spectrometry (DEMS) experiments. The results showed that Ru/Pt/C and Sn/Pt/C presented higher overall reaction rate when compared to the other studied materials. However, they were non-selective, even at different atomic proportions, and catalyzed the reaction in parallel pathways producing CO2 and acetaldehyde, with Ru/Pt/C presenting the highest average current efficiency for CO2 formation (16.6%). On the other hand, W/Pt/C with high W content was more selective to the C2 route, evidenced by the absence of the DEMS signals for molecules with one carbon atom such as CH4 and CO2. Additionally, this material was active and stable for H2 electro-oxidation, even in the presence of acetaldehyde in solution, contrarily to what was observed for Pt/C, and this was associated to its activity for H2 oxidation and its inability for the CC dissociation, as evidenced by the DEMS measurements. The high selectivity obtained for the W/Pt/C material to the C2-pathway, and its capability for hydrogen electro-oxidation, is an important novelty in this work, as it turns into a potential electrocatalyst for application in the anode of indirect hydrogen fuel cells powered by ethanol, mainly for those that operates as auxiliary power units of internal combustion engine cars.

A.C. Queiroz; W.O. Silva; I.A. Rodrigues; F.H.B. Lima

2014-01-01T23:59:59.000Z

252

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Loans on AddThis.com...

253

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

254

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Tax Credit on AddThis.com...

255

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Fund on AddThis.com... More in this section...

256

Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel and Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Alternative Fuel Vehicle (AFV) Tax Exemption on AddThis.com...

257

State of the States: Fuel Cells in America 2010  

Energy.gov (U.S. Department of Energy (DOE))

This report provides a snapshot of fuel cell and hydrogen activity in the 50 states and District of Columbia in 2010, featuring the top five fuel cell states.

258

Sandia National Laboratories: DOE EERE Fuel Cell Market Transformation...  

NLE Websites -- All DOE Office Websites (Extended Search)

EERE Fuel Cell Market Transformation activity Patent Awarded for the Fuel Cell Mobile Light On August 28, 2013, in Center for Infrastructure Research and Innovation (CIRI), CRF,...

259

Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration  

E-Print Network (OSTI)

2006,” International Collaboration Invited lecture in the2. International Collaboration DISCLAIMER This document wasActive International Collaboration Jens Birkholzer Lawrence

Birkholzer, J.T.

2012-01-01T23:59:59.000Z

260

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Grants to someone by E-mail Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Fueling Infrastructure Grants on AddThis.com...

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

RESULTS OF IONSIV® IE-95 STUDIES FOR THE REMOVAL OF RADIOACTIVE CESIUM FROM K-EAST BASIN SPENT NUCLEAR FUEL POOL DURING DECOMMISSIONING ACTIVITIES  

SciTech Connect

This report delineates the results obtained from laboratory testing of IONISIV{reg_sign} IE-95 to determine the efficacy of the zeolite for the removal of radioactive cesium from the KE Basin water prior to transport to the Effluent Treatment Facility, as described in RPP-PLAN-36158, IONSIV{reg_sign} IE-95 Studies for the removal of Radioactive Cesium from KE Basin Spent Nuclear Fuel Pool during Decommissioning Activities. The spent nuclear fuel was removed from KE Basin and the remaining sludge was layered with a grout mixture consisting of 26% Lehigh Type I/II portland cement and 74% Boral Mohave type F fly ash with a water-to-cement ratio of 0.43. The first grout pour was added to the basin floor to a depth of approximately 14 in. covering an area of 12,000 square feet. A grout layer was also added to the sludge containers located in the attached Weasel and Technical View pits.

DUNCAN JB; BURKE SP

2008-07-07T23:59:59.000Z

262

Synthetic Fuel  

ScienceCinema (OSTI)

Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous

Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots

2010-01-08T23:59:59.000Z

263

DOE Hydrogen & Fuel Cell Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program Program Market Readiness Workshop DOE Hydrogen & Fuel Cell Overview Dr. Sunita Satyapal Program Manager U.S. Department of Energy Fuel Cell Technologies Program February 16, 2011 2 | Fuel Cell Technologies Program eere.energy.gov Fuel Cells - Where are we today? Fuel Cells for Transportation In the U.S., there are currently: > 200 fuel cell vehicles ~ 20 active fuel cell buses ~ 60 fueling stations In the U.S., there are currently: ~9 million metric tons of H 2 produced annually > 1200 miles of H 2 pipelines Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts. The largest markets for fuel cells today are in

264

State of the States: Fuel Cells in America (June 2011)  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2011 report, written by Fuel Cells 2000 and partially funded by the U.S. Department of Energy's Fuel Cell Technologies Program, provides an update of fuel cell and hydrogen activity in the 50 sta

265

List of Renewable Transportation Fuels Incentives | Open Energy Information  

Open Energy Info (EERE)

Transportation Fuels Incentives Transportation Fuels Incentives Jump to: navigation, search The following contains the list of 30 Renewable Transportation Fuels Incentives. CSV (rows 1 - 30) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active Alternative Energy Bond Fund Program (Illinois) State Grant Program Illinois Commercial Industrial Solar Water Heat Solar Space Heat Solar Thermal Electric Photovoltaics Landfill Gas Wind energy Biomass Hydroelectric energy Renewable Transportation Fuels Geothermal Electric No Alternative Fuel Transportation Grant Program (Indiana) State Grant Program Indiana Commercial Nonprofit Local Government Renewable Transportation Fuels Renewable Fuel Vehicles Fuel Cells No Alternative Fuel Vehicle Conversion Rebate Program (Arkansas) State Rebate Program Arkansas Transportation Renewable Transportation Fuels No

266

Alternative Fuels Data Center: Alternative Fueling Infrastructure  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Development on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

267

Alternative Fuels Data Center: Emerging Fuels  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emerging Fuels Emerging Fuels Printable Version Share this resource Send a link to Alternative Fuels Data Center: Emerging Fuels to someone by E-mail Share Alternative Fuels Data Center: Emerging Fuels on Facebook Tweet about Alternative Fuels Data Center: Emerging Fuels on Twitter Bookmark Alternative Fuels Data Center: Emerging Fuels on Google Bookmark Alternative Fuels Data Center: Emerging Fuels on Delicious Rank Alternative Fuels Data Center: Emerging Fuels on Digg Find More places to share Alternative Fuels Data Center: Emerging Fuels on AddThis.com... More in this section... Biobutanol Drop-In Biofuels Methanol P-Series Renewable Natural Gas xTL Fuels Emerging Alternative Fuels Several emerging alternative fuels are under development or already developed and may be available in the United States. These fuels may

268

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells Converting chemical energy of hydrogenated fuels into electricity Project Description Invented in 1839, fuels cells powered the Gemini and Apollo space missions, as well as the space shuttle. Although fuel cells have been successfully used in such applications, they have proven difficult to make more cost-effective and durable for commercial applications, particularly for the rigors of daily transportation. Since the 1970s, scientists at Los Alamos have managed to make various scientific breakthroughs that have contributed to the development of modern fuel cell systems. Specific efforts include the following: * Finding alternative and more cost-effective catalysts than platinum. * Enhancing the durability of fuel cells by developing advanced materials and

269

Fuel Cell Technologies Office: Photoelectrochemical Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to Fuel Cell Technologies Office: Photoelectrochemical Working Group to someone by E-mail Share Fuel Cell Technologies Office: Photoelectrochemical Working Group on Facebook Tweet about Fuel Cell Technologies Office: Photoelectrochemical Working Group on Twitter Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Google Bookmark Fuel Cell Technologies Office: Photoelectrochemical Working Group on Delicious Rank Fuel Cell Technologies Office: Photoelectrochemical Working Group on Digg Find More places to share Fuel Cell Technologies Office: Photoelectrochemical Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts

270

Fuel Cell Technologies Office: Catalysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis Working Catalysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Catalysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Catalysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Google Bookmark Fuel Cell Technologies Office: Catalysis Working Group on Delicious Rank Fuel Cell Technologies Office: Catalysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Catalysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis

271

Alternative Fuels Data Center: Ridesharing  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ridesharing to someone Ridesharing to someone by E-mail Share Alternative Fuels Data Center: Ridesharing on Facebook Tweet about Alternative Fuels Data Center: Ridesharing on Twitter Bookmark Alternative Fuels Data Center: Ridesharing on Google Bookmark Alternative Fuels Data Center: Ridesharing on Delicious Rank Alternative Fuels Data Center: Ridesharing on Digg Find More places to share Alternative Fuels Data Center: Ridesharing on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Ridesharing Photo of people car pooling. Rideshare programs help people share vehicles to commute together. Also known as carpooling, ridesharing conserves fuel and reduces vehicle

272

Influence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction and Microbial Fuel Cell Performance  

E-Print Network (OSTI)

resource. Cathode materials can account for 47-75% of the MFC capital costs,5 and therefore it is important to choose less expensive materials as the cathode catalyst. Several catalysts have been considered for useInfluence of Chemical and Physical Properties of Activated Carbon Powders on Oxygen Reduction

273

Activation of protein kinase B (PKB/Akt) and risk of lung cancer among rural women in India who cook with biomass fuel  

SciTech Connect

The impact of indoor air pollution (IAP) from biomass fuel burning on the risk of carcinogenesis in the airways has been investigated in 187 pre-menopausal women (median age 34 years) from eastern India who cooked exclusively with biomass and 155 age-matched control women from same locality who cooked with cleaner fuel liquefied petroleum gas. Compared with control, Papanicolau-stained sputum samples showed 3-times higher prevalence of metaplasia and 7-times higher prevalence of dysplasia in airway epithelial cell (AEC) of biomass users. Immunocytochemistry showed up-regulation of phosphorylated Akt (p-Akt{sup ser473} and p-Akt{sup thr308}) proteins in AEC of biomass users, especially in metaplastic and dysplastic cells. Compared with LPG users, biomass-using women showed marked rise in reactive oxygen species (ROS) generation and depletion of antioxidant enzyme, superoxide dismutase (SOD) indicating oxidative stress. There were 2–5 times more particulate pollutants (PM{sub 10} and PM{sub 2.5}), 72% more nitrogen dioxide and 4-times more particulate-laden benzo(a)pyrene, but no change in sulfur dioxide in indoor air of biomass-using households, and high performance liquid chromatography estimated 6-fold rise in the concentration of benzene metabolite trans,trans-muconic acid (t,t-MA) in urine of biomass users. Metaplasia and dysplasia, p-Akt expression and ROS generation were positively associated with PM and t,t-MA levels. It appears that cumulative exposure to biomass smoke increases the risk of lung carcinogenesis via oxidative stress-mediated activation of Akt signal transduction pathway. -- Highlights: ? Carcinogenesis in airway cells was examined in biomass and LPG using women. ? Metaplasia and dysplasia of epithelial cells were more prevalent in biomass users. ? Change in airway cytology was associated with oxidative stress and Akt activation. ? Biomass users had greater exposure to respirable PM, B(a)P and benzene. ? Cooking with biomass increases cancer risk in the airways via Akt activation.

Roychoudhury, Sanghita; Mondal, Nandan Kumar; Mukherjee, Sayali; Dutta, Anindita; Siddique, Shabana; Ray, Manas Ranjan, E-mail: manasrray@rediffmail.com

2012-02-15T23:59:59.000Z

274

Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

States Energy Advisory Board (STEAB) States Energy Advisory Board (STEAB) Washington, DC Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Program Manager 3/14/2012 2 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov * Introduction - Technology and Market Overview * DOE Program Overview - Mission & Structure - R&D Progress - Demonstration & Deployments * State Activities - Examples of potential opportunities Outline 3 | Fuel Cell Technologies Program Source: US DOE 3/19/2013 eere.energy.gov Fuel cells - convert chemical energy directly into electrical energy, bypassing inefficiencies associated with thermal energy conversion. Available energy is equal to the Gibbs free energy. Combustion Engines - convert chemical energy into thermal energy and

275

Au/Pt Nanoparticle-Decorated TiO2 Nanofibers with Plasmon-Enhanced Photocatalytic Activities for Solar-to-Fuel Conversion  

Science Journals Connector (OSTI)

Our studies demonstrate that through rational design of composite nanostructures one can harvest visible light through the SPR effect to enhance the photocatalytic activities of semiconductors initiated by UV-light to more effectively utilize the whole solar spectrum for energy conversion. ... (4-7) Nevertheless, the applications of pure TiO2 for solar fuel production are often restricted by several main disadvantages: (1) due to the wide band gap (Eg: ?3.2 eV), TiO2 can only absorb UV light which accounts for only ?4% of the solar irradiation;(6, 8, 9) (2) rapid recombination of photogenerated charge carriers leads to low quantum yield of TiO2;(10) and (3) large overpotential for hydrogen (H2) production and CO2 reduction. ... (18, 20, 35, 36) Thus, to achieve high efficiency for photocatalytic H2 production, the coloading of Pt NPs into Au/TiO2 composite structures would be desirable by combining the advantages of both SPR effect of Au NPs and activation effect of Pt NPs for HER. ...

Zhenyi Zhang; Zheng Wang; Shao-Wen Cao; Can Xue

2013-11-13T23:59:59.000Z

276

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Science » Materials Science » Fuel Cells Fuel Cells Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Melissa Fox Applied Energy Email Catherine Padro Sensors & Electrochemical Devices Email Fernando Garzon Sensors & Electrochemical Devices Email Piotr Zelenay Sensors & Electrochemical Devices Email Rod Borup Sensors & Electrochemical Devices Email Karen E. Kippen Experimental Physical Sciences Email Like a battery, a fuel cell consists of two electrodes separated by an electrolyte-in polymer electrolyte fuel cells, the separator is made of a thin polymeric membrane. Unlike a battery, a fuel cell does not need recharging-it continues to produce electricity as long as fuel flows

277

Alternative Fuels Data Center: Fuel Prices  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicles Vehicles Printable Version Share this resource Send a link to Alternative Fuels Data Center: Fuel Prices to someone by E-mail Share Alternative Fuels Data Center: Fuel Prices on Facebook Tweet about Alternative Fuels Data Center: Fuel Prices on Twitter Bookmark Alternative Fuels Data Center: Fuel Prices on Google Bookmark Alternative Fuels Data Center: Fuel Prices on Delicious Rank Alternative Fuels Data Center: Fuel Prices on Digg Find More places to share Alternative Fuels Data Center: Fuel Prices on AddThis.com... Fuel Prices As gasoline prices increase, alternative fuels appeal more to vehicle fleet managers and consumers. Like gasoline, alternative fuel prices can fluctuate based on location, time of year, and political climate. Alternative Fuel Price Report

278

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Any person acting as an alternative fuels dealer must hold a valid alternative fuel license and certificate from the Wisconsin Department of Administration. Except for alternative fuels that a dealer delivers into a

279

Alternative Fuels Data Center: Alternative Fuel License  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel License to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel License on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel License on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel License on Google Bookmark Alternative Fuels Data Center: Alternative Fuel License on Delicious Rank Alternative Fuels Data Center: Alternative Fuel License on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel License on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay

280

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust solid oxide fuel cell (SOFC) system. Specific objectives include achieving an efficiency of greater than 60 percent, meeting a stack cost target of $175 per kW, and demonstrating lifetime performance degradation of less than 0.2 percent per

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Alternative fuels  

SciTech Connect

This paper presents the preliminary results of a review, of the experiences of Brazil, Canada, and New Zealand, which have implemented programs to encourage the use of alternative motor fuels. It will also discuss the results of a separate completed review of the Department of Energy's (DOE) progress in implementing the Alternative Motor Fuels Act of 1988. The act calls for, among other things, the federal government to use alternative-fueled vehicles in its fleet. The Persian Gulf War, environmental concerns, and the administration's National Energy Strategy have greatly heightened interest in the use of alternative fuels in this country.

Not Available

1991-07-01T23:59:59.000Z

282

Fuel Cells  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cells The Solid State Energy Conversion Alliance (SECA) program is responsible for coordinating Federal efforts to facilitate development of a commercially relevant and robust...

283

Spent fuel pyroprocessing demonstration  

SciTech Connect

A major element of the shutdown of the US liquid metal reactor development program is managing the sodium-bonded spent metallic fuel from the Experimental Breeder Reactor-II to meet US environmental laws. Argonne National Laboratory has refurbished and equipped an existing hot cell facility for treating the spent fuel by a high-temperature electrochemical process commonly called pyroprocessing. Four products will be produced for storage and disposal. Two high-level waste forms will be produced and qualified for disposal of the fission and activation products. Uranium and transuranium alloys will be produced for storage pending a decision by the US Department of Energy on the fate of its plutonium and enriched uranium. Together these activities will demonstrate a unique electrochemical treatment technology for spent nuclear fuel. This technology potentially has significant economic and technical advantages over either conventional reprocessing or direct disposal as a high-level waste option.

McFarlane, L.F.; Lineberry, M.J.

1995-05-01T23:59:59.000Z

284

Alternative Fuels Data Center: Electricity Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Fuel Electricity Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Electricity Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Electricity Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Google Bookmark Alternative Fuels Data Center: Electricity Fuel Basics on Delicious Rank Alternative Fuels Data Center: Electricity Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Electricity Fuel Basics on AddThis.com... More in this section... Electricity Basics Production & Distribution Research & Development Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Electricity Fuel Basics Photo of a plug-in hybrid vehicle fueling. Electricity is considered an alternative fuel under the Energy Policy Act

285

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of

286

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax A state excise tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The current tax rates are as

287

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard RFS Volumes by Year Enlarge illustration The Renewable Fuel Standard (RFS) is a federal program that requires transportation fuel sold in the U.S. to contain a minimum volume of

288

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Tax Alternative Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Excise taxes on alternative fuels are imposed on a gasoline gallon equivalent basis. The tax rate for each alternative fuel type is based on the number of motor vehicles licensed in the state that use the specific

289

Alternative Fuels Data Center: Alternative Fuel Loans  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Loans Fuel Loans to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Loans on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Loans on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Loans on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Loans on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Loans on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Loans The Oregon Department of Energy administers the State Energy Loan Program (SELP) which offers low-interest loans for qualified projects. Eligible alternative fuel projects include fuel production facilities, dedicated

290

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels are subject to an excise tax at a rate of $0.205 per gasoline gallon equivalent, with a variable component equal to at least 5% of the average wholesale price of the fuel. (Reference Senate Bill 454,

291

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax The excise tax imposed on an alternative fuel distributed in New Mexico is $0.12 per gallon. Alternative fuels subject to the excise tax include liquefied petroleum gas (or propane), compressed natural gas, and liquefied

292

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The Minnesota Department of Revenue imposes an excise tax on the first licensed distributor that receives E85 fuel products in the state and on distributors, special fuel dealers, or bulk purchasers of other alternative

293

Fuel Research  

Science Journals Connector (OSTI)

... FUEL research was discussed by Sir Harry McGowan, who succeeds Sir William Larke as president of the Institute of Fuel, in ... has a ragged front, and new knowledge is continually changing relative national positions. Sir Harry McGowan referred to the domestic use of raw coal, which is still preferred to ...

1934-11-24T23:59:59.000Z

294

Alternative Fuels Data Center: Telework  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Telework to someone by Telework to someone by E-mail Share Alternative Fuels Data Center: Telework on Facebook Tweet about Alternative Fuels Data Center: Telework on Twitter Bookmark Alternative Fuels Data Center: Telework on Google Bookmark Alternative Fuels Data Center: Telework on Delicious Rank Alternative Fuels Data Center: Telework on Digg Find More places to share Alternative Fuels Data Center: Telework on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Telework Photo of a woman working from home. Telework is a flexible work arrangement where employees work from home (telecommute) or attend conferences and meetings from their computer

295

Fuel Ethanol from Cellulosic Biomass  

Science Journals Connector (OSTI)

...impacts as well, which include engine performance, infrastructure...Comparative automotive engine operation when fueled with...biomass with 50% moisture by diesel truck requiring 2000 Btu per...actively studied because of its fundamental interest and applications...

LEE R. LYND; JANET H. CUSHMAN; ROBERTA J. NICHOLS; CHARLES E. WYMAN

1991-03-15T23:59:59.000Z

296

An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin Films into TiO2 Nanoparticle  

E-Print Network (OSTI)

and impedance spectroscopy. KEYWORDS: Carbon/TiO2 thin film, dye-sensitized solar cells, block copolymer-treated single-wall carbon nanotubes (a-SWCNs) in TiO2 film.37 The a-SWCNs modified solar cell indicated a 25An Unconventional Route to High-Efficiency Dye-Sensitized Solar Cells via Embedding Graphitic Thin

Lin, Zhiqun

297

Alternative Fuels Data Center: Renewable Fuels Assessment  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Assessment to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Assessment on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Assessment on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Assessment on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Assessment on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Assessment on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Assessment The U.S. Department of Defense (DOD) prepared a report, Opportunities for DOD Use of Alternative and Renewable Fuels, on the use and potential use of

298

Alternative Fuels Data Center: Biodiesel Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Basics on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Basics on AddThis.com... More in this section... Biodiesel Basics Blends Production & Distribution Specifications Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Biodiesel Fuel Basics Related Information National Biofuels Action Plan Biodiesel is a domestically produced, renewable fuel that can be

299

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard At least 2% of all diesel fuel sold in Washington must be biodiesel or renewable diesel. This requirement will increase to 5% 180 days after the

300

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Fuel Use to Biodiesel Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The Iowa Department of Transportation (IDOT) may purchase biodiesel for use in IDOT vehicles through the biodiesel fuel revolving fund created in the state treasury. The fund consists of money received from the sale of Energy

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax Special fuels, including biodiesel, biodiesel blends, biomass-based diesel, biomass-based diesel blends, and liquefied natural gas, have a reduced tax rate of $0.27 per gallon. Liquefied petroleum gas (LPG or propane) and

302

Alternative Fuels Data Center: Special Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Special Fuel Tax to Special Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Special Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Special Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Special Fuel Tax on Google Bookmark Alternative Fuels Data Center: Special Fuel Tax on Delicious Rank Alternative Fuels Data Center: Special Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Special Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Special Fuel Tax Effective January 1, 2014, certain special fuels sold or used to propel motor vehicles are subject to a license tax. Liquefied natural gas is subject to a tax of $0.16 per diesel gallon equivalent. Compressed natural

303

Alternative Fuels Data Center: Ethanol Fuel Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Basics to Fuel Basics to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Basics on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Basics on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Basics on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Basics on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Basics on AddThis.com... More in this section... Ethanol Basics Blends Specifications Production & Distribution Feedstocks Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Ethanol Fuel Basics Related Information National Biofuels Action Plan Ethanol is a renewable fuel made from various plant materials collectively

304

Alternative Fuels Data Center: Biodiesel Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use to Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Biodiesel Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Biodiesel Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Google Bookmark Alternative Fuels Data Center: Biodiesel Fuel Use on Delicious Rank Alternative Fuels Data Center: Biodiesel Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Biodiesel Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biodiesel Fuel Use The South Dakota Department of Transportation and employees using state diesel vehicles must stock and use fuel blends containing a minimum of 2% biodiesel (B2) that meets or exceeds the most current ASTM specification

305

Alternative Fuels Data Center: Hydrogen Fuel Specifications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Hydrogen Fuel Specifications to someone by E-mail Share Alternative Fuels Data Center: Hydrogen Fuel Specifications on Facebook Tweet about Alternative Fuels Data Center: Hydrogen Fuel Specifications on Twitter Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Google Bookmark Alternative Fuels Data Center: Hydrogen Fuel Specifications on Delicious Rank Alternative Fuels Data Center: Hydrogen Fuel Specifications on Digg Find More places to share Alternative Fuels Data Center: Hydrogen Fuel Specifications on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Hydrogen Fuel Specifications The California Department of Food and Agriculture, Division of Measurement Standards (DMS) established interim specifications for hydrogen fuels for

306

Alternative Fuels Data Center: Flexible Fuel Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Ethanol Printable Version Share this resource Send a link to Alternative Fuels Data Center: Flexible Fuel Vehicles to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicles on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicles on Twitter Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Google Bookmark Alternative Fuels Data Center: Flexible Fuel Vehicles on Delicious Rank Alternative Fuels Data Center: Flexible Fuel Vehicles on Digg Find More places to share Alternative Fuels Data Center: Flexible Fuel Vehicles on AddThis.com... More in this section... Ethanol Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Flexible Fuel Vehicles Photo of a flexible fuel vehicle.

307

Alternative Fuels Data Center: Alternative Fuel Use  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Use Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Use on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Use All state employees operating flexible fuel or diesel vehicles as part of the state fleet must use E85 or biodiesel blends whenever reasonably available. Additionally, the Nebraska Transportation Services Bureau and

308

Alternative Fuels Data Center: Alternative Fuels Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Fuels Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Tax Alternative fuels used to propel vehicles of any kind on public highways are taxed at a rate determined on a gasoline gallon equivalent basis. The tax rates are posted in the Pennsylvania Bulletin. (Reference Title 75

309

Motor fuel prices in Turkey  

Science Journals Connector (OSTI)

Abstract The world?s most expensive motor fuel (gasoline, diesel and LPG) is sold most likely in the Republic of Turkey. This paper investigates the key issues related to the motor fuel prices in Turkey. First of all, the paper analyses the main reason behind high prices, namely motor fuel taxes in Turkey. Then, it estimates the elasticity of motor fuel demand in Turkey using an econometric analysis. The findings indicate that motor fuel demand in Turkey is quite inelastic and, therefore, not responsive to price increases caused by an increase in either pre-tax prices or taxes. Therefore, fuel market in Turkey is open to opportunistic behavior by firms (through excessive profits) and the government (through excessive taxes). Besides, the paper focuses on the impact of high motor fuel prices on road transport associated activities, including the pattern of passenger transportation, motorization rate, fuel use, total kilometers traveled and CO2 emissions from road transportation. The impact of motor fuel prices on income distribution in Turkey and Turkish public opinion about high motor fuel prices are also among the subjects investigated in the course of the study.

Erkan Erdogdu

2014-01-01T23:59:59.000Z

310

Alternative Fuels Data Center: Transportation System Efficiency  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Transportation System Transportation System Efficiency to someone by E-mail Share Alternative Fuels Data Center: Transportation System Efficiency on Facebook Tweet about Alternative Fuels Data Center: Transportation System Efficiency on Twitter Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Google Bookmark Alternative Fuels Data Center: Transportation System Efficiency on Delicious Rank Alternative Fuels Data Center: Transportation System Efficiency on Digg Find More places to share Alternative Fuels Data Center: Transportation System Efficiency on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework

311

Fuel Cell Backup Power Technology Validation (Presentation)  

SciTech Connect

Presentation about fuel cell backup power technology validation activities at the U.S. Department of Energy's National Renewable Energy Laboratory.

Kurtz, J.; Sprik, S.; Ramsden, T.; Saur, G.

2012-10-01T23:59:59.000Z

312

Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities  

SciTech Connect

Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

2014-07-01T23:59:59.000Z

313

Advanced Fuels Campaign Execution Plan  

SciTech Connect

The purpose of the Advanced Fuels Campaign (AFC) Execution Plan is to communicate the structure and management of research, development, and demonstration (RD&D) activities within the Fuel Cycle Research and Development (FCRD) program. Included in this document is an overview of the FCRD program, a description of the difference between revolutionary and evolutionary approaches to nuclear fuel development, the meaning of science-based development of nuclear fuels, and the 'Grand Challenge' for the AFC that would, if achieved, provide a transformational technology to the nuclear industry in the form of a high performance, high reliability nuclear fuel system. The activities that will be conducted by the AFC to achieve success towards this grand challenge are described and the goals and milestones over the next 20 to 40 year period of research and development are established.

Kemal Pasamehmetoglu

2011-09-01T23:59:59.000Z

314

California Fuel Cell Partnership: Alternative Fuels Research  

Energy.gov (U.S. Department of Energy (DOE))

This presentation by Chris White of the California Fuel Cell Partnership provides information about alternative fuels research.

315

Fuel Processing Valri Lightner  

E-Print Network (OSTI)

, ORNL, NETL #12;Accomplishments · Demonstrated in the lab an advanced fuel flexible fuel processor

316

Projections of Full-Fuel-Cycle Energy and Emissions Metrics  

E-Print Network (OSTI)

energy and emissions intensity of unconventional production are at best a lower bound, and current projections of future

Coughlin, Katie

2013-01-01T23:59:59.000Z

317

High Specific Power, Direct Methanol Fuel Cell Stack  

NLE Websites -- All DOE Office Websites (Extended Search)

High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. Available for thumbnail of Feynman Center (505) 665-9090 Email High Specific Power, Direct Methanol Fuel Cell Stack The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold

318

advanced-fuels-synthesis-index | netl.doe.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations The Advanced Fuels Synthesis Key Technology is focused on...

319

Nuclear Fuel Cycle Integrated System Analysis  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cycle Integrated System Analysis Fuel Cycle Integrated System Analysis Abdellatif M. Yacout Argonne National Laboratory Nuclear Engineering Division The nuclear fuel cycle is a complex system with multiple components and activities that are combined to provide nuclear energy to a variety of end users. The end uses of nuclear energy are diverse and include electricity, process heat, water desalination, district heating, and possibly future hydrogen production for transportation and energy storage uses. Components of the nuclear fuel cycle include front end components such as uranium mining, conversion and enrichment, fuel fabrication, and the reactor component. Back end of the fuel cycle include used fuel coming out the reactor, used fuel temporary and permanent storage, and fuel reprocessing. Combined with those components there

320

Fuel Cell Technologies Office: Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office: Hydrogen Storage to Fuel Cell Technologies Office: Hydrogen Storage to someone by E-mail Share Fuel Cell Technologies Office: Hydrogen Storage on Facebook Tweet about Fuel Cell Technologies Office: Hydrogen Storage on Twitter Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Google Bookmark Fuel Cell Technologies Office: Hydrogen Storage on Delicious Rank Fuel Cell Technologies Office: Hydrogen Storage on Digg Find More places to share Fuel Cell Technologies Office: Hydrogen Storage on AddThis.com... Home Basics Current Technology DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts On-board hydrogen storage for transportation applications continues to be

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Clean Cities: Alabama Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alabama Clean Fuels Coalition Alabama Clean Fuels Coalition The Alabama Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Alabama Clean Fuels coalition Contact Information Mark Bentley 205-402-2755 mark@alabamacleanfuels.org Coalition Website Clean Cities Coordinator Mark Bentley Photo of Mark Bentley Mark Bentley has been the executive director of the Alabama Clean Fuels Coalition (ACFC) since August 2006. ACFC is a nonprofit, membership-based, organization that participates in the U. S. Department of Energy's Clean Cities program, which promotes the use of alternative fuels and alternative fuel vehicles throughout the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages

322

Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology (Fact Sheet)  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet on Validation of Hydrogen Fuel Cell Vehicle and Infrastructure Technology activities at NREL.

323

Development Plan for the Fuel Cycle Simulator  

SciTech Connect

The Fuel Cycle Simulator (FCS) project was initiated late in FY-10 as the activity to develop a next generation fuel cycle dynamic analysis tool for achieving the Systems Analysis Campaign 'Grand Challenge.' This challenge, as documented in the Campaign Implementation Plan, is to: 'Develop a fuel cycle simulator as part of a suite of tools to support decision-making, communication, and education, that synthesizes and visually explains the multiple attributes of potential fuel cycles.'

Brent Dixon

2011-09-01T23:59:59.000Z

324

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate All gasoline sold in the state must be blended with 10% ethanol (E10). Gasoline with an octane rating of 91 or above is exempt from this mandate,

325

Alternative Fuels Data Center: Renewable Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Promotion Recognizing that biofuels such as ethanol and biodiesel will be an important part of the state's energy economy and advanced research in

326

Alternative Fuels Data Center: Fuel Quality Standards  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Quality Standards Fuel Quality Standards to someone by E-mail Share Alternative Fuels Data Center: Fuel Quality Standards on Facebook Tweet about Alternative Fuels Data Center: Fuel Quality Standards on Twitter Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Google Bookmark Alternative Fuels Data Center: Fuel Quality Standards on Delicious Rank Alternative Fuels Data Center: Fuel Quality Standards on Digg Find More places to share Alternative Fuels Data Center: Fuel Quality Standards on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Fuel Quality Standards The South Dakota Department of Public Safety may promulgate rules establishing: Standards for the maximum volume percentages of ethanol and methanol

327

Alternative Fuels Data Center: Renewable Fuels Mandate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuels Renewable Fuels Mandate to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuels Mandate on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuels Mandate on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Google Bookmark Alternative Fuels Data Center: Renewable Fuels Mandate on Delicious Rank Alternative Fuels Data Center: Renewable Fuels Mandate on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuels Mandate on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuels Mandate One year after in-state production has reached 350 million gallons of cellulosic ethanol and sustained this volume for three months, all gasoline

328

Alternative Fuels Data Center: Alternative Fuels Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Promotion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion The state of Hawaii has signed a memorandum of understanding (MOU) with the U.S. Department of Energy to collaborate to produce 70% of the state's

329

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Alternative Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The excise tax imposed on compressed natural gas (CNG), liquefied natural gas (LNG), and liquefied petroleum gas (LPG or propane) used to operate a vehicle can be paid through an annual flat rate sticker tax based on the

330

Alternative Fuels Data Center: Renewable Fuel Promotion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Promotion to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Promotion on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Promotion on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Promotion on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Promotion on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Promotion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Promotion The Texas Bioenergy Policy Council and the Texas Bioenergy Research Committee were established to promote the goal of making biofuels a

331

Alternative Fuels Data Center: Renewable Fuel Standard  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Renewable Fuel Standard to someone by E-mail Share Alternative Fuels Data Center: Renewable Fuel Standard on Facebook Tweet about Alternative Fuels Data Center: Renewable Fuel Standard on Twitter Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Google Bookmark Alternative Fuels Data Center: Renewable Fuel Standard on Delicious Rank Alternative Fuels Data Center: Renewable Fuel Standard on Digg Find More places to share Alternative Fuels Data Center: Renewable Fuel Standard on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Renewable Fuel Standard Within six months following the point at which monthly production of denatured ethanol produced in Louisiana equals or exceeds a minimum annualized production volume of 50 million gallons, at least 2% of the

332

Alternative Fuels Data Center: Alternative Fuel Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Tax Fuel Tax to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Tax on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Tax on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Tax on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Tax on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Tax on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Tax The state road tax for vehicles that operate on propane (liquefied petroleum gas, or LPG) or natural gas is paid through the purchase of an annual flat fee sticker, and the amount is based on the vehicle's gross

333

Alternative Fuels Data Center: Propane Fueling Stations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Stations to someone by E-mail Stations to someone by E-mail Share Alternative Fuels Data Center: Propane Fueling Stations on Facebook Tweet about Alternative Fuels Data Center: Propane Fueling Stations on Twitter Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Google Bookmark Alternative Fuels Data Center: Propane Fueling Stations on Delicious Rank Alternative Fuels Data Center: Propane Fueling Stations on Digg Find More places to share Alternative Fuels Data Center: Propane Fueling Stations on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Locations Infrastructure Development Vehicles Laws & Incentives Propane Fueling Stations Photo of a liquefied petroleum gas fueling station. Thousands of liquefied petroleum gas (propane) fueling stations are

334

Alternative Fuels Data Center: Alternative Fuel Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Study Alternative Fuel Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Study As directed by the Nevada Legislature, the Legislative Commission (Commission) conducted an interim study in 2011 concerning the production and use of energy in the state. The study included information on the use

335

RECENT TRENDS IN EMERGING TRANSPORTATION FUELS AND ENERGY CONSUMPTION  

SciTech Connect

Abundance of energy can be improved both by developing new sources of fuel and by improving efficiency of energy utilization, although we really need to pursue both paths to improve energy accessibility in the future. Currently, 2.7 billion people or 38% of the world s population do not have access to modern cooking fuel and depend on wood or dung and 1.4 billion people or 20% do not have access to electricity. It is estimated that correcting these deficiencies will require an investment of $36 billion dollars annually through 2030. In growing economies, energy use and economic growth are strongly linked, but energy use generally grows at a lower rate due to increased access to modern fuels and adaptation of modern, more efficient technology. Reducing environmental impacts of increased energy consumption such as global warming or regional emissions will require improved technology, renewable fuels, and CO2 reuse or sequestration. The increase in energy utilization will probably result in increased transportation fuel diversity as fuels are shaped by availability of local resources, world trade, and governmental, environmental, and economic policies. The purpose of this paper is to outline some of the recently emerging trends, but not to suggest winners. This paper will focus on liquid transportation fuels, which provide the highest energy density and best match with existing vehicles and infrastructure. Data is taken from a variety of US, European, and other sources without an attempt to normalize or combine the various data sources. Liquid transportation fuels can be derived from conventional hydrocarbon resources (crude oil), unconventional hydrocarbon resources (oil sands or oil shale), and biological feedstocks through a variety of biochemical or thermo chemical processes, or by converting natural gas or coal to liquids.

Bunting, Bruce G [ORNL] [ORNL

2012-01-01T23:59:59.000Z

336

Fuels - Biodiesel  

NLE Websites -- All DOE Office Websites (Extended Search)

* Biodiesel * Biodiesel * Butanol * Ethanol * Hydrogen * Natural Gas * Fischer-Tropsch Batteries Cross-Cutting Assessments Engines GREET Hybrid Electric Vehicles Hydrogen & Fuel Cells Materials Modeling, Simulation & Software Plug-In Hybrid Electric Vehicles PSAT Smart Grid Student Competitions Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Clean Diesel Fuels Background Reducing our country's dependence on foreign oil and the rising costs of crude oil are primary reasons for a renewed interest in alternative fuels for the transportation sector. Stringent emissions regulations and public concern about mobile sources of air pollution provide additional incentives to develop fuels that generate fewer emissions, potentially reducing the need for sophisticated, expensive exhaust after-treatment devices.

337

Nuclear Fuels  

Science Journals Connector (OSTI)

The core of a nuclear reactor is composed of a controlled critical configuration of a fissile material, which in strict a sense is the fuel. This fissile material is contained in a matrix, normally a ceramic c...

Rudy J. M. Konings; Thierry Wiss…

2011-01-01T23:59:59.000Z

338

Fuel economizer  

SciTech Connect

A fuel economizer device for use with an internal combustion engine fitted with a carburetor is disclosed. The fuel economizer includes a plate member which is mounted between the carburetor and the intake portion of the intake manifold. The plate member further has at least one aperture formed therein. One tube is inserted through the at least one aperture in the plate member. The one tube extends longitudinally in the passage of the intake manifold from the intake portion toward the exit portion thereof. The one tube concentrates the mixture of fuel and air from the carburetor and conveys the mixture of fuel and air to a point adjacent but spaced away from the inlet port of the internal combustion engine.

Zwierzelewski, V.F.

1984-06-26T23:59:59.000Z

339

Ethanol-blended Fuels  

NLE Websites -- All DOE Office Websites (Extended Search)

Ethanol-Blended Ethanol-Blended Fuels A Study Guide and Overview of: * Ethanol's History in the U.S. and Worldwide * Ethanol Science and Technology * Engine Performance * Environmental Effects * Economics and Energy Security The Curriculum This curriculum on ethanol and its use as a fuel was developed by the Clean Fuels Development Coalition in cooperation with the Nebraska Ethanol Board. This material was developed in response to the need for instructional materials on ethanol and its effects on vehicle performance, the environment, and the economy. As a renewable alternative energy source made from grain and other biomass resources, ethanol study serves as an excellent learning opportunity for students to use in issue clarification and problem-solving activities. Ethanol illustrates that science and technology can provide us with new

340

Alternative Fuels Data Center: Alternative Fuel Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Definition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Definition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Definition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Definition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Definition Alternative fuel is defined as compressed natural gas, propane, ethanol, or any mixture containing 85% or more ethanol (E85) with gasoline or other

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November...

342

Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview: 2011 Fuel Cell Seminar Fuel Cell Technologies Overview: 2011 Fuel Cell Seminar Presentation by Sunita Satyapal at the Fuel Cell Seminar on November 1, 2011. Fuel Cell...

343

Hydrogen and Fuel Cell Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. * 50% of this resource could provide 340,000 kgday of hydrogen. Background: Biogas as an Early Source of Renewable Hydrogen * The majority of biogas resources are...

344

Fuel Processing Valri Lightner  

E-Print Network (OSTI)

of Hydrogen · Fuel Processors for PEM Fuel Cells Nuvera Fuel Cells, Inc. GE Catalytica ANL PNNL University-Board Fuel Processing Barriers $35/kW Fuel Processor $10/kW Fuel Cell Power Systems $45/kW by 2010 BARRIERS · Fuel processor start-up/ transient operation · Durability · Cost · Emissions and environmental issues

345

Anisotropic Porochemoelectroelastic Solution for Inclined Wellbores with Applications to Operations in Unconventional Shale Plays  

Science Journals Connector (OSTI)

In this work, the porochemoelectroelastic theory is applied to analyze instability problems of an inclined wellbore drilled in the laminated and charged saturated chemically active shale formations. Numerical ...

Minh H. Tran; Younane N. Abousleiman

2013-01-01T23:59:59.000Z

346

Fuel Cell Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Basics Basics Fuel Cell Basics August 14, 2013 - 2:09pm Addthis Photo of two hydrogen fuel cells. Fuel cells are an emerging technology that can provide heat and electricity for buildings and electrical power for vehicles and electronic devices. How Fuel Cells Work Fuel cells work like batteries, but they do not run down or need recharging. They produce electricity and heat as long as fuel is supplied. A fuel cell consists of two electrodes-a negative electrode (or anode) and a positive electrode (or cathode)-sandwiched around an electrolyte. A fuel, such as hydrogen, is fed to the anode, and air is fed to the cathode. Activated by a catalyst, hydrogen atoms separate into protons and electrons, which take different paths to the cathode. The electrons go through an external circuit, creating a flow of electricity. The protons

347

Vehicle Technologies Office: Fuels and Lubricants Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuels and Lubricants Research Fuels and Lubricants Research As transportation accounts for two-thirds of the nearly $1 billion the U.S. spends daily on foreign oil, it is vital to increase our use of alternative fuels. Increasing the fuels available to drivers reduces price volatility, supports domestic industries, and increases environmental sustainability. The DOE's Alternative Fuels Data Center provides basic information on alternative fuels, including Biodiesel, Ethanol, Natural Gas, Propane, and Hydrogen. The Vehicle Technologies Office (VTO) supports research to improve how vehicles use these many of these fuels in the future, as well as activities to increase their availability today. It also researches how new petroleum-based fuels affect advanced combustion systems and how lubricants can improve the efficiency of vehicles currently on the road.

348

Reforming of fuel inside fuel cell generator  

DOE Patents (OSTI)

Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

Grimble, Ralph E. (Finleyville, PA)

1988-01-01T23:59:59.000Z

349

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

motor fuel containing at least 10% alcohol) or alternative fuels whenever feasible and cost effective. DOA must place a list of gasohol and alternative fueling station locations...

350

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

special fuels. Special fuels include compressed and liquefied natural gas, liquefied petroleum gas (propane), hydrogen, and fuel suitable for use in diesel engines. In addition,...

351

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

alternative fuel vehicles (AFVs) capable of operating on natural gas or liquefied petroleum gas (propane), or bi-fuel vehicles capable of operating on conventional fuel or...

352

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Use and Fuel-Efficient Vehicle Requirements State-owned vehicle fleets must implement petroleum displacement plans to increase the use of alternative fuels and fuel-efficient...

353

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Special Fuel Definitions The definition of alternative fuel includes liquefied petroleum gas (propane). Special fuel is defined as all combustible gases and liquids that are...

354

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Renewable Fuel Labeling Requirement Biodiesel, biobutanol, and ethanol blend dispensers must be affixed with decals identifying the type of fuel blend. If fuel blends containing...

355

Saving Fuel, Reducing Emissions  

E-Print Network (OSTI)

would in turn lower PHEV fuel costs and make them morestretches from fossil-fuel- powered conventional vehiclesbraking, as do Saving Fuel, Reducing Emissions Making Plug-

Kammen, Daniel M.; Arons, Samuel M.; Lemoine, Derek M.; Hummel, Holmes

2009-01-01T23:59:59.000Z

356

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and alternative fuel vehicles; promotes the development, sale, distribution, and consumption of alternative fuels; promotes the development and use of alternative fuel vehicles...

357

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

providers to install biofuel fueling facilities. Fueling facilities include storage tanks and fuel pumps dedicated to dispensing E85 and biodiesel blends of 20% (B20). TDOT...

358

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

interest in the qualified property. Renewable fuel is defined as a fuel produced from biomass that is used to replace or reduce conventional fuel use. (Reference Florida Statutes...

359

Alternative Fuel Vehicle Resources  

Energy.gov (U.S. Department of Energy (DOE))

Alternative fuel vehicles use fuel types other than petroleum and include such fuels as electricity, ethanol, biodiesel, natural gas, hydrogen, and propane. Compared to petroleum, these...

360

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Grants and Rebates The Arkansas Alternative Fuels Development Program (Program) provides grants to alternative fuel producers, feedstock processors, and...

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Exclusivity Contract Regulation Motor fuel franchise dealers may obtain alternative fuels from a supplier other than a franchise distributor. Any franchise provision that...

362

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Production and Retail Requirements All hydrogen fuel produced and sold in Michigan must meet state fuel quality requirements. Any retailer offering hydrogen fuel for sale...

363

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

that operate using at least 90% alternative fuel. Eligible alternative fuels include electricity, propane, natural gas, or hydrogen fuel. Medium-duty hybrid electric vehicles also...

364

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Promotion and Information The Center for Alternative Fuels (Center) promotes alternative fuels as viable energy sources in the state. The Center must assess the...

365

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Definition The following fuels are defined as alternative fuels by the Energy Policy Act (EPAct) of 1992: pure methanol, ethanol, and other alcohols; blends of 85%...

366

Low Carbon Fuel Standards  

E-Print Network (OSTI)

in 1990. These many alternative-fuel initiatives failed tolow-cost, low-carbon alternative fuels would thrive. Theto introduce low-carbon alternative fuels. Former Federal

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

367

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Labeling Requirement Retailers must display ratings on fueling pumps that are consistent with the percentage by volume of the alternative fuel being dispensed....

368

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

is defined as a renewable transportation fuel, transportation fuel additive, heating oil, or jet fuel that meets the definition of either biodiesel or non-ester renewable...

369

A self-regulated passive fuel-feed system for passive direct methanol fuel cells.  

E-Print Network (OSTI)

??Unlike active direct methanol fuel cells (DMFCs) that require liquid pumps and gas compressors to supply reactants, the design of passive DMFCs eliminates these ancillary… (more)

Chan, Yeuk Him

2007-01-01T23:59:59.000Z

370

Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle Acquisition and Alternative Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Acquisition and Alternative Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative

371

Comparative analysis of selected fuel cell vehicles  

SciTech Connect

Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

NONE

1993-05-07T23:59:59.000Z

372

Fuel Cells & Alternative Fuels | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cells & Alternative Fuels Fuel Cells & Alternative Fuels Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and...

373

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Fuel Blend Tax Exemption The biodiesel or ethanol portion of blended fuel containing taxable diesel is exempt from the diesel fuel tax. The biodiesel or ethanol fuel blend...

374

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuels include liquid non-petroleum based fuel that can be placed in motor vehicle fuel tanks and used to operate on-road vehicles, including all forms of fuel commonly or...

375

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuel blends of at least 20% biodiesel fuel or that mix fuel from separate storage tanks and allow the user to select the percentage of renewable fuel. The maximum credit...

376

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

License Alternative fuel providers, bulk users, and retailers, or any person who fuels an alternative fuel vehicle from a private source that does not pay the alternative fuels tax...

377

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition,  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition, Fuel Use, and Emissions Reductions Requirements on Digg

378

Fuel reforming for fuel cell application.  

E-Print Network (OSTI)

??Fossil fuels, such as natural gas, petroleum, and coal are currently the primary source of energy that drives the world economy. However, fossil fuel is… (more)

Hung, Tak Cheong

2006-01-01T23:59:59.000Z

379

Activities  

Energy.gov (U.S. Department of Energy (DOE))

Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

380

Alternative Fuels Data Center: Publications  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities 2012 Annual Metrics Report Johnson, C. 12/5/2013 Reports Clean Cities 2012 Annual Metrics Report Johnson, C. 12/5/2013 Reports National Renewable Energy Laboratory, Golden, Colorado The U.S. Department of Energy's (DOE) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use in transportation. A national network of nearly 100 Clean Cities coalitions brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction measures, fuel economy improvements, and new transportation technologies, as they emerge.Each year DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online database that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterizes the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels, deployment of alternative fuel vehicles (AFVs) and hybrid electric vehicles (HEVs), idle-reduction initiatives, fuel economy activities, and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use reduction impacts, which are summarized in this report.

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Update of the Used Fuel Disposition Campaign Implementation Plan |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Update of the Used Fuel Disposition Campaign Implementation Plan Update of the Used Fuel Disposition Campaign Implementation Plan Update of the Used Fuel Disposition Campaign Implementation Plan The Used Fuel Disposition Campaign will identify alternatives and conduct scientific research and technology development to enable storage, transportation, and disposal of used nuclear fuel and wastes generated by existing and future nuclear fuel cycles. This Campaign Implementation Plan provides summary level detail describing how the Used Fuel Disposition Campaign supports achievement of the overarching Fuel Cycle Research and Development Program mission and objectives. Activities will be sufficiently flexible to accommodate any of the potential fuel cycle options for used fuel management. Update of the Used Fuel Disposition Campaign Implementation Plan

382

Advanced Fuels Campaign FY 2010 Accomplishments Report  

SciTech Connect

The Fuel Cycle Research and Development (FCRD) Advanced Fuels Campaign (AFC) Accomplishment Report documents the high-level research and development results achieved in fiscal year 2010. The AFC program has been given responsibility to develop advanced fuel technologies for the Department of Energy (DOE) using a science-based approach focusing on developing a microstructural understanding of nuclear fuels and materials. The science-based approach combines theory, experiments, and multi-scale modeling and simulation aimed at a fundamental understanding of the fuel fabrication processes and fuel and clad performance under irradiation. The scope of the AFC includes evaluation and development of multiple fuel forms to support the three fuel cycle options described in the Sustainable Fuel Cycle Implementation Plan4: Once-Through Cycle, Modified-Open Cycle, and Continuous Recycle. The word “fuel” is used generically to include fuels, targets, and their associated cladding materials. This document includes a brief overview of the management and integration activities; but is primarily focused on the technical accomplishments for FY-10. Each technical section provides a high level overview of the activity, results, technical points of contact, and applicable references.

Lori Braase

2010-12-01T23:59:59.000Z

383

Pyrochemical Treatment of Spent Nuclear Fuel  

SciTech Connect

Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energy’s Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

2005-10-01T23:59:59.000Z

384

Summary report : universal fuel processor.  

SciTech Connect

The United States produces only about 1/3 of the more than 20 million barrels of petroleum that it consumes daily. Oil imports into the country are roughly equivalent to the amount consumed in the transportation sector. Hence the nation in general, and the transportation sector in particular, is vulnerable to supply disruptions and price shocks. The situation is anticipated to worsen as the competition for limited global supplies increases and oil-rich nations become increasingly willing to manipulate the markets for this resource as a means to achieve political ends. The goal of this project was the development and improvement of technologies and the knowledge base necessary to produce and qualify a universal fuel from diverse feedstocks readily available in North America and elsewhere (e.g. petroleum, natural gas, coal, biomass) as a prudent and positive step towards mitigating this vulnerability. Three major focus areas, feedstock transformation, fuel formulation, and fuel characterization, were identified and each was addressed. The specific activities summarized herein were identified in consultation with industry to set the stage for collaboration. Two activities were undertaken in the area of feedstock transformation. The first activity focused on understanding the chemistry and operation of autothermal reforming, with an emphasis on understanding, and therefore preventing, soot formation. The second activity was focused on improving the economics of oxygen production, particularly for smaller operations, by integrating membrane separations with pressure swing adsorption. In the fuel formulation area, the chemistry of converting small molecules readily produced from syngas directly to fuels was examined. Consistent with the advice from industry, this activity avoided working on improving known approaches, giving it an exploratory flavor. Finally, the fuel characterization task focused on providing a direct and quantifiable comparison of diesel fuel and JP-8.

Coker, Eric Nicholas; Rice, Steven F. (Sandia National Laboratories, Livermore, CA); Kemp, Richard Alan; Stewart, Constantine A.; Miller, James Edward; Cornelius, Christopher James; Staiger, Chad Lynn; Pickett, Lyle M. (Sandia National Laboratories, Livermore, CA)

2008-01-01T23:59:59.000Z

385

Unconventional Chemistry for Unconventional Natural Gas  

Science Journals Connector (OSTI)

...easy to convert methane into heavier molecules...composed largely of methane) is mostly burned...process efficiency and economics will come when new...ways to harness methane, which is typically...is performed with steam. In “steam crackers...equilibrium in “steam reforming,” where synthesis...

Eric McFarland

2012-10-19T23:59:59.000Z

386

Upcoming Webinar March 11: National Fuel Cell Technology Evaluation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

academia, and government organizations as well as a new activity to report on current fuel cell price. This webinar will be of interest to hydrogen and fuel cell manufacturers,...

387

Temperature effect on the microstructural development of Al–Ni layered binary couples produced by an unconventional method  

Science Journals Connector (OSTI)

Abstract In this work, the authors have used an unconventional experimental route that consists of (i) deposition of a nickel coating onto an aluminium substrate and (ii) the subsequent heat treatment of created couple in order to produce intermetallic-layered structures, hypereutectic or bulk aluminide intermetallic alloys. The procedure was conducted by controlling chemical concentrations in the Al-rich corner of Al–Ni binary system. The couple was prepared by high velocity oxyfuel spraying of 99.0 wt.% Ni powder onto the surface of 99.999 wt.% Al sheet. The specimens for heat treatment were manufactured immediately after the spraying. The heat treatment was carried out in a differential thermal analysis apparatus by using the temperature range of 600–1200 °C, thus considering the solid state, transient liquid as well as liquid phase of aluminium, with a constant heating/cooling rate of 5 °C/min in an argon atmosphere. Microstructural development of produced alloys was studied by conventional metallography and scanning electron microscopy. Formed intermetallic layers and compounds were evaluated by using energy dispersive microanalysis and image analysis techniques. The development of a novel ultra-fine eutectic alloy is reported.

L. ?elko; S. Díaz de la Torre; L. Klakurková; J. Kaiser; B. Smetana; K. Sláme?ka; M. Žaludová; J. Švejcar

2014-01-01T23:59:59.000Z

388

Geckoprinting: assembly of microelectronic devices on unconventional surfaces by transfer printing with isolated gecko setal arrays  

Science Journals Connector (OSTI)

...H Nakajima, H Maeda, T Fukushima, T Aida, K Hata, and T Someya. 2009 Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nat. Mater. 8, 494-499. ( doi:10.1038/nmat2459 ) 3 Park...

2014-01-01T23:59:59.000Z

389

Fuel Cell Technologies Office: Transport Modeling Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Transport Modeling Transport Modeling Working Group to someone by E-mail Share Fuel Cell Technologies Office: Transport Modeling Working Group on Facebook Tweet about Fuel Cell Technologies Office: Transport Modeling Working Group on Twitter Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Google Bookmark Fuel Cell Technologies Office: Transport Modeling Working Group on Delicious Rank Fuel Cell Technologies Office: Transport Modeling Working Group on Digg Find More places to share Fuel Cell Technologies Office: Transport Modeling Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

390

PWR Fuel Shipping Limits & RNP Core Design  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Fuel Transportation Experience Steven Edwards, Progress Energy September 21, 2005 2 Discussion Topics Progress Energy Transportation History Success Factors Shipment Security Dedicated Trains Emergency Response Public Communication/Participation Summary 3 Brunswick Harris Crystal River Robinson Progress Energy Nuclear Plants 4 Spent Fuel Management Strategy Maintain operating reserve at all nuclear units Spent fuel shipping program to reduce inventories at Brunswick and Robinson Maximize use of Harris spent fuel pools 5 Transportation Experience 191 shipments 1,000 MTU transported 4,541 spent fuel assemblies transported 6 Transportation Experience First Shipment - 1977 Active spent fuel transportation program since 1989 12 to 15 shipments per year

391

Fuel Cell Technologies Office: Water Electrolysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Water Electrolysis Water Electrolysis Working Group to someone by E-mail Share Fuel Cell Technologies Office: Water Electrolysis Working Group on Facebook Tweet about Fuel Cell Technologies Office: Water Electrolysis Working Group on Twitter Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Google Bookmark Fuel Cell Technologies Office: Water Electrolysis Working Group on Delicious Rank Fuel Cell Technologies Office: Water Electrolysis Working Group on Digg Find More places to share Fuel Cell Technologies Office: Water Electrolysis Working Group on AddThis.com... Key Activities Plans, Implementation, & Results Accomplishments Organization Chart & Contacts Quick Links Hydrogen Production Hydrogen Delivery Hydrogen Storage Fuel Cells Technology Validation

392

Fuel Cell & Hydrogen Technologies | Clean Energy | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Fuel Cell Technologies SHARE Fuel Cell and Hydrogen Technologies Oak Ridge National Laboratory pursues activities that address the barriers facing the development and deployment of hydrogen and fuel cells, with the ultimate goals of decreasing our dependence on oil, reducing carbon emissions, and enabling clean, reliable power generation. Through collaborative research and development, ORNL is developing materials and processes for fuel cell systems and for the practical generation, storage, and delivery of hydrogen as an energy carrier. The lab's Fuel Cell Technologies Program conducts its research and development activities in seven interrelated areas: Hydrogen Production and Delivery - Production of hydrogen from domestic resources and minimizing environmental impacts and distribution of

393

MATHEMATICAL MODELING OF CHANNEL POROUS LAYER INTERFACES IN PEM FUEL CELLS  

E-Print Network (OSTI)

two types of PEM fuel cells: H2 PEM fuel cells (H2PEMFC) driven by gaseous hydrogen, and directMATHEMATICAL MODELING OF CHANNEL ­ POROUS LAYER INTERFACES IN PEM FUEL CELLS M. EHRHARDT, J, Germany ABSTRACT In proton exchange membrane (PEM) fuel cells, the transport of the fuel to the active

Ehrhardt, Matthias

394

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimize the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimize gaseous emissions, such as NOx. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R.

1998-07-01T23:59:59.000Z

395

Coal based fuels, fuel systems and alternative fuels  

SciTech Connect

The introduction of coal based fuel systems such as coal/air and coal water mixtures was an attempt to minimise the use of heavy fuel oils in large scale power generation processes. This need was based on forecasts of fuel reserves and future pricing of fuel oils, therefore economic considerations predominated over environmental benefits, if any, which could result from widespread use of these fuels. Coal continued as the major fuel used in the power generation industry and combustion systems were developed to minimise gaseous emissions, such as NO{sub x}. Increasing availability of natural gas led to consideration of its use in combination with coal in fuel systems involving combined cycle or topping cycle operations. Dual fuel coal natural gas operations also offered the possibility of improved performance in comparison to 100% coal based fuel systems. Economic considerations have more recently looked at emulsification of heavy residual liquid fuels for consumption in power generation boiler and Orimulsion has emerged as a prime example of this alternative fuel technology. The next sections of the paper will discuss some aspects of the burner technology related to the application of these various coal based fuels, fuel systems and alternative fuels in the power generation industry.

Allen, J.W.; Beal, P.R. [ABB Combustion Services Limited, Derby (United Kingdom)

1998-04-01T23:59:59.000Z

396

Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations  

SciTech Connect

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi,Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-01-01T23:59:59.000Z

397

Recent Developments on the Production of Transportation Fuels via Catalytic Conversion of Microalgae: Experiments and Simulations  

SciTech Connect

Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize “food versus fuel” concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

Shi, Fan; Wang, Ping; Duan, Yuhua; Link, Dirk; Morreale, Bryan

2012-08-02T23:59:59.000Z

398

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Fuel Properties Search Fuel Properties Comparison Create a custom chart comparing fuel properties and characteristics for multiple fuels. Select the fuel and properties of interest. Select Fuels Clear all All Fuels Gasoline Diesel (No. 2) Biodiesel Compressed Natural Gas (CNG) Electricity Ethanol Hydrogen Liquefied Natural Gas (LNG) Propane (LPG)

399

Fuel cell generating plant  

SciTech Connect

This paper discusses a fuel cell generating plant. It comprises a compressed fuel supply; a fuel cell system including fuel conditioning apparatus and fuel cells; a main fuel conduit for conveying fuel from the fuel supply to the fuel cell system; a turbo compressor having a turbine receiving exhaust products from the fuel cell system and a compressor for compressing air; a main air conduit for conveying air from the compressor to the fuel cell system; an auxiliary burner having a primary burner and a pilot; an auxiliary air conduit for conveying air from the compressed fuel supply to the auxiliary burner; an auxiliary exhaust conduit for conveying exhaust products from the auxiliary burner to the turbine; a check valve located between the fuel supply and the pilot; and a gas accumulator in the auxiliary fuel conduit located between the check valve and the pilot.

Sanderson, R.A.

1990-11-27T23:59:59.000Z

400

Spent Fuel Background Report Volume I  

SciTech Connect

This report is an overview of current spent nuclear fuel management in the DOE complex. Sources of information include published literature, internal DOE documents, interviews with site personnel, and information provided by individual sites. Much of the specific information on facilities and fuels was provided by the DOE sites in response to the questionnaire for data for spent fuels and facilities data bases. This information is as accurate as is currently available, but is subject to revision pending results of further data calls. Spent fuel is broadly classified into three categories: (a) production fuels, (b) special fuels, and (c) naval fuels. Production fuels, comprising about 80% of the total inventory, are those used at Hanford and Savannah River to produce nuclear materials for defense. Special fuels are those used in a wide variety of research, development, and testing activities. Special fuels include fuel from DOE and commercial reactors used in research activities at DOE sites. Naval fuels are those developed and used for nuclear-powered naval vessels and for related research and development. Given the recent DOE decision to curtail reprocessing, the topic of main concern in the management of spent fuel is its storage. Of the DOE sites that have spent nuclear fuel, the vast majority is located at three sites-Hanford, INEL, and Savannah River. Other sites with spent fuel include Oak Ridge, West Valley, Brookhaven, Argonne, Los Alamos, and Sandia. B&W NESI Lynchburg Technology Center and General Atomics are commercial facilities with DOE fuel. DOE may also receive fuel from foreign research reactors, university reactors, and other commercial and government research reactors. Most DOE spent fuel is stored in water-filled pools at the reactor facilities. Currently an engineering study is being performed to determine the feasibility of using dry storage for DOE-owned spent fuel currently stored at various facilities. Delays in opening the deep geologic repository and the decision to phase out reprocessing of production fuels are extending the need for interim storage. The report describes the basic storage conditions and the general SNF inventory at individual DOE facilities.

Abbott, D.

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

LMFBR fuel component costs  

SciTech Connect

A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs.

Epperson, E.M.; Borisch, R.R.; Rice, L.H.

1981-10-29T23:59:59.000Z

402

Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversions to someone by E-mail Share Alternative Fuels Data Center: Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Flexible Fuel Vehicle...

403

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Vehicle Certification Test Fuel and Ethanol Flex Fuel Quality Breakout Session 2: Frontiers and Horizons Session 2-B:...

404

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructu...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology Showcase Texas Hydrogen Highway - Fuel Cell Hybrid Bus and Fueling Infrastructure Technology...

405

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Light Duty Fuel Cell Electric Vehicle Hydrogen Fueling Protocol Download the webinar slides from the U.S. Department...

406

Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Hydrogen and Fuel Cell Technologies Update: 2010 Fuel Cell Seminar and Exposition Presentation by...

407

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle Technologies Program (VTP) (Fact Sheet) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice, Vehicle...

408

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's...

409

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

410

Fuel electrode containing pre-sintered nickel/zirconia for a solid oxide fuel cell  

DOE Patents (OSTI)

A fuel cell structure (2) is provided, having a pre-sintered nickel-zirconia fuel electrode (6) and an air electrode (4), with a ceramic electrolyte (5) disposed between the electrodes, where the pre-sintered fuel electrode (6) contains particles selected from the group consisting of nickel oxide, cobalt and cerium dioxide particles and mixtures thereof, and titanium dioxide particles, within a matrix of yttria-stabilized zirconia and spaced-apart filamentary nickel strings having a chain structure, and where the fuel electrode can be sintered to provide an active solid oxide fuel cell.

Ruka, Roswell J. (Pittsburgh, PA); Vora, Shailesh D. (Monroeville, PA)

2001-01-01T23:59:59.000Z

411

Hydrogen & Fuel Cells - Hydrogen - Hydrogen Quality  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Quality Issues for Fuel Cell Vehicles Hydrogen Quality Issues for Fuel Cell Vehicles Introduction Developing and implementing fuel quality specifications for hydrogen are prerequisites to the widespread deployment of hydrogen-fueled fuel cell vehicles. Several organizations are addressing this fuel quality issue, including the International Standards Organization (ISO), the Society of Automotive Engineers (SAE), the California Fuel Cell Partnership (CaFCP), and the New Energy and Industrial Technology Development Organization (NEDO)/Japan Automobile Research Institute (JARI). All of their activities, however, have focused on the deleterious effects of specific contaminants on the automotive fuel cell or on-board hydrogen storage systems. While it is possible for the energy industry to provide extremely pure hydrogen, such hydrogen could entail excessive costs. The objective of our task is to develop a process whereby the hydrogen quality requirements may be determined based on life-cycle costs of the complete hydrogen fuel cell vehicle "system." To accomplish this objective, the influence of different contaminants and their concentrations in fuel hydrogen on the life-cycle costs of hydrogen production, purification, use in fuel cells, and hydrogen analysis and quality verification are being assessed.

412

Improved Direct Methanol Fuel Cell Stack  

DOE Patents (OSTI)

A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

Wilson, Mahlon S. (Los Alamos, NM); Ramsey, John C. (Los Alamos, NM)

2005-03-08T23:59:59.000Z

413

High specific power, direct methanol fuel cell stack  

DOE Patents (OSTI)

The present invention is a fuel cell stack including at least one direct methanol fuel cell. A cathode manifold is used to convey ambient air to each fuel cell, and an anode manifold is used to convey liquid methanol fuel to each fuel cell. Tie-bolt penetrations and tie-bolts are spaced evenly around the perimeter to hold the fuel cell stack together. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet manifold with an integral flow restrictor to the outlet manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold. Located between the two plates is the fuel cell active region.

Ramsey, John C. (Los Alamos, NM); Wilson, Mahlon S. (Los Alamos, NM)

2007-05-08T23:59:59.000Z

414

Chemical Kinetic Modeling of Fuels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

petroleum based fuels * Non-petroleum based fuels: - Biodiesel and new generation biofuels - Fischer-Tropsch (F-T) fuels - Oil sand derived fuels Reduce mechanisms for...

415

Fuel Cell Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Links Fuel Cell Links The links below are provided as additional resources for fuel-cell-related information. Most of the linked sites are not part of, nor affiliated with, fueleconomy.gov. We do not endorse or vouch for the accuracy of the information found on such sites. Fuel Cell Vehicles and Manufacturers Chevrolet General Motors press release about the Chevrolet Fuel Cell Equinox Ford Ford overview of their hydrogen fuel cell vehicles Honda FCX Clarity official site Hyundai Hyundai press release announcing the upcoming Tucson Fuel Cell Mercedes-Benz Ener-G-Force Fuel-cell-powered concept SUV Nissan Nissan TeRRA concept SUV Toyota Overview of Toyota fuel cell technology Hydrogen- and Fuel-Cell-Related Information and Tools Fuel Cell Vehicles Brief overview of fuel cell vehicles provided by DOE's Alternative Fuels Data Center (AFDC)

416

Fuel Guide Economy  

NLE Websites -- All DOE Office Websites (Extended Search)

1 1 MODEL YEAR 2000 FUEL ECONOMY LEADERS IN POPULAR VEHICLE CLASSES Listed below are the vehicles with the highest fuel economy for the most popular classes, including both automatic and manual transmissions and gasoline and diesel vehicles. Please be aware that many of these vehicles come in a range of engine sizes and trim lines, resulting in different fuel economy values. Check the fuel economy guide or the fuel economy sticker on new vehicles to find the values for a particular version of a vehicle. CONTENTS MODEL YEAR 2000 FUEL ECONOMY LEADERS ................. 1 HOW TO USE THIS GUIDE ..................................................... 2 FUEL ECONOMY AND YOUR ANNUAL FUEL COSTS .......... 3 WHY FUEL ECONOMY IS IMPORTANT .................................

417

Chapter 3 - Fuels for Fuel Cells  

Science Journals Connector (OSTI)

Publisher Summary This chapter deals with various types of liquid fuels and the relevant chemical and physical properties of these fuels as a means of comparison to the fuels of the future. It gives an overview of the manufacture and properties of the common fuels as well as a description of various biofuels. A fuel mixture usually contains a wide range of organic compounds (usually hydrocarbons). The specific mixture of hydrocarbons gives a fuel its characteristic properties, such as boiling point, melting point, density, viscosity, and a host of other properties. Depending on the application (stationary, central power, remote, auxiliary, transportation, military, etc.), there are a wide range of conventional fuels, such as natural gas, liquefied petroleum gas, light distillates, methanol, ethanol, dimethyl ether, naphtha, gasoline, kerosene, jet fuels, diesel, and biodiesel, that could be used in reforming processes to produce hydrogen (or hydrogen-rich synthesis gas) to power fuel cells. Fossils fuels include gaseous fuels, gasoline, kerosene, diesel fuel, and jet fuels. Gaseous fuels include natural gas and liquefied petroleum gas. Types of gasoline include automotive gasoline, aviation gasoline, and gasohol. Some additives added into gasoline are antioxidants, corrosion inhibitors, demulsifiers, anti-icing, dyes and markers, drag reducers, and oxygenates.

James G. Speight

2011-01-01T23:59:59.000Z

418

Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Grants

419

Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Replacement Grants to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Replacement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Replacement Grants

420

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Conversion to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Conversion on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Conversion

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

422

Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Labeling Requirement to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Labeling Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle Labeling Requirement

423

Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biofuel Fueling Biofuel Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Biofuel Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Biofuel Fueling Infrastructure Tax Credit

424

Alternative Fuels Data Center: Alternative Fuels Promotion and Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Fuels Promotion and Information to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Promotion and Information on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Promotion and Information on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Promotion and Information

425

Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Ethanol Fuel Blend Dispensing Regulations to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Google Bookmark Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Delicious Rank Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fuel Blend Dispensing Regulations on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fuel Blend Dispensing Regulations

426

Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Fuels Taxation Study Commission to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Taxation Study Commission on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Taxation Study Commission

427

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fueling Alternative Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

428

Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Conversion Definitions to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel and Conversion Definitions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel and Conversion Definitions

429

Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Flexible Fuel Ethanol Flexible Fuel Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Ethanol Flexible Fuel Vehicle Conversions on AddThis.com... Ethanol Flexible Fuel Vehicle Conversions Updated July 29, 2011 Rising gasoline prices and concerns about climate change have greatly

430

Alternative Fuels Data Center: Alternative Fuel Production Subsidy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Production Subsidy Prohibition to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Production Subsidy Prohibition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Production Subsidy Prohibition

431

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

432

Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Infrastructure Tax Credit

433

Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fueling Ethanol Fueling Infrastructure Grants to someone by E-mail Share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Facebook Tweet about Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Twitter Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Google Bookmark Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Delicious Rank Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on Digg Find More places to share Alternative Fuels Data Center: Ethanol Fueling Infrastructure Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Ethanol Fueling Infrastructure Grants The Minnesota Corn Research & Promotion Council and the Minnesota

434

Alternative Fuels Data Center: Alternative Fuels Feasibility Study  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuels Alternative Fuels Feasibility Study to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Google Bookmark Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Delicious Rank Alternative Fuels Data Center: Alternative Fuels Feasibility Study on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuels Feasibility Study on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuels Feasibility Study The North Carolina State Energy Office, Department of Administration,

435

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Fuel Vehicle (AFV) Registration to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Registration on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fuel Vehicle (AFV) Registration

436

Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Fueling Infrastructure Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Google Bookmark Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Delicious Rank Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Alternative Fueling Infrastructure Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Alternative Fueling Infrastructure Tax Credit

437

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

Gas Reductions under Low Carbon Fuel Standards? Americanto Implement the Low Carbon Fuel Standard, Volume I Sta?Paper Series Multi-objective fuel policies: Renewable fuel

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

438

Multi-objective fuel policies: Renewable fuel standards versus Fuel greenhouse gas intensity standards  

E-Print Network (OSTI)

to policy makers such as fuel price, GHG emission (bothdimensions, namely, fuel price, GHG emissions and marketa FGIS results in higher fuel price, lower fuel consumption,

Rajagopal, Deepak

2010-01-01T23:59:59.000Z

439

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) and Alternative Fuel Rebates on AddThis.com...

440

Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle (AFV) Acquisition and Fuel Use Requirements on AddThis.com...

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

for sale fuel labeled as pure biodiesel unless the fuel contains no other type of petroleum product, is registered as biodiesel fuel with the federal government, and meets all...

442

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Fuel Blend Tax Rate The tax rate on fuel containing ethanol is 0.06 per gallon less than the tax rate on other motor fuels in certain geographic areas. This reduced rate...

443

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

E85 Definition E85 motor fuel is defined as an alternative fuel that is a blend of ethanol and hydrocarbon, of which the ethanol portion is 75-85% denatured fuel ethanol by volume...

444

Low Carbon Fuel Standards  

E-Print Network (OSTI)

S O N I A YE H Low Carbon Fuel Standards The most direct andalternative transportation fuels is to spur innovation withstandard for upstream fuel producers. hen it comes to energy

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

445

Fuel Processing [and Discussion  

Science Journals Connector (OSTI)

28 June 1990 research-article Fuel Processing [and Discussion] R. H. Allardice R. S...efficiently, reliably and economically through the reactor and fuel cycle facilities. Thus the fuel cycle is an integral and essential part of the system...

1990-01-01T23:59:59.000Z

446

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Excise Tax Compressed natural gas (CNG) motor fuel is subject to the state fuel excise tax at the rate of 0.30 per 120 cubic feet, measured at 14.73 pounds per...

447

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Reduced Compressed Natural Gas (CNG) Fueling Infrastructure Lease - AGL Atlanta Gas Light (AGL) offers a reduced cost lease on the BRC FuelMaker Phill CNG vehicle home fueling...

448

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deregulation of Compressed Natural Gas (CNG) as a Motor Fuel The sale of CNG by a fueling station for use as fuel to operate a motor vehicle is deregulated; however, separate...

449

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

the membrane for a PEM fuel cell would cost $5/ft (1990$) inmass-produced PEM fuel cell could cost $10/kW or less. Totalparameter for PEM fuel cells: thinner membranes cost less

Delucchi, Mark

1992-01-01T23:59:59.000Z

450

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel Blender Tax Credit A licensed fuel supplier who blends biodiesel or green diesel with diesel fuel may claim an income tax credit of 0.05 per gallon for fuel containing...

451

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

$ b materials cost, % a Fuel cell stack cost only. Includesof the cost of fuel-cell stacks, 1990$° Cost item GE Swan cAnnual maintenance cost of fuel cell stack and auxiliaries (

Delucchi, Mark

1992-01-01T23:59:59.000Z

452

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

0.33 times the rate for diesel For other alternative fuels, the rate is based on the energy content of the fuels as compared to diesel fuel, using a lower heating value of...

453

Hydrogen Fuel Cell Vehicles  

E-Print Network (OSTI)

Hydrogen Fuel Cell Vehicles UCD-ITS-RR-92-14 September byet al. , 1988,1989 HYDROGEN FUEL-CELL VEHICLES: TECHNICALIn the FCEV, the hydrogen fuel cell could supply the "net"

Delucchi, Mark

1992-01-01T23:59:59.000Z

454

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tools Tools Printable Version Share this resource Send a link to Alternative Fuels Data Center to someone by E-mail Share Alternative Fuels Data Center on Facebook Tweet about Alternative Fuels Data Center on Twitter Bookmark Alternative Fuels Data Center on Google Bookmark Alternative Fuels Data Center on Delicious Rank Alternative Fuels Data Center on Digg Find More places to share Alternative Fuels Data Center on AddThis.com... Data Included in the Alternative Fuel Stations Download The following data fields are provided in the downloadable files for alternative fuel stations. Field Value Description fuel_type_code Type: string The type of alternative fuel the station provides. Fuel types are given as code values as described below: Value Description BD Biodiesel (B20 and above)

455

ADVANCED FUELS CAMPAIGN 2013 ACCOMPLISHMENTS  

SciTech Connect

The mission of the Advanced Fuels Campaign (AFC) is to perform Research, Development, and Demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This includes development of a state-of-the art Research and Development (R&D) infrastructure to support the use of “goal-oriented science-based approach.” In support of the Fuel Cycle Research and Development (FCRD) program, AFC is responsible for developing advanced fuels technologies to support the various fuel cycle options defined in the Department of Energy (DOE) Nuclear Energy Research and Development Roadmap, Report to Congress, April 2010. Accomplishments made during fiscal year (FY) 2013 are highlighted in this report, which focuses on completed work and results. The process details leading up to the results are not included; however, the technical contact is provided for each section.

Not Listed

2013-10-01T23:59:59.000Z

456

Diesel fuel qualities  

SciTech Connect

As a result of rising fuel costs, many ship operators are turning to less expensive, heavier grade fuels for their diesel engines. Use of these lower quality fuels without adequate preparation can cause increased engine wear and damage to fuel systems. The oil properties which affect pretreatment and cleaning requirements, specifications that should be used when purchasing these fuels, and procedures for confirming that bought fuels meet purchase specifications are discussed. (LCL)

Blenkey, N.

1981-02-01T23:59:59.000Z

457

Fuel processor for fuel cell power system  

DOE Patents (OSTI)

A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

Vanderborgh, Nicholas E. (Los Alamos, NM); Springer, Thomas E. (Los Alamos, NM); Huff, James R. (Los Alamos, NM)

1987-01-01T23:59:59.000Z

458

Durability of Foam Insulation for LH2 Fuel Tanks of Future Subsonic Transports  

Science Journals Connector (OSTI)

The potential short-supply of petroleum-based fuels has led to activities by NASA to establish technical characteristics of air transportation systems that would use hydrogen-fueled aircraft. These activities ...

E. L. Sharpe; R. G. Helenbrook

1979-01-01T23:59:59.000Z

459

Fuel Cell Technologies Office: Catalysis Working Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Catalysis Working Group Catalysis Working Group The Catalysis Working Group (CWG) meets twice per year to exchange information, create synergies, and collaboratively develop both an understanding of and tools for studying electrocatalysis for polymer electrolyte fuel cells (PEFCs) and other low- and intermediate-temperature fuel cell systems, including direct methanol fuel cells (DMFCs), alkaline fuel cells (AFCs), alkaline membrane fuel cells (AMFCs), and phosphoric acid fuel cells (PAFCs). The CWG members include principal and co-principal investigators in electrocatalysis projects funded by the U.S. Department of Energy (DOE), as well as supporting DOE personnel. More information on DOE electrocatalysis activities can be found in the Multi-Year Research, Development, and Demonstration Plan.

460

Nuclear Fuel Cycle | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cycle Cycle Nuclear Fuel Cycle This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. This is an illustration of a nuclear fuel cycle that shows the required steps to process natural uranium from ore for preparation for fuel to be loaded in nuclear reactors. The mission of NE-54 is primarily focused on activities related to the front end of the nuclear fuel cycle which includes mining, milling, conversion, and enrichment. Uranium Mining Both "conventional" open pit, underground mining, and in situ techniques are used to recover uranium ore. In general, open pit mining is used where deposits are close to the surface and underground mining is used

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Hydrogen and Fuel Cell Technologies Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

9/9/2011 9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES PROGRAM MANUFACTURING WORKSHOP Hydrogen and Fuel Cell Technologies Overview Dr. Sunita Satyapal U.S. Department of Energy Fuel Cell Technologies Program Manager 8/11/2011 2 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov Purpose * Identify and prioritize challenges and barriers to manufacture of hydrogen and fuel cell systems and components * Identify and prioritize R&D activities that government can support to overcome the barriers Workshop Objectives Workshop Output: * Preliminary list of R&D needs for hydrogen and fuel cell manufacturing * Report of workshop proceedings including plenary presentations and summary of participant input (to be made available online) Post-Workshop Output:

462

Alternative Fuels Data Center: Mass Transit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Mass Transit to Mass Transit to someone by E-mail Share Alternative Fuels Data Center: Mass Transit on Facebook Tweet about Alternative Fuels Data Center: Mass Transit on Twitter Bookmark Alternative Fuels Data Center: Mass Transit on Google Bookmark Alternative Fuels Data Center: Mass Transit on Delicious Rank Alternative Fuels Data Center: Mass Transit on Digg Find More places to share Alternative Fuels Data Center: Mass Transit on AddThis.com... More in this section... Idle Reduction Parts & Equipment Maintenance Driving Behavior Fleet Rightsizing System Efficiency Ridesharing Mass Transit Active Transit Multi-Modal Transportation Telework Mass Transit Passenger-Miles per Gallon Passenger-miles per gallon (pmpg) is a metric for comparing mass transit and rideshare with typical passenger vehicle travel. Transportation system

463

Extended Platinum Nanotubes as Fuel Cell Catalysts  

SciTech Connect

Energy consumption has relied principally on fossil fuels as an energy source; fuel cells, however, can provide a clean and sustainable alternative, an answer to the depletion and climate change concerns of fossil fuels. Within proton exchange membrane fuel cells, high catalyst cost and poor durability limit the commercial viability of the device. Recently, platinum nanotubes (PtNTs) were studied as durable, active catalysts, providing a platform to meet US Department of Energy vehicular activity targets.[1] Porous PtNTs were developed to increase nanotube surface area, improving mass activity for oxygen reduction without sacrificing durability.[2] Subsurface platinum was then replaced with palladium, forming platinum-coated palladium nanotubes.[3] By forming a core shell structure, platinum utilization was increased, reducing catalyst cost. Alternative substrates have also been examined, modifying platinum surface facets and increasing oxygen reduction specific activity. Through modification of the PtNT platform, catalyst limitations can be reduced, ensuring a commercially viable device.

Alia, S.; Pivovar, B. S.; Yan, Y.

2012-01-01T23:59:59.000Z

464

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

school districts must pay for the alternative fueling infrastructure, the incremental cost between a conventional and alternative fuel bus, and training for bus maintenance...

465

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

biodiesel fuel will be considered commercially available if the incremental purchase cost compared to conventional diesel fuel is not more than 0.25. To the maximum extent...

466

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

blend being sold. The labeling must follow established labeling specifications for petroleum-based fuels. An alternative fuel producer may provide the retailer with a label...

467

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

tax is imposed on the use of alternative fuels. Alternative fuels include liquefied petroleum gas (LPG or propane), compressed natural gas (CNG), and liquefied natural gas (LNG)....

468

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Tax Alternative fuels subject to the New Mexico excise tax include liquefied petroleum gas (propane), compressed natural gas (CNG), and liquefied natural gas (LNG). The...

469

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol Blend Dispenser Requirement A retail motor fuel dispenser that dispenses fuel containing more than 10% ethanol by volume must be labeled with the capital letter "E"...

470

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Labeling Requirement All equipment used to dispense motor fuel containing at least 1% ethanol or methanol must be clearly labeled to inform customers that the fuel contains...

471

Fuel Fabrication Facility  

National Nuclear Security Administration (NNSA)

Construction of the Mixed Oxide Fuel Fabrication Facility Construction of the Mixed Oxide Fuel Fabrication Facility November 2005 May 2007 June 2008 May 2012...

472

Fuel Cells at NASCAR  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cells at NASCAR Ned Stetson U.S. Department of Energy Fuel Cell Technologies Office Catherine Kummer - NASCAR Green Norm Bessette - Acumentrics Question and Answer * Please...

473

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utility District Natural Gas Fueling Station Regulation Utility districts may own and operate natural gas fueling stations provided that the operation of the station is not...

474

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Exemption Propane, compressed natural gas, liquefied natural gas, and electricity used to operate motor vehicles are exempt from state fuel taxes. The Utah...

475

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Compressed Natural Gas (CNG) Fueling Infrastructure Development The Oklahoma Legislature intends to increase the amount of CNG fueling infrastructure in the state, with the overall...

476

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Fueling Station Air Quality Permit Exemption Natural gas fueling stations are exempt from the requirement to file Air Pollutant Emission Notices, as they have a...

477

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas and Propane Fuel Tax Any individual using or selling compressed natural gas (CNG), liquefied natural gas (LNG), or liquefied petroleum gas (propane) as a motor fuel...

478

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

medium- and heavy-duty vehicles must implement strategies to reduce petroleum consumption and emissions by using alternative fuels and improving vehicle fleet fuel...

479

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Tax Exemption The retail sale, use, storage, and consumption of alternative fuels is exempt from the state retail sales and use tax. (Reference North Carolina...

480

Automotive Fuel Cell Corporation  

NLE Websites -- All DOE Office Websites (Extended Search)

with AFCC, a private joint venture company in Canada, formed by combining the automotive fuel cell business of Ballard Power Systems with the fuel cell stack development...

Note: This page contains sample records for the topic "unconventional fuels activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuels Taxation Study Commission The Taxation of Alternative Fuel and Electric-Powered Vehicles Commission (Commission) was established to study and report findings and...

482

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Vehicle (AFV) and Hybrid Electric Vehicle (HEV) Funding The Alternative Fuels Incentive Grant (AFIG) Program provides financial assistance for qualified projects; information...

483

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition, Fuel Use, and Emissions Reductions Requirements All state agencies and transit districts must purchase AFVs and use alternative fuels to operate those vehicles to the...

484

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and other renewable, biodegradable mono alkyl ester combustible fuel derived from biomass. Waivers to the B2 requirement for state agency vehicles may be granted if the fuel...

485

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuel. Liquefied petroleum gas (propane) is exempt from LCFS requirements, as are non-biomass-based alternative fuels that are supplied in California for use in transportation at...

486

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

No county, city, village, town, or other political subdivision may levy or collect any excise, license, privilege, or occupational tax on motor vehicle fuel or alternative fuels,...

487

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy Test Procedures and Labeling The U.S. Environmental Protection Agency (EPA) is responsible for motor vehicle fuel economy testing. Manufacturers test their own...

488

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling Infrastructure Tax Credit An income tax credit is available to eligible taxpayers who construct or purchase and install qualified alternative fueling infrastructure. The...

489

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

fuel, fuel-efficient, or low emission vehicles, unless such a purchase compromises health, safety, or law enforcement needs. Additionally, the state must develop procedures for...

490

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

of these requirements, alternative fuels include propane, natural gas, electricity, hydrogen, qualified diesel fuel substitutes, E85, and a blend of hydrogen with propane or...

491

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

the purpose of these requirements, alternative fuels include propane, natural gas, electricity, hydrogen, qualified diesel fuel substitutes, E85, and a blend of hydrogen with...

492

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

but will be forfeited if a tax credit recipient stops dispensing alternative fuel or electricity for vehicle charging. Eligible fuels include any mixture of biodiesel and diesel...

493

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

air quality nonattainment areas. Qualified alternative fuels include biodiesel, electricity, natural gas, hydrogen, propane, and fuel mixtures containing at least 85% methanol...

494

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

duly licensed distributors, and sales of exported motor fuel. For taxation purposes, electricity is not considered an alternative fuel. (Reference House Bill 1142, 2014, and New...

495

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

liquid fuels, fuels other than alcohol derived from biological materials, and electricity. Any portion of the credit not used in the year the AFV is purchased or converted...

496

Alternative Fuels Data Center  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

the purpose of the Program, clean fuels include propane, compressed natural gas, and electricity. For more information, see the Utah Clean Fuels and Vehicle Technology Grant and...