Sample records for uncertainty high uncertainty

  1. High-level waste qualification: Managing uncertainty

    SciTech Connect (OSTI)

    Pulsipher, B.A. [Pacific Northwest Lab., Richland, WA (United States)

    1993-12-31T23:59:59.000Z

    Qualification of high-level waste implies specifications driven by risk against which performance can be assessed. The inherent uncertainties should be addressed in the specifications and statistical methods should be employed to appropriately manage these uncertainties. Uncertainties exist whenever measurements are obtained, sampling is employed, or processes are affected by systematic or random perturbations. This paper presents the approach and statistical methods currently employed by Pacific Northwest Laboratory (PNL) and West Valley Nuclear Services (WVNS) to characterize, minimize, and control uncertainties pertinent to a waste-form acceptance specification concerned with product consistency.

  2. Capturing Data Uncertainty in High-Volume Stream Processing

    E-Print Network [OSTI]

    Diao, Yanlei; Liu, Anna; Peng, Liping; Sutton, Charles; Tran, Thanh; Zink, Michael

    2009-01-01T23:59:59.000Z

    We present the design and development of a data stream system that captures data uncertainty from data collection to query processing to final result generation. Our system focuses on data that is naturally modeled as continuous random variables. For such data, our system employs an approach grounded in probability and statistical theory to capture data uncertainty and integrates this approach into high-volume stream processing. The first component of our system captures uncertainty of raw data streams from sensing devices. Since such raw streams can be highly noisy and may not carry sufficient information for query processing, our system employs probabilistic models of the data generation process and stream-speed inference to transform raw data into a desired format with an uncertainty metric. The second component captures uncertainty as data propagates through query operators. To efficiently quantify result uncertainty of a query operator, we explore a variety of techniques based on probability and statisti...

  3. Assessor Training Measurement Uncertainty

    E-Print Network [OSTI]

    NVLAP Assessor Training Measurement Uncertainty #12;Assessor Training 2009: Measurement Uncertainty Training 2009: Measurement Uncertainty 3 Measurement Uncertainty ·Calibration and testing labs performing Training 2009: Measurement Uncertainty 4 Measurement Uncertainty ·When the nature of the test precludes

  4. Uncertainties in Gapped Graphene

    E-Print Network [OSTI]

    Eylee Jung; Kwang S. Kim; DaeKil Park

    2012-03-20T23:59:59.000Z

    Motivated by graphene-based quantum computer we examine the time-dependence of the position-momentum and position-velocity uncertainties in the monolayer gapped graphene. The effect of the energy gap to the uncertainties is shown to appear via the Compton-like wavelength $\\lambda_c$. The uncertainties in the graphene are mainly contributed by two phenomena, spreading and zitterbewegung. While the former determines the uncertainties in the long-range of time, the latter gives the highly oscillation to the uncertainties in the short-range of time. The uncertainties in the graphene are compared with the corresponding values for the usual free Hamiltonian $\\hat{H}_{free} = (p_1^2 + p_2^2) / 2 M$. It is shown that the uncertainties can be under control within the quantum mechanical law if one can choose the gap parameter $\\lambda_c$ freely.

  5. Uncertainty of calorimeter measurements at NREL's high flux solar furnace

    SciTech Connect (OSTI)

    Bingham, C.E.

    1991-12-01T23:59:59.000Z

    The uncertainties of the calorimeter and concentration measurements at the High Flux Solar Furnace (HFSF) at the National Renewable Energy Laboratory (NREL) are discussed. Two calorimeter types have been used to date. One is an array of seven commercially available circular foil calorimeters (gardon or heat flux gages) for primary concentrator peak flux (up to 250 W/cm{sup 2}). The second is a cold-water calorimeter designed and built by the University of Chicago to measure the average exit power of the reflective compound parabolic secondary concentrator used at the HFSF (over 3.3 kW across a 1.6cm{sup {minus}2} exit aperture, corresponding to a flux of about 2 kW/cm{sup 2}). This paper discussed the uncertainties of the calorimeter and pyrheliometer measurements and resulting concentration calculations. The measurement uncertainty analysis is performed according to the ASME/ANSI standard PTC 19.1 (1985). Random and bias errors for each portion of the measurement are analyzed. The results show that as either the power or the flux is reduced, the uncertainties increase. Another calorimeter is being designed for a new, refractive secondary which will use a refractive material to produce a higher average flux (5 kW/cm{sup 2}) than the reflective secondary. The new calorimeter will use a time derivative of the fluid temperature as a key measurement of the average power out of the secondary. A description of this calorimeter and test procedure is also presented, along with a pre-test estimate of major sources of uncertainty. 8 refs., 4 figs., 3 tabs.

  6. Uncertainty analysis

    SciTech Connect (OSTI)

    Thomas, R.E.

    1982-03-01T23:59:59.000Z

    An evaluation is made of the suitability of analytical and statistical sampling methods for making uncertainty analyses. The adjoint method is found to be well-suited for obtaining sensitivity coefficients for computer programs involving large numbers of equations and input parameters. For this purpose the Latin Hypercube Sampling method is found to be inferior to conventional experimental designs. The Latin hypercube method can be used to estimate output probability density functions, but requires supplementary rank transformations followed by stepwise regression to obtain uncertainty information on individual input parameters. A simple Cork and Bottle problem is used to illustrate the efficiency of the adjoint method relative to certain statistical sampling methods. For linear models of the form Ax=b it is shown that a complete adjoint sensitivity analysis can be made without formulating and solving the adjoint problem. This can be done either by using a special type of statistical sampling or by reformulating the primal problem and using suitable linear programming software.

  7. Strategy for addressing composition uncertainties in a Hanford high-level waste vitrification plant

    SciTech Connect (OSTI)

    Bryan, M.F.; Piepel, G.F.

    1996-03-01T23:59:59.000Z

    Various requirements will be imposed on the feed material and glass produced by the high-level waste (HLW) vitrification plant at the Hanford Site. A statistical process/product control system will be used to control the melter feed composition and to check and document product quality. Two general types of uncertainty are important in HLW vitrification process/product control: model uncertainty and composition uncertainty. Model uncertainty is discussed by Hrma, Piepel, et al. (1994). Composition uncertainty includes the uncertainties inherent in estimates of feed composition and other process measurements. Because feed composition is a multivariate quantity, multivariate estimates of composition uncertainty (i.e., covariance matrices) are required. Three components of composition uncertainty will play a role in estimating and checking batch and glass attributes: batch-to-batch variability, within-batch uncertainty, and analytical uncertainty. This document reviews the techniques to be used in estimating and updating composition uncertainties and in combining these composition uncertainties with model uncertainty to yield estimates of (univariate) uncertainties associated with estimates of batch and glass properties.

  8. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Mccomiskey, Allison

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  9. Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model

    E-Print Network [OSTI]

    Jiang, Yueyang

    This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares ...

  10. Effect of aerodynamic uncertainties on unconventional lateral control at high angle of attack

    E-Print Network [OSTI]

    Eller, Bob Gensen

    1987-01-01T23:59:59.000Z

    EFFECT OF AERODYNAMIC UNCERTAINTIES ON UNCONVENTIONAL LATERAL CONTROL AT HIGH ANGLE OF ATTACK A Thesis by BOB GENSEN ELLER Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE December 1987 Major Subject: Aerospace Engineering EFFECT OF AERODYNAMIC UNCERTAINTIES ON UNCONVENTIONAL LATEHAI CONTROL AT HIGH ANGI. E (&F A'I'TACK A Thesis by BOB GENSEN ELLER Approved as to style and content by: Donald T...

  11. Environmental Modeling: Coping with Uncertainty

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    ­ Statistical heterogeneity ­ Complex correlation structures · Classical models: ­ Additive noise ­ UniEnvironmental Modeling: Coping with Uncertainty Daniel M. Tartakovsky (dmt@lanl.gov) Theoretical of environmental processes 2. Parametric uncertainty 3. Current approaches to uncertainty quantification 4. Random

  12. Uncertainty Analysis Economic Evaluations

    E-Print Network [OSTI]

    Bhulai, Sandjai

    uncertainties in typical oil and gas projects: 1. The oil price, 2. The investments (capex) and operating expenses (opex) for the project, 3. The number of wells and associated capex to recover the reserves, 4

  13. Trajectories without quantum uncertainties

    E-Print Network [OSTI]

    Eugene S. Polzik; Klemens Hammerer

    2014-05-13T23:59:59.000Z

    A common knowledge suggests that trajectories of particles in quantum mechanics always have quantum uncertainties. These quantum uncertainties set by the Heisenberg uncertainty principle limit precision of measurements of fields and forces, and ultimately give rise to the standard quantum limit in metrology. With the rapid developments of sensitivity of measurements these limits have been approached in various types of measurements including measurements of fields and acceleration. Here we show that a quantum trajectory of one system measured relatively to the other "reference system" with an effective negative mass can be quantum uncertainty--free. The method crucially relies on the generation of an Einstein-Podolsky-Rosen entangled state of two objects, one of which has an effective negative mass. From a practical perspective these ideas open the way towards force and acceleration measurements at new levels of sensitivity far below the standard quantum limit.

  14. A High-Performance Embedded Hybrid Methodology for Uncertainty Quantification With Applications

    SciTech Connect (OSTI)

    Iaccarino, Gianluca

    2014-04-01T23:59:59.000Z

    Multiphysics processes modeled by a system of unsteady di#11;erential equations are natu- rally suited for partitioned (modular) solution strategies. We consider such a model where probabilistic uncertainties are present in each module of the system and represented as a set of random input parameters. A straightforward approach in quantifying uncertainties in the predicted solution would be to sample all the input parameters into a single set, and treat the full system as a black-box. Although this method is easily parallelizable and requires minimal modi#12;cations to deterministic solver, it is blind to the modular structure of the underlying multiphysical model. On the other hand, using spectral representations polynomial chaos expansions (PCE) can provide richer structural information regarding the dynamics of these uncertainties as they propagate from the inputs to the predicted output, but can be prohibitively expensive to implement in the high-dimensional global space of un- certain parameters. Therefore, we investigated hybrid methodologies wherein each module has the exibility of using sampling or PCE based methods of capturing local uncertainties while maintaining accuracy in the global uncertainty analysis. For the latter case, we use a conditional PCE model which mitigates the curse of dimension associated with intru- sive Galerkin or semi-intrusive Pseudospectral methods. After formalizing the theoretical framework, we demonstrate our proposed method using a numerical viscous ow simulation and benchmark the performance against a solely Monte-Carlo method and solely spectral method.

  15. Optimal Uncertainty Quantification

    E-Print Network [OSTI]

    Owhadi, Houman; Sullivan, Timothy John; McKerns, Mike; Ortiz, Michael

    2010-01-01T23:59:59.000Z

    We propose a rigorous framework for Uncertainty Quantification (UQ) in which the UQ objectives and the assumptions/information set are brought to the forefront. This framework, which we call \\emph{Optimal Uncertainty Quantification} (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as extreme values of well-defined optimization problems corresponding to extremizing probabilities of failure, or of deviations, subject to the constraints imposed by the scenarios compatible with the assumptions and information. In particular, this framework does not implicitly impose inappropriate assumptions, nor does it repudiate relevant information. Although OUQ optimization problems are extremely large, we show that under general conditions, they have finite-dimensional reductions. As an application, we develop \\emph{Optimal Concentration Inequalities} (OCI) of Hoeffding and McDiarmid type. Surprisingly, contr...

  16. Uncertainty and calibration analysis

    SciTech Connect (OSTI)

    Coutts, D.A.

    1991-03-01T23:59:59.000Z

    All measurements contain some deviation from the true value which is being measured. In the common vernacular this deviation between the true value and the measured value is called an inaccuracy, an error, or a mistake. Since all measurements contain errors, it is necessary to accept that there is a limit to how accurate a measurement can be. The undertainty interval combined with the confidence level, is one measure of the accuracy for a measurement or value. Without a statement of uncertainty (or a similar parameter) it is not possible to evaluate if the accuracy of the measurement, or data, is appropriate. The preparation of technical reports, calibration evaluations, and design calculations should consider the accuracy of measurements and data being used. There are many methods to accomplish this. This report provides a consistent method for the handling of measurement tolerances, calibration evaluations and uncertainty calculations. The SRS Quality Assurance (QA) Program requires that the uncertainty of technical data and instrument calibrations be acknowledged and estimated. The QA Program makes some specific technical requirements related to the subject but does not provide a philosophy or method on how uncertainty should be estimated. This report was prepared to provide a technical basis to support the calculation of uncertainties and the calibration of measurement and test equipment for any activity within the Experimental Thermal-Hydraulics (ETH) Group. The methods proposed in this report provide a graded approach for estimating the uncertainty of measurements, data, and calibrations. The method is based on the national consensus standard, ANSI/ASME PTC 19.1.

  17. Optimization Under Generalized Uncertainty

    E-Print Network [OSTI]

    Lodwick, Weldon

    11 Optimization Under Generalized Uncertainty Optimization Modeling Math 4794/5794: Spring 2013 Weldon A. Lodwick Weldon.Lodwick@ucdenver.edu 2/14/2013 Optimization Modeling - Spring 2013 #12 in the context of optimization problems. The theoretical frame-work for these notes is interval analysis. From

  18. Uncertainty Principle Respects Locality

    E-Print Network [OSTI]

    Dongsheng Wang

    2015-04-19T23:59:59.000Z

    The notion of nonlocality implicitly implies there might be some kind of spooky action at a distance in nature, however, the validity of quantum mechanics has been well tested up to now. In this work it is argued that the notion of nonlocality is physically improper, the basic principle of locality in nature is well respected by quantum mechanics, namely, the uncertainty principle. We show that the quantum bound on the Clauser, Horne, Shimony, and Holt (CHSH) inequality can be recovered from the uncertainty relation in a multipartite setting. We further argue that the super-quantum correlation demonstrated by the nonlocal box is not physically comparable with the quantum one. The origin of the quantum structure of nature still remains to be explained, some post-quantum theory which is more complete in some sense than quantum mechanics is possible and might not necessarily be a hidden variable theory.

  19. RUMINATIONS ON NDA MEASUREMENT UNCERTAINTY COMPARED TO DA UNCERTAINTY

    SciTech Connect (OSTI)

    Salaymeh, S.; Ashley, W.; Jeffcoat, R.

    2010-06-17T23:59:59.000Z

    It is difficult to overestimate the importance that physical measurements performed with nondestructive assay instruments play throughout the nuclear fuel cycle. They underpin decision making in many areas and support: criticality safety, radiation protection, process control, safeguards, facility compliance, and waste measurements. No physical measurement is complete or indeed meaningful, without a defensible and appropriate accompanying statement of uncertainties and how they combine to define the confidence in the results. The uncertainty budget should also be broken down in sufficient detail suitable for subsequent uses to which the nondestructive assay (NDA) results will be applied. Creating an uncertainty budget and estimating the total measurement uncertainty can often be an involved process, especially for non routine situations. This is because data interpretation often involves complex algorithms and logic combined in a highly intertwined way. The methods often call on a multitude of input data subject to human oversight. These characteristics can be confusing and pose a barrier to developing and understanding between experts and data consumers. ASTM subcommittee C26-10 recognized this problem in the context of how to summarize and express precision and bias performance across the range of standards and guides it maintains. In order to create a unified approach consistent with modern practice and embracing the continuous improvement philosophy a consensus arose to prepare a procedure covering the estimation and reporting of uncertainties in non destructive assay of nuclear materials. This paper outlines the needs analysis, objectives and on-going development efforts. In addition to emphasizing some of the unique challenges and opportunities facing the NDA community we hope this article will encourage dialog and sharing of best practice and furthermore motivate developers to revisit the treatment of measurement uncertainty.

  20. Sandia National Laboratories: Uncertainty Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Testing Phenomenological Modeling Risk and Safety Assessment Cyber-Based Vulnerability Assessments Uncertainty Analysis Transportation Safety Fire Science Human...

  1. Calibration Under Uncertainty.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Trucano, Timothy Guy

    2005-03-01T23:59:59.000Z

    This report is a white paper summarizing the literature and different approaches to the problem of calibrating computer model parameters in the face of model uncertainty. Model calibration is often formulated as finding the parameters that minimize the squared difference between the model-computed data (the predicted data) and the actual experimental data. This approach does not allow for explicit treatment of uncertainty or error in the model itself: the model is considered the %22true%22 deterministic representation of reality. While this approach does have utility, it is far from an accurate mathematical treatment of the true model calibration problem in which both the computed data and experimental data have error bars. This year, we examined methods to perform calibration accounting for the error in both the computer model and the data, as well as improving our understanding of its meaning for model predictability. We call this approach Calibration under Uncertainty (CUU). This talk presents our current thinking on CUU. We outline some current approaches in the literature, and discuss the Bayesian approach to CUU in detail.

  2. The impact of uncertainty and risk measures

    E-Print Network [OSTI]

    Jo, Soojin; Jo, Soojin

    2012-01-01T23:59:59.000Z

    First, it recovers historical oil price uncertainty seriesmore reliable historical oil price uncertainty series as itAs a result, the historical oil price uncertainty series is

  3. Electoral Competition, Political Uncertainty and Policy Insulation

    E-Print Network [OSTI]

    de Figueiredo, Rui J. P. Jr.

    2001-01-01T23:59:59.000Z

    Uncertainty and Policy Insulation Horn, Murray. 1995. TheUncertainty and Policy Insulation United States Congress.UNCERTAINTY AND POLICY INSULATION Rui J. P. de Figueiredo,

  4. Sandia Energy - Uncertainty Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportation Safety Home Stationary PowerUncertainty

  5. Uncertainty relation in Schwarzschild spacetime

    E-Print Network [OSTI]

    Jun Feng; Yao-Zhong Zhang; Mark D. Gould; Heng Fan

    2015-02-27T23:59:59.000Z

    We explore the entropic uncertainty relation in the curved background outside a Schwarzschild black hole, and find that Hawking radiation introduces a nontrivial modification on the uncertainty bound for particular observer, therefore it could be witnessed by proper uncertainty game experimentally. We first investigate an uncertainty game between a free falling observer and his static partner holding a quantum memory initially entangled with the quantum system to be measured. Due to the information loss from Hawking decoherence, we find an inevitable increase of the uncertainty on the outcome of measurements in the view of static observer, which is dependent on the mass of the black hole, the distance of observer from event horizon, and the mode frequency of quantum memory. To illustrate the generality of this paradigm, we relate the entropic uncertainty bound with other uncertainty probe, e.g., time-energy uncertainty. In an alternative game between two static players, we show that quantum information of qubit can be transferred to quantum memory through a bath of fluctuating quantum fields outside the black hole. For a particular choice of initial state, we show that the Hawking decoherence cannot counteract entanglement generation after the dynamical evolution of system, which triggers an effectively reduced uncertainty bound that violates the intrinsic limit $-\\log_2c$. Numerically estimation for a proper choice of initial state shows that our result is comparable with possible real experiments. Finally, a discussion on the black hole firewall paradox in the context of entropic uncertainty relation is given.

  6. Predicting System Performance with Uncertainty

    E-Print Network [OSTI]

    Yan, B.; Malkawi, A.

    2012-01-01T23:59:59.000Z

    on uncertainty in input values for predictions. The input values associated with predictions can come from estimations or measurements corrupted with noise. Therefore, it is more reasonable to assign probability distributions over their domains of plausible... increases, the number of simulations required increases significantly. The time cost limits the extension of uncertainty analysis. Current studies have not covered uncertainty related to system controls in operations. Measurements in system operations...

  7. Utility Maximization under Uncertainty

    E-Print Network [OSTI]

    Li, Jian

    2010-01-01T23:59:59.000Z

    Motivated by several search and optimization problems over uncertain datasets, we study the stochastic versions of a broad class of combinatorial problems where either the existences or the weights of the elements in the input dataset are uncertain. The class of problems that we study includes shortest paths, minimum weight spanning trees, and minimum weight matchings over probabilistic graphs; top-k queries over probabilistic datasets; and other combinatorial problems like knapsack. By noticing that the expected value is inadequate in capturing different types of risk-averse or risk-prone behaviors, we consider a more general objective which is to maximize the expected utility of the solution for some given utility function. For weight uncertainty model, we show that we can obtain a polynomial time approximation algorithm with additive error eps for any eps>0, if there is a pseudopolynomial time algorithm for the exact version of the problem. Our result generalizes several prior works on stochastic shortest ...

  8. Quantifying uncertainty from material inhomogeneity.

    SciTech Connect (OSTI)

    Battaile, Corbett Chandler; Emery, John M.; Brewer, Luke N.; Boyce, Brad Lee

    2009-09-01T23:59:59.000Z

    Most engineering materials are inherently inhomogeneous in their processing, internal structure, properties, and performance. Their properties are therefore statistical rather than deterministic. These inhomogeneities manifest across multiple length and time scales, leading to variabilities, i.e. statistical distributions, that are necessary to accurately describe each stage in the process-structure-properties hierarchy, and are ultimately the primary source of uncertainty in performance of the material and component. When localized events are responsible for component failure, or when component dimensions are on the order of microstructural features, this uncertainty is particularly important. For ultra-high reliability applications, the uncertainty is compounded by a lack of data describing the extremely rare events. Hands-on testing alone cannot supply sufficient data for this purpose. To date, there is no robust or coherent method to quantify this uncertainty so that it can be used in a predictive manner at the component length scale. The research presented in this report begins to address this lack of capability through a systematic study of the effects of microstructure on the strain concentration at a hole. To achieve the strain concentration, small circular holes (approximately 100 {micro}m in diameter) were machined into brass tensile specimens using a femto-second laser. The brass was annealed at 450 C, 600 C, and 800 C to produce three hole-to-grain size ratios of approximately 7, 1, and 1/7. Electron backscatter diffraction experiments were used to guide the construction of digital microstructures for finite element simulations of uniaxial tension. Digital image correlation experiments were used to qualitatively validate the numerical simulations. The simulations were performed iteratively to generate statistics describing the distribution of plastic strain at the hole in varying microstructural environments. In both the experiments and simulations, the deformation behavior was found to depend strongly on the character of the nearby microstructure.

  9. The impact of uncertainty and risk measures

    E-Print Network [OSTI]

    Jo, Soojin; Jo, Soojin

    2012-01-01T23:59:59.000Z

    uncertainty on investment: Evidence from TEXAS oil drilling.investment decisions to changes in uncertainty using Texas oiloil price uncertainty deters var- ious types of real economic activities, such as output production, investment,

  10. Uncertainty in emissions projections for climate models

    E-Print Network [OSTI]

    Webster, Mort David.; Babiker, Mustafa H.M.; Mayer, Monika.; Reilly, John M.; Harnisch, Jochen.; Hyman, Robert C.; Sarofim, Marcus C.; Wang, Chien.

    Future global climate projections are subject to large uncertainties. Major sources of this uncertainty are projections of anthropogenic emissions. We evaluate the uncertainty in future anthropogenic emissions using a ...

  11. Structural model uncertainty in stochastic simulation

    SciTech Connect (OSTI)

    McKay, M.D.; Morrison, J.D. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-01T23:59:59.000Z

    Prediction uncertainty in stochastic simulation models can be described by a hierarchy of components: stochastic variability at the lowest level, input and parameter uncertainty at a higher level, and structural model uncertainty at the top. It is argued that a usual paradigm for analysis of input uncertainty is not suitable for application to structural model uncertainty. An approach more likely to produce an acceptable methodology for analyzing structural model uncertainty is one that uses characteristics specific to the particular family of models.

  12. Uncertainty, investment, and industry evolution

    E-Print Network [OSTI]

    Caballero, Ricardo J.

    1992-01-01T23:59:59.000Z

    We study the effects of aggregate and idiosyncratic uncertainty on the entry of firms, total investment, and prices in a competitive industry with irreversible investment. We first use standard dynamic programming methods ...

  13. Harvesting a renewable resource under uncertainty

    E-Print Network [OSTI]

    Saphores, Jean-Daniel M

    2003-01-01T23:59:59.000Z

    Consider a valuable renewable resource whose biomass X2003. “Harvesting a renewable resource under uncertainty,”Harvesting a Renewable Resource under Uncertainty 1 (with

  14. Reducing Petroleum Despendence in California: Uncertainties About...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Petroleum Despendence in California: Uncertainties About Light-Duty Diesel Reducing Petroleum Despendence in California: Uncertainties About Light-Duty Diesel 2002 DEER Conference...

  15. Uncertainty quantification approaches for advanced reactor analyses.

    SciTech Connect (OSTI)

    Briggs, L. L.; Nuclear Engineering Division

    2009-03-24T23:59:59.000Z

    The original approach to nuclear reactor design or safety analyses was to make very conservative modeling assumptions so as to ensure meeting the required safety margins. Traditional regulation, as established by the U. S. Nuclear Regulatory Commission required conservatisms which have subsequently been shown to be excessive. The commission has therefore moved away from excessively conservative evaluations and has determined best-estimate calculations to be an acceptable alternative to conservative models, provided the best-estimate results are accompanied by an uncertainty evaluation which can demonstrate that, when a set of analysis cases which statistically account for uncertainties of all types are generated, there is a 95% probability that at least 95% of the cases meet the safety margins. To date, nearly all published work addressing uncertainty evaluations of nuclear power plant calculations has focused on light water reactors and on large-break loss-of-coolant accident (LBLOCA) analyses. However, there is nothing in the uncertainty evaluation methodologies that is limited to a specific type of reactor or to specific types of plant scenarios. These same methodologies can be equally well applied to analyses for high-temperature gas-cooled reactors and to liquid metal reactors, and they can be applied to steady-state calculations, operational transients, or severe accident scenarios. This report reviews and compares both statistical and deterministic uncertainty evaluation approaches. Recommendations are given for selection of an uncertainty methodology and for considerations to be factored into the process of evaluating uncertainties for advanced reactor best-estimate analyses.

  16. Business Model Change in Early-Stage Entrepreneurial Firms Facing High Uncertainty BUSINESS MODEL CHANGE IN EARLY-STAGE ENTREPRENEURIAL

    E-Print Network [OSTI]

    Mottram, Nigel

    Business Model Change in Early-Stage Entrepreneurial Firms Facing High Uncertainty 1 BUSINESS MODEL Business School, U.K. Changing business models is inevitable for early-stage entrepreneurial firms striving in elements of business models in a set of eight early-stage university spin-offs. Findings suggest

  17. The impact of uncertainty and risk measures

    E-Print Network [OSTI]

    Jo, Soojin; Jo, Soojin

    2012-01-01T23:59:59.000Z

    historical uncertainty series by incorporating a realized volatility series from daily oil price data

  18. Uncertainty and Sensitivity Analyses Plan

    SciTech Connect (OSTI)

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01T23:59:59.000Z

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy's (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project.

  19. 4, 507532, 2004 Emission uncertainty

    E-Print Network [OSTI]

    Boyer, Edmond

    and Physics Discussions Impact of different emission inventories on simulated tropospheric ozone over China The importance of emission inventory uncertainty on the simulation of summertime tro- pospheric Ozone over China has been analyzed using a regional chemical transport model. Three independent emissions inventories

  20. Impact of orifice metering uncertainties

    SciTech Connect (OSTI)

    Stuart, J.W. (Pacific Gas and Electric Co., San Francisco, CA (USA))

    1990-12-01T23:59:59.000Z

    In a recent utility study, attributed 38% of its unaccounted-for UAF gas to orifice metering uncertainty biasing caused by straightening vanes. How this was determined and how this applied to the company's orifice meters is described. Almost all (97%) of the company's UAF gas was found to be attributed to identifiable accounting procedures, measurement problems, theft and leakage.

  1. Uncertainty quantification and error analysis

    SciTech Connect (OSTI)

    Higdon, Dave M [Los Alamos National Laboratory; Anderson, Mark C [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Klein, Richard [Los Alamos National Laboratory; Berliner, Mark [OHIO STATE UNIV.; Covey, Curt [LLNL; Ghattas, Omar [UNIV OF TEXAS; Graziani, Carlo [UNIV OF CHICAGO; Seager, Mark [LLNL; Sefcik, Joseph [LLNL; Stark, Philip [UC/BERKELEY; Stewart, James [SNL

    2010-01-01T23:59:59.000Z

    UQ studies all sources of error and uncertainty, including: systematic and stochastic measurement error; ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations on the accuracy and reliability of computations, approximations, and algorithms; and human error. A more precise definition for UQ is suggested below.

  2. 5, 45074543, 2005 Uncertainty analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    parameterization, the representation of the in-cloud updraft velocity, the relationship between effective radius10 of the study of aerosol effects on the global climate, uncertainty in the estimation of the indirect aerosol the aerosol chemical and physical properties and cloud microphysics. Aerosols influence cloud radiative

  3. Estimating uncertainty of inference for validation

    SciTech Connect (OSTI)

    Booker, Jane M [Los Alamos National Laboratory; Langenbrunner, James R [Los Alamos National Laboratory; Hemez, Francois M [Los Alamos National Laboratory; Ross, Timothy J [UNM

    2010-09-30T23:59:59.000Z

    We present a validation process based upon the concept that validation is an inference-making activity. This has always been true, but the association has not been as important before as it is now. Previously, theory had been confirmed by more data, and predictions were possible based on data. The process today is to infer from theory to code and from code to prediction, making the role of prediction somewhat automatic, and a machine function. Validation is defined as determining the degree to which a model and code is an accurate representation of experimental test data. Imbedded in validation is the intention to use the computer code to predict. To predict is to accept the conclusion that an observable final state will manifest; therefore, prediction is an inference whose goodness relies on the validity of the code. Quantifying the uncertainty of a prediction amounts to quantifying the uncertainty of validation, and this involves the characterization of uncertainties inherent in theory/models/codes and the corresponding data. An introduction to inference making and its associated uncertainty is provided as a foundation for the validation problem. A mathematical construction for estimating the uncertainty in the validation inference is then presented, including a possibility distribution constructed to represent the inference uncertainty for validation under uncertainty. The estimation of inference uncertainty for validation is illustrated using data and calculations from Inertial Confinement Fusion (ICF). The ICF measurements of neutron yield and ion temperature were obtained for direct-drive inertial fusion capsules at the Omega laser facility. The glass capsules, containing the fusion gas, were systematically selected with the intent of establishing a reproducible baseline of high-yield 10{sup 13}-10{sup 14} neutron output. The deuterium-tritium ratio in these experiments was varied to study its influence upon yield. This paper on validation inference is the first in a series of inference uncertainty estimations. While the methods demonstrated are primarily statistical, these do not preclude the use of nonprobabilistic methods for uncertainty characterization. The methods presented permit accurate determinations for validation and eventual prediction. It is a goal that these methods establish a standard against which best practice may evolve for determining degree of validation.

  4. Experimental uncertainty estimation and statistics for data having interval uncertainty.

    SciTech Connect (OSTI)

    Kreinovich, Vladik (Applied Biomathematics, Setauket, New York); Oberkampf, William Louis (Applied Biomathematics, Setauket, New York); Ginzburg, Lev (Applied Biomathematics, Setauket, New York); Ferson, Scott (Applied Biomathematics, Setauket, New York); Hajagos, Janos (Applied Biomathematics, Setauket, New York)

    2007-05-01T23:59:59.000Z

    This report addresses the characterization of measurements that include epistemic uncertainties in the form of intervals. It reviews the application of basic descriptive statistics to data sets which contain intervals rather than exclusively point estimates. It describes algorithms to compute various means, the median and other percentiles, variance, interquartile range, moments, confidence limits, and other important statistics and summarizes the computability of these statistics as a function of sample size and characteristics of the intervals in the data (degree of overlap, size and regularity of widths, etc.). It also reviews the prospects for analyzing such data sets with the methods of inferential statistics such as outlier detection and regressions. The report explores the tradeoff between measurement precision and sample size in statistical results that are sensitive to both. It also argues that an approach based on interval statistics could be a reasonable alternative to current standard methods for evaluating, expressing and propagating measurement uncertainties.

  5. The impact of uncertainty and risk measures

    E-Print Network [OSTI]

    Jo, Soojin; Jo, Soojin

    2012-01-01T23:59:59.000Z

    xi Chapter 1 The Effects of Oil Price Uncertainty on theLIST OF FIGURES Figure Figure Figure Figure Figure Oil priceOil price uncertainty with and without realized

  6. Quantum mechanical time contradicts the uncertainty principle

    E-Print Network [OSTI]

    Hitoshi Kitada

    1999-11-17T23:59:59.000Z

    The a priori time in conventional quantum mechanics is shown to contradict the uncertainty principle. A possible solution is given.

  7. Theoretical Uncertainties in Inflationary Predictions

    E-Print Network [OSTI]

    William H. Kinney; Antonio Riotto

    2006-03-09T23:59:59.000Z

    With present and future observations becoming of higher and higher quality, it is timely and necessary to investigate the most significant theoretical uncertainties in the predictions of inflation. We show that our ignorance of the entire history of the Universe, including the physics of reheating after inflation, translates to considerable errors in observationally relevant parameters. Using the inflationary flow formalism, we estimate that for a spectral index $n$ and tensor/scalar ratio $r$ in the region favored by current observational constraints, the theoretical errors are of order $\\Delta n / | n - 1| \\sim 0.1 - 1$ and $\\Delta r /r \\sim 0.1 - 1$. These errors represent the dominant theoretical uncertainties in the predictions of inflation, and are generically of the order of or larger than the projected uncertainties in future precision measurements of the Cosmic Microwave Background. We also show that the lowest-order classification of models into small field, large field, and hybrid breaks down when higher order corrections to the dynamics are included. Models can flow from one region to another.

  8. Robot Motion Planning with Uncertainty The Challenge

    E-Print Network [OSTI]

    Whitton, Mary C.

    Roadmap (SMR), a new motion planning framework that explicitly considers uncertainty in robot motion approach. Our framework builds on the highly successful approach used in Probabilistic Roadmaps (PRMs of discrete states is selected in the state space, and a roadmap is built that represents their collision

  9. Entropic uncertainty relations for multiple measurements

    E-Print Network [OSTI]

    Shang Liu; Liang-Zhu Mu; Heng Fan

    2014-11-23T23:59:59.000Z

    We present the entropic uncertainty relations for multiple measurement settings in quantum mechanics. Those uncertainty relations are obtained for both cases with and without the presence of quantum memory. They take concise forms which can be proven in a unified method and easy to calculate. Our results recover the well known entropic uncertainty relations for two observables, which show the uncertainties about the outcomes of two incompatible measurements. Those uncertainty relations are applicable in both foundations of quantum theory and the security of many quantum cryptographic protocols.

  10. Extended Forward Sensitivity Analysis for Uncertainty Quantification

    SciTech Connect (OSTI)

    Haihua Zhao; Vincent A. Mousseau

    2011-09-01T23:59:59.000Z

    Verification and validation (V&V) are playing more important roles to quantify uncertainties and realize high fidelity simulations in engineering system analyses, such as transients happened in a complex nuclear reactor system. Traditional V&V in the reactor system analysis focused more on the validation part or did not differentiate verification and validation. The traditional approach to uncertainty quantification is based on a 'black box' approach. The simulation tool is treated as an unknown signal generator, a distribution of inputs according to assumed probability density functions is sent in and the distribution of the outputs is measured and correlated back to the original input distribution. The 'black box' method mixes numerical errors with all other uncertainties. It is also not efficient to perform sensitivity analysis. Contrary to the 'black box' method, a more efficient sensitivity approach can take advantage of intimate knowledge of the simulation code. In these types of approaches equations for the propagation of uncertainty are constructed and the sensitivities are directly solved for as variables in the simulation. This paper presents the forward sensitivity analysis as a method to help uncertainty qualification. By including time step and potentially spatial step as special sensitivity parameters, the forward sensitivity method is extended as one method to quantify numerical errors. Note that by integrating local truncation errors over the whole system through the forward sensitivity analysis process, the generated time step and spatial step sensitivity information reflect global numerical errors. The discretization errors can be systematically compared against uncertainties due to other physical parameters. This extension makes the forward sensitivity method a much more powerful tool to help uncertainty qualification. By knowing the relative sensitivity of time and space steps with other interested physical parameters, the simulation is allowed to run at optimized time and space steps without affecting the confidence of the physical parameter sensitivity results. The time and space steps forward sensitivity analysis method can also replace the traditional time step and grid convergence study with much less computational cost. Several well defined benchmark problems with manufactured solutions are utilized to demonstrate the extended forward sensitivity analysis method. All the physical solutions, parameter sensitivity solutions, even the time step sensitivity in one case, have analytical forms, which allows the verification to be performed in the strictest sense.

  11. Incorporating Forecast Uncertainty in Utility Control Center

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

    2014-07-09T23:59:59.000Z

    Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

  12. Uncertainty Quantification Techniques for Sensor Calibration...

    Office of Scientific and Technical Information (OSTI)

    Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants Re-direct Destination: This report describes research towards the development of...

  13. The impact of uncertainty and risk measures

    E-Print Network [OSTI]

    Jo, Soojin; Jo, Soojin

    2012-01-01T23:59:59.000Z

    peak, and finds that this nonlinear transformation of the oiland oil price growth rates. As seen in the above illustration, uncertainty is at its peak

  14. Estimating the uncertainty in underresolved nonlinear dynamics

    SciTech Connect (OSTI)

    Chorin, Alelxandre; Hald, Ole

    2013-06-12T23:59:59.000Z

    The Mori-Zwanzig formalism of statistical mechanics is used to estimate the uncertainty caused by underresolution in the solution of a nonlinear dynamical system. A general approach is outlined and applied to a simple example. The noise term that describes the uncertainty turns out to be neither Markovian nor Gaussian. It is argued that this is the general situation.

  15. Generalized Uncertainty Principle: Approaches and Applications

    E-Print Network [OSTI]

    Abdel Nasser Tawfik; Abdel Magied Diab

    2014-11-23T23:59:59.000Z

    We review highlights from string theory, black hole physics and doubly special relativity and some "thought" experiments which were suggested to probe the shortest distance and/or the maximum momentum at the Planck scale. The models which are designed to implement the minimal length scale and/or the maximum momentum in different physical systems are analysed entered the literature as the Generalized Uncertainty Principle (GUP). We compare between them. The existence of a minimal length and a maximum momentum accuracy is preferred by various physical observations. Furthermore, assuming modified dispersion relation allows for a wide range of applications in estimating, for example, the inflationary parameters, Lorentz invariance violation, black hole thermodynamics, Saleker-Wigner inequalities, entropic nature of the gravitational laws, Friedmann equations, minimal time measurement and thermodynamics of the high-energy collisions. One of the higher-order GUP approaches gives predictions for the minimal length uncertainty. Another one predicts a maximum momentum and a minimal length uncertainty, simultaneously. An extensive comparison between the different GUP approaches is summarized. We also discuss the GUP impacts on the equivalence principles including the universality of the gravitational redshift and the free fall and law of reciprocal action and on the kinetic energy of composite system. The concern about the compatibility with the equivalence principles, the universality of gravitational redshift and the free fall and law of reciprocal action should be addressed. We conclude that the value of the GUP parameters remain a puzzle to be verified.

  16. Uncertainty Analysis for Photovoltaic Degradation Rates (Poster)

    SciTech Connect (OSTI)

    Jordan, D.; Kurtz, S.; Hansen, C.

    2014-04-01T23:59:59.000Z

    Dependable and predictable energy production is the key to the long-term success of the PV industry. PV systems show over the lifetime of their exposure a gradual decline that depends on many different factors such as module technology, module type, mounting configuration, climate etc. When degradation rates are determined from continuous data the statistical uncertainty is easily calculated from the regression coefficients. However, total uncertainty that includes measurement uncertainty and instrumentation drift is far more difficult to determine. A Monte Carlo simulation approach was chosen to investigate a comprehensive uncertainty analysis. The most important effect for degradation rates is to avoid instrumentation that changes over time in the field. For instance, a drifting irradiance sensor, which can be achieved through regular calibration, can lead to a substantially erroneous degradation rates. However, the accuracy of the irradiance sensor has negligible impact on degradation rate uncertainty emphasizing that precision (relative accuracy) is more important than absolute accuracy.

  17. Numerical uncertainty in computational engineering and physics

    SciTech Connect (OSTI)

    Hemez, Francois M [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Obtaining a solution that approximates ordinary or partial differential equations on a computational mesh or grid does not necessarily mean that the solution is accurate or even 'correct'. Unfortunately assessing the quality of discrete solutions by questioning the role played by spatial and temporal discretizations generally comes as a distant third to test-analysis comparison and model calibration. This publication is contributed to raise awareness of the fact that discrete solutions introduce numerical uncertainty. This uncertainty may, in some cases, overwhelm in complexity and magnitude other sources of uncertainty that include experimental variability, parametric uncertainty and modeling assumptions. The concepts of consistency, convergence and truncation error are overviewed to explain the articulation between the exact solution of continuous equations, the solution of modified equations and discrete solutions computed by a code. The current state-of-the-practice of code and solution verification activities is discussed. An example in the discipline of hydro-dynamics illustrates the significant effect that meshing can have on the quality of code predictions. A simple method is proposed to derive bounds of solution uncertainty in cases where the exact solution of the continuous equations, or its modified equations, is unknown. It is argued that numerical uncertainty originating from mesh discretization should always be quantified and accounted for in the overall uncertainty 'budget' that supports decision-making for applications in computational physics and engineering.

  18. Fractional revivals through Rényi uncertainty relations

    E-Print Network [OSTI]

    Elvira Romera; Francisco de los Santos

    2014-09-19T23:59:59.000Z

    We show that the R\\'enyi uncertainty relations give a good description of the dynamical behavior of wave packets and constitute a sound approach to revival phenomena by analyzing three model systems: the simple harmonic oscillator, the infinite square well, and the quantum bouncer. We prove the usefulness of entropic uncertainty relations as a tool for identifying fractional revivals by providing a comparison in different contexts with the usual Heisenberg uncertainty relation and with the common approach in terms of the autocorrelation function.

  19. Uncertainty Quantification on Prompt Fission Neutrons Spectra

    SciTech Connect (OSTI)

    Talou, P. [T-16, Nuclear Physics Group, Los Alamos National Laboratory, NM 87545 (United States)], E-mail: talou@lanl.gov; Madland, D.G.; Kawano, T. [T-16, Nuclear Physics Group, Los Alamos National Laboratory, NM 87545 (United States)

    2008-12-15T23:59:59.000Z

    Uncertainties in the evaluated prompt fission neutrons spectra present in ENDF/B-VII.0 are assessed in the framework of the Los Alamos model. The methodology used to quantify the uncertainties on an evaluated spectrum is introduced. We also briefly review the Los Alamos model and single out the parameters that have the largest influence on the calculated results. Using a Kalman filter, experimental data and uncertainties are introduced to constrain model parameters, and construct an evaluated covariance matrix for the prompt neutrons spectrum. Preliminary results are shown in the case of neutron-induced fission of {sup 235}U from thermal up to 15 MeV incident energies.

  20. Dose uncertainty due to computed tomography ,,CT... slice thickness in CT-based high dose rate brachytherapy of the prostate cancer

    E-Print Network [OSTI]

    Pouliot, Jean

    Dose uncertainty due to computed tomography ,,CT... slice thickness in CT-based high dose rate in Medicine. DOI: 10.1118/1.1785454 Key words: high dose rate brachytherapy, computed tomography, prostate at risk OARs by providing three-dimensional 3D anatomical information from computed tomography CT

  1. DAMAGE ASSESSMENT OF COMPOSITE PLATE STRUCTURES WITH UNCERTAINTY

    E-Print Network [OSTI]

    Boyer, Edmond

    DAMAGE ASSESSMENT OF COMPOSITE PLATE STRUCTURES WITH UNCERTAINTY Chandrashekhar M.* , Ranjan Uncertainties associated with a structural model and measured vibration data may lead to unreliable damage that material uncertainties in composite structures cause considerable problem in damage assessment which can

  2. Error Detection and Recovery for Robot Motion Planning with Uncertainty

    E-Print Network [OSTI]

    Donald, Bruce Randall

    1987-07-01T23:59:59.000Z

    Robots must plan and execute tasks in the presence of uncertainty. Uncertainty arises from sensing errors, control errors, and uncertainty in the geometry of the environment. The last, which is called model error, has ...

  3. Neutron activation analysis of the 30Si content of highly enriched 28Si: proof of concept and estimation of the achievable uncertainty

    E-Print Network [OSTI]

    D'Agostino, Giancarlo; Oddone, Massimo; Prata, Michele; Bergamaschi, Luigi; Giordani, Laura

    2014-01-01T23:59:59.000Z

    We investigated the use of neutron activation to estimate the 30Si mole fraction of the ultra-pure silicon material highly enriched in 28Si for the measurement of the Avogadro constant. Specifically, we developed a relative method based on Instrumental Neutron Activation Analysis and using a natural-Si sample as a standard. To evaluate the achievable uncertainty, we irradiated a 6 g sample of a natural-Si material and modeled experimentally the signal that would be produced by a sample of the 28Si-enriched material of similar mass and subjected to the same measurement conditions. The extrapolation of the expected uncertainty from the experimental data indicates that a measurement of the 30Si mole fraction of the 28Si-enriched material might reach a 4% relative combined standard uncertainty.

  4. Uncertainty in climate change policy analysis

    E-Print Network [OSTI]

    Jacoby, Henry D.; Prinn, Ronald G.

    Achieving agreement about whether and how to control greenhouse gas emissions would be difficult enough even if the consequences were fully known. Unfortunately, choices must be made in the face of great uncertainty, about ...

  5. Methods for Composing Tradeoff Studies under Uncertainty

    E-Print Network [OSTI]

    Bily, Christopher

    2012-10-19T23:59:59.000Z

    for the power train. This level of knowledge reuse is in keeping with good systems engineering practice. However, existing procedures for generating tradeoff studies under uncertainty involve assumptions that preclude engineers from composing them in a...

  6. Uncertainty Quantification in ocean state estimation

    E-Print Network [OSTI]

    Kalmikov, Alexander G

    2013-01-01T23:59:59.000Z

    Quantifying uncertainty and error bounds is a key outstanding challenge in ocean state estimation and climate research. It is particularly difficult due to the large dimensionality of this nonlinear estimation problem and ...

  7. A note on competitive investment under uncertainty

    E-Print Network [OSTI]

    Pindyck, Robert S.

    1991-01-01T23:59:59.000Z

    This paper clarifies how uncertainty affects irreversible investment in a competitive market equilibrium. With free entry, irreversibility affects the distribution of future prices, and thereby creates an opportunity cost ...

  8. Handling uncertainty in DEX methodology Martin Znidarsic

    E-Print Network [OSTI]

    Bohanec, Marko

    URPDM2010 1 Handling uncertainty in DEX methodology Martin Znidarsic Jozef Stefan Institute, Jamova cesta 39, martin.znidarsic@ijs.si Marko Bohanec Jozef Stefan Institute, Jamova cesta 39, marko

  9. Estimating uncertainties in integrated reservoir studies

    E-Print Network [OSTI]

    Zhang, Guohong

    2004-09-30T23:59:59.000Z

    To make sound investment decisions, decision makers need accurate estimates of the uncertainties present in forecasts of reservoir performance. In this work I propose a method, the integrated mismatch method, that incorporates the misfit...

  10. Multifidelity methods for multidisciplinary design under uncertainty

    E-Print Network [OSTI]

    Christensen, Daniel Erik

    2012-01-01T23:59:59.000Z

    For computational design and analysis tasks, scientists and engineers often have available many different simulation models. The output of each model has an associated uncertainty that is a result of the modeling process. ...

  11. Sandia Energy - Computational Fluid Dynamics & Large-Scale Uncertainty...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Large-Scale Uncertainty Quantification for Wind Energy Home Highlights - HPC Computational Fluid Dynamics & Large-Scale Uncertainty Quantification for Wind Energy Previous Next...

  12. Uncertainty analysis of multi-rate kinetics of uranium desorption...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments. Abstract: A...

  13. avt-147 computational uncertainty: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: models of uncertainties, the construction of the stochastic models using the maximum entropy principleStochastic modeling of uncertainties in computational structural...

  14. advanced lmrs uncertainties: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: models of uncertainties, the construction of the stochastic models using the maximum entropy principleStochastic modeling of uncertainties in computational structural...

  15. Programmatic methods for addressing contaminated volume uncertainties.

    SciTech Connect (OSTI)

    DURHAM, L.A.; JOHNSON, R.L.; RIEMAN, C.R.; SPECTOR, H.L.; Environmental Science Division; U.S. ARMY CORPS OF ENGINEERS BUFFALO DISTRICT

    2007-01-01T23:59:59.000Z

    Accurate estimates of the volumes of contaminated soils or sediments are critical to effective program planning and to successfully designing and implementing remedial actions. Unfortunately, data available to support the preremedial design are often sparse and insufficient for accurately estimating contaminated soil volumes, resulting in significant uncertainty associated with these volume estimates. The uncertainty in the soil volume estimates significantly contributes to the uncertainty in the overall project cost estimates, especially since excavation and off-site disposal are the primary cost items in soil remedial action projects. The Army Corps of Engineers Buffalo District's experience has been that historical contaminated soil volume estimates developed under the Formerly Utilized Sites Remedial Action Program (FUSRAP) often underestimated the actual volume of subsurface contaminated soils requiring excavation during the course of a remedial activity. In response, the Buffalo District has adopted a variety of programmatic methods for addressing contaminated volume uncertainties. These include developing final status survey protocols prior to remedial design, explicitly estimating the uncertainty associated with volume estimates, investing in predesign data collection to reduce volume uncertainties, and incorporating dynamic work strategies and real-time analytics in predesign characterization and remediation activities. This paper describes some of these experiences in greater detail, drawing from the knowledge gained at Ashland1, Ashland2, Linde, and Rattlesnake Creek. In the case of Rattlesnake Creek, these approaches provided the Buffalo District with an accurate predesign contaminated volume estimate and resulted in one of the first successful FUSRAP fixed-price remediation contracts for the Buffalo District.

  16. Cost uncertainty for different levels of technology maturity

    SciTech Connect (OSTI)

    DeMuth, S.F. [Los Alamos National Lab., NM (United States); Franklin, A.L. [Pacific Northwest National Lab., Richland, WA (United States)

    1996-08-07T23:59:59.000Z

    It is difficult at best to apply a single methodology for estimating cost uncertainties related to technologies of differing maturity. While highly mature technologies may have significant performance and manufacturing cost data available, less well developed technologies may be defined in only conceptual terms. Regardless of the degree of technical maturity, often a cost estimate relating to application of the technology may be required to justify continued funding for development. Yet, a cost estimate without its associated uncertainty lacks the information required to assess the economic risk. For this reason, it is important for the developer to provide some type of uncertainty along with a cost estimate. This study demonstrates how different methodologies for estimating uncertainties can be applied to cost estimates for technologies of different maturities. For a less well developed technology an uncertainty analysis of the cost estimate can be based on a sensitivity analysis; whereas, an uncertainty analysis of the cost estimate for a well developed technology can be based on an error propagation technique from classical statistics. It was decided to demonstrate these uncertainty estimation techniques with (1) an investigation of the additional cost of remediation due to beyond baseline, nearly complete, waste heel retrieval from underground storage tanks (USTs) at Hanford; and (2) the cost related to the use of crystalline silico-titanate (CST) rather than the baseline CS100 ion exchange resin for cesium separation from UST waste at Hanford.

  17. Error propagation equations for estimating the uncertainty in high-speed wind tunnel test results

    SciTech Connect (OSTI)

    Clark, E.L.

    1994-07-01T23:59:59.000Z

    Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, and calibration Mach number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-steam Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for five fundamental aerodynamic ratios which relate free-steam test conditions to a reference condition.

  18. Risk management & organizational uncertainty implications for the assessment of high consequence organizations

    SciTech Connect (OSTI)

    Bennett, C.T.

    1995-02-23T23:59:59.000Z

    Post hoc analyses have demonstrated clearly that macro-system, organizational processes have played important roles in such major catastrophes as Three Mile Island, Bhopal, Exxon Valdez, Chernobyl, and Piper Alpha. How can managers of such high-consequence organizations as nuclear power plants and nuclear explosives handling facilities be sure that similar macro-system processes are not operating in their plants? To date, macro-system effects have not been integrated into risk assessments. Part of the reason for not using macro-system analyses to assess risk may be the impression that standard organizational measurement tools do not provide hard data that can be managed effectively. In this paper, I argue that organizational dimensions, like those in ISO 9000, can be quantified and integrated into standard risk assessments.

  19. INCORPORATING UNCERTAINTY INTO DAM SAFETY RISK Sanjay S. Chauhan1

    E-Print Network [OSTI]

    Chauhan, Sanjay S.

    on the topic of uncertainty in quantitative risk and policy analysis the reader is referred to Morgan to incorporating input uncertainties into risk analysis model. Input uncertainties are captured by using for uncertainty analysis in dam safety risk assessment, and demonstrates some useful formats for presenting

  20. Bounded Uncertainty Roadmaps for Path Planning Leonidas J. Guibas1

    E-Print Network [OSTI]

    Guibas, Leonidas J.

    Bounded Uncertainty Roadmaps for Path Planning Leonidas J. Guibas1 , David Hsu2 , Hanna Kurniawati2 uncertainty during planning. We in- troduce the notion of a bounded uncertainty roadmap (BURM) and use, and it is not much slower than classic probabilistic roadmap planning algorithms, which ignore uncertainty

  1. Quantifying uncertainty in LCA-modelling of waste management systems

    SciTech Connect (OSTI)

    Clavreul, Julie, E-mail: julc@env.dtu.dk [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark); Guyonnet, Dominique [BRGM, ENAG BRGM-School, BP 6009, 3 Avenue C. Guillemin, 45060 Orleans Cedex (France); Christensen, Thomas H. [Department of Environmental Engineering, Technical University of Denmark, Miljoevej, Building 113, DK-2800 Kongens Lyngby (Denmark)

    2012-12-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Uncertainty in LCA-modelling of waste management is significant. Black-Right-Pointing-Pointer Model, scenario and parameter uncertainties contribute. Black-Right-Pointing-Pointer Sequential procedure for quantifying uncertainty is proposed. Black-Right-Pointing-Pointer Application of procedure is illustrated by a case-study. - Abstract: Uncertainty analysis in LCA studies has been subject to major progress over the last years. In the context of waste management, various methods have been implemented but a systematic method for uncertainty analysis of waste-LCA studies is lacking. The objective of this paper is (1) to present the sources of uncertainty specifically inherent to waste-LCA studies, (2) to select and apply several methods for uncertainty analysis and (3) to develop a general framework for quantitative uncertainty assessment of LCA of waste management systems. The suggested method is a sequence of four steps combining the selected methods: (Step 1) a sensitivity analysis evaluating the sensitivities of the results with respect to the input uncertainties, (Step 2) an uncertainty propagation providing appropriate tools for representing uncertainties and calculating the overall uncertainty of the model results, (Step 3) an uncertainty contribution analysis quantifying the contribution of each parameter uncertainty to the final uncertainty and (Step 4) as a new approach, a combined sensitivity analysis providing a visualisation of the shift in the ranking of different options due to variations of selected key parameters. This tiered approach optimises the resources available to LCA practitioners by only propagating the most influential uncertainties.

  2. Uncertainty and sampling issues in tank characterization

    SciTech Connect (OSTI)

    Liebetrau, A.M.; Pulsipher, B.A.; Kashporenko, D.M. [and others

    1997-06-01T23:59:59.000Z

    A defensible characterization strategy must recognize that uncertainties are inherent in any measurement or estimate of interest and must employ statistical methods for quantifying and managing those uncertainties. Estimates of risk and therefore key decisions must incorporate knowledge about uncertainty. This report focuses statistical methods that should be employed to ensure confident decision making and appropriate management of uncertainty. Sampling is a major source of uncertainty that deserves special consideration in the tank characterization strategy. The question of whether sampling will ever provide the reliable information needed to resolve safety issues is explored. The issue of sample representativeness must be resolved before sample information is reliable. Representativeness is a relative term but can be defined in terms of bias and precision. Currently, precision can be quantified and managed through an effective sampling and statistical analysis program. Quantifying bias is more difficult and is not being addressed under the current sampling strategies. Bias could be bounded by (1) employing new sampling methods that can obtain samples from other areas in the tanks, (2) putting in new risers on some worst case tanks and comparing the results from existing risers with new risers, or (3) sampling tanks through risers under which no disturbance or activity has previously occurred. With some bound on bias and estimates of precision, various sampling strategies could be determined and shown to be either cost-effective or infeasible.

  3. ISO/GUM UNCERTAINTIES AND CIAAW (UNCERTAINTY TREATMENT FOR RECOMMENDED ATOMIC WEIGHTS AND ISOTOPIC ABUNDANCES)

    SciTech Connect (OSTI)

    HOLDEN,N.E.

    2007-07-23T23:59:59.000Z

    The International Organization for Standardization (ISO) has published a Guide to the expression of Uncertainty in Measurement (GUM). The IUPAC Commission on Isotopic Abundance and Atomic Weight (CIAAW) began attaching uncertainty limits to their recommended values about forty years ago. CIAAW's method for determining and assigning uncertainties has evolved over time. We trace this evolution to their present method and their effort to incorporate the basic ISO/GUM procedures into evaluations of these uncertainties. We discuss some dilemma the CIAAW faces in their present method and whether it is consistent with the application of the ISO/GUM rules. We discuss the attempt to incorporate variations in measured isotope ratios, due to natural fractionation, into the ISO/GUM system. We make some observations about the inconsistent treatment in the incorporation of natural variations into recommended data and uncertainties. A recommendation for expressing atomic weight values using a tabulated range of values for various chemical elements is discussed.

  4. Uncertainty and error in computational simulations

    SciTech Connect (OSTI)

    Oberkampf, W.L.; Diegert, K.V.; Alvin, K.F.; Rutherford, B.M.

    1997-10-01T23:59:59.000Z

    The present paper addresses the question: ``What are the general classes of uncertainty and error sources in complex, computational simulations?`` This is the first step of a two step process to develop a general methodology for quantitatively estimating the global modeling and simulation uncertainty in computational modeling and simulation. The second step is to develop a general mathematical procedure for representing, combining and propagating all of the individual sources through the simulation. The authors develop a comprehensive view of the general phases of modeling and simulation. The phases proposed are: conceptual modeling of the physical system, mathematical modeling of the system, discretization of the mathematical model, computer programming of the discrete model, numerical solution of the model, and interpretation of the results. This new view is built upon combining phases recognized in the disciplines of operations research and numerical solution methods for partial differential equations. The characteristics and activities of each of these phases is discussed in general, but examples are given for the fields of computational fluid dynamics and heat transfer. They argue that a clear distinction should be made between uncertainty and error that can arise in each of these phases. The present definitions for uncertainty and error are inadequate and. therefore, they propose comprehensive definitions for these terms. Specific classes of uncertainty and error sources are then defined that can occur in each phase of modeling and simulation. The numerical sources of error considered apply regardless of whether the discretization procedure is based on finite elements, finite volumes, or finite differences. To better explain the broad types of sources of uncertainty and error, and the utility of their categorization, they discuss a coupled-physics example simulation.

  5. Programmatic methods for addressing contaminated volume uncertainties

    SciTech Connect (OSTI)

    Rieman, C.R.; Spector, H.L. [U.S. Army Corps of Engineers Buffalo District, Buffalo, NY (United States); Durham, L.A.; Johnson, R.L. [Argonne National Laboratory, Environmental Science Div., IL (United States)

    2007-07-01T23:59:59.000Z

    Accurate estimates of the volumes of contaminated soils or sediments are critical to effective program planning and to successfully designing and implementing remedial actions. Unfortunately, data available to support the pre-remedial design are often sparse and insufficient for accurately estimating contaminated soil volumes, resulting in significant uncertainty associated with these volume estimates. The uncertainty in the soil volume estimates significantly contributes to the uncertainty in the overall project cost estimates, especially since excavation and off-site disposal are the primary cost items in soil remedial action projects. The U.S. Army Corps of Engineers Buffalo District's experience has been that historical contaminated soil volume estimates developed under the Formerly Utilized Sites Remedial Action Program (FUSRAP) often underestimated the actual volume of subsurface contaminated soils requiring excavation during the course of a remedial activity. In response, the Buffalo District has adopted a variety of programmatic methods for addressing contaminated volume uncertainties. These include developing final status survey protocols prior to remedial design, explicitly estimating the uncertainty associated with volume estimates, investing in pre-design data collection to reduce volume uncertainties, and incorporating dynamic work strategies and real-time analytics in pre-design characterization and remediation activities. This paper describes some of these experiences in greater detail, drawing from the knowledge gained at Ashland 1, Ashland 2, Linde, and Rattlesnake Creek. In the case of Rattlesnake Creek, these approaches provided the Buffalo District with an accurate pre-design contaminated volume estimate and resulted in one of the first successful FUSRAP fixed-price remediation contracts for the Buffalo District. (authors)

  6. Uncertainty in Simulating Wheat Yields Under Climate Change

    SciTech Connect (OSTI)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J.W.; Hatfield, Jerry; Ruane, Alex; Boote, K. J.; Thorburn, Peter; Rotter, R.P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P.K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, AJ; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, Robert; Heng, L.; Hooker, J.; Hunt, L.A.; Ingwersen, J.; Izaurralde, Roberto C.; Kersebaum, K.C.; Mueller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.O.; Olesen, JE; Osborne, T.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M.A.; Shcherbak, I.; Steduto, P.; Stockle, Claudio O.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J.W.; Williams, J.R.; Wolf, J.

    2013-09-01T23:59:59.000Z

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments1,2. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change has been increasingly described in the literature3,4 while assessments of the uncertainty in crop responses to climate change are very rare. Systematic and objective comparisons across impact studies is difficult, and thus has not been fully realized5. Here we present the largest coordinated and standardized crop model intercomparison for climate change impacts on wheat production to date. We found that several individual crop models are able to reproduce measured grain yields under current diverse environments, particularly if sufficient details are provided to execute them. However, simulated climate change impacts can vary across models due to differences in model structures and algorithms. The crop-model component of uncertainty in climate change impact assessments was considerably larger than the climate-model component from Global Climate Models (GCMs). Model responses to high temperatures and temperature-by-CO2 interactions are identified as major sources of simulated impact uncertainties. Significant reductions in impact uncertainties through model improvements in these areas and improved quantification of uncertainty through multi-model ensembles are urgently needed for a more reliable translation of climate change scenarios into agricultural impacts in order to develop adaptation strategies and aid policymaking.

  7. Is the Heisenberg uncertainty relation really violated?

    E-Print Network [OSTI]

    Masao Kitano

    2008-03-31T23:59:59.000Z

    It has been pointed out that for some types of measurement the Heisenberg uncertainty relation seems to be violated. In order to save the situation a new uncertainty relation was proposed by Ozawa. Here we introduce revised definitions of error and disturbance taking into account the gain associated with generalized measurement interactions. With these new definitions, the validity of the Heisenberg inequality is recovered for continuous linear measurement interactions. We also examine the changes in distribution functions caused by the general measurement interaction and clarify the physical meanings of infinitely large errors and disturbances.

  8. Modeling of Uncertainty in Wind Energy Forecast

    E-Print Network [OSTI]

    regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

  9. Bayesian Environmetrics: Uncertainty and Sensitivity Analysis

    E-Print Network [OSTI]

    Draper, David

    (joint work with Bruno Mendes) Department of Applied Mathematics and Statistics University of California and analysis of variance tools provide sensitivity analysis insight. -- Model uncertainty audit shows, as an energy source, has been employed in the United States and Europe for more than 50 years, and yet

  10. Stochastic Reduced Basis Methods for Uncertainty Quantification

    E-Print Network [OSTI]

    Sóbester, András

    Turbine Blades In general, stochastic analysis (using SRBM) of any physical system involves two main steps the variability in the performance of a turbine blade in the presence of uncertainty. These blades operate variability in material properties and boundary condi- tions. Given a numerical solution of the set of SPDEs

  11. Model Uncertainty in Discrete Event Systems \\Lambda

    E-Print Network [OSTI]

    Garg, Vijay

    that a correct model of the system to be controlled was avail­ able. A goal of this wok is to provide be controllably distin­ guished. We use the finite state machine model with controllable and uncontrollable events to control systems in the presence of uncertainty in the model of the system and environment in which

  12. IJCAI-05 Workshop Reasoning with Uncertainty in

    E-Print Network [OSTI]

    Pineau, Joelle

    Problems via Spatio-Temporal Belief State Clustering [p.17] X. Li, W.K. Cheung, and J. Liu Dept Uncertainty [p. 70] P. Fabiani and F. Teichteil-K¨onigsbuch ONERA/DCSC, Toulouse, France iii #12;iv #12;IJCAI, Canada) Stergios Roumeliotis (University of Minnesota, USA) Nicholas Roy (MIT, USA) Alessandro Saffiotti

  13. Dynamic Scheduling of Maintenance Activities Under Uncertainties

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of the required treatment. There are mainly two types of maintenance activities: the preventive maintenance, whoseDynamic Scheduling of Maintenance Activities Under Uncertainties Fran¸cois Marmier, Christophe in maintenance services field where the different practical knowledges or skills are their working tools. We

  14. Applying Calibration to Improve Uncertainty Assessment

    E-Print Network [OSTI]

    Fondren, Mark Edward

    2013-08-02T23:59:59.000Z

    that uncertainty can be assessed more reliably through look-backs and calibration, i.e., comparing actual results to probabilistic predictions over time. While many recognize the importance of look-backs, calibration is seldom practiced in industry. I believe a...

  15. Representation of analysis results involving aleatory and epistemic uncertainty.

    SciTech Connect (OSTI)

    Johnson, Jay Dean (ProStat, Mesa, AZ); Helton, Jon Craig (Arizona State University, Tempe, AZ); Oberkampf, William Louis; Sallaberry, Cedric J.

    2008-08-01T23:59:59.000Z

    Procedures are described for the representation of results in analyses that involve both aleatory uncertainty and epistemic uncertainty, with aleatory uncertainty deriving from an inherent randomness in the behavior of the system under study and epistemic uncertainty deriving from a lack of knowledge about the appropriate values to use for quantities that are assumed to have fixed but poorly known values in the context of a specific study. Aleatory uncertainty is usually represented with probability and leads to cumulative distribution functions (CDFs) or complementary cumulative distribution functions (CCDFs) for analysis results of interest. Several mathematical structures are available for the representation of epistemic uncertainty, including interval analysis, possibility theory, evidence theory and probability theory. In the presence of epistemic uncertainty, there is not a single CDF or CCDF for a given analysis result. Rather, there is a family of CDFs and a corresponding family of CCDFs that derive from epistemic uncertainty and have an uncertainty structure that derives from the particular uncertainty structure (i.e., interval analysis, possibility theory, evidence theory, probability theory) used to represent epistemic uncertainty. Graphical formats for the representation of epistemic uncertainty in families of CDFs and CCDFs are investigated and presented for the indicated characterizations of epistemic uncertainty.

  16. Carbon capture retrofits and the cost of regulatory uncertainty

    SciTech Connect (OSTI)

    Reinelt, P.S.; Keith, D.W. [SUNY College of Fredonia, Fredonia, NY (United States). Dept. of Economics

    2007-07-01T23:59:59.000Z

    Power generation firms confront impending replacement of an aging coal-fired fleet in a business environment characterized by volatile natural gas prices and uncertain carbon regulation. We develop a stochastic dynamic programming model of firm investment decisions that minimizes the expected present value of future power generation costs under uncertain natural gas and carbon prices. We explore the implications of regulatory uncertainty on generation technology choice and the optimal timing of investment, and assess the implications of these choices for regulators. We find that interaction of regulatory uncertainty with irreversible investment always raises the social cost of carbon abatement. Further, the social cost of regulatory uncertainty is strongly dependent on the relative competitiveness of IGCC plants, for which the cost of later carbon capture retrofits is comparatively small, and on the firm's ability to use investments in natural gas generation as a transitional strategy to manage carbon regulation uncertainty. Without highly competitive IGCC or low gas prices, regulatory uncertainty can increase the expected social cost of reducing emissions by 40 to 60%.

  17. A Framework for Modeling Uncertainty in Regional Climate Change

    E-Print Network [OSTI]

    Monier, Erwan

    In this study, we present a new modeling framework and a large ensemble of climate projections to investigate the uncertainty in regional climate change over the US associated with four dimensions of uncertainty. The sources ...

  18. Adaptive control of hypersonic vehicles in presence of actuation uncertainties

    E-Print Network [OSTI]

    Somanath, Amith

    2010-01-01T23:59:59.000Z

    The thesis develops a new class of adaptive controllers that guarantee global stability in presence of actuation uncertainties. Actuation uncertainties culminate to linear plants with a partially known input matrix B. ...

  19. Uncertainty analysis of climate change and policy response

    E-Print Network [OSTI]

    Webster, Mort David.; Forest, Chris Eliot.; Reilly, John M.; Babiker, Mustafa H.M.; Kicklighter, David W.; Mayer, Monika.; Prinn, Ronald G.; Sarofim, Marcus C.; Sokolov, Andrei P.; Stone, Peter H.; Wang, Chien.

    To aid climate policy decisions, accurate quantitative descriptions of the uncertainty in climate outcomes under various possible policies are needed. Here, we apply an earth systems model to describe the uncertainty in ...

  20. Uncertainties in Energy Consumption Introduced by Building Operations and

    E-Print Network [OSTI]

    Uncertainties in Energy Consumption Introduced by Building Operations and Weather for a Medium between predicted and actual building energy consumption can be attributed to uncertainties introduced in energy consumption due to actual weather and building operational practices, using a simulation

  1. The Time's Arrow within the Uncertainty Quantum

    E-Print Network [OSTI]

    Zhen Wang

    1998-06-22T23:59:59.000Z

    A generalized framework is developed which uses a set description instead of wavefunction to emphasize the role of the observer. Such a framework is found to be very effective in the study of the measurement problem and time's arrow. Measurement in classical and quantum theory is given a unified treatment. With the introduction of the concept of uncertainty quantum which is the basic unit of measurement, we show that the time's arrow within the uncertainty quantum is just opposite to the time's arrow in the observable reality. A special constant is discussed which explains our sensation of time and provides a permanent substrate for all change. It is shown that the whole spacetime connects together in a delicate structure.

  2. Spectral Representations of Uncertainty: Algorithms and Applications

    SciTech Connect (OSTI)

    George Em Karniadakis

    2005-04-24T23:59:59.000Z

    The objectives of this project were: (1) Develop a general algorithmic framework for stochastic ordinary and partial differential equations. (2) Set polynomial chaos method and its generalization on firm theoretical ground. (3) Quantify uncertainty in large-scale simulations involving CFD, MHD and microflows. The overall goal of this project was to provide DOE with an algorithmic capability that is more accurate and three to five orders of magnitude more efficient than the Monte Carlo simulation.

  3. Uncertainty estimates for derivatives and intercepts

    SciTech Connect (OSTI)

    Clark, E.L.

    1990-01-01T23:59:59.000Z

    Straight line least squares fits of experimental data are widely used in the analysis of test results to provide derivatives and intercepts. A method for evaluating the uncertainty in these parameters is described. The method utilizes conventional least squares results and is applicable to experiments where the independent variable is controlled, but not necessarily free of error. A Monte Carlo verification of the method is given 7 refs., 2 tabs.

  4. Information-Disturbance theorem and Uncertainty Relation

    E-Print Network [OSTI]

    Takayuki Miyadera; Hideki Imai

    2007-07-31T23:59:59.000Z

    It has been shown that Information-Disturbance theorem can play an important role in security proof of quantum cryptography. The theorem is by itself interesting since it can be regarded as an information theoretic version of uncertainty principle. It, however, has been able to treat restricted situations. In this paper, the restriction on the source is abandoned, and a general information-disturbance theorem is obtained. The theorem relates information gain by Eve with information gain by Bob.

  5. Informatively optimal levels of confidence for mesurement uncertainty

    E-Print Network [OSTI]

    David Kisets

    2011-10-13T23:59:59.000Z

    Oct 13, 2011 ... netvision.net.il) ... "Informatively optimal combining, expanding, and establishing traceability in evaluating measurement uncertainties".

  6. The effects of incorporating dynamic data on estimates of uncertainty

    E-Print Network [OSTI]

    Mulla, Shahebaz Hisamuddin

    2004-09-30T23:59:59.000Z

    in production forecasts will help in assessing risk and making good economic decisions. This study investigates the effect of combining dynamic data with the uncertainty in static data to see the effect on estimates of uncertainty in production forecasting... combined with linear uncertainty analysis. The results were compared with the uncertainty predicted using only static data. We also investigated approaches for best selecting a smaller number of models from a larger set of realizations to be history...

  7. Calculation defines uncertainty of unaccounted-for gas

    SciTech Connect (OSTI)

    Norman, R.; Jepson, P.

    1987-04-06T23:59:59.000Z

    A method for defining the uncertainty of the unaccounted-for gas figure and for identifying and isolating causes of significant changes in this figure will lead to a more accurate accounting of volumes in high-pressure natural-gas transmission systems. An error analysis can be employed to ascertain the uncertainty on the unaccounted-for gas figure for such systems along with a simple method for recognizing the magnitude and time of significant changes in this figure. In addition, a better understanding of factors affecting meter accuracy will lead to more precise gas measurements.

  8. Volume Rendering Data with Uncertainty Information Suzana Djurcilov

    E-Print Network [OSTI]

    Robinson, Allan R.

    Volume Rendering Data with Uncertainty Information Suzana Djurcilov , Kwansik Kim , Pierre F. J uncertainty information in direct volume rendering. The goal is to produce vol- ume rendered images the uncertainty information directly into the volume rendering equation. The second method involves post

  9. Uncertainty, Performance, and Model Dependency in Approximate Adaptive Nonlinear Control

    E-Print Network [OSTI]

    Szepesvari, Csaba

    Uncertainty, Performance, and Model Dependency in Approximate Adaptive Nonlinear Control M. French, and the performance of a class of approximate model based adaptive controllers is studied. An upper performance bound uncertainty model; control effort bounds require both L 2 and L 1 uncertainty models), and various structural

  10. Trio: A System for Data, Uncertainty, and Lineage

    E-Print Network [OSTI]

    Bejerano, Gill

    or resolve uncertainty #12;13 Our Goal Develop a new kind of database management system (DBMS) in which: 1. Data 2. Uncertainty 3. Lineage are all first-class interrelated concepts With all the "usual" DBMS a new kind of database management system (DBMS) in which: 1. Data 2. Uncertainty 3. Lineage are all

  11. Robust Nonlinear State Feedback for Power Systems under Structured Uncertainty

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    , and highly nonlinear systems with constantly varying loads. Control of modern electric power systems becomes perturbations to the state model of power systems. The control law is applied through the excitation system, stability, uncertainty,. 1. INTRODUCTION For a control scheme to be effective, some details of the system

  12. A Bayesian approach to simultaneously quantify assignments and linguistic uncertainty

    SciTech Connect (OSTI)

    Chavez, Gregory M [Los Alamos National Laboratory; Booker, Jane M [BOOKER SCIENTIFIC FREDERICKSBURG; Ross, Timothy J [UNM

    2010-10-07T23:59:59.000Z

    Subject matter expert assessments can include both assignment and linguistic uncertainty. This paper examines assessments containing linguistic uncertainty associated with a qualitative description of a specific state of interest and the assignment uncertainty associated with assigning a qualitative value to that state. A Bayesian approach is examined to simultaneously quantify both assignment and linguistic uncertainty in the posterior probability. The approach is applied to a simplified damage assessment model involving both assignment and linguistic uncertainty. The utility of the approach and the conditions under which the approach is feasible are examined and identified.

  13. Methodology for characterizing modeling and discretization uncertainties in computational simulation

    SciTech Connect (OSTI)

    ALVIN,KENNETH F.; OBERKAMPF,WILLIAM L.; RUTHERFORD,BRIAN M.; DIEGERT,KATHLEEN V.

    2000-03-01T23:59:59.000Z

    This research effort focuses on methodology for quantifying the effects of model uncertainty and discretization error on computational modeling and simulation. The work is directed towards developing methodologies which treat model form assumptions within an overall framework for uncertainty quantification, for the purpose of developing estimates of total prediction uncertainty. The present effort consists of work in three areas: framework development for sources of uncertainty and error in the modeling and simulation process which impact model structure; model uncertainty assessment and propagation through Bayesian inference methods; and discretization error estimation within the context of non-deterministic analysis.

  14. Uncertainty Budget Analysis for Dimensional Inspection Processes (U)

    SciTech Connect (OSTI)

    Valdez, Lucas M. [Los Alamos National Laboratory

    2012-07-26T23:59:59.000Z

    This paper is intended to provide guidance and describe how to prepare an uncertainty analysis of a dimensional inspection process through the utilization of an uncertainty budget analysis. The uncertainty analysis is stated in the same methodology as that of the ISO GUM standard for calibration and testing. There is a specific distinction between how Type A and Type B uncertainty analysis is used in a general and specific process. All theory and applications are utilized to represent both a generalized approach to estimating measurement uncertainty and how to report and present these estimations for dimensional measurements in a dimensional inspection process. The analysis of this uncertainty budget shows that a well-controlled dimensional inspection process produces a conservative process uncertainty, which can be attributed to the necessary assumptions in place for best possible results.

  15. Measurement uncertainty in surface flatness measurement

    E-Print Network [OSTI]

    H. L. Thang

    2011-11-29T23:59:59.000Z

    Flatness of a plate is a parameter has been put under consideration for long time. Factors influencing the accuracy of this parameter have been recognized and examined carefully but placed scatterringly. Beside that those reports have not been always in harmonization with Guide for expression of uncertainty measurement (GUM). Furthermore, mathematical equations describing clearly the flatness measurement have not been seen in those reports also. We have collected those influencing factors for systematic reference purpose, re-written the equation describing the profile measurement of the plate topography, and proposed an equation for flatness determination. An illustrative numerical example will be also shown.

  16. Uncertainty quantification for large-scale ocean circulation predictions.

    SciTech Connect (OSTI)

    Safta, Cosmin; Debusschere, Bert J.; Najm, Habib N.; Sargsyan, Khachik

    2010-09-01T23:59:59.000Z

    Uncertainty quantificatio in climate models is challenged by the sparsity of the available climate data due to the high computational cost of the model runs. Another feature that prevents classical uncertainty analyses from being easily applicable is the bifurcative behavior in the climate data with respect to certain parameters. A typical example is the Meridional Overturning Circulation in the Atlantic Ocean. The maximum overturning stream function exhibits discontinuity across a curve in the space of two uncertain parameters, namely climate sensitivity and CO{sub 2} forcing. We develop a methodology that performs uncertainty quantificatio in the presence of limited data that have discontinuous character. Our approach is two-fold. First we detect the discontinuity location with a Bayesian inference, thus obtaining a probabilistic representation of the discontinuity curve location in presence of arbitrarily distributed input parameter values. Furthermore, we developed a spectral approach that relies on Polynomial Chaos (PC) expansions on each sides of the discontinuity curve leading to an averaged-PC representation of the forward model that allows efficient uncertainty quantification and propagation. The methodology is tested on synthetic examples of discontinuous data with adjustable sharpness and structure.

  17. Uncertainty evaluation in transition temperature measurements

    SciTech Connect (OSTI)

    Brillaud, C. [Electricite de France, Avoine (France); Augendre, H. [Electricite de France, Clamart (France); Bethmont, M. [Electricite de France, Ecuelles (France)

    1996-12-31T23:59:59.000Z

    The pressure vessel surveillance program is mainly based on the transition temperature change assessment, a change which is induced by neutron irradiation. Uncertainties in Charpy test measurements are well known; however, the authors are less familiar with uncertainties due to general procedures governing experiments, which can be significant and therefore must be taken into account. In fact, procedures specify neither the number of specimens needed to obtain a transition curve, nor the choice of test temperatures, nor the fitting method for the transition curve. A study has been conducted to determine the influence of the experimental procedure on the accuracy of transition temperature determination, and the initial results are presented in this paper. Two EDF laboratories performed Charpy tests on the surveillance program reference metal, using 8, 16, 24, 32 and 64 specimens to evaluate how the number of specimens affects the transition temperature. The influence of the scatter of mechanical properties has also been studied at two levels of irradiation. The authors have evaluated the effect of different sampling strategies and investigated a new fitting method, which is based on a simultaneous fitting of all curves with common constraints on parameters.

  18. Uncertainty Analysis Technique for OMEGA Dante Measurements

    SciTech Connect (OSTI)

    May, M J; Widmann, K; Sorce, C; Park, H; Schneider, M

    2010-05-07T23:59:59.000Z

    The Dante is an 18 channel X-ray filtered diode array which records the spectrally and temporally resolved radiation flux from various targets (e.g. hohlraums, etc.) at X-ray energies between 50 eV to 10 keV. It is a main diagnostics installed on the OMEGA laser facility at the Laboratory for Laser Energetics, University of Rochester. The absolute flux is determined from the photometric calibration of the X-ray diodes, filters and mirrors and an unfold algorithm. Understanding the errors on this absolute measurement is critical for understanding hohlraum energetic physics. We present a new method for quantifying the uncertainties on the determined flux using a Monte-Carlo parameter variation technique. This technique combines the uncertainties in both the unfold algorithm and the error from the absolute calibration of each channel into a one sigma Gaussian error function. One thousand test voltage sets are created using these error functions and processed by the unfold algorithm to produce individual spectra and fluxes. Statistical methods are applied to the resultant set of fluxes to estimate error bars on the measurements.

  19. Uncertainty quantification in reacting flow modeling.

    SciTech Connect (OSTI)

    Le MaÒitre, Olivier P. (UniversitÔe d'Evry Val d'Essonne, Evry, France); Reagan, Matthew T.; Knio, Omar M. (Johns Hopkins University, Baltimore, MD); Ghanem, Roger Georges (Johns Hopkins University, Baltimore, MD); Najm, Habib N.

    2003-10-01T23:59:59.000Z

    Uncertainty quantification (UQ) in the computational modeling of physical systems is important for scientific investigation, engineering design, and model validation. In this work we develop techniques for UQ based on spectral and pseudo-spectral polynomial chaos (PC) expansions, and we apply these constructions in computations of reacting flow. We develop and compare both intrusive and non-intrusive spectral PC techniques. In the intrusive construction, the deterministic model equations are reformulated using Galerkin projection into a set of equations for the time evolution of the field variable PC expansion mode strengths. The mode strengths relate specific parametric uncertainties to their effects on model outputs. The non-intrusive construction uses sampling of many realizations of the original deterministic model, and projects the resulting statistics onto the PC modes, arriving at the PC expansions of the model outputs. We investigate and discuss the strengths and weaknesses of each approach, and identify their utility under different conditions. We also outline areas where ongoing and future research are needed to address challenges with both approaches.

  20. Construction and AvailabilityConstruction and Availability Uncertainty in the RegionalUncertainty in the Regional

    E-Print Network [OSTI]

    Page 1 Construction and AvailabilityConstruction and Availability Uncertainty in the Regional and Technology Availability Construction Costs Economic Retirement Variable Capacity for Existing Units #12;Page to construction power plants or to take other action May include policies for particular resources "Scenario

  1. Incorporating uncertainty in RADTRAN 6.0 input files.

    SciTech Connect (OSTI)

    Dennis, Matthew L.; Weiner, Ruth F.; Heames, Terence John (Alion Science and Technology)

    2010-02-01T23:59:59.000Z

    Uncertainty may be introduced into RADTRAN analyses by distributing input parameters. The MELCOR Uncertainty Engine (Gauntt and Erickson, 2004) has been adapted for use in RADTRAN to determine the parameter shape and minimum and maximum of the distribution, to sample on the distribution, and to create an appropriate RADTRAN batch file. Coupling input parameters is not possible in this initial application. It is recommended that the analyst be very familiar with RADTRAN and able to edit or create a RADTRAN input file using a text editor before implementing the RADTRAN Uncertainty Analysis Module. Installation of the MELCOR Uncertainty Engine is required for incorporation of uncertainty into RADTRAN. Gauntt and Erickson (2004) provides installation instructions as well as a description and user guide for the uncertainty engine.

  2. Survey and Evaluate Uncertainty Quantification Methodologies

    SciTech Connect (OSTI)

    Lin, Guang; Engel, David W.; Eslinger, Paul W.

    2012-02-01T23:59:59.000Z

    The Carbon Capture Simulation Initiative (CCSI) is a partnership among national laboratories, industry and academic institutions that will develop and deploy state-of-the-art computational modeling and simulation tools to accelerate the commercialization of carbon capture technologies from discovery to development, demonstration, and ultimately the widespread deployment to hundreds of power plants. The CCSI Toolset will provide end users in industry with a comprehensive, integrated suite of scientifically validated models with uncertainty quantification, optimization, risk analysis and decision making capabilities. The CCSI Toolset will incorporate commercial and open-source software currently in use by industry and will also develop new software tools as necessary to fill technology gaps identified during execution of the project. The CCSI Toolset will (1) enable promising concepts to be more quickly identified through rapid computational screening of devices and processes; (2) reduce the time to design and troubleshoot new devices and processes; (3) quantify the technical risk in taking technology from laboratory-scale to commercial-scale; and (4) stabilize deployment costs more quickly by replacing some of the physical operational tests with virtual power plant simulations. The goal of CCSI is to deliver a toolset that can simulate the scale-up of a broad set of new carbon capture technologies from laboratory scale to full commercial scale. To provide a framework around which the toolset can be developed and demonstrated, we will focus on three Industrial Challenge Problems (ICPs) related to carbon capture technologies relevant to U.S. pulverized coal (PC) power plants. Post combustion capture by solid sorbents is the technology focus of the initial ICP (referred to as ICP A). The goal of the uncertainty quantification (UQ) task (Task 6) is to provide a set of capabilities to the user community for the quantification of uncertainties associated with the carbon capture processes. As such, we will develop, as needed and beyond existing capabilities, a suite of robust and efficient computational tools for UQ to be integrated into a CCSI UQ software framework.

  3. Adaptive Management of Water Resources in Light of Future Climate Uncertainty

    SciTech Connect (OSTI)

    Gerald Sehlke; Mark Colosimo

    2007-11-01T23:59:59.000Z

    Water resources managers have always had to make operational decisions in spite of a relatively high degree of uncertainty caused by changing climate, hydrologic, population, land use, socioeconomic, and other conditions. However, based on current climate change predictions and observations of current impacts of climate change or natural variability, the degree of uncertainty appears to be increasing drastically. By better understanding these uncertainties and their policy implications and by managing those uncertainties adaptively, water resources managers and policy makers can reduce the risk of not meeting their management goals and reduce the potential physical, biological and socioeconomic impacts associated with climate change/variation.

  4. Adaptively Addressing Uncertainty in Estuarine and Near Coastal Restoration Projects

    SciTech Connect (OSTI)

    Thom, Ronald M.; Williams, Greg D.; Borde, Amy B.; Southard, John A.; Sargeant, Susan L.; Woodruff, Dana L.; Laufle, Jeffrey C.; Glasoe, Stuart

    2005-03-01T23:59:59.000Z

    Restoration projects have an uncertain outcome because of a lack of information about current site conditions, historical disturbance levels, effects of landscape alterations on site development, unpredictable trajectories or patterns of ecosystem structural development, and many other factors. A poor understanding of the factors that control the development and dynamics of a system, such as hydrology, salinity, wave energies, can also lead to an unintended outcome. Finally, lack of experience in restoring certain types of systems (e.g., rare or very fragile habitats) or systems in highly modified situations (e.g., highly urbanized estuaries) makes project outcomes uncertain. Because of these uncertainties, project costs can rise dramatically in an attempt to come closer to project goals. All of the potential sources of error can be addressed to a certain degree through adaptive management. The first step is admitting that these uncertainties can exist, and addressing as many of the uncertainties with planning and directed research prior to implementing the project. The second step is to evaluate uncertainties through hypothesis-driven experiments during project implementation. The third step is to use the monitoring program to evaluate and adjust the project as needed to improve the probability of the project to reach is goal. The fourth and final step is to use the information gained in the project to improve future projects. A framework that includes a clear goal statement, a conceptual model, and an evaluation framework can help in this adaptive restoration process. Projects and programs vary in their application of adaptive management in restoration, and it is very difficult to be highly prescriptive in applying adaptive management to projects that necessarily vary widely in scope, goal, ecosystem characteristics, and uncertainties. Very large ecosystem restoration programs in the Mississippi River delta (Coastal Wetlands Planning, Protection, and Restoration Act; CWPPRA) have incorporated very specific and detailed elements in a more active adaptive management effort. In Puget Sound, the Puget Sound Action Team uses site-specific case studies, monitoring, and public involvement to direct actions to reduce microbial contamination of harvestable shellfish. Small-scale projects can also be improved through application of adaptive management. For example, directed research and site assessments resulted in successful restoration of seagrasses near a ferry terminal in Puget Sound. It is recommended that all restoration programs be conducted in an adaptive management framework, and where appropriate, a more active adaptive management approach be applied. The net effect should be less uncertainty, improved project success, advancement of the science of restoration, and cost savings.

  5. UNCERTAINTY EVALUATION OF AVAILABLE ENERGY AND POWER

    SciTech Connect (OSTI)

    Jon P. Christophersen; John L. Morrison

    2006-05-01T23:59:59.000Z

    The Idaho National Laboratory does extensive testing and evaluation of advanced technology batteries and ultracapacitors for applications in electric and hybrid vehicles. The testing is essentially acquiring time records of voltage, current and temperature from a variety of charge and discharge time profiles. From these three basic measured parameters, a complex assortment of derived parameters (resistance, power, etc.) is computed. Derived parameters are in many cases functions of multiple layers of other derived parameters that eventually work back to the three basic measured parameters. The purpose of this paper is to document the methodology used for the uncertainty analysis of the most complicated derived parameters broadly grouped as available energy and available power. This work is an analytical derivation. Future work will report the implementation of algorithms based upon this effort.

  6. Generalized uncertainty principle and black hole thermodynamics

    E-Print Network [OSTI]

    Sunandan Gangopadhyay; Abhijit Dutta; Anirban Saha

    2014-01-08T23:59:59.000Z

    We study the Schwarzschild and Reissner-Nordstr\\"{o}m black hole thermodynamics using the simplest form of the generalized uncertainty principle (GUP) proposed in the literature. The expressions for the mass-temperature relation, heat capacity and entropy are obtained in both cases from which the critical and remnant masses are computed. Our results are exact and reveal that these masses are identical and larger than the so called singular mass for which the thermodynamics quantities become ill-defined. The expression for the entropy reveals the well known area theorem in terms of the horizon area in both cases upto leading order corrections from GUP. The area theorem written in terms of a new variable which can be interpreted as the reduced horizon area arises only when the computation is carried out to the next higher order correction from GUP.

  7. accident consequence uncertainty: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uncertainties in typical oil and gas projects: 1. The oil price, 2. The investments (capex) and operating. The oil and gas reserves and production profiles, 5. The production...

  8. analytical uncertainty propagation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uncertainties in typical oil and gas projects: 1. The oil price, 2. The investments (capex) and operating. The oil and gas reserves and production profiles, 5. The production...

  9. assessing spatial uncertainty: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uncertainties in typical oil and gas projects: 1. The oil price, 2. The investments (capex) and operating. The oil and gas reserves and production profiles, 5. The production...

  10. Special Issue on Integrated Uncertainty Management for Decision Making

    E-Print Network [OSTI]

    under soft constraints #12;· Application: ­ Ranking and recommendation systems ­ Supply chain management and decision making. Topics include but are not limited to: · Methodology: ­ Uncertainty formalisms: Bayesian

  11. Worst-case-expectation approach to optimization under uncertainty

    E-Print Network [OSTI]

    Alexander Shapiro

    2012-10-30T23:59:59.000Z

    Oct 30, 2012 ... Worst-case-expectation approach to optimization under uncertainty ... approximation, risk neutral and risk averse approaches, case studies.

  12. A surrogate-based uncertainty quantification with quantifiable errors

    SciTech Connect (OSTI)

    Bang, Y.; Abdel-Khalik, H. S. [North Carolina State Univ., Raleigh, NC 27695 (United States)

    2012-07-01T23:59:59.000Z

    Surrogate models are often employed to reduce the computational cost required to complete uncertainty quantification, where one is interested in propagating input parameters uncertainties throughout a complex engineering model to estimate responses uncertainties. An improved surrogate construction approach is introduced here which places a premium on reducing the associated computational cost. Unlike existing methods where the surrogate is constructed first, then employed to propagate uncertainties, the new approach combines both sensitivity and uncertainty information to render further reduction in the computational cost. Mathematically, the reduction is described by a range finding algorithm that identifies a subspace in the parameters space, whereby parameters uncertainties orthogonal to the subspace contribute negligible amount to the propagated uncertainties. Moreover, the error resulting from the reduction can be upper-bounded. The new approach is demonstrated using a realistic nuclear assembly model and compared to existing methods in terms of computational cost and accuracy of uncertainties. Although we believe the algorithm is general, it will be applied here for linear-based surrogates and Gaussian parameters uncertainties. The generalization to nonlinear models will be detailed in a separate article. (authors)

  13. Optimization Online - The impact of wind uncertainty on the strategic ...

    E-Print Network [OSTI]

    Pedro Crespo Del Granado

    2015-01-14T23:59:59.000Z

    Jan 14, 2015 ... Abstract: The intermittent nature of wind energy generation has introduced a new degree of uncertainty to the tactical planning of energy ...

  14. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01T23:59:59.000Z

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment's final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  15. DRAFT REPORT HIERARCHY OF METHODS TO CHARACTERIZE UNCERTAINTY

    E-Print Network [OSTI]

    Frey, H. Christopher

    ...................................................................................................... 5 1.2.3 Risk, Cost, Uncertainty and Decisions ........................................................... 20 1.4.3 Other Quantitative Methods.............................................................................................. 24 1.4.5 Sensitivity Analysis

  16. Nonmarket Valuation under Preference Uncertainty: Econometric Models and Estimation

    E-Print Network [OSTI]

    Hanemann, W. Michael; Kristrom, Bengt; Li, Chuan-Zhong

    1996-01-01T23:59:59.000Z

    3 The EconometricUNCERTAINTY: ECONOMETRIC MODELS AND ESTIMATION bY W. MichaelSection 3 introduces ihe econometric model. Section 4

  17. Characterizing and responding to uncertainty in climate change

    E-Print Network [OSTI]

    Lemoine, Derek Mark

    2011-01-01T23:59:59.000Z

    Irreversible abatement investment under cost uncertainties:about other firms’ investment cost. Third, if the regulatorIn addition, while making investment costs heterogeneous

  18. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30T23:59:59.000Z

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  19. Which Models Matter: Uncertainty and Sensitivity Analysis for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Models Matter: Uncertainty and Sensitivity Analysis for Photovoltaic Power Systems Clifford W. Hansen and Andrew Pohl Sandia National Laboratories, Albuquerque, NM, 87185-1033, USA...

  20. The Top Mass: Interpretation and Theoretical Uncertainties

    E-Print Network [OSTI]

    André H. Hoang

    2014-12-11T23:59:59.000Z

    Currently the most precise LHC measurements of the top quark mass are determinations of the top quark mass parameter of Monte-Carlo (MC) event generators reaching uncertainties of well below $1$ GeV. However, there is an additional theoretical problem when using the MC top mass $m_t^{\\rm MC}$ as an input for theoretical predictions, because a rigorous relation of $m_t^{\\rm MC}$ to a renormalized field theory mass is, at the very strict level, absent. In this talk I show how - nevertheless - some concrete statements on $m_t^{\\rm MC}$ can be deduced assuming that the MC generator behaves like a rigorous first principles QCD calculator for the observables that are used for the analyses. I give simple conceptual arguments showing that in this context $m_t^{\\rm MC}$ can be interpreted like the mass of a heavy-light top meson, and that there is a conversion relation to field theory top quark masses that requires a non-perturbative input. The situation is in analogy to B physics where a similar relation exists between experimental B meson masses and field theory bottom masses. The relation gives a prescription how to use $m_t^{\\rm MC}$ as an input for theoretical predictions in perturbative QCD. The outcome is that at this time an additional uncertainty of about $1$ GeV has to be accounted for. I discuss limitations of the arguments I give and possible ways to test them, or even to improve the current situation.

  1. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, main report

    SciTech Connect (OSTI)

    Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States); Lui, C.H. [Nuclear Regulatory Commission, Washington, DC (United States); Goossens, L.H.J.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Paesler-Sauer, J. [Research Center, Karlsruhe (Germany); Helton, J.C. [and others

    1995-01-01T23:59:59.000Z

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The ultimate objective of the joint effort was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. Experts developed their distributions independently. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. To validate the distributions generated for the dispersion code input variables, samples from the distributions and propagated through the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the first of a three-volume document describing the project.

  2. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment, appendices A and B

    SciTech Connect (OSTI)

    Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States); Lui, C.H. [Nuclear Regulatory Commission, Washington, DC (United States); Goossens, L.H.J.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Paesler-Sauer, J. [Research Center, Karlsruhe (Germany); Helton, J.C. [and others

    1995-01-01T23:59:59.000Z

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the second of a three-volume document describing the project and contains two appendices describing the rationales for the dispersion and deposition data along with short biographies of the 16 experts who participated in the project.

  3. Addressing equifinality and uncertainty in eutrophication models George B. Arhonditsis,1

    E-Print Network [OSTI]

    Arhonditsis, George B.

    Addressing equifinality and uncertainty in eutrophication models George B. Arhonditsis,1 Gurbir of eutrophication processes are commonly used to aid scientific understanding and to guide management decisions of uncertainty in the high-dimensional parameter spaces of mechanistic eutrophication models. We examine

  4. Copyright Uncertainty in the Geoscience Community: Part I, What's Free for the Taking? 

    E-Print Network [OSTI]

    Clement, Gail

    2012-01-01T23:59:59.000Z

    Pre-print submitted for publication: Clement, Gail, 2012. ?Copyright Uncertainty in the Geoscience community: Part I, What?s Free for the taking?? Proceedings - Geoscience Information Society 42 , forthcoming... and Scholarly Communication, Texas A&M University Libraries, Mailstop 5000, College Station, TX 77843 gclement@tamu.edu Introduction: Why does copyright uncertainty exist in the geoscience information community? Geoscience information is highly...

  5. ON THE ESTIMATION OF RANDOM UNCERTAINTIES OF STAR FORMATION HISTORIES

    SciTech Connect (OSTI)

    Dolphin, Andrew E., E-mail: adolphin@raytheon.com [Raytheon Company, Tucson, AZ, 85734 (United States)

    2013-09-20T23:59:59.000Z

    The standard technique for measurement of random uncertainties of star formation histories (SFHs) is the bootstrap Monte Carlo, in which the color-magnitude diagram (CMD) is repeatedly resampled. The variation in SFHs measured from the resampled CMDs is assumed to represent the random uncertainty in the SFH measured from the original data. However, this technique systematically and significantly underestimates the uncertainties for times in which the measured star formation rate is low or zero, leading to overly (and incorrectly) high confidence in that measurement. This study proposes an alternative technique, the Markov Chain Monte Carlo (MCMC), which samples the probability distribution of the parameters used in the original solution to directly estimate confidence intervals. While the most commonly used MCMC algorithms are incapable of adequately sampling a probability distribution that can involve thousands of highly correlated dimensions, the Hybrid Monte Carlo algorithm is shown to be extremely effective and efficient for this particular task. Several implementation details, such as the handling of implicit priors created by parameterization of the SFH, are discussed in detail.

  6. Probabilistic accident consequence uncertainty analysis -- Early health effects uncertainty assessment. Volume 2: Appendices

    SciTech Connect (OSTI)

    Haskin, F.E. [Univ. of New Mexico, Albuquerque, NM (United States); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)

    1997-12-01T23:59:59.000Z

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA early health effects models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on early health effects, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  7. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for internal dosimetry. Volume 2: Appendices

    SciTech Connect (OSTI)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Harrison, J.D. [National Radiological Protection Board (United Kingdom); Harper, F.T. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1998-04-01T23:59:59.000Z

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA internal dosimetry models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on internal dosimetry, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  8. Probabilistic accident consequence uncertainty analysis -- Uncertainty assessment for deposited material and external doses. Volume 2: Appendices

    SciTech Connect (OSTI)

    Goossens, L.H.J.; Kraan, B.C.P.; Cooke, R.M. [Delft Univ. of Technology (Netherlands); Boardman, J. [AEA Technology (United Kingdom); Jones, J.A. [National Radiological Protection Board (United Kingdom); Harper, F.T.; Young, M.L. [Sandia National Labs., Albuquerque, NM (United States); Hora, S.C. [Univ. of Hawaii, Hilo, HI (United States)

    1997-12-01T23:59:59.000Z

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, was completed in 1990. These codes estimate the consequence from the accidental releases of radiological material from hypothesized accidents at nuclear installations. In 1991, the US Nuclear Regulatory Commission and the Commission of the European Communities began cosponsoring a joint uncertainty analysis of the two codes. The ultimate objective of this joint effort was to systematically develop credible and traceable uncertainty distributions for the respective code input variables. A formal expert judgment elicitation and evaluation process was identified as the best technology available for developing a library of uncertainty distributions for these consequence parameters. This report focuses on the results of the study to develop distribution for variables related to the MACCS and COSYMA deposited material and external dose models. This volume contains appendices that include (1) a summary of the MACCS and COSYMA consequence codes, (2) the elicitation questionnaires and case structures, (3) the rationales and results for the panel on deposited material and external doses, (4) short biographies of the experts, and (5) the aggregated results of their responses.

  9. Policy Uncertainty and Cross-Border Flows of BRANDON JULIO

    E-Print Network [OSTI]

    University of Technology, Sydney

    Policy Uncertainty and Cross-Border Flows of Capital BRANDON JULIO London Business School YOUNGSUK YOOK Sungkyunkwan University September 2011 ABSTRACT We find that policy uncertainty is an important determinant of fluctuations in cross- border flows of capital. Spefically, we find that fluctuations in policy

  10. Using Storage To Control Uncertainty in Power Systems

    E-Print Network [OSTI]

    Using Storage To Control Uncertainty in Power Systems Glyn Eggar Department of Actuarial the simplest case 5-10mins · Questions 2 #12;Disclaimer 3 #12;Motivation · Can we use storage to control uncertainty in the electricity network? · What sort of storage are we even talking about here? · How much

  11. Sensitivity, Approximation and Uncertainty in Power System Dynamic Simulation

    E-Print Network [OSTI]

    1 Sensitivity, Approximation and Uncertainty in Power System Dynamic Simulation Ian A. Hiskens, Fellow, IEEE Jassim Alseddiqui Student Member, IEEE Abstract-- Parameters of power system models the influence of uncertainty in simulations of power system dynamic behaviour. It is shown that trajectory

  12. RESEARCH ARTICLE Open Access Uncertainty-aware visualization and proximity

    E-Print Network [OSTI]

    Kamat, Vineet R.

    -aware, geospatial-AR system for real time visualization and proximity analysis. Uncertainties are modeled excavation: a geospatial augmented reality approach Xing Su1 , Sanat Talmaki2 , Hubo Cai3* and Vineet R Kamat an uncertainty-aware, geospatial augmented reality (AR) to visualize and monitor the proximity between invisible

  13. A Genetic Programming Methodology for Strategy Optimization Under Uncertainty

    E-Print Network [OSTI]

    Fernandez, Thomas

    the Missile Countermeasures Optimization (MCO) problem as an instance of a strategy optimization problem; describes various types and degrees of uncertainty that may be introduced into the MCO problem; and develops a new methodology for solving the MCO problem under conditions of uncertainty. The new methodology

  14. Production Optimization; System Identification and Uncertainty Steinar M. Elgsaeter

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Production Optimization; System Identification and Uncertainty Estimation Steinar M. Elgsaeter Olav Slupphaug Tor Arne Johansen 1 Abstract Real-time optimization of oil and gas production requires a production model, which must be fitted to data for accuracy. A certain amount of uncertainty must typically

  15. September 2006 P-1 Appendix P: Risk and Uncertainty

    E-Print Network [OSTI]

    September 2006 P-1 Appendix P: Risk and Uncertainty This appendix deals with the representation. In the section on "Uncertainties," beginning on page P-18, it describes in detail how the regional portfolio of these files is a compressed file, L24X-DW02-P.zip, containing the workbook files that Appendix L uses

  16. Uncertainty and Predictability in Geophysics: Chaos and Multifractal Insights

    E-Print Network [OSTI]

    Lovejoy, Shaun

    Uncertainty and Predictability in Geophysics: Chaos and Multifractal Insights Daniel Schertzer Department, McGill University, Montreal, Canada Uncertainty and error growth are crosscutting geophysical extremes. The focus is now on time-space geophysical scaling behavior: their multifractality. It is found

  17. A Summary Report Fluctuating energy costs and economic uncertainties worldwide

    E-Print Network [OSTI]

    Minnesota, University of

    Club of Minneapolis and St. Paul Energy Uncertainties: Supply Chain Impacts in the Upper MidwestA Summary Report Fluctuating energy costs and economic uncertainties worldwide are disrupting Upper Midwest supply chains. While facing these challenges, participants throughout a supply chain need to con

  18. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    E-Print Network [OSTI]

    Z. Djurcic; J. A. Detwiler; A. Piepke; V. R. Foster Jr.; L. Miller; G. Gratta

    2008-08-06T23:59:59.000Z

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in electron anti-neutrino detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties and their relevance to reactor anti-neutrino experiments.

  19. Shahab D. Mohaghegh, WVU, ISI Quantifying Uncertainties Associated

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    1 Shahab D. Mohaghegh, WVU, ISI Quantifying Uncertainties Associated with Reservoir Simulation Solutions, Inc. SPE 102492 #12;2 Shahab D. Mohaghegh, WVU, ISI SPE 102492 Outline Reservoir Simulation Uncertainty, Using Surrogate Reservoir Model #12;3 Shahab D. Mohaghegh, WVU, ISI SPE 102492 Sources

  20. A REACTIVE APPROACH FOR MINING PROJECT EVALUATION UNDER PRICE UNCERTAINTY

    E-Print Network [OSTI]

    Duffy, Ken

    A REACTIVE APPROACH FOR MINING PROJECT EVALUATION UNDER PRICE UNCERTAINTY Meimei Zhang. This method often undervalues a mining project since it ignores future price uncertainty and does not allow on metal price. This paper also demonstrates that the "reactive" approach can estimate the mine project

  1. Applying uncertainty quantification to multiphase flow computational fluid dynamics

    SciTech Connect (OSTI)

    Gel, A.; Garg, R.; Tong, C.; Shahnam, M.; Guenther, C.

    2013-07-01T23:59:59.000Z

    Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.

  2. Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Hyperparameter estimation for uncertainty quantification in mesoscale carbon dioxide inversions-validation (GCV) and x2 test are compared for the first time under a realistic setting in a mesoscale CO2 estimation, uncertainty quantification, mesoscale carbon dioxide inversions 1. Introduction The atmosphere

  3. Ris-R-1344(EN) Assessment of Uncertainties in Risk

    E-Print Network [OSTI]

    Risø-R-1344(EN) Assessment of Uncertainties in Risk Analysis of Chemical Establishments of Uncertainties in Risk Analysis of Chemical Establishments The ASSURANCE project Final summary report Kurt risk analyses for the same chemical facility, an ammonia storage. The EC's Joint Research Centre

  4. Measurement uncertainty of adsorption testing of desiccant materials

    SciTech Connect (OSTI)

    Bingham, C E; Pesaran, A A

    1988-12-01T23:59:59.000Z

    The technique of measurement uncertainty analysis as described in the current ANSI/ASME standard is applied to the testing of desiccant materials in SERI`s Sorption Test Facility. This paper estimates the elemental precision and systematic errors in these tests and propagates them separately to obtain the resulting uncertainty of the test parameters, including relative humidity ({plus_minus}.03) and sorption capacity ({plus_minus}.002 g/g). Errors generated by instrument calibration, data acquisition, and data reduction are considered. Measurement parameters that would improve the uncertainty of the results are identified. Using the uncertainty in the moisture capacity of a desiccant, the design engineer can estimate the uncertainty in performance of a dehumidifier for desiccant cooling systems with confidence. 6 refs., 2 figs., 8 tabs.

  5. ON THE ESTIMATION OF SYSTEMATIC UNCERTAINTIES OF STAR FORMATION HISTORIES

    SciTech Connect (OSTI)

    Dolphin, Andrew E., E-mail: adolphin@raytheon.com [Raytheon Company, Tucson, AZ 85734 (United States)

    2012-05-20T23:59:59.000Z

    In most star formation history (SFH) measurements, the reported uncertainties are those due to effects whose sizes can be readily measured: Poisson noise, adopted distance and extinction, and binning choices in the solution itself. However, the largest source of error, systematics in the adopted isochrones, is usually ignored and very rarely explicitly incorporated into the uncertainties. I propose a process by which estimates of the uncertainties due to evolutionary models can be incorporated into the SFH uncertainties. This process relies on application of shifts in temperature and luminosity, the sizes of which must be calibrated for the data being analyzed. While there are inherent limitations, the ability to estimate the effect of systematic errors and include them in the overall uncertainty is significant. The effects of this are most notable in the case of shallow photometry, with which SFH measurements rely on evolved stars.

  6. Avoiding climate change uncertainties in Strategic Environmental Assessment

    SciTech Connect (OSTI)

    Larsen, Sanne Vammen, E-mail: sannevl@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University-Copenhagen, A.C. Meyers Vænge 15, 2450 København SV (Denmark); Kørnøv, Lone, E-mail: lonek@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University, Skibbrogade 5, 1. Sal, 9000 Aalborg (Denmark)] [The Danish Centre for Environmental Assessment, Aalborg University, Skibbrogade 5, 1. Sal, 9000 Aalborg (Denmark); Driscoll, Patrick, E-mail: patrick@plan.aau.dk [The Danish Centre for Environmental Assessment, Aalborg University-Copenhagen, A.C. Meyers Vænge 15, 2450 København SV (Denmark)] [The Danish Centre for Environmental Assessment, Aalborg University-Copenhagen, A.C. Meyers Vænge 15, 2450 København SV (Denmark)

    2013-11-15T23:59:59.000Z

    This article is concerned with how Strategic Environmental Assessment (SEA) practice handles climate change uncertainties within the Danish planning system. First, a hypothetical model is set up for how uncertainty is handled and not handled in decision-making. The model incorporates the strategies ‘reduction’ and ‘resilience’, ‘denying’, ‘ignoring’ and ‘postponing’. Second, 151 Danish SEAs are analysed with a focus on the extent to which climate change uncertainties are acknowledged and presented, and the empirical findings are discussed in relation to the model. The findings indicate that despite incentives to do so, climate change uncertainties were systematically avoided or downplayed in all but 5 of the 151 SEAs that were reviewed. Finally, two possible explanatory mechanisms are proposed to explain this: conflict avoidance and a need to quantify uncertainty.

  7. Uncertainty analysis of steady state incident heat flux measurements in hydrocarbon fuel fires.

    SciTech Connect (OSTI)

    Nakos, James Thomas

    2005-12-01T23:59:59.000Z

    The objective of this report is to develop uncertainty estimates for three heat flux measurement techniques used for the measurement of incident heat flux in a combined radiative and convective environment. This is related to the measurement of heat flux to objects placed inside hydrocarbon fuel (diesel, JP-8 jet fuel) fires, which is very difficult to make accurately (e.g., less than 10%). Three methods will be discussed: a Schmidt-Boelter heat flux gage; a calorimeter and inverse heat conduction method; and a thin plate and energy balance method. Steady state uncertainties were estimated for two types of fires (i.e., calm wind and high winds) at three times (early in the fire, late in the fire, and at an intermediate time). Results showed a large uncertainty for all three methods. Typical uncertainties for a Schmidt-Boelter gage ranged from {+-}23% for high wind fires to {+-}39% for low wind fires. For the calorimeter/inverse method the uncertainties were {+-}25% to {+-}40%. The thin plate/energy balance method the uncertainties ranged from {+-}21% to {+-}42%. The 23-39% uncertainties for the Schmidt-Boelter gage are much larger than the quoted uncertainty for a radiative only environment (i.e ., {+-}3%). This large difference is due to the convective contribution and because the gage sensitivities to radiative and convective environments are not equal. All these values are larger than desired, which suggests the need for improvements in heat flux measurements in fires.

  8. A method to estimate the effect of deformable image registration uncertainties on daily dose mapping

    SciTech Connect (OSTI)

    Murphy, Martin J.; Salguero, Francisco J.; Siebers, Jeffrey V.; Staub, David; Vaman, Constantin [Department of Radiation Oncology, Virginia Commonwealth University, Richmond Virginia 23298 (United States)

    2012-02-15T23:59:59.000Z

    Purpose: To develop a statistical sampling procedure for spatially-correlated uncertainties in deformable image registration and then use it to demonstrate their effect on daily dose mapping. Methods: Sequential daily CT studies are acquired to map anatomical variations prior to fractionated external beam radiotherapy. The CTs are deformably registered to the planning CT to obtain displacement vector fields (DVFs). The DVFs are used to accumulate the dose delivered each day onto the planning CT. Each DVF has spatially-correlated uncertainties associated with it. Principal components analysis (PCA) is applied to measured DVF error maps to produce decorrelated principal component modes of the errors. The modes are sampled independently and reconstructed to produce synthetic registration error maps. The synthetic error maps are convolved with dose mapped via deformable registration to model the resulting uncertainty in the dose mapping. The results are compared to the dose mapping uncertainty that would result from uncorrelated DVF errors that vary randomly from voxel to voxel. Results: The error sampling method is shown to produce synthetic DVF error maps that are statistically indistinguishable from the observed error maps. Spatially-correlated DVF uncertainties modeled by our procedure produce patterns of dose mapping error that are different from that due to randomly distributed uncertainties. Conclusions: Deformable image registration uncertainties have complex spatial distributions. The authors have developed and tested a method to decorrelate the spatial uncertainties and make statistical samples of highly correlated error maps. The sample error maps can be used to investigate the effect of DVF uncertainties on daily dose mapping via deformable image registration. An initial demonstration of this methodology shows that dose mapping uncertainties can be sensitive to spatial patterns in the DVF uncertainties.

  9. Uncertainty Quantification of Calculated Temperatures for the AGR-1 Experiment

    SciTech Connect (OSTI)

    Binh T. Pham; Jeffrey J. Einerson; Grant L. Hawkes

    2012-04-01T23:59:59.000Z

    This report documents an effort to quantify the uncertainty of the calculated temperature data for the first Advanced Gas Reactor (AGR-1) fuel irradiation experiment conducted in the INL's Advanced Test Reactor (ATR) in support of the Next Generation Nuclear Plant (NGNP) R&D program. Recognizing uncertainties inherent in physics and thermal simulations of the AGR-1 test, the results of the numerical simulations can be used in combination with the statistical analysis methods to improve qualification of measured data. Additionally, the temperature simulation data for AGR tests can be used for validation of the fuel transport and fuel performance simulation models. The crucial roles of the calculated fuel temperatures in ensuring achievement of the AGR experimental program objectives require accurate determination of the model temperature uncertainties. The report is organized into three chapters. Chapter 1 introduces the AGR Fuel Development and Qualification program and provides overviews of AGR-1 measured data, AGR-1 test configuration and test procedure, and thermal simulation. Chapters 2 describes the uncertainty quantification procedure for temperature simulation data of the AGR-1 experiment, namely, (i) identify and quantify uncertainty sources; (ii) perform sensitivity analysis for several thermal test conditions; (iii) use uncertainty propagation to quantify overall response temperature uncertainty. A set of issues associated with modeling uncertainties resulting from the expert assessments are identified. This also includes the experimental design to estimate the main effects and interactions of the important thermal model parameters. Chapter 3 presents the overall uncertainty results for the six AGR-1 capsules. This includes uncertainties for the daily volume-average and peak fuel temperatures, daily average temperatures at TC locations, and time-average volume-average and time-average peak fuel temperatures.

  10. Clustering and Uncertainty in Perfect Chaos Systems

    E-Print Network [OSTI]

    Sergey A. Kamenshchikov

    2014-07-27T23:59:59.000Z

    The goal of this investigation was to derive strictly new properties of chaotic systems and their mutual relations. The generalized Fokker-Planck equation with a non stationary diffusion has been derived and used for chaos analysis. An anomalous transport turned out to be natural property of this equation. A nonlinear dispersion of the considered motion allowed to find a principal consequence: a chaotic system with uniform dynamic properties tends to unstable clustering. Small fluctuations of particles density increase by time and form attractors and stochastic islands even if the initial transport properties have uniform distribution. It was shown that an instability of phase trajectories leads to the nonlinear dispersion law and consequently to a space instability. A fixed boundary system was considered, using a standard Fokker-Planck equation. We have derived that such a type of dynamic systems has a discrete diffusive and energy spectra. It was shown that phase space diffusion is the only parameter that defines a dynamic accuracy in this case. The uncertainty relations have been obtained for conjugate phase space variables with account of transport properties. Given results can be used in the area of chaotic systems modelling and turbulence investigation.

  11. Evaluating uncertainty in stochastic simulation models

    SciTech Connect (OSTI)

    McKay, M.D.

    1998-02-01T23:59:59.000Z

    This paper discusses fundamental concepts of uncertainty analysis relevant to both stochastic simulation models and deterministic models. A stochastic simulation model, called a simulation model, is a stochastic mathematical model that incorporates random numbers in the calculation of the model prediction. Queuing models are familiar simulation models in which random numbers are used for sampling interarrival and service times. Another example of simulation models is found in probabilistic risk assessments where atmospheric dispersion submodels are used to calculate movement of material. For these models, randomness comes not from the sampling of times but from the sampling of weather conditions, which are described by a frequency distribution of atmospheric variables like wind speed and direction as a function of height above ground. A common characteristic of simulation models is that single predictions, based on one interarrival time or one weather condition, for example, are not nearly as informative as the probability distribution of possible predictions induced by sampling the simulation variables like time and weather condition. The language of model analysis is often general and vague, with terms having mostly intuitive meaning. The definition and motivations for some of the commonly used terms and phrases offered in this paper lead to an analysis procedure based on prediction variance. In the following mathematical abstraction the authors present a setting for model analysis, relate practical objectives to mathematical terms, and show how two reasonable premises lead to a viable analysis strategy.

  12. Uncertainty quantification of limit-cycle oscillations

    SciTech Connect (OSTI)

    Beran, Philip S. [Multidisciplinary Technologies Center, Air Vehicles Directorate, AFRL/VASD, Building 146, 2210 Eighth Street, WPAFB, OH 45433 (United States)]. E-mail: philip.beran@wpafb.af.mil; Pettit, Chris L. [United States Naval Academy, 590 Holloway Rd., MS 11-B, Annapolis, MD 21402 (United States)]. E-mail: pettitcl@usna.edu; Millman, Daniel R. [USAF TPS/EDT, 220 South Wolfe Ave, Bldg. 1220, Rm. 131, Edwards AFB, CA 93524-6485 (United States)]. E-mail: daniel.millman@edwards.af.mil

    2006-09-01T23:59:59.000Z

    Different computational methodologies have been developed to quantify the uncertain response of a relatively simple aeroelastic system in limit-cycle oscillation, subject to parametric variability. The aeroelastic system is that of a rigid airfoil, supported by pitch and plunge structural coupling, with nonlinearities in the component in pitch. The nonlinearities are adjusted to permit the formation of a either a subcritical or supercritical branch of limit-cycle oscillations. Uncertainties are specified in the cubic coefficient of the torsional spring and in the initial pitch angle of the airfoil. Stochastic projections of the time-domain and cyclic equations governing system response are carried out, leading to both intrusive and non-intrusive computational formulations. Non-intrusive formulations are examined using stochastic projections derived from Wiener expansions involving Haar wavelet and B-spline bases, while Wiener-Hermite expansions of the cyclic equations are employed intrusively and non-intrusively. Application of the B-spline stochastic projection is extended to the treatment of aerodynamic nonlinearities, as modeled through the discrete Euler equations. The methodologies are compared in terms of computational cost, convergence properties, ease of implementation, and potential for application to complex aeroelastic systems.

  13. Measurement uncertainties for vacuum standards at Korea Research Institute of Standards and Science

    SciTech Connect (OSTI)

    Hong, S. S.; Shin, Y. H.; Chung, K. H. [Vacuum Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2006-09-15T23:59:59.000Z

    The Korea Research Institute of Standards and Science has three major vacuum systems: an ultrasonic interferometer manometer (UIM) (Sec. II, Figs. 1 and 2) for low vacuum, a static expansion system (SES) (Sec. III, Figs. 3 and 4) for medium vacuum, and an orifice-type dynamic expansion system (DES) (Sec. IV, Figs. 5 and 6) for high and ultrahigh vacuum. For each system explicit measurement model equations with multiple variables are, respectively, given. According to ISO standards, all these system variable errors were used to calculate the expanded uncertainty (U). For each system the expanded uncertainties (k=1, confidence level=95%) and relative expanded uncertainty (expanded uncertainty/generated pressure) are summarized in Table IV and are estimated to be as follows. For UIM, at 2.5-300 Pa generated pressure, the expanded uncertainty is <4.17x10{sup -2} Pa and the relative expanded uncertainty is <1.18x10{sup -2}; at 1-100 kPa generated pressure, the expanded uncertainty is <7.87 Pa and the relative expanded uncertainty is <7.84x10{sup -5}. For SES, at 3-100 Pa generated pressure, the expanded uncertainty is <1.77x10{sup -1} Pa and the relative expanded uncertainty is <1.81x10{sup -3}. For DES, at 4.6x10{sup -3}-1.3x10{sup -2} Pa generated pressure, the expanded uncertainty is <1.04x10{sup -4} Pa and the relative expanded uncertainty is <8.37x10{sup -3}; at 3.0x10{sup -6}-9.0x10{sup -4} Pa generated pressure, the expanded uncertainty is <8.21x10{sup -6} Pa and the relative expanded uncertainty is <1.37x10{sup -2}. Within uncertainty limits our bilateral and key comparisons [CCM.P-K4 (10 Pa-1 kPa)] are extensive and in good agreement with those of other nations (Fig. 8 and Table V)

  14. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Convergence of the Uncertainty Results

    SciTech Connect (OSTI)

    Bixler, Nathan E.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Eckert-Gallup, Aubrey Celia; Mattie, Patrick D.; Ghosh, S. Tina

    2014-02-01T23:59:59.000Z

    This paper describes the convergence of MELCOR Accident Consequence Code System, Version 2 (MACCS2) probabilistic results of offsite consequences for the uncertainty analysis of the State-of-the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout scenario at the Peach Bottom Atomic Power Station. The consequence metrics evaluated are individual latent-cancer fatality (LCF) risk and individual early fatality risk. Consequence results are presented as conditional risk (i.e., assuming the accident occurs, risk per event) to individuals of the public as a result of the accident. In order to verify convergence for this uncertainty analysis, as recommended by the Nuclear Regulatory Commission’s Advisory Committee on Reactor Safeguards, a ‘high’ source term from the original population of Monte Carlo runs has been selected to be used for: (1) a study of the distribution of consequence results stemming solely from epistemic uncertainty in the MACCS2 parameters (i.e., separating the effect from the source term uncertainty), and (2) a comparison between Simple Random Sampling (SRS) and Latin Hypercube Sampling (LHS) in order to validate the original results obtained with LHS. Three replicates (each using a different random seed) of size 1,000 each using LHS and another set of three replicates of size 1,000 using SRS are analyzed. The results show that the LCF risk results are well converged with either LHS or SRS sampling. The early fatality risk results are less well converged at radial distances beyond 2 miles, and this is expected due to the sparse data (predominance of “zero” results).

  15. Probabilistic accident consequence uncertainty analysis: Food chain uncertainty assessment. Volume 2: Appendices

    SciTech Connect (OSTI)

    Brown, J. [National Radiological Protection Board (United Kingdom); Goossens, L.H.J.; Kraan, B.C.P. [Delft Univ. of Technology (Netherlands)] [and others

    1997-06-01T23:59:59.000Z

    This volume is the second of a two-volume document that summarizes a joint project by the US Nuclear Regulatory and the Commission of European Communities to assess uncertainties in the MACCS and COSYMA probabilistic accident consequence codes. These codes were developed primarily for estimating the risks presented by nuclear reactors based on postulated frequencies and magnitudes of potential accidents. This two-volume report, which examines mechanisms and uncertainties of transfer through the food chain, is the first in a series of five such reports. A panel of sixteen experts was formed to compile credible and traceable uncertainty distributions for food chain transfer that affect calculations of offsite radiological consequences. Seven of the experts reported on transfer into the food chain through soil and plants, nine reported on transfer via food products from animals, and two reported on both. The expert judgment elicitation procedure and its outcomes are described in these volumes. This volume contains seven appendices. Appendix A presents a brief discussion of the MAACS and COSYMA model codes. Appendix B is the structure document and elicitation questionnaire for the expert panel on soils and plants. Appendix C presents the rationales and responses of each of the members of the soils and plants expert panel. Appendix D is the structure document and elicitation questionnaire for the expert panel on animal transfer. The rationales and responses of each of the experts on animal transfer are given in Appendix E. Brief biographies of the food chain expert panel members are provided in Appendix F. Aggregated results of expert responses are presented in graph format in Appendix G.

  16. Joint measurability, steering and entropic uncertainty

    E-Print Network [OSTI]

    H. S. Karthik; A. R. Usha Devi; A. K. Rajagopal

    2014-12-02T23:59:59.000Z

    The notion of incompatibility of measurements in quantum theory is in stark contrast with the corresponding classical perspective, where all physical observables are jointly measurable. It is of interest to examine if the results of two or more measurements in the quantum scenario can be perceived from a classical point of view or they still exhibit non-classical features. Clearly, commuting observables can be measured jointly using projective measurements and their statistical outcomes can be discerned classically. However, such simple minded association of compatibility of measurements with commutativity turns out to be limited in an extended framework, where the usual notion of sharp projective valued measurements of self adjoint observables gets broadened to include unsharp measurements of generalized observables constituting positive operator valued measures (POVM). There is a surge of research activity recently towards gaining new physical insights on the emergence of classical behavior via joint measurability of unsharp observables. Here, we explore the entropic uncertainty relation for a pair of discrete observables (of Alice's system) when an entangled quantum memory of Bob is restricted to record outcomes of jointly measurable POVMs only. Within the joint measurability regime, the sum of entropies associated with Alice's measurement outcomes - conditioned by the results registered at Bob's end - are constrained to obey an entropic steering inequality. In this case, Bob's non-steerability reflects itself as his inability in predicting the outcomes of Alice's pair of non-commuting observables with better precision, even when they share an entangled state. As a further consequence, the quantum advantage envisaged for the construction of security proofs in key distribution is lost, when Bob's measurements are restricted to the joint measurability regime.

  17. Measurement uncertainty analysis techniques applied to PV performance measurements

    SciTech Connect (OSTI)

    Wells, C.

    1992-10-01T23:59:59.000Z

    The purpose of this presentation is to provide a brief introduction to measurement uncertainty analysis, outline how it is done, and illustrate uncertainty analysis with examples drawn from the PV field, with particular emphasis toward its use in PV performance measurements. The uncertainty information we know and state concerning a PV performance measurement or a module test result determines, to a significant extent, the value and quality of that result. What is measurement uncertainty analysis? It is an outgrowth of what has commonly been called error analysis. But uncertainty analysis, a more recent development, gives greater insight into measurement processes and tests, experiments, or calibration results. Uncertainty analysis gives us an estimate of the I interval about a measured value or an experiment`s final result within which we believe the true value of that quantity will lie. Why should we take the time to perform an uncertainty analysis? A rigorous measurement uncertainty analysis: Increases the credibility and value of research results; allows comparisons of results from different labs; helps improve experiment design and identifies where changes are needed to achieve stated objectives (through use of the pre-test analysis); plays a significant role in validating measurements and experimental results, and in demonstrating (through the post-test analysis) that valid data have been acquired; reduces the risk of making erroneous decisions; demonstrates quality assurance and quality control measures have been accomplished; define Valid Data as data having known and documented paths of: Origin, including theory; measurements; traceability to measurement standards; computations; uncertainty analysis of results.

  18. Calibration and Measurement Uncertainty Estimation of Radiometric Data: Preprint

    SciTech Connect (OSTI)

    Habte, A.; Sengupta, M.; Reda, I.; Andreas, A.; Konings, J.

    2014-11-01T23:59:59.000Z

    Evaluating the performance of photovoltaic cells, modules, and arrays that form large solar deployments relies on accurate measurements of the available solar resource. Therefore, determining the accuracy of these solar radiation measurements provides a better understanding of investment risks. This paper provides guidelines and recommended procedures for estimating the uncertainty in calibrations and measurements by radiometers using methods that follow the International Bureau of Weights and Measures Guide to the Expression of Uncertainty (GUM). Standardized analysis based on these procedures ensures that the uncertainty quoted is well documented.

  19. Fitting Parton Distribution Data with Multiplicative Normalization Uncertainties

    E-Print Network [OSTI]

    The NNPDF Collaboration; Richard D. Ball; Luigi Del Debbio; Stefano Forte; Alberto Guffanti; Jose I. Latorre; Juan Rojo; Maria Ubiali

    2010-06-01T23:59:59.000Z

    We consider the generic problem of performing a global fit to many independent data sets each with a different overall multiplicative normalization uncertainty. We show that the methods in common use to treat multiplicative uncertainties lead to systematic biases. We develop a method which is unbiased, based on a self--consistent iterative procedure. We demonstrate the use of this method by applying it to the determination of parton distribution functions with the NNPDF methodology, which uses a Monte Carlo method for uncertainty estimation.

  20. PDF uncertainties at large x and gauge boson production

    SciTech Connect (OSTI)

    Accardi, Alberto [Hampton U., JLAB

    2012-10-01T23:59:59.000Z

    I discuss how global QCD fits of parton distribution functions can make the somewhat separated fields of high-energy particle physics and lower energy hadronic and nuclear physics interact to the benefit of both. In particular, I will argue that large rapidity gauge boson production at the Tevatron and the LHC has the highest short-term potential to constrain the theoretical nuclear corrections to DIS data on deuteron targets necessary for up/down flavor separation. This in turn can considerably reduce the PDF uncertainty on cross section calculations of heavy mass particles such as W' and Z' bosons.

  1. System architecture decisions under uncertainty : a case study on automotive battery system design

    E-Print Network [OSTI]

    Renzi, Matthew Joseph

    2012-01-01T23:59:59.000Z

    Flexibility analysis using the Real Options framework is typically utilized on high-level architectural decisions. Using Real Options, a company may develop strategies to mitigate downside risk for future uncertainties ...

  2. activation cross-section uncertainties: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 22 23 24 25 Next Page Last Page Topic Index 1 Quantifying uncertainties in the high energy neutrino cross-section HEP - Phenomenology (arXiv) Summary: We compare predictions for...

  3. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation

    E-Print Network [OSTI]

    McLean, Noah Morgan

    High-precision U-Pb geochronology by isotope dilution-thermal ionization mass spectrometry is integral to a variety of Earth science disciplines, but its ultimate resolving power is quantified by the uncertainties of ...

  4. An algorithm for U-Pb isotope dilution data reduction and uncertainty propagation

    E-Print Network [OSTI]

    McLean, Noah M.; Bowring, J.F.; Bowring, S.A.

    2011-06-01T23:59:59.000Z

    High-precision U-Pb geochronology by isotope dilution-thermal ionization mass spectrometry is integral to a variety of Earth science disciplines, but its ultimate resolving power is quantified by the uncertainties of ...

  5. Chronological information and uncertainty Radiocarbon dating & calibration -Paula Reimer

    E-Print Network [OSTI]

    Sengun, Mehmet Haluk

    naked body'. Robert Boyle 1663 Includes ­ Thermoluminescence (TL), Optically stimulated luminescenceSUPRA-net: Chronological information and uncertainty Radiocarbon dating & calibration - Paula Tephrochronology ­ David Lowe U series dating ­ David Richards* Combining multiple dating techniques ­ Andrew

  6. Analysis and Reduction of Complex Networks Under Uncertainty

    SciTech Connect (OSTI)

    Knio, Omar M

    2014-04-09T23:59:59.000Z

    This is a collaborative proposal that aims at developing new methods for the analysis and reduction of complex multiscale networks under uncertainty. The approach is based on combining methods of computational singular perturbation (CSP) and probabilistic uncertainty quantification. In deterministic settings, CSP yields asymptotic approximations of reduced-dimensionality “slow manifolds” on which a multiscale dynamical system evolves. Introducing uncertainty raises fundamentally new issues, particularly concerning its impact on the topology of slow manifolds, and means to represent and quantify associated variability. To address these challenges, this project uses polynomial chaos (PC) methods to reformulate uncertain network models, and to analyze them using CSP in probabilistic terms. Specific objectives include (1) developing effective algorithms that can be used to illuminate fundamental and unexplored connections among model reduction, multiscale behavior, and uncertainty, and (2) demonstrating the performance of these algorithms through applications to model problems.

  7. Essays on Voluntary Contribution with Private Information and Threshold Uncertainty

    E-Print Network [OSTI]

    Peng, Hui-Chun

    2014-07-08T23:59:59.000Z

    This dissertation concerns individual voluntary contributions in the subscription game with three important model considerations: private information on public good valuations, threshold uncertainty and the timing of the contribution — simultaneous...

  8. Real options approach to capacity planning under uncertainty

    E-Print Network [OSTI]

    Mittal, Geetanjali, 1979-

    2004-01-01T23:59:59.000Z

    This thesis highlights the effectiveness of Real Options Analysis (ROA) in capacity planning decisions for engineering projects subject to uncertainty. This is in contrast to the irreversible decision-making proposed by ...

  9. Robust decision-making with model uncertainty in aerospace systems

    E-Print Network [OSTI]

    Bertuccelli, Luca Francesco, 1981-

    2008-01-01T23:59:59.000Z

    Actual performance of sequential decision-making problems can be extremely sensitive to errors in the models, and this research addressed the role of robustness in coping with this uncertainty. The first part of this thesis ...

  10. Chance Constrained RRT for Probabilistic Robustness to Environmental Uncertainty

    E-Print Network [OSTI]

    Luders, Brandon Douglas

    For motion planning problems involving many or unbounded forms of uncertainty, it may not be possible to identify a path guaranteed to be feasible, requiring consideration of the trade-off between planner conservatism and ...

  11. Uncertainty in future carbon emissions : a preliminary exploration

    E-Print Network [OSTI]

    Webster, Mort David.

    In order to analyze competing policy approaches for addressing global climate change, a wide variety of economic-energy models are used to project future carbon emissions under various policy scenarios. Due to uncertainties ...

  12. Control of systems subject to uncertainty and constraints

    E-Print Network [OSTI]

    Villota Cerna, Elizabeth Roxana

    2009-05-15T23:59:59.000Z

    do not alter small signal performance. Importantly, these two remedial control methodologies must in¬corporate model uncertainty into their design to be considered reliable in practice. In this dissertation, shared principles of design...

  13. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    ment of uncertainty via real options increases the value of2007) and the 2007 Real Options Conference in Berkeley, CA,distributed generation, real options JEL Codes: D81, Q40

  14. An uncertainty principle, Wegner estimates and localization near fluctuation boundaries

    E-Print Network [OSTI]

    Anne Boutet de Monvel; Daniel Lenz; Peter Stollmann

    2009-05-18T23:59:59.000Z

    We prove a simple uncertainty principle and show that it can be applied to prove Wegner estimates near fluctuation boundaries. This gives new classes of models for which localization at low energies can be proven.

  15. Determination of uncertainty in parameters extracted from single spectroscopic measurements

    E-Print Network [OSTI]

    Bechtel, Kate L.

    The ability to quantify uncertainty in information extracted from spectroscopic measurements is important in numerous fields. The traditional approach of repetitive measurements may be impractical or impossible in some ...

  16. Creating value from uncertainty : a study of ocean transportation contracting

    E-Print Network [OSTI]

    Pálsson, Sigurjón

    2005-01-01T23:59:59.000Z

    How can financial tools like real options and hedging mitigate and create value from uncertainty in transportation? This paper describes these concepts and identifies research on them that has relevance to transportation. ...

  17. Uncertainty in Greenhouse Emissions and Costs of Atmospheric Stabilization

    E-Print Network [OSTI]

    Webster, Mort D.

    We explore the uncertainty in projections of emissions, and costs of atmospheric stabilization applying the MIT Emissions Prediction and Policy Analysis model, a computable general equilibrium model of the global economy. ...

  18. Informatively optimal levels of confidence for measurement uncertainty

    E-Print Network [OSTI]

    David

    2011-10-13T23:59:59.000Z

    expanded uncertainty of measurement as a historical artifact, and not as a strictly substantiated value. .... where ?o(?) = 1.5 is true for the most uncertain classification situation (50% confidence) about allowing or ..... as a power of exponent (n).

  19. Modeling aviation's global emissions, uncertainty analysis, and applications to policy

    E-Print Network [OSTI]

    Lee, Joosung Joseph, 1974-

    2005-01-01T23:59:59.000Z

    (cont.) fuel burn results below 3000 ft. For emissions, the emissions indices were the most influential uncertainties for the variance in model outputs. By employing the model, this thesis examined three policy options for ...

  20. Including model uncertainty in risk-informed decision-making

    E-Print Network [OSTI]

    Reinert, Joshua M

    2005-01-01T23:59:59.000Z

    Model uncertainties can have a significant impact on decisions regarding licensing basis changes. We present a methodology to identify basic events in the risk assessment that have the potential to change the decision and ...

  1. HANDLING UNCERTAINTY IN PRODUCTION ACTIVITY CONTROL USING PROACTIVE SIMULATION

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HANDLING UNCERTAINTY IN PRODUCTION ACTIVITY CONTROL USING PROACTIVE SIMULATION Olivier CARDIN, Production Control, Manufacturing Systems, Proactive, Real-time. 1. INTRODUCTION In today's complex of a product. Real-word planning and scheduling problems are generally complex, constrained and multi

  2. Some methods of estimating uncertainty in accident reconstruction

    E-Print Network [OSTI]

    Milan Batista

    2011-07-20T23:59:59.000Z

    In the paper four methods for estimating uncertainty in accident reconstruction are discussed: total differential method, extreme values method, Gauss statistical method, and Monte Carlo simulation method. The methods are described and the program solutions are given.

  3. Optimal Control of Distributed Energy Resources and Demand Response under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2010-01-01T23:59:59.000Z

    Energy Resources and Demand Response under Uncertainty AfzalEnergy Resources and Demand Response under Uncertainty ?DER in conjunction with demand response (DR): the expected

  4. Modeling Variability and Uncertainty of Photovoltaic Generation: A Hidden State Spatial Statistical Approach

    E-Print Network [OSTI]

    Callaway, Duncan S; Tabone, Michaelangelo D

    2015-01-01T23:59:59.000Z

    AND UNCERTAINTY OF PHOTOVOLTAIC GENERATION [9] M. Milligan,for grid-connected photovoltaic system based on advancedand uncertainty in solar photovoltaic generation at multiple

  5. Uncertainty and sensitivity analysis for long-running computer codes : a critical review

    E-Print Network [OSTI]

    Langewisch, Dustin R

    2010-01-01T23:59:59.000Z

    This thesis presents a critical review of existing methods for performing probabilistic uncertainty and sensitivity analysis for complex, computationally expensive simulation models. Uncertainty analysis (UA) methods ...

  6. Quantum Groups, Gravity, and the Generalized Uncertainty Principle

    E-Print Network [OSTI]

    Michele Maggiore

    1993-11-04T23:59:59.000Z

    We investigate the relationship between the generalized uncertainty principle in quantum gravity and the quantum deformation of the Poincar\\'e algebra. We find that a deformed Newton-Wigner position operator and the generators of spatial translations and rotations of the deformed Poincar\\'e algebra obey a deformed Heisenberg algebra from which the generalized uncertainty principle follows. The result indicates that in the $\\kappa$-deformed Poincar\\'e algebra a minimal observable length emerges naturally.

  7. Uncertainties in the Anti-neutrino Production at Nuclear Reactors

    SciTech Connect (OSTI)

    Djurcic, Zelimir; Detwiler, Jason A.; Piepke, Andreas; Foster Jr., Vince R.; Miller, Lester; Gratta, Giorgio

    2008-08-06T23:59:59.000Z

    Anti-neutrino emission rates from nuclear reactors are determined from thermal power measurements and fission rate calculations. The uncertainties in these quantities for commercial power plants and their impact on the calculated interaction rates in {bar {nu}}{sub e} detectors is examined. We discuss reactor-to-reactor correlations between the leading uncertainties, and their relevance to reactor {bar {nu}}{sub e} experiments.

  8. An efficient method for treating uncertainties in structural dynamics

    E-Print Network [OSTI]

    Wang, Bing

    1992-01-01T23:59:59.000Z

    AN EFFICIENT METHOD FOR TREATING UNCERTAINTIES IN STRUCTURAL DYNAMICS A Thesis by BING WANG Submitted to the Oflice of Graduate Studies of Texas ASSAM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...) Alan . Pa zolo (Member) ames . . Yao (Head of D artment) December 1992 ABSTRACT An Efficient Method for Treating Uncertainties in Structural Dynamics. (December 1992) Bing Wang, B. S. , Tsinghua University Chair of Advisory Committee: Dr...

  9. Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling

    SciTech Connect (OSTI)

    Danon, Yaron; Nazarewicz, Witold; Talou, Patrick

    2013-02-18T23:59:59.000Z

    This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implement innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.

  10. Systematic uncertainties of artificial neural-network pulse-shape discrimination for $0\

    E-Print Network [OSTI]

    Abt, I; Cossavella, F; Majorovits, B; Palioselitis, D; Volynets, O

    2014-01-01T23:59:59.000Z

    A pulse-shape discrimination method based on artificial neural networks was applied to pulses simulated for different background, signal and signal-like interactions inside a germanium detector. The simulated pulses were used to investigate the systematic uncertainties of the method. It is verified that neural networks are well-suited to identify background pulses in true-coaxial high-purity germanium detectors. The systematic uncertainty on the signal recognition efficiency derived using signal-like samples from calibration measurements is estimated to be 5\\%. This uncertainty is due to differences between signal and calibration samples.

  11. Uncertainty Estimation Improves Energy Measurement and Verification Procedures

    SciTech Connect (OSTI)

    Walter, Travis; Price, Phillip N.; Sohn, Michael D.

    2014-05-14T23:59:59.000Z

    Implementing energy conservation measures in buildings can reduce energy costs and environmental impacts, but such measures cost money to implement so intelligent investment strategies require the ability to quantify the energy savings by comparing actual energy used to how much energy would have been used in absence of the conservation measures (known as the baseline energy use). Methods exist for predicting baseline energy use, but a limitation of most statistical methods reported in the literature is inadequate quantification of the uncertainty in baseline energy use predictions. However, estimation of uncertainty is essential for weighing the risks of investing in retrofits. Most commercial buildings have, or soon will have, electricity meters capable of providing data at short time intervals. These data provide new opportunities to quantify uncertainty in baseline predictions, and to do so after shorter measurement durations than are traditionally used. In this paper, we show that uncertainty estimation provides greater measurement and verification (M&V) information and helps to overcome some of the difficulties with deciding how much data is needed to develop baseline models and to confirm energy savings. We also show that cross-validation is an effective method for computing uncertainty. In so doing, we extend a simple regression-based method of predicting energy use using short-interval meter data. We demonstrate the methods by predicting energy use in 17 real commercial buildings. We discuss the benefits of uncertainty estimates which can provide actionable decision making information for investing in energy conservation measures.

  12. How incorporating more data reduces uncertainty in recovery predictions

    SciTech Connect (OSTI)

    Campozana, F.P.; Lake, L.W.; Sepehrnoori, K. [Univ. of Texas, Austin, TX (United States)

    1997-08-01T23:59:59.000Z

    From the discovery to the abandonment of a petroleum reservoir, there are many decisions that involve economic risks because of uncertainty in the production forecast. This uncertainty may be quantified by performing stochastic reservoir modeling (SRM); however, it is not practical to apply SRM every time the model is updated to account for new data. This paper suggests a novel procedure to estimate reservoir uncertainty (and its reduction) as a function of the amount and type of data used in the reservoir modeling. Two types of data are analyzed: conditioning data and well-test data. However, the same procedure can be applied to any other data type. Three performance parameters are suggested to quantify uncertainty. SRM is performed for the following typical stages: discovery, primary production, secondary production, and infill drilling. From those results, a set of curves is generated that can be used to estimate (1) the uncertainty for any other situation and (2) the uncertainty reduction caused by the introduction of new wells (with and without well-test data) into the description.

  13. Fuzzy-probabilistic calculations of water-balance uncertainty

    SciTech Connect (OSTI)

    Faybishenko, B.

    2009-10-01T23:59:59.000Z

    Hydrogeological systems are often characterized by imprecise, vague, inconsistent, incomplete, or subjective information, which may limit the application of conventional stochastic methods in predicting hydrogeologic conditions and associated uncertainty. Instead, redictions and uncertainty analysis can be made using uncertain input parameters expressed as probability boxes, intervals, and fuzzy numbers. The objective of this paper is to present the theory for, and a case study as an application of, the fuzzyprobabilistic approach, ombining probability and possibility theory for simulating soil water balance and assessing associated uncertainty in the components of a simple waterbalance equation. The application of this approach is demonstrated using calculations with the RAMAS Risk Calc code, to ssess the propagation of uncertainty in calculating potential evapotranspiration, actual evapotranspiration, and infiltration-in a case study at the Hanford site, Washington, USA. Propagation of uncertainty into the results of water-balance calculations was evaluated by hanging he types of models of uncertainty incorporated into various input parameters. The results of these fuzzy-probabilistic calculations are compared to the conventional Monte Carlo simulation approach and estimates from field observations at the Hanford site.

  14. The Role of Uncertainty Quantification for Reactor Physics

    SciTech Connect (OSTI)

    Massimo Salvatores; Giuseppe Palmiotti; G. Aliberti

    2015-01-01T23:59:59.000Z

    The role of uncertainty quantification has been stressed and has been the object of several assessments in the past (see e.g. References 1 and 2 among many others), in particular in relation to design requirements for safety assessments, design margins definition and optimization, both for the reactor core and for the associated fuel cycles. The use of integral experiments has been advocated since many years, and recently re-assessed in order to reduce uncertainties and to define new reduced ''a-posteriori'' uncertainties. While uncertainty quantification in the case of existing power plants benefits from a large data base of operating reactor experimental results, innovative reactor systems (reactor and associated fuel cycles) should rely on limited power reactor experiment data bases and on a number of past integral experiments that should be shown to be representative enough. Moreover, in some cases, in particular related to innovative fuel cycle performance and feasibility assessment, nuclear data uncertainties are the only available information. Uncertainty quantification in that case becomes a tool for detecting potential show stoppers associated to specfic fuel cycle strategies, besides the challenges related to fuel properties, fuel processing chemistry and material performance issues.

  15. Error propagation equations and tables for estimating the uncertainty in high-speed wind tunnel test results

    SciTech Connect (OSTI)

    Clark, E.L.

    1993-08-01T23:59:59.000Z

    Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, calibration Mach number and Reynolds number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-stream Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for nine fundamental aerodynamic ratios, most of which relate free-stream test conditions (pressure, temperature, density or velocity) to a reference condition. Tables of the ratios, R, absolute sensitivity coefficients, {partial_derivative}R/{partial_derivative}M{infinity}, and relative sensitivity coefficients, (M{infinity}/R) ({partial_derivative}R/{partial_derivative}M{infinity}), are provided as functions of M{infinity}.

  16. Comparison of nuclear data uncertainty propagation methodologies for PWR burn-up simulations

    E-Print Network [OSTI]

    Carlos Javier Diez; Oliver Buss; Axel Hoefer; Dieter Porsch; Oscar Cabellos

    2014-11-04T23:59:59.000Z

    Several methodologies using different levels of approximations have been developed for propagating nuclear data uncertainties in nuclear burn-up simulations. Most methods fall into the two broad classes of Monte Carlo approaches, which are exact apart from statistical uncertainties but require additional computation time, and first order perturbation theory approaches, which are efficient for not too large numbers of considered response functions but only applicable for sufficiently small nuclear data uncertainties. Some methods neglect isotopic composition uncertainties induced by the depletion steps of the simulations, others neglect neutron flux uncertainties, and the accuracy of a given approximation is often very hard to quantify. In order to get a better sense of the impact of different approximations, this work aims to compare results obtained based on different approximate methodologies with an exact method, namely the NUDUNA Monte Carlo based approach developed by AREVA GmbH. In addition, the impact of different covariance data is studied by comparing two of the presently most complete nuclear data covariance libraries (ENDF/B-VII.1 and SCALE 6.0), which reveals a high dependency of the uncertainty estimates on the source of covariance data. The burn-up benchmark Exercise I-1b proposed by the OECD expert group "Benchmarks for Uncertainty Analysis in Modeling (UAM) for the Design, Operation and Safety Analysis of LWRs" is studied as an example application. The burn-up simulations are performed with the SCALE 6.0 tool suite.

  17. PIV Uncertainty Methodologies for CFD Code Validation at the MIR Facility

    SciTech Connect (OSTI)

    Piyush Sabharwall; Richard Skifton; Carl Stoots; Eung Soo Kim; Thomas Conder

    2013-12-01T23:59:59.000Z

    Currently, computational fluid dynamics (CFD) is widely used in the nuclear thermal hydraulics field for design and safety analyses. To validate CFD codes, high quality multi dimensional flow field data are essential. The Matched Index of Refraction (MIR) Flow Facility at Idaho National Laboratory has a unique capability to contribute to the development of validated CFD codes through the use of Particle Image Velocimetry (PIV). The significance of the MIR facility is that it permits non intrusive velocity measurement techniques, such as PIV, through complex models without requiring probes and other instrumentation that disturb the flow. At the heart of any PIV calculation is the cross-correlation, which is used to estimate the displacement of particles in some small part of the image over the time span between two images. This image displacement is indicated by the location of the largest peak. In the MIR facility, uncertainty quantification is a challenging task due to the use of optical measurement techniques. Currently, this study is developing a reliable method to analyze uncertainty and sensitivity of the measured data and develop a computer code to automatically analyze the uncertainty/sensitivity of the measured data. The main objective of this study is to develop a well established uncertainty quantification method for the MIR Flow Facility, which consists of many complicated uncertainty factors. In this study, the uncertainty sources are resolved in depth by categorizing them into uncertainties from the MIR flow loop and PIV system (including particle motion, image distortion, and data processing). Then, each uncertainty source is mathematically modeled or adequately defined. Finally, this study will provide a method and procedure to quantify the experimental uncertainty in the MIR Flow Facility with sample test results.

  18. Investment and Upgrade in Distributed Generation under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Maribu, Karl

    2008-08-18T23:59:59.000Z

    The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplatingthe installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

  19. Uncertainty and sensitivity analysis for photovoltaic system modeling.

    SciTech Connect (OSTI)

    Hansen, Clifford W.; Pohl, Andrew Phillip; Jordan, Dirk [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO] [National Center for Photovoltaics, National Renewable Energy Laboratory, Golden, CO

    2013-12-01T23:59:59.000Z

    We report an uncertainty and sensitivity analysis for modeling DC energy from photovoltaic systems. We consider two systems, each comprised of a single module using either crystalline silicon or CdTe cells, and located either at Albuquerque, NM, or Golden, CO. Output from a PV system is predicted by a sequence of models. Uncertainty in the output of each model is quantified by empirical distributions of each model's residuals. We sample these distributions to propagate uncertainty through the sequence of models to obtain an empirical distribution for each PV system's output. We considered models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane-of-array irradiance; (2) estimate effective irradiance from plane-of-array irradiance; (3) predict cell temperature; and (4) estimate DC voltage, current and power. We found that the uncertainty in PV system output to be relatively small, on the order of 1% for daily energy. Four alternative models were considered for the POA irradiance modeling step; we did not find the choice of one of these models to be of great significance. However, we observed that the POA irradiance model introduced a bias of upwards of 5% of daily energy which translates directly to a systematic difference in predicted energy. Sensitivity analyses relate uncertainty in the PV system output to uncertainty arising from each model. We found that the residuals arising from the POA irradiance and the effective irradiance models to be the dominant contributors to residuals for daily energy, for either technology or location considered. This analysis indicates that efforts to reduce the uncertainty in PV system output should focus on improvements to the POA and effective irradiance models.

  20. IAEA CRP on HTGR Uncertainty Analysis: Benchmark Definition and Test Cases

    SciTech Connect (OSTI)

    Gerhard Strydom; Frederik Reitsma; Hans Gougar; Bismark Tyobeka; Kostadin Ivanov

    2012-11-01T23:59:59.000Z

    Uncertainty and sensitivity studies are essential elements of the reactor simulation code verification and validation process. Although several international uncertainty quantification activities have been launched in recent years in the LWR, BWR and VVER domains (e.g. the OECD/NEA BEMUSE program [1], from which the current OECD/NEA LWR Uncertainty Analysis in Modelling (UAM) benchmark [2] effort was derived), the systematic propagation of uncertainties in cross-section, manufacturing and model parameters for High Temperature Reactor (HTGR) designs has not been attempted yet. This paper summarises the scope, objectives and exercise definitions of the IAEA Coordinated Research Project (CRP) on HTGR UAM [3]. Note that no results will be included here, as the HTGR UAM benchmark was only launched formally in April 2012, and the specification is currently still under development.

  1. Understanding Variability and Uncertainty of Photovoltaics for Integration with the Electric Power System

    E-Print Network [OSTI]

    Mills, Andrew

    2010-01-01T23:59:59.000Z

    and Uncertainty of Photovoltaics for Integration with themodels and datasets. Photovoltaics fall under the broader

  2. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

  3. Approaches to uncertainty analysis in probabilistic risk assessment

    SciTech Connect (OSTI)

    Bohn, M.P.; Wheeler, T.A.; Parry, G.W.

    1988-01-01T23:59:59.000Z

    An integral part of any probabilistic risk assessment (PRA) is the performance of an uncertainty analysis to quantify the uncertainty in the point estimates of the risk measures considered. While a variety of classical methods of uncertainty analysis exist, application of these methods and developing new techniques consistent with existing PRA data bases and the need for expert (subjective) input has been an area of considerable interest since the pioneering Reactor Safety Study (WASH-1400) in 1975. This report presents the results of a critical review of existing methods for performing uncertainty analyses for PRAs, with special emphasis on identifying data base limitations on the various methods. Both classical and Baysian approaches have been examined. This work was funded by the US Nuclear Regulatory Commission in support of its ongoing full-scope PRA of the LaSalle nuclear power station. Thus in addition to the review, this report contains recommendations for a suitable uncertainty analysis methodology for the LaSalle PRA.

  4. Determination of the uncertainty in assembly average burnup

    SciTech Connect (OSTI)

    Cacciapouti, R.J.; Lam, G.M.; Theriault, P.A.; Delmolino, P.M.

    1998-12-31T23:59:59.000Z

    Pressurized water reactors maintain records of the assembly average burnup for each fuel assembly at the plant. The reactor records are currently used by commercial reactor operators and vendors for (a) special nuclear accountability, (b) placement of spent fuel in storage pools, and (c) dry storage cask design and analysis. A burnup credit methodology has been submitted to the US Nuclear Regulatory Commission (NRC) by the US Department of Energy. In order to support this application, utilities are requested to provide burnup uncertainty as part of their reactor records. The collected burnup data are used for the development of a plant correction to the cask vendor supplied burnup credit loading curve. The objective of this work is to identify a feasible methodology for determining the 95/95 uncertainty in the assembly average burnup. Reactor records are based on the core neutronic analysis coupled with measured in-core detector data. The uncertainty of particular burnup records depends mainly on the uncertainty associated with the methods used to develop the records. The methodology adopted for this analysis utilizes current neutronic codes for the determination of the uncertainty in assembly average burnup.

  5. Fuel cycle cost uncertainty from nuclear fuel cycle comparison

    SciTech Connect (OSTI)

    Li, J.; McNelis, D. [Institute for the Environment, University of North Carolina, Chapel Hill (United States); Yim, M.S. [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (Korea, Republic of)

    2013-07-01T23:59:59.000Z

    This paper examined the uncertainty in fuel cycle cost (FCC) calculation by considering both model and parameter uncertainty. Four different fuel cycle options were compared in the analysis including the once-through cycle (OT), the DUPIC cycle, the MOX cycle and a closed fuel cycle with fast reactors (FR). The model uncertainty was addressed by using three different FCC modeling approaches with and without the time value of money consideration. The relative ratios of FCC in comparison to OT did not change much by using different modeling approaches. This observation was consistent with the results of the sensitivity study for the discount rate. Two different sets of data with uncertainty range of unit costs were used to address the parameter uncertainty of the FCC calculation. The sensitivity study showed that the dominating contributor to the total variance of FCC is the uranium price. In general, the FCC of OT was found to be the lowest followed by FR, MOX, and DUPIC. But depending on the uranium price, the FR cycle was found to have lower FCC over OT. The reprocessing cost was also found to have a major impact on FCC.

  6. LDRD Final Report: Capabilities for Uncertainty in Predictive Science.

    SciTech Connect (OSTI)

    Phipps, Eric T.; Eldred, Michael S.; Salinger, Andrew G.; Webster, Clayton G.

    2008-10-01T23:59:59.000Z

    Predictive simulation of systems comprised of numerous interconnected, tightly coupled com-ponents promises to help solve many problems of scientific and national interest. Howeverpredictive simulation of such systems is extremely challenging due to the coupling of adiverse set of physical and biological length and time scales. This report investigates un-certainty quantification methods for such systems that attempt to exploit their structure togain computational efficiency. The traditional layering of uncertainty quantification aroundnonlinear solution processes is inverted to allow for heterogeneous uncertainty quantificationmethods to be applied to each component in a coupled system. Moreover this approachallows stochastic dimension reduction techniques to be applied at each coupling interface.The mathematical feasibility of these ideas is investigated in this report, and mathematicalformulations for the resulting stochastically coupled nonlinear systems are developed.3

  7. Uncertainty quantification and validation of combined hydrological and macroeconomic analyses.

    SciTech Connect (OSTI)

    Hernandez, Jacquelynne; Parks, Mancel Jordan; Jennings, Barbara Joan; Kaplan, Paul Garry; Brown, Theresa Jean; Conrad, Stephen Hamilton

    2010-09-01T23:59:59.000Z

    Changes in climate can lead to instabilities in physical and economic systems, particularly in regions with marginal resources. Global climate models indicate increasing global mean temperatures over the decades to come and uncertainty in the local to national impacts means perceived risks will drive planning decisions. Agent-based models provide one of the few ways to evaluate the potential changes in behavior in coupled social-physical systems and to quantify and compare risks. The current generation of climate impact analyses provides estimates of the economic cost of climate change for a limited set of climate scenarios that account for a small subset of the dynamics and uncertainties. To better understand the risk to national security, the next generation of risk assessment models must represent global stresses, population vulnerability to those stresses, and the uncertainty in population responses and outcomes that could have a significant impact on U.S. national security.

  8. Incorporating uncertainty into electric utility projections and decisions

    SciTech Connect (OSTI)

    Hanson, D.A.

    1992-01-01T23:59:59.000Z

    This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The mean'' value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility's net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

  9. Incorporating uncertainty into electric utility projections and decisions

    SciTech Connect (OSTI)

    Hanson, D.A.

    1992-07-01T23:59:59.000Z

    This paper focuses on how electric utility companies can respond in their decision making to uncertain variables. Here we take a mean- variance type of approach. The ``mean`` value is an expected cost, on a discounted value basis. We assume that management has risk preferences incorporating a tradeoff between the mean and variance in the utility`s net income. Decisions that utilities are faced with can be classified into two types: ex ante and ex post. The ex ante decisions need to be made prior to the uncertainty being revealed and the ex post decision can be postponed until after the uncertainty is revealed. Intuitively, we can say that the ex ante decisions provide a hedge against the uncertainties and the ex post decisions allow the negative outcomes of uncertain variables to be partially mitigated, dampening the losses. An example of an ex post decision is how the system is operated i.e., unit dispatch, and in some cases switching among types of fuels, say with different sulfur contents. For example, if gas prices go up, natural gas combined cycle units are likely to be dispatched at lower capacity factors. If SO{sub 2} emission allowance prices go up, a utility may seek to switch into a lower sulfur coal. Here we assume that regulated electric utilities do have some incentive to lower revenue requirements and hence an incentive to lower the electric rates needed for the utility to break even, thereby earning a fair return on invested capital. This paper presents the general approach first, including applications to capacity expansion and system dispatch. Then a case study is presented focusing on the 1990 Clean Air Act Amendments including SO{sub 2} emissions abatement and banking of allowances under uncertainty. It is concluded that the emission banking decisions should not be made in isolation but rather all the uncertainties in demand, fuel prices, technology performance etc., should be included in the uncertainty analysis affecting emission banking.

  10. Distributed Generation Investment by a Microgrid under Uncertainty

    SciTech Connect (OSTI)

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    2008-08-11T23:59:59.000Z

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

  11. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    SciTech Connect (OSTI)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01T23:59:59.000Z

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  12. Computer-aided-design of agricultural drains under uncertainty

    E-Print Network [OSTI]

    Garcia, Luis Alfredo

    1985-01-01T23:59:59.000Z

    to be constructed. Using drainage helps dissolve and remove some excess salts and alkal ines. The balance between the amount of salts brought in by irrigation and the amount taken out by drainage is referred to as the salt balance of the area (Scofi eld 1940... for the depth, D, and spacing, L. D, L & 0 (4. 5) This MPP did not include uncertainty. In the next section uncertainty will be incorporated into the MPP. The ful I deterministic NPP is shown below: 35 Min [Ci + C2 + C3 + C4 + s. t. L2Qd D + d' ? (d...

  13. Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments

    E-Print Network [OSTI]

    Andi Cucoanes; Pau Novella; Anatael Cabrera; Muriel Fallot; Anthony Onillon; Michel Obolensky; Frederic Yermia

    2015-01-02T23:59:59.000Z

    This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications on the global $\\theta_{13}$ knowledge today. First, Double Chooz, in its final configuration, is the only experiment benefiting from a negligible reactor flux error due to a $\\sim$90\\% geometrical suppression. Second, Daya Bay and RENO could benefit from their partial geometrical cancellation, yielding a potential $\\sim$50\\% error suppression, thus significantly improving the global $\\theta_{13}$ precision today. And third, we illustrate the rationale behind further error suppression upon the exploitation of the inter-reactor error correlations, so far neglected. So, our publication is a key step forward in the context of high precision neutrino reactor experiments providing insight on the suppression of their intrinsic flux error uncertainty, thus affecting past and current experimental results, as well as the design of future experiments.

  14. Representing Uncertainty in Decision Support Harvey J. Greenberg

    E-Print Network [OSTI]

    Greenberg, Harvey J.

    overlapping factors. · Source of uncertainty. Is it a future event, such as product demand? Is it ignorance defines a proven reserve? · Time scale. Is the decision a strategic one, to cover a planning horizon? Is it a major setback, such as the loss of a company? Is it catastrophic, such as the loss of a city? · Decision

  15. Commitment Under Uncertainty: Two-Stage Stochastic Matching Problems

    E-Print Network [OSTI]

    Mathieu, Claire

    on classical combinatorial optimization problems [23]: set cover, minimum spanning tree, Steiner tree, maximum structures, with the notable exception of Gupta and P´al's work on stochastic Steiner Tree [9]. SecondCommitment Under Uncertainty: Two-Stage Stochastic Matching Problems Irit Katriel , Claire Kenyon

  16. CSC412: Uncertainty & Learning in AI . Instructor: Sam Roweis

    E-Print Network [OSTI]

    Roweis, Sam

    1 CSC412: Uncertainty & Learning in AI . Instructor: Sam Roweis . Tutor: Y.W. Teh . Lectures: MW10 inherently stochastic behaviour in the world A B C D E . Databases -- traditional DB technology cannot answer filterting (e.g. Amazon) Other Related Applications . Stochastic Signal Processing -- denoising, source

  17. AN OPTIMIZATION APPROACH TO UNCERTAINTY PROPAGATION IN BOUNDARY LOAD FLOW

    E-Print Network [OSTI]

    Stankoviæ, Aleksandar

    .g., SCADA) and network parame- ters. The method is potentially applicable to large-scale power systems) possible errors in measurements (e.g., SCADA). Topological uncertainties are linked with the fidelity. On the other hand, errors in network parameters and in SCADA measurements tend to be smaller in size

  18. Coal supply and cost under technological and environmental uncertainty

    E-Print Network [OSTI]

    Coal supply and cost under technological and environmental uncertainty Submitted in partial chapters. My conversations with Kurt Walzer at Clean Air Task Force and Rory McIlmoil at Coal Valley Wind Technology Laboratory. I did not complete this work alone. I had a lot of help along the way. I would like

  19. Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    1 Offshore Oilfield Development Planning under Uncertainty and Fiscal Considerations Vijay Gupta1 of oilfields in remote locations that are often hundreds of miles offshore. Surprisingly, there has been a net by the terms of the contract between oil companies and governments. Figure 1: A unified framework for Oilfield

  20. Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract

    E-Print Network [OSTI]

    Dalang, Robert C.

    Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract] Nicolas Gast EPFL, IC generation. The use of energy storage compensates to some extent these negative effects; it plays a buffer role between demand and production. We revisit a model of real storage proposed by Bejan et al.[1]. We

  1. Oil and Gas Production Optimization; Lost Potential due to Uncertainty

    E-Print Network [OSTI]

    Johansen, Tor Arne

    Oil and Gas Production Optimization; Lost Potential due to Uncertainty Steinar M. Elgsaeter Olav.ntnu.no) Abstract: The information content in measurements of offshore oil and gas production is often low, and when in the context of offshore oil and gas fields, can be considered the total output of production wells, a mass

  2. Treatment of Uncertainty in Long-Term Planning 1 Introduction

    E-Print Network [OSTI]

    McCalley, James D.

    attribute to lie. For example, we could specify the price of natural gas in one of the following ways: #12 with time. #12;3 Figure 2: Specification of uncertainty in natural gas price Aside: We may also apply (maturation rate) Fuel costs forecast Demand forecast Plant retirement dates and salvage value Policy

  3. ASME PTC 47, gasification combined cycle performance -- Uncertainty

    SciTech Connect (OSTI)

    Archer, D.H.; Horazak, D.A.; Bannister, R.L.

    1998-07-01T23:59:59.000Z

    Determining the uncertainty of measured calculated performance parameters is required in all Performance Test Codes of the ASME. This determination begins with the equations defining the performance parameters of the equipment or system--input, useful output, and effectiveness (an input/output ratio). The variables in these equations are: plant operating conditions measured throughout a test; corrections that compensate for deviations of other significant measured plant and ambient operating conditions from their values specified for the test. PTC47, Gasification Combined Cycle Plant Performance, will define procedures for the performance testing of overall gasification combined cycle plants and for each of three major sections that may comprise such a plant. The Committee is now defining the performance parameters for these tests. Performance factor computations include uncertainty calculations in order to provide preliminary estimates of the accuracy expected from the test methods proposed in this Code. Uncertainty calculations will also be used to explore energy balance methods for calculating the energy input to various gasifiers--entrained flow, fluidized bed, and moving bed. Such methods would be important as possible alternatives to direct measurements of flows and heating values of the various fuels fed to the gasifiers. Uncertainty calculations will also be used to assist in identifying those measurements of ambient, imposed, and controlled operating conditions that significantly affect test results and for which correction factors should be determined.

  4. A Genetic Programming Methodology for Missile Countermeasures Optimization Under Uncertainty

    E-Print Network [OSTI]

    Fernandez, Thomas

    The missile countermeasures optimization (MCO) problem has been the subject of intensive research [12], [6 with aircraft maneuvers and the introduction of uncertainty make the MCO problem extremely difficult to solve states of the MCO system. The SAM's current state may be uncertain as a result of incomplete data

  5. Reducing uncertainty in geostatistical description with well testing pressure data

    SciTech Connect (OSTI)

    Reynolds, A.C.; He, Nanqun [Univ. of Tulsa, OK (United States); Oliver, D.S. [Chevron Petroleum Technology Company, La Habra, CA (United States)

    1997-08-01T23:59:59.000Z

    Geostatistics has proven to be an effective tool for generating realizations of reservoir properties conditioned to static data, e.g., core and log data and geologic knowledge. Due to the lack of closely spaced data in the lateral directions, there will be significant variability in reservoir descriptions generated by geostatistical simulation, i.e., significant uncertainty in the reservoir descriptions. In past work, we have presented procedures based on inverse problem theory for generating reservoir descriptions (rock property fields) conditioned to pressure data and geostatistical information represented as prior means for log-permeability and porosity and variograms. Although we have shown that the incorporation of pressure data reduces the uncertainty below the level contained in the geostatistical model based only on static information (the prior model), our previous results assumed did not explicitly account for uncertainties in the prior means and the parameters defining the variogram model. In this work, we investigate how pressure data can help detect errors in the prior means. If errors in the prior means are large and are not taken into account, realizations conditioned to pressure data represent incorrect samples of the a posteriori probability density function for the rock property fields, whereas, if the uncertainty in the prior mean is incorporated properly into the model, one obtains realistic realizations of the rock property fields.

  6. Complementary Space for Enhanced Uncertainty and Dynamics Visualization

    E-Print Network [OSTI]

    Texas at Austin, University of

    of complementary space, i.e. the space exterior to but still "near" the surface in question. In this paper, we showComplementary Space for Enhanced Uncertainty and Dynamics Visualization Chandrajit Bajaj, Andrew to it. (a) A primal space visualization of the first time step with the heme group identified. (b

  7. Uncertainties and Ambiguities in Percentiles and how to Avoid Them

    E-Print Network [OSTI]

    Schreiber, Michael

    2012-01-01T23:59:59.000Z

    The recently proposed fractional scoring scheme is used to attribute publications to percentile rank classes. It is shown that in this way uncertainties and ambiguities in the evaluation of percentile ranks do not occur. Using the fractional scoring the total score of all papers exactly reproduces the theoretical value.

  8. On quantifying the space of uncertainty of stochastic simulations

    E-Print Network [OSTI]

    Froyland, Gary

    Froyland March 15, 2011 Abstract Distance computation as a technique to measure dissimilarity- mon approach to assessing geological uncertainty, and one of the most common practical methods can create multiple realizations that honor the original School of Mining Engineering,The University

  9. Polynomial regression with derivative information in nuclear reactor uncertainty quantification*

    E-Print Network [OSTI]

    Anitescu, Mihai

    1 Polynomial regression with derivative information in nuclear reactor uncertainty quantification in the outputs. The usual difficulties in modeling the work of the nuclear reactor models include the large size, Argonne National Laboratory, Argonne, IL, USA b Nuclear Engineering Division, Argonne National Laboratory

  10. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co for the modeled wind- CAES system would not cover annualized capital costs. We also estimate market prices-ahead market is roughly $100, with large variability due to electric power prices. Wind power forecast errors

  11. Uncertainty, Irreversibility, Precaution and the Social Cost of Carbon

    E-Print Network [OSTI]

    Watson, Andrew

    Uncertainty, Irreversibility, Precaution and the Social Cost of Carbon Alan Ingham and Alistair, Irreversibility, Precaution and the Social Cost of Carbon Alan Ingham and Alistair Ulph Tyndall Centre for Climate International Seminar on the Social Cost of Carbon, London, 7th July 2003. #12;2 Summary In this paper we

  12. Reducing Uncertainty: A Formal Theory of Organizations in Action 1

    E-Print Network [OSTI]

    Amsterdam, University of

    Reducing Uncertainty: A Formal Theory of Organizations in Action 1 Jaap Kamps and L'aszl'o P presents a formal reconstruction of James D. Thompson's classic contribution to organization theory---a heretofore unknown implication of the theory. #12; 1 Introduction Thompson's Organizations in Action

  13. Reducing Uncertainty: A Formal Theory of Organizations in Action1

    E-Print Network [OSTI]

    Kamps, Jaap

    Reducing Uncertainty: A Formal Theory of Organizations in Action1 Jaap Kamps and La´szlo´ Po contribution to organization theory, Organizations in Action. The reconstruction explicates the underlying, this theory explains why Thompson's propositions do not hold for noncomplex or "atomic" organizations (a

  14. NON-DOUBLE-COUPLE EARTHQUAKES: NET FORCES AND UNCERTAINTIES

    E-Print Network [OSTI]

    Foulger, G. R.

    NON-DOUBLE-COUPLE EARTHQUAKES: NET FORCES AND UNCERTAINTIES G.R. Foulger, B.R. Julian University-980) to include net forces in the mechanisms. Net forces are theoretically required to describe earthquakes) waves cannot resolve sources such as vertical dipoles. When source mechanisms include net forces, even

  15. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Guillas, Serge

    decision as the opportunity cost of exercising the investment option increases as well. In this paper, weInvestment and Upgrade in Distributed Generation under Uncertainty Afzal Siddiqui Karl Maribu 13 for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via

  16. Robust Path Planning and Feedback Design under Stochastic Uncertainty

    E-Print Network [OSTI]

    Williams, Brian C.

    . Introduction Autonomous vehicles such as Unmanned Air Vehicles (UAVs) need to be able to plan trajectories; prior work showed that a UAV operating at a constant altitude as well as other autonomous vehicles canRobust Path Planning and Feedback Design under Stochastic Uncertainty Lars Blackmore Autonomous

  17. Forecasting Uncertainty Related to Ramps of Wind Power Production

    E-Print Network [OSTI]

    Boyer, Edmond

    - namic reserve quantification [8], for the optimal oper- ation of combined wind-hydro power plants [5, 1Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power

  18. POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO-THERMAL SYSTEM UNDER UNCERTAINTY C.C. Car e1, M.P. Nowak2, W. Romisch2 Forschungsgemeinschaft. leads to a tremendous increase in the complex- ity of the traditional power optimization mod- els-burning) thermal units, pumped-storage hydro plants and delivery con- tracts and describe an optimization model

  19. POWER SCHEDULING IN A HYDROTHERMAL SYSTEM UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Römisch, Werner

    POWER SCHEDULING IN A HYDRO­THERMAL SYSTEM UNDER UNCERTAINTY C.C. Carøe 1 , M.P. Nowak 2 , W. R in the complex­ ity of the traditional power optimization mod­ els. The remedy we propose is decomposition which­storage hydro plants and delivery con­ tracts and describe an optimization model for its least­cost operation

  20. Developments of the Price equation and natural selection under uncertainty

    E-Print Network [OSTI]

    Grafen, Alan

    success, following Darwin (1859). Here, this project is pursued by developing the Price equation, ¢rstDevelopments of the Price equation and natural selection under uncertainty Alan Grafen Department to employ these approaches. Here, a new theore- tical development arising from the Price equation provides

  1. Assessing Uncertainty in Simulation Based Maritime Risk Assessment

    E-Print Network [OSTI]

    van Dorp, Johan René

    , such as nuclear powered vessels [6], vessels transporting liquefied natural gas [7] and offshore oil #12;2 and gas the decision-makers unsure whether the evidence was sufficient to assess specific risks and benefits. The first techniques to propagate uncertainty throughout the analysis. The conclusions drawn in the original study

  2. Stochastic methods for improving secondary production decisions under compositional uncertainty

    E-Print Network [OSTI]

    de Weck, Olivier L.

    secondary recovery industry. Secondary recovery forestalls depletion of non-renewable resources and avoidsStochastic methods for improving secondary production decisions under compositional uncertainty and Optimization Program #12;2 #12;3 Stochastic methods for improving secondary production decisions under

  3. Uncertainties analysis of fission fraction for reactor antineutrino experiments

    E-Print Network [OSTI]

    X. B. Ma; F. Lu; L. Z. Wang; Y. X. Chen; W. L. Zhong; F. P. An

    2015-03-17T23:59:59.000Z

    Reactor antineutrino experiment are used to study neutrino oscillation, search for signatures of nonstandard neutrino interaction, and monitor reactor operation for safeguard application. Reactor simulation is an important source of uncertainties for a reactor neutrino experiment. Commercial code is used for reactor simulation to evaluate fission fraction in Daya Bay neutrino experiment, but the source code doesn't open to our researcher results from commercial secret. In this study, The open source code DRAGON was improved to calculate the fission rates of the four most important isotopes in fissions, $^{235}$U,$^{238}$U,$^{239}$Pu and $^{241}$Pu, and then was validated for PWRs using the Takahama-3 benchmark. The fission fraction results are consistent with those of MIT's results. Then, fission fraction of Daya Bay reactor core was calculated by using improved DRAGON code, and the fission fraction calculated by DRAGON agreed well with these calculated by SCIENCE. The average deviation less than 5\\% for all the four isotopes. The correlation coefficient matrix between $^{235}$U,$^{238}$U,$^{239}$Pu and $^{241}$Pu were also studied using DRAGON, and then the uncertainty of the antineutrino flux by the fission fraction was calculated by using the correlation coefficient matrix. The uncertainty of the antineutrino flux by the fission fraction simulation is 0.6\\% per core for Daya Bay antineutrino experiment. The uncertainties source of fission fraction calculation need further to be studied in the future.

  4. Impact of Power Generation Uncertainty on Power System Static Performance

    E-Print Network [OSTI]

    Liberzon, Daniel

    in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

  5. The Geometry of Uncertainty in Moving Objects Databases

    E-Print Network [OSTI]

    Wolfson, Ouri E.

    The Geometry of Uncertainty in Moving Objects Databases Goce Trajcevski1 , Ouri Wolfson1@arl.mil Abstract. This work addresses the problem of querying moving ob- jects databases. which capture- ing, constructing, and querying a trajectories database. We propose to model a trajectory as a 3D

  6. The Economic Slide Abates but Uncertainty Abounds

    E-Print Network [OSTI]

    A (page 2). Manufacturing continued to be the leading edge of decline, losing 27,500 jobs. The approximately 900,000 manufacturing jobs once housed in the state in 1969 (33 percent of total employment) have. The rate reached as high as 17.2 percent during the first quarter of 2002. In addition, Somerset County

  7. Adaptive polynomial chaos techniques for uncertainty quantification of a gas cooled fast reactor transient

    SciTech Connect (OSTI)

    Perko, Z. [Section Physics of Nuclear Reactors, Department of Radiation, Radionuclides and Reactors, TU Delft, Mekelweg 15, 2629 JB, Delft (Netherlands); Gilli, L.; Lathouwers, D.; Kloosterman, J. L. [Section Physics of Nuclear Reactors, Department of Radiation, Radionuclides and Reactors, Delft University of Technology, Mekelweg 15, 2629 JB, Delft (Netherlands)

    2013-07-01T23:59:59.000Z

    Uncertainty quantification plays an increasingly important role in the nuclear community, especially with the rise of Best Estimate Plus Uncertainty methodologies. Sensitivity analysis, surrogate models, Monte Carlo sampling and several other techniques can be used to propagate input uncertainties. In recent years however polynomial chaos expansion has become a popular alternative providing high accuracy at affordable computational cost. This paper presents such polynomial chaos (PC) methods using adaptive sparse grids and adaptive basis set construction, together with an application to a Gas Cooled Fast Reactor transient. Comparison is made between a new sparse grid algorithm and the traditionally used technique proposed by Gerstner. An adaptive basis construction method is also introduced and is proved to be advantageous both from an accuracy and a computational point of view. As a demonstration the uncertainty quantification of a 50% loss of flow transient in the GFR2400 Gas Cooled Fast Reactor design was performed using the CATHARE code system. The results are compared to direct Monte Carlo sampling and show the superior convergence and high accuracy of the polynomial chaos expansion. Since PC techniques are easy to implement, they can offer an attractive alternative to traditional techniques for the uncertainty quantification of large scale problems. (authors)

  8. Performance evaluation of passive cooling in office buildings based on uncertainty and sensitivity analysis

    SciTech Connect (OSTI)

    Breesch, H. [Building Physics, Construction and Services, Department of Architecture and Urban Planning, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium); Sustainable Building Research Group, Department of Construction, Catholic University College Ghent, Gebroeders Desmetstraat 1, B-9000 Ghent (Belgium); Janssens, A. [Building Physics, Construction and Services, Department of Architecture and Urban Planning, Ghent University, J. Plateaustraat 22, B-9000 Ghent (Belgium)

    2010-08-15T23:59:59.000Z

    Natural night ventilation is an interesting passive cooling method in moderate climates. Driven by wind and stack generated pressures, it cools down the exposed building structure at night, in which the heat of the previous day is accumulated. The performance of natural night ventilation highly depends on the external weather conditions and especially on the outdoor temperature. An increase of this outdoor temperature is noticed over the last century and the IPCC predicts an additional rise to the end of this century. A methodology is needed to evaluate the reliable operation of the indoor climate of buildings in case of warmer and uncertain summer conditions. The uncertainty on the climate and on other design data can be very important in the decision process of a building project. The aim of this research is to develop a methodology to predict the performance of natural night ventilation using building energy simulation taking into account the uncertainties in the input. The performance evaluation of natural night ventilation is based on uncertainty and sensitivity analysis. The results of the uncertainty analysis showed that thermal comfort in a single office cooled with single-sided night ventilation had the largest uncertainty. The uncertainties on thermal comfort in case of passive stack and cross ventilation were substantially smaller. However, since wind, as the main driving force for cross ventilation, is highly variable, the cross ventilation strategy required larger louvre areas than the stack ventilation strategy to achieve a similar performance. The differences in uncertainty between the orientations were small. Sensitivity analysis was used to determine the most dominant set of input parameters causing the uncertainty on thermal comfort. The internal heat gains, solar heat gain coefficient of the sunblinds, internal convective heat transfer coefficient, thermophysical properties related to thermal mass, set-point temperatures controlling the natural night ventilation, the discharge coefficient C{sub d} of the night ventilation opening and the wind pressure coefficients C{sub p} were identified to have the largest impact on the uncertainty of thermal comfort. The impact of the warming climate on the uncertainty of thermal comfort was determined. The uncertainty on thermal comfort appeared to increase significantly when a weather data set with recurrence time of 10 years (warm weather) was applied in the transient simulations in stead of a standard weather data set. Natural night ventilation, designed for normal weather conditions, was clearly not able to ensure a high probability of good thermal comfort in warm weather. To ensure a high probability of good thermal comfort and to reduce the performance uncertainty in a warming climate, natural night ventilation has to be combined with additional measures. Different measures were analysed, based on the results of the sensitivity analysis. All the measures were shown to significantly decrease the uncertainty of thermal comfort in warm weather. The study showed the importance to carry out simulations with a warm weather data set together with the analysis under typical conditions. This approach allows to gain a better understanding of the performance of a natural night ventilation design, and to optimize the design to a robust solution. (author)

  9. Interpolation Uncertainties Across the ARM SGP Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn OtherEnergy International Fuel7

  10. Use of Forward Sensitivity Analysis Method to Improve Code Scaling, Applicability, and Uncertainty (CSAU) Methodology

    SciTech Connect (OSTI)

    Haihua Zhao; Vincent A. Mousseau; Nam T. Dinh

    2010-10-01T23:59:59.000Z

    Code Scaling, Applicability, and Uncertainty (CSAU) methodology was developed in late 1980s by US NRC to systematically quantify reactor simulation uncertainty. Basing on CSAU methodology, Best Estimate Plus Uncertainty (BEPU) methods have been developed and widely used for new reactor designs and existing LWRs power uprate. In spite of these successes, several aspects of CSAU have been criticized for further improvement: i.e., (1) subjective judgement in PIRT process; (2) high cost due to heavily relying large experimental database, needing many experts man-years work, and very high computational overhead; (3) mixing numerical errors with other uncertainties; (4) grid dependence and same numerical grids for both scaled experiments and real plants applications; (5) user effects; Although large amount of efforts have been used to improve CSAU methodology, the above issues still exist. With the effort to develop next generation safety analysis codes, new opportunities appear to take advantage of new numerical methods, better physical models, and modern uncertainty qualification methods. Forward sensitivity analysis (FSA) directly solves the PDEs for parameter sensitivities (defined as the differential of physical solution with respective to any constant parameter). When the parameter sensitivities are available in a new advanced system analysis code, CSAU could be significantly improved: (1) Quantifying numerical errors: New codes which are totally implicit and with higher order accuracy can run much faster with numerical errors quantified by FSA. (2) Quantitative PIRT (Q-PIRT) to reduce subjective judgement and improving efficiency: treat numerical errors as special sensitivities against other physical uncertainties; only parameters having large uncertainty effects on design criterions are considered. (3) Greatly reducing computational costs for uncertainty qualification by (a) choosing optimized time steps and spatial sizes; (b) using gradient information (sensitivity result) to reduce sampling number. (4) Allowing grid independence for scaled integral effect test (IET) simulation and real plant applications: (a) eliminate numerical uncertainty on scaling; (b) reduce experimental cost by allowing smaller scaled IET; (c) eliminate user effects. This paper will review the issues related to the current CSAU, introduce FSA, discuss a potential Q-PIRT process, and show simple examples to perform FSA. Finally, the general research direction and requirements to use FSA in a system analysis code will be discussed.

  11. River meander modeling and confronting uncertainty.

    SciTech Connect (OSTI)

    Posner, Ari J. (University of Arizona Tucson, AZ)

    2011-05-01T23:59:59.000Z

    This study examines the meandering phenomenon as it occurs in media throughout terrestrial, glacial, atmospheric, and aquatic environments. Analysis of the minimum energy principle, along with theories of Coriolis forces (and random walks to explain the meandering phenomenon) found that these theories apply at different temporal and spatial scales. Coriolis forces might induce topological changes resulting in meandering planforms. The minimum energy principle might explain how these forces combine to limit the sinuosity to depth and width ratios that are common throughout various media. The study then compares the first order analytical solutions for flow field by Ikeda, et al. (1981) and Johannesson and Parker (1989b). Ikeda's et al. linear bank erosion model was implemented to predict the rate of bank erosion in which the bank erosion coefficient is treated as a stochastic variable that varies with physical properties of the bank (e.g., cohesiveness, stratigraphy, or vegetation density). The developed model was used to predict the evolution of meandering planforms. Then, the modeling results were analyzed and compared to the observed data. Since the migration of a meandering channel consists of downstream translation, lateral expansion, and downstream or upstream rotations several measures are formulated in order to determine which of the resulting planforms is closest to the experimental measured one. Results from the deterministic model highly depend on the calibrated erosion coefficient. Since field measurements are always limited, the stochastic model yielded more realistic predictions of meandering planform evolutions. Due to the random nature of bank erosion coefficient, the meandering planform evolution is a stochastic process that can only be accurately predicted by a stochastic model.

  12. Uncertainty and sensitivity analysis of fission gas behavior in engineering-scale fuel modeling

    SciTech Connect (OSTI)

    G. Pastore; L.P. Swiler; J.D. Hales; S.R. Novascone; D.M. Perez; B.W. Spencer; L. Luzzi; P. Van Uffelen; R.L. Williamson

    2014-10-01T23:59:59.000Z

    The role of uncertainties in fission gas behavior calculations as part of engineering-scale nuclear fuel modeling is investigated using the BISON fuel performance code and a recently implemented physics-based model for the coupled fission gas release and swelling. Through the integration of BISON with the DAKOTA software, a sensitivity analysis of the results to selected model parameters is carried out based on UO2 single-pellet simulations covering different power regimes. The parameters are varied within ranges representative of the relative uncertainties and consistent with the information from the open literature. The study leads to an initial quantitative assessment of the uncertainty in fission gas behavior modeling with the parameter characterization presently available. Also, the relative importance of the single parameters is evaluated. Moreover, a sensitivity analysis is carried out based on simulations of a fuel rod irradiation experiment, pointing out a significant impact of the considered uncertainties on the calculated fission gas release and cladding diametral strain. The results of the study indicate that the commonly accepted deviation between calculated and measured fission gas release by a factor of 2 approximately corresponds to the inherent modeling uncertainty at high fission gas release. Nevertheless, higher deviations may be expected for values around 10% and lower. Implications are discussed in terms of directions of research for the improved modeling of fission gas behavior for engineering purposes.

  13. Estimated Uncertainties in the Idaho National Laboratory Matched-Index-of-Refraction Lower Plenum Experiment

    SciTech Connect (OSTI)

    Donald M. McEligot; Hugh M. McIlroy, Jr.; Ryan C. Johnson

    2007-11-01T23:59:59.000Z

    The purpose of the fluid dynamics experiments in the MIR (Matched-Index-of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for typical Very High Temperature Reactor (VHTR) plenum geometries in the limiting case of negligible buoyancy and constant fluid properties. The experiments use optical techniques, primarily particle image velocimetry (PIV) in the INL MIR flow system. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The objective of the present report is to develop understanding of the magnitudes of experimental uncertainties in the results to be obtained in such experiments. Unheated MIR experiments are first steps when the geometry is complicated. One does not want to use a computational technique, which will not even handle constant properties properly. This report addresses the general background, requirements for benchmark databases, estimation of experimental uncertainties in mean velocities and turbulence quantities, the MIR experiment, PIV uncertainties, positioning uncertainties, and other contributing measurement uncertainties.

  14. Generalized Uncertainty Relations and Long Time Limits for Quantum Brownian Motion Models

    E-Print Network [OSTI]

    C. Anastopoulos; J. J. Halliwell

    1994-07-27T23:59:59.000Z

    We study the time evolution of the reduced Wigner function for a class of quantum Brownian motion models. We derive two generalized uncertainty relations. The first consists of a sharp lower bound on the uncertainty function, $U = (\\Delta p)^2 (\\Delta q)^2 $, after evolution for time $t$ in the presence of an environment. The second, a stronger and simpler result, consists of a lower bound at time $t$ on a modified uncertainty function, essentially the area enclosed by the $1-\\sigma$ contour of the Wigner function. In both cases the minimizing initial state is a non-minimal Gaussian pure state. These generalized uncertainty relations supply a measure of the comparative size of quantum and thermal fluctuations. We prove two simple inequalites, relating uncertainty to von Neumann entropy, and the von Neumann entropy to linear entropy. We also prove some results on the long-time limit of the Wigner function for arbitrary initial states. For the harmonic oscillator the Wigner function for all initial states becomes a Gaussian at large times (often, but not always, a thermal state). We derive the explicit forms of the long-time limit for the free particle (which does not in general go to a Gaussian), and also for more general potentials in the approximation of high temperature.

  15. Calibration of a Distributed Flood Forecasting Model with Input Uncertainty Using a Bayesian Framework

    E-Print Network [OSTI]

    Hubbard, Susan

    Calibration of a Distributed Flood Forecasting Model with Input Uncertainty Using a Bayesian, Berkeley, CA, United States. In the process of calibrating distributed hydrological models, accounting in calibrating GBHM parameters and in estimating their associated uncertainty. The calibration ignoring input

  16. Confronting Uncertainty and Missing Values in Species Conservation Investment with Environmental

    E-Print Network [OSTI]

    Botea, Adi

    1 Confronting Uncertainty and Missing Values in Species Conservation Investment with Environmental: Environmental value transfer and species conservation Key words: environmental value transfer, uncertainty (Department of Environmental Heritage 2005). This results in an underinvestment of conservation dollars

  17. A decomposition approach for commodity pickup and delivery with time-windows under uncertainty

    E-Print Network [OSTI]

    Marla, Lavanya

    We consider a special class of large-scale, network-based, resource allocation problems under uncertainty, namely that of multi-commodity flows with time-windows under uncertainty. In this class, we focus on problems ...

  18. Continuous reservoir simulation incorporating uncertainty quantification and real-time data

    E-Print Network [OSTI]

    Holmes, Jay Cuthbert

    2009-05-15T23:59:59.000Z

    A significant body of work has demonstrated both the promise and difficulty of quantifying uncertainty in reservoir simulation forecasts. It is generally accepted that accurate and complete quantification of uncertainty should lead to better...

  19. Application of price uncertainty quantification models and their impacts on project evaluations 

    E-Print Network [OSTI]

    Fariyibi, Festus Lekan

    2006-10-30T23:59:59.000Z

    This study presents an analysis of several recently published methods for quantifying the uncertainty in economic evaluations due to uncertainty in future oil prices. Conventional price forecasting methods used in the industry typically...

  20. Effects of Data Uncertainties on Estimated Soil Organic Carbon in the Sudan

    E-Print Network [OSTI]

    Ardö, Jonas

    Effects of Data Uncertainties on Estimated Soil Organic Carbon in the Sudan JEAN-NICOLAS POUSSART was situated in central Sudan and dominated by subsistence agroecosystems. Uncertainties in the modeling

  1. Uncertainty Management in Optimal Disassembly Planning through Learning-based Strategies

    E-Print Network [OSTI]

    Reveliotis, Spiridon "Spyros"

    literature. Keywords: disassembly planning, product recovery, uncertainty management, reinforce- ment technical area of production system modelling, analysis and control. One particular theme that is emergingUncertainty Management in Optimal Disassembly Planning through Learning-based Strategies Spyros A

  2. Application of price uncertainty quantification models and their impacts on project evaluations

    E-Print Network [OSTI]

    Fariyibi, Festus Lekan

    2006-10-30T23:59:59.000Z

    This study presents an analysis of several recently published methods for quantifying the uncertainty in economic evaluations due to uncertainty in future oil prices. Conventional price forecasting methods used in the industry typically...

  3. Dealing with parameter uncertainty in the calculation of water surface profiles 

    E-Print Network [OSTI]

    Vargas-Cruz, Ruben F.

    1998-01-01T23:59:59.000Z

    Hydrologic and hydraulic variables common to many graphics. water resources engineering problems are known to contain considerable uncertainty. The description of the underlying uncertainty of these parameters is extremely ...

  4. Uncertainty quantification for CO2 sequestration and enhanced oil recovery

    E-Print Network [OSTI]

    Dai, Zhenxue; Fessenden-Rahn, Julianna; Middleton, Richard; Pan, Feng; Jia, Wei; Lee, Si-Yong; McPherson, Brian; Ampomah, William; Grigg, Reid

    2014-01-01T23:59:59.000Z

    This study develops a statistical method to perform uncertainty quantification for understanding CO2 storage potential within an enhanced oil recovery (EOR) environment at the Farnsworth Unit of the Anadarko Basin in northern Texas. A set of geostatistical-based Monte Carlo simulations of CO2-oil-water flow and reactive transport in the Morrow formation are conducted for global sensitivity and statistical analysis of the major uncertainty metrics: net CO2 injection, cumulative oil production, cumulative gas (CH4) production, and net water injection. A global sensitivity and response surface analysis indicates that reservoir permeability, porosity, and thickness are the major intrinsic reservoir parameters that control net CO2 injection/storage and oil/gas recovery rates. The well spacing and the initial water saturation also have large impact on the oil/gas recovery rates. Further, this study has revealed key insights into the potential behavior and the operational parameters of CO2 sequestration at CO2-EOR s...

  5. Cumulative theoretical uncertainties in lithium depletion boundary age

    E-Print Network [OSTI]

    Tognelli, Emanuele; Degl'Innocenti, Scilla

    2015-01-01T23:59:59.000Z

    We performed a detailed analysis of the main theoretical uncertainties affecting the age at the lithium depletion boundary (LDB). To do that we computed almost 12000 pre-main sequence models with mass in the range [0.06, 0.4] M_sun by varying input physics (nuclear reaction cross-sections, plasma electron screening, outer boundary conditions, equation of state, and radiative opacity), initial chemical elements abundances (total metallicity, helium and deuterium abundances, and heavy elements mixture), and convection efficiency (mixing length parameter, alpha_ML). As a first step, we studied the effect of varying these quantities individually within their extreme values. Then, we analysed the impact of simultaneously perturbing the main input/parameters without an a priori assumption of independence. Such an approach allowed us to build for the first time the cumulative error stripe, which defines the edges of the maximum uncertainty region in the theoretical LDB age. We found that the cumulative error stripe ...

  6. Systematic Uncertainties in the Analysis of the Reactor Neutrino Anomaly

    E-Print Network [OSTI]

    A. C. Hayes; J. L. Friar; G. T. Garvey; G. Jungman; Guy Jonkmans

    2014-04-05T23:59:59.000Z

    We examine uncertainties in the analysis of the reactor neutrino anomaly, wherein it is suggested that only about 94% of the emitted antineutrino flux was detected in short baseline experiments. We find that the form of the corrections that lead to the anomaly are very uncertain for the 30% of the flux that arises from forbidden decays. This uncertainty was estimated in four ways, is as large as the size of the anomaly, and is unlikely to be reduced without accurate direct measurements of the antineutrino flux. Given the present lack of detailed knowledge of the structure of the forbidden transitions, it is not possible to convert the measured aggregate fission beta spectra to antineutrino spectra to the accuracy needed to infer an anomaly. Neutrino physics conclusions based on the original anomaly need to be revisited, as do oscillation analyses that assumed that the antineutrino flux is known to better than approximately 4%.

  7. Uncertainty Quantification and Propagation in Nuclear Density Functional Theory

    E-Print Network [OSTI]

    N. Schunck; J. D. McDonnell; D. Higdon; J. Sarich; S. M. Wild

    2015-03-19T23:59:59.000Z

    Nuclear density functional theory (DFT) is one of the main theoretical tools used to study the properties of heavy and superheavy elements, or to describe the structure of nuclei far from stability. While on-going efforts seek to better root nuclear DFT in the theory of nuclear forces [see Duguet et al., this issue], energy functionals remain semi-phenomenological constructions that depend on a set of parameters adjusted to experimental data in finite nuclei. In this paper, we review recent efforts to quantify the related uncertainties, and propagate them to model predictions. In particular, we cover the topics of parameter estimation for inverse problems, statistical analysis of model uncertainties and Bayesian inference methods. Illustrative examples are taken from the literature.

  8. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, George E. (West Chicago, IL); Dawson, John W. (Clarendon Hills, IL)

    1983-01-01T23:59:59.000Z

    Reduction in the maximum time uncertainty (t.sub.max -t.sub.min) of a series of paired time signals t.sub.1 and t.sub.2 varying between two input terminals and representative of a series of single events where t.sub.1 .ltoreq.t.sub.2 and t.sub.1 +t.sub.2 equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t.sub.min) of the first signal t.sub.1 closer to t.sub.max and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20-800.

  9. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, G.E.; Dawson, J.W.

    1983-10-04T23:59:59.000Z

    Reduction in the maximum time uncertainty (t[sub max]--t[sub min]) of a series of paired time signals t[sub 1] and t[sub 2] varying between two input terminals and representative of a series of single events where t[sub 1][<=]t[sub 2] and t[sub 1]+t[sub 2] equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t[sub min]) of the first signal t[sub 1] closer to t[sub max] and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20--800. 6 figs.

  10. Reduction in maximum time uncertainty of paired time signals

    DOE Patents [OSTI]

    Theodosiou, G.E.; Dawson, J.W.

    1981-02-11T23:59:59.000Z

    Reduction in the maximum time uncertainty (t/sub max/ - t/sub min/) of a series of paired time signals t/sub 1/ and t/sub 2/ varying between two input terminals and representative of a series of single events where t/sub 1/ less than or equal to t/sub 2/ and t/sub 1/ + t/sub 2/ equals a constant, is carried out with a circuit utilizing a combination of OR and AND gates as signal selecting means and one or more time delays to increase the minimum value (t/sub min/) of the first signal t/sub 1/ closer to t/sub max/ and thereby reduce the difference. The circuit may utilize a plurality of stages to reduce the uncertainty by factors of 20 to 800.

  11. Ideas underlying quantification of margins and uncertainties(QMU): a white paper.

    SciTech Connect (OSTI)

    Helton, Jon Craig; Trucano, Timothy Guy; Pilch, Martin M.

    2006-09-01T23:59:59.000Z

    This report describes key ideas underlying the application of Quantification of Margins and Uncertainties (QMU) to nuclear weapons stockpile lifecycle decisions at Sandia National Laboratories. While QMU is a broad process and methodology for generating critical technical information to be used in stockpile management, this paper emphasizes one component, which is information produced by computational modeling and simulation. In particular, we discuss the key principles of developing QMU information in the form of Best Estimate Plus Uncertainty, the need to separate aleatory and epistemic uncertainty in QMU, and the risk-informed decision making that is best suited for decisive application of QMU. The paper is written at a high level, but provides a systematic bibliography of useful papers for the interested reader to deepen their understanding of these ideas.

  12. EFFECT OF UNCERTAINTIES IN STELLAR MODEL PARAMETERS ON ESTIMATED MASSES AND RADII OF SINGLE STARS

    SciTech Connect (OSTI)

    Basu, Sarbani [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520-8101 (United States); Verner, Graham A.; Chaplin, William J.; Elsworth, Yvonne, E-mail: sarbani.basu@yale.edu, E-mail: gav@bison.ph.bham.ac.uk, E-mail: w.j.chaplin@bham.ac.uk, E-mail: y.p.elsworth@bham.ac.uk [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2012-02-10T23:59:59.000Z

    Accurate and precise values of radii and masses of stars are needed to correctly estimate properties of extrasolar planets. We examine the effect of uncertainties in stellar model parameters on estimates of the masses, radii, and average densities of solar-type stars. We find that in the absence of seismic data on solar-like oscillations, stellar masses can be determined to a greater accuracy than either stellar radii or densities; but to get reasonably accurate results the effective temperature, log g, and metallicity must be measured to high precision. When seismic data are available, stellar density is the most well-determined property, followed by radius, with mass the least well-determined property. Uncertainties in stellar convection, quantified in terms of uncertainties in the value of the mixing length parameter, cause the most significant errors in the estimates of stellar properties.

  13. Quantum time uncertainty in Schwarzschild-anti-de Sitter black holes

    SciTech Connect (OSTI)

    Galan, Pablo; Mena Marugan, Guillermo A. [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Garay, Luis J. [Departamento de Fisica Teorica II, Universidad Complutense de Madrid, 28040 Madrid (Spain); Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain)

    2007-08-15T23:59:59.000Z

    The combined action of gravity and quantum mechanics gives rise to a minimum time uncertainty in the lowest order approximation of a perturbative scheme, in which quantum effects are regarded as corrections to the classical spacetime geometry. From the nonperturbative point of view, both gravity and quantum mechanics are treated on equal footing in a description that already contains all possible backreaction effects as those above in a nonlinear manner. In this paper, the existence or not of such minimum time uncertainty is analyzed in the context of Schwarzschild-anti-de Sitter black holes using the isolated horizon formalism. We show that from a perturbative point of view, a nonzero time uncertainty is generically present owing to the energy scale introduced by the cosmological constant, while in a quantization scheme that includes nonperturbatively the effects of that scale, an arbitrarily high time resolution can be reached.

  14. Trapped Between Two Tails: Trading Off Scientific Uncertainties via Climate Targets

    SciTech Connect (OSTI)

    Lemoine, Derek M.; McJeon, Haewon C.

    2013-08-20T23:59:59.000Z

    Climate change policies must trade off uncertainties about future warming, about the social and ecological impacts of warming, and about the cost of reducing greenhouse gas emissions. We show that laxer carbon targets produce broader distributions for climate damages, skewed towards severe outcomes. However, if potential low-carbon technologies fill overlapping niches, then more stringent carbon targets produce broader distributions for the cost of reducing emissions, skewed towards high-cost outcomes. We use the technology- rich GCAM integrated assessment model to assess the robustness of 450 ppm and 500 ppm carbon targets to each uncertain factor. The 500 ppm target provides net benefits across a broad range of futures. The 450 ppm target provides net benefits only when impacts are greater than conventionally assumed, when multiple technological breakthroughs lower the cost of abatement, or when evaluated with a low discount rate. Policy evaluations are more sensitive to uncertainty about abatement technology and impacts than to uncertainty about warming.

  15. Joint measurements of spin, operational locality and uncertainty

    E-Print Network [OSTI]

    Erika Andersson; Stephen M. Barnett; Alain Aspect

    2005-09-21T23:59:59.000Z

    Joint, or simultaneous, measurements of non-commuting observables are possible within quantum mechanics, if one accepts an increase in the variances of the jointly measured observables. In this paper, we discuss joint measurements of a spin 1/2 particle along any two directions. Starting from an operational locality principle, it is shown how to obtain a bound on how sharp the joint measurement can be. We give a direct interpretation of this bound in terms of an uncertainty relation.

  16. Optimal Reservoir Management and Well Placement Under Geologic Uncertainty

    E-Print Network [OSTI]

    Taware, Satyajit Vijay

    2012-10-19T23:59:59.000Z

    of DOCTOR OF PHILOSOPHY Approved by: Co-Chairs of Committee, Akhil Datta-Gupta Michael King Committee Members, Ding Zhu Wolfgang Bangerth Head of Department, Dan Hill August 2012 Major Subject...: Petroleum Engineering iii ABSTRACT Optimal Reservoir Management and Well Placement Under Geologic Uncertainty. (August 2012) Satyajit Vijay Taware, B.E., Pune University, India; M.E., Pune University, India. Co-Chairs of Advisory Committee: Dr...

  17. Quantification Of Margins And Uncertainties: A Bayesian Approach (full Paper)

    SciTech Connect (OSTI)

    Wallstrom, Timothy C [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    Quantification of Margins and Uncertainties (QMU) is 'a formalism for dealing with the reliability of complex technical systems, and the confidence which can be placed in estimates of that reliability.' (Eardleyet al, 2005). In this paper, we show how QMU may be interpreted in the framework of Bayesian statistical inference, using a probabilistic network. The Bayesian approach clarifies the probabilistic underpinnings of the formalism, and shows how the formalism can be used for deciSion-making.

  18. New agegraphic dark energy model with generalized uncertainty principle

    E-Print Network [OSTI]

    Yong-Wan Kim; Hyung Won Lee; Yun Soo Myung; Mu-In Park

    2008-08-07T23:59:59.000Z

    We investigate the new agegraphic dark energy models with generalized uncertainty principle (GUP). It turns out that although the GUP affects the early universe, it does not change the current and future dark energy-dominated universe significantly. Furthermore, this model could describe the matter-dominated universe in the past only when the parameter $n$ is chosen to be $n>n_c$, where the critical value determined to be $n_c=2.799531478$.

  19. Climate dynamics and fluid mechanics: Natural variability and related uncertainties

    E-Print Network [OSTI]

    Michael Ghil; Mickaël D. Chekroun; Eric Simonnet

    2010-06-15T23:59:59.000Z

    The purpose of this review-and-research paper is twofold: (i) to review the role played in climate dynamics by fluid-dynamical models; and (ii) to contribute to the understanding and reduction of the uncertainties in future climate-change projections. To illustrate the first point, we focus on the large-scale, wind-driven flow of the mid-latitude oceans which contribute in a crucial way to Earth's climate, and to changes therein. We study the low-frequency variability (LFV) of the wind-driven, double-gyre circulation in mid-latitude ocean basins, via the bifurcation sequence that leads from steady states through periodic solutions and on to the chaotic, irregular flows documented in the observations. This sequence involves local, pitchfork and Hopf bifurcations, as well as global, homoclinic ones. The natural climate variability induced by the LFV of the ocean circulation is but one of the causes of uncertainties in climate projections. Another major cause of such uncertainties could reside in the structural instability in the topological sense, of the equations governing climate dynamics, including but not restricted to those of atmospheric and ocean dynamics. We propose a novel approach to understand, and possibly reduce, these uncertainties, based on the concepts and methods of random dynamical systems theory. As a very first step, we study the effect of noise on the topological classes of the Arnol'd family of circle maps, a paradigmatic model of frequency locking as occurring in the nonlinear interactions between the El Nino-Southern Oscillations (ENSO) and the seasonal cycle. It is shown that the maps' fine-grained resonant landscape is smoothed by the noise, thus permitting their coarse-grained classification. This result is consistent with stabilizing effects of stochastic parametrization obtained in modeling of ENSO phenomenon via some general circulation models.

  20. Methodologies for Estimating Building Energy Savings Uncertainty: Review and Comparison

    E-Print Network [OSTI]

    Baltazar, J.C.; Sun, Y.; Claridge, D.

    2014-01-01T23:59:59.000Z

    for the right case is given. ESL-IC-14-09-11 Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 ...p. 1 INTERNATIONAL CONFERENCE FOR ENHANCED BUILDING OPERATIONS TSINGHUA UNIVERSITY – BEIJING, CHINA –SEPTEMBER 14 -17, 2014 Methodologies for Estimating Building Energy Savings Uncertainty: Review and Comparison Juan-Carlos Baltazar PhD, PE, Yifu...

  1. Uncertainty in calculated surface temperature and surface heat flux of THTF heater rods

    SciTech Connect (OSTI)

    Childs, K.W.

    1980-12-01T23:59:59.000Z

    This report presents a procedure for determining the uncertainty in the output of a complex computer code resulting from uncertainties in its input variables. This method is applied to ORINC (Oak Ridge Inverse Code) to estimate the uncertainty in the calculated surface temperature and surface heat flux of a THTF heater during a blowdown transient. The significant input variables are identified and 95% confidence bands are calculated for the code outputs based on the uncertainty in these input variables. 21 refs., 43 figs.

  2. Uncertainty in calculated surface temperature and surface heat flux of THTF heater rods

    SciTech Connect (OSTI)

    Childs, K.W.

    1980-12-01T23:59:59.000Z

    The report presents a procedure for determining the uncertainty in the output of a complex computer code resulting from uncertainties in its input variables. This method is applied to ORINC (Oak Ridge Inverse Code) to estimate the uncertainty in the calculated surface temperature and surface heat flux of a THTF heater during a blowdown transient. The significant input variables are identified and 95% confidence bands are calculated for the code outputs based on the uncertainty in these input variables.

  3. Carbon Accounting and Economic Model Uncertainty of Emissions from Biofuels-Induced Land Use Change

    E-Print Network [OSTI]

    Plevin, Richard J; Beckman, Jayson; Golub, Alla A; Witcover, Julie; O'??Hare, Michael

    2015-01-01T23:59:59.000Z

    due to first and second generation biofuels and uncertaintyIntroducing First and Second Generation Biofuels into GTAP

  4. Zero-point energies, the uncertainty principle and positivity of the quantum Brownian density operator

    E-Print Network [OSTI]

    Allan Tameshtit

    2012-04-09T23:59:59.000Z

    High temperature and white noise approximations are frequently invoked when deriving the quantum Brownian equation for an oscillator. Even if this white noise approximation is avoided, it is shown that if the zero point energies of the environment are neglected, as they often are, the resultant equation will violate not only the basic tenet of quantum mechanics that requires the density operator to be positive, but also the uncertainty principle. When the zero-point energies are included, asymptotic results describing the evolution of the oscillator are obtained that preserve positivity and, therefore, the uncertainty principle.

  5. On Uncertainty Quantification of Lithium-ion Batteries

    E-Print Network [OSTI]

    Hadigol, Mohammad; Doostan, Alireza

    2015-01-01T23:59:59.000Z

    In this work, a stochastic, physics-based model for Lithium-ion batteries (LIBs) is presented in order to study the effects of model uncertainties on the cell capacity, voltage, and concentrations. To this end, the proposed uncertainty quantification (UQ) approach, based on sparse polynomial chaos expansions, relies on a small number of battery simulations. Within this UQ framework, the identification of most important uncertainty sources is achieved by performing a global sensitivity analysis via computing the so-called Sobol' indices. Such information aids in designing more efficient and targeted quality control procedures, which consequently may result in reducing the LIB production cost. An LiC$_6$/LiCoO$_2$ cell with 19 uncertain parameters discharged at 0.25C, 1C and 4C rates is considered to study the performance and accuracy of the proposed UQ approach. The results suggest that, for the considered cell, the battery discharge rate is a key factor affecting not only the performance variability of the ce...

  6. ESTIMATING THE UNCERTAINTY IN REACTIVITY ACCIDENT NEUTRONIC CALCULATIONS

    SciTech Connect (OSTI)

    DIAMOND,D.J.; YANG,C.Y.; ARONSON,A.L.

    1998-10-26T23:59:59.000Z

    A study of the uncertainty in calculations of the rod ejection accident in a pressurized water reactor is being carried out for the US Nuclear Regulatory Commission. This paper is a progress report on that study. Results are presented for the sensitivity of core energy deposition to the key parameters: ejected rod worth, delayed neutron fraction, Doppler reactivity coefficient, and fuel specific heat. These results can be used in the future to estimate the uncertainty in local fuel enthalpy given some assumptions about the uncertainty in the key parameters. This study is also concerned with the effect of the intra-assembly representation in calculations. The issue is the error that might be present if assembly-average power is calculated, and pin peaking factors from a static calculation are then used to determine local fuel enthalpy. This is being studied with the help of a collaborative effort with Russian and French analysts who are using codes with different intra-assembly representations. The US code being used is PARCS which calculates power on an assembly-average basis. The Russian code being used is BARS which calculates power for individual fuel pins using a heterogeneous representation based on a Green's Function method.

  7. Estimating the uncertainty in reactivity accident neutronic calculations

    SciTech Connect (OSTI)

    Diamond, D.J.; Yang, C.Y.; Aronson, A.L.

    1998-12-31T23:59:59.000Z

    A study of the uncertainty in calculations of the rod ejection accident in a pressurized water reactor is being carried out for the US Nuclear Regulatory Commission. This paper is a progress report on that study. Results are presented for the sensitivity of core energy deposition to the key parameters: ejected rod worth, delayed neutron fraction, Doppler reactivity coefficient, and fuel specific heat. These results can be used in the future to estimate the uncertainty in local fuel enthalpy given some assumptions about the uncertainty in the key parameters. This study is also concerned with the effect of the intra-assembly representation in calculations. The issue is the error that might be present if assembly-average power is calculated, and pin peaking factors from a static calculation are then used to determine local fuel enthalpy. This is being studied with the help of a collaborative effort with Russian and French analysts who are using codes with different intra-assembly representations. The US code being used is PARCS which calculates power on an assembly-average basis. The Russian code being used is BARS which calculates power for individual fuel pins using a heterogeneous representation based on a Green`s Function method.

  8. Generalized Uncertainty Principle: Implications for Black Hole Complementarity

    E-Print Network [OSTI]

    Pisin Chen; Yen Chin Ong; Dong-han Yeom

    2014-12-10T23:59:59.000Z

    At the heart of the black hole information loss paradox and the firewall controversy lies the conflict between quantum mechanics and general relativity. Much has been said about quantum corrections to general relativity, but much less in the opposite direction. It is therefore crucial to examine possible corrections to quantum mechanics due to gravity. Indeed, the Heisenberg Uncertainty Principle is one profound feature of quantum mechanics, which nevertheless may receive correction when gravitational effects become important. Such generalized uncertainty principle [GUP] has been motivated from not only quite general considerations of quantum mechanics and gravity, but also string theoretic arguments. We examine the role of GUP in the context of black hole complementarity. We find that while complementarity can be violated by large N rescaling if one assumes only the Heisenberg's Uncertainty Principle, the application of GUP may save complementarity, but only if certain N-dependence is also assumed. This raises two important questions beyond the scope of this work, i.e., whether GUP really has the proposed form of N-dependence, and whether black hole complementarity is indeed correct.

  9. Water Management, Risk, and Uncertainty: Things We Wish We Knew in the 21st

    E-Print Network [OSTI]

    Shaw, W. Douglass

    Water Management, Risk, and Uncertainty: Things We Wish We Knew in the 21st Century [Forthcoming;1 Introduction A survey is offered of the most difficult and challenging issues to water managers in the 21st Century, focusing on the economics of risks and more so, uncertainty. Risk and uncertainty is addressed

  10. Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations) for uncertainty analysis with respect to two major types of risk in river hydrodynamics: flash flood and dam failure. LSA is com- pared to a Global Uncertainty Analysis (GUA) consisting in running Monte Carlo

  11. TRITIUM UNCERTAINTY ANALYSIS FOR SURFACE WATER SAMPLES AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Atkinson, R.

    2012-07-31T23:59:59.000Z

    Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

  12. Assessing ocean-model sensitivity to wind forcing uncertainties I. Andreu Burillo,1

    E-Print Network [OSTI]

    Assessing ocean-model sensitivity to wind forcing uncertainties I. Andreu Burillo,1 G. Caniaux,1 M-equation open-ocean model, induced by uncertainties in wind forcing. Statistics calculated from an ensemble-model sensitivity to wind forcing uncertainties, Geophys. Res. Lett., 29(18), 1858, doi:10.1029/2001GL014473, 2002

  13. Integration and quantification of uncertainty of volumetric and material balance analyses using a Bayesian framework

    E-Print Network [OSTI]

    Ogele, Chile

    2005-11-01T23:59:59.000Z

    ......................................... 13 Example 1: Gas-cap Oil Reservoir Reported by Dake ................... 13 Case 1: Large Uncertainty in Prior and Small Uncertainty in Pressure Data .............................................................................. 13 Case 2... OHIP and quantify uncertainty. Test the framework using data for gas-cap oil reservoirs reported in the literature. 2. Investigate the effect of correlation between parameters of the prior distribution on the combined OHIP estimate. General...

  14. A simplified approach to quantifying predictive and parametric uncertainty in artificial neural network hydrologic models

    E-Print Network [OSTI]

    Chaubey, Indrajeet

    considerable interest in developing methods for uncertainty analysis of artificial neural network (ANN) models and parametric uncertainty in artificial neural network hydrologic models, Water Resour. Res., 43, W10407, doi:10A simplified approach to quantifying predictive and parametric uncertainty in artificial neural

  15. Achieving Robustness to Uncertainty for Financial Decision-making

    SciTech Connect (OSTI)

    Barnum, George M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Van Buren, Kendra L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hemez, Francois M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Song, Peter [Univ. of Pennsylvania, Philadelphia, PA (United States)

    2014-01-10T23:59:59.000Z

    This report investigates the concept of robustness analysis to support financial decision-making. Financial models, that forecast future stock returns or market conditions, depend on assumptions that might be unwarranted and variables that might exhibit large fluctuations from their last-known values. The analysis of robustness explores these sources of uncertainty, and recommends model settings such that the forecasts used for decision-making are as insensitive as possible to the uncertainty. A proof-of-concept is presented with the Capital Asset Pricing Model. The robustness of model predictions is assessed using info-gap decision theory. Info-gaps are models of uncertainty that express the “distance,” or gap of information, between what is known and what needs to be known in order to support the decision. The analysis yields a description of worst-case stock returns as a function of increasing gaps in our knowledge. The analyst can then decide on the best course of action by trading-off worst-case performance with “risk”, which is how much uncertainty they think needs to be accommodated in the future. The report also discusses the Graphical User Interface, developed using the MATLAB® programming environment, such that the user can control the analysis through an easy-to-navigate interface. Three directions of future work are identified to enhance the present software. First, the code should be re-written using the Python scientific programming software. This change will achieve greater cross-platform compatibility, better portability, allow for a more professional appearance, and render it independent from a commercial license, which MATLAB® requires. Second, a capability should be developed to allow users to quickly implement and analyze their own models. This will facilitate application of the software to the evaluation of proprietary financial models. The third enhancement proposed is to add the ability to evaluate multiple models simultaneously. When two models reflect past data with similar accuracy, the more robust of the two is preferable for decision-making because its predictions are, by definition, less sensitive to the uncertainty.

  16. A stochastic approach to estimate the uncertainty of dose mapping caused by uncertainties in b-spline registration

    SciTech Connect (OSTI)

    Hub, Martina; Thieke, Christian; Kessler, Marc L.; Karger, Christian P. [Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg (Germany); Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany and Department of Radiation Oncology, University Clinic Heidelberg, 69120 Heidelberg (Germany); Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan 48109 (United States); Department of Medical Physics in Radiation Oncology, German Cancer Research Center (DKFZ), 69120 Heidelberg (Germany)

    2012-04-15T23:59:59.000Z

    Purpose: In fractionated radiation therapy, image guidance with daily tomographic imaging becomes more and more clinical routine. In principle, this allows for daily computation of the delivered dose and for accumulation of these daily dose distributions to determine the actually delivered total dose to the patient. However, uncertainties in the mapping of the images can translate into errors of the accumulated total dose, depending on the dose gradient. In this work, an approach to estimate the uncertainty of mapping between medical images is proposed that identifies areas bearing a significant risk of inaccurate dose accumulation. Methods: This method accounts for the geometric uncertainty of image registration and the heterogeneity of the dose distribution, which is to be mapped. Its performance is demonstrated in context of dose mapping based on b-spline registration. It is based on evaluation of the sensitivity of dose mapping to variations of the b-spline coefficients combined with evaluation of the sensitivity of the registration metric with respect to the variations of the coefficients. It was evaluated based on patient data that was deformed based on a breathing model, where the ground truth of the deformation, and hence the actual true dose mapping error, is known. Results: The proposed approach has the potential to distinguish areas of the image where dose mapping is likely to be accurate from other areas of the same image, where a larger uncertainty must be expected. Conclusions: An approach to identify areas where dose mapping is likely to be inaccurate was developed and implemented. This method was tested for dose mapping, but it may be applied in context of other mapping tasks as well.

  17. Probabilistic accident consequence uncertainty analysis: Dispersion and deposition uncertainty assessment. Volume 3, Appendices C, D, E, F, and G

    SciTech Connect (OSTI)

    Harper, F.T.; Young, M.L.; Miller, L.A. [Sandia National Labs., Albuquerque, NM (United States)] [and others

    1995-01-01T23:59:59.000Z

    The development of two new probabilistic accident consequence codes, MACCS and COSYMA, completed in 1990, estimate the risks presented by nuclear installations based on postulated frequencies and magnitudes of potential accidents. In 1991, the US Nuclear Regulatory Commission (NRC) and the Commission of the European Communities (CEC) began a joint uncertainty analysis of the two codes. The objective was to develop credible and traceable uncertainty distributions for the input variables of the codes. Expert elicitation, developed independently, was identified as the best technology available for developing a library of uncertainty distributions for the selected consequence parameters. The study was formulated jointly and was limited to the current code models and to physical quantities that could be measured in experiments. To validate the distributions generated for the wet deposition input variables, samples were taken from these distributions and propagated through the wet deposition code model along with the Gaussian plume model (GPM) implemented in the MACCS and COSYMA codes. Resulting distributions closely replicated the aggregated elicited wet deposition distributions. Project teams from the NRC and CEC cooperated successfully to develop and implement a unified process for the elaboration of uncertainty distributions on consequence code input parameters. Formal expert judgment elicitation proved valuable for synthesizing the best available information. Distributions on measurable atmospheric dispersion and deposition parameters were successfully elicited from experts involved in the many phenomenological areas of consequence analysis. This volume is the third of a three-volume document describing the project and contains descriptions of the probability assessment principles; the expert identification and selection process; the weighting methods used; the inverse modeling methods; case structures; and summaries of the consequence codes.

  18. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01T23:59:59.000Z

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  19. Energy-saving technology adoption under uncertainty in the residential sector

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Energy-saving technology adoption under uncertainty in the residential sector Dorothée Charlier in the energy-saving technology, to save or to consume energy goods and non-energy goods. Resolution to be a highly effective means for households to lower expenditures on energy. In this sense, home renova- tion

  20. DEVELOPMENT OF REAL TIME FLOOD PREDICTION CAPABILITIES IN PUERTO RICO TO EVALUATE UNCERTAINTIES

    E-Print Network [OSTI]

    Gilbes, Fernando

    DEVELOPMENT OF REAL TIME FLOOD PREDICTION CAPABILITIES IN PUERTO RICO TO EVALUATE UNCERTAINTIES of Electrical and Computer Engineering 1,2,3 University of Puerto Rico at Mayagüez Abstract Due to the complex terrain and the tropical influence, Puerto Rico is characterized by small watersheds, high rainfall

  1. On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications

    E-Print Network [OSTI]

    Manuel, Lance

    On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications Korn, Austin, TX 78712 In stochastic simulation of inflow turbulence random fields for wind turbine applica models can be in turn highly variable. Turbine load and performance variability could as well result

  2. MMIII* by M. Kosticwww.kostic.niu.edu Error or Uncertainty Analysis

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    Gas Analysis SO2 , NO, NO2 , CO, CO2 , THC, O2Sample Tanks Particle Probe Gas Probe Exhaust DMA1 © MMIII* by M. Kosticwww.kostic.niu.edu Unleashing Error or Uncertainty Analysis of Measurement - Differential Mobility Analyzer CNC ­ Condensation Nuclei Counter HPLPC ­ High Pressure Large Particle Counter

  3. THE PROPAGATION OF UNCERTAINTIES IN STELLAR POPULATION SYNTHESIS MODELING. II. THE CHALLENGE OF COMPARING GALAXY EVOLUTION MODELS TO OBSERVATIONS

    SciTech Connect (OSTI)

    Conroy, Charlie; Gunn, James E. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); White, Martin [Departments of Physics and Astronomy, University of California Berkeley, CA 94720 (United States)

    2010-01-01T23:59:59.000Z

    Models for the formation and evolution of galaxies readily predict physical properties such as star formation rates, metal-enrichment histories, and, increasingly, gas and dust content of synthetic galaxies. Such predictions are frequently compared to the spectral energy distributions of observed galaxies via the stellar population synthesis (SPS) technique. Substantial uncertainties in SPS exist, and yet their relevance to the task of comparing galaxy evolution models to observations has received little attention. In the present work, we begin to address this issue by investigating the importance of uncertainties in stellar evolution, the initial stellar mass function (IMF), and dust and interstellar medium (ISM) properties on the translation from models to observations. We demonstrate that these uncertainties translate into substantial uncertainties in the ultraviolet, optical, and near-infrared colors of synthetic galaxies. Aspects that carry significant uncertainties include the logarithmic slope of the IMF above 1 M{sub sun}, dust attenuation law, molecular cloud disruption timescale, clumpiness of the ISM, fraction of unobscured starlight, and treatment of advanced stages of stellar evolution including blue stragglers, the horizontal branch, and the thermally pulsating asymptotic giant branch. The interpretation of the resulting uncertainties in the derived colors is highly non-trivial because many of the uncertainties are likely systematic, and possibly correlated with the physical properties of galaxies. We therefore urge caution when comparing models to observations.

  4. Stochastic methods for uncertainty quantification in radiation transport

    SciTech Connect (OSTI)

    Fichtl, Erin D [Los Alamos National Laboratory; Prinja, Anil K [Los Alamos National Laboratory; Warsa, James S [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    The use of generalized polynomial chaos (gPC) expansions is investigated for uncertainty quantification in radiation transport. The gPC represents second-order random processes in terms of an expansion of orthogonal polynomials of random variables and is used to represent the uncertain input(s) and unknown(s). We assume a single uncertain input-the total macroscopic cross section-although this does not represent a limitation of the approaches considered here. Two solution methods are examined: The Stochastic Finite Element Method (SFEM) and the Stochastic Collocation Method (SCM). The SFEM entails taking Galerkin projections onto the orthogonal basis, which, for fixed source problems, yields a linear system of fully -coupled equations for the PC coefficients of the unknown. For k-eigenvalue calculations, the SFEM system is non-linear and a Newton-Krylov method is employed to solve it. The SCM utilizes a suitable quadrature rule to compute the moments or PC coefficients of the unknown(s), thus the SCM solution involves a series of independent deterministic transport solutions. The accuracy and efficiency of the two methods are compared and contrasted. The PC coefficients are used to compute the moments and probability density functions of the unknown(s), which are shown to be accurate by comparing with Monte Carlo results. Our work demonstrates that stochastic spectral expansions are a viable alternative to sampling-based uncertainty quantification techniques since both provide a complete characterization of the distribution of the flux and the k-eigenvalue. Furthermore, it is demonstrated that, unlike perturbation methods, SFEM and SCM can handle large parameter uncertainty.

  5. Uncertainties in Life Cycle Greenhouse Gas Emissions from Advanced

    SciTech Connect (OSTI)

    Kara G. Cafferty; Erin M. Searcy; Long Nguyen; Sabrina Spatari

    2014-11-01T23:59:59.000Z

    To meet Energy Independence and Security Act (EISA) cellulosic biofuel mandates, the United States will require an annual domestic supply of about 242 million Mg of biomass by 2022. To improve the feedstock logistics of lignocellulosic biofuels and access available biomass resources from areas with varying yields, commodity systems have been proposed and designed to deliver on-spec biomass feedstocks at preprocessing “depots”, which densify and stabilize the biomass prior to long-distance transport and delivery to centralized biorefineries. The harvesting, preprocessing, and logistics (HPL) of biomass commodity supply chains thus could introduce spatially variable environmental impacts into the biofuel life cycle due to needing to harvest, move, and preprocess biomass from multiple distances that have variable spatial density. This study examines the uncertainty in greenhouse gas (GHG) emissions of corn stover logisticsHPL within a bio-ethanol supply chain in the state of Kansas, where sustainable biomass supply varies spatially. Two scenarios were evaluated each having a different number of depots of varying capacity and location within Kansas relative to a central commodity-receiving biorefinery to test GHG emissions uncertainty. Monte Carlo simulation was used to estimate the spatial uncertainty in the HPL gate-to-gate sequence. The results show that the transport of densified biomass introduces the highest variability and contribution to the carbon footprint of the logistics HPL supply chain (0.2-13 g CO2e/MJ). Moreover, depending upon the biomass availability and its spatial density and surrounding transportation infrastructure (road and rail), logistics HPL processes can increase the variability in life cycle environmental impacts for lignocellulosic biofuels. Within Kansas, life cycle GHG emissions could range from 24 to 41 g CO2e/MJ depending upon the location, size and number of preprocessing depots constructed. However, this range can be minimized through optimizing the siting of preprocessing depots where ample rail infrastructure exists to supply biomass commodity to a regional biorefinery supply system

  6. PROBABILISTIC SENSITIVITY AND UNCERTAINTY ANALYSIS WORKSHOP SUMMARY REPORT

    SciTech Connect (OSTI)

    Seitz, R

    2008-06-25T23:59:59.000Z

    Stochastic or probabilistic modeling approaches are being applied more frequently in the United States and globally to quantify uncertainty and enhance understanding of model response in performance assessments for disposal of radioactive waste. This increased use has resulted in global interest in sharing results of research and applied studies that have been completed to date. This technical report reflects the results of a workshop that was held to share results of research and applied work related to performance assessments conducted at United States Department of Energy sites. Key findings of this research and applied work are discussed and recommendations for future activities are provided.

  7. On the energy-time uncertainty principle A didactical note

    E-Print Network [OSTI]

    Giribet, G

    2005-01-01T23:59:59.000Z

    This brief note has the didactical purpose of discussing the meaning of the uncertainty principle involving energy and time in quantum mechanics by means of a review of the seminal works on this subject. The importance of this topic is, indeed, frequently neglected in several textbooks on quantum mechanics. Then, these pages are addressed to students attenting to an undergraduate course on quantum theory; and the original aim is that of presenting a list of references of the points that take part in the principal discussions on the subject. Special attention is devoted to the discussion of the fallacies, which are certainly persistent in the didactical literature.

  8. Identifying and bounding uncertainties in nuclear reactor thermal power calculations

    SciTech Connect (OSTI)

    Phillips, J.; Hauser, E.; Estrada, H. [Cameron, 1000 McClaren Woods Drive, Coraopolis, PA 15108 (United States)

    2012-07-01T23:59:59.000Z

    Determination of the thermal power generated in the reactor core of a nuclear power plant is a critical element in the safe and economic operation of the plant. Direct measurement of the reactor core thermal power is made using neutron flux instrumentation; however, this instrumentation requires frequent calibration due to changes in the measured flux caused by fuel burn-up, flux pattern changes, and instrumentation drift. To calibrate the nuclear instruments, steam plant calorimetry, a process of performing a heat balance around the nuclear steam supply system, is used. There are four basic elements involved in the calculation of thermal power based on steam plant calorimetry: The mass flow of the feedwater from the power conversion system, the specific enthalpy of that feedwater, the specific enthalpy of the steam delivered to the power conversion system, and other cycle gains and losses. Of these elements, the accuracy of the feedwater mass flow and the feedwater enthalpy, as determined from its temperature and pressure, are typically the largest contributors to the calorimetric calculation uncertainty. Historically, plants have been required to include a margin of 2% in the calculation of the reactor thermal power for the licensed maximum plant output to account for instrumentation uncertainty. The margin is intended to ensure a cushion between operating power and the power for which safety analyses are performed. Use of approved chordal ultrasonic transit-time technology to make the feedwater flow and temperature measurements (in place of traditional differential-pressure- based instruments and resistance temperature detectors [RTDs]) allows for nuclear plant thermal power calculations accurate to 0.3%-0.4% of plant rated power. This improvement in measurement accuracy has allowed many plant operators in the U.S. and around the world to increase plant power output through Measurement Uncertainty Recapture (MUR) up-rates of up to 1.7% of rated power, while also decreasing the probability of significant over-power events. This paper will examine the basic elements involved in calculation of thermal power using ultrasonic transit-time technology and will discuss the criteria for bounding uncertainties associated with each element in order to achieve reactor thermal power calculations to within 0.3% to 0.4%. (authors)

  9. Quantification of Uncertainties in Nuclear Density Functional theory

    E-Print Network [OSTI]

    N. Schunck; J. D. McDonnell; D. Higdon; J. Sarich; S. Wild

    2014-09-17T23:59:59.000Z

    Reliable predictions of nuclear properties are needed as much to answer fundamental science questions as in applications such as reactor physics or data evaluation. Nuclear density functional theory is currently the only microscopic, global approach to nuclear structure that is applicable throughout the nuclear chart. In the past few years, a lot of effort has been devoted to setting up a general methodology to assess theoretical uncertainties in nuclear DFT calculations. In this paper, we summarize some of the recent progress in this direction. Most of the new material discussed here will be be published in separate articles.

  10. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    SciTech Connect (OSTI)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.; Cantrell, Kirk J.

    2004-03-01T23:59:59.000Z

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates based on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four projections, and associated kriging variances, were averaged using the posterior model probabilities as weights. Finally, cross-validation was conducted by eliminating from consideration all data from one borehole at a time, repeating the above process, and comparing the predictive capability of the model-averaged result with that of each individual model. Using two quantitative measures of comparison, the model-averaged result was superior to any individual geostatistical model of log permeability considered.

  11. Molecular nonlinear dynamics and protein thermal uncertainty quantification

    SciTech Connect (OSTI)

    Xia, Kelin [Department of Mathematics, Michigan State University, Michigan 48824 (United States)] [Department of Mathematics, Michigan State University, Michigan 48824 (United States); Wei, Guo-Wei, E-mail: wei@math.msu.edu [Department of Mathematics, Michigan State University, Michigan 48824 (United States) [Department of Mathematics, Michigan State University, Michigan 48824 (United States); Department of Electrical and Computer Engineering, Michigan State University, Michigan 48824 (United States); Department of Biochemistry and Molecular Biology, Michigan State University, Michigan 48824 (United States)

    2014-03-15T23:59:59.000Z

    This work introduces molecular nonlinear dynamics (MND) as a new approach for describing protein folding and aggregation. By using a mode system, we show that the MND of disordered proteins is chaotic while that of folded proteins exhibits intrinsically low dimensional manifolds (ILDMs). The stability of ILDMs is found to strongly correlate with protein energies. We propose a novel method for protein thermal uncertainty quantification based on persistently invariant ILDMs. Extensive comparison with experimental data and the state-of-the-art methods in the field validate the proposed new method for protein B-factor prediction.

  12. Quantifying Uncertainty in Computer Predictions | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70COMMUNITY AEROSOL: ShalePutting!Quantifying Uncertainty in

  13. Uncertainty Analysis of RELAP5-3D

    SciTech Connect (OSTI)

    Alexandra E Gertman; Dr. George L Mesina

    2012-07-01T23:59:59.000Z

    As world-wide energy consumption continues to increase, so does the demand for the use of alternative energy sources, such as Nuclear Energy. Nuclear Power Plants currently supply over 370 gigawatts of electricity, and more than 60 new nuclear reactors have been commissioned by 15 different countries. The primary concern for Nuclear Power Plant operation and lisencing has been safety. The safety of the operation of Nuclear Power Plants is no simple matter- it involves the training of operators, design of the reactor, as well as equipment and design upgrades throughout the lifetime of the reactor, etc. To safely design, operate, and understand nuclear power plants, industry and government alike have relied upon the use of best-estimate simulation codes, which allow for an accurate model of any given plant to be created with well-defined margins of safety. The most widely used of these best-estimate simulation codes in the Nuclear Power industry is RELAP5-3D. Our project focused on improving the modeling capabilities of RELAP5-3D by developing uncertainty estimates for its calculations. This work involved analyzing high, medium, and low ranked phenomena from an INL PIRT on a small break Loss-Of-Coolant Accident as wall as an analysis of a large break Loss-Of- Coolant Accident. Statistical analyses were performed using correlation coefficients. To perform the studies, computer programs were written that modify a template RELAP5 input deck to produce one deck for each combination of key input parameters. Python scripting enabled the running of the generated input files with RELAP5-3D on INL’s massively parallel cluster system. Data from the studies was collected and analyzed with SAS. A summary of the results of our studies are presented.

  14. Real-time Information, Uncertainty and Quantum Feedback Control

    E-Print Network [OSTI]

    Bo Qi; Daoyi Dong; Chunlin Chen; Lijun Liu; Zairong Xi

    2014-09-10T23:59:59.000Z

    Feedback is the core concept in cybernetics and its effective use has made great success in but not limited to the fields of engineering, biology, and computer science. When feedback is used to quantum systems, two major types of feedback control protocols including coherent feedback control (CFC) and measurement-based feedback control (MFC) have been developed. In this paper, we compare the two types of quantum feedback control protocols by focusing on the real-time information used in the feedback loop and the capability in dealing with parameter uncertainty. An equivalent relationship is established between quantum CFC and non-selective quantum MFC in the form of operator-sum representation. Using several examples of quantum feedback control, we show that quantum MFC can theoretically achieve better performance than quantum CFC in stabilizing a quantum state and dealing with Hamiltonian parameter uncertainty. The results enrich understanding of the relative advantages between quantum MFC and quantum CFC, and can provide useful information in choosing suitable feedback protocols for quantum systems.

  15. Data Filtering Impact on PV Degradation Rates and Uncertainty (Poster)

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2012-03-01T23:59:59.000Z

    To sustain the commercial success of photovoltaics (PV) it becomes vital to know how power output decreases with time. In order to predict power delivery, degradation rates must be determined accurately. Data filtering, any data treatment assessment of long-term field behavior, is discussed as part of a more comprehensive uncertainty analysis and can be one of the greatest sources of uncertainty in long-term performance studies. Several distinct filtering methods such as outlier removal and inclusion of only sunny days on several different metrics such as PVUSA, performance ratio, DC power to plane-of-array irradiance ratio, uncorrected, and temperature-corrected were examined. PVUSA showed the highest sensitivity while temperature-corrected power over irradiance ratio was found to be the least sensitive to data filtering conditions. Using this ratio it is demonstrated that quantification of degradation rates with a statistical accuracy of +/- 0.2%/year within 4 years of field data is possible on two crystalline silicon and two thin-film systems.

  16. Uncertainty, loss aversion, and markets for energy efficiency

    SciTech Connect (OSTI)

    Greene, David L [ORNL

    2010-01-01T23:59:59.000Z

    Increasing energy efficiency is critical to mitigating greenhouse gas emissions from fossil-fuel combustion, reducing oil dependence, and achieving a sustainable global energy system. The tendency of markets to neglect apparently cost-effective energy efficiency options has been called the efficiency gap or energy paradox. The market for energy efficiency in new, energy-using durable goods, however, appears to have a bias that leads to undervaluation of future energy savings relative to their expected value. This paper argues that the bias is chiefly produced by the combination of substantial uncertainty about the net value of future fuel savings and the loss aversion of typical consumers. This framework relies on the theory of contextdependent preferences. The uncertainty-loss aversion bias against energy efficiency is quantifiable, making it potentially correctible by policy measures. The welfare economics of such policies remains unresolved. Data on the costs of increased fuel economy of new passenger cars, taken from a National Research Council study, illustrate how an apparently cost-effective increase in energy efficiency would be uninteresting to lossaverse consumers.

  17. Analysis and Reduction of Complex Networks Under Uncertainty.

    SciTech Connect (OSTI)

    Ghanem, Roger G [University of Southern California

    2014-07-31T23:59:59.000Z

    This effort was a collaboration with Youssef Marzouk of MIT, Omar Knio of Duke University (at the time at Johns Hopkins University) and Habib Najm of Sandia National Laboratories. The objective of this effort was to develop the mathematical and algorithmic capacity to analyze complex networks under uncertainty. Of interest were chemical reaction networks and smart grid networks. The statements of work for USC focused on the development of stochastic reduced models for uncertain networks. The USC team was led by Professor Roger Ghanem and consisted of one graduate student and a postdoc. The contributions completed by the USC team consisted of 1) methodology and algorithms to address the eigenvalue problem, a problem of significance in the stability of networks under stochastic perturbations, 2) methodology and algorithms to characterize probability measures on graph structures with random flows. This is an important problem in characterizing random demand (encountered in smart grid) and random degradation (encountered in infrastructure systems), as well as modeling errors in Markov Chains (with ubiquitous relevance !). 3) methodology and algorithms for treating inequalities in uncertain systems. This is an important problem in the context of models for material failure and network flows under uncertainty where conditions of failure or flow are described in the form of inequalities between the state variables.

  18. Measurement uncertainty from In-Situ gamma spectroscopy of nonhomogeneous containers and from Laboratory Assay

    SciTech Connect (OSTI)

    Bronson, F. [CHP, Canberra Industries, Meriden CT (United States); Atrashkevich, V. [Stroiteley, Moscow (Russian Federation)

    2007-07-01T23:59:59.000Z

    During a D and D or ER process containers of radioactive waste are normally generated. The activity can commonly be determined by gamma spectroscopy, but frequently the measurement conditions are not conducive to precise sample-detector geometries, and usually the radioactive material is not in a homogeneous distribution. What is the best method to accurately assay these containers - sampling followed by laboratory analysis, or in-situ spectroscopy? What is the uncertainty of the final result? To help answer these questions, the Canberra tool ISOCS Uncertainty Estimator [IUE] was used to mathematically simulate and evaluate several different measurement scenarios and to estimate the uncertainty of the measurement and the sampling process. Several representative containers and source distributions were mathematically defined and evaluated to determine the in-situ measurement uncertainty due to the sample non-uniformity. In the First example a typical field situation requiring the measurement of 200-liter drums was evaluated. A sensitivity analysis was done to show which parameters contributed the most to the uncertainty. Then an efficiency uncertainty calculation was performed. In the Second example, a group of 200-liter drums with various types of non-homogeneous distributions was created, and them measurements were simulated with different detector arrangements to see how the uncertainty varied. In the Third example, a truck filled with non-uniform soil was first measured with multiple in-situ detectors to determine the measurement uncertainty. Then composite samples were extracted and the sampling uncertainty computed for comparison to the field measurement uncertainty. (authors)

  19. Propagation of nuclear data uncertainties for ELECTRA burn-up calculations

    E-Print Network [OSTI]

    H. Sjöstrand; E. Alhassan; J. Duan; C. Gustavsson; A. Koning; S. Pomp; D. Rochman; M. Österlund

    2013-04-08T23:59:59.000Z

    The European Lead-Cooled Training Reactor (ELECTRA) has been proposed as a training reactor for fast systems within the Swedish nuclear program. It is a low-power fast reactor cooled by pure liquid lead. In this work, we propagate the uncertainties in Pu-239 transport data to uncertainties in the fuel inventory of ELECTRA during the reactor life using the Total Monte Carlo approach (TMC). Within the TENDL project the nuclear models input parameters were randomized within their uncertainties and 740 Pu-239 nuclear data libraries were generated. These libraries are used as inputs to reactor codes, in our case SERPENT, to perform uncertainty analysis of nuclear reactor inventory during burn-up. The uncertainty in the inventory determines uncertainties in: the long-term radio-toxicity, the decay heat, the evolution of reactivity parameters, gas pressure and volatile fission product content. In this work, a methodology called fast TMC is utilized, which reduces the overall calculation time. The uncertainty in the long-term radiotoxicity, decay heat, gas pressure and volatile fission products were found to be insignificant. However, the uncertainty of some minor actinides were observed to be rather large and therefore their impact on multiple recycling should be investigated further. It was also found that, criticality benchmarks can be used to reduce inventory uncertainties due to nuclear data. Further studies are needed to include fission yield uncertainties, more isotopes, and a larger set of benchmarks.

  20. Method to Calculate Uncertainty Estimate of Measuring Shortwave Solar Irradiance using Thermopile and Semiconductor Solar Radiometers

    SciTech Connect (OSTI)

    Reda, I.

    2011-07-01T23:59:59.000Z

    The uncertainty of measuring solar irradiance is fundamentally important for solar energy and atmospheric science applications. Without an uncertainty statement, the quality of a result, model, or testing method cannot be quantified, the chain of traceability is broken, and confidence cannot be maintained in the measurement. Measurement results are incomplete and meaningless without a statement of the estimated uncertainty with traceability to the International System of Units (SI) or to another internationally recognized standard. This report explains how to use International Guidelines of Uncertainty in Measurement (GUM) to calculate such uncertainty. The report also shows that without appropriate corrections to solar measuring instruments (solar radiometers), the uncertainty of measuring shortwave solar irradiance can exceed 4% using present state-of-the-art pyranometers and 2.7% using present state-of-the-art pyrheliometers. Finally, the report demonstrates that by applying the appropriate corrections, uncertainties may be reduced by at least 50%. The uncertainties, with or without the appropriate corrections might not be compatible with the needs of solar energy and atmospheric science applications; yet, this report may shed some light on the sources of uncertainties and the means to reduce overall uncertainty in measuring solar irradiance.

  1. Effect of fluctuation measures on the uncertainty relations between two observables: Different measures lead to opposite conclusions

    SciTech Connect (OSTI)

    Luis, Alfredo [Departamento de Optica, Facultad de Ciencias Fisicas, Universidad Complutense, E-28040 Madrid (Spain)

    2011-09-15T23:59:59.000Z

    We show within a very simple framework that different measures of fluctuations lead to uncertainty relations resulting in contradictory conclusions. More specifically we focus on Tsallis and Renyi entropic uncertainty relations and we get that the minimum joint uncertainty states for some fluctuation measures are the maximum joint uncertainty states of other fluctuation measures, and vice versa.

  2. An Information-Theoretic Measure of Uncertainty due to Quantum and Thermal Fluctuations

    E-Print Network [OSTI]

    Arlen Anderson; Jonathan J. Halliwell

    1993-04-28T23:59:59.000Z

    We study an information-theoretic measure of uncertainty for quantum systems. It is the Shannon information $I$ of the phase space probability distribution $\\la z | \\rho | z \\ra $, where $|z \\ra $ are coherent states, and $\\rho$ is the density matrix. The uncertainty principle is expressed in this measure as $I \\ge 1$. For a harmonic oscillator in a thermal state, $I$ coincides with von Neumann entropy, $- \\Tr(\\rho \\ln \\rho)$, in the high-temperature regime, but unlike entropy, it is non-zero at zero temperature. It therefore supplies a non-trivial measure of uncertainty due to both quantum and thermal fluctuations. We study $I$ as a function of time for a class of non-equilibrium quantum systems consisting of a distinguished system coupled to a heat bath. We derive an evolution equation for $I$. For the harmonic oscillator, in the Fokker-Planck regime, we show that $I$ increases monotonically. For more general Hamiltonians, $I$ settles down to monotonic increase in the long run, but may suffer an initial decrease for certain initial states that undergo ``reassembly'' (the opposite of quantum spreading). Our main result is to prove, for linear systems, that $I$ at each moment of time has a lower bound $I_t^{min}$, over all possible initial states. This bound is a generalization of the uncertainty principle to include thermal fluctuations in non-equilibrium systems, and represents the least amount of uncertainty the system must suffer after evolution in the presence of an environment for time $t$.

  3. Principles and applications of measurement and uncertainty analysis in research and calibration

    SciTech Connect (OSTI)

    Wells, C.V.

    1992-11-01T23:59:59.000Z

    Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.'' Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true What kind of information should we include in a statement of uncertainty accompanying a calibrated value How and where do we get the information to include in an uncertainty statement How should we interpret and use measurement uncertainty information This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.

  4. Principles and applications of measurement and uncertainty analysis in research and calibration

    SciTech Connect (OSTI)

    Wells, C.V.

    1992-11-01T23:59:59.000Z

    Interest in Measurement Uncertainty Analysis has grown in the past several years as it has spread to new fields of application, and research and development of uncertainty methodologies have continued. This paper discusses the subject from the perspectives of both research and calibration environments. It presents a history of the development and an overview of the principles of uncertainty analysis embodied in the United States National Standard, ANSI/ASME PTC 19.1-1985, Measurement Uncertainty. Examples are presented in which uncertainty analysis was utilized or is needed to gain further knowledge of a particular measurement process and to characterize final results. Measurement uncertainty analysis provides a quantitative estimate of the interval about a measured value or an experiment result within which the true value of that quantity is expected to lie. Years ago, Harry Ku of the United States National Bureau of Standards stated that ``The informational content of the statement of uncertainty determines, to a large extent, the worth of the calibrated value.`` Today, that statement is just as true about calibration or research results as it was in 1968. Why is that true? What kind of information should we include in a statement of uncertainty accompanying a calibrated value? How and where do we get the information to include in an uncertainty statement? How should we interpret and use measurement uncertainty information? This discussion will provide answers to these and other questions about uncertainty in research and in calibration. The methodology to be described has been developed by national and international groups over the past nearly thirty years, and individuals were publishing information even earlier. Yet the work is largely unknown in many science and engineering arenas. I will illustrate various aspects of uncertainty analysis with some examples drawn from the radiometry measurement and calibration discipline from research activities.

  5. Quantum root-mean-square error and measurement uncertainty relations

    E-Print Network [OSTI]

    Paul Busch; Pekka Lahti; Reinhard F Werner

    2014-10-10T23:59:59.000Z

    Recent years have witnessed a controversy over Heisenberg's famous error-disturbance relation. Here we resolve the conflict by way of an analysis of the possible conceptualizations of measurement error and disturbance in quantum mechanics. We discuss two approaches to adapting the classic notion of root-mean-square error to quantum measurements. One is based on the concept of noise operator; its natural operational content is that of a mean deviation of the values of two observables measured jointly, and thus its applicability is limited to cases where such joint measurements are available. The second error measure quantifies the differences between two probability distributions obtained in separate runs of measurements and is of unrestricted applicability. We show that there are no nontrivial unconditional joint-measurement bounds for {\\em state-dependent} errors in the conceptual framework discussed here, while Heisenberg-type measurement uncertainty relations for {\\em state-independent} errors have been proven.

  6. Reactor Neutrino Flux Uncertainty Suppression on Multiple Detector Experiments

    E-Print Network [OSTI]

    Cucoanes, Andi; Cabrera, Anatael; Fallot, Muriel; Onillon, Anthony; Obolensky, Michel; Yermia, Frederic

    2015-01-01T23:59:59.000Z

    This publication provides a coherent treatment for the reactor neutrino flux uncertainties suppression, specially focussed on the latest $\\theta_{13}$ measurement. The treatment starts with single detector in single reactor site, most relevant for all reactor experiments beyond $\\theta_{13}$. We demonstrate there is no trivial error cancellation, thus the flux systematic error can remain dominant even after the adoption of multi-detector configurations. However, three mechanisms for flux error suppression have been identified and calculated in the context of Double Chooz, Daya Bay and RENO sites. Our analysis computes the error {\\it suppression fraction} using simplified scenarios to maximise relative comparison among experiments. We have validated the only mechanism exploited so far by experiments to improve the precision of the published $\\theta_{13}$. The other two newly identified mechanisms could lead to total error flux cancellation under specific conditions and are expected to have major implications o...

  7. Savannah River Site TEP-SET tests uncertainty report

    SciTech Connect (OSTI)

    Taylor, D.J.N.

    1993-09-01T23:59:59.000Z

    This document presents a measurement uncertainty analysis for the instruments used for the Phase I, II and III of the Savannah River One-Fourth Linear Scale, One-Sixth Sector, Tank/Muff/Pump (TMP) Separate Effects Tests (SET) Experiment Series. The Idaho National Engineering Laboratory conducted the tests for the Savannah River Site (SRS). The tests represented a range of hydraulic conditions and geometries that bound anticipated Large Break Loss of Coolant Accidents in the SRS reactors. Important hydraulic phenomena were identified from experiments. In addition, code calculations will be benchmarked from these experiments. The experimental system includes the following measurement groups: coolant density; absolute and differential pressures; turbine flowmeters (liquid phase); thermal flowmeters (gas phase); ultrasonic liquid level meters; temperatures; pump torque; pump speed; moderator tank liquid inventory via a load cells measurement; and relative humidity meters. This document also analyzes data acquisition system including the presampling filters as it relates to these measurements.

  8. Uncertainty analysis for probabilistic pipe fracture evaluations in LBB applications

    SciTech Connect (OSTI)

    Rahman, S.; Ghadiali, N.; Wilkowski, G.

    1997-04-01T23:59:59.000Z

    During the NRC`s Short Cracks in Piping and Piping Welds Program at Battelle, a probabilistic methodology was developed to conduct fracture evaluations of circumferentially cracked pipes for application to leak-rate detection. Later, in the IPIRG-2 program, several parameters that may affect leak-before-break and other pipe flaw evaluations were identified. This paper presents new results from several uncertainty analyses to evaluate the effects of normal operating stresses, normal plus safe-shutdown earthquake stresses, off-centered cracks, restraint of pressure-induced bending, and dynamic and cyclic loading rates on the conditional failure probability of pipes. systems in BWR and PWR. For each parameter, the sensitivity to conditional probability of failure and hence, its importance on probabilistic leak-before-break evaluations were determined.

  9. Computational Methods for Sensitivity and Uncertainty Analysis in Criticality Safety

    SciTech Connect (OSTI)

    Broadhead, B.L.; Childs, R.L.; Rearden, B.T.

    1999-09-20T23:59:59.000Z

    Interest in the sensitivity methods that were developed and widely used in the 1970s (the FORSS methodology at ORNL among others) has increased recently as a result of potential use in the area of criticality safety data validation procedures to define computational bias, uncertainties and area(s) of applicability. Functional forms of the resulting sensitivity coefficients can be used as formal parameters in the determination of applicability of benchmark experiments to their corresponding industrial application areas. In order for these techniques to be generally useful to the criticality safety practitioner, the procedures governing their use had to be updated and simplified. This paper will describe the resulting sensitivity analysis tools that have been generated for potential use by the criticality safety community.

  10. as-run neutronics uncertainty: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    uncertainties in typical oil and gas projects: 1. The oil price, 2. The investments (capex) and operating. The oil and gas reserves and production profiles, 5. The production...

  11. MASS MEASUREMENT UNCERTAINTY FOR PLUTONIUM ALIQUOTS ASSAYED BY CONTROLLED-POTENTIAL COULOMETRY

    SciTech Connect (OSTI)

    Holland, M.; Cordaro, J.

    2009-03-18T23:59:59.000Z

    Minimizing plutonium measurement uncertainty is essential to nuclear material control and international safeguards. In 2005, the International Organization for Standardization (ISO) published ISO 12183 'Controlled-potential coulometric assay of plutonium', 2nd edition. ISO 12183:2005 recommends a target of {+-}0.01% for the mass of original sample in the aliquot because it is a critical assay variable. Mass measurements in radiological containment were evaluated and uncertainties estimated. The uncertainty estimate for the mass measurement also includes uncertainty in correcting for buoyancy effects from air acting as a fluid and from decreased pressure of heated air from the specific heat of the plutonium isotopes.

  12. Uncertainty and sensitivity analysis methods for improving design robustness and reliability

    E-Print Network [OSTI]

    He, Qinxian, Ph. D. Massachusetts Institute of Technology

    2014-01-01T23:59:59.000Z

    Engineering systems of the modern day are increasingly complex, often involving numerous components, countless mathematical models, and large, globally-distributed design teams. These features all contribute uncertainty ...

  13. Epistemologies of uncertainty : governing CO2 capture and storage science and technology 

    E-Print Network [OSTI]

    Evar, Benjamin

    2014-11-27T23:59:59.000Z

    This thesis progresses from a ‘science and technology studies’ (STS) perspective to consider the ways that expert stakeholders perceive and communicate uncertainties and risks attached to carbon ...

  14. Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty

    E-Print Network [OSTI]

    Kim, Lance Kyungwoo

    2011-01-01T23:59:59.000Z

    scientific resources for decommissioning a nuclear facility.t) i Decommissioning Decommissioning of a nuclear facilityDecommissioning Funding: Ethics, Implementa- tion, Uncertainties. Nuclear

  15. Calibration of a distributed flood forecasting model with input uncertainty using a Bayesian framework

    E-Print Network [OSTI]

    Li, M.

    2013-01-01T23:59:59.000Z

    error model for calibration and uncertainty estimation ofand T. Wagener (2005), Model calibration and uncertaintyand A. Mailhot (2008), Calibration of hydrological model

  16. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Plevin, Richard Jay

    2010-01-01T23:59:59.000Z

    tainty in quantitative risk and policy analysis. Cambridge ;quantitative and qualitative measures of uncertainty in model-based environmental as- sessment: The NUSAP system. Risk Analysis

  17. Uncertainty Estimate for the Outdoor Calibration of Solar Pyranometers: A Metrologist Perspective

    SciTech Connect (OSTI)

    Reda, I.; Myers, D.; Stoffel, T.

    2008-12-01T23:59:59.000Z

    Pyranometers are used outdoors to measure solar irradiance. By design, this type of radiometer can measure the; total hemispheric (global) or diffuse (sky) irradiance when the detector is unshaded or shaded from the sun disk, respectively. These measurements are used in a variety of applications including solar energy conversion, atmospheric studies, agriculture, and materials science. Proper calibration of pyranometers is essential to ensure measurement quality. This paper describes a step-by-step method for calculating and reporting the uncertainty of the calibration, using the guidelines of the ISO 'Guide to the Expression of Uncertainty in Measurement' or GUM, that is applied to the pyranometer; calibration procedures used at the National Renewable Energy Laboratory (NREL). The NREL technique; characterizes a responsivity function of a pyranometer as a function of the zenith angle, as well as reporting a single; calibration responsivity value for a zenith angle of 45 ..deg... The uncertainty analysis shows that a lower uncertainty can be achieved by using the response function of a pyranometer determined as a function of zenith angle, in lieu of just using; the average value at 45..deg... By presenting the contribution of each uncertainty source to the total uncertainty; users will be able to troubleshoot and improve their calibration process. The uncertainty analysis method can also be used to determine the uncertainty of different calibration techniques and applications, such as deriving the uncertainty of field measurements.

  18. ADJUSTMENT COSTS, LEARNING-BY-DOING, AND TECHNOLOGY ADOPTION UNDER UNCERTAINTY

    E-Print Network [OSTI]

    Pavlova, Anna

    2003-01-27T23:59:59.000Z

    We consider a variety of vintage capital models of a firm's choice of technology under uncertainty in the presence of adjustment costs and technology-specific learning. ...

  19. Uncertainty Analysis of Certified Photovoltaic Measurements at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Emery, K.

    2009-08-01T23:59:59.000Z

    Discusses NREL Photovoltaic Cell and Module Performance Characterization Group's procedures to achieve lowest practical uncertainty in measuring PV performance with respect to reference conditions.

  20. Uncertainty for Satellite and Station Solar Data in the Updated NSRDB

    SciTech Connect (OSTI)

    Myers, D. R.

    2008-10-29T23:59:59.000Z

    Solar Resource Assessment Workshop, Denver CO, Oct 29, 2008 presentation: Uncertainty for Satellite and Station Solar Data in the Updated NSRDB,

  1. Nuclear data uncertainties by the PWR MOX/UO{sub 2} core rod ejection benchmark

    SciTech Connect (OSTI)

    Pasichnyk, I.; Klein, M.; Velkov, K.; Zwermann, W.; Pautz, A. [Boltzmannstr. 14, D-85748 Garching b. Muenchen (Germany)

    2012-07-01T23:59:59.000Z

    Rod ejection transient of the OECD/NEA and U.S. NRC PWR MOX/UO{sub 2} core benchmark is considered under the influence of nuclear data uncertainties. Using the GRS uncertainty and sensitivity software package XSUSA the propagation of the uncertainties in nuclear data up to the transient calculations are considered. A statistically representative set of transient calculations is analyzed and both integral as well as local output quantities are compared with the benchmark results of different participants. It is shown that the uncertainties in nuclear data play a crucial role in the interpretation of the results of the simulation. (authors)

  2. Recoilless Resonance Absorption of Tritium Antineutrinos and Time-Energy Uncertainty Relation

    E-Print Network [OSTI]

    S. M. Bilenky

    2007-08-02T23:59:59.000Z

    We discuss neutrino oscillations in an experiment with M\\"ossbauer recoilless resonance absorbtion of tritium antineutrinos, proposed recently by Raghavan. We demonstrate that small energy uncertainty of antineutrinos which ensures a large resonance absorption cross section is in a conflict with the energy uncertainty which, according to the time-energy uncertainty relation, is necessary for neutrino oscillations to happen. The search for neutrino oscillations in the M\\"ossbauer neutrino experiment would be an important test of the applicability of the time-energy uncertainty relation to a newly discovered interference phenomenon.

  3. Optimal Extraction of Cosmological Information from Supernova Datain the Presence of Calibration Uncertainties

    SciTech Connect (OSTI)

    Kim, Alex G.; Miquel, Ramon

    2005-09-26T23:59:59.000Z

    We present a new technique to extract the cosmological information from high-redshift supernova data in the presence of calibration errors and extinction due to dust. While in the traditional technique the distance modulus of each supernova is determined separately, in our approach we determine all distance moduli at once, in a process that achieves a significant degree of self-calibration. The result is a much reduced sensitivity of the cosmological parameters to the calibration uncertainties. As an example, for a strawman mission similar to that outlined in the SNAP satellite proposal, the increased precision obtained with the new approach is roughly equivalent to a factor of five decrease in the calibration uncertainty.

  4. Area 2: Inexpensive Monitoring and Uncertainty Assessment of CO2 Plume Migration using Injection Data

    SciTech Connect (OSTI)

    Srinivasan, Sanjay

    2014-09-30T23:59:59.000Z

    In-depth understanding of the long-term fate of CO2 in the subsurface requires study and analysis of the reservoir formation, the overlaying caprock formation, and adjacent faults. Because there is significant uncertainty in predicting the location and extent of geologic heterogeneity that can impact the future migration of CO2 in the subsurface, there is a need to develop algorithms that can reliably quantify this uncertainty in plume migration. This project is focused on the development of a model selection algorithm that refines an initial suite of subsurface models representing the prior uncertainty to create a posterior set of subsurface models that reflect injection performance consistent with that observed. Such posterior models can be used to represent uncertainty in the future migration of the CO2 plume. Because only injection data is required, the method provides a very inexpensive method to map the migration of the plume and the associated uncertainty in migration paths. The model selection method developed as part of this project mainly consists of assessing the connectivity/dynamic characteristics of a large prior ensemble of models, grouping the models on the basis of their expected dynamic response, selecting the subgroup of models that most closely yield dynamic response closest to the observed dynamic data, and finally quantifying the uncertainty in plume migration using the selected subset of models. The main accomplishment of the project is the development of a software module within the SGEMS earth modeling software package that implements the model selection methodology. This software module was subsequently applied to analyze CO2 plume migration in two field projects – the In Salah CO2 Injection project in Algeria and CO2 injection into the Utsira formation in Norway. These applications of the software revealed that the proxies developed in this project for quickly assessing the dynamic characteristics of the reservoir were highly efficient and yielded accurate grouping of reservoir models. The plume migration paths probabilistically assessed by the method were confirmed by field observations and auxiliary data. The report also documents the application of the software to answer practical questions such as the optimum location of monitoring wells to reliably assess the migration of CO2 plume, the effect of CO2-rock interactions on plume migration and the ability to detect the plume under those conditions and the effect of a slow, unresolved leak on the predictions of plume migration.

  5. CALiPER Exploratory Study: Accounting for Uncertainty in Lumen Measurements

    SciTech Connect (OSTI)

    Bergman, Rolf; Paget, Maria L.; Richman, Eric E.

    2011-03-31T23:59:59.000Z

    With a well-defined and shared understanding of uncertainty in lumen measurements, testing laboratories can better evaluate their processes, contributing to greater consistency and credibility of lighting testing a key component of the U.S. Department of Energy (DOE) Commercially Available LED Product Evaluation and Reporting (CALiPER) program. Reliable lighting testing is a crucial underlying factor contributing toward the success of many energy-efficient lighting efforts, such as the DOE GATEWAY demonstrations, Lighting Facts Label, ENERGY STAR® energy efficient lighting programs, and many others. Uncertainty in measurements is inherent to all testing methodologies, including photometric and other lighting-related testing. Uncertainty exists for all equipment, processes, and systems of measurement in individual as well as combined ways. A major issue with testing and the resulting accuracy of the tests is the uncertainty of the complete process. Individual equipment uncertainties are typically identified, but their relative value in practice and their combined value with other equipment and processes in the same test are elusive concepts, particularly for complex types of testing such as photometry. The total combined uncertainty of a measurement result is important for repeatable and comparative measurements for light emitting diode (LED) products in comparison with other technologies as well as competing products. This study provides a detailed and step-by-step method for determining uncertainty in lumen measurements, working closely with related standards efforts and key industry experts. This report uses the structure proposed in the Guide to Uncertainty Measurements (GUM) for evaluating and expressing uncertainty in measurements. The steps of the procedure are described and a spreadsheet format adapted for integrating sphere and goniophotometric uncertainty measurements is provided for entering parameters, ordering the information, calculating intermediate values and, finally, obtaining expanded uncertainties. Using this basis and examining each step of the photometric measurement and calibration methods, mathematical uncertainty models are developed. Determination of estimated values of input variables is discussed. Guidance is provided for the evaluation of the standard uncertainties of each input estimate, covariances associated with input estimates and the calculation of the result measurements. With this basis, the combined uncertainty of the measurement results and finally, the expanded uncertainty can be determined.

  6. Cassini Spacecraft Uncertainty Analysis Data and Methodology Review and Update/Volume 1: Updated Parameter Uncertainty Models for the Consequence Analysis

    SciTech Connect (OSTI)

    WHEELER, TIMOTHY A.; WYSS, GREGORY D.; HARPER, FREDERICK T.

    2000-11-01T23:59:59.000Z

    Uncertainty distributions for specific parameters of the Cassini General Purpose Heat Source Radioisotope Thermoelectric Generator (GPHS-RTG) Final Safety Analysis Report consequence risk analysis were revised and updated. The revisions and updates were done for all consequence parameters for which relevant information exists from the joint project on Probabilistic Accident Consequence Uncertainty Analysis by the United States Nuclear Regulatory Commission and the Commission of European Communities.

  7. Uncertainty in Resilience to Climate Change in India and Indian States

    SciTech Connect (OSTI)

    Malone, Elizabeth L.; Brenkert, Antoinette L.

    2008-10-03T23:59:59.000Z

    This study builds on an earlier analysis of resilience of India and Indian states to climate change. The previous study (Brenkert and Malone 2005) assessed current resilience; this research uses the Vulnerability-Resilience Indicators Model (VRIM) to project resilience to 2095 and to perform an uncertainty analysis on the deterministic results. Projections utilized two SRES-based scenarios, one with fast-and-high growth, one with delayed growth. A detailed comparison of two states, the Punjab and Orissa, points to the kinds of insights that can be obtained using the VRIM. The scenarios differ most significantly in the timing of the uncertainty in economic prosperity (represented by GDP per capita) as a major factor in explaining the uncertainty in the resilience index. In the fast-and-high growth scenario the states differ most markedly regarding the role of ecosystem sensitivity, land use and water availability. The uncertainty analysis shows, for example, that resilience in the Punjab might be enhanced, especially in the delayed growth scenario, if early attention is paid to the impact of ecosystems sensitivity on environmental well-being of the state. By the same token, later in the century land-use pressures might be avoided if land is managed through intensification rather than extensification of agricultural land. Thus, this methodology illustrates how a policy maker can be informed about where to focus attention on specific issues, by understanding the potential changes at a specific location and time – and, thus, what might yield desired outcomes. Model results can point to further analyses of the potential for resilience-building.

  8. CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY. AN EMPIRICAL STUDY OF THE US CEMENT INDUSTRY, 19942006*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY. AN EMPIRICAL STUDY OF THE US CEMENT INDUSTRY Demand Uncertainty. An Empirical Study of the US Cement Industry, 19942006* JeanPierre Ponssard of the theory literature on this topic in an empirical study of the US cement industry between 1994

  9. An Architecture of a Multi-Agent System for SCADA -dealing with uncertainty, plans and actions

    E-Print Network [OSTI]

    Liu, Weiru

    An Architecture of a Multi-Agent System for SCADA - dealing with uncertainty, plans and actions.loughlin@ecit.qub.ac.uk Keywords: Autonomous Agents, Multi-agent Systems, Sensors, SCADA, Uncertainty, Plans, Actions, Fusion in traditional SCADA systems deployed in critical environments such as electrical power generation, transmission

  10. Risk Assessment & Management This chapter presents the Council's approach to addressing uncertainty and managing risk. After

    E-Print Network [OSTI]

    Risk Assessment & Management This chapter presents the Council's approach to addressing uncertainty and managing risk. After reviewing the reasons for addressing uncertainty in the Council's Fifth Power Plan favor going ahead. In this plan, the Council further integrates risk assessment and management into its

  11. The hedge value of international emissions trading under uncertainty Mort Webster n

    E-Print Network [OSTI]

    The hedge value of international emissions trading under uncertainty Mort Webster n , Sergey Keywords: Climate change Emissions trading Uncertainty a b s t r a c t This paper estimates the value of international emissions trading, focusing on a here-to-fore neglected component; its value as a hedge against

  12. Using Uncertainty Analysis to Guide the Development of Accelerated Stress Tests (Presentation)

    SciTech Connect (OSTI)

    Kempe, M.

    2014-03-01T23:59:59.000Z

    Extrapolation of accelerated testing to the long-term results expected in the field has uncertainty associated with the acceleration factors and the range of possible stresses in the field. When multiple stresses (such as temperature and humidity) can be used to increase the acceleration, the uncertainty may be reduced according to which stress factors are used to accelerate the degradation.

  13. Lagoon of Venice ecosystem: Seasonal dynamics and environmental guidance with uncertainty analyses and error subspace

    E-Print Network [OSTI]

    Leonard, John J.

    Lagoon of Venice ecosystem: Seasonal dynamics and environmental guidance with uncertainty analyses the seasonal ecosystem dynamics of the Lagoon of Venice and provide guidance on the monitoring and management stochastic ecosystem modeling components are developed to represent prior uncertainties in the Lagoon

  14. TOTAL MEASUREMENT UNCERTAINTY IN HOLDUP MEASUREMENTS AT THE PLUTONIUM FINISHING PLANT (PFP)

    SciTech Connect (OSTI)

    KEELE, B.D.

    2007-07-05T23:59:59.000Z

    An approach to determine the total measurement uncertainty (TMU) associated with Generalized Geometry Holdup (GGH) [1,2,3] measurements was developed and implemented in 2004 and 2005 [4]. This paper describes a condensed version of the TMU calculational model, including recent developments. Recent modifications to the TMU calculation model include a change in the attenuation uncertainty, clarifying the definition of the forward background uncertainty, reducing conservatism in the random uncertainty by selecting either a propagation of counting statistics or the standard deviation of the mean, and considering uncertainty in the width and height as a part of the self attenuation uncertainty. In addition, a detection limit is calculated for point sources using equations derived from summary equations contained in Chapter 20 of MARLAP [5]. The Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2007-1 to the Secretary of Energy identified a lack of requirements and a lack of standardization for performing measurements across the U.S. Department of Energy (DOE) complex. The DNFSB also recommended that guidance be developed for a consistent application of uncertainty values. As such, the recent modifications to the TMU calculational model described in this paper have not yet been implemented. The Plutonium Finishing Plant (PFP) is continuing to perform uncertainty calculations as per Reference 4. Publication at this time is so that these concepts can be considered in developing a consensus methodology across the complex.

  15. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications by Richard J Friedman Fall 2010 #12;Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications Copyright 2010 by Richard J. Plevin #12;1 Abstract Life Cycle Regulation of Transportation Fuels

  16. Uncertainties in Nuclear Matrix Elements for Neutrinoless Double-Beta Decay

    E-Print Network [OSTI]

    Engel, Jonathan

    Uncertainties in Nuclear Matrix Elements for Neutrinoless Double-Beta Decay Jonathan Engel Abstract. I briefly review calculations of the matrix elements governing neutrinoless double-beta decay;Uncertainties in Nuclear Matrix Elements for Neutrinoless Double-Beta Decay 2 in reducing theoretical error

  17. A novel branch and bound algorithm for optimal development of gas fields under uncertainty in reserves

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    in reserves Vikas Goel , Ignacio E. Grossmann Department of Chemical Engineering, Carnegie Mellon University and operational planning for development of gas fields under uncertainty in gas reserves. Assuming uncertainties models for planning in the oil and gas exploration and production industry. A major challenge

  18. Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon Capture and Storage

    E-Print Network [OSTI]

    Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon and Policy Program #12;2 #12;3 Assessing Early Investments in Low Carbon Technologies under Uncertainty: The Case of Carbon Capture and Storage By Eleanor Ereira Submitted to the Engineering Systems Division

  19. Threat Assessment for Safe Navigation in Environments with Uncertainty in Predictability

    E-Print Network [OSTI]

    How, Jonathan P.

    Threat Assessment for Safe Navigation in Environments with Uncertainty in Predictability by Georges;Threat Assessment for Safe Navigation in Environments with Uncertainty in Predictability by Georges Salim fulfillment of the requirements for the degree of Doctor of Philosophy Abstract This thesis develops threat

  20. Navigation Planning in Probabilistic Roadmaps with Uncertainty Michael Kneebone and Richard Dearden

    E-Print Network [OSTI]

    Yao, Xin

    Navigation Planning in Probabilistic Roadmaps with Uncertainty Michael Kneebone and Richard Dearden,rwd@cs.bham.ac.uk Abstract Probabilistic Roadmaps (PRM) are a commonly used class of algorithms for robot navigation tasks Probabilistic Roadmap (PRM) planning to handle uncertainty and observations. Probabilistic Roadmaps (Kavraki

  1. Uncertainty Discounting for Land-Based Carbon Sequestration Man-Keun Kim

    E-Print Network [OSTI]

    McCarl, Bruce A.

    1 Uncertainty Discounting for Land-Based Carbon Sequestration By Man-Keun Kim Post Doctoral Fellow Discounting for Land-Based Carbon Sequestration Abstract The effect of various stochastic factors like weather% to 10% for the East Texas region. #12;3 Uncertainty Discounting for Land-Based Carbon Sequestration 1

  2. A QUALITATIVE APPROACH TO UNCERTAINTY ANALYSIS FOR THE PWR ROD EJECTION ACCIDENT

    SciTech Connect (OSTI)

    DIAMOND,D.J.; ARONSON,A.; YANG,C.

    2000-06-19T23:59:59.000Z

    In order to understand best-estimate calculations of the peak local fuel enthalpy during a rod ejection accident, an assessment of the uncertainty has been completed. The analysis took into account point kinetics parameters which would be available from a three-dimensional core model and engineering judgment as to the uncertainty in those parameters. Sensitivity studies to those parameters were carried out using the best-estimate code PARCS. The results showed that the uncertainty (corresponding to one standard deviation) in local fuel enthalpy would be determined primarily by the uncertainty in ejected rod worth and delayed neutron fraction. For an uncertainty in the former of 8% and the latter of 5%, the uncertainty in fuel enthalpy varied from 51% to 69% for control rod worth varying from $1.2 to $1.0. Also considered in the uncertainty were the errors introduced by uncertainties in the Doppler reactivity coefficient, the fuel pellet specific heat, and assembly and fuel pin peaking factors.

  3. Quantification of Variability and Uncertainty in Hourly NOx Emissions from Coal-Fired Power Plants

    E-Print Network [OSTI]

    Frey, H. Christopher

    to quantify variability and uncertainty for NOx emissions from coal-fired power plants. Data for hourly NOx Uncertainty, Variability, Emission Factors, Coal-Fired Power Plants, NOx emissions, Regression Models for different source categories, NOx emissions from coal-fired power plants are analyzed in this #12;2 paper

  4. Variation and Uncertainty in Evaporation from a Subtropical Estuary: Florida Bay

    E-Print Network [OSTI]

    Miami, University of

    Variation and Uncertainty in Evaporation from a Subtropical Estuary: Florida Bay RENE´ M. PRICE1 both vapor flux and energy budget methods. The results were placed into a long-term context using 33 the overall uncertainty in monthly evaporation, and ranged from 9% to 26%. Over a 33-yr period (1970

  5. Hawking temperature for various kinds of black holes from Heisenberg uncertainty principle

    E-Print Network [OSTI]

    Fabio Scardigli

    2006-07-04T23:59:59.000Z

    Hawking temperature is computed for a large class of black holes (with spherical, toroidal and hyperboloidal topologies) using only laws of classical physics plus the "classical" Heisenberg Uncertainty Principle. This principle is shown to be fully sufficient to get the result, and there is no need to this scope of a Generalized Uncertainty Principle.

  6. Quasiparticle random phase approximation uncertainties and their correlations in the analysis of neutrinoless double beta decay

    E-Print Network [OSTI]

    Amand Faessler; G. L. Fogli; E. Lisi; V. Rodin; A. M. Rotunno; F. Simkovic

    2009-03-06T23:59:59.000Z

    The variances and covariances associated to the nuclear matrix elements (NME) of neutrinoless double beta decay are estimated within the quasiparticle random phase approximation (QRPA). It is shown that correlated NME uncertainties play an important role in the comparison of neutrinoless double beta decay rates for different nuclei, and that they are degenerate with the uncertainty in the reconstructed Majorana neutrino mass.

  7. Interaction of loading pattern and nuclear data uncertainties in reactor core calculations

    SciTech Connect (OSTI)

    Klein, M.; Gallner, L.; Krzykacz-Hausmann, B.; Pautz, A.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit GRS MbH, Boltzmannstr. 14, D- 85748 Garching b. Muenchen (Germany)

    2012-07-01T23:59:59.000Z

    Along with best-estimate calculations for design and safety analysis, understanding uncertainties is important to determine appropriate design margins. In this framework, nuclear data uncertainties and their propagation to full core calculations are a critical issue. To deal with this task, different error propagation techniques, deterministic and stochastic are currently developed to evaluate the uncertainties in the output quantities. Among these is the sampling based uncertainty and sensitivity software XSUSA which is able to quantify the influence of nuclear data covariance on reactor core calculations. In the present work, this software is used to investigate systematically the uncertainties in the power distributions of two PWR core loadings specified in the OECD UAM-Benchmark suite. With help of a statistical sensitivity analysis, the main contributors to the uncertainty are determined. Using this information a method is studied with which loading patterns of reactor cores can be optimized with regard to minimizing power distribution uncertainties. It is shown that this technique is able to halve the calculation uncertainties of a MOX/UOX core configuration. (authors)

  8. Sustainable distributed biodiesel manufacturing under uncertainty: An interval-parameter-programming-based approach

    E-Print Network [OSTI]

    Huang, Yinlun

    Sustainable distributed biodiesel manufacturing under uncertainty: An interval A sophisticated biodiesel manufacturing study demonstrated methodological efficacy. a r t i c l e i n f o Article Simulation Uncertainty a b s t r a c t Biodiesel, a clean-burning alternative fuel, can be produced using

  9. Application of Uncertainty and Sensitivity Analysis to a Kinetic Model for Enzymatic Biodiesel Production

    E-Print Network [OSTI]

    Mosegaard, Klaus

    Application of Uncertainty and Sensitivity Analysis to a Kinetic Model for Enzymatic Biodiesel benefits of using uncertainty and sensitivity analysis in the kinetics of enzymatic biodiesel production, Monte-Carlo Simulations, Enzymatic Biodiesel 1. INTRODUCTION In order to determine the optimal

  10. Addressing model bias and uncertainty in three dimensional groundwater transport forecasts for a physical aquifer experiment

    E-Print Network [OSTI]

    Vermont, University of

    Addressing model bias and uncertainty in three dimensional groundwater transport forecasts, and D. M. Rizzo (2008), Addressing model bias and uncertainty in three dimensional groundwater transport. Introduction [2] Eigbe et al. [1998] provide an excellent review of groundwater applications of the linear

  11. Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using

    E-Print Network [OSTI]

    Protat, Alain

    Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm. The effect of uncertainty in retrieved quantities on the cloud radiative effect and radiative heating rates translates into sometimes large differences in cloud shortwave radiative effect (CRE) though the majority

  12. Climate uncertainty and implications for U.S. state-level risk assessment through 2050.

    SciTech Connect (OSTI)

    Loose, Verne W.; Lowry, Thomas Stephen; Malczynski, Leonard A.; Tidwell, Vincent Carroll; Stamber, Kevin Louis; Kelic, Andjelka; Backus, George A.; Warren, Drake E.; Zagonel, Aldo A.; Ehlen, Mark Andrew; Klise, Geoffrey T.; Vargas, Vanessa N.

    2009-10-01T23:59:59.000Z

    Decisions for climate policy will need to take place in advance of climate science resolving all relevant uncertainties. Further, if the concern of policy is to reduce risk, then the best-estimate of climate change impacts may not be so important as the currently understood uncertainty associated with realizable conditions having high consequence. This study focuses on one of the most uncertain aspects of future climate change - precipitation - to understand the implications of uncertainty on risk and the near-term justification for interventions to mitigate the course of climate change. We show that the mean risk of damage to the economy from climate change, at the national level, is on the order of one trillion dollars over the next 40 years, with employment impacts of nearly 7 million labor-years. At a 1% exceedance-probability, the impact is over twice the mean-risk value. Impacts at the level of individual U.S. states are then typically in the multiple tens of billions dollar range with employment losses exceeding hundreds of thousands of labor-years. We used results of the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment Report 4 (AR4) climate-model ensemble as the referent for climate uncertainty over the next 40 years, mapped the simulated weather hydrologically to the county level for determining the physical consequence to economic activity at the state level, and then performed a detailed, seventy-industry, analysis of economic impact among the interacting lower-48 states. We determined industry GDP and employment impacts at the state level, as well as interstate population migration, effect on personal income, and the consequences for the U.S. trade balance.

  13. Uncertainty Quantification for Nuclear Density Functional Theory and Information Content of New Measurements

    E-Print Network [OSTI]

    J. D. McDonnell; N. Schunck; D. Higdon; J. Sarich; S. M. Wild; W. Nazarewicz

    2015-01-15T23:59:59.000Z

    Statistical tools of uncertainty quantification can be used to assess the information content of measured observables with respect to present-day theoretical models; to estimate model errors and thereby improve predictive capability; to extrapolate beyond the regions reached by experiment; and to provide meaningful input to applications and planned measurements. To showcase new opportunities offered by such tools, we make a rigorous analysis of theoretical statistical uncertainties in nuclear density functional theory using Bayesian inference methods. By considering the recent mass measurements from the Canadian Penning Trap at Argonne National Laboratory, we demonstrate how the Bayesian analysis and a direct least-squares optimization, combined with high-performance computing, can be used to assess the information content of the new data with respect to a model based on the Skyrme energy density functional approach. Employing the posterior probability distribution computed with a Gaussian process emulator, we apply the Bayesian framework to propagate theoretical statistical uncertainties in predictions of nuclear masses, two-neutron dripline, and fission barriers. Overall, we find that the new mass measurements do not impose a constraint that is strong enough to lead to significant changes in the model parameters. The example discussed in this study sets the stage for quantifying and maximizing the impact of new measurements with respect to current modeling and guiding future experimental efforts, thus enhancing the experiment-theory cycle in the scientific method.

  14. Characterization of subjective uncertainty in the 1996 performance assessment for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    HELTON,JON CRAIG; MARTELL,MARY-ALENA; TIERNEY,MARTIN S.

    2000-05-18T23:59:59.000Z

    The 1996 performance assessment (PA) for the Waste Isolation Pilot Plant (WIPP) maintains a separation between stochastic (i.e., aleatory) and subjective (i.e., epistemic) uncertainty, with stochastic uncertainty arising from the possible disruptions that could occur at the WIPP over the 10,000 yr regulatory period specified by the US Environmental Protection Agency (40 CFR 191,40 CFR 194) and subjective uncertainty arising from an inability to uniquely characterize many of the inputs required in the 1996 WIPP PA. The characterization of subjective uncertainty is discussed, including assignment of distributions, uncertain variables selected for inclusion in analysis, correlation control, sample size, statistical confidence on mean complementary cumulative distribution functions, generation of Latin hypercube samples, sensitivity analysis techniques, and scenarios involving stochastic and subjective uncertainty.

  15. Need to understand "Uncertainty Assessment" in the system development modeling process

    E-Print Network [OSTI]

    Kardile, Vilas Vasantrao

    2011-01-01T23:59:59.000Z

    In the early stage of software life cycle project manager are inefficient to estimate the effort, schedule, cost estimation and its development approach .This in turn, confuses the manager to bid effectively on software project and choose incorrect development approach. That will directly effect on productivity cycle and increase level of uncertainty. This becomes a strong cause of project failure. So to avoid such problem if we know level and sources of uncertainty in model design, It will directive the developer to design accurate software cost and schedule estimation. Which are essential for software project success . However once the required efforts have estimated, little is done to recalibrate and reduce the uncertainty of the initial estimates. This paper demonstrates terminology and typology of uncertainty is presented together with a framework for the modeling process, Brief reviews have been made of 14 different (partly complementary) methods commonly used in uncertainty assessment its interaction w...

  16. Comparison of nuclear data uncertainty propagation methodologies for PWR burn-up simulations

    E-Print Network [OSTI]

    Diez, Carlos Javier; Hoefer, Axel; Porsch, Dieter; Cabellos, Oscar

    2014-01-01T23:59:59.000Z

    Several methodologies using different levels of approximations have been developed for propagating nuclear data uncertainties in nuclear burn-up simulations. Most methods fall into the two broad classes of Monte Carlo approaches, which are exact apart from statistical uncertainties but require additional computation time, and first order perturbation theory approaches, which are efficient for not too large numbers of considered response functions but only applicable for sufficiently small nuclear data uncertainties. Some methods neglect isotopic composition uncertainties induced by the depletion steps of the simulations, others neglect neutron flux uncertainties, and the accuracy of a given approximation is often very hard to quantify. In order to get a better sense of the impact of different approximations, this work aims to compare results obtained based on different approximate methodologies with an exact method, namely the NUDUNA Monte Carlo based approach developed by AREVA GmbH. In addition, the impact ...

  17. Thorough approach to measurement uncertainty analysis applied to immersed heat exchanger testing

    SciTech Connect (OSTI)

    Farrington, R.B.; Wells, C.V.

    1986-04-01T23:59:59.000Z

    This paper discusses the value of an uncertainty analysis, discusses how to determine measurement uncertainty, and then details the sources of error in instrument calibration, data acquisition, and data reduction for a particular experiment. Methods are discussed to determine both the systematic (or bias) error in an experiment as well as to determine the random (or precision) error in the experiment. The detailed analysis is applied to two sets of conditions in measuring the effectiveness of an immersed coil heat exchanger. It shows the value of such analysis as well as an approach to reduce overall measurement uncertainty and to improve the experiment. This paper outlines how to perform an uncertainty analysis and then provides a detailed example of how to apply the methods discussed in the paper. The authors hope this paper will encourage researchers and others to become more concerned with their measurement processes and to report measurement uncertainty with all of their test results.

  18. Results for Phase I of the IAEA Coordinated Research Program on HTGR Uncertainties

    SciTech Connect (OSTI)

    Gerhard Strydom; Friederike Bostelmann

    2015-01-01T23:59:59.000Z

    The quantification of uncertainties in design and safety analysis of reactors is today not only broadly accepted, but in many cases became the preferred way to replace traditional conservative analysis for safety and licensing analysis. The use of a more fundamental methodology is also consistent with the reliable high fidelity physics models and robust, efficient, and accurate codes available today. To facilitate uncertainty analysis applications a comprehensive approach and methodology must be developed and applied. High Temperature Gas-cooled Reactors (HTGR) has its own peculiarities, coated particle design, large graphite quantities, different materials and high temperatures that also require other simulation requirements. The IAEA has therefore launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modeling (UAM) in 2013 to study uncertainty propagation specifically in the HTGR analysis chain. Two benchmark problems are defined, with the prismatic design represented by the General Atomics (GA) MHTGR-350 and a 250 MW modular pebble bed design similar to the HTR-PM (INET, China). This report summarizes the contributions of the HTGR Methods Simulation group at Idaho National Laboratory (INL) up to this point of the CRP. The activities at INL have been focused so far on creating the problem specifications for the prismatic design, as well as providing reference solutions for the exercises defined for Phase I. An overview is provided of the HTGR UAM objectives and scope, and the detailed specifications for Exercises I-1, I-2, I-3 and I-4 are also included here for completeness. The main focus of the report is the compilation and discussion of reference results for Phase I (i.e. for input parameters at their nominal or best-estimate values), which is defined as the first step of the uncertainty quantification process. These reference results can be used by other CRP participants for comparison with other codes or their own reference results. The status on the Monte Carlo modeling of the experimental VHTRC facility is also discussed. Reference results were obtained for the neutronics stand-alone cases (Ex. I-1 and Ex. I-2) using the (relatively new) Monte Carlo code Serpent, and comparisons were performed with the more established Monte Carlo codes MCNP and KENO-VI. For the thermal-fluids stand-alone cases (Ex. I-3 and I-4) the commercial CFD code CFX was utilized to obtain reference results that can be compared with lower fidelity tools.

  19. Calibration under uncertainty for finite element models of masonry monuments

    SciTech Connect (OSTI)

    Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin

    2010-02-01T23:59:59.000Z

    Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, and there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.

  20. Tighter quantum uncertainty relations follow from a general probabilistic bound

    E-Print Network [OSTI]

    Florian Fröwis; Nicolas Gisin

    2015-01-28T23:59:59.000Z

    Uncertainty relations (URs) like the Heisenberg-Robertson or the time-energy UR are often considered to be hallmarks of quantum theory. Here, a simple derivation of these URs is presented based on a single classical inequality from estimation theory, a Cram\\'er-Rao-like bound. The Heisenberg-Robertson UR is then obtained by using the Born rule and the Schr\\"odinger equation. This allows a clear separtion of the probabilistic nature of quantum mechanics from the Hilbert space structure and the dynamical law. It also simplifies the interpretation of the bound. In addition, the Heisenberg-Robertson UR is tightened for mixed states by replacing one variance by the so-called quantum Fisher information. Thermal states of Hamiltonians with evenly-gapped energy levels are shown to saturate the tighter bound for natural choices of the operators. This example is further extended to Gaussian states of a harmonic oscillator. For many-qubit systems, we illustrate the interplay between entanglement and the structure of the operators that saturate the UR with spin-squeezed states and Dicke states.

  1. Clocking in the face of unpredictability beyond quantum uncertainty

    E-Print Network [OSTI]

    F. Hadi Madjid; John M. Myers

    2015-04-16T23:59:59.000Z

    In earlier papers we showed unpredictability beyond quantum uncertainty in atomic clocks, ensuing from a proven gap between given evidence and explanations of that evidence. Here we reconceive a clock, not as an isolated entity, but as enmeshed in a self-adjusting communications network adapted to one or another particular investigation, in contact with an unpredictable environment. From the practical uses of clocks, we abstract a clock enlivened with the computational capacity of a Turing machine, modified to transmit and to receive numerical communications. Such "live clocks" phase the steps of their computations to mesh with the arrival of transmitted numbers. We lift this phasing, known in digital communications, to a principle of \\emph{logical synchronization}, distinct from the synchronization defined by Einstein in special relativity. Logical synchronization elevates digital communication to a topic in physics, including applications to biology. One explores how feedback loops in clocking affect numerical signaling among entities functioning in the face of unpredictable influences, making the influences themselves into subjects of investigation. The formulation of communications networks in terms of live clocks extends information theory by expressing the need to actively maintain communications channels, and potentially, to create or drop them. We show how networks of live clocks are presupposed by the concept of coordinates in a spacetime. A network serves as an organizing principle, even when the concept of the rigid body that anchors a special-relativistic coordinate system is inapplicable, as is the case, for example, in a generic curved spacetime.

  2. Uncertainties propagation in the framework of a Rod Ejection Accident modeling based on a multi-physics approach

    SciTech Connect (OSTI)

    Le Pallec, J. C.; Crouzet, N.; Bergeaud, V.; Delavaud, C. [CEA/DEN/DM2S, CEA/Saclay, 91191 Gif sur Yvette Cedex (France)

    2012-07-01T23:59:59.000Z

    The control of uncertainties in the field of reactor physics and their propagation in best-estimate modeling are a major issue in safety analysis. In this framework, the CEA develops a methodology to perform multi-physics simulations including uncertainties analysis. The present paper aims to present and apply this methodology for the analysis of an accidental situation such as REA (Rod Ejection Accident). This accident is characterized by a strong interaction between the different areas of the reactor physics (neutronic, fuel thermal and thermal hydraulic). The modeling is performed with CRONOS2 code. The uncertainties analysis has been conducted with the URANIE platform developed by the CEA: For each identified response from the modeling (output) and considering a set of key parameters with their uncertainties (input), a surrogate model in the form of a neural network has been produced. The set of neural networks is then used to carry out a sensitivity analysis which consists on a global variance analysis with the determination of the Sobol indices for all responses. The sensitivity indices are obtained for the input parameters by an approach based on the use of polynomial chaos. The present exercise helped to develop a methodological flow scheme, to consolidate the use of URANIE tool in the framework of parallel calculations. Finally, the use of polynomial chaos allowed computing high order sensitivity indices and thus highlighting and classifying the influence of identified uncertainties on each response of the analysis (single and interaction effects). (authors)

  3. Reproducibility of soil moisture ensembles when representing soil parameter uncertainty using a Latin Hypercube-based approach with correlation control

    E-Print Network [OSTI]

    Flores, Alejandro N.

    [1] Representation of model input uncertainty is critical in ensemble-based data assimilation. Monte Carlo sampling of model inputs produces uncertainty in the hydrologic state through the model dynamics. Small Monte Carlo ...

  4. Uncertainty analysis of an aviation climate model and an aircraft price model for assessment of environmental effects

    E-Print Network [OSTI]

    Jun, Mina

    2007-01-01T23:59:59.000Z

    Estimating, presenting, and assessing uncertainties are important parts in assessment of a complex system. This thesis focuses on the assessment of uncertainty in the price module and the climate module in the Aviation ...

  5. Feedback-based Information Roadmap (FIRM): Graph-based Estimation and Control of Robotic Systems Under Uncertainty

    E-Print Network [OSTI]

    Aghamohammadi, Aliakbar

    2014-05-07T23:59:59.000Z

    This dissertation addresses the problem of stochastic optimal control with imperfect measurements. The main application of interest is robot motion planning under uncertainty. In the presence of process uncertainty and imperfect measurements...

  6. PEBBED Uncertainty and Sensitivity Analysis of the CRP-5 PBMR DLOFC Transient Benchmark with the SUSA Code

    SciTech Connect (OSTI)

    Gerhard Strydom

    2011-01-01T23:59:59.000Z

    The need for a defendable and systematic uncertainty and sensitivity approach that conforms to the Code Scaling, Applicability, and Uncertainty (CSAU) process, and that could be used for a wide variety of software codes, was defined in 2008. The GRS (Gesellschaft für Anlagen und Reaktorsicherheit) company of Germany has developed one type of CSAU approach that is particularly well suited for legacy coupled core analysis codes, and a trial version of their commercial software product SUSA (Software for Uncertainty and Sensitivity Analyses) was acquired on May 12, 2010. This report summarized the results of the initial investigations performed with SUSA, utilizing a typical High Temperature Reactor benchmark (the IAEA CRP-5 PBMR 400MW Exercise 2) and the PEBBED-THERMIX suite of codes. The following steps were performed as part of the uncertainty and sensitivity analysis: 1. Eight PEBBED-THERMIX model input parameters were selected for inclusion in the uncertainty study: the total reactor power, inlet gas temperature, decay heat, and the specific heat capability and thermal conductivity of the fuel, pebble bed and reflector graphite. 2. The input parameters variations and probability density functions were specified, and a total of 800 PEBBED-THERMIX model calculations were performed, divided into 4 sets of 100 and 2 sets of 200 Steady State and Depressurized Loss of Forced Cooling (DLOFC) transient calculations each. 3. The steady state and DLOFC maximum fuel temperature, as well as the daily pebble fuel load rate data, were supplied to SUSA as model output parameters of interest. The 6 data sets were statistically analyzed to determine the 5% and 95% percentile values for each of the 3 output parameters with a 95% confidence level, and typical statistical indictors were also generated (e.g. Kendall, Pearson and Spearman coefficients). 4. A SUSA sensitivity study was performed to obtain correlation data between the input and output parameters, and to identify the primary contributors to the output data uncertainties. It was found that the uncertainties in the decay heat, pebble bed and reflector thermal conductivities were responsible for the bulk of the propagated uncertainty in the DLOFC maximum fuel temperature. It was also determined that the two standard deviation (2s) uncertainty on the maximum fuel temperature was between ±58oC (3.6%) and ±76oC (4.7%) on a mean value of 1604 oC. These values mostly depended on the selection of the distributions types, and not on the number of model calculations above the required Wilks criteria (a (95%,95%) statement would usually require 93 model runs).

  7. Propagation of nuclear data uncertainties for ELECTRA burn-up calculations

    E-Print Network [OSTI]

    ostrand, H; Duan, J; Gustavsson, C; Koning, A; Pomp, S; Rochman, D; Osterlund, M

    2013-01-01T23:59:59.000Z

    The European Lead-Cooled Training Reactor (ELECTRA) has been proposed as a training reactor for fast systems within the Swedish nuclear program. It is a low-power fast reactor cooled by pure liquid lead. In this work, we propagate the uncertainties in Pu-239 transport data to uncertainties in the fuel inventory of ELECTRA during the reactor life using the Total Monte Carlo approach (TMC). Within the TENDL project the nuclear models input parameters were randomized within their uncertainties and 740 Pu-239 nuclear data libraries were generated. These libraries are used as inputs to reactor codes, in our case SERPENT, to perform uncertainty analysis of nuclear reactor inventory during burn-up. The uncertainty in the inventory determines uncertainties in: the long-term radio-toxicity, the decay heat, the evolution of reactivity parameters, gas pressure and volatile fission product content. In this work, a methodology called fast TMC is utilized, which reduces the overall calculation time. The uncertainty in the ...

  8. Uncertainty analysis of multi-rate kinetics of uranium desorption from sediments

    SciTech Connect (OSTI)

    Zhang, Xiaoying; Liu, Chongxuan; Hu, Bill X.; Zhang, Guannan

    2014-01-01T23:59:59.000Z

    A multi-rate expression for uranyl [U(VI)] surface complexation reactions has been proposed to describe diffusion-limited U(VI) sorption/desorption in heterogeneous subsurface sediments. An important assumption in the rate expression is that its rate constants follow a certain type probability distribution. In this paper, a Bayes-based, Differential Evolution Markov Chain method was used to assess the distribution assumption and to analyze parameter and model structure uncertainties. U(VI) desorption from a contaminated sediment at the US Hanford 300 Area, Washington was used as an example for detail analysis. The results indicated that: 1) the rate constants in the multi-rate expression contain uneven uncertainties with slower rate constants having relative larger uncertainties; 2) the lognormal distribution is an effective assumption for the rate constants in the multi-rate model to simualte U(VI) desorption; 3) however, long-term prediction and its uncertainty may be significantly biased by the lognormal assumption for the smaller rate constants; and 4) both parameter and model structure uncertainties can affect the extrapolation of the multi-rate model with a larger uncertainty from the model structure. The results provide important insights into the factors contributing to the uncertainties of the multi-rate expression commonly used to describe the diffusion or mixing-limited sorption/desorption of both organic and inorganic contaminants in subsurface sediments.

  9. A Two-Step Approach to Uncertainty Quantification of Core Simulators

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yankov, Artem; Collins, Benjamin; Klein, Markus; Jessee, Matthew A.; Zwermann, Winfried; Velkov, Kiril; Pautz, Andreas; Downar, Thomas

    2012-01-01T23:59:59.000Z

    For the multiple sources of error introduced into the standard computational regime for simulating reactor cores, rigorous uncertainty analysis methods are available primarily to quantify the effects of cross section uncertainties. Two methods for propagating cross section uncertainties through core simulators are the XSUSA statistical approach and the “two-step” method. The XSUSA approach, which is based on the SUSA code package, is fundamentally a stochastic sampling method. Alternatively, the two-step method utilizes generalized perturbation theory in the first step and stochastic sampling in the second step. The consistency of these two methods in quantifying uncertainties in the multiplication factor andmore »in the core power distribution was examined in the framework of phase I-3 of the OECD Uncertainty Analysis in Modeling benchmark. With the Three Mile Island Unit 1 core as a base model for analysis, the XSUSA and two-step methods were applied with certain limitations, and the results were compared to those produced by other stochastic sampling-based codes. Based on the uncertainty analysis results, conclusions were drawn as to the method that is currently more viable for computing uncertainties in burnup and transient calculations.« less

  10. Stochastic sampling method with MCNPX for nuclear data uncertainty propagation in criticality safety applications

    SciTech Connect (OSTI)

    Zhu, T.; Vasiliev, A.; Wieselquist, W.; Ferroukhi, H. [Paul Scherrer Institut, 5232 Villigen (Switzerland)

    2012-07-01T23:59:59.000Z

    In the domain of criticality safety, the efficient propagation of uncertainty in nuclear data to uncertainty in k{sub eff} is an important area of current research. In this paper, a method based on stochastic sampling is presented for uncertainty propagation in MCNPX calculations. To that aim, the nuclear data (i.e. cross sections) are assumed to have a multivariate normal distribution and simple random sampling is performed following this presumed probability distribution. A verification of the developed stochastic sampling procedure with MCNPX is then conducted using the {sup 239}Pu Jezebel experiment as well as the PB-2 BWR and TMI-1 PWR pin cell models from the Uncertainty Analysis in Modeling (UAM) exercises. For the Jezebel case, it is found that the developed stochastic sampling approach predicts similar k{sub eff} uncertainties compared to conventional sensitivity and uncertainty methods. For the UAM models, slightly lower uncertainties are obtained when comparing to existing preliminary results. Further details of these verification studies are discussed and directions for future work are outlined. (authors)

  11. Sensitivity and uncertainty in the effective delayed neutron fraction ({beta}{sub eff})

    SciTech Connect (OSTI)

    Kodeli, I. I. [Jozef Stefan Inst., Jamova 39, Ljubljana (Slovenia)

    2012-07-01T23:59:59.000Z

    Precise knowledge of effective delayed neutron fraction ({beta}{sub eff}) and of the corresponding uncertainty is important for reactor safety analysis. The interest in developing the methodology for estimating the uncertainty in {beta}{sub eff} was expressed in the scope of the UAM project of the OECD/NEA. A novel approach for the calculation of the nuclear data sensitivity and uncertainty of the effective delayed neutron fraction is proposed, based on the linear perturbation theory. The method allows the detailed analysis of components of {beta}{sub eff} uncertainty. The procedure was implemented in the SUSD3D sensitivity and uncertainty code applied to several fast neutron benchmark experiments from the ICSBEP and IRPhE databases. According to the JENDL-4 covariance matrices and taking into account the uncertainty in the cross sections and in the prompt and delayed fission spectra the total uncertainty in {beta}eff was found to be of the order of {approx}2 to {approx}3.5 % for the studied fast experiments. (authors)

  12. Review of uncertainty estimates associated with models for assessing the impact of breeder reactor radioactivity releases

    SciTech Connect (OSTI)

    Miller, C.; Little, C.A.

    1982-08-01T23:59:59.000Z

    The purpose is to summarize estimates based on currently available data of the uncertainty associated with radiological assessment models. The models being examined herein are those recommended previously for use in breeder reactor assessments. Uncertainty estimates are presented for models of atmospheric and hydrologic transport, terrestrial and aquatic food-chain bioaccumulation, and internal and external dosimetry. Both long-term and short-term release conditions are discussed. The uncertainty estimates presented in this report indicate that, for many sites, generic models and representative parameter values may be used to calculate doses from annual average radionuclide releases when these calculated doses are on the order of one-tenth or less of a relevant dose limit. For short-term, accidental releases, especially those from breeder reactors located in sites dominated by complex terrain and/or coastal meteorology, the uncertainty in the dose calculations may be much larger than an order of magnitude. As a result, it may be necessary to incorporate site-specific information into the dose calculation under these circumstances to reduce this uncertainty. However, even using site-specific information, natural variability and the uncertainties in the dose conversion factor will likely result in an overall uncertainty of greater than an order of magnitude for predictions of dose or concentration in environmental media following shortterm releases.

  13. Uncertainty evaluation for the matrix 'solidified state' of fissionable elements

    SciTech Connect (OSTI)

    Iliescu, Elena; Iancso, Georgeta [National Institute of R and D for Physics and Nuclear Engineering-'Horia Hulubei', Str.Reactorului 30, P.O. BOX MG-6, Magurele (Romania)

    2012-09-06T23:59:59.000Z

    In case of the analysis of the radioactive liquid samples, no matter the relative physical analysis method used, two impediments act that belong to the behavior in time of the dispersion state of the liquid samples to be analyzed and of the standard used in the analysis. That is, one of them refers to the state of the sample to be analyzed when being sampled, which 'alter' during the time elapsed from sampling up to the analysis of the sample. The other impediment is the natural change of the dispersion state of the standard radioactive solutions, due to the occurrence and evolution in time of the radiocolloidal and pseudo-radiocolloidal states. These radiocolloidal states are states of aggregation and they lead to the destruction of the homogeneity of the solutions. Taking into consideration the advantages offered by the relative physical methods of analysis as against the chemical or the radiochemical ones, different ways of eliminating these impediments have been tried. We eliminated these impediments processing the liquid reference materials (the solutions calibrated in radionuclides of interest), immediately after the preparation. This processing changes the liquid physical state of the reference materials in a 'solidified state'. Through this procedure the dispersion states of the samples, practically, can no longer be essentially modified in time and also ensure the uniform distribution of the radionuclides of interest in the elemental matrix of the samples 'state solidified'. The homogeneity of the distribution of the atoms of the radionuclides from the samples 'solidified state' was checked up through the track micromapping technique of the alpha particles. Through this technique, in the chemically etched track detectors that were put in direct contact with the sample for a determined period of time, the alpha exposure time of the detectors, micromaps of alpha tracks were obtained. These micromaps are retorts through tracks of the distributions atoms of fissionable elements (Thorium e.g.), of which, heavy charged particles, in this case the alpha radiations naturally emitted, were registered in the CR-39 track detectors. The density of alpha track from the obtained track micromaps was studied through common optic microscopy. Micromaps were studied counting the tracks on equal areas, in different measurement points. For the study of the foils prepared within the paper, the studied area was of 4.9 mm2, formed of 10 fields of 0.49 mm2 area each. The estimation of the uncertainty was carried out for all the sizes that were measured within the paper, no matter if they participate, directly or indirectly, in the estimation of the uncertainty regarding the homogeneity of the Thorium atoms distribution in the 'solidified state' foils of the standard solution calibrated in Thorium, such as: i) the weighted masses, ii) the dropped volumes of solution, iii) the alpha duration of exposure of the detectors, iv) the area studied on the surface of the micromap and v) the densities of alpha tracks. The procedure suggested allowed us to considerate that the homogeneity of alpha tracks distribution, on the surface and in thickness, is within the limits of 3.1%.

  14. Dark Energy from Quantum Uncertainty of Distant Clocks

    E-Print Network [OSTI]

    M. J. Luo

    2015-05-04T23:59:59.000Z

    The observed cosmic acceleration was attributed to an exotic dark energy in the framework of classical general relativity. The dark energy behaves very similar with vacuum energy in quantum mechanics. However, once the quantum effects are seriously taken into account, it predicts a complete wrong result and leads to a severe fine-tuning. To solve the problem, the exact meaning of time in quantum mechanics is reexamined. We abandon the standard interpretation of time in quantum mechanics that time is just a global parameter, replace it by a quantum dynamical variable playing the role of physical clock. We find that synchronization of two spatially separated clocks can not be precisely realized at quantum level. There is an intrinsic quantum uncertainty of distant simultaneity, which implies an apparent vacuum energy fluctuation and gives an observed dark energy density $\\rho_{de}=\\frac{6}{\\pi}L_{P}^{-2}L_{H}^{-2}$ at tree level approximation, where $L_{P}$ and $L_{H}$ are the Planck and Hubble scale cutoffs. The fraction of the dark energy is given by $\\Omega_{de}=\\frac{2}{\\pi}$, which does not evolve with the internal clock time. The "dark energy" as a quantum cosmic variance is always seen comparable with the matter energy density by an observer using the internal clock time. The corrected distance-redshift relation of cosmic observations due to the distant clock effect are also discussed, which again gives a redshift independent fraction $\\Omega_{de}=\\frac{2}{\\pi}$. The theory is consistent with current cosmic observations.

  15. Analysis of uncertainties in CRAC2 calculations: the inhalation pathway

    SciTech Connect (OSTI)

    Killough, G.G.; Dunning, D.E. Jr.

    1984-01-01T23:59:59.000Z

    CRAC2 is a computer code for estimating the health effects and economic costs that might result from a release of radioactivity from a nuclear reactor to the environment. This paper describes tests of sensitivity of the predicted health effects to uncertainties in parameters associated with inhalation of the released radionuclides. These parameters are the particle size of the carrier aerosol and, for each element in the release, the clearance parameters for the lung model on which the code's dose conversion factors for inhalation are based. CRAC2 uses hourly meteorological data and a straight-line Gaussian plume model to predict the transport of airborne radioactivity; it includes models for plume depletion and population evacuation, and data for the distributions of population and land use. The code can compute results for single weather sequences, or it can perform random sampling of weather sequences from the meteorological data file and compute results for each weather sequence in the sample. For the work described in this paper, we concentrated on three fixed weather sequences that represent a range of conditions. For each fixed weather sequence, we applied random sampling to joint distributions of the inhalation parameters in order to estimate the sensitivity of the predicted health effects. All sampling runs produced coefficients of variation that were less than 50%, but some differences of means between weather sequences were substantial, as were some differences between means and the corresponding CRAC2 results without random sampling. Early injuries showed differences of as much as 1 to 2 orders of magnitude, while the differences in early fatalities were less than a factor of 2. Latent cancer fatalities varied by less than 10%. 19 references, 6 figures, 3 tables.

  16. Generalized Uncertainty Principle and Recent Cosmic Inflation Observations

    E-Print Network [OSTI]

    Abdel Nasser Tawfik; Abdel Magied Diab

    2014-10-29T23:59:59.000Z

    The recent background imaging of cosmic extragalactic polarization (BICEP2) observations are believed as an evidence for the cosmic inflation. BICEP2 provided a first direct evidence for the inflation, determined its energy scale and debriefed witnesses for the quantum gravitational processes. The ratio of scalar-to-tensor fluctuations $r$ which is the canonical measurement of the gravitational waves, was estimated as $r=0.2_{-0.05}^{+0.07}$. Apparently, this value agrees well with the upper bound value corresponding to PLANCK $r\\leq 0.012$ and to WMAP9 experiment $r=0.2$. It is believed that the existence of a minimal length is one of the greatest predictions leading to modifications in the Heisenberg uncertainty principle or a GUP at the Planck scale. In the present work, we investigate the possibility of interpreting recent BICEP2 observations through quantum gravity or GUP. We estimate the slow-roll parameters, the tensorial and the scalar density fluctuations which are characterized by the scalar field $\\phi$. Taking into account the background (matter and radiation) energy density, $\\phi$ is assumed to interact with the gravity and with itself. We first review the Friedmann-Lemaitre-Robertson-Walker (FLRW) Universe and then suggest modification in the Friedmann equation due to GUP. By using a single potential for a chaotic inflation model, various inflationary parameters are estimated and compared with the PLANCK and BICEP2 observations. While GUP is conjectured to break down the expansion of the early Universe (Hubble parameter and scale factor), two inflation potentials based on certain minimal supersymmetric extension of the standard model result in $r$ and spectral index matching well with the observations. Corresponding to BICEP2 observations, our estimation for $r$ depends on the inflation potential and the scalar field. A power-law inflation potential does not.

  17. Statistical Assessment of Proton Treatment Plans Under Setup and Range Uncertainties

    SciTech Connect (OSTI)

    Park, Peter C.; Cheung, Joey P.; Zhu, X. Ronald [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Lee, Andrew K. [Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Sahoo, Narayan [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Tucker, Susan L. [Department of Bioinformatics and Computational Biology, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Liu, Wei; Li, Heng; Mohan, Radhe; Court, Laurence E. [Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Dong, Lei, E-mail: dong.lei@scrippshealth.org [Scripps Proton Therapy Center, San Diego, California (United States)

    2013-08-01T23:59:59.000Z

    Purpose: To evaluate a method for quantifying the effect of setup errors and range uncertainties on dose distribution and dose–volume histogram using statistical parameters; and to assess existing planning practice in selected treatment sites under setup and range uncertainties. Methods and Materials: Twenty passively scattered proton lung cancer plans, 10 prostate, and 1 brain cancer scanning-beam proton plan(s) were analyzed. To account for the dose under uncertainties, we performed a comprehensive simulation in which the dose was recalculated 600 times per given plan under the influence of random and systematic setup errors and proton range errors. On the basis of simulation results, we determined the probability of dose variations and calculated the expected values and standard deviations of dose–volume histograms. The uncertainties in dose were spatially visualized on the planning CT as a probability map of failure to target coverage or overdose of critical structures. Results: The expected value of target coverage under the uncertainties was consistently lower than that of the nominal value determined from the clinical target volume coverage without setup error or range uncertainty, with a mean difference of ?1.1% (?0.9% for breath-hold), ?0.3%, and ?2.2% for lung, prostate, and a brain cases, respectively. The organs with most sensitive dose under uncertainties were esophagus and spinal cord for lung, rectum for prostate, and brain stem for brain cancer. Conclusions: A clinically feasible robustness plan analysis tool based on direct dose calculation and statistical simulation has been developed. Both the expectation value and standard deviation are useful to evaluate the impact of uncertainties. The existing proton beam planning method used in this institution seems to be adequate in terms of target coverage. However, structures that are small in volume or located near the target area showed greater sensitivity to uncertainties.

  18. Determining the Uncertainty Associated with Retrospective Air Sampling for Optimization Purposes

    SciTech Connect (OSTI)

    Hadlock, D.J.

    2003-10-03T23:59:59.000Z

    NUREG 1400 contains an acceptable methodology for determining the uncertainty associated with retrospective air sampling. The method is a fairly simple one in which both the systemic and random uncertainties, usually expressed as a percent error, are propagated using the square root of the sum of the squares. Historically, many people involved in air sampling have focused on the statistical counting error as the deciding factor of overall uncertainty in retrospective air sampling. This paper looks at not only the counting error but also other errors associated with the performance of retrospective air sampling.

  19. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    SciTech Connect (OSTI)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.; Thorne, Paul D.; Wurstner, Signe K.; Rogers, Phillip M.

    2001-11-09T23:59:59.000Z

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of an uncertainty analysis framework.

  20. Multiplicative scale uncertainties in the unified approach for constructing confidence intervals

    E-Print Network [OSTI]

    E. S. Smith

    2009-03-31T23:59:59.000Z

    We have investigated how uncertainties in the estimation of the detection efficiency affect the 90% confidence intervals in the unified approach for constructing confidence intervals. The study has been conducted for experiments where the number of detected events is large and can be described by a Gaussian probability density function. We also assume the detection efficiency has a Gaussian probability density and study the range of the relative uncertainties $\\sigma_\\epsilon$ between 0 and 30%. We find that the confidence intervals provide proper coverage over a wide signal range and increase smoothly and continuously from the intervals that ignore scale uncertainties with a quadratic dependence on $\\sigma_\\epsilon$.

  1. Balance Calibration – A Method for Assigning a Direct-Reading Uncertainty to an Electronic Balance.

    SciTech Connect (OSTI)

    Mike Stears

    2010-07-01T23:59:59.000Z

    Paper Title: Balance Calibration – A method for assigning a direct-reading uncertainty to an electronic balance. Intended Audience: Those who calibrate or use electronic balances. Abstract: As a calibration facility, we provide on-site (at the customer’s location) calibrations of electronic balances for customers within our company. In our experience, most of our customers are not using their balance as a comparator, but simply putting an unknown quantity on the balance and reading the displayed mass value. Manufacturer’s specifications for balances typically include specifications such as readability, repeatability, linearity, and sensitivity temperature drift, but what does this all mean when the balance user simply reads the displayed mass value and accepts the reading as the true value? This paper discusses a method for assigning a direct-reading uncertainty to a balance based upon the observed calibration data and the environment where the balance is being used. The method requires input from the customer regarding the environment where the balance is used and encourages discussion with the customer regarding sources of uncertainty and possible means for improvement; the calibration process becomes an educational opportunity for the balance user as well as calibration personnel. This paper will cover the uncertainty analysis applied to the calibration weights used for the field calibration of balances; the uncertainty is calculated over the range of environmental conditions typically encountered in the field and the resulting range of air density. The temperature stability in the area of the balance is discussed with the customer and the temperature range over which the balance calibration is valid is decided upon; the decision is based upon the uncertainty needs of the customer and the desired rigor in monitoring by the customer. Once the environmental limitations are decided, the calibration is performed and the measurement data is entered into a custom spreadsheet. The spreadsheet uses measurement results, along with the manufacturer’s specifications, to assign a direct-read measurement uncertainty to the balance. The fact that the assigned uncertainty is a best-case uncertainty is discussed with the customer; the assigned uncertainty contains no allowance for contributions associated with the unknown weighing sample, such as density, static charges, magnetism, etc. The attendee will learn uncertainty considerations associated with balance calibrations along with one method for assigning an uncertainty to a balance used for non-comparison measurements.

  2. Dakota uncertainty quantification methods applied to the NEK-5000 SAHEX model.

    SciTech Connect (OSTI)

    Weirs, V. Gregory

    2014-03-01T23:59:59.000Z

    This report summarizes the results of a NEAMS project focused on the use of uncertainty and sensitivity analysis methods within the NEK-5000 and Dakota software framework for assessing failure probabilities as part of probabilistic risk assessment. NEK-5000 is a software tool under development at Argonne National Laboratory to perform computational fluid dynamics calculations for applications such as thermohydraulics of nuclear reactor cores. Dakota is a software tool developed at Sandia National Laboratories containing optimization, sensitivity analysis, and uncertainty quantification algorithms. The goal of this work is to demonstrate the use of uncertainty quantification methods in Dakota with NEK-5000.

  3. The uncertainties of a Pd3PGV onsite earthquake early warning system Jui-Pin Wang a,n

    E-Print Network [OSTI]

    Wu, Yih-Min

    The uncertainties of a Pd3­PGV onsite earthquake early warning system Jui-Pin Wang a,n , Yih-Min Wu should be issued, based on factors such as the uncertainty of the early warning system, the magnitude the development and implementation of earthquake early warning systems. This study examines the uncertainty of one

  4. Representing Uncertainty Do not expect to arrive at certainty in every subject which you pursue. There are a

    E-Print Network [OSTI]

    Fitelson, Branden

    Chapter 2 Representing Uncertainty Do not expect to arrive at certainty in every subject which you best light and reasoning will reach no farther. --Isaac Watts How should uncertainty be represented in this chapter, I discuss some other difficulties that probability has in representing uncertainty

  5. Practical reliability and uncertainty quantification in complex systems : final report.

    SciTech Connect (OSTI)

    Grace, Matthew D.; Ringland, James T.; Marzouk, Youssef M. (Massachusetts Institute of Technology, Cambridge, MA); Boggs, Paul T.; Zurn, Rena M.; Diegert, Kathleen V. (Sandia National Laboratories, Albuquerque, NM); Pebay, Philippe Pierre; Red-Horse, John Robert (Sandia National Laboratories, Albuquerque, NM)

    2009-09-01T23:59:59.000Z

    The purpose of this project was to investigate the use of Bayesian methods for the estimation of the reliability of complex systems. The goals were to find methods for dealing with continuous data, rather than simple pass/fail data; to avoid assumptions of specific probability distributions, especially Gaussian, or normal, distributions; to compute not only an estimate of the reliability of the system, but also a measure of the confidence in that estimate; to develop procedures to address time-dependent or aging aspects in such systems, and to use these models and results to derive optimal testing strategies. The system is assumed to be a system of systems, i.e., a system with discrete components that are themselves systems. Furthermore, the system is 'engineered' in the sense that each node is designed to do something and that we have a mathematical description of that process. In the time-dependent case, the assumption is that we have a general, nonlinear, time-dependent function describing the process. The major results of the project are described in this report. In summary, we developed a sophisticated mathematical framework based on modern probability theory and Bayesian analysis. This framework encompasses all aspects of epistemic uncertainty and easily incorporates steady-state and time-dependent systems. Based on Markov chain, Monte Carlo methods, we devised a computational strategy for general probability density estimation in the steady-state case. This enabled us to compute a distribution of the reliability from which many questions, including confidence, could be addressed. We then extended this to the time domain and implemented procedures to estimate the reliability over time, including the use of the method to predict the reliability at a future time. Finally, we used certain aspects of Bayesian decision analysis to create a novel method for determining an optimal testing strategy, e.g., we can estimate the 'best' location to take the next test to minimize the risk of making a wrong decision about the fitness of a system. We conclude this report by proposing additional fruitful areas of research.

  6. "CRISIS, UNCERTAINTY AND DEMOCRACY": OPENING AUSTRALIAN POLITICAL STUDIES ASSOCIATION (APSA) CONFERENCE 2011

    E-Print Network [OSTI]

    Botea, Adi

    "CRISIS, UNCERTAINTY AND DEMOCRACY": OPENING AUSTRALIAN POLITICAL STUDIES ASSOCIATION (APSA of government or #12;public policy around the world our discipline and sub-disciplines are at the heart

  7. Determination of uncertainty in reserves estimate from analysis of production decline data

    E-Print Network [OSTI]

    Wang, Yuhong

    2007-09-17T23:59:59.000Z

    Analysts increasingly have used probabilistic approaches to evaluate the uncertainty in reserves estimates based on a decline curve analysis. This is because the results represent statistical analysis of historical data that usually possess...

  8. An Integrated Real options Framework for model-based identification and valuation of options under uncertainty

    E-Print Network [OSTI]

    Mikaelian, Tsoline

    2009-01-01T23:59:59.000Z

    Complex systems and enterprises, such as those typical in the aerospace industry, are subject to uncertainties that may lead to suboptimal performance or even catastrophic failures if unmanaged. This work focuses on ...

  9. Using designer confidence and a dynamic Monte Carlo simulation tool to evaluate uncertainty in system models

    E-Print Network [OSTI]

    Lyons, Jeffrey M. (Jeffrey Michael), 1973-

    2000-01-01T23:59:59.000Z

    As the use of distributed engineering models becomes more prevalent, engineers need tools to evaluate the quality of these models and understand how subsystem uncertainty affects predictions of system behavior. This thesis ...

  10. Absolute vs. Intensity Limits for CO2 Emission Control: Performance Under Uncertainty

    E-Print Network [OSTI]

    Sue Wing, Ian.

    We elucidate the differences between absolute and intensity-based limits of CO2 emission when there is uncertainty about the future. We demonstrate that the two limits are identical under certainty, and rigorously establish ...

  11. Hurdling Barriers Through Market Uncertainty: Case Studies in Innovative Technology Adoption

    E-Print Network [OSTI]

    Hurdling Barriers Through Market Uncertainty: Case Studies in Innovative Technology Adoption technologies. This paper examines three case studies of innovative technology adoption: retrofit of time these circumstances as "innovative technology adoption." This paper presents case studies of three innovative

  12. Electricity generation and emissions reduction decisions under uncertainty : a general equilibrium analysis

    E-Print Network [OSTI]

    Morris, Jennifer F. (Jennifer Faye)

    2013-01-01T23:59:59.000Z

    The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty ...

  13. Effects of the Uncertainty about Global Economic Recovery on Energy Transition and CO2 Price

    E-Print Network [OSTI]

    Durand-Lasserve, Olivier

    This paper examines the impact that uncertainty over economic growth may have on global energy transition and CO2 prices. We use a general-equilibrium model derived from MERGE, and define several stochastic scenarios for ...

  14. Assessing early investments in low carbon technologies under uncertainty : the case of Carbon Capture and Storage

    E-Print Network [OSTI]

    Ereira, Eleanor Charlotte

    2010-01-01T23:59:59.000Z

    Climate change is a threat that could be mitigated by introducing new energy technologies into the electricity market that emit fewer greenhouse gas (GHG) emissions. We face many uncertainties that would affect the demand ...

  15. Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Morris, J.

    The electric power sector, which accounts for approximately 40% of U.S. carbon dioxide emissions, will be a critical component of any policy the U.S. government pursues to confront climate change. In the context of uncertainty ...

  16. Title of Dissertation: STUDENTS' UNDERSTANDING OF MEASUREMENT AND UNCERTAINTY IN THE PHYSICS LABORATORY

    E-Print Network [OSTI]

    Maryland at College Park, University of

    ABSTRACT Title of Dissertation: STUDENTS' UNDERSTANDING OF MEASUREMENT AND UNCERTAINTY Lippmann, Doctor of Philosophy, 2003 Dissertation directed by: Professor Edward F. Redish Department CONSTRUCTION, UNDERLYING CONCEPTS, AND QUANTITATIVE ANALYSIS by Rebecca Faith Lippmann Dissertation submitted

  17. Fast Algorithms for Computing Statistics Under Interval and Fuzzy Uncertainty, and Their Applications

    E-Print Network [OSTI]

    Kreinovich, Vladik

    engineering applications, we are interested in computing statistics. For example, in environmental analysis, a reasonable statistic for estimating the mean value of a probability distribution is the population average EFast Algorithms for Computing Statistics Under Interval and Fuzzy Uncertainty

  18. A rock physics strategy for quantifying uncertainty in common hydrocarbon indicators

    SciTech Connect (OSTI)

    Mavko, G.M.; Mukerji, T.

    1995-12-31T23:59:59.000Z

    We present a strategy for hydrocarbon detection and for quantifying the uncertainty in hydrocarbon indicators, by combining statistical techniques with deterministic rock physics relations derived from the laboratory and theory. A simple example combines Gassmann`s deterministic equation for fluid substitution with statistics inferred from log and core data, to detect hydrocarbons from observed seismic velocities. The formulation gives the most likely estimate of the pore fluid modulus, corresponding to each observed velocity, and also the uncertainty of that interpretation. The variances of seismic velocity and porosity in the calibration data determine the uncertainty of the pore fluid interpretation. As expected, adding information about shear wave velocity, from AVO for example, narrows the uncertainty of the hydrocarbon indicator. The formulation offers a convenient way to implement deterministic fluid substitution equations in the realistic case when the reference porosity and velocity span a range of values.

  19. Application of the probabilistic collocation method for an uncertainty analysis of a simple ocean model

    E-Print Network [OSTI]

    Webster, Mort David.; Tatang, Menner A.; McRae, Gregory J.

    This paper presents the probabilistic collocation method as a computationally efficient method for performing uncertainty analysis on large complex models such as those used in global climate change research. The collocation ...

  20. The Value of Assessing Uncertainty in Oil and Gas Portfolio Optimization

    E-Print Network [OSTI]

    Hdadou, Houda

    2013-07-25T23:59:59.000Z

    It has been shown in the literature that the oil and gas industry deals with a substantial number of biases that impact project evaluation and portfolio performance. Previous studies concluded that properly estimating uncertainties...

  1. Reducing Uncertainty in Fisheries Management: The Time for Fishers' Ecological Knowledge

    E-Print Network [OSTI]

    Carr, Liam

    2012-07-16T23:59:59.000Z

    This dissertation work presents a novel method for addressing system uncertainty to improve management of a small-scale fishery in St. Croix, United States Virgin Islands. Using fishers' ecological knowledge (FEK), this research examines existing...

  2. Strategic investment in power generation under uncertainty : Electric Reliability Council of Texas

    E-Print Network [OSTI]

    Chiyangwa, Diana Kudakwashe

    2010-01-01T23:59:59.000Z

    The purpose of this study is to develop a strategy for investment in power generation technologies in the future given the uncertainties in climate policy and fuel prices. First, such studies are commonly conducted using ...

  3. Threat assessment for safe navigation in environments with uncertainty in predictability

    E-Print Network [OSTI]

    Aoudé, Georges Salim

    2011-01-01T23:59:59.000Z

    This thesis develops threat assessment algorithms to improve the safety of the decision making of autonomous and human-operated vehicles navigating in dynamic and uncertain environments, where the source of uncertainty is ...

  4. A generalized real options methodology for evaluating investments under uncertainty with application to air transportation

    E-Print Network [OSTI]

    Miller, Bruno, 1974-

    2005-01-01T23:59:59.000Z

    Real options analysis is being increasingly used as a tool to evaluate investments under uncertainty; however, traditional real options methodologies have some shortcomings that limit their utility, such as the use of the ...

  5. Quantitative Analysis of Variability and Uncertainty in Environmental Data and Models

    E-Print Network [OSTI]

    Frey, H. Christopher

    Quantitative Analysis of Variability and Uncertainty in Environmental Data and Models Volume 1 ........................................6 1.3 Is A Probabilistic Analysis Necessary? ................................................................8 1.4 Previous Work in Probabilistic Risk Assessment

  6. Joint location of microseismic events in the presence of velocity uncertainty

    E-Print Network [OSTI]

    Poliannikov, Oleg V.

    The locations of seismic events are used to infer reservoir properties and to guide future production activity, as well as to determine and understand the stress field. Thus, locating seismic events with uncertainty ...

  7. The use of sequential indicator simulation to characterize geostatistical uncertainty; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Hansen, K.M.

    1992-10-01T23:59:59.000Z

    Sequential indicator simulation (SIS) is a geostatistical technique designed to aid in the characterization of uncertainty about the structure or behavior of natural systems. This report discusses a simulation experiment designed to study the quality of uncertainty bounds generated using SIS. The results indicate that, while SIS may produce reasonable uncertainty bounds in many situations, factors like the number and location of available sample data, the quality of variogram models produced by the user, and the characteristics of the geologic region to be modeled, can all have substantial effects on the accuracy and precision of estimated confidence limits. It is recommended that users of SIS conduct validation studies for the technique on their particular regions of interest before accepting the output uncertainty bounds.

  8. Multiscale Simulation and Uncertainty Quantification Techniques for Richards' Equation in Heterogeneous Media

    E-Print Network [OSTI]

    Kang, Seul Ki

    2012-10-19T23:59:59.000Z

    In this dissertation, we develop multiscale finite element methods and uncertainty quantification technique for Richards' equation, a mathematical model to describe fluid flow in unsaturated porous media. Both coarse-level and fine-level numerical...

  9. Real options for naval ship design and acquisition : a method for valuing flexibility under uncertainty

    E-Print Network [OSTI]

    Gregor, Jeffrey Allen

    2003-01-01T23:59:59.000Z

    The United States Navy is facing a need for a novel surface combatant capability. This new system of ships must be deigned to meet the uncertainty associated with constantly changing required mission capabilities, threats, ...

  10. Compensating for model uncertainty in the control of cooperative field robots

    E-Print Network [OSTI]

    Sujan, Vivek Anand, 1972-

    2002-01-01T23:59:59.000Z

    Current control and planning algorithms are largely unsuitable for mobile robots in unstructured field environment due to uncertainties in the environment, task, robot models and sensors. A key problem is that it is often ...

  11. Quark mass uncertainties revive Kim-Shifman-Vainshtein-Zakharov axion dark matter

    E-Print Network [OSTI]

    Buckley, Matthew R.; Murayama, Hitoshi

    2007-01-01T23:59:59.000Z

    mass uncertainties revive KSVZ axion dark matter Matthew R.bounds on the QCD axion, speci?cally KSVZ axions in the 2 ?particles. The as-yet-unseen axion, origi- nally proposed to

  12. Kiwi: An Evaluated Library of Uncertainties in Nuclear Data and Package for Nuclear Sensitivity Studies

    SciTech Connect (OSTI)

    Pruet, J

    2007-06-23T23:59:59.000Z

    This report describes Kiwi, a program developed at Livermore to enable mature studies of the relation between imperfectly known nuclear physics and uncertainties in simulations of complicated systems. Kiwi includes a library of evaluated nuclear data uncertainties, tools for modifying data according to these uncertainties, and a simple interface for generating processed data used by transport codes. As well, Kiwi provides access to calculations of k eigenvalues for critical assemblies. This allows the user to check implications of data modifications against integral experiments for multiplying systems. Kiwi is written in python. The uncertainty library has the same format and directory structure as the native ENDL used at Livermore. Calculations for critical assemblies rely on deterministic and Monte Carlo codes developed by B division.

  13. Long term infrastructure investments under uncertainty in the electric power sector using approximate dynamic programming techniques

    E-Print Network [OSTI]

    Seelhof, Michael

    2014-01-01T23:59:59.000Z

    A computer model was developed to find optimal long-term investment strategies for the electric power sector under uncertainty with respect to future regulatory regimes and market conditions. The model is based on a ...

  14. Quantitative Phenomena Identification and Ranking Table (QPIRT) for Bayesian Uncertainty Quantification

    E-Print Network [OSTI]

    Yurko, Joseph P.

    Propagating parameter uncertainty for a nuclear reactor system code is a very challenging problem. Numerous parameters influence the system response in complicated and often non-linear fashions, in addition to sometimes ...

  15. Influence of air quality model resolution on uncertainty associated with health impacts

    E-Print Network [OSTI]

    Thompson, Tammy M.

    We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model ...

  16. Characterizing uncertainty to manage risk in spacecraft development with application to structures and mass

    E-Print Network [OSTI]

    Clements, Emily Baker

    2013-01-01T23:59:59.000Z

    Most space programs experience significant cost and schedule growth over the course of program development. Poor uncertainty management has been identified as one of the leading causes of program cost and schedule overruns. ...

  17. Introduction Course Logistics Sets and Elements CMPSCI 240: Reasoning about Uncertainty

    E-Print Network [OSTI]

    McGregor, Andrew

    Introduction Course Logistics Sets and Elements CMPSCI 240: Reasoning about Uncertainty Lecture 1 Course Logistics Sets and Elements What's this course about. . . Course description: Development arguments and using mathematical concepts. #12;Introduction Course Logistics Sets and Elements Probability

  18. Climate Change Impacts on Extreme Events in the United States: An Uncertainty Analysis

    E-Print Network [OSTI]

    Monier, Erwan

    Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in ...

  19. Quantification of the impact of climate uncertainty on regional air quality

    E-Print Network [OSTI]

    Liao, K.-J.

    Uncertainties in calculated impacts of climate forecasts on future regional air quality are investigated using downscaled MM5 meteorological fields from the NASA GISS and MIT IGSM global models and the CMAQ model in 2050 ...

  20. Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field

    E-Print Network [OSTI]

    California at Davis, University of

    Uncertainties in Achieving Energy Savings from HVAC Maintenance Measures in the Field Kristin Group, Davis, CA, USA 4 Southern California Edison, Irwindale, CA, USA ABSTRACT HVAC maintenance utilities across the nation to include HVAC maintenance measures in energy efficiency programs

  1. Uncertainty Analysis in Upscaling Well Log data By Markov Chain Monte Carlo Method

    E-Print Network [OSTI]

    Hwang, Kyubum

    2010-01-16T23:59:59.000Z

    the uncertainties, a Bayesian framework could be a useful tool for providing the posterior information to give a better estimate for a chosen model with a conditional probability. In addition, the likelihood of a Bayesian framework plays an important role...

  2. The q-Deformed Harmonic Oscillator, Coherent States, and the Uncertainty Relation

    E-Print Network [OSTI]

    V. V Eremin; A. A. Meldianov

    2008-10-10T23:59:59.000Z

    For a q-deformed harmonic oscillator, we find explicit coordinate representations of the creation and annihilation operators, eigenfunctions, and coherent states (the last being defined as eigenstates of the annihilation operator). We calculate the product of the coordinate momentum uncertainties in qoscillator eigenstates and in coherent states. For the oscillator, this product is minimum in the ground state and equals 1/2, as in the standard quantum mechanics. For coherent states, the $q$-deformation results in a violation of the standard uncertainty relation; the product of the coordinate- and momentumoperator uncertainties is always less than 1/2. States with the minimum uncertainty, which tends to zero, correspond to the values of $\\lambda$ near the convergence radius of the $q$-exponential.

  3. Sensitivity and uncertainty analyses for thermo-hydraulic calculation of research reactor

    SciTech Connect (OSTI)

    Hartini, Entin; Andiwijayakusuma, Dinan [Center for Development of Nuclear Informatics - National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)] [Center for Development of Nuclear Informatics - National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia); Isnaeni, Muh Darwis [Center for Reactor Technology and Nuclear Safety- National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)] [Center for Reactor Technology and Nuclear Safety- National Nuclear Energy Agency PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia)

    2013-09-09T23:59:59.000Z

    The sensitivity and uncertainty analysis of input parameters on thermohydraulic calculations for a research reactor has successfully done in this research. The uncertainty analysis was carried out on input parameters for thermohydraulic calculation of sub-channel analysis using Code COOLOD-N. The input parameters include radial peaking factor, the increase bulk coolant temperature, heat flux factor and the increase temperature cladding and fuel meat at research reactor utilizing plate fuel element. The input uncertainty of 1% - 4% were used in nominal power calculation. The bubble detachment parameters were computed for S ratio (the safety margin against the onset of flow instability ratio) which were used to determine safety level in line with the design of 'Reactor Serba Guna-G. A. Siwabessy' (RSG-GA Siwabessy). It was concluded from the calculation results that using the uncertainty input more than 3% was beyond the safety margin of reactor operation.

  4. Northern winter climate change: Assessment of uncertainty in CMIP5 projections related

    E-Print Network [OSTI]

    Gerber, Edwin

    Northern winter climate change: Assessment of uncertainty in CMIP5 projections related circulation could have an important impact on northern winter tropospheric climate change, given that sea coherent variations in troposphere-stratosphere circulation. Here we assess northern winter stratospheric

  5. Ozone predictabilities due to meteorological uncertainties in the Mexico City basin using ensemble forecasts

    E-Print Network [OSTI]

    Bei, Naifang

    The purpose of the present study is to investigate the sensitivity of ozone (O3)[(O subscript 3)] predictions in the Mexico City Metropolitan Area (MCMA) to meteorological initial uncertainties and planetary boundary layer ...

  6. ENVIRONMENTAL DAMAGE AS NEGATIVE EXTERNALITY: UNCERTAINTY, MORAL COMPLEXITY AND THE LIMITS OF THE MARKET

    E-Print Network [OSTI]

    Boyer, Edmond

    21 ENVIRONMENTAL DAMAGE AS NEGATIVE EXTERNALITY: UNCERTAINTY, MORAL COMPLEXITY AND THE LIMITS environmental damage with a sociological approach, I show how the process of externalities definition inclusive and democratic public deliberation on environmental damage and its reparation. Key Words

  7. Mathematical and Computational Tools for Predictive Simulation of Complex Coupled Systems under Uncertainty

    SciTech Connect (OSTI)

    Ghanem, Roger

    2013-03-25T23:59:59.000Z

    Methods and algorithms are developed to enable the accurate analysis of problems that exhibit interacting physical processes with uncertainties. These uncertainties can pertain either to each of the physical processes or to the manner in which they depend on each others. These problems are cast within a polynomial chaos framework and their solution then involves either solving a large system of algebraic equations or a high dimensional numerical quadrature. In both cases, the curse of dimensionality is manifested. Procedures are developed for the efficient evaluation of the resulting linear equations that advantage of the block sparse structure of these equations, resulting in a block recursive Schur complement construction. In addition, embedded quadratures are constructed that permit the evaluation of very high-dimensional integrals using low-dimensional quadratures adapted to particular quantities of interest. The low-dimensional integration is carried out in a transformed measure space in which the quantity of interest is low-dimensional. Finally, a procedure is also developed to discover a low-dimensional manifold, embedded in the initial high-dimensional one, in which scalar quantities of interest exist. This approach permits the functional expression of the reduced space in terms of the original space, thus permitting cross-scale sensitivity analysis.

  8. One-dimensional hydrogen atom with minimal length uncertainty and maximal momentum

    E-Print Network [OSTI]

    Pouria Pedram

    2013-02-16T23:59:59.000Z

    We present exact energy eigenvalues and eigenfunctions of the one-dimensional hydrogen atom in the framework of the Generalized (Gravitational) Uncertainty Principle (GUP). This form of GUP is consistent with various theories of quantum gravity such as string theory, loop quantum gravity, black-hole physics, and doubly special relativity and implies a minimal length uncertainty and a maximal momentum. We show that the quantized energy spectrum exactly agrees with the semiclassical results.

  9. Total Measurement Uncertainty (TMU) for Nondestructive Assay of Transuranic (TRU) Waste at the WRAP Facility

    SciTech Connect (OSTI)

    WILLS, C.E.

    2000-02-24T23:59:59.000Z

    The Waste Receiving and Processing (WRAP) facility, located on the Hanford Site in southeast Washington, is a key link in the certification of Hanford's transuranic (TRU) waste for shipment to the Waste Isolation Pilot Plant (WIPP). Waste characterization is one of the vital functions performed at WRAP, and nondestructive assay (NDA) measurements of TRU waste containers is one of two required methods used for waste characterization (Reference 1). Various programs exist to ensure the validity of waste characterization data; all of these cite the need for clearly defined knowledge of uncertainty, associated with any measurements taken. All measurements have an inherent uncertainty associated with them. The combined effect of all uncertainties associated with a measurement is referred to as the Total Measurement Uncertainty (TMU). The NDA measurement uncertainties can be numerous and complex. In addition to system-induced measurement uncertainty, other factors contribute to the TMU, each associated with a particular measurement. The NDA measurements at WRAP are based on processes (radioactive decay and induced fission) which are statistical in nature. As a result, the proper statistical summation of the various uncertainty components is essential. This report examines the contributing factors to NDA measurement uncertainty at WRAP. The significance of each factor on the TMU is analyzed, and a final method is given for determining the TMU for NDA measurements at WRAP. As more data becomes available, and WRAP gains in operational experience, this report will be reviewed semi-annually and updated as necessary. This report also includes the data flow paths for the analytical process in the radiometric determinations.

  10. Statistical uncertainties of a chiral interaction at next-to-next-to leading order

    E-Print Network [OSTI]

    A. Ekström; B. D. Carlsson; K. A. Wendt; C. Forssén; M. Hjorth-Jensen; R. Machleidt; S. M. Wild

    2014-06-30T23:59:59.000Z

    We have quantified the statistical uncertainties of the low-energy coupling-constants (LECs) of an optimized nucleon-nucleon (NN) interaction from chiral effective field theory ($\\chi$EFT) at next-to-next-to-leading order (NNLO). In addition, we have propagated the impact of the uncertainties of the LECs to two-nucleon scattering phase shifts, effective range parameters, and deuteron observables.

  11. 1997-2001 by M. Kostic Ch.5: Uncertainty/Error Analysis

    E-Print Network [OSTI]

    Kostic, Milivoje M.

    1 ©1997-2001 by M. Kostic Ch.5: Uncertainty/Error Analysis · Introduction · Bias and Precision Summation/Propagation (Expanded Combined Uncertainty) · Problem 5-30 ©1997-2001 by M. Kostic Ch.5) at corresponding Probability (%P) Remember: u = d%P = t,%PS (@ %P); z=t=d/S #12;2 ©1997-2001 by M. Kostic Bias

  12. Uncertainties in source term calculations generated by the ORIGEN2 computer code for Hanford Production Reactors

    SciTech Connect (OSTI)

    Heeb, C.M.

    1991-03-01T23:59:59.000Z

    The ORIGEN2 computer code is the primary calculational tool for computing isotopic source terms for the Hanford Environmental Dose Reconstruction (HEDR) Project. The ORIGEN2 code computes the amounts of radionuclides that are created or remain in spent nuclear fuel after neutron irradiation and radioactive decay have occurred as a result of nuclear reactor operation. ORIGEN2 was chosen as the primary code for these calculations because it is widely used and accepted by the nuclear industry, both in the United States and the rest of the world. Its comprehensive library of over 1,600 nuclides includes any possible isotope of interest to the HEDR Project. It is important to evaluate the uncertainties expected from use of ORIGEN2 in the HEDR Project because these uncertainties may have a pivotal impact on the final accuracy and credibility of the results of the project. There are three primary sources of uncertainty in an ORIGEN2 calculation: basic nuclear data uncertainty in neutron cross sections, radioactive decay constants, energy per fission, and fission product yields; calculational uncertainty due to input data; and code uncertainties (i.e., numerical approximations, and neutron spectrum-averaged cross-section values from the code library). 15 refs., 5 figs., 5 tabs.

  13. Monte Carlo uncertainty reliability and isotope production calculations for a fast reactor

    SciTech Connect (OSTI)

    Miles, T.L.

    1992-01-01T23:59:59.000Z

    Statistical uncertainties in Monte Carlo calculations are typically determined by the first and second moments of the tally. For certain types of calculations, there is concern that the uncertainty estimate is significantly non-conservative. This is typically seen in reactor eigenvalue problems where the uncertainty estimate is aggravated by the generation-to-generation fission source. It has been speculated that optimization of the random walk, through biasing techniques, may increase the non-conservative nature of the uncertainty estimate. A series of calculations are documented here which quantify the reliability of the Monte Carlo Neutron and Photon (MCNP) mean and uncertainty estimates by comparing these estimates to the true mean. These calculations were made with a liquid metal fast reactor model, but every effort was made to isolate the statistical nature of the uncertainty estimates so that the analysis of the reliability of the MCNP estimates should be relevant for small thermal reactors as well. Also, preliminary reactor physics calculations for two different special isotope production test assemblies for irradiation in the Fast Flux Test Facility (FFTF) were performed using MCNP and are documented here. The effect of an yttrium-hydride moderator to tailor the neutron flux incident on the targets to maximize isotope production for different designs in different locations within the reactor is discussed. These calculations also demonstrate the useful application of MCNP in design iterations by utilizing many of the codes features.

  14. Two-dimensional cross-section and SED uncertainty analysis for the Fusion Engineering Device (FED)

    SciTech Connect (OSTI)

    Embrechts, M.J.; Urban, W.T.; Dudziak, D.J.

    1982-01-01T23:59:59.000Z

    The theory of two-dimensional cross-section and secondary-energy-distribution (SED) sensitivity was implemented by developing a two-dimensional sensitivity and uncertainty analysis code, SENSIT-2D. Analyses of the Fusion Engineering Design (FED) conceptual inboard shield indicate that, although the calculated uncertainties in the 2-D model are of the same order of magnitude as those resulting from the 1-D model, there might be severe differences. The more complex the geometry, the more compulsory a 2-D analysis becomes. Specific results show that the uncertainty for the integral heating of the toroidal field (TF) coil for the FED is 114.6%. The main contributors to the cross-section uncertainty are chromium and iron. Contributions to the total uncertainty were smaller for nickel, copper, hydrogen and carbon. All analyses were performed with the Los Alamos 42-group cross-section library generated from ENDF/B-V data, and the COVFILS covariance matrix library. The large uncertainties due to chromium result mainly from large convariances for the chromium total and elastic scattering cross sections.

  15. Position-Momentum Uncertainty Relations in the Presence of Quantum Memory

    E-Print Network [OSTI]

    Fabian Furrer; Mario Berta; Marco Tomamichel; Volkher B. Scholz; Matthias Christandl

    2015-01-05T23:59:59.000Z

    A prominent formulation of the uncertainty principle identifies the fundamental quantum feature that no particle may be prepared with certain outcomes for both position and momentum measurements. Often the statistical uncertainties are thereby measured in terms of entropies providing a clear operational interpretation in information theory and cryptography. Recently, entropic uncertainty relations have been used to show that the uncertainty can be reduced in the presence of entanglement and to prove security of quantum cryptographic tasks. However, much of this recent progress has been focused on observables with only a finite number of outcomes not including Heisenberg's original setting of position and momentum observables. Here we show entropic uncertainty relations for general observables with discrete but infinite or continuous spectrum that take into account the power of an entangled observer. As an illustration, we evaluate the uncertainty relations for position and momentum measurements, which is operationally significant in that it implies security of a quantum key distribution scheme based on homodyne detection of squeezed Gaussian states.

  16. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    SciTech Connect (OSTI)

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01T23:59:59.000Z

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest status and plans are presented.

  17. Uncertainty analysis on reactivity and discharged inventory for a pressurized water reactor fuel assembly due to {sup 235,238}U nuclear data uncertainties

    SciTech Connect (OSTI)

    Da Cruz, D. F.; Rochman, D.; Koning, A. J. [Nuclear Research and Consultancy Group NRG, Westerduinweg 3, 1755 ZG Petten (Netherlands)

    2012-07-01T23:59:59.000Z

    This paper discusses the uncertainty analysis on reactivity and inventory for a typical PWR fuel element as a result of uncertainties in {sup 235,238}U nuclear data. A typical Westinghouse 3-loop fuel assembly fuelled with UO{sub 2} fuel with 4.8% enrichment has been selected. The Total Monte-Carlo method has been applied using the deterministic transport code DRAGON. This code allows the generation of the few-groups nuclear data libraries by directly using data contained in the nuclear data evaluation files. The nuclear data used in this study is from the JEFF3.1 evaluation, and the nuclear data files for {sup 238}U and {sup 235}U (randomized for the generation of the various DRAGON libraries) are taken from the nuclear data library TENDL. The total uncertainty (obtained by randomizing all {sup 238}U and {sup 235}U nuclear data in the ENDF files) on the reactor parameters has been split into different components (different nuclear reaction channels). Results show that the TMC method in combination with a deterministic transport code constitutes a powerful tool for performing uncertainty and sensitivity analysis of reactor physics parameters. (authors)

  18. Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis

    SciTech Connect (OSTI)

    Perkó, Zoltán, E-mail: Z.Perko@tudelft.nl; Gilli, Luca, E-mail: Gilli@nrg.eu; Lathouwers, Danny, E-mail: D.Lathouwers@tudelft.nl; Kloosterman, Jan Leen, E-mail: J.L.Kloosterman@tudelft.nl

    2014-03-01T23:59:59.000Z

    The demand for accurate and computationally affordable sensitivity and uncertainty techniques is constantly on the rise and has become especially pressing in the nuclear field with the shift to Best Estimate Plus Uncertainty methodologies in the licensing of nuclear installations. Besides traditional, already well developed methods – such as first order perturbation theory or Monte Carlo sampling – Polynomial Chaos Expansion (PCE) has been given a growing emphasis in recent years due to its simple application and good performance. This paper presents new developments of the research done at TU Delft on such Polynomial Chaos (PC) techniques. Our work is focused on the Non-Intrusive Spectral Projection (NISP) approach and adaptive methods for building the PCE of responses of interest. Recent efforts resulted in a new adaptive sparse grid algorithm designed for estimating the PC coefficients. The algorithm is based on Gerstner's procedure for calculating multi-dimensional integrals but proves to be computationally significantly cheaper, while at the same it retains a similar accuracy as the original method. More importantly the issue of basis adaptivity has been investigated and two techniques have been implemented for constructing the sparse PCE of quantities of interest. Not using the traditional full PC basis set leads to further reduction in computational time since the high order grids necessary for accurately estimating the near zero expansion coefficients of polynomial basis vectors not needed in the PCE can be excluded from the calculation. Moreover the sparse PC representation of the response is easier to handle when used for sensitivity analysis or uncertainty propagation due to the smaller number of basis vectors. The developed grid and basis adaptive methods have been implemented in Matlab as the Fully Adaptive Non-Intrusive Spectral Projection (FANISP) algorithm and were tested on four analytical problems. These show consistent good performance both in terms of the accuracy of the resulting PC representation of quantities and the computational costs associated with constructing the sparse PCE. Basis adaptivity also seems to make the employment of PC techniques possible for problems with a higher number of input parameters (15–20), alleviating a well known limitation of the traditional approach. The prospect of larger scale applicability and the simplicity of implementation makes such adaptive PC algorithms particularly appealing for the sensitivity and uncertainty analysis of complex systems and legacy codes.

  19. DAKOTA : a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis.

    SciTech Connect (OSTI)

    Eldred, Michael Scott; Vigil, Dena M.; Dalbey, Keith R.; Bohnhoff, William J.; Adams, Brian M.; Swiler, Laura Painton; Lefantzi, Sophia (Sandia National Laboratories, Livermore, CA); Hough, Patricia Diane (Sandia National Laboratories, Livermore, CA); Eddy, John P.

    2011-12-01T23:59:59.000Z

    The DAKOTA (Design Analysis Kit for Optimization and Terascale Applications) toolkit provides a flexible and extensible interface between simulation codes and iterative analysis methods. DAKOTA contains algorithms for optimization with gradient and nongradient-based methods; uncertainty quantification with sampling, reliability, and stochastic expansion methods; parameter estimation with nonlinear least squares methods; and sensitivity/variance analysis with design of experiments and parameter study methods. These capabilities may be used on their own or as components within advanced strategies such as surrogate-based optimization, mixed integer nonlinear programming, or optimization under uncertainty. By employing object-oriented design to implement abstractions of the key components required for iterative systems analyses, the DAKOTA toolkit provides a flexible and extensible problem-solving environment for design and performance analysis of computational models on high performance computers. This report serves as a theoretical manual for selected algorithms implemented within the DAKOTA software. It is not intended as a comprehensive theoretical treatment, since a number of existing texts cover general optimization theory, statistical analysis, and other introductory topics. Rather, this manual is intended to summarize a set of DAKOTA-related research publications in the areas of surrogate-based optimization, uncertainty quantification, and optimization under uncertainty that provide the foundation for many of DAKOTA's iterative analysis capabilities.

  20. Quantitative Phenomena Identification and Ranking Table (QPIRT) for Bayesian uncertainty quantification

    SciTech Connect (OSTI)

    Yurko, J. P.; Buongiorno, J. [MIT, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-07-01T23:59:59.000Z

    Propagating parameter uncertainty for a nuclear reactor system code is a challenging problem due to often non-linear system response to the numerous parameters involved and lengthy computational times; issues that compound when a statistical sampling procedure is adopted, since the code must be run many times. The number of parameters sampled must therefore be limited to as few as possible that still accurately characterize the uncertainty in the system response. A Quantitative Phenomena Identification and Ranking Table (QPIRT) was developed to accomplish this goal. The QPIRT consists of two steps: a 'Top-Down' step focusing on identifying the dominant physical phenomena controlling the system response, and a 'Bottom-Up' step which focuses on determining the correlations from those key physical phenomena that significantly contribute to the response uncertainty. The Top-Down step evaluates phenomena using the governing equations of the system code at nominal parameter values, providing a 'fast' screening step. The Bottom-Up step then analyzes the correlations and models for the phenomena identified from the Top-Down step to find which parameters to sample. The QPIRT, through the Top-Down and Bottom-Up steps thus provides a systematic approach to determining the limited set of physically relevant parameters that influence the uncertainty of the system response. This strategy was demonstrated through an application to the RELAP5-based analysis of a PWR Total Loss of main Feedwater Flow (TLOFW) accident, also known as feed and bleed' scenario, . Ultimately, this work is the first component in a larger task of building a calibrated uncertainty propagation framework. The QPIRT is an essential piece because the uncertainty of those selected parameters will be calibrated to data from both Separate and Integral Effect Tests (SETs and IETs). Therefore the system response uncertainty will incorporate the knowledge gained from the database of past large IETs. (authors)

  1. The ends of uncertainty: Air quality science and planning in Central California

    SciTech Connect (OSTI)

    Fine, James

    2003-09-01T23:59:59.000Z

    Air quality planning in Central California is complicated and controversial despite millions of dollars invested to improve scientific understanding. This research describes and critiques the use of photochemical air quality simulation modeling studies in planning to attain standards for ground-level ozone in the San Francisco Bay Area and the San Joaquin Valley during the 1990's. Data are gathered through documents and interviews with planners, modelers, and policy-makers at public agencies and with representatives from the regulated and environmental communities. Interactions amongst organizations are diagramed to identify significant nodes of interaction. Dominant policy coalitions are described through narratives distinguished by their uses of and responses to uncertainty, their exposures to risks, and their responses to the principles of conservatism, civil duty, and caution. Policy narratives are delineated using aggregated respondent statements to describe and understand advocacy coalitions. I found that models impacted the planning process significantly, but were used not purely for their scientific capabilities. Modeling results provided justification for decisions based on other constraints and political considerations. Uncertainties were utilized opportunistically by stakeholders instead of managed explicitly. Ultimately, the process supported the partisan views of those in control of the modeling. Based on these findings, as well as a review of model uncertainty analysis capabilities, I recommend modifying the planning process to allow for the development and incorporation of uncertainty information, while addressing the need for inclusive and meaningful public participation. By documenting an actual air quality planning process these findings provide insights about the potential for using new scientific information and understanding to achieve environmental goals, most notably the analysis of uncertainties in modeling applications. Concurrently, needed uncertainty information is identified and capabilities to produce it are assessed. Practices to facilitate incorporation of uncertainty information are suggested based on research findings, as well as theory from the literatures of the policy sciences, decision sciences, science and technology studies, consensus-based and communicative planning, and modeling.

  2. Uncertainty Analysis for a Virtual Flow Meter Using an Air-Handling Unit Chilled Water Valve

    SciTech Connect (OSTI)

    Song, Li; Wang, Gang; Brambley, Michael R.

    2013-04-28T23:59:59.000Z

    A virtual water flow meter is developed that uses the chilled water control valve on an air-handling unit as a measurement device. The flow rate of water through the valve is calculated using the differential pressure across the valve and its associated coil, the valve command, and an empirically determined valve characteristic curve. Thus, the probability of error in the measurements is significantly greater than for conventionally manufactured flow meters. In this paper, mathematical models are developed and used to conduct uncertainty analysis for the virtual flow meter, and the results from the virtual meter are compared to measurements made with an ultrasonic flow meter. Theoretical uncertainty analysis shows that the total uncertainty in flow rates from the virtual flow meter is 1.46% with 95% confidence; comparison of virtual flow meter results with measurements from an ultrasonic flow meter yielded anuncertainty of 1.46% with 99% confidence. The comparable results from the theoretical uncertainty analysis and empirical comparison with the ultrasonic flow meter corroborate each other, and tend to validate the approach to computationally estimating uncertainty for virtual sensors introduced in this study.

  3. SOARCA Peach Bottom Atomic Power Station Long-Term Station Blackout Uncertainty Analysis: Knowledge Advancement.

    SciTech Connect (OSTI)

    Gauntt, Randall O.; Mattie, Patrick D.; Bixler, Nathan E.; Ross, Kyle; Cardoni, Jeffrey N; Kalinich, Donald A.; Osborn, Douglas M.; Sallaberry, Cedric Jean-Marie; Ghosh, S. Tina

    2014-02-01T23:59:59.000Z

    This paper describes the knowledge advancements from the uncertainty analysis for the State-of- the-Art Reactor Consequence Analyses (SOARCA) unmitigated long-term station blackout accident scenario at the Peach Bottom Atomic Power Station. This work assessed key MELCOR and MELCOR Accident Consequence Code System, Version 2 (MACCS2) modeling uncertainties in an integrated fashion to quantify the relative importance of each uncertain input on potential accident progression, radiological releases, and off-site consequences. This quantitative uncertainty analysis provides measures of the effects on consequences, of each of the selected uncertain parameters both individually and in interaction with other parameters. The results measure the model response (e.g., variance in the output) to uncertainty in the selected input. Investigation into the important uncertain parameters in turn yields insights into important phenomena for accident progression and off-site consequences. This uncertainty analysis confirmed the known importance of some parameters, such as failure rate of the Safety Relief Valve in accident progression modeling and the dry deposition velocity in off-site consequence modeling. The analysis also revealed some new insights, such as dependent effect of cesium chemical form for different accident progressions. (auth)

  4. Optimization under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazar; Stephen E. Zitney; Urmila Diwekar

    2009-01-01T23:59:59.000Z

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  5. Optimization Under Uncertainty for Water Consumption in a Pulverized Coal Power Plant

    SciTech Connect (OSTI)

    Juan M. Salazara; Stephen E. Zitney; Urmila M. Diwekara

    2009-01-01T23:59:59.000Z

    Pulverized coal (PC) power plants are widely recognized as major water consumers whose operability has started to be affected by drought conditions across some regions of the country. Water availability will further restrict the retrofitting of existing PC plants with water-expensive carbon capture technologies. Therefore, national efforts to reduce water withdrawal and consumption have been intensified. Water consumption in PC plants is strongly associated to losses from the cooling water cycle, particularly water evaporation from cooling towers. Accurate estimation of these water losses requires realistic cooling tower models, as well as the inclusion of uncertainties arising from atmospheric conditions. In this work, the cooling tower for a supercritical PC power plant was modeled as a humidification operation and used for optimization under uncertainty. Characterization of the uncertainty (air temperature and humidity) was based on available weather data. Process characteristics including boiler conditions, reactant ratios, and pressure ratios in turbines were calculated to obtain the minimum water consumption under the above mentioned uncertainties. In this study, the calculated conditions predicted up to 12% in reduction in the average water consumption for a 548 MW supercritical PC power plant simulated using Aspen Plus. Optimization under uncertainty for these large-scale PC plants cannot be solved with conventional stochastic programming algorithms because of the computational expenses involved. In this work, we discuss the use of a novel better optimization of nonlinear uncertain systems (BONUS) algorithm which dramatically decreases the computational requirements of the stochastic optimization.

  6. Asymptotic and uncertainty analyses of a phase field model for void formation under irradiation

    SciTech Connect (OSTI)

    Nan Wang; Srujan Rokkam; Thomas Hochrainer; Michael Pernice; Anter El-Azab

    2014-06-01T23:59:59.000Z

    We perform asymptotic analysis and uncertainty quantification of a phase field model for void formation and evolution in materials subject to irradiation. The parameters of the phase field model are obtained in terms of the underlying material specific quantities by matching the sharp interface limit of the phase field model with the corresponding sharp interface theory for void growth. To evaluate the sensitivity of phase field simulations to uncertainties in input parameters we quantify the predictions using the stochastic collocation method. Uncertainties arising from material parameters are investigated based on available experimental and atomic scale data. The results of our analysis suggest that the uncertainty in the formation and migration energies of vacancies are found to have a strong influence on the void volume fraction (or porosity). In contrast, the uncertainty resulting from the void surface energy has minimal affect. The analysis also shows that the model is consistent in the sense that its predictions do not drastically change as a result of small variations of the model input parameters.

  7. Uncertainty Analysis of Spectral Irradiance Reference Standards Used for NREL Calibrations

    SciTech Connect (OSTI)

    Habte, A.; Andreas, A.; Reda, I.; Campanelli, M.; Stoffel, T.

    2013-05-01T23:59:59.000Z

    Spectral irradiance produced by lamp standards such as the National Institute of Standards and Technology (NIST) FEL-type tungsten halogen lamps are used to calibrate spectroradiometers at the National Renewable Energy Laboratory. Spectroradiometers are often used to characterize spectral irradiance of solar simulators, which in turn are used to characterize photovoltaic device performance, e.g., power output and spectral response. Therefore, quantifying the calibration uncertainty of spectroradiometers is critical to understanding photovoltaic system performance. In this study, we attempted to reproduce the NIST-reported input variables, including the calibration uncertainty in spectral irradiance for a standard NIST lamp, and quantify uncertainty for measurement setup at the Optical Metrology Laboratory at the National Renewable Energy Laboratory.

  8. Uncertainties of optical-model parameters for the study of the threshold anomaly

    E-Print Network [OSTI]

    Daniel Abriola; A. Arazi; J. Testoni; F. Gollan; G. V. Martí

    2015-03-13T23:59:59.000Z

    In the analysis of elastic-scattering experimental data, optical-model parameters (usually, depths of real and imaginary potentials) are fitted and conclusions are drawn analyzing their variations at bombardment energies close to the Coulomb barrier (threshold anomaly). The judgement about the shape of this variation (related to the physical processes producing this anomaly) depends on these fitted values but the robustness of the conclusions strongly depends on the uncertainties with which these parameters are derived. We will show that previous published studies have not used a common criterium for the evaluation of the parameter uncertainties. In this work, a study of these uncertainties is presented, using conventional statistic tools as well as bootstrapping techniques. As case studies, these procedures are applied to re-analyze detailed elastic-scattering data for the $^{12}$C + $^{208}$Pb and the $^6$Li + $^{80}$Se systems.

  9. Uncertainty and Sensitivity Analyses Plan. Draft for Peer Review: Hanford Environmental Dose Reconstruction Project

    SciTech Connect (OSTI)

    Simpson, J.C.; Ramsdell, J.V. Jr.

    1993-04-01T23:59:59.000Z

    Hanford Environmental Dose Reconstruction (HEDR) Project staff are developing mathematical models to be used to estimate the radiation dose that individuals may have received as a result of emissions since 1944 from the US Department of Energy`s (DOE) Hanford Site near Richland, Washington. An uncertainty and sensitivity analyses plan is essential to understand and interpret the predictions from these mathematical models. This is especially true in the case of the HEDR models where the values of many parameters are unknown. This plan gives a thorough documentation of the uncertainty and hierarchical sensitivity analysis methods recommended for use on all HEDR mathematical models. The documentation includes both technical definitions and examples. In addition, an extensive demonstration of the uncertainty and sensitivity analysis process is provided using actual results from the Hanford Environmental Dose Reconstruction Integrated Codes (HEDRIC). This demonstration shows how the approaches used in the recommended plan can be adapted for all dose predictions in the HEDR Project.

  10. OPTIMAL DESIGN OF HYBRID ELECTRIC FUEL CELL VEHICLES UNDER UNCERTAINTY AND ENTERPRISE CONSIDERATIONS

    E-Print Network [OSTI]

    Jeongwoo Han; Panos Papalambros

    System research on Hybrid Electric Fuel Cell Vehicles (HEFCV) explores the tradeoffs among safety, fuel economy, acceleration, and other vehicle attributes. In addition to engineering considerations, inclusion of business aspects is important in a preliminary vehicle design optimization study. For a new technology, such as fuel cells, it is also important to include uncertainties stemming from manufacturing variability to market response to fuel price fluctuations. This paper applies a decomposition-based multidisciplinary design optimization strategy to an HEFCV. Uncertainty propagated throughout the system is accounted for in a computationally efficient manner. The latter is achieved with a new coordination strategy based on sequential linearizations. The hierarchically partitioned HEFCV design model includes enterprise, powertrain, fuel cell, and battery subsystem models. In addition to engineering uncertainties, the model takes into account uncertain behavior by consumers, and the expected maximum profit is calculated using probabilistic consumer preferences while satisfying engineering feasibility constraints. 1

  11. Stochastic modelling of landfill processes incorporating waste heterogeneity and data uncertainty

    SciTech Connect (OSTI)

    Zacharof, A.I.; Butler, A.P

    2004-07-01T23:59:59.000Z

    A landfill is a very complex heterogeneous environment and as such it presents many modelling challenges. Attempts to develop models that reproduce these complexities generally involve the use of large numbers of spatially dependent parameters that cannot be properly characterised in the face of data uncertainty. An alternative method is presented, which couples a simplified microbial degradation model with a stochastic hydrological and contaminant transport model. This provides a framework for incorporating the complex effects of spatial heterogeneity within the landfill in a simplified manner, along with other key variables. A methodology for handling data uncertainty is also integrated into the model structure. Illustrative examples of the model's output are presented to demonstrate effects of data uncertainty on leachate composition and gas volume prediction.

  12. Uncertainty in soil-structure interaction analysis arising from differences in analytical techniques

    SciTech Connect (OSTI)

    Maslenikov, O. R.; Chen, J. C.; Johnson, J. J.

    1982-07-01T23:59:59.000Z

    This study addresses uncertainties arising from variations in different modeling approaches to soil-structure interaction of massive structures at a nuclear power plant. To perform a comprehensive systems analysis, it is necessary to quantify, for each phase of the traditional analysis procedure, both the realistic seismic response and the uncertainties associated with them. In this study two linear soil-structure interaction techniques were used to analyze the Zion, Illinois nuclear power plant: a direct method using the FLUSH computer program and a substructure approach using the CLASSI family of computer programs. In-structure response from two earthquakes, one real and one synthetic, was compared. Structure configurations from relatively simple to complicated multi-structure cases were analyzed. The resulting variations help quantify uncertainty in structure response due to analysis procedures.

  13. An approach to understanding, representing, and managing uncertainty in integrated resource planning

    SciTech Connect (OSTI)

    Tonn, B.E. [Oak Ridge National Lab., TN (United States); Schaffhauser, A.J. [Tennessee Univ., Knoxville, TN (United States)

    1994-12-01T23:59:59.000Z

    This report addresses the issue of uncertainty in integrated resource planning (IRP). IRP is a process employed by electric utilities, often at the bellest of Public Utility Commissions (PUCs), to evaluate the acquisition of resources to meet forecast energy demands and other criteria such as energy efficiency and fuel diversity. Uncertainty plagues the preparation of IRPs, from forecasting energy prices and electricity demand to estimating costs and benefits expected from new resource acquisitions. As a result all those involved in the IRP process (including PUC commissioners and staff, utility decision makers, IRP analysts, and experts in particular areas) need to appreciate how uncertainty affects IRP and learn about available techniques to reduce its effects.

  14. Study of correlation of PDF uncertainty in single top and top pair production at the LHC

    E-Print Network [OSTI]

    The ATLAS collaboration

    2015-01-01T23:59:59.000Z

    The incomplete knowledge of parton distribution functions is an important source of systematic uncertainty for top-quark measurements, including top-quark pair and single top-quark production cross sections, as well as for analyses that have a large background from these processes. The correlation of the parton-distribution-function uncertainty is studied for top-quark pair production and single top-quark production in association with a W boson, in final states with two reconstructed leptons. Four types of correlation are studied: between total production cross-sections, between cross-section and acceptance correction, between the two processes for common selection requirements, and between different jet multiplicity requirements. The uncertainty correlation is evaluated for several sets of parton distribution functions using simulated samples of top-quark pair and single top-quark events.

  15. Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    E-Print Network [OSTI]

    Banaszuk, Andrzej; Frewen, Thomas A; Kobilarov, Marin; Mathew, George; Mezic, Igor; Pinto, Alessandro; Sahai, Tuhin; Sane, Harshad; Speranzon, Alberto; Surana, Amit

    2011-01-01T23:59:59.000Z

    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to...

  16. Survey of sampling-based methods for uncertainty and sensitivity analysis.

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Helton, Jon Craig; Sallaberry, Cedric J. PhD. (.; .); Storlie, Curt B. (Colorado State University, Fort Collins, CO)

    2006-06-01T23:59:59.000Z

    Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (1) Definition of probability distributions to characterize epistemic uncertainty in analysis inputs, (2) Generation of samples from uncertain analysis inputs, (3) Propagation of sampled inputs through an analysis, (4) Presentation of uncertainty analysis results, and (5) Determination of sensitivity analysis results. Special attention is given to the determination of sensitivity analysis results, with brief descriptions and illustrations given for the following procedures/techniques: examination of scatterplots, correlation analysis, regression analysis, partial correlation analysis, rank transformations, statistical tests for patterns based on gridding, entropy tests for patterns based on gridding, nonparametric regression analysis, squared rank differences/rank correlation coefficient test, two dimensional Kolmogorov-Smirnov test, tests for patterns based on distance measures, top down coefficient of concordance, and variance decomposition.

  17. A Framework for Optimization and Quantification of Uncertainty and Sensitivity for Developing Carbon Capture Systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Eslick, John C; Ng, Brenda; Gao, Qianwen; Tong, Charles H.; Sahinidis, Nikolaos V.; Miller, David C.

    2014-01-01T23:59:59.000Z

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification throughmore »PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. This computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.« less

  18. A framework for optimization and quantification of uncertainty and sensitivity for developing carbon capture systems

    SciTech Connect (OSTI)

    John C Eslick, John C; Ng, Brenda Ng; Gao, Qianwen; Tong, Charles H.; Sahinidis, Nikolaos V.; Miller, David C.

    2014-01-01T23:59:59.000Z

    Under the auspices of the U.S. Department of Energy’s Carbon Capture Simulation Initiative (CCSI), a Framework for Optimization and Quantification of Uncertainty and Sensitivity (FOQUS) has been developed. This tool enables carbon capture systems to be rapidly synthesized and rigorously optimized, in an environment that accounts for and propagates uncertainties in parameters and models. FOQUS currently enables (1) the development of surrogate algebraic models utilizing the ALAMO algorithm, which can be used for superstructure optimization to identify optimal process configurations, (2) simulation-based optimization utilizing derivative free optimization (DFO) algorithms with detailed black-box process models, and (3) rigorous uncertainty quantification through PSUADE. FOQUS utilizes another CCSI technology, the Turbine Science Gateway, to manage the thousands of simulated runs necessary for optimization and UQ. This computational framework has been demonstrated for the design and analysis of a solid sorbent based carbon capture system.

  19. Degeneracies of particle and nuclear physics uncertainties in neutrinoless double beta decay

    E-Print Network [OSTI]

    Lisi, E; Simkovic, F

    2015-01-01T23:59:59.000Z

    Theoretical estimates for the half life of neutrinoless double beta decay in candidate nuclei are affected by both particle and nuclear physics uncertainties, which may complicate the interpretation of decay signals or limits. We study such uncertainties and their degeneracies in the following context: three nuclei of great interest for large-scale experiments (76-Ge, 130-Te, 136-Xe), two representative particle physics mechanisms (light and heavy Majorana neutrino exchange), and a large set of nuclear matrix elements (NME), computed within the quasiparticle random phase approximation (QRPA). It turns out that the main theoretical uncertainties, associated with the effective axial coupling g_A and with the nucleon-nucleon potential, can be parametrized in terms of NME rescaling factors, up to small residuals. From this parametrization, the following QRPA features emerge: (1) the NME dependence on g_A is milder than quadratic; (2) in each of the two mechanisms, the relevant lepton flavor violating parameter is...

  20. Uncertainty quantification of a radionuclide release model using an adaptive spectral technique

    SciTech Connect (OSTI)

    Gilli, L.; Hoogwerf, C.; Lathouwers, D.; Kloosterman, J. L. [Delft University of Technology, Faculty of Applied Sciences Radiation Science and Technology, Department Nuclear Energy and Radiation Applications, Mekelweg 15, 2629 JB Delft (Netherlands)

    2013-07-01T23:59:59.000Z

    In this paper we present the application of a non-intrusive spectral techniques we recently developed for the evaluation of the uncertainties associated with a radionuclide migration problem. Spectral techniques can be used to reconstruct stochastic quantities of interest by means of a Fourier-like expansion. Their application to uncertainty propagation problems can be performed by evaluating a set of realizations which are chosen adaptively, in this work the main details about how this is done are presented. The uncertainty quantification problem we are going to deal with was first solved in a recent work where the authors used a spectral technique based on an intrusive approach. In this paper we are going to reproduce the results of this reference work, compare them and discuss the main numerical aspects. (authors)