Powered by Deep Web Technologies
Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project  

SciTech Connect

This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))

1984-12-01T23:59:59.000Z

2

CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE August 2, 2010 - 12:00pm Addthis A sheep’s foot roller compacts the tailings in the disposal cell. A sheep's foot roller compacts the tailings in the disposal cell. Moab, UT MILL TAILINGS REMOVAL Sixteen million tons of uranium mill tailings 80 feet high stood on the banks of the Colorado River near Moab in southeast Utah, as a legacy to the former ore-processing site that operated for nearly three decades beginning in the mid-1950s. That is until April 2009, when the U.S. Department of Energy began moving the tailings by rail to an engineered disposal cell constructed 30 miles north near Crescent Junction, Utah. The mill tailings,

3

EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

198: Uranium Mill Tailings Remedial Action Groundwater Project 198: Uranium Mill Tailings Remedial Action Groundwater Project EIS-0198: Uranium Mill Tailings Remedial Action Groundwater Project SUMMARY This EIS assesses the potential programmatic impacts of conducting the Ground Water Project, provides a method for determining the site-specific ground water compliance strategies, and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD April 28, 1997 EIS-0198: Record of Decision Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project (April 1997) December 1, 1996 EIS-0198: Programmatic Environmental Impact Statement Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project

4

Detection of hexavalent uranium with inline and field-portable immunosensors  

E-Print Network (OSTI)

Uranium Mill Tailings Remedial Action (UMTRA) site located in Rifle, CO. Detailed descriptions of the history, geology

Melton, Scott J.

2009-01-01T23:59:59.000Z

5

Scoping session of the programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Project  

SciTech Connect

This document is about the scoping session which was held at the Community Center in Falls City, Texas. The purpose was to obtain public comment on the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Project (UMTRA), specifically on the ground water project. Presentations made by the manager for the entire UMTRA program, manager of the site and ground water program, comments made by two residents of Fall City are included in this document.

none,

1992-12-31T23:59:59.000Z

6

Uranium mill tailings remedial action project real estate management plan  

SciTech Connect

This plan summarizes the real estate requirements of the US Department of Energy`s (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence.

Not Available

1994-09-01T23:59:59.000Z

7

DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amends Decision for the Remediation of the Moab Uranium Mill Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah February 29, 2008 - 11:43am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced an amendment to its 2005 Record of Decision (ROD) for the Moab Uranium Mill Tailings Remedial Action (UMTRA) Project to allow for the use of truck or rail in transporting residual radioactive materials from the Moab site in Utah. These materials will be relocated to a new disposal site 30 miles north at Crescent Junction, Utah. "The Department is committed to ensuring the protection of human health and the environment in the Moab area and in the communities served by the Colorado River," Assistant Secretary for Environmental Management Jim

8

Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming  

SciTech Connect

This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

Not Available

1994-09-01T23:59:59.000Z

9

DOE/EA-1312: Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) (September 1999)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 Rev. 0 Environmental Assessment of Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) Final September 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy EA of Ground Water Compliance at the Grand Junction UMTRA Project Site DOE Grand Junction Office Page ii Final September 1999 Contents Executive Summary.........................................................................................................................v 1.0 Introduction...............................................................................................................................1 1.1 Grand Junction UMTRA Project Site Location and Description.........................................1

10

Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1  

SciTech Connect

This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

Not Available

1994-08-01T23:59:59.000Z

11

Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona  

SciTech Connect

The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

NONE

1996-03-01T23:59:59.000Z

12

URANIUM MILL TAILINGS RADON FLUX CALCULATIONS  

E-Print Network (OSTI)

at the Piñon Ridge Property in western Montrose County, Colorado. The Piñon Ridge Mill includesURANIUM MILL TAILINGS RADON FLUX CALCULATIONS PI?ON RIDGE PROJECT MONTROSE COUNTY, COLORADO Submitted To: Energy Fuels Resources Corporation 44 Union Boulevard, Suite 600 Lakewood, Colorado 80228

13

Radiological health aspects of uranium milling  

SciTech Connect

This report describes the operation of conventional and unconventional uranium milling processes, the potential for occupational exposure to ionizing radiation at the mill, methods for radiological safety, methods of evaluating occupational radiation exposures, and current government regulations for protecting workers and ensuring that standards for radiation protection are adhered to. In addition, a survey of current radiological health practices is summarized.

Fisher, D.R.; Stoetzel, G.A.

1983-05-01T23:59:59.000Z

14

Guidance for UMTRA project surveillance and maintenance  

SciTech Connect

The Guidance for UMTRA Project Surveillance and Maintenance describes the procedures that will be used to verify that Uranium Mill Tailings Remedial Action (UMTRA) Project disposal sites continue to function as designed. The approach of this guidance document is to identify surveillance requirements and maintenance procedures that will be used to comply with NRC license requirements. This document addresses five primary activities: Definition and characterization of final site conditions. Site inspections; Ground-water monitoring; Aerial photography; and Custodial maintenance and contingency repair. Final site conditions will be defined and characterized prior to the completion of remedial actions at a site. As-built drawings will be compiled, a final topographic survey will be performed, a vicinity map will be prepared, and ground and aerial photographs will be taken. Survey monuments, site markers, and signs will be established as will a network of monitoring wells.

NONE

1986-01-01T23:59:59.000Z

15

Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites  

SciTech Connect

The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

NONE

1995-10-01T23:59:59.000Z

16

The U.S. regulatory framework for long-term management of uranium mill tailings  

SciTech Connect

The US established the regulatory structure for the management, disposal, and long-term care of uranium mill tailings in 1978 with the passage of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (Pub. L. 95-604). This legislation has governed the cleanup and disposal of uranium tailings at both inactive and active sites. The passage of the UMTRCA established a federal regulatory program for the cleanup and disposal of uranium mill tailings in the US. This program involves the DOE, the NRC, the EPA, various states and tribal governments, private licensees, and the general public. The DOE has completed surface remediation at 14 sites, with the remaining sites either under construction or in planning. The DOE`s UMTRA Project has been very successful in dealing with public and agency demands, particularly regarding disposal site selection and transportation issues. The active sites are also being cleaned up, but at a slower pace than the inactive sites, with the first site tentatively scheduled for completion in 1996.

Smythe, C. [Dept. of Energy, Albuquerque, NM (United States); Bierley, D.; Bradshaw, M. [Roy F. Weston, Inc., Albuquerque, NM (United States)

1995-03-01T23:59:59.000Z

17

Baseline risk assessment for groundwater contamination at the uranium mill tailings site near Monument Valley, Arizona. Draft  

SciTech Connect

This baseline risk assessment evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site near Monument Valley, Arizona. The tailings and other contaminated material at this site are being relocated and stabilized in a disposal cell at Mexican Hat, Utah, through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The tailings removal is planned for completion by spring 1994. After the tailings are removed, groundwater contamination at the site will continue to be evaluated. This risk assessment is the first document specific to this site for the Groundwater Project. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site.

Not Available

1993-09-01T23:59:59.000Z

18

Engineering assessment of inactive uranium mill tailings  

SciTech Connect

The Grand Junction site has been reevaluated in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Grand Junction, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.9 million tons of tailings at the Grand Junction site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation are also factors. The eight alternative actions presented herein range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $10,200,000 for stabilization in-place to about $39,500,000 for disposal in the DeBeque area, at a distance of about 35 mi, using transportation by rail. If transportation to DeBeque were by truck, the cost estimated to be about $41,900,000. Three principal alternatives for the reprocessing of the Grand Junction tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $200/lb by heap leach and $150/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery appears not to be economically attractive.

Not Available

1981-07-01T23:59:59.000Z

19

Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Mill Tailings Cleanup Project Steps into Spotlight at Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna October 22, 2012 - 12:00pm Addthis Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler Moab Federal Project Director Donald Metzler Moab Federal Project Director Donald Metzler presents at the Uranium Mining Remediation Exchange Group meeting in Germany in September 2011. Moab Federal Project Director Donald Metzler

20

Nuclear & Uranium - U.S. Energy Information Administration (EIA) - U.S.  

Gasoline and Diesel Fuel Update (EIA)

Nuclear & Uranium Nuclear & Uranium Glossary › FAQS › Overview Data Summary Uranium & Nuclear Fuel Nuclear Power Plants Radioactive Waste International All Nuclear Data Reports Analysis & Projections Most Requested Nuclear Plants and Reactors Projections Uranium All Reports Uranium Mill Sites Under the UMTRA Project Remediation of UMTRCA Title I Uranium Mill Sites Under the UMTRA Project Summary Table: Uranium Ore Processed, Disposal Cell Material, and Cost for Remediation as of December 31, 1999 Uranium Ore Processed Remediation Project Cost Remediation Project (Mill Site Name, State) Ore (Million Short Tons) Uranium Production (Million Pounds U3O8) Disposal Cell Remediated Material Volume (Million Cubic Yards) Total Cost A (Thousand U.S. Dollars)02/09 Per Pound Produced (Dollars per Pound U3O8) Per Unit of Remediated Material

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Site observational work plan for the UMTRA Project site at Falls City, Texas  

SciTech Connect

Produced by the US Department of Energy (DOE), this site observational work plan (SOWP) will be used to determine site-specific activities to comply with the US Environmental Protection Agency (EPA) ground water standards at this Uranium Mill Tailings Remedial Action (UMTRA) Project site. The purpose of the SOWP is to recommend a site-specific ground water compliance strategy at the Falls City UMTRA Project site. The Falls City SOWP presents a comprehensive summary of site hydrogeological data, delineates a conceptual model of the aquifer system, and discusses the origins of milling-related ground water contamination. It also defines the magnitude of ground water contamination, potential environmental and health risks associated with ground water contamination and data gaps, and targets a proposed compliance strategy.

NONE

1995-06-01T23:59:59.000Z

22

DOE/EA-1155 Uranium Mill Tailing Remedial Action Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

55 55 Uranium Mill Tailing Remedial Action Project Environmental Assessment of Ground- Water Compliance Activities At the Uranium Mill Tailings Site Spook, Wyoming February 1997 Prepared by U.S. Department of Energy Albuquerque Operations Office Grand Junction Office This page intentionally blank : illegible Portions of tbis DISCLAIMER document may be in electronic image products. Images are produced fiom the best available original dOClMXlf?IlL DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liabili- ty or responsibility for the accuracy, completeness,

23

EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Ground-water Compliance Activities at the Uranium Mill 5: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming EA-1155: Ground-water Compliance Activities at the Uranium Mill Tailings Site, Spook, Wyoming SUMMARY This EA evaluates the environmental impacts for the proposal to comply with the Environmental Protection Agency's ground-water standards set forth in 40 CFR 192 at the Spook, Wyoming Uranium Mill Tailings Site by using the selected alternative stated in the Final Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water Project. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD March 1, 1997 EA-1155: Final Environmental Assessment Ground-water Compliance Activities at the Uranium Mill Tailings Site,

24

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with Recovery Act funds. Now, Recovery Act workers are surpassing that goal. Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds More Documents & Publications EIS-0355: Record of Decision EIS-0355: Draft Environmental Impact Statement EIS-0355: Final Environmental Impact Statement

25

E-Print Network 3.0 - armoring uranium-mill tailings Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Donahue R, Hendry MJ, Landine P (2000b) Geochemistry of arsenic and nickel in uranium mill tailings... , Mahoney J, MacDonald A, Rowson J (1999) ... Source: Pichler,...

26

EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

355: Remediation of the Moab Uranium Mill Tailings, Grand and 355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah EIS-0355: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Summary The Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Environmental Impact Statement and associated supplements and amendments provides information on the environmental impacts of the U.S. Department of Energy's (DOE's) proposal to (1) remediate approximately 11.9 million tons of contaminated materials located on the Moab site and approximately 39,700 tons located on nearby vicinity properties and (2) develop and implement a ground water compliance strategy for the Moab site using the framework of the Programmatic Environmental Impact Statement for the Uranium Mill Tailings Remedial Action Ground Water

27

Process for Transition of Uranium Mill Tailings Radiation Control Act Title  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Mill Tailings Radiation Control Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance (March 2012) Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance (March 2012)

28

Uranium mill tailings neutralization: contaminant complexation and tailings leaching studies  

SciTech Connect

Laboratory experiments were performed to compare the effectiveness of limestone (CaCO/sub 3/) and hydrated lime (Ca(OH)/sub 2/) for improving waste water quality through the neutralization of acidic uranium mill tailings liquor. The experiments were designed to also assess the effects of three proposed mechanisms - carbonate complexation, elevated pH, and colloidal particle adsorption - on the solubility of toxic contaminants found in a typical uranium mill waste solution. Of special interest were the effects each of these possible mechanisms had on the solution concentrations of trace metals such as Cd, Co, Mo, Zn, and U after neutralization. Results indicated that the neutralization of acidic tailings to a pH of 7.3 using hydrated lime provided the highest overall waste water quality. Both the presence of a carbonate source or elevating solution pH beyond pH = 7.3 resulted in a lowering of previously achieved water quality, while adsorption of contaminants onto colloidal particles was not found to affect the solution concentration of any constituent investigated. 24 refs., 8 figs., 19 tabs.

Opitz, B.E.; Dodson, M.E.; Serne, R.J.

1985-05-01T23:59:59.000Z

29

Radon attenuation handbook for uranium mill tailings cover design  

SciTech Connect

This handbook has been prepared to facilitate the design of earthen covers to control radon emission from uranium mill tailings. Radon emissions from bare and covered uranium mill tailings can be estimated from equations based on diffusion theory. Basic equations are presented for calculating surface radon fluxes from covered tailings, or alternately, the cover thicknesses required to satisfy a given radon flux criterion. Also described is a computer code, RAECOM, for calculating cover thicknesses and surface fluxes. Methods are also described for measuring diffusion coefficients for radon, or for estimating them from empirical correlations. Since long-term soil moisture content is a critical parameter in determining the value of the diffusion coefficient, methods are given for estimating the long-term moisture contents of soils. The effects of cover defects or advection are also discussed and guidelines are given for determining if they are significant. For most practical cases, advection and cover defect effects on radon flux can be neglected. Several examples are given to demonstrate cover design calculations, and an extensive list of references is included. 63 references, 18 figures, 6 tables.

Rogers, V.C.; Nielson, K.K.; Kalkwarf, D.R.

1984-04-01T23:59:59.000Z

30

Annual report on the U.S. Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1995--September 1996  

SciTech Connect

This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1995 through September 30, 1996. The inactive uranium mill tailings sites in Colorado are at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of understanding (PMOU). This PMOU requires the DOE to fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report provides the state of Colorado with an annual report on the cultural resource activities performed for all UMTRA Project sites in Colorado. Due to the completion of surface activities at the UMTRA Project sites, this will be the last annual report to the state of Colorado. Cultural resources activities subsequent to this report will be reported to the state through site-specific correspondence.

NONE

1996-09-01T23:59:59.000Z

31

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact Impact Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites AGENCY: U.S. DEP.4RTMENT OF ENERGY ACTIOK: FL&-DING OF NO SIGNIFICANT IMP-ACT (FONSI) SU$IM$RY: The U.S. Department of Energy (DOE) plans to implement ground lvater compliance strategies for two Uranium Mill Tailings Remedial Action (UMTR.4) Project sites near Slick Rock. Colorado. The purpose of the strategies is to comply with U.S. En\.ironmental Protection .Qency (EP.Aj ground n'ater standards defined in Title 40 Codr ~fF~d~w/ iieplutio?r.s (CFR) Part 192. and in so doing. protect human health and the en\.ironment. Ground water at the Slick Rock sites is contaminated with residual radioactive materials from hisTorica acti\,ities, associated with the processin of uranium ore, The planned action (~formeri>,.

32

Bayesian models for elevated disease risk due to exposure to uranium mine and mill waste on the Navajo Nation  

E-Print Network (OSTI)

ForReview Only Bayesian models for elevated disease risk due to exposure to uranium mine and mill of Pharmacy, Community Environmental Health Program Keywords: abandoned uranium mines, conditionally specified to ex- posure to uranium mine and mill waste on the Navajo Nation Glenn A. Stark University of New

Huerta, Gabriel

33

In situ testing to determination field-saturated hydraulic conductivity of UMTRA Project disposal cell covers, liners, and foundation areas. Special study  

SciTech Connect

This special study was conducted to prepare a guidance document for selecting in situ hydraulic conductivity (K) tests, comparing in situ testing methods, and evaluating the results of such tests. This report may be used as a practical decision-making tool by the Uranium Mill Tailings Remedial Action (UMTRA) Project staff to determine which testing method will most efficiently achieve the field-saturated K results needed for long-term planning. A detailed section on near-surface test methods discusses each method which may be applicable to characterization of UMTRA disposal cell covers, liners and foundation materials. These potentially applicable test methods include the sealed double-ring infiltrometer (SDRI), the air-entry permeameter (AEP), the guelph permeameter, the two-stage borehole technique (TSB), the pressure infiltrometer, and the disk permeameter. Analytical solutions for these methods are provided, and limitations of these solutions are discussed, and a description of testing equipment design and installation are provided.

Not Available

1994-02-01T23:59:59.000Z

34

Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporations Caon City, Colorado, Uranium Mill  

Energy.gov (U.S. Department of Energy (DOE))

Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporations Canon City, Colorado, Uranium Mill (April 2005)

35

Project Surveillance and Maintenance Plan. [UMTRA Project  

SciTech Connect

The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the (guidance) to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs.

Not Available

1985-09-01T23:59:59.000Z

36

Moab Project Disposes 2 Million Tons of Uranium Mill Tailings with Recovery Act Funds  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Moab Uranium Mill Tailings Remedial Action The Moab Uranium Mill Tailings Remedial Action Project reached its primary American Recovery and Reinvestment Act milestone ahead of schedule on Wednesday with the disposal of 2 million tons of uranium mill tailings. The project had originally planned to ship 2 million tons of tailings with Recovery Act funds. Now, Recovery Act workers are surpass- ing that goal. "Although shipping 2 million tons was the original Recovery Act goal, we are planning to exceed this goal by shipping about 300,000 tons more using savings resulting from efficiencies we've gained in our first 2 years of moving tailings," Moab Federal Project Director Donald Metzler said. The project is using $108 million from the Recovery Act to move the tailings from the banks of the Colorado River by rail to a permanent

37

DOE Awards Technical Assistance Contract for Moab Mill Tailings Cleanup |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technical Assistance Contract for Moab Mill Tailings Technical Assistance Contract for Moab Mill Tailings Cleanup DOE Awards Technical Assistance Contract for Moab Mill Tailings Cleanup May 31, 2012 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati-The U.S. Department of Energy (DOE) today announced the award of an $18 million small disadvantaged business contract with S&K Aerospace, LLC, of St. Ignatius, Montana to continue to provide technical assistance services for the Moab Uranium Mill Tailings Remedial Action (UMTRA) Project in Moab, Utah. The basic contract is for three years with two one-year options to extend, for a total of up to five years. S&K Aerospace, LLC, a tribal organization 8(a) small business, will assist in the Department's removal of uranium tailings at the former Atlas

38

Appendix IV. Risks Associated with Conventional Uranium Milling Introduction  

E-Print Network (OSTI)

by the addition of water/lixiviant is generally collected by air pollution control mechanisms, which return as in situ leaching (ISL) mining operations, to provide a more complete picture of uranium production. While this report focuses on the impacts associated with conventional surface and underground uranium mines

39

UMTRA Ground Water Project  

Office of Legacy Management (LM)

... 7 Figure 3. Uranium Distribution from April 2013 Sampling at the Gunnison, Colorado, Processing Site ......

40

Radon releases from Australian uranium mining and milling projects: assessing the UNSCEAR approach  

Science Journals Connector (OSTI)

The release of radon gas and progeny from the mining and milling of uranium-bearing ores has long been recognised as a potential radiological health hazard. The standards for exposure to radon and progeny have decreased over time as the understanding of their health risk has improved. In recent years there has been debate on the long-term releases (10,000 years) of radon from uranium mining and milling sites, focusing on abandoned, operational and rehabilitated sites. The primary purpose has been estimates of the radiation exposure of both local and global populations. Although there has been an increasing number of radon release studies over recent years in the USA, Australia, Canada and elsewhere, a systematic evaluation of this work has yet to be published in the international literature. This paper presents a detailed compilation and analysis of Australian studies. In order to quantify radon sources, a review of data on uranium mining and milling wastes in Australia, as they influence radon releases, is presented. An extensive compilation of the available radon release data is then assembled for the various projects, including a comparison to predictions of radon behaviour where available. An analysis of cumulative radon releases is then developed and compared to the UNSCEAR approach. The implications for the various assessments of long-term releases of radon are discussed, including aspects such as the need for ongoing monitoring of rehabilitation at uranium mining and milling sites and life-cycle accounting.

Gavin M. Mudd

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Estimated dose to man from uranium milling via the terrestrial food-chain pathway  

SciTech Connect

One of the major pathways of radiological exposure to man from uranium milling operations is through the terrestrial food chain. Studies by various investigators have shown the extent of uptake and distribution of U-238, U-234, Th-230, Ra-226, Pb-210, and Po-210 in plants and animals. These long-lived natural radioisotopes, all nuclides of the uranium decay series, are found in concentrated amounts in uranium mill tailings. Data from these investigations are used to estimate the dose to man from consumption of beef and milk contaminated by the tailings. This dose estimate from this technologically enhanced source is compared with that from average normal dietary intake of these radionuclides from natural sources.

Rayno, D.R.

1982-01-01T23:59:59.000Z

42

Regional impacts of uranium mining and milling employment decline: a preliminary appraisal  

SciTech Connect

The purpose of this report is to identify counties that have been significantly impacted by declining uranium employment and to gauge the relative severity of impacts upon different counties given the differing compositions of their economic bases. Colorado, New Mexico, Texas, Utah, and Wyoming have been identified as major uranium mining and milling states. Twenty-four major uranium mining and milling counties within these states lost an estimated total of 9400 jobs between 1980 and 1983 following the 1980 peak employment of approximately 15,700. Economic profiles for these 24 counties were prepared using an historical employment data base containing annual employment data for major economic sectors 1970 through 1983. Additionally, regression analysis was used to derive a mining employment impact multiplier of 2.5. This means that for every mining job lost, an additional 1.5 jobs are lost in the service sector. The historical growth experiences in other economic sectors for 16 of these counties have been such that the counties are unlikely to regain the lost uranium mining and milling jobs through growth in other basic employment sectors. These counties may experience an additional loss of 12.2 thousand service sector jobs through the multiplier effect of basic sector employment loss. The other eight uranium-producing counties should have sufficient growth opportunities in other basic sectors to enable them to retain existing service sector jobs. However, economic growth in these counties may not be as great as it would have been had the counties not lost the uranium employment. For both sets of counties, the downturn in the national economy in the early 1980s has compounded the local employment problem. 22 refs., 6 figs., 12 tabs.

Vogt, D.P.; Rizy, C.G.; Watson, R.A.

1985-07-01T23:59:59.000Z

43

Safe Management of Residues from Former Uranium Mining and Milling Activities in Central Asian IAEA Regional Technical Cooperation Project  

Science Journals Connector (OSTI)

Several of the Central Asian countries of the former Soviet Union were involved in the uranium mining and milling industry from about 1945 for varying periods until the break up of the Soviet Union in 1991. Ev...

P. W. Waggitt

2008-01-01T23:59:59.000Z

44

Asphalt emulsion sealing of uranium mill tailings. 1980 annual report  

SciTech Connect

Studies of asphalt emulsion sealants conducted by the Pacific Northwest Laboratory have demonstrated that the sealants are effective in containing radon and other potentially hazardous material within uranium tailings. The laboratory and field studies have further demonstrated that radon exhalation from uranium tailings piles can be reduced by greater than 99% to near background levels. Field tests at the tailings pile in Grand Junction, Colorado, confirmed that an 8-cm admix seal containing 22 wt% asphalt could be effectively applied with a cold-mix paver. Other techniques were successfully tested, including a soil stabilizer and a hot, rubberized asphalt seal that was applied with a distributor truck. After the seals were applied and compacted, overburden was applied over the seal to protect the seal from ultraviolet degradation.

Hartley, J.N.; Koehmstedt, P.L; Esterl, D.J.; Freeman, H.D.; Buelt, J.L.; Nelson, D.A.; Elmore, M.R.

1981-05-01T23:59:59.000Z

45

Assessment of the radiological impact of the inactive uranium-mill tailings at Mexican Hat, Utah  

SciTech Connect

High surface soil concentrations of /sup 226/Ra and high above-ground measurements of gamma-ray intensity in the vicinity of the inactive uranium-mill tailings at Mexican Hat show both wind and water erosion of the tailings. The former mill area, occupied by a trade school at the time of this survey, shows a comparatively high level of contamination, probably from unprocessed ore on the surface of the ore storage area near the location of the former mill buildings. However, the estimated health effect of exposure to gamma rays during a 2000-hr work year in the area represents an increase of 0.1% in the risk of death from cancer. Exposure of less than 600 persons within 1.6 km of the tailings to radon daughters results in an estimated 0.2%/year increase in risk of lung cancer.

Haywood, F.F.; Goldsmith, W.A.; Ellis, B.S.; Hubbard, H.M. Jr.; Fox, W.F.; Shinpaugh, W.H.

1980-03-01T23:59:59.000Z

46

Radiological survey of the inactive uranium-mill tailings at Rifle, Colorado  

SciTech Connect

Results of radiological surveys of two inactive uranium-mill sites near Rifle, Colorado, in May 1976 are presented. These sites are referred to as Old Rifle and New Rifle. The calculated /sup 226/Ra inventory of the latter site is much higher than at the older mill location. Data on above-ground measurements of gamma exposure rates, surface and near-surface concentration of /sup 226/Ra in soil and sediment samples, concentration of /sup 226/Ra in water, calculated subsurface distribution of /sup 226/Ra, and particulate radionuclide concentrations in air samples are given. The data serve to define the extent of contamination in the vicinity of the mill sites and their immediate surrounding areas with tailings particles. Results of these measurements were utilized as technical input for an engineering assessment of these two sites.

Haywood, F.F.; Jacobs, D.J.; Ellis, B.S.; Hubbard, H.M. Jr.; Shinpaugh, W.H.

1980-06-01T23:59:59.000Z

47

Radionuclides in the terrestrial ecosystem near a Canadian uranium mill -- Part 3: Atmospheric deposition rates (pilot test)  

SciTech Connect

Atmospheric deposition rates of uranium series radionuclides were directly measured at three sites near the operating Key Lake uranium mill in northern Saskatchewan. Sites impacted by windblown tailings and mill dusts had elevated rates of uranium deposition near the mill and elevated {sup 226}Ra deposition near the tailings compared to a control site. Rainwater collectors, dust jars, and passive vinyl collectors previously used at the Ranger Mine in Australia were pilot-tested. Adhesive vinyl surfaces (1 m{sup 2}) were oriented horizontally, vertically, and facing the ground as a means of measuring gravitational settling, wind impaction, and soil resuspension, respectively. Although the adhesive glue on the vinyls proved difficult to digest, relative differences in deposition mode were found among radionuclides and among sites. Dry deposition was a more important transport mechanism for uranium, {sup 226}Ra, and {sup 210}Pb than rainfall, while more {sup 210}Po was deposited with rainfall.

Thomas, P.A.

2000-06-01T23:59:59.000Z

48

Engineering assessment of inactive uranium mill tailings: Maybell Site, Maybell, Colorado  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Maybell site in order to revise the October 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Maybell, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 2.6 million dry tons of tailings at the Maybell site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The two alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to disposal of the tailings in a nearby open pit mine and decontamination of the tailings site (Option II). Cost estimates for the two options are about $11,700,000 for stabilization in-place and about $22,700,000 for disposal within a distance of 2 mi. Three principal alternatives for the reprocessing of the Maybell tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $125 and $165/lb of U/sub 3/O/sub 8/ by heap leach and conventional plant processes, respectively. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present.

none,

1981-09-01T23:59:59.000Z

49

Engineering assessment of inactive uranium mill tailings, Shiprock site, Shiprock, New Mexico  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Shiprock site in order to revise the March 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Shiprock, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 1.5 million dry tons of tailings at the Shiprock site constitutes the most significant environental impact, although windblown tailings and external gamma radiation also are factors. The eight alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II through VIII). Cost estimates for the eight options range from about $13,400,000 for stabilization in place to about $37,900,000 for disposal at a distance of about 16 miles. Three principal alternatives for the reprocessing of the Shiprock tailings were examined: (a) heap leaching; (b) treatment at an existing mill; and (c) reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be about $230/lb by heap leach and $250/lb by conventional plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive.

Not Available

1981-07-01T23:59:59.000Z

50

Engineering assessment of inactive uranium mill tailings: Slick Rock sites, Slick Rock, Colorado  

SciTech Connect

Ford, Bacon and Davis Utah, Inc., has reevaluated the Slick Rock sites in order to revise the October 1977 engineering radioactive uranium mill tailings at Slick Rock, Colorado. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from the 387,000 tons of tailings at the Slick Rock sites constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The five alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material, consolidation of the piles, and removal of the tailings to remote disposal sites and decontamination of the tailings sites. Cost estimates for the five options range from about $6,800,000 for stabilization in-place, to about $11,000,000 for disposal at a distance of about 6.5 mi. Three principal alternatives for the reprocessing of the Slick Rock tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. The cost of the uranium recovered would be over $800/lb of U/sub 3/O/sub 8/ whether by conventional or heap leach plant processes. The spot market price for uranium was $25/lb early in 1981. Therefore, reprocessing the tailings for uranium recovery is not economically attractive at present, nor for the foreseeable future.

none,

1981-09-01T23:59:59.000Z

51

Engineering assessment of inactive uranium mill tailings: Phillips/United Nuclear site, Ambrosia Lake, New Mexico  

SciTech Connect

Ford, Bacon and Davis Utah, Inc., has reevaluated the Phillips/United Nuclear site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Ambrosia Lake, New Mexico. This engineering assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas released from 2.6 million dry tons of tailings at the Phillips/United Nuclear site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite decontamination with the addition of 3 m of stabilization cover material, to removal of the tailings to remote disposal sites and decontamination of the tailings site. Cost estimates for the four options range from about $21,500,000 for stabilization in-place, to about $45,200,000 for disposal at a distance of about 15 mi. Three principal alternatives for the reprocessing of the Phillips/United Nuclear tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing.The cost of the uranium recovered would be about $87/lb of U/sub 3/O/sub 8/ by either heap leach or conventional plant process. The spot market price for uranium was $25/lb early in 1981. Reprocessing the Phillips/United Nuclear tailings for uranium recovery does not appear to be economically attractive under present or foreseeable market conditions.

none,

1981-10-01T23:59:59.000Z

52

BLENDING LOW ENRICHED URANIUM WITH DEPLETED URANIUM TO CREATE A SOURCE MATERIAL ORE THAT CAN BE PROCESSED FOR THE RECOVERY OF YELLOWCAKE AT A CONVENTIONAL URANIUM MILL  

SciTech Connect

Throughout the United States Department of Energy (DOE) complex, there are a number of streams of low enriched uranium (LEU) that contain various trace contaminants. These surplus nuclear materials require processing in order to meet commercial fuel cycle specifications. To date, they have not been designated as waste for disposal at the DOE's Nevada Test Site (NTS). Currently, with no commercial outlet available, the DOE is evaluating treatment and disposal as the ultimate disposition path for these materials. This paper will describe an innovative program that will provide a solution to DOE that will allow disposition of these materials at a cost that will be competitive with treatment and disposal at the NTS, while at the same time recycling the material to recover a valuable energy resource (yellowcake) for reintroduction into the commercial nuclear fuel cycle. International Uranium (USA) Corporation (IUSA) and Nuclear Fuel Services, Inc. (NFS) have entered into a commercial relationship to pursue the development of this program. The program involves the design of a process and construction of a plant at NFS' site in Erwin, Tennessee, for the blending of contaminated LEU with depleted uranium (DU) to produce a uranium source material ore (USM Ore{trademark}). The USM Ore{trademark} will then be further processed at IUC's White Mesa Mill, located near Blanding, Utah, to produce conventional yellowcake, which can be delivered to conversion facilities, in the same manner as yellowcake that is produced from natural ores or other alternate feed materials. The primary source of feed for the business will be the significant sources of trace contaminated materials within the DOE complex. NFS has developed a dry blending process (DRYSM Process) to blend the surplus LEU material with DU at its Part 70 licensed facility, to produce USM Ore{trademark} with a U235 content within the range of U235 concentrations for source material. By reducing the U235 content to source material levels in this manner, the material will be suitable for processing at a conventional uranium mill under its existing Part 40 license to remove contaminants and enable the product to re-enter the commercial fuel cycle. The tailings from processing the USM Ore{trademark} at the mill will be permanently disposed of in the mill's tailings impoundment as 11e.(2) byproduct material. Blending LEU with DU to make a uranium source material ore that can be returned to the nuclear fuel cycle for processing to produce yellowcake, has never been accomplished before. This program will allow DOE to disposition its surplus LEU and DU in a cost effective manner, and at the same time provide for the recovery of valuable energy resources that would be lost through processing and disposal of the materials. This paper will discuss the nature of the surplus LEU and DU materials, the manner in which the LEU will be blended with DU to form a uranium source material ore, and the legal means by which this blending can be accomplished at a facility licensed under 10 CFR Part 70 to produce ore that can be processed at a conventional uranium mill licensed under 10 CFR Part 40.

Schutt, Stephen M.; Hochstein, Ron F.; Frydenlund, David C.; Thompson, Anthony J.

2003-02-27T23:59:59.000Z

53

Final environmental statement related to the Western Nuclear, Inc. , Split Rock Uranium Mill (Fremont County, Wyoming)  

SciTech Connect

The proposed action is the renewal of Source Material License SUA-56 (with amendments) issued to Western Nuclear, Inc. (WNI), for the operation of the Split Rock Uranium Mill near Jeffrey City and the Green Mountain Ion-Exchange Facility, both in Fremont County, Wyoming. The license also permits possession of material from past operations at four ancillary facilities in the Gas Hills mining area - the Bullrush, Day-Loma, Frazier-Lamac, and Rox sites (Docket No. 40-1162). However, although heap leaching operations were previously authorized at Frazier-Lamac, there has never been any processing of material at this site. The Split Rock mill is an acid-leach, ion-exchange and solvent-extraction uranium-ore processing mill with a design capacity of 1540 MT (1700 tons) of ore per day. WNI has proposed by license amendment request to increase the storage capacity of the tailings ponds in order to permit the continuation of present production rates of U/sub 3/O/sub 8/ through 1996 using lower-grade ores.

Not Available

1980-02-01T23:59:59.000Z

54

Radioecological investigations of uranium mill tailings systems. Progress report, September 1, 1979-September 30, 1980  

SciTech Connect

The initial 13 months of this program have been devoted to staffing, development of a radiochemistry capability, development of a mill tailings reclamation study, studies on hydraulic properties of soils, initiation of plant uptake studies, preparation for metabolic studies with deer and antelope, and sample collections. Through the addition of new personnel and equipment, we are rapidly developing analytical capabilities for /sup 238/U, /sup 230/Th, /sup 226/Ra, /sup 210/Pb and /sup 210/Po in matrices such as soil, water, plant material, and animal tissues. A 4 acre study site was developed in cooperation with the Pathfinder Mines Corp. at the Shirley Basin Uranium Mine in Wyoming. The study site is designed for investigations on the influence of various kinds and thicknesses of mill tailings soil covers on the integrity of reclaimed tailings and inherent radionuclides. Studies on the hydraulic properties of various soil materials were conducted and data analysis is in progress. Plots and procedures for conducting plant uptake studies on uranium and progeny were established and long-term investigations have been initiated. A colony of tame mule deer and pronghorn antelope has been developed for studies on the uptake and retention of /sup 210/Pb and /sup 210/Po. Numerous collections of soil, vegetation and water from the Shirley Basin Uranium Mine environs were conducted and radiochemical assay is in progress.

Whicker, F W

1980-10-10T23:59:59.000Z

55

NUCLEAR ISOTOPIC DILUTION OF HIGHLY ENRICHED URANIUM BY DRY BLENDING VIA THE RM-2 MILL TECHNOLOGY  

SciTech Connect

DOE has initiated numerous activities to focus on identifying material management strategies to disposition various excess fissile materials. In particular the INEEL has stored 1,700 Kg of offspec HEU at INTEC in CPP-651 vault facility. Currently, the proposed strategies for dispositioning are (a) aqueous dissolution and down blending to LEU via facilities at SRS followed by shipment of the liquid LEU to NFS for fabrication into LWR fuel for the TVA reactors and (b) dilution of the HEU to 0.9% for discard as a waste stream that would no longer have a criticality or proliferation risk without being processed through some type of enrichment system. Dispositioning this inventory as a waste stream via aqueous processing at SRS has been determined to be too costly. Thus, dry blending is the only proposed disposal process for the uranium oxide materials in the CPP-651 vault. Isotopic dilution of HEU to typically less than 20% by dry blending is the key to solving the dispositioning issue (i.e., proliferation) posed by HEU stored at INEEL. RM-2 mill is a technology developed and successfully tested for producing ultra-fine particles by dry grinding. Grinding action in RM-2 mill produces a two million-fold increase in the number of particles being blended in a centrifugal field. In a previous study, the concept of achieving complete and adequate blending and mixing (i.e., no methods were identified to easily separate and concentrate one titanium compound from the other) in remarkably short processing times was successfully tested with surrogate materials (titanium dioxide and titanium mono-oxide) with different particle sizes, hardness and densities. In the current project, the RM-2 milling technology was thoroughly tested with mixtures of natural uranium oxide (NU) and depleted uranium oxide (DU) stock to prove its performance. The effects of mill operating and design variables on the blending of NU/DU oxides were evaluated. First, NU and DU both made of the same oxide, UO{sub 3}, was used in the testing. Next, NU made up of UO{sub 3} and DU made up of UO{sub 2} was used in the test work. In every test, the blend achieved was characterized by spatial sampling of the ground product and analyzing for {sup 235}U concentration. The test work proved that these uranium oxide materials can be blended successfully. The spatial concentration was found to be uniform. Next, sintered thorium oxide pellets were used as surrogate for light water breeder reactor pellets (LWBR). To simulate LWBR pellet dispositioning, the thorium oxide pellets were first ground to a powder form and then the powder was blended with NU. In these tests also the concentration of {sup 235}U and {sup 232}Th in blended products fell within established limits proving the success of RM-2 milling technology. RM-2 milling technology is applicable to any dry radioactive waste, especially brittle solids that can be ground up and mixed with the non-radioactive stock.

Raj K. Rajamani; Sanjeeva Latchireddi; Vikas Devrani; Harappan Sethi; Roger Henry; Nate Chipman

2003-08-01T23:59:59.000Z

56

Laboratory measurements of contaminant attenuation of uranium mill tailings leachates by sediments and clay liners  

SciTech Connect

We discuss FY82 progress on the development of laboratory tools to aid in the prediction of migration potential of contaminants present in acidic uranium mill tailings leachate. Further, empirical data on trace metal and radionuclide migration through a clay liner are presented. Acidic uranium mill tailings solution from a Wyoming mill was percolated through a composite sediment called Morton Ranch Clay liner. These laboratory columns and subsequent sediment extraction data show: (1) As, Cr, Pb, Ag, Th and V migrate very slowly; (2) U, Cd, Ni, Zn, Fe, Mn and similar transition metals are initially immobilized during acid neutralization but later are remobilized as the tailings solution exhausts the clay liner's acid buffering capacity. Such metals remain immobilized as long as the effluent pH remains above a pH value of 4 to 4.5, but they become mobile once the effluent pH drops below this range; and (3) fractions of the Se and Mo present in the influent tailings solution are very mobile. Possible controlling mechanisms for the pH-dependent immobilization-mobilization of the trace metals are discussed. More study is required to understand the controlling mechanisms for Se and Mo and Ra for which data were not successfully collected. Using several column lengths (from 4.5 to 65 cm) and pore volume residence times (from 0.8 to 40 days) we found no significant differences in contaminant migration rates or types and extent of controlling processes. Thus, we conclude that the laboratory results may be capable of extrapolation to actual disposal site conditions.

Serne, R.J.; Peterson, S.R.; Gee, G.W.

1983-04-01T23:59:59.000Z

57

The influence of fractal size distribution of covers on radon exhalation from uranium mill tailings  

Science Journals Connector (OSTI)

Tailings produced during mining and milling of uranium ores represent potentially large volumes of low level radioactive materials. A typical environmental problem associated with mill tailings is radon emanation. Covering tailings is widely applied to reduce radon exhalation rate. In this paper, the fractal theories and field covering tests are used to study the fractal characters of size distribution of six types of covering materials, including waste rock, sand, laterite, kaolin, mixture of sand and laterite, and mixture of waste rock and laterite, and their influences on radon exhalation. The size distributions of uranium tailings and the six aforementioned covering materials all exhibit a good fractal structure. The contents of fine grain increase with the increasing value of fractal dimension. The results of field radon measurement show that the radon emanation rate of tailings without covers is 14.718.6Bq/m2s. Covering tests were carried out of the six abovementioned covering materials with thickness of 0.4m, 0.8m, 1.2m, 1.6m and 2.0m. The results indicate that the application of these materials for cover layers can decrease the radon exhalation rate markedly. The effectiveness of a cover layer in reducing radon exhalation is related to its fractal texture of size distribution. Under the same thickness conditions, the attenuation coefficient of radon exhalation rate increases with the increasing fractal dimension of size distribution of covers. The empirical expressions of the attenuation coefficients in relation to fractal dimension D of size distribution and thickness x of covers is obtained for evaluating the effectiveness of final covers for uranium tailings impoundments.

Kaixuan Tan; Zehua Liu; Liangshu Xia; Junwen Lv; Hanqiao Hu

2012-01-01T23:59:59.000Z

58

Record of Decision for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project (DOE/EIS-0198) (4/28/97)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13 13 Federal Register / Vol. 62, No. 81 / Monday, April 28, 1997 / Notices export to Canada should be clearly marked with Docket EA-144. Additional copies are to be filed directly with: Kevin J. Lipson, Jolanta Sterbenz, Hogan & Hartson L.L.P. Columbia Square, 555 Thirteenth Street, N.W., Washington, D.C. 20004-1109, (202)637-5600 and Gary A. Jeffries, CNG Energy Services Corporation, One Park Ridge Center, P.O. Box 15746, Pittsburgh, Pennsylvania 15244-0746, (412)787-4268. A final decision will be made on these applications after the environmental impacts have been evaluated pursuant to the National Environmental Policy Act of 1969 (NEPA), and a determination is made by the DOE that the proposed actions will not adversely impact on the reliability of the U.S. electric power supply system.

59

Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Annual Site Inspection and Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites November 2012 LMS/S09415 ENERGY Legacy Management U.S. DEPARTMENT OF Sherwood, Washington, Disposal Site, 2012 Sherwood, Washington, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 L-Bar, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Bluewater, New Mexico, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 Maybell West, Colorado, Disposal Site, 2012 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

60

Engineering assessment of inactive uranium mill tailings, Green River Site, Green River, Utah  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has reevaluated the Green River site in order to revise the December 1977 engineering assessment of the problems resulting from the existence of radioactive uranium mill tailings at Green River, Utah. This evaluation has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the 123,000 tons of tailings at the Green River site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors.

none,

1981-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Radiological survey of the inactive uranium-mill tailings at Durango, Colorado  

SciTech Connect

Results of a radiological survey of the inactive uranium-mill site at Durango, Colorado, conducted in April 1976, in cooperation with a team from Ford, Bacon and Davis Utah Inc., are presented together with descriptions of the instruments and techniques used to obtain the data. Direct above-ground gamma measurements and analysis of surface soil and sediment samples indicate movement of tailings from the piles toward Lightner Creek on the north and the Animas River on the east side of the piles. The concentration of /sup 226/Ra in the former raffinate pond area is only slightly above the background level. Two structures in Durango were found to contain high concentrations of airborne radon daughters, where tailings are known to have been utilized in construction. Near-background concentrations of radon daughters were found in a well-ventilated building close to the tailings.

Haywood, F.F.; Perdue, P.T.; Shinpaugh, W.H.; Ellis, B.S.; Chou, K.D.

1980-03-01T23:59:59.000Z

62

Summary of the engineering assessment of inactive uranium-mill tailings: Canonsburg Site, Canonsburg, Pennsylvania  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has evaluated the Canonsburg site in order to assess the problems resulting from the existence of radioactive residues at Canonsburg, Pennsylvania. This engineering assessment has included the preparation of topographic maps, radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative remedial actions. Radon gas released from the approximately 300,000 tons of tailings and contaminated soil at the Canonsburg site constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material (Option I), to removal of the tailings and contaminated materials to a remote disposal site and decontamination of the Canonsburg site (Options II through IV). Cost estimates for the four options range from $23,244,000 for stabilization in-place, to $27,052,000 for disposal at a distance of about 17 mi. Three principal alternatives for the reprocessing of the Canonsburg tailings were examined: heap leaching; treatment at an existing mill; and reprocessing at a new conventional mill constructed for tailings reprocessing. As required by Public Law 95-604, under whose auspices this project is conducted, the US Department of Energy has solicited expressions of interest in reprocessing the tailings and residues at the Canonsburg site for uranium recovery. Since no such interest was demonstrated, no effort has been made to estimate the value of the residual uranium resource at the Canonsburg site.

Not Available

1982-04-01T23:59:59.000Z

63

Engineering assessment of inactive uranium mill tailings: Lakeview site, Lakeview, Oregon  

SciTech Connect

This assessment has included the preparation of topographic maps, the performance of core drillings and radiometric measurements sufficient to determine areas and volumes of tailings and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actions. Radon gas constitutes the most significant environmental impact, although windblown tailings and external gamma radiation also are factors. The three alternative actions presented in this engineering assessment include millsite decontamination with the addition of 3 m of stabilization cover material (Option I) and removal of the tailings to remote disposal sites and decontamination of the tailings site (Options II and III). Cost estimates range from about $6,000,000 for stabilization in-place, to about $7,500,000 for disposal at a distance of about 10 miles. Three alternatives for reprocessing the Lakeview tailings were examined: heap leaching, treatment at an existing mill, and reprocessing at a new conventional mill. The cost of the uranium recovered would be over $450/lb of U/sub 3/O/sub 8/ and hence reprocessing is not economical.

none,

1981-10-01T23:59:59.000Z

64

Regulatory Oversight of the Legacy Gunner Uranium Mine and Mill Site in Northern Saskatchewan, Canada - 13434  

SciTech Connect

As Canada's nuclear regulator, the Canadian Nuclear Safety Commission (CNSC) is responsible for licensing all aspects of uranium mining, including remediation activities at legacy sites. Since these sites already existed when the current legislation came into force in 2000, and the previous legislation did not apply, they present a special case. The Nuclear Safety and Control Act (NSCA), was written with cradle-to- grave oversight in mind. Applying the NSCA at the end of a 'facilities' life-cycle poses some challenges to both the regulator and the proponent. When the proponent is the public sector, even more challenges can present themselves. Although the licensing process for legacy sites is no different than for any other CNSC license, assuring regulatory compliance can be more complicated. To demonstrate how the CNSC has approached the oversight of legacy sites the history of the Commission's involvement with the Gunnar uranium mine and mill site provides a good case study. The lessons learned from the CNSC's experience regulating the Gunnar site will benefit those in the future who will need to regulate legacy sites under existing or new legislation. (authors)

Stenson, Ron; Howard, Don [Canadian Nuclear Safety Commission, P.O. Box 1046, Station B, 280 Slater Street, Ottawa ON K1P 5S9 (Canada)] [Canadian Nuclear Safety Commission, P.O. Box 1046, Station B, 280 Slater Street, Ottawa ON K1P 5S9 (Canada)

2013-07-01T23:59:59.000Z

65

UMTRA project water sampling and analysis plan, Durango, Colorado  

SciTech Connect

Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.

Not Available

1994-01-01T23:59:59.000Z

66

Radio-Ecological Conditions of Groundwater in the Area of Uranium Mining and Milling Facility - 13525  

SciTech Connect

Manmade chemical and radioactive contamination of groundwater is one of damaging effects of the uranium mining and milling facilities. Groundwater contamination is of special importance for the area of Priargun Production Mining and Chemical Association, JSC 'PPMCA', because groundwater is the only source of drinking water. The paper describes natural conditions of the site, provides information on changes of near-surface area since the beginning of the company, illustrates the main trends of contaminators migration and assesses manmade impact on the quality and mode of near-surface and ground waters. The paper also provides the results of chemical and radioactive measurements in groundwater at various distances from the sources of manmade contamination to the drinking water supply areas. We show that development of deposits, mine water discharge, leakages from tailing dams and cinder storage facility changed general hydro-chemical balance of the area, contributed to new (overlaid) aureoles and flows of scattering paragenetic uranium elements, which are much smaller in comparison with natural ones. However, increasing flow of groundwater stream at the mouth of Sukhoi Urulyungui due to technological water infiltration, mixing of natural water with filtration streams from industrial reservoirs and sites, containing elevated (relative to natural background) levels of sulfate-, hydro-carbonate and carbonate- ions, led to the development and moving of the uranium contamination aureole from the undeveloped field 'Polevoye' to the water inlet area. The aureole front crossed the southern border of water inlet of drinking purpose. The qualitative composition of groundwater, especially in the southern part of water inlet, steadily changes for the worse. The current Russian intervention levels of gross alpha activity and of some natural radionuclides including {sup 222}Rn are in excess in drinking water; regulations for fluorine and manganese concentrations are also in excess. Possible ways to improve the situation are considered. (authors)

Titov, A.V.; Semenova, M.P.; Seregin, V.A.; Isaev, D.V.; Metlyaev, E.G. [FSBU SRC A.I.Burnasyan Federal Medical Biophysical Center of FMBA of Russia, Zhivopisnaya Street, 46, Moscow (Russian Federation)] [FSBU SRC A.I.Burnasyan Federal Medical Biophysical Center of FMBA of Russia, Zhivopisnaya Street, 46, Moscow (Russian Federation); Glagolev, A.V.; Klimova, T.I.; Sevtinova, E.B. [FSESP 'Hydrospecgeologiya' (Russian Federation)] [FSESP 'Hydrospecgeologiya' (Russian Federation); Zolotukhina, S.B.; Zhuravleva, L.A. [FSHE 'Centre of Hygiene and Epidemiology no. 107' under FMBA of Russia (Russian Federation)] [FSHE 'Centre of Hygiene and Epidemiology no. 107' under FMBA of Russia (Russian Federation)

2013-07-01T23:59:59.000Z

67

Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites Slick Rock, Colorado. Draft  

SciTech Connect

The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VP) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the groundwater from further degradation. Remedial actions at the Slick Rock sites must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC).

NONE

1993-06-01T23:59:59.000Z

68

DOE/EA-1388: Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site (September 2001)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

388 388 Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site Final September 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-96GJ87335 This Page Intentionally Blank DOE Grand Junction Office EA of Ground Water Compliance at the Shiprock Site September 2001 Final Page iii Contents Page Acronyms and Abbreviations ........................................................................................................ vii Executive Summary ....................................................................................................................... ix 1.0 Introduction .............................................................................................................................1

69

E-Print Network 3.0 - abandoned uranium mill Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences and Ecology 17 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

70

E-Print Network 3.0 - anaconda uranium mill Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences and Ecology 7 geology and Ranger 1 open-pit uranium mine in Australia Summary: Uranium geology and mining Ranger 1 open-pit uranium mine in Australia Mikael Hk UHDSG...

71

A top-down assessment of energy, water and land use in uranium mining, milling, and refining  

SciTech Connect

Land, water and energy use are key measures of the sustainability of uranium production into the future. As the most attractive, accessible deposits are mined out, future discoveries may prove to be significantly, perhaps unsustainably, more intensive consumers of environmental resources. A number of previous attempts have been made to provide empirical relationships connecting these environmental impact metrics to process variables such as stripping ratio and ore grade. These earlier attempts were often constrained by a lack of real world data and perform poorly when compared against data from modern operations. This paper conditions new empirical models of energy, water and land use in uranium mining, milling, and refining on contemporary data reported by operating mines. It shows that, at present, direct energy use from uranium production represents less than 1% of the electrical energy produced by the once-through fuel cycle. Projections of future energy intensity from uranium production are also possible by coupling the empirical models with estimates of uranium crustal abundance, characteristics of new discoveries, and demand. The projections show that even for the most pessimistic of scenarios considered, by 2100, the direct energy use from uranium production represents less than 3% of the electrical energy produced by the contemporary once-through fuel cycle.

E. Schneider; B. Carlsen; E. Tavrides; C. van der Hoeven; U. Phathanapirom

2013-11-01T23:59:59.000Z

72

EIS-0126: Remedial Actions at the Former Climax Uranium Company Uranium Mill Site, Grand Junction, Mesa County, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this EIS to assess the environmental impacts of remediating the residual radioactive materials left from the inactive uranium processing site and associated properties located in Grand Junction, Colorado.

73

Radiologic characterization of the Mexican Hat, Utah, uranium mill tailings remedial action site: Appendix D, Addenda D1--D7  

SciTech Connect

This radiologic characterization of the inactive uranium millsite at Mexican Hat, Utah, was conducted by Bendix Field Engineering Corporation foe the US Department of Energy (DOE), Grand Junction Project Office, in response to and in accord with a Statement of Work prepared by the DOE Uranium Mill tailings Remedial Action Project (UMTRAP) Technical Assistance Contractor, Jacobs Engineering Group, Inc. the objective of this project was to determine the horizontal and vertical extent of contamination that exceeds the US Environmental Protection Agency (EPA) standards at the Mexican Hat site. The data presented in this report are required for characterization of the areas adjacent to the Mexican Hat tailings piles and for the subsequent design of cleanup activities. Some on-pile sampling was required to determine the depth of the 15-pCi/g Ra-226 interface in an area where wind and water erosion has taken place.

Ludlam, J.R.

1985-01-01T23:59:59.000Z

74

EA-1406: Ground Water Compliance at the New Rifle, Colorado, UMTRA Project Site, Rifle, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts for the proposed compliance strategy of natural flushing combined with institutional controls and continued monitoring for the New Rifle uranium mill...

75

Long-Term Performance of Uranium Tailings Disposal Cells - 13340  

SciTech Connect

Recently, there has been interest in the performance and evolution of Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell covers because some sites are not compliant with groundwater standards. Field observations of UMTRA disposal cells indicate that rock covers tend to become vegetated and that saturated conductivities in the upper portion of radon barriers may increase due to freeze/thaw cycles and biointrusion. This paper describes the results of modeling that addresses whether these potential changes and transient drainage of moisture in the tailings affect overall performance of the disposal cells. A numerical unsaturated/saturated 3-dimensional flow model was used to simulate whether increases in saturated conductivities in radon barriers with rock covers affect the overall performance of the disposal cells using field data from the Shiprock, NM, UMTRA site. A unique modeling approach allowed simulation with daily climatic conditions to determine changes in moisture and moisture flux from the disposal cell. Modeling results indicated that increases in the saturated conductivity at the top of radon barrier do not influence flux from the tailings with time because the tailings behave similar hydraulically to the radon barrier. The presence of a thin layer of low conductivity material anywhere in the cover or tailings restricts flux in the worst case to the saturated conductivity of that material. Where materials are unsaturated at depth within the radon barrier of tailings slimes, conductivities are typically less than 10{sup -8} centimeters per second. If the low conductivity layer is deep within the disposal cell, its saturated properties are less likely to change with time. The significance of this modeling is that operation and maintenance of the disposal cells can be minimized if they are allowed to progress to a natural condition with some vegetation and soil genesis. Because the covers and underlying tailings have a very low saturated hydraulic conductivity after transient drainage, eventually the amount of moisture leaving the tailings has a negligible effect on groundwater quality. Although some of the UMTRA sites are not in compliance with the groundwater standards, the explanation may be legacy contamination from mining, or earlier higher fluxes from the tailings or unlined processing ponds. Investigation of other legacy sources at the UMTRA sites may help explain persistent groundwater contamination. (authors)

Bostick, Kent; Daniel, Anamary; Pill, Ken [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States)] [Professional Project Services, Inc., 1100 Bethel Valley Road, Oak Ridge, TN, 37922 (United States); Tachiev, Georgio; Noosai, Nantaporn; Villamizar, Viviana [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)] [Florida International University, 10555 W. Flagler St., EC 2100, Miami FL, 33174 (United States)

2013-07-01T23:59:59.000Z

76

Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon  

NLE Websites -- All DOE Office Websites (Extended Search)

Geothermal Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites Michael Hillesheim and Gail Mosey Produced under direction of the U.S. Environmental Protection Agency (EPA) by the National Renewable Energy Laboratory (NREL) under Interagency Agreement IAG-09-1751 and Task No. WFD4.1001. Technical Report NREL/TP-6A10-60251 November 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC. This report is available at no cost from the National Renewable Energy

77

2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites  

SciTech Connect

This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

none,

2014-03-01T23:59:59.000Z

78

2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites  

SciTech Connect

This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

none,

2013-11-01T23:59:59.000Z

79

Survey of Radionuclide Distributions Resulting from the Church Rock, New Mexico, Uranium Mill Tailings Pond Dam Failure  

SciTech Connect

An intensive site survey and on-site analysis program were conducted to evaluate the distribution of four radionucliGes in the general vicinity of Gallup, New Mexico, subsequent to the accidental breach of a uranium mill tailings pond dam and the release of a large quantity of tailings pond materials. The objective of this work was to determine the distribution and concentration levels of {sup 210}Pb, {sup 226}Ra, {sup 230}Th, and {sup 238}U in the arroyo that is immediately adjacent to the uranium tailings pond (pipeline arroyo) and in the Rio Puerco arroyo into which the pipeline arroyo drains. An intensive survey between the United Nuclear Corporation (UNC) Church Rock Mill site and the New Mexico-Arizona state border was performed. Sampling locations were established at approximately 500-ft intervals along the arroyo. During the weeks of September 24 through October 5, 1979, a series of samples was collected from alternate sampling locations along the arroyo. The purpose of this collection of samples and their subsequent analysis was to provide an immediate evaluation of the extent and the levels of radioactive contamination. The data obtained from this extensive survey were then compared to action levels which had been proposed by the Nuclear Regulatory Commission and were adapted by the New Mexico Environmental Improvement Division (NMEID) for {sup 230}Th and {sup 226}Ra concentrations that would require site cleanup. The Pacific Northwest Laboratory/Nuclear Regulatory Commission mobile laboratory van was on-site at the UNC Church Rock Mill from September 22, 1979, through December 13, 1979, and was manned by one or more PNL personnel for all but four weeks of this time period. Approximately 1200 samples associated with the Rio Puerco survey were analyzed 1n the laboratory. An additional 1200 samples related to the Rio Puerco cleanup operations which the United Nuclear Corporation was conducting were analyzed on-site in the mobile laboratory. The purpose of these analyses was to determine the effectiveness of the cleanup operations that were ongoing and to evaluate what additional cleanup would be required. This on-site analysis of radioactive contamination constituted the principal task of this project, with the identification of those portions of the arroyo exceeding the NMEID proposed cleanup criteria being the major output. Additiond1 tasks included an evaluation of the initial soil sampling scheme (letter from T. Wolff [NMEID] to J. Abiss [UNC]. oated September 25, 1979) and the proposed NMEID verification sampling scheme (letter from T. Buhl [NMEID] to H. Miller [NRC]. dated April 23, 1980).

Weimer, W. C.; Kinnison, R. R.; Reeves, J. H.

1981-12-01T23:59:59.000Z

80

EPA Review of Standards for Uranium and Thorium Milling Facilities @ 40 CFR Parts 61 and 192.  

E-Print Network (OSTI)

will address the following seven questions: 1. Are the existing radiation dose limits in the regulations and results in estimating doses to the public from uranium recovery facilities? 6. What is known about, Part 4) *NOTE: a millirem is a unit of effective radiation dose. It is related to the amount of energy

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Process for Transition of Uranium Mill Tailings Radiation Control Act Title II Disposal Sites to the U.S. Department of Energy Office of Legacy Management for Long-Term Surveillance and Maintenance  

SciTech Connect

This document presents guidance for implementing the process that the U.S. Department of Energy (DOE) Office of Legacy Management (LM) will use for assuming perpetual responsibility for a closed uranium mill tailings site. The transition process specifically addresses sites regulated under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) but is applicable in principle to the transition of sites under other regulatory structures, such as the Formerly Utilized Sites Remedial Action Program.

none,

2012-03-01T23:59:59.000Z

82

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Volumes IV Volumes IV Chapters 4 -5 Comment Responses U.S. Department of Energy Office of Environmental Management Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Final Environmental Impact Statement i Contents Volume IV 4.0 Responses............................................................................................................................4-1 4.1 Response Index Tables ..............................................................................................4-1 4.2 Responses to Comments ..........................................................................................4-70 5.0 References...........................................................................................................................5-1

83

Assessment of radiation exposure in the uranium mining and milling area of Mailuu Suu, Kyrgyzstan  

Science Journals Connector (OSTI)

The area of the town of Mailuu Suu, Kyrgyzstan, is polluted by radionuclides and heavy metals from tailing dumps and heaps resulting from the historic exploitation of uranium mines. In the frame of a European Commission-TACIS funded project, radiological assessment was performed for critical group members living in the city of Mailuu Suu, located downstream the tailings, or in the village of Kara Agach, partially located on a uranium mine waste dump. The actual external exposure is around 1.2mSva?1 at both locations and exposure from radon is around 3mSva?1 at Mailuu Suu and around 10mSva?1 at Kara Agach. Ingestion dose was negligible for a critical group member living at Mailuu Suu. At Kara Agach, however, under the hypothesis that all food and fodder is cultivated locally, exposure from ingestion is much higher (?1030mSva?1). In case of an accidental scenario [(part of) Tailing 3 content thrust to river], estimated additional maximum doses result in 45 and 77mSv for an adult and a child, respectively.

H. Vandenhove; L. Sweeck; D. Mallants; H. Vanmarcke; A. Aitkulov; O. Sadyrov; M. Savosin; B. Tolongutov; M. Mirzachev; J.J. Clerc; H. Quarch; A. Aitaliev

2006-01-01T23:59:59.000Z

84

Engineering assessment of inactive uranium mill tailings, Belfield Site, Belfield, North Dakota  

SciTech Connect

Ford, Bacon and Davis Utah Inc. has evaluated the Belfield site in order to assess the problems resulting from the existence of radiactive ash at Belfield, South Dakota. This engineering assessment has included drilling of boreholes and radiometric measurements sufficient to determine areas and volumes of ash and radiation exposures of individuals and nearby populations, the investigations of site hydrology and meteorology, and the evaluation and costing of alternative corrective actons. Radon gas released from the 55,600 tons of ash and contaminated material at the Belfield site constitutes a significant environmental impact, although external gamma radiation also is a factor. The four alternative actions presented in this engineering assessment range from millsite and off-site decontamination with the addition of 3 m of stabilization cover material, to removal of the ash and contaminated materials to remote disposal sites, and decontamination of the Belfield site. Cost estimates for the four options range from about $1,500,000 for stabilization in-place, to about $2,500,000 for disposal at a distance of about 17 mi from the Belfield site. Reprocessing the ash for uranium recovery is not feasible because of the extremely small amount of material available at the site and because of its low U/sub 3/O/sub 8/ content.

Not Available

1981-11-01T23:59:59.000Z

85

DOE/EA-1313: Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site (03/22/05)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1313 DOE/EA-1313 Rev. 0 Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site Final March 2005 Prepared by U.S. Department of Energy Office of Legacy Management Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC01-02GJ79491 for the U.S. Department of Energy Document Number U0069700 This Page Intentionally Blank DOE Office of Legacy Management EA of Ground Water Compliance at the Monument Valley Site March 2005 Final Page iii Contents Page Acronyms and Abbreviations ....................................................................................................... vii Executive Summary.......................................................................................................................

86

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

II II Appendices A-H U.S. Department of Energy Office of Environmental Management Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah Final Environmental Impact Statement i Contents Page Volume II Appendix A, Biological Assessment/Screening Level Risk Assessment/Biological Opinion Appendix A1, Biological Assessment A1-1.0 Introduction ..............................................................................................................A1-1 A1-2.0 Species Evaluated.....................................................................................................A1-3 A1-2.1 Critical Habitat..................................................................................................A1-3 A1-3.0 Consultation to Date.................................................................................................A1-4

87

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012 Mill Owner Mill Name County, State (existing and planned locations) Milling Capacity (short tons of ore per day) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished Denison White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby

88

Evaluation of Background Concentrations of Contaminants in an Unusual Desert Arroyo Near a Uranium Mill Tailings Disposal Cell - 12260  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages 27 sites that have groundwater containing uranium concentrations above background levels. The distal portions of the plumes merge into background groundwater that can have 50 ?g/L or more uranium. Distinguishing background from site-related uranium is often problematic, but it is critical to determining if remediation is warranted, establishing appropriate remediation goals, and evaluating disposal cell performance. In particular, groundwater at disposal cells located on the upper Cretaceous Mancos Shale may have relatively high background concentrations of uranium. Elevated concentrations of nitrate, selenium, and sulfate accompany the uranium. LM used geologic analogs and uranium isotopic signatures to distinguish background groundwater from groundwater contaminated by a former uranium processing site. The same suite of contaminants is present in groundwater near former uranium processing sites and in groundwater seeps emanating from the Mancos Shale over a broad area. The concentrations of these contaminants in Many Devils Wash, located near LM's Shiprock disposal cell, are similar to those in samples collected from many Mancos seeps, including two analog sites that are 8 to 11 km from the disposal cell. Samples collected from Many Devils Wash and the analog sites have high AR values (about 2.0)-in contrast, groundwater samples collected near the tailings disposal cell have AR values near 1.0. These chemical signatures raise questions about the origin of the contamination seeping into Many Devils Wash. (authors)

Bush, Richard P. [U.S. Department of Energy Office of Legacy Management (United States); Morrison, Stan J. [S.M. Stoller Corporation (United States)

2012-07-01T23:59:59.000Z

89

DOE - Office of Legacy Management -- Sohio Lbar Site - 022  

Office of Legacy Management (LM)

This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in New Mexico. UMTRA Title II sites are privately owned and operated sites that were active when...

90

Mitigation action plan for remedial action at the Uranium Mill Tailing Sites and Disposal Site, Rifle, Colorado  

SciTech Connect

The Estes Gulch disposal site is approximately 10 kilometers (6 miles) north of the town of Rifle, off State Highway 13 on Federal land administered by the Bureau of Land Management. The Department of Energy (DOE) will transport the residual radioactive materials (RRM) by truck to the Estes Gulch disposal site via State Highway 13 and place it in a partially below-grade disposal cell. The RRM will be covered by an earthen radon barrier, frost protection layers, and a rock erosion protection layer. A toe ditch and other features will also be constructed to control erosion at the disposal site. After removal of the RRM and disposal at the Estes Gulch site, the disturbed areas at all three sites will be backfilled with clean soils, contoured to facilitate surface drainage, and revegetated. Wetlands areas destroyed at the former Rifle processing sites will be compensated for by the incorporation of now wetlands into the revegetation plan at the New Rifle site. The UMTRA Project Office, supported by the Remedial Action Contractor (RAC) and the Technical Assistance Contractor (TAC), oversees the implementation of the MAP. The RAC executes mitigation measures in the field. The TAC provides monitoring of the mitigation actions in cases where mitigation measures are associated with design features. Site closeout and inspection compliance will be documented in the site completion report.

Not Available

1992-07-01T23:59:59.000Z

91

EPA Update: NESHAP Uranium Activities  

E-Print Network (OSTI)

for underground uranium mining operations (Subpart B) EPA regulatory requirements for operating uranium mill for Underground Uranium Mining Operations (Subpart B) #12;5 EPA Regulatory Requirements for Underground Uranium uranium mines include: · Applies to 10,000 tons/yr ore production, or 100,000 tons/mine lifetime · Ambient

92

Remedial Action Plan and Site Design for Stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Remedial action selection report: Attachment 2, Geology report, Final  

SciTech Connect

The Maybell uranium mill tailings site is 25 miles (mi) (40 kilometers [km]) west of the town of Craig, Colorado, in Moffat County, in the northwestern part of the state. The unincorporated town of Maybell is 5 road mi (8 km) southwest of the site. The designated site covers approximately 110 acres (ac) (45 hectares [ha]) and consists of a concave-shaped tailings pile and rubble from the demolition of the mill buildings buried in the former mill area. Contaminated materials at the Maybell processing site include the tailings pile, which has an average depth of 20 feet (ft) (6 meters [m]) and contains 2.8 million cubic yards (yd{sup 3}) (2.1 million cubic meters [m{sup 3}]) of tailings. The former mill processing area is on the north side of the site and contains 20,000 yd{sup 3} (15,000 m{sup 3}) of contaminated demolition debris. Off-pile contamination is present and includes areas adjacent to the tailings pile, as well as contamination dispersed by wind and surface water flow. The volume of off-pile contamination to be placed in the disposal cell is 550,000 yd{sup 3} (420,000 m{sup 3}). The total volume of contaminated materials to be disposed of as part of the remedial action is estimated to be 3.37 million yd{sup 3} (2.58 million m{sup 3}). Information presented in this Final Remedial Action Plan (RAP) and referenced in supporting documents represents the current disposal cell design features and ground water compliance strategy proposed by the US Department of Energy (DOE) for the Maybell, Colorado, tailings site. Both the disposal cell design and the ground water compliance strategy have changed from those proposed prior to the preliminary final RAP document as a result of prudent site-specific technical evaluations.

Not Available

1994-06-01T23:59:59.000Z

93

EIS-0132: Remedial Actions at the Former Union Carbide Corp. Uranium Mill Sites, Rifle, Garfield County, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this statement to evaluate and compare the environmental impacts of remediating the residual radioactive materials left at the inactive uranium tailing sites in Rifle, Colorado.

94

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2 W W W W W W W W W W W Total Mill Feed W W W W W W W W W W W Uranium Concentrate Produced at U.S. Mills (thousand pounds U3O8) W W W W W W W W W W W Uranium Concentrate...

95

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Summary Summary U.S. Department of Energy Office of Environmental Management COVER SHEET Lead Agency: U.S. Department of Energy Cooperating Agencies: * National Park Service * Bureau of Land Management * U.S. Nuclear Regulatory Commission * U.S. Army Corps of Engineers * U.S. Fish and Wildlife Service * State of Utah * U.S. Environmental Protection Agency * Ute Mountain Ute Tribe * San Juan County * Grand County * City of Blanding * Community of Bluff Title: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (DOE/EIS-0355). Contact: For further information about this Environmental Impact Statement, contact: Don Metzler Moab Federal Project Director U.S. Department of Energy 2597 B ¾ Road

96

DOE/EIS-0355 Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

I I Chapters 1-11 U.S. Department of Energy Office of Environmental Management COVER SHEET Lead Agency: U.S. Department of Energy Cooperating Agencies: * National Park Service * Bureau of Land Management * U.S. Nuclear Regulatory Commission * U.S. Army Corps of Engineers * U.S. Fish and Wildlife Service * State of Utah * U.S. Environmental Protection Agency * Ute Mountain Ute Tribe * San Juan County * Grand County * City of Blanding * Community of Bluff Title: Remediation of the Moab Uranium Mill Tailings, Grand and San Juan Counties, Utah, Final Environmental Impact Statement (DOE/EIS-0355). Contact: For further information about this Environmental Impact Statement, contact: Don Metzler Moab Federal Project Director U.S. Department of Energy

97

Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix E. Final report  

SciTech Connect

This document provides Appendix E of the Remedial Action Plan (RAP) presented in 1988 for the stabilization of the inactive uranium mill tailings at the Mexican Hat, Utah site. The RAP was developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. The RAP has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action.

NONE

1988-07-01T23:59:59.000Z

98

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" 4. U.S. uranium mills by owner, location, capacity, and operating status at end of the year, 2008-2012" "Mill Owner","Mill Name","County, State (existing and planned locations)","Milling Capacity","Operating Status at End of the Year" ,,,"(short tons of ore per day)",2008,2009,2010,2011,2012 "Cotter Corporation","Canon City Mill","Fremont, Colorado",0,"Standby","Standby","Standby","Reclamation","Demolished" "EFR White Mesa LLC","White Mesa Mill","San Juan, Utah",2000,"Operating","Operating","Operating","Operating","Operating"

99

EIS-0111: Remedial Actions at the Former Vanadium Corporation of America Uranium Mill Site, Durango, La Plata County, Colorado  

Energy.gov (U.S. Department of Energy (DOE))

The U.S. Department of Energy developed this statement to evaluate the environmental impacts of several scenarios for management and control of the residual radioactive wastes at the inactive Durango, Colorado, uranium processing site, including a no action alternative, an alternative to manage wastes on-site and three alternatives involving off-site management and decontamination of the Durango site.

100

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 1, Text: Final environmental impact statement  

SciTech Connect

This statement evaluates and compares the environmental impacts associated with the remedial actions of the residual radioactive materials remaining at the inactive uranium processing site and associated vicinity properties at Grand Junction, Mesa County, Colorado. This statement is also intended to aid the BLM in amending their management framework plans and final resource management plan, as well as assisting in compliance with the withdrawal application as appropriate. The site is a 114-acre tract of private and state owned land which contains approximately 3.1 million cubic yards of tailings and associated contaminated soils. The vicinity properties are homes, businesses, public buildings, and vacant lots which may have been contaminated during construction by the use of tailings as building material. An estimated 3465 vicinity properties would be cleaned up during remedial action of the tailings pile. The tailings were produced by the former Climax Uranium Company which processed uranium ore, which it sold to the US Atomic Energy Commission from 1951 to 1966 and to private sources from 1966 to 1970. This statement evaluates six alternatives for stabilization and disposal of the tailings and other contaminated materials: (1) No action. (2) Stabilization at the Grand Junction site. (3) Disposal at the Cheney Reservoir site with truck transport. (4) Disposal at the Cheney Reservoir site with train and truck transport. (5) Disposal at the Two Road site with truck transport. (6) Disposal at the Two Road site with train and truck transport. All of the alternatives except no action include remedial action at an estimated 3465 vicinity properties. Alternative 3 is DOE`s preferred alternative.

None

1986-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Reassessment of individual dosimetry of long-lived alpha radionuclides of uranium miners through experimental determination of urinary excretion of uranium  

Science Journals Connector (OSTI)

......iranium in urine of uranium miners as a tool for...230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45...Measurement of daily urinary uranium excretion in German...potential intakes of depleted uranium(DU). Sci......

I. Maltov; V. Beckov; L. Tomsek; M. Slezkov-Marusiakov; J. Hulka

2013-04-01T23:59:59.000Z

102

Domestic Uranium Production Report  

Annual Energy Outlook 2012 (EIA)

6. Employment in the U.S. uranium production industry by category, 2003-13 person-years Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18...

103

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Milling Capacity (short tons of ore per day) 2008 2009 2010 2011 2012 Cotter Corporation Canon City Mill Fremont, Colorado 0 Standby Standby Standby Reclamation Demolished EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating Operating Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Developing Developing Developing Permitted And Licensed Partially Permitted And Licensed Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000 Standby Standby Standby Standby Standby Uranium One Americas, Inc. Shootaring Canyon Uranium Mill Garfield, Utah 750 Changing License To Operational Standby

104

DOE Moab Project Safely Removes 7 Million Tons of Mill Tailings  

Energy.gov (U.S. Department of Energy (DOE))

(Grand Junction, CO) ? The U.S. Department of Energy (DOE) has safely moved another million tons of uranium mill tailings from the Moab site in Utah under the Uranium Mill Tailings Remedial Action Project.

105

Radioactive and chemical contamination of the water resources in the former uranium mining and milling sites of Mailuu Suu (Kyrgyzstan)  

Science Journals Connector (OSTI)

Abstract An assessment of the radioactive and chemical contamination of the water resources at the former uranium mines and processing sites of Mailuu-Suu, in Kyrgyzstan, was carried out. A large number of water samples were collected from the drinking water distribution system (DWDS), rivers, shallow aquifers and drainage water from the mine tailings. Radionuclides and trace metal contents in water from the DWDS were low in general, but were extremely high for Fe, Al and Mn. These elements were associated with the particle fractions in the water and strongly correlated with high turbidity levels. Overall, these results suggest that water from the DWDS does not represent a serious radiological hazard to the Mailuu Suu population. However, due to the high turbidities and contents of some elements, this water is not good quality drinking water. Water from artesian and dug wells were characterized by elevated levels of U (up to 10?g/L) and some trace elements (e.g. As, Se, Cr, V and F) and anions (e.g. Cl?, NO3?, SO42?). In two artesian wells, the WHO guideline value of 10?g/L for As in water was exceeded. As the artesian wells are used as a source of drinking water by a large number of households, special care should be taken in order to stay within the WHO recommended guidelines. Drainage water from the mine tailings was as expected highly contaminated with many chemicals (e.g. As) and radioactive contaminants (e.g. U). The concentrations of U were more than 200 times the WHO guideline value of 30?g/L for U in drinking water. A large variation in 234U/238U isotopic ratios in water was observed, with values near equilibrium at the mine tailings and far from equilibrium outside this area (reaching ratios of 2.3 in the artesian well). This result highlights the potential use of this ratio as an indicator of the origin of U contamination in Mailuu Suu.

J.A. Corcho Alvarado; B. Balsiger; S. Rllin; A. Jakob; M. Burger

2014-01-01T23:59:59.000Z

106

Statistical data of the uranium industry  

SciTech Connect

Data are presented on US uranium reserves, potential resources, exploration, mining, drilling, milling, and other activities of the uranium industry through 1980. The compendium reflects the basic programs of the Grand Junction Office. Statistics are based primarily on information provided by the uranium exploration, mining, and milling companies. Data on commercial U/sub 3/O/sub 8/ sales and purchases are included. Data on non-US uranium production and resources are presented in the appendix. (DMC)

none,

1981-01-01T23:59:59.000Z

107

Uranium industry annual 1994  

SciTech Connect

The Uranium Industry Annual 1994 (UIA 1994) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing during that survey year. The UIA 1994 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the 10-year period 1985 through 1994 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data collected on the ``Uranium Industry Annual Survey`` (UIAS) provide a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1994, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. A feature article, ``Comparison of Uranium Mill Tailings Reclamation in the United States and Canada,`` is included in the UIA 1994. Data on uranium raw materials activities including exploration activities and expenditures, EIA-estimated resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities, including purchases of uranium and enrichment services, and uranium inventories, enrichment feed deliveries (actual and projected), and unfilled market requirements are shown in Chapter 2.

NONE

1995-07-05T23:59:59.000Z

108

DOE - Office of Legacy Management -- Falls City Mill Site - TX...  

Office of Legacy Management (LM)

Control Act Title I Disposal Sites-Falls City, Texas, Disposal Site. LMSS10631. March 2014 Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings...

109

Nuclear Fuel Facts: Uranium | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Management and Uranium Management and Policy » Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Nuclear Fuel Facts: Uranium Uranium is a silvery-white metallic chemical element in the periodic table, with atomic number 92. It is assigned the chemical symbol U. A uranium atom has 92 protons and 92 electrons, of which 6 are valence electrons. Uranium has the highest atomic weight (19 kg m) of all naturally occurring elements. Uranium occurs naturally in low concentrations in soil, rock and water, and is commercially extracted from uranium-bearing minerals such as uraninite. Uranium ore can be mined from open pits or underground excavations. The ore can then be crushed and treated at a mill to separate the valuable uranium from the ore. Uranium may also be dissolved directly from the ore deposits

110

Content of uranium in urine of uranium miners as a tool for estimation of intakes of long-lived alpha radionuclides  

Science Journals Connector (OSTI)

......238U and 230Th in excreta of uranium mill crushermen. Health Phys. (1983) 45(3...Measurement of daily urinary uranium excretion in German peacekeeping...assess potential intakes of depleted uranium(DU). Sci. Total Environ......

I. Maltov; V. Beckov; L. Tomsek; J. Hulka

2011-11-01T23:59:59.000Z

111

Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report  

SciTech Connect

This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

Not Available

1993-07-01T23:59:59.000Z

112

2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3. U.S. uranium concentrate production, shipments, and sales, 2003-13" "Activity at U.S. Mills and In-Situ-Leach Plants",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013...

113

Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site  

Office of Legacy Management (LM)

GJO-2000-177-TAR GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Work Performed Under DOE Contract No. DE-AC13-96GJ87335 for the U.S. Department of Energy Approved for public release; distribution is unlimited. GJO-2000-177-TAR MAC-GWRFL 1.9 Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site December 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW-511-0017-12-000 Document Number U0066302 Work Performed under DOE Contract No. DE-AC13-96GJ87335 Document Number U0066302 Contents DOE/Grand Junction Office Ground Water Compliance Action Plan for Old Rifle, Colorado

114

Statistical data of the uranium industry  

SciTech Connect

Statistical Data of the Uranium Industry is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1981. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining, and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office (GJAO) of the US Department of Energy. The production, reserves, and drilling information is reported in a manner which avoids disclosure of proprietary information.

none,

1982-01-01T23:59:59.000Z

115

Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

58 58 Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Sites Final February 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract No. DE-AC13-02GJ79491 DOE Grand Junction Office EA of Ground Water Compliance at the Slick Rock Sites February 2003 Final Page iii Contents Page Acronyms and Abbreviations...........................................................................................................v Executive Summary...................................................................................................................... vii 1.0 Introduction.............................................................................................................................1

116

Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Depleted Uranium Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Depleted uranium is uranium that has had some of its U-235 content removed. Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce uranium having a higher concentration of uranium-235 than the 0.72% that occurs naturally (called "enriched" uranium) for use in U.S. national defense and civilian applications. "Depleted" uranium is also a product of the enrichment process. However, depleted uranium has been stripped of some of its natural uranium-235 content. Most of the Department of Energy's (DOE) depleted uranium inventory contains between 0.2 to 0.4 weight-percent uranium-235, well

117

EIS-0198: Record of Decision | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Record of Decision 8: Record of Decision EIS-0198: Record of Decision Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project (April 1997) The Department of Energy (DOE) is issuing this Record of Decision regarding its programmatic decision for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project. This decision enables DOE to take action under its UMTRA Ground Water Project, and is based on the environmental analyses in the Final Programmatic Environmental Impact Statement (PEIS) for the Uranium Mill Tailings Remedial Action Ground Water Project (DOE/EIS-0198), which DOE issued in December 1996. Record of Decision for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project (April 1997) 62 FR 22913 More Documents & Publications

118

DOE - Office of Legacy Management -- Rio Algom Lisbon Valley...  

Office of Legacy Management (LM)

UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority of mining and...

119

LM 12-13  

Energy.gov (U.S. Department of Energy (DOE))

NEPA ID: LM 12-13Determination: B1.3Short Title: Road maintenance on roads used to access groundwater monitoring wells south of the Tuba City, Arizona, Uranium Mill Tailing Remedial Action (UMTRA)...

120

Uranium industry annual 1993  

SciTech Connect

Uranium production in the United States has declined dramatically from a peak of 43.7 million pounds U{sub 3}O{sub 8} (16.8 thousand metric tons uranium (U)) in 1980 to 3.1 million pounds U{sub 3}O{sub 8} (1.2 thousand metric tons U) in 1993. This decline is attributed to the world uranium market experiencing oversupply and intense competition. Large inventories of uranium accumulated when optimistic forecasts for growth in nuclear power generation were not realized. The other factor which is affecting U.S. uranium production is that some other countries, notably Australia and Canada, possess higher quality uranium reserves that can be mined at lower costs than those of the United States. Realizing its competitive advantage, Canada was the world`s largest producer in 1993 with an output of 23.9 million pounds U{sub 3}O{sub 8} (9.2 thousand metric tons U). The U.S. uranium industry, responding to over a decade of declining market prices, has downsized and adopted less costly and more efficient production methods. The main result has been a suspension of production from conventional mines and mills. Since mid-1992, only nonconventional production facilities, chiefly in situ leach (ISL) mining and byproduct recovery, have operated in the United States. In contrast, nonconventional sources provided only 13 percent of the uranium produced in 1980. ISL mining has developed into the most cost efficient and environmentally acceptable method for producing uranium in the United States. The process, also known as solution mining, differs from conventional mining in that solutions are used to recover uranium from the ground without excavating the ore and generating associated solid waste. This article describes the current ISL Yang technology and its regulatory approval process, and provides an analysis of the factors favoring ISL mining over conventional methods in a declining uranium market.

Not Available

1994-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2. Number of uranium mills and plants producing uranium concentrate in the United States" 2. Number of uranium mills and plants producing uranium concentrate in the United States" "Uranium Concentrate Processing Facilities","End of 1996","End of 1997","End of 1998","End of 1999","End of 2000","End of 2001","End of 2002","End of 2003","End of 2004","End of 2005","End of 2006","End of 2007","End of 2008","End of 2009","End of 2010","End of 2011","End of 2012","End of 3rd Quarter 2013" "Mills - conventional milling 1",0,0,0,1,1,0,0,0,0,0,0,0,1,0,1,1,1,0 "Mills - other operations 2",2,3,2,2,2,1,1,0,0,1,1,1,0,1,0,0,0,1 "In-Situ-Leach Plants 3",5,6,6,4,3,3,2,2,3,3,5,5,6,3,4,5,5,5

122

Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternatives for Mending a Permeable Reactive Barrier at a Former Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Final Report Phase II: Performance Evaluation of Permeable Reactive

123

Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternatives for Mending a Permeable Reactive Barrier at a Former Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Phase II: Performance Evaluation of Permeable Reactive Barriers and

124

Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined in a wide variety of rocks, including sandstone, carbonates1  

E-Print Network (OSTI)

3-1 Chapter 3. Volume and Characteristics of Uranium Mine Wastes Uranium has been found and mined conventional mining, solution extraction, and milling of uranium, a principal focus of this report is TENORM, or which may need future reclamation. When uranium mining first started, most of the ores were recovered

125

Bioremediation of Uranium Plumes with Nano-scale  

E-Print Network (OSTI)

(IV) (UO2[s], uraninite) Anthropogenic · Release of mill tailings during uranium mining - MobilizationBioremediation of Uranium Plumes with Nano-scale Zero-valent Iron Angela Athey Advisers: Dr. Reyes Undergraduate Student Fellowship Program April 15, 2011 #12;Main Sources of Uranium Natural · Leaching from

Fay, Noah

126

Evan Mills  

NLE Websites -- All DOE Office Websites (Extended Search)

Evan Mills Evan Mills Evan Mills Residential Building Systems Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R2000 Berkeley CA 94720 Office Location: 90-2058 (510) 486-6784 EMills@lbl.gov Evan Mills is a Staff Scientist in the Building Technology and Urban Systems Department, and has worked in the energy efficiency field since 1982. His core commercial-buildings expertise is in energy benchmarking, commissioning, high-tech buildings, risk management, and the efficiency business case. He is a frequent speaker to academic and industry audiences on buildings energy efficiency, author of over 200 publications, and member of the Intergovernmental Panel on Climate Change, which shared the 2007 Nobel Peace Prize. He is recipient of an R&D 100 award for commercializing

127

Andrew Mills  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrew D. Mills Andrew D. Mills Andrew Mills Electricity Markets and Policy Group Lawrence Berkeley National Laboratory 1 Cyclotron Road MS 90R4000 Berkeley CA 94720 Office Location: 90-4126J (510) 486-4059 ADMills@lbl.gov Andrew D. Mills is a Principal Research Associate in the Electricity Markets and Policy Group at Lawrence Berkeley National Laboratory. Andrew conducts research and provides policy analysis on renewables and transmission, including power system operations and valuation of wind and solar. Andrew's has published his research in Energy Policy and was a contributing author to the IPCC Special Report on Renewable Energy. Previously, Andrew worked with All Cell Technologies, a battery technologystart-up company. Andrew has an M.S. in Energy and Resources from UC Berkeley and a B.S. in

128

Wind Mills  

Science Journals Connector (OSTI)

Over 5,000 years ago, the ancient Egyptians used wind to sail ships on the Nile River. While the proliferation of water mills was in full swing, windmills appeared to harness more inanimate energy by employing wind

J. S. Rao

2011-01-01T23:59:59.000Z

129

U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan  

Office of Legacy Management (LM)

GWMON 1.12-1 GWMON 1.12-1 U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan for the Land Farm Pilot Test Monument Valley, Arizona August 2000 Prepared by U.S. Department of Energy Grand Junction Ofice Grand Junction, Colorado Project Number UGW-5 1 1-001 5-21-000 Document Number U0106701 This page intentionally left blank Document Number U0106701 Contents Contents 1.0 Introduction ....................................................................................................................... 1 2.0 Purpose and Scope ........................................................................................................... 1 3.0 Pilot-Test Extraction Wellfield 2 4.0 Water Elevation Measurements and Monitoring ............... 4

130

An assessment of the radiological scenario around uranium mines in Singhbhum East district, Jharkhand, India  

Science Journals Connector (OSTI)

......storing low-specific active waste after the recovery of uranium...ore mining and radioactive waste around a storage centre from Mexico. Radioprotection...K., Puranik V. D. Long-term management of uranium mill waste: proposal for stewardship......

R. M. Tripathi; S. K. Sahoo; S. Mohapatra; A. C. Patra; P. Lenka; J. S. Dubey; V. N. Jha; V. D. Puranik

2012-07-01T23:59:59.000Z

131

DOE - Office of Legacy Management -- Edgemont Mill Site - SD 01  

Office of Legacy Management (LM)

Edgemont Mill Site - SD 01 Edgemont Mill Site - SD 01 FUSRAP Considered Sites Site: Edgemont Mill Site (SD.01) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Edgemont, South Dakota, Disposal Site Documents Related to Edgemont Mill Site 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites-Edgemont, South Dakota, Disposal Site. LMS/S09415. November 2012 U.S. Department of Energy 2008 UMTRCA Title II Sites Annual Report November 2008 Edgemont, South Dakota FACT SHEET Office of Legacy Management Edgemont, South Dakota, Disposal Site This fact sheet provides information about the Uranium Mill

132

Statistical data of the uranium industry  

SciTech Connect

This report is a compendium of information relating to US uranium reserves and potential resources and to exploration, mining, milling, and other activities of the uranium industry through 1982. The statistics are based primarily on data provided voluntarily by the uranium exploration, mining and milling companies. The compendium has been published annually since 1968 and reflects the basic programs of the Grand Junction Area Office of the US Department of Energy. Statistical data obtained from surveys conducted by the Energy Information Administration are included in Section IX. The production, reserves, and drilling data are reported in a manner which avoids disclosure of proprietary information.

none,

1983-01-01T23:59:59.000Z

133

Short Communication Bioreduction and precipitation of uranium in ionic liquid aqueous  

E-Print Network (OSTI)

with uranium from mining and milling operations, radioactive wastes, and from nuclear accidents is a majorShort Communication Bioreduction and precipitation of uranium in ionic liquid aqueous solution t s Uranium forms various complexes with ionic liquids. Uranium bioreduction was affected by the type

Ohta, Shigemi

134

DOE responses to CDH October 1993 comments on the Remedical Action Plan for the Naturita, Colorado, Umtra Site  

SciTech Connect

This document includes the October 1993 comments provided by the Colorado Department of Health (CDH) on the Department of Energy (DOE) Preliminary Final Remedial Action Plan for the Naturita, Colorado, UMTRA Site. DOE`s responses are included after each CDH comment.

NONE

1996-10-01T23:59:59.000Z

135

Uranium series disequilibrium in the Bargmann property area of Karnes County, Texas  

SciTech Connect

Historical evidence is presented for natural uranium series radioactive disequilibrium in uranium bearing soils in the Bargmann property area of karnes County on the Gulf Coastal Plain of south Texas. The early history of uranium exploration in the area is recounted and records of disequilibrium before milling and mining operations began are given. The property contains an open pit uranium mine associated with a larger ore body. In 1995, the US Department of Energy (DOE) directed Oak Ridge National Laboratory (ORNL) to evaluate the Bargmann tract for the presence of uranium mill tailings (ORNL 1996). There was a possibility that mill tailings had washed onto or blown onto the property from the former tailings piles in quantities that would warrant remediation under the Uranium Mill Tailings Remediation Action Project. Activity ratios illustrating disequilibrium between {sup 226}Ra and {sup 238}U in background soils during 1986 are listed and discussed. Derivations of uranium mass-to-activity conversion factors are covered in detail.

Davidson, J.R.

1998-02-01T23:59:59.000Z

136

Measurements of uranium in soils and small mammals  

SciTech Connect

The objective of this study was to evaluate the bioavailability of uranium to a single species of small mammal, Peromyscus maniculatus rufinus (Merriam), white-footed deer mouse, from two different source terms: a Los Alamos National Laboratory dynamic weapons testing site in north central New Mexico, where an estimated 70,000 kg of uranium have been expended over a 31-y period; and an inactive uranium mill tailings pile located in west central New Mexico near Grants, which received wastes over a 5-y period from the milling of 2.7 x 10/sup 9/ kg of uranium ore.

Miera, F.R. Jr.

1980-12-01T23:59:59.000Z

137

Moab Mill Tailings Removal Project Celebrates 5 Years of Success |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mill Tailings Removal Project Celebrates 5 Years of Success Mill Tailings Removal Project Celebrates 5 Years of Success Moab Mill Tailings Removal Project Celebrates 5 Years of Success October 3, 2012 - 12:00pm Addthis Pictured here is the Moab uranium mill tailings pile. Tailings excavation and conditioning activities are seen in the foreground. The water spray is used to eliminate extracted contaminated groundwater. Pictured here is the Moab uranium mill tailings pile. Tailings excavation and conditioning activities are seen in the foreground. The water spray is used to eliminate extracted contaminated groundwater. Moab Federal Project Director Donald Metzler stands on a final cover layer of the disposal cell. Several other layers are visible behind him. Moab Federal Project Director Donald Metzler stands on a final cover layer

138

Moab Mill Tailings Removal Project Celebrates 5 Years of Success |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Mill Tailings Removal Project Celebrates 5 Years of Success Moab Mill Tailings Removal Project Celebrates 5 Years of Success Moab Mill Tailings Removal Project Celebrates 5 Years of Success October 3, 2012 - 12:00pm Addthis Pictured here is the Moab uranium mill tailings pile. Tailings excavation and conditioning activities are seen in the foreground. The water spray is used to eliminate extracted contaminated groundwater. Pictured here is the Moab uranium mill tailings pile. Tailings excavation and conditioning activities are seen in the foreground. The water spray is used to eliminate extracted contaminated groundwater. Moab Federal Project Director Donald Metzler stands on a final cover layer of the disposal cell. Several other layers are visible behind him. Moab Federal Project Director Donald Metzler stands on a final cover layer

139

Radiation dose to members of public residing around uranium mining complex, Jaduguda, Jharkhand, India  

Science Journals Connector (OSTI)

......is lower than that reported in the Mailuu Suu uranium mining milling area, Kyrgyzstan...2006(26) 6 10.0-30.0 Mailuu Suu and Kara Agach area, vicinity of...uranium mining and milling area of Mailuu Suu, Kyrgyzstan. J. Environ. Radioact......

R. M. Tripathi; S. K. Sahoo; V. N. Jha; Rajesh Kumar; A. K. Shukla; V. D. Puranik; H. S. Kushwaha

2011-11-01T23:59:59.000Z

140

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site 6 Million Tons of Mill Tailings Removed From DOE Moab Project Site June 18, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager (970) 257-2145 (Grand Junction, CO) - Today, the Department of Energy (DOE) announced that 6 million tons of uranium mill tailings have been shipped from Moab, Utah, under the Uranium Mill Tailings Remedial Action Project to an engineered disposal cell near Crescent Junction, Utah. The shipments mark continued progress toward relocating the 16-million-ton uranium mill tailings pile away from the Colorado River. "The federal budget continues to be stretched thin, and I am proud this

142

Design, Performance, and Sustainability of Engineered Covers for Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Design, Performance, and Sustainability of Engineered Covers for Design, Performance, and Sustainability of Engineered Covers for Uranium Mill Tailings Design, Performance, and Sustainability of Engineered Covers for Uranium Mill Tailings Proceedings of the Workshop on Long-Term Performance Monitoring of Metals and Radionuclides in the Subsurface: Strategies, Tools, and Case Studies. U.S. Geological Survey. April 21 and 22, 2004, Reston, Virginia. W.J. Waugh Design, Performance, and Sustainability of Engineered Covers for Uranium Mill Tailings More Documents & Publications Monitoring the Performance of an Alternative Cover Using Caisson Lysimeters Monitoring the Performance of an Alternative Landfill Cover at the Monticello, Utah, Uranium Mill Tailings Disposal Site Sustainable Disposal Cell Covers: Legacy Management Practices,

143

Microsoft PowerPoint - News Flash_FINAL_073009_vvb  

NLE Websites -- All DOE Office Websites (Extended Search)

July 30, 2009 July 30, 2009 Moab Steps Up the Pace of Mill Tailings Shipments U.S. Department of Energy For more information on EM Recovery Act, visit: www.em.doe.gov/emrecovery Recovery Act funds ($108 million) are being used to accelerate the frequency of uranium mill tailings shipments from the Moab Uranium Mill Tailings Remedial Action (UMTRA) Project site to a disposal site near Crescent Junction, Utah. Mill tailings are a byproduct of uranium mining and processing. Located northwest of Moab in Grand County, Utah, and on the west bank of the Colorado River, the Moab UMTRA Project includes the former Atlas uranium mill site that ceased operations in 1984. About 130 acres of the site is covered by a 16-million-ton uranium mill tailings pile. The mill tailings are being moved by train to the disposal site 30 miles away,

144

Uranium recovery research sponsored by the Nuclear Regulatory Commission at Pacific Northwest Laboratory. Quarterly progress report, June-September 1983  

SciTech Connect

This report documents progress for the following major research projects: stabilization, engineering, and monitoring alternatives assessment for improving regulation of uranium recovery operations and waste management; attenuation of radon emission from uranium tailings; assessment of leachate movement from uranium mill tailings; and methods of minimizing ground-water contaminants from in-situ leach uranium mining.

Foley, M.G.; Deutsch, W.J.; Gee, G.W.; Hartley, J.N.; Kalkwarf, D.R.; Mayer, D.W.; Nelson, R.W.; Opitz, B.E.; Peterson, S.R.; Serne, R.J.

1983-11-01T23:59:59.000Z

145

Uranium ores and depleted uranium in the environment, with a reference to uranium in the biosphere from the Erzgebirge/Sachsen, Germany  

Science Journals Connector (OSTI)

The Erzgebirge (Ore Mountains) area in the eastern part of Germany was a major source of uranium for Soviet nuclear programs between 1945 and 1989. During this time, the former German Democratic Republic became the third largest uranium producer in the world. The high abundance of uranium in the geological formations of the Erzgebirge are mirrored in the discovery of uranium by M. Klaproth close to Freiberg City in 1789 and the description of the so-called Schneeberg disease, lung cancer caused in miners by the accumulation of the uranium decay product, radon, in the subsurfaces of shafts. Since 1991, remediation and mitigation of uranium at production facilities, rock piles and mill tailings has taken place. In parallel, efforts were initiated to assess the likely adverse effects of uranium mining to humans. The costs of these activities amount to about 6.5 109 Euro. A comparison with concentrations of depleted uranium at certain sites is given.

A Meinrath; P Schneider; G Meinrath

2003-01-01T23:59:59.000Z

146

Assessment of radon concentration and external gamma radiation level in the environs of Narwapahar uranium mine, India and its radiological significance  

Science Journals Connector (OSTI)

In the environs of uranium mining, milling and processing facilities and in the uranium mineralized terrain, a little higher ambient radon concentration and gamma radiation level may be expected in comparison ...

B. K. Rana; R. M. Tripathi; J. S. Meena

2011-11-01T23:59:59.000Z

147

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3 3 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 Mills - conventional milling 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 Mills - other operations 2 2 3 2 2 2 1 1 0 0 1 1 1 0 1 0 0 0 1 In-Situ-Leach Plants 3 5 6 6 4 3 3 2 2 3 3 5 5 6 3 4 5 5 5 Byproduct Recovery Plants 4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 9 11 9 7 6 4 3 2 3 4 6 6 7 4 5 6 6 6 End of 2005 End of 2006 End of 2007 End of 2008 End of 2009 3 Not including in-situ-leach plants that only produced uranium concentrate from restoration. 4 Uranium concentrate as a byproduct from phosphate production. Source: U.S. Energy Information Administration: Form EIA-851A and Form EIA-851Q, "Domestic Uranium Production Report." End of 2010 End of 2011 End of 2012 End of 3rd Quarter 2013 1 Milling uranium-bearing ore. 2 Not milling ore, but producing uranium concentrate from other (non-ore) materials.

148

DOE - Office of Legacy Management -- Tuba City Mill Site - AZ 0-02  

Office of Legacy Management (LM)

Mill Site - AZ 0-02 Mill Site - AZ 0-02 FUSRAP Considered Sites Site: Tuba City Mill Site (AZ.0-02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Tuba City, Arizona, Disposal Site Documents Related to Tuba City Mill Site 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Tuba City, Arizona, Disposal Site. LMS/S09461. February 2013 2008 UMTRCA Title I Annual Report January 2009 Tuba City, Arizona February 2009 Groundwater and Surface Water Sampling at the Tuba City, Arizona Disposal Site May 2009 This fact sheet provides information about the Uranium Mill Tailings

149

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

8. U.S. uranium expenditures, 2003-2012 8. U.S. uranium expenditures, 2003-2012 million dollars Year Drilling Production Land and Other Total Expenditures Total Land and Other Land Exploration Reclamation 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Drilling: All expenditures directly associated with exploration and development drilling. Production: All expenditures for mining, milling, processing of uranium, and facility expense.

150

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status 3. U.S. uranium mills and heap leach facilities by owner, location, capacity, and operating status Operating Status at the End of Owner Mill and Heap Leach1 Facility Name County, State (existing and planned locations) Capacity (short tons of ore per day) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Permitted and Licensed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725 - Undeveloped Undeveloped Undeveloped

151

DOE - Office of Legacy Management -- Uravan Mill Site - CO 02  

Office of Legacy Management (LM)

Uravan Mill Site - CO 02 Uravan Mill Site - CO 02 FUSRAP Considered Sites Site: Uravan Mill Site (CO.02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Naturita, Colorado, Processing Site Documents Related to Uravan Mill Site Data Validation Package for the July and October 2008 Water Sampling at the Naturita Processing and Disposal Sites Data Validation Report for the July 2009 Groundwater and Surface Water Sampling at the Naturita, Colorado, Processing Site; LMS/NAP/S00709; October 2009 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Naturita, Colorado,

152

F:\SHARE\SE\Web_Origs\Wrk_Jan\mvsowp\MONPIP.PDF  

Office of Legacy Management (LM)

7.1 7.1 UMTRA Ground Water Project Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Monument Valley, Arizona, Uranium Mill Tailings Site July 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed under DOE Contract No. DE-AC13-96GJ87335 Public Involvement Plan for the Monument Valley UMTRA Site Page 2 Introduction This Public Involvement Plan is tiered to the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project Public Participation Plan dated October 1997. This Public Involvement Plan applies to the Monument Valley, Arizona, UMTRA Project site and details the activities that have been or will be carried out to meet the public participation requirements of the National

153

Public Involvment Plan - Rifle, Colorado  

Office of Legacy Management (LM)

4-TAR 4-TAR MAC-GWRIF 7.1 UMTRA Ground Water Project Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the New and Old Rifle, Colorado, Uranium Mill Tailings Sites May 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed under DOE Contract No. DE-AC13-96GJ87335 Public Involvement Plan for the Rifle UMTRA Sites Page 2 Introduction This Public Involvement Plan is tiered to the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project Public Participation Plan dated October 1997. This Public Involvement Plan applies to both the Old and New Rifle, Colorado, UMTRA Project sites and details the activities that have been or will be carried out to meet the public participation requirements of the

154

3rd Quarter 2013 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

3rd Quarter 2013 Domestic Uranium Production Report 3rd Quarter 2013 Domestic Uranium Production Report 3rd Quarter 2013 Domestic Uranium Production Report Release Date: October 31, 2013 Next Release Date: February 2014 Capacity (short tons of ore per day) 2012 1st Quarter 2013 2nd Quarter 2013 3rd Quarter 2013 EFR White Mesa LLC White Mesa Mill San Juan, Utah 2,000 Operating Operating Operating Operating-Processing Alternate Feed Energy Fuels Resources Corporation Piñon Ridge Mill Montrose, Colorado 500 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Permitted And Licensed Energy Fuels Wyoming Inc Sheep Mountain Fremont, Wyoming 725 - Undeveloped Undeveloped Undeveloped Kennecott Uranium Company/Wyoming Coal Resource Company Sweetwater Uranium Project Sweetwater, Wyoming 3,000

155

EA-1037: Uranium Lease Management Program, Grand Junction, Colorado |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

37: Uranium Lease Management Program, Grand Junction, Colorado 37: Uranium Lease Management Program, Grand Junction, Colorado EA-1037: Uranium Lease Management Program, Grand Junction, Colorado SUMMARY This EA evaluates the environmental impacts of the U.S. Department of Energy's Grand Junction Projects Office's proposal to maintain and preserve the nation's immediately accessible supply of domestic uranium and vanadium ores, to maintain a viable domestic mining and milling infrastructure required to produce and mill these ores, and to provide assurance of a fair monetary return to the U.S. Government. The Uranium Lease Management Program gives The Department of Energy the flexibility to continue leasing these lands. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 22, 1995

156

Microbial release of 226Ra2+ from (Ba,Ra)SO4 sludges from uranium mine wastes.  

Science Journals Connector (OSTI)

...overlying water was depleted, Ba2+ and 226Ra2...SO4 sludges from uranium mine wastes...overlying water was depleted, Ba2' and 226Ra2...environment. At many uranium mining and milling...by the National Uranium Tailings Pro- gram...American Public Health Association. 1980...

P M Fedorak; D W Westlake; C Anders; B Kratochvil; N Motkosky; W B Anderson; P M Huck

1986-08-01T23:59:59.000Z

157

Enumeration and Characterization of Iron(III)-Reducing Microbial Communities from Acidic Subsurface Sediments Contaminated with Uranium(VI)  

Science Journals Connector (OSTI)

...bioremediation potential in uranium-contaminated subsurface...reduced. Once nitrate is depleted, U(VI) and Fe(III...bacteria, a study in a uranium-contaminated mill tailing...sludge. American Public Health Association, Washington...detection of trace levels of uranium by laser-induced kinetic...

Lainie Petrie; Nadia N. North; Sherry L. Dollhopf; David L. Balkwill; Joel E. Kostka

2003-12-01T23:59:59.000Z

158

Total production of uranium concentrate in the United States  

Gasoline and Diesel Fuel Update (EIA)

2. Number of uranium mills and plants producing uranium concentrate in the United States 2. Number of uranium mills and plants producing uranium concentrate in the United States Uranium Concentrate Processing Facilities End of 1996 End of 1997 End of 1998 End of 1999 End of 2000 End of 2001 End of 2002 End of 2003 End of 2004 End of 2005 End of 2006 End of 2007 End of 2008 End of 2009 End of 2010 End of 2011 End of 2012 End of 3rd Quarter 2013 Mills - conventional milling1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 1 1 0 Mills - other operators2 2 3 2 2 2 1 1 0 0 1 1 1 0 1 0 0 0 1 In-Situ-Leach Plants3 5 6 6 4 3 3 2 2 3 3 5 5 6 3 4 5 5 5 Byproduct Recovery Plants4 2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Total 9 11 9 7 6 4 3 2 3 4 6 6 7 4 5 6 6 6

159

Uranium industry annual 1997  

SciTech Connect

This report provides statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing.

NONE

1998-04-01T23:59:59.000Z

160

URANIUM IN ALKALINE ROCKS  

E-Print Network (OSTI)

Greenland," in Uranium Exploration Geology, Int. AtomicOklahoma," 1977 Nure Geology Uranium Symposium, Igneous HostMcNeil, M. , 1977. "Geology of Brazil's Uranium and Thorium

Murphy, M.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Radiation dose to members of public residing around uranium mining complex, Jaduguda, Jharkhand, India  

Science Journals Connector (OSTI)

......collection, decomposition and storage of samples prior to analysis...sample collection, analysis and storage were soaked in 10 % HNO3 for...Sahoo S. K., Puranik V. D. Long-term management of uranium mill waste: proposal for stewardship......

R. M. Tripathi; S. K. Sahoo; V. N. Jha; Rajesh Kumar; A. K. Shukla; V. D. Puranik; H. S. Kushwaha

2011-11-01T23:59:59.000Z

162

Radiation dose to members of public residing around uranium mining complex, Jaduguda, Jharkhand, India  

Science Journals Connector (OSTI)

......radionuclides may contaminate the ground water and deliver radiation...around the TP through water ingestion pathway. In...Characterisation and remediation of soils contaminated...uranium mill tailings, water, air, and soil pollution......

R. M. Tripathi; S. K. Sahoo; V. N. Jha; Rajesh Kumar; A. K. Shukla; V. D. Puranik; H. S. Kushwaha

2011-11-01T23:59:59.000Z

163

Impact of Uranium Mining and Processing on the Environment of Mountainous areas of Kyrgyzstan  

Science Journals Connector (OSTI)

In this report the results of analysis of modern geo-ecological situation in areas of uranium mining and milling in the territory of Kyrgyzstan are presented. Major threats for the mountain environment and cit...

I. A. Torgoev; U. G. Aleshyn; H. B. Havenit

2002-01-01T23:59:59.000Z

164

Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches Significant Milestone June 3, 2011 - 12:00pm Addthis Media Contacts Donald Metzler Moab Federal Project Director (970) 257-2115 Wendee Ryan S&K Aerospace Public Affairs Manager (970) 257-2145 Grand Junction, CO - One quarter of the uranium mill tailings pile located in Moab, Utah, has been relocated to the Crescent Junction, Utah, site for permanent disposal. Four million tons of the 16 million tons total has been relocated under the Uranium Mill Tailings Remedial Action Project managed by the U.S. Department of Energy (DOE). A little over 2 years ago, Remedial Action Contractor EnergySolutions began

165

DOE - Office of Legacy Management -- Green River Mill Site - UT 0-01  

Office of Legacy Management (LM)

Green River Mill Site - UT 0-01 Green River Mill Site - UT 0-01 FUSRAP Considered Sites Site: Green River Mill Site (UT.0-01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Green River, Utah, Disposal Site Documents Related to Green River Mill Site Data Validation Package for the June 2009 Groundwater and Surface Water Sampling at the Green River, Utah, Disposal Site; LMS/GRN/S0609; October 2009 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Green River, Utah, Disposal Site. LMS/S09461. February 2013 Historic Fact Sheet: Green River Disposal Site Uranium ore was

166

Depleted uranium  

Science Journals Connector (OSTI)

The potential health effects arising from exposure to depleted uranium have been much in the news of late. Naturally occurring uranium contains the radioisotopes 238U (which dominates, at a current molar proportion of 99.3%), 235U and a small amount of 234U. Depleted uranium has an isotopic concentration of 235U that is below the 0.7% found naturally. This is either because the uranium has passed through a nuclear reactor which uses up some of the fissile 235U that fuels the fission chain-reaction, or because it is the uranium that remains when enriched uranium with an elevated concentration of 235U is produced in an enrichment plant, or because of a combination of these two processes. Depleted uranium has a lower specific activity than naturally occurring uranium because of the lower concentrations of the more radioactive isotopes 235U and 234U, but account must be taken of any contaminating radionuclides or exotic radioisotopes of uranium if the uranium has been irradiated. Uranium is a particularly dense element (about twice as dense as lead), and this property makes it useful in certain military applications, such as armour-piercing munitions. Depleted uranium, rather than natural uranium, is used because of its availability and, since the demise of the fast breeder reactor programme, the lack of alternative use. Depleted uranium weapons were used in the Gulf War of 1990 and also, to a lesser extent, more recently in the Balkans. This has led to speculation that depleted uranium may be associated with `Gulf War Syndrome', or other health effects that have been reported by military and civilian personnel involved in these conflicts and their aftermath. Although, on the basis of present scientific knowledge, it seems most unlikely that exposure to depleted uranium at the levels concerned could produce a detectable excess of adverse health effects, and in such a short timescale, the issue has become one of general concern and contention. As a consequence, any investigation needs to be thorough to produce sufficiently comprehensive evidence to stand up to close scrutiny and gain the support of the public, whatever the conclusions. Unfortunately, it is the nature of such inquiries that they take time, which is frustrating for some. In the UK, the Royal Society has instigated an independent investigation into the health effects of depleted uranium by a working group chaired by Professor Brian Spratt. This inquiry has been underway since the beginning of 2000. The working group's findings will be reviewed by a panel appointed by the Council of the Royal Society, and it is anticipated that the final report will be published in the summer of 2001. Further details can be found at www.royalsoc.ac.uk/templates/press/showpresspage.cfm?file=2001010801.txt. Nick Priest has summarised current knowledge on the toxicity (both radiological and chemical) of depleted uranium in a commentary in The Lancet (27 January 2001, 357 244-6). For those wanting to read a comprehensive review of the literature, in 1999 RAND published `A Review of the Scientific Literature as it Pertains to Gulf War Illnesses, Volume 7: Depleted Uranium' by Naomi Harley and her colleagues, which can be found at www.rand.org/publications/MR/MR1018.7/MR1018.7.html. An interesting article by Jan Olof Snihs and Gustav Akerblom entitled `Use of depleted uranium in military conflicts and possible impact on health and environment' was published in the December 2000 issue of SSI News (pp 1-8), and can be found at the website of the Swedish Radiation Protection Institute: www.ssi.se/tidningar/PDF/lockSSIn/SSI-news2000.pdf. Last year, a paper was published in the June issue of this Journal that is of some relevance to depleted uranium. McGeoghegan and Binks (2000 J. Radiol. Prot. 20 111-37) reported the results of their epidemiological study of the health of workers at the Springfields uranium production facility near Preston during 1946-95. This study included almost 14 000 radiation workers. Although organ-specific doses due to uranium are not yet available for these worker

Richard Wakeford

2001-01-01T23:59:59.000Z

167

What is Depleted Uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is Uranium? What is Uranium? Uranium and Its Compounds line line What is Uranium? Chemical Forms of Uranium Properties of Uranium Compounds Radioactivity and Radiation Uranium Health Effects What is Uranium? Physical and chemical properties, origin, and uses of uranium. Properties of Uranium Uranium is a radioactive element that occurs naturally in varying but small amounts in soil, rocks, water, plants, animals and all human beings. It is the heaviest naturally occurring element, with an atomic number of 92. In its pure form, uranium is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes, which are identified by the total number of protons and neutrons in the nucleus: uranium-238, uranium-235, and uranium-234. (Isotopes of an element have the

168

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Activity at U.S. Mills and In-Situ-Leach Plants 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Ore from Underground Mines and Stockpiles Fed to Mills 1 0 W W W 0 W W W W W Other Feed Materials 2 W W W W W W W W W W Total Mill Feed W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,000 2,282 2,689 4,106 4,534 3,902 3,708 4,228 3,991 4,146 (thousand pounds U 3 O 8 ) E1,600 2,280 2,702 3,838 4,050 4,130 3,620 5,137 4,000 3,911 Deliveries (thousand pounds U 3 O 8 ) W W W 3,786 3,602 3,656 2,044 2,684 2,870 3,630 Weighted-Average Price (dollars per pound U 3 O 8 ) W W W 28.98 42.11 43.81 36.61 37.59 52.36 49.63 Notes: The 2003 annual amounts were estimated by rounding to the nearest 200,000 pounds to avoid disclosure of individual company data. Totals may not equal sum of components

169

DOE - Office of Legacy Management -- Marion Mill Site - CO 09  

Office of Legacy Management (LM)

Marion Mill Site - CO 09 Marion Mill Site - CO 09 FUSRAP Considered Sites Site: MARION MILL SITE (CO.09 ) Eliminated from further consideration under FUSRAP - deferred to the State of Colorado for appropriate action. Designated Name: Not Designated Alternate Name: None Location: Sugar Leaf Road , Boulder , Colorado CO.09-1 Evaluation Year: Circa 1983 CO.09-1 Site Operations: Milled and processed thorite and other rare earth ores in 1957 and 1958. Some of the thorium concentrate produced was shipped to Davison Chemical Company for further processing. CO.09-1 CO.09-3 Site Disposition: Eliminated - Site was licensed by AEC and the State of Colorado CO.09-2 CO.09-3 Radioactive Materials Handled: Yes Primary Radioactive Materials Handled: Thorium, Natural Uranium, Other Rare Earth Ores CO.09-1

170

Uranium Mining and Enrichment  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview Presentation » Uranium Mining and Enrichment Overview Presentation » Uranium Mining and Enrichment Uranium Mining and Enrichment Uranium is a radioactive element that occurs naturally in the earth's surface. Uranium is used as a fuel for nuclear reactors. Uranium-bearing ores are mined, and the uranium is processed to make reactor fuel. In nature, uranium atoms exist in several forms called isotopes - primarily uranium-238, or U-238, and uranium-235, or U-235. In a typical sample of natural uranium, most of the mass (99.3%) would consist of atoms of U-238, and a very small portion of the total mass (0.7%) would consist of atoms of U-235. Uranium Isotopes Isotopes of Uranium Using uranium as a fuel in the types of nuclear reactors common in the United States requires that the uranium be enriched so that the percentage of U-235 is increased, typically to 3 to 5%.

171

Uranium: Prices, rise, then fall  

SciTech Connect

Uranium prices hit eight-year highs in both market tiers, $16.60/lb U{sub 3}O{sub 8} for non-former Soviet Union (FSU) origin and $15.50 for FSU origin during mid 1996. However, they declined to $14.70 and $13.90, respectively, by the end of the year. Increased uranium prices continue to encourage new production and restarts of production facilities presently on standby. Australia scrapped its {open_quotes}three-mine{close_quotes} policy following the ouster of the Labor party in a March election. The move opens the way for increasing competition with Canada`s low-cost producers. Other events in the industry during 1996 that have current or potential impacts on the market include: approval of legislation outlining the ground rules for privatization of the US Enrichment Corp. (USEC) and the subsequent sales of converted Russian highly enriched uranium (HEU) from its nuclear weapons program, announcement of sales plans for converted US HEU and other surplus material through either the Department of Energy or USEC, and continuation of quotas for uranium from the FSU in the United States and Europe. In Canada, permitting activities continued on the Cigar Lake and McArthur River projects; and construction commenced on the McClean Lake mill.

Pool, T.C.

1997-03-01T23:59:59.000Z

172

21 - Milling Control  

Science Journals Connector (OSTI)

Publisher Summary This chapter discusses milling control. Brix graph curves are used to denote and compare mill control efficiency. The degree to which the values obtained in the mills approach the theoretical curve indicates how well each mill is doing its work. To establish these brix curves, the brix of back-roller juice is generally taken. In dry crushing mills, the brix of the feed-roller juice is higher. In wet crushing mills, on the contrary, it is the back-roller juice which has the higher brix. Mill control is based on an equation expressing the fact that the weight of material entering the milling plant is equal to the weight leaving, cane = imbibition water = mixed juice = bagasse. This equation though does not work out strictly correct in practice. The basic equation serves mainly to determine the weight of bagasse, the three other terms being generally weighed or measured. Also, before analysis, the bagasse, in turn, also loses a small fraction of its weight, which is generally negligible. One important method for milling control calculation is using the Hawaiian method.

E. HUGOT

2014-01-01T23:59:59.000Z

173

Statistical data of the uranium industry  

SciTech Connect

This document is a compilation of historical facts and figures through 1979. These statistics are based primarily on information provided voluntarily by the uranium exploration, mining, and milling companies. The production, reserves, drilling, and production capability information has been reported in a manner which avoids disclosure of proprietary information. Only the totals for the $1.5 reserves are reported. Because of increased interest in higher cost resources for long range planning purposes, a section covering the distribution of $100 per pound reserves statistics has been newly included. A table of mill recovery ranges for the January 1, 1980 reserves has also been added to this year's edition. The section on domestic uranium production capability has been deleted this year but will be included next year. The January 1, 1980 potential resource estimates are unchanged from the January 1, 1979 estimates.

none,

1980-01-01T23:59:59.000Z

174

Depleted Uranium Health Effects  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted Uranium Health Effects Depleted Uranium Health Effects Depleted Uranium line line Uranium Enrichment Depleted Uranium Health Effects Depleted Uranium Health Effects Discussion of health effects of external exposure, ingestion, and inhalation of depleted uranium. Depleted uranium is not a significant health hazard unless it is taken into the body. External exposure to radiation from depleted uranium is generally not a major concern because the alpha particles emitted by its isotopes travel only a few centimeters in air or can be stopped by a sheet of paper. Also, the uranium-235 that remains in depleted uranium emits only a small amount of low-energy gamma radiation. However, if allowed to enter the body, depleted uranium, like natural uranium, has the potential for both chemical and radiological toxicity with the two important target organs

175

Uranium industry annual 1996  

SciTech Connect

The Uranium Industry Annual 1996 (UIA 1996) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1996 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. Data on uranium raw materials activities for 1987 through 1996 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2006, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. A feature article, The Role of Thorium in Nuclear Energy, is included. 24 figs., 56 tabs.

NONE

1997-04-01T23:59:59.000Z

176

Domestic Uranium Production Report - Quarterly - Energy Information  

U.S. Energy Information Administration (EIA) Indexed Site

All Nuclear Reports All Nuclear Reports Domestic Uranium Production Report - Quarterly Data for 3rd Quarter 2013 | Release Date: October 31, 2013 | Next Release Date: February 2014 | full report Previous Issues Year: 2013-Q2 2013-Q1 2012-Q4 2012-Q3 2012-Q2 2012-Q1 2011-Q4 2011-Q3 2011-Q2 2011-Q1 2010-Q4 2010-Q3 2010-Q2 2010-Q1 2009-Q4 2009-Q3 2009-Q2 2009-Q1 2008-Q4 2008-Q3 2008-Q2 2008-Q1 Go 3rd Quarter 2013 U.S. production of uranium concentrate in the third quarter 2013 was 1,171,278 pounds U3O8, down 16 percent from the previous quarter and up 12 percent from the third quarter 2012. Third quarter 2013 uranium production is at its highest level since 1999. During the third quarter 2013, U.S. uranium was produced at six U.S. uranium facilities. U.S. Uranium Mill in Production (State)

177

Neurotoxicity of depleted uranium  

Science Journals Connector (OSTI)

Depleted uranium (DU) is a byproduct of the enrichment process of uranium for its more radioactive isotopes to be ... neurotoxicity of DU. This review reports on uranium uses and its published health effects, wit...

George C. -T. Jiang; Michael Aschiner

2006-04-01T23:59:59.000Z

178

SCHEDULE OF FEES Wet Milling  

E-Print Network (OSTI)

SCHEDULE OF FEES Wet Milling 100 g.......................$120..per sample* 1 kilogram of Illinois offers five milling procedures to determine processing characteristics of corn. Laboratory times. WET MILLING The wet milling process is used to produce starch (99.6% purity) as the primary

Illinois at Urbana-Champaign, University of

179

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9 9 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Year Exploration Mining Milling Processing Reclamation Total 2003 W W W W 117 321 2004 18 108 W W 121 420 2005 79 149 142 154 124 648 2006 188 121 W W 155 755 2007 375 378 107 216 155 1,231 2008 457 558 W W 154 1,563 2009 175 441 W W 162 1,096 2010 211 400 W W 125 1,073 2011 208 462 W W 102 1,191 2012 161 462 W W 179 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 6. Employment in the U.S. uranium production industry by category, 2003-2012 person-years W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. 0 200 400 600 800 1,000 1,200 1,400 1,600 2004 2005 2006 2007 2008

180

Excess Uranium Management  

Energy.gov (U.S. Department of Energy (DOE))

The Department is issuing a Request for Information on the effects of DOE transfers of excess uranium on domestic uranium mining, conversion, and enrichment industries.

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Uranium Industry Annual, 1992  

SciTech Connect

The Uranium Industry Annual provides current statistical data on the US uranium industry for the Congress, Federal and State agencies, the uranium and electric utility industries, and the public. The feature article, ``Decommissioning of US Conventional Uranium Production Centers,`` is included. Data on uranium raw materials activities including exploration activities and expenditures, resources and reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities including domestic uranium purchases, commitments by utilities, procurement arrangements, uranium imports under purchase contracts and exports, deliveries to enrichment suppliers, inventories, secondary market activities, utility market requirements, and uranium for sale by domestic suppliers are presented in Chapter 2.

Not Available

1993-10-28T23:59:59.000Z

182

EA-1388: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1388: Final Environmental Assessment EA-1388: Final Environmental Assessment EA-1388: Final Environmental Assessment Ground Water Compliance at the Shiprock Uranium Mill Tailings Site The U.S. Department of Energy (DOE) is proposing three ground water compliance strategies for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project site. These proposed strategies were derived through consultation with representatives of the Navajo UMTRA Program, the Navajo Environmental Protection Agency, and other agencies. The strategies are designed to minimize risk to human health and the environment that result from mill-related constituents in ground water and surface water. Final Environmental Assessment of Ground Water Compliance at the Shiprock Uranium Mill Tailings Site DOE/EA-1388 (September 2001)

183

EA-1388: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

388: Finding of No Significant Impact 388: Finding of No Significant Impact EA-1388: Finding of No Significant Impact Groundwater Compliance at the Shiprock Uranium Mill Tailings Site The U.S. Department of Energy is proposing three ground water compliance strategies for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project site. These proposed strategies were derived through consultation with representatives of the Navajo UMTRA Program, the Navajo Environmental Protection Agency, and other agencies. The strategies are designed to minimize risk to human health and the environment that result from mill-related constituents in ground water and surface water. Finding of No Significant Impact Ground Water Compliance at the Shiprock Uranium Mill Tailings SIte DOE/EA-1388 (September 2001)

184

gjpip.PDF  

Office of Legacy Management (LM)

GWGRJ 7.1 GWGRJ 7.1 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Grand Junction Uranium Mill Tailings Remedial Action (UMTRA) Project Site (Climax Uranium Millsite) July 1999 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed under DOE Contract No. DE-AC13-96GJ8733 Public Involvement Plan July 1999 Page 1 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Grand Junction, Colorado, Uranium Mill Tailings Site This Public Involvement Plan is tiered to the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project Public Participation Plan dated October 1997. This public involvement plan is specific to the Grand Junction, Colorado, site and describes the activities that will meet

185

Radiological aspects of in situ uranium recovery  

SciTech Connect

In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium in situ leaching in situ recovery (ISL / ISR), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and may make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since 1975. Solution mining involves the pumping of groundwater, fortified with oxidizing and complexing agents into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant. Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which Radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. An overview of the major aspects of the health physics and radiation protection programs that were developed at these facilities are discussed and contrasted to circumstances of the current generation and state of the art of Uranium ISR technologies and facilities. (authors)

BROWN, STEVEN H. [SHB INC., 7505 S. Xanthia Place, Centennial, Colorado (United States)

2007-07-01T23:59:59.000Z

186

DOE - Office of Legacy Management -- Mexican Hat Mill Site -...  

Office of Legacy Management (LM)

at Mexican Hat, Utah. This site is managed by the U.S. Department of Energy Office of Legacy Management. Final Site Observational Work Plan for the UMTRA Project Site at Mexican...

187

DOE to Transport Moab Mill Tailings by Rail | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Transport Moab Mill Tailings by Rail to Transport Moab Mill Tailings by Rail DOE to Transport Moab Mill Tailings by Rail August 5, 2008 - 2:40pm Addthis Department Approves Project Baseline and Obtains Nuclear Regulatory Commission Nod WASHINGTON, DC - The U.S. Department of Energy (DOE) today reaffirmed its prior decision to relocate mill tailings predominantly by rail from the former uranium-ore processing site near Moab, Utah, 30 miles north to Crescent Junction, Utah. As determined previously, oversized material that is not practical to be sized to fit into the containers will be transported by truck. "After evaluating the alternatives for safely transporting the mill tailings from Moab and considering input received from citizens in the Moab community and surrounding areas, DOE has decided to ship the tailings using

188

DOE - Office of Legacy Management -- Riverton Mill Site - WY 0-04  

Office of Legacy Management (LM)

Mill Site - WY 0-04 Mill Site - WY 0-04 FUSRAP Considered Sites Site: Riverton Mill Site (WY.0-04 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Riverton, Wyoming, Processing Site Documents Related to Riverton Mill Site Data Validation Package for the November 2008 Groundwater and Surface Water Sampling at the Riverton, Wyoming, Processing Site. February 2009 U. S. Department of Energy (DOE) Status and Planned Actions at the Riverton, Wyoming, Uranium Mill Tailing Radiation Control Act (UMTRCA) Title I Site April Gil, PhD Environment Team Lead Office of Legacy Management (LM) May 2, 20122 Status and Action Summary 􀂄 Surface

189

DOE - Office of Legacy Management -- Gunnison Mill Site - CO 0-06  

Office of Legacy Management (LM)

Gunnison Mill Site - CO 0-06 Gunnison Mill Site - CO 0-06 FUSRAP Considered Sites Site: Gunnison Mill Site (CO.0-06 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Gunnison, Colorado, Processing Site Documents Related to Gunnison Mill Site Verification Montioring Report for the Gunnison, Colorado, Processing Site, September 2007. 2011 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Gunnison, Colorado, Disposal Site. LMS/S08056. January 2012 U.S. Department of Energy 2009 UMTRCA Title I Annual Report January 2010 Gunnison, Colorado Page 8-1 8.0 Gunnison, Colorado, Disposal Site

190

DOE - Office of Legacy Management -- Rifle Mill Site - CO 0-11  

Office of Legacy Management (LM)

Rifle Mill Site - CO 0-11 Rifle Mill Site - CO 0-11 FUSRAP Considered Sites Site: Rifle Mill Site (CO.0-11 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Rifle, Colorado, New Processing Site Rifle, Colorado, Old Processing Site Documents Related to Rifle Mill Site 2009 Verification Monitoring Report for the Old and New Rifle, Colorado, Processing Sites; LMS/RFO/RFN/S05775; September 2009. This report evaluates and interprets groundwater monitoring data collected at the Old and New Rifle Sites and assesses the progress of meeting the compliance strategy for groundwater cleanup. 2012 Annual Site Inspection and Monitoring Report for Uranium Mill

191

DOE - Office of Legacy Management -- Naturita Mill Site - CO 0-08  

Office of Legacy Management (LM)

Naturita Mill Site - CO 0-08 Naturita Mill Site - CO 0-08 FUSRAP Considered Sites Site: Naturita Mill Site (CO.0-08) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Naturita, Colorado, Processing Site Documents Related to Naturita Mill Site Data Validation Package for the July and October 2008 Water Sampling at the Naturita Processing and Disposal Sites Data Validation Report for the July 2009 Groundwater and Surface Water Sampling at the Naturita, Colorado, Processing Site; LMS/NAP/S00709; October 2009 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Naturita, Colorado,

192

DOE - Office of Legacy Management -- Slick Rock Mill Site - CO 08  

NLE Websites -- All DOE Office Websites (Extended Search)

Slick Rock Mill Site - CO 08 Slick Rock Mill Site - CO 08 FUSRAP Considered Sites Site: Slick Rock Mill Site (CO.08) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Slick Rock, Colorado, Processing Site Documents Related to Slick Rock Mill Site 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Slick Rock, Colorado, Disposal Site. LMS/S09461. February 2013 Verification Monitoring Report for the Slick Rock, Colorado, Processing Sites, 2007 Update June 2008 Office of Legacy Management DOE M/1577 2008 - -L Work Performed Under DOE Contract No. for the U.S.

193

DOE to Transport Moab Mill Tailings by Rail | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transport Moab Mill Tailings by Rail Transport Moab Mill Tailings by Rail DOE to Transport Moab Mill Tailings by Rail August 5, 2008 - 2:40pm Addthis Department Approves Project Baseline and Obtains Nuclear Regulatory Commission Nod WASHINGTON, DC - The U.S. Department of Energy (DOE) today reaffirmed its prior decision to relocate mill tailings predominantly by rail from the former uranium-ore processing site near Moab, Utah, 30 miles north to Crescent Junction, Utah. As determined previously, oversized material that is not practical to be sized to fit into the containers will be transported by truck. "After evaluating the alternatives for safely transporting the mill tailings from Moab and considering input received from citizens in the Moab community and surrounding areas, DOE has decided to ship the tailings using

194

Mineralogical analysis and uranium distribution of the sediments from the upper Jackson formation, Karnes County, Texas  

E-Print Network (OSTI)

of the relationship between uranium distribu- tion and mineralogic composition of the sediment may provide more reliable methods for uranium exploration. Open pit mining and subsequent milling, or in situ leach- ing, are the two methods of uranium recovery... of the oxidized deposits, at and directly above the water table, are larger deposits of generally lower-grade ore that contains unoxidized uranium. The Galen Mine was the first mine in the unoxidized ore. This open pit mine is about two miles (3 km) south...

Fishman, Paul Harold

1978-01-01T23:59:59.000Z

195

8 - Uranium  

Science Journals Connector (OSTI)

Release of uranium (U) to the environment is mainly through the nuclear fuel cycle. In oxic waters, U(VI) is the predominant redox state, while U(IV) is likely to be encountered in anoxic waters. The free uranyl ion ( UO 2 2 + ) dominates dissolved U speciation at low pH while complexes with hydroxides and carbonates prevail in neutral and alkaline conditions. Whether the toxicity of U(VI) to fish can be predicted based on its free ion concentration remains to be demonstrated but a strong influence of pH has been shown. In the field, U accumulates in bone, liver, and kidney, but does not biomagnify. There is certainly potential for uptake of U via the gill based on laboratory studies; however, diet and/or sediment may be the major route of uptake, and may vary with feeding strategy. Uranium toxicity is low relative to many other metals, and is further reduced by increased calcium, magnesium, carbonates, phosphate, and dissolved organic matter in the water. Inside fish, U produces reactive oxygen species and causes oxidative damage at the cellular level. The radiotoxicity of enriched U has been compared with chemical toxicity and it has been postulated that both may work through a mechanism of production of reactive oxygen species. In practical terms, the potential for chemotoxicity of U outweighs the potential for radiotoxicity. The toxicokinetics and toxicodynamics of U are well understood in mammals, where bone is a stable repository and the kidney the target organ for toxic effects from high exposure concentrations. Much less is known about fish, but overall, U is one of the less toxic metals.

Richard R. Goulet; Claude Fortin; Douglas J. Spry

2011-01-01T23:59:59.000Z

196

Uranium Hexafluoride (UF6)  

NLE Websites -- All DOE Office Websites (Extended Search)

Hexafluoride (UF6) Hexafluoride (UF6) Uranium Hexafluoride (UF6) line line Properties of UF6 UF6 Health Effects Uranium Hexafluoride (UF6) Physical and chemical properties of UF6, and its use in uranium processing. Uranium Hexafluoride and Its Properties Uranium hexafluoride is a chemical compound consisting of one atom of uranium combined with six atoms of fluorine. It is the chemical form of uranium that is used during the uranium enrichment process. Within a reasonable range of temperature and pressure, it can be a solid, liquid, or gas. Solid UF6 is a white, dense, crystalline material that resembles rock salt. UF6 crystals in a glass vial image UF6 crystals in a glass vial. Uranium hexafluoride does not react with oxygen, nitrogen, carbon dioxide, or dry air, but it does react with water or water vapor. For this reason,

197

Uranium industry annual 1998  

SciTech Connect

The Uranium Industry Annual 1998 (UIA 1998) provides current statistical data on the US uranium industry`s activities relating to uranium raw materials and uranium marketing. It contains data for the period 1989 through 2008 as collected on the Form EIA-858, ``Uranium Industry Annual Survey.`` Data provides a comprehensive statistical characterization of the industry`s activities for the survey year and also include some information about industry`s plans and commitments for the near-term future. Data on uranium raw materials activities for 1989 through 1998, including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment, are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2008, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, and uranium inventories, are shown in Chapter 2. The methodology used in the 1998 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. The Form EIA-858 ``Uranium Industry Annual Survey`` is shown in Appendix D. For the readers convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix E along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 24 figs., 56 tabs.

NONE

1999-04-22T23:59:59.000Z

198

DOE Awards Contract for Moab Mill Tailings Cleanup | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Mill Tailings Cleanup Moab Mill Tailings Cleanup DOE Awards Contract for Moab Mill Tailings Cleanup November 4, 2011 - 12:00pm Addthis Media Contact Bill Taylor bill.taylor@srs.gov 803-952-8564 Cincinnati- The Department of Energy (DOE) announced today that it has awarded a competitive small business contract worth $121.2 million over the next five years as part of the Department's continued efforts to protect the Colorado River and downstream water users by removing uranium tailings at the former Atlas uranium-ore processing facility in Moab, Utah. Portage, Inc., a small business based in Idaho Falls, Idaho, will be leading the new contract. "The Moab project has the potential of being one of the Department of Energy's most successful environmental cleanup projects," Donald

199

DOE - Office of Legacy Management -- Pathfinder Lucky Mc Site - 042  

NLE Websites -- All DOE Office Websites (Extended Search)

Pathfinder Lucky Mc Site - 042 Pathfinder Lucky Mc Site - 042 FUSRAP Considered Sites Site: Pathfinder Lucky Mc Site (042) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Pathfinder Lucky Mc site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in the Gas Hills Uranium Mining District west of Casper, Wyoming. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. After the owner completes U.S. Nuclear Regulatory Commission license termination,

200

Uranium mill tailings: Congress addresses a long-neglected problem  

Science Journals Connector (OSTI)

...environmental viewpoint," says one public-interest lobbyist. This...a nu-clear power piant in Hanford, Washing-ton. The study...congressional advocates of the public's right to government information...ap-praising each according to its public re-sponsiveness and recommending...

LJ Carter

1978-10-13T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Evaluation of End Mill Coatings  

SciTech Connect

Milling tests were run on families of High Speed Steel (HSS) end mills to determine their lives while machining 304 Stainless Steel. The end mills tested were made from M7, M42 and T15-CPM High Speed Steels. The end mills were also evaluated with no coatings as well as with Titanium Nitride (TiN) and Titanium Carbo-Nitride (TiCN) coatings to determine which combination of HSS and coating provided the highest increase in end mill life while increasing the cost of the tool the least. We found end mill made from M42 gave us the largest increase in tool life with the least increase in cost. The results of this study will be used by Cutting Tool Engineering in determining which end mill descriptions will be dropped from our tool catalog.

L. J. Lazarus; R. L. Hester,

2005-08-01T23:59:59.000Z

202

Uranium at Y-12: Rolling and Forming | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Rolling ... Rolling ... Uranium at Y-12: Rolling and Forming Posted: July 22, 2013 - 3:40pm | Y-12 Report | Volume 10, Issue 1 | 2013 Rolling involves preheating a uranium or uranium alloy workpiece and passing it through a mill to reduce its thickness. This is useful in creating reactor fuel element foils and other products. Rolling mill operators possess a strong grasp of thickness-reduction limits, reheating intervals and temperatures, metallurgical phases, rolling speed and force, impurity influences and other techniques. Forming of enriched uranium is done through a process called hydroforming, a way of shaping malleable metals. Y-12 hydroform operators are highly skilled and trained machinists. Forming requires knowledge of friction on the workpiece, high-pressure application, tooling temperature and other

203

Uranium industry annual 1995  

SciTech Connect

The Uranium Industry Annual 1995 (UIA 1995) provides current statistical data on the U.S. uranium industry`s activities relating to uranium raw materials and uranium marketing. The UIA 1995 is prepared for use by the Congress, Federal and State agencies, the uranium and nuclear electric utility industries, and the public. It contains data for the period 1986 through 2005 as collected on the Form EIA-858, ``Uranium Industry Annual Survey``. Data collected on the ``Uranium Industry Annual Survey`` provide a comprehensive statistical characterization of the industry`s plans and commitments for the near-term future. Where aggregate data are presented in the UIA 1995, care has been taken to protect the confidentiality of company-specific information while still conveying accurate and complete statistical data. Data on uranium raw materials activities for 1986 through 1995 including exploration activities and expenditures, EIA-estimated reserves, mine production of uranium, production of uranium concentrate, and industry employment are presented in Chapter 1. Data on uranium marketing activities for 1994 through 2005, including purchases of uranium and enrichment services, enrichment feed deliveries, uranium fuel assemblies, filled and unfilled market requirements, uranium imports and exports, and uranium inventories are shown in Chapter 2. The methodology used in the 1995 survey, including data edit and analysis, is described in Appendix A. The methodologies for estimation of resources and reserves are described in Appendix B. A list of respondents to the ``Uranium Industry Annual Survey`` is provided in Appendix C. For the reader`s convenience, metric versions of selected tables from Chapters 1 and 2 are presented in Appendix D along with the standard conversion factors used. A glossary of technical terms is at the end of the report. 14 figs., 56 tabs.

NONE

1996-05-01T23:59:59.000Z

204

EA-1312: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1312: Final Environmental Assessment EA-1312: Final Environmental Assessment EA-1312: Final Environmental Assessment Ground Water Compliance at the Grand Junction UMTRA Project Site (Climax Uranium Millsite) This document is the Environmental Assessment (EA) for the proposed action to address ground water contamination at the Uranium Mill Tailings Remedial Action (UMTRA) Project site in Grand Junction, Colorado. This site is also known as the former Climax uranium millsite. The purpose of this EA is to present the proposed action and alternatives and discuss their environmental effects. The EA presents a strategy for achieving compliance with requirements established in the Uranium Mill Tailings Radiation Control Act (42 United States Code 7901 et seq.) and the U.S. Environmental Protection Agency' (EPA's) "Health and Environmental Protection Standards

205

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium Disposition of DOE Excess Depleted Uranium, Natural Uranium, and Low-Enriched Uranium The U.S. Department of Energy (DOE) owns and manages an inventory of depleted uranium (DU), natural uranium (NU), and low-enriched uranium (LEU) that is currently stored in large cylinders as depleted uranium hexafluoride (DUF6), natural uranium hexafluoride (NUF6), and low-enriched uranium hexafluoride (LEUF6) at the DOE Paducah site in western Kentucky (DOE Paducah) and the DOE Portsmouth site near Piketon in south-central Ohio (DOE Portsmouth)1. This inventory exceeds DOE's current and projected energy and defense program needs. On March 11, 2008, the Secretary of Energy issued a policy statement (the

206

Depleted Uranium Technical Brief  

E-Print Network (OSTI)

and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological healthDepleted Uranium Technical Brief United States Environmental Protection Agency Office of Air

207

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely Moab Mill Tailings Removal Project Reaches 5 Million Tons Disposed: Project Accomplishes Milestone While Doing it Safely February 27, 2012 - 12:00pm Addthis Media Contacts Donald Metzler, Moab Federal Project Director, (970) 257-2115 Wendee Ryan, S&K Aerospace Public Affairs Manager, (970) 257-2145 Grand Junction, CO- The U.S. Department of Energy (DOE) reached another milestone today for the Uranium Mill Tailings Remedial Action Project, having shipped 5 million tons of tailings from the massive pile located in Moab, Utah, to the engineered disposal cell near Crescent Junction, Utah. The pile comprised an estimated 16 million tons total when DOE's Remedial

208

SURVEY OF ROLLING MILL USED BY BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK  

Office of Legacy Management (LM)

SURVEY OF ROLLING MILL USED BY SURVEY OF ROLLING MILL USED BY BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK Work performed by the Health and Safety Research Division Gak Ridge fiational Laboratory Oak Ridge, Tennessee 37830 September 1980 OAK RIDGE NATIONAL LABORATORY operated by UNION CARBIDE CORPORATION for the DEPARTMENT OF ENERGY as part of the Formerly Utilized Sites!- Remedial Action Program SURVEY OF ROLLING MILL USED BY BETHLEHEM STEEL CORPORATION LACKAWANNA, NEW YORK A radiological survey was conducted at the Bethelem Steel Corporation Plant in Lackawanna, New York, on September 23, 1980, by representatives of Oak Ridge National Laboratory (ORNL). The subject of the radiological survey was a portion of the original 25.4-cm (lo-inch) bar mill used in converting uranium billets into 3.8-cm rods. All radiation survey

209

Microsoft Word - U0186500.doc  

Office of Legacy Management (LM)

500 500 GJO-2003-487-TAC GJO-GWSHP 11.7 UMTRA Ground Water Project Wildlife Management Plan for the Evaporation Pond at the Shiprock, New Mexico, UMTRA Site September 2003 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work Performed Under DOE Contract Number DE-AC-13-02GJ79491 Document Number U0186500 DOE/Grand Junction Office Wildlife Management PlanShiprock Evaporation Pond September 2003 Page 1 1.0 Introduction The Proposed Action in the Environmental Assessment of Ground Water Compliance at the Shiprock Mill Tailings Site (EA) (DOE 2001) recommends active ground water remediation for the portion of the Shiprock Uranium Mill Tailings Remedial Action (UMTRA) Project site

210

Welding of uranium and uranium alloys  

SciTech Connect

The major reported work on joining uranium comes from the USA, Great Britain, France and the USSR. The driving force for producing this technology base stems from the uses of uranium as a nuclear fuel for energy production, compact structures requiring high density, projectiles, radiation shielding, and nuclear weapons. This review examines the state-of-the-art of this technology and presents current welding process and parameter information. The welding metallurgy of uranium and the influence of microstructure on mechanical properties is developed for a number of the more commonly used welding processes.

Mara, G.L.; Murphy, J.L.

1982-03-26T23:59:59.000Z

211

FAQ 1-What is uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

What is uranium? What is uranium? What is uranium? Uranium is a radioactive element that occurs naturally in low concentrations (a few parts per million) in soil, rock, and surface and groundwater. It is the heaviest naturally occurring element, with an atomic number of 92. Uranium in its pure form is a silver-colored heavy metal that is nearly twice as dense as lead. In nature, uranium atoms exist as several isotopes: primarily uranium-238, uranium-235, and a very small amount of uranium-234. (Isotopes are different forms of an element that have the same number of protons in the nucleus, but a different number of neutrons.) In a typical sample of natural uranium, most of the mass (99.27%) consists of atoms of uranium-238. About 0.72% of the mass consists of atoms of uranium-235, and a very small amount (0.0055% by mass) is uranium-234.

212

Dissolution rates of uranium compounds in simulated lung fluid  

SciTech Connect

Maximum dissolution rates of uranium into simulated lung fluid from a variety of materials were measured at 37/sup 0/in the where f/sub i/ is in order to estimate clearance rates from the deep lung. A batch procedure was utilized in which samples containing as little as 10 ..mu..g of natural uranium could be tested. The materials included: products of uranium mining, milling and refining operations, coal fly ash, an environmental sample from a site exposed to multiple uranium sources, and purified samples of (NH/sub 4/)/sub 2/U/sub 2/O/sub 7/ U/sub 3/O/sub 8/, UO/sub 2/, and UF/sub 4/. Dissolution of uranium from several materials indicated the presence of more than one type of uranium compound; but in all cases, the fraction F of uranium remaining undissolved at any time t could be represented by the sum of up to three terms in the series: F = ..sigma../sub i/f/sub i/ exp (-0.693t/UPSILON/sub i/), where f/sub i/ is the initial fraction of component i with dissolution half-time epsilon/sub i/. Values of epsilon/sub i/ varied from 0.01 day to several thousand days depending on the physical and chemical form of the uranium. Dissolution occurred predominantly by formation of the (UO/sub 2/(CO/sub 3/)/sub 3/)/sup 4 -/ ion; and as a result, tetravalent uranium compounds dissolved slowly. Dissolution rates of size-separated yellow-cake aerosols were found to be more closely correlated with specific surface area than with aerodynamic diameter.

Kalkwarf, D.R.

1981-01-01T23:59:59.000Z

213

Uranium hexafluoride public risk  

SciTech Connect

The limiting value for uranium toxicity in a human being should be based on the concentration of uranium (U) in the kidneys. The threshold for nephrotoxicity appears to lie very near 3 {mu}g U per gram kidney tissue. There does not appear to be strong scientific support for any other improved estimate, either higher or lower than this, of the threshold for uranium nephrotoxicity in a human being. The value 3 {mu}g U per gram kidney is the concentration that results from a single intake of about 30 mg soluble uranium by inhalation (assuming the metabolism of a standard person). The concentration of uranium continues to increase in the kidneys after long-term, continuous (or chronic) exposure. After chronic intakes of soluble uranium by workers at the rate of 10 mg U per week, the concentration of uranium in the kidneys approaches and may even exceed the nephrotoxic limit of 3 {mu}g U per gram kidney tissue. Precise values of the kidney concentration depend on the biokinetic model and model parameters assumed for such a calculation. Since it is possible for the concentration of uranium in the kidneys to exceed 3 {mu}g per gram tissue at an intake rate of 10 mg U per week over long periods of time, we believe that the kidneys are protected from injury when intakes of soluble uranium at the rate of 10 mg U per week do not continue for more than two consecutive weeks. For long-term, continuous occupational exposure to low-level, soluble uranium, we recommend a reduced weekly intake limit of 5 mg uranium to prevent nephrotoxicity in workers. Our analysis shows that the nephrotoxic limit of 3 {mu}g U per gram kidney tissues is not exceeded after long-term, continuous uranium intake at the intake rate of 5 mg soluble uranium per week.

Fisher, D.R.; Hui, T.E.; Yurconic, M.; Johnson, J.R.

1994-08-01T23:59:59.000Z

214

Selective leaching of uranium from uranium-contaminated soils: Progress report 1  

SciTech Connect

Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60[degree]C) or long extraction times (23 h). Adding KMnO[sub 4] in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

1993-02-01T23:59:59.000Z

215

Selective leaching of uranium from uranium-contaminated soils: Progress report 1  

SciTech Connect

Three soils and a sediment contaminated with uranium were used to determine the effectiveness of sodium carbonate and citric acid leaching to decontaminated or remove uranium to acceptable regulatory levels. Two of the soils were surface soils from the DOE facility formerly called the Feed Materials Production Center (FMPC) at Fernald, Ohio. This facility is presently called the Femald Environmental Management Project (FEMP). Carbonate extractions generally removed from 70 to 90% of the uranium from the Fernald storage pad soil. Uranium was slightly more difficult to extract from the Fernald incinerator and the Y-12 landfarm soils. Very small amounts of uranium could be extracted from the storm sewer sediment. Extraction with carbonate at high solution-to-soil ratios were as effective as extractions at low solution-to-soil ratios, indicating attrition by the paddle mixer was not significantly different than that provided in a rotary extractor. Also, pretreatments such as milling or pulverizing the soil sample did not appear to increase extraction efficiency when carbonate extractions were carried out at elevated temperatures (60{degree}C) or long extraction times (23 h). Adding KMnO{sub 4} in the carbonate extraction appeared to increase extraction efficiency from the Fernald incinerator soil but not the Fernald storage pad soil. The most effective leaching rates (> 90 % from both Fernald soils) were obtained using a citrate/dithionite extraction procedure designed to remove amorphous (noncrystalline) iron/aluminum sesquioxides from surfaces of clay minerals. Citric acid also proved to be a very good extractant for uranium.

Francis, C.W.; Mattus, A.J.; Farr, L.L.; Elless, M.P.; Lee, S.Y.

1993-02-01T23:59:59.000Z

216

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 4. Uranium sellers to owners and operators of U.S. civilian nuclear power reactors, 2010-2012 2010 2011 2012 American Fuel Resources, LLC Advance Uranium Asset Management Ltd. (was Uranium Asset Management) Advance Uranium Asset Management Ltd. (was Uranium Asset Management) AREVA NC, Inc. (was COGEMA, Inc.) American Fuel Resources, LLC American Fuel Resources, LLC BHP Billiton Olympic Dam Corporation Pty Ltd AREVA NC, Inc. AREVA NC, Inc. CAMECO BHP Billiton Olympic Dam Corporation Pty Ltd BHP Billiton Olympic Dam Corporation Pty Ltd ConverDyn CAMECO CAMECO Denison Mines Corp. ConverDyn ConverDyn Energy Resources of Australia Ltd. Denison Mines Corp. Energy Fuels Resources Energy USA, Inc. Effective Energy N.V. Energy Resources of Australia Ltd.

217

Uranium purchases report 1992  

SciTech Connect

Data reported by domestic nuclear utility companies in their responses to the 1991 and 1992 ``Uranium Industry Annual Survey,`` Form EIA-858, Schedule B ``Uranium Marketing Activities,are provided in response to the requirements in the Energy Policy Act 1992. Data on utility uranium purchases and imports are shown on Table 1. Utility enrichment feed deliveries and secondary market acquisitions of uranium equivalent of US DOE separative work units are shown on Table 2. Appendix A contains a listing of firms that sold uranium to US utilities during 1992 under new domestic purchase contracts. Appendix B contains a similar listing of firms that sold uranium to US utilities during 1992 under new import purchase contracts. Appendix C contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data.

Not Available

1993-08-19T23:59:59.000Z

218

Mills Laboratory | Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Currently, Angela is working with Dr. Gary Mills research program on constructed wetlands. Additional responsibilities include chemical coordinator for the Mills lab and...

219

Process for continuous production of metallic uranium and uranium alloys  

DOE Patents (OSTI)

A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

1995-06-06T23:59:59.000Z

220

shippip.PDF  

Office of Legacy Management (LM)

6-TAR 6-TAR MAC-GWSHP 7.1 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project Site February 2001 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Work performed under DOE Contract No. DE-AC13-96GJ8733 Public Involvement Plan for the Shiprock UMTRA Site Page ii Contents Regulatory History.........................................................................................................................1 Roles and Responsibilities .............................................................................................................2 Site Background.............................................................................................................................3

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

DOE - Office of Legacy Management -- WNI Split Rock Site - 043  

NLE Websites -- All DOE Office Websites (Extended Search)

Split Rock Site - 043 Split Rock Site - 043 FUSRAP Considered Sites Site: WNI Split Rock Site (043) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Western Nuclear, Inc. (WNI) Split Rock site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Jeffrey City, Wyoming. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. After the owner completes U.S. Nuclear Regulatory Commission license termination, the Department of

222

DOE - Office of Legacy Management -- ANC Gas Hills Site - 040  

NLE Websites -- All DOE Office Websites (Extended Search)

ANC Gas Hills Site - 040 ANC Gas Hills Site - 040 FUSRAP Considered Sites Site: ANC Gas Hills Site (040) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The ANC Gas Hills site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Gas Hills, Wyoming. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority of the milling conducted at these sites was for private sale, but a portion was sold to the U.S. Government. After the owner completes U.S. Nuclear Regulatory Commission license termination, the Department of Energy¿s

223

DOE - Office of Legacy Management -- WNI Sherwood Site - 039  

NLE Websites -- All DOE Office Websites (Extended Search)

Sherwood Site - 039 Sherwood Site - 039 FUSRAP Considered Sites Site: WNI Sherwood Site (039) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in the State of Washington. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The majority milling conducted at this site was for private sale. After the owner completes NRC license termination the Department of Energy¿s Grand Junction Office will be responsible for providing stewardship for the groundwater and disposal

224

DOE - Office of Legacy Management -- Chevron Panna Maria Site - 030  

NLE Websites -- All DOE Office Websites (Extended Search)

Chevron Panna Maria Site - 030 Chevron Panna Maria Site - 030 FUSRAP Considered Sites Site: Chevron Panna Maria Site (030) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: This site is a Uranium Mill Tailings Remedial Action (UMTRA) Title II site located in Texas. UMTRA Title II sites are privately owned and operated sites that were active when the Uranium Mill Tailings Radiation Control Act was passed in 1978. The milling conducted at this site was for private sale. After the owner completes U. S. Nuclear Regulatory Commission license termination the Department of Energy¿s Grand Junction Office will be responsible for providing stewardship for the groundwater and disposal

225

An assessment of the radiological scenario around uranium mines in Singhbhum East district, Jharkhand, India  

Science Journals Connector (OSTI)

......S739-S745. 8 Vandenhove H. , et al. Assessment of radiation exposure in the uranium mining and milling area of Mailuu Suu, Kyrgyzstan. J. Environ. Radioact. (2006) 88:118-139. 9 Khan A. H. , Basu S. K., Jha V. N., Jha S......

R. M. Tripathi; S. K. Sahoo; S. Mohapatra; A. C. Patra; P. Lenka; J. S. Dubey; V. N. Jha; V. D. Puranik

2012-07-01T23:59:59.000Z

226

Summary history of domestic uranium procurement under US Atomic Energy Commission contracts. Final report  

SciTech Connect

During the period 1947 through 1970, the Atomic Energy Commission (AEC) fostered the rapid development and expansion of the domestic uranium mining and milling industry by providing a market for uranium. Some thirty-two mills were constructed during that period to produce U/sub 3/O/sub 8/ concentrates for sale to the AEC. In addition, there were various pilot plants, concentrators, upgraders, heap leach, and solution mining facilities that operated during the period. The purpose of this report is to compile a short narrative history of the AEC's uranium concentrate procurement program and to describe briefly each of the operations that produced uranium for sale to the AEC. Contractual arrangements are described and data are given on quantities of U/sub 3/O/sub 8/ purchased and prices paid. Similar data are included for V/sub 2/O/sub 5/, where applicable. Mill and other plant operating data were also compiled from old AEC records. These latter data were provided by the companies, as a contractual requirement, during the period of operation under AEC contracts. Additionally, an effort was made to determine the present status of each facility by reference to other recently published reports. No sites were visited nor were the individual reports reviewed by the companies, many of which no longer exist. The authors relied almost entirely on published information for descriptions of facilities and milling processes utilized.

Albrethsen, H. Jr.; McGinley, F.E.

1982-09-01T23:59:59.000Z

227

Records Schedule-UMTRA  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WEQh!?ST FOP. RECOhD WEQh!?ST FOP. RECOhD ' 3ISPOSITIQN AClT H O R l N - - . (See Insrru~t,ons on reverse) 'c NATIOKAL ARCMVES and RECORDS ADMINISTRATION (MR) WASHINGTON, DC 20408 I . FROM ( A g e n c y or e s t a b l ~ s h m e n t ) , U. S . Denar-merit o f Enercy 2. MAJOR SU8OlVlSiON i 51 bu~uerque $net a t i i o n s O f ?ice (kL9 j 3. MINOR SUBDIVISION Urani urn !

228

UMTRA Ground Water Project  

Office of Legacy Management (LM)

and viability of the compliance strategy. The current version of the GCAP is in review with NRC. Ongoing monitoring requirements will be evaluated and modified as...

229

2013 Uranium Marketing Annual Survey  

NLE Websites -- All DOE Office Websites (Extended Search)

for inflation. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2013). UF 6 is uranium hexafluoride. The natural UF 6 and enriched...

230

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS  

E-Print Network (OSTI)

THE ENERGY SPECTRA OF URANIUM ATOMS SPUTTERED FROM URANIUM METAL AND URANIUM DIOXIDE TARGETS Thesis. I have benefitted from conversations with many persons w~ile engaged in this project. I would like

Winfree, Erik

231

Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado: Revision 5  

SciTech Connect

Title 1 of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the inactive Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. Title 2 of the UMTRCA authorized the US Nuclear Regulatory Commission (NRC) or agreement state to regulate the operation and eventual reclamation of active uranium processing sites. The uranium mill tailings at the site were removed and reprocessed from 1977 to 1979. The contaminated areas include the former tailings area, the mill yard, the former ore storage area, and adjacent areas that were contaminated by uranium processing activities and wind and water erosion. The Naturita remedial action would result in the loss of 133 acres (ac) of contaminated soils at the processing site. If supplemental standards are approved by the NRC and the state of Colorado, approximately 112 ac of steeply sloped contaminated soils adjacent to the processing site would not be cleaned up. Cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers.

Not Available

1994-10-01T23:59:59.000Z

232

Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

Uranium Marketing Uranium Marketing Annual Report May 2011 www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2010 Uranium Marketing Annual Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity, Renewables, and Uranium Statistics. Questions about the preparation and content of this report may be directed to Michele Simmons, Team Leader,

233

recycled_uranium.cdr  

Office of Legacy Management (LM)

Recycled Uranium and Transuranics: Recycled Uranium and Transuranics: Their Relationship to Weldon Spring Site Remedial Action Project Introduction Historical Perspective On August 8, 1999, Energy Secretary Bill Richardson announced a comprehensive set of actions to address issues raised at the Paducah, Kentucky, Gaseous Diffusion Plant that may have had the potential to affect the health of the workers. One of the issues addressed the need to determine the extent and significance of radioactive fission products and transuranic elements in the uranium feed and waste products throughout the U.S. Department of Energy (DOE) national complex. Subsequently, a DOE agency-wide Recycled Uranium Mass Balance Project (RUMBP) was initiated. For the Weldon Spring Uranium Feed Materials Plant (WSUFMP or later referred to as Weldon Spring),

234

The Mathematics of Mills College  

E-Print Network (OSTI)

The Mathematics of Doodling Mills College The Möbius Band November 12, 2010 #12;Doodle Warm-up Draw the nar- whal to Bonus Project #1! #12;Every Doodle is a Winding Road Problem: Suppose X is a convex

Easton, Robert W.

235

Depleted uranium management alternatives  

SciTech Connect

This report evaluates two management alternatives for Department of Energy depleted uranium: continued storage as uranium hexafluoride, and conversion to uranium metal and fabrication to shielding for spent nuclear fuel containers. The results will be used to compare the costs with other alternatives, such as disposal. Cost estimates for the continued storage alternative are based on a life-cycle of 27 years through the year 2020. Cost estimates for the recycle alternative are based on existing conversion process costs and Capital costs for fabricating the containers. Additionally, the recycle alternative accounts for costs associated with intermediate product resale and secondary waste disposal for materials generated during the conversion process.

Hertzler, T.J.; Nishimoto, D.D.

1994-08-01T23:59:59.000Z

236

SUBAQUEOUS DISPOSAL OF MILL TAILINGS  

SciTech Connect

A study of mill tailings and sulfide minerals was carried out in order to understand their behavior under subaqueous conditions. A series of electrochemical experiments, namely, cyclic voltammetry, electrochemical impedance spectroscopy and galvanic coupling tests were carried out in artificial seawater and in pH 6.8 buffer solutions with chloride and ferric salts. Two mill tailings samples, one from the Kensington Mine, Alaska, and the other from the Holden Mine, Washington, were studied along with pyrite, galena, chalcopyrite and copper-activated sphalerite. SEM analysis of mill tailings revealed absence of sulfide minerals from the Kensington Mine mill tailings, whereas the Holden Mine mill tailings contained approximately 8% pyrite and 1% sphalerite. In order to conduct electrochemical tests, carbon matrix composite (CMC) electrodes of mill tailings, pyrite and galena were prepared and their feasibility was established by conducting a series of cyclic voltammetry tests. The cyclic voltammetry experiments carried out in artificial seawater and pH 6.8 buffer with chloride salts showed that chloride ions play an important role in the redox processes of sulfide minerals. For pyrite and galena, peaks were observed for the formation of chloride complexes, whereas pitting behavior was observed for the CMC electrodes of the Kensington Mine mill tailings. The electrochemical impedance spectroscopy conducted in artificial seawater provided with the Nyquist plots of pyrite and galena. The Nyquist plots of pyrite and galena exhibited an inert range of potential indicating a slower rate of leaching of sulfide minerals in marine environments. The galvanic coupling experiments were carried out to study the oxidation of sulfide minerals in the absence of oxygen. It was shown that in the absence of oxygen, ferric (Fe3+) ions might oxidize the sulfide minerals, thereby releasing undesirable oxidation products in the marine environment. The source of Fe{sup 3{minus}} ions may be attributed to iron-bearing sulfide (and oxide) minerals present in the mill tailings. However, the concentration of available Fe{sup 3{minus}} ions can be reduced by the precipitation of insoluble ferric hydroxides (Fe(OH ){sub 3}) by seawater due to its near neutral pH. In such case, the oxidation of a sulfide mineral is inhibited due to the absence of an oxidizing agent (viz. oxygen and/or Fe{sup 3+} ions). The experiments carried out in this study provided a better understanding of behavior of sulfide minerals and mill tailings in subaqueous conditions and may be useful for further investigation of sulfide minerals and mill tailings in other environments.

Neeraj K. Mendiratta; Roe-Hoan Yoon; Paul Richardson

1999-09-03T23:59:59.000Z

237

Uranium Marketing Annual Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

1. Foreign sales of uranium from U.S. suppliers and owners and operators of U.S. civilian nuclear power reactors by origin and delivery year, 2009-13 thousands pounds U3O8...

238

Uranium Marketing Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

a. Uranium purchased by owners and operators of U.S. civilian nuclear power reactors, 1994-2013 million pounds U3O8 equivalent Delivery year Total purchased Purchased from U.S....

239

Uranium Marketing Annual Report -  

NLE Websites -- All DOE Office Websites (Extended Search)

9. Contracted purchases of uranium by owners and operators of U.S. civilian nuclear power reactors, signed in 2013, by delivery year, 2014-23 thousand pounds U3O8 equivalent Year...

240

Uranium purchases report 1993  

SciTech Connect

Data reported by domestic nuclear utility companies in their responses to the 1991 through 1993 ``Uranium Industry Annual Survey,`` Form EIA-858, Schedule B,`` Uranium Marketing Activities,`` are provided in response to the requirements in the Energy Policy Act 1992. Appendix A contains an explanation of Form EIA-858 survey methodologies with emphasis on the processing of Schedule B data. Additional information published in this report not included in Uranium Purchases Report 1992, includes a new data table. Presented in Table 1 are US utility purchases of uranium and enrichment services by origin country. Also, this report contains additional purchase information covering average price and contract duration. Table 2 is an update of Table 1 and Table 3 is an update of Table 2 from the previous year`s report. The report contains a glossary of terms.

Not Available

1994-08-10T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EA-1268: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1268: Final Environmental Assessment EA-1268: Final Environmental Assessment EA-1268: Final Environmental Assessment Ground Water Compliance at the Tuba City Uranium Mill Tailings Site The U.S. Department of Energy (DOE) has selected a ground water compliance strategy for the Tuba City Uranium Mill Tailings Remedial Action (UMTRA) Project site (Tuba City site). This compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40, Part 192 of the U.S. Code of Federal Regulations (40 CFR 192) entitled "Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings." Contamination in the ground water consists of residual radioactive material, which is defined in the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) (42 U.S. Code, Section 4321

242

DOEIALl62350-64  

Office of Legacy Management (LM)

DOEIALl62350-64 DOEIALl62350-64 REV. 1 BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION A T THE URANIUM MILL TAILINGS SITE NEAR FALLS CITY, TEXAS September 1994 Prepared for U.S. Department of Energy UMTRA Project Office Albuquerque, New Mexico Prepared by Jacobs Engineering Group Inc. Albuquerque, New Mexico This page intentionally left blank BASELINE RISK ASSESSMEhT OF GROUhO WATER COhTAMlhATION AT THE URANIUM MILL TAILINGS SITE NEAR FALLS CITY, TEXAS CITIZEN'S SUMMARY CITIZEN'S SUMMARY This baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives:

243

The New Generation of Uranium In Situ Recovery Facilities: Design Improvements Should Reduce Radiological Impacts Relative to First Generation Uranium Solution Mining Plants  

SciTech Connect

In the last few years, there has been a significant increase in the demand for Uranium as historical inventories have been consumed and new reactor orders are being placed. Numerous mineralized properties around the world are being evaluated for Uranium recovery and new mining / milling projects are being evaluated and developed. Ore bodies which are considered uneconomical to mine by conventional methods such as tunneling or open pits, can be candidates for non-conventional recovery techniques, involving considerably less capital expenditure. Technologies such as Uranium In Situ Leaching / In Situ Recovery (ISL / ISR - also referred to as 'solution mining'), have enabled commercial scale mining and milling of relatively small ore pockets of lower grade, and are expected to make a significant contribution to overall world wide uranium supplies over the next ten years. Commercial size solution mining production facilities have operated in the US since the mid 1970's. However, current designs are expected to result in less radiological wastes and emissions relative to these 'first' generation plants (which were designed, constructed and operated through the 1980's). These early designs typically used alkaline leach chemistries in situ including use of ammonium carbonate which resulted in groundwater restoration challenges, open to air recovery vessels and high temperature calcining systems for final product drying vs the 'zero emissions' vacuum dryers as typically used today. Improved containment, automation and instrumentation control and use of vacuum dryers in the design of current generation plants are expected to reduce production of secondary waste byproduct material, reduce Radon emissions and reduce potential for employee exposure to uranium concentrate aerosols at the back end of the milling process. In Situ Recovery in the U.S. typically involves the circulation of groundwater, fortified with oxidizing (gaseous oxygen e.g) and complexing agents (carbon dioxide, e.g) into an ore body, solubilizing the uranium in situ, and then pumping the solutions to the surface where they are fed to a processing plant ( mill). Processing involves ion exchange and may also include precipitation, drying or calcining and packaging operations depending on facility specifics. This paper presents an overview of the ISR process and the health physics monitoring programs developed at a number of commercial scale ISL / ISR Uranium recovery and production facilities as a result of the radiological character of these processes. Although many radiological aspects of the process are similar to that of conventional mills, conventional-type tailings as such are not generated. However, liquid and solid byproduct materials may be generated and impounded. The quantity and radiological character of these by products are related to facility specifics. Some special monitoring considerations are presented which are required due to the manner in which radon gas is evolved in the process and the unique aspects of controlling solution flow patterns underground. The radiological character of these processes are described using empirical data collected from many operating facilities. Additionally, the major aspects of the health physics and radiation protection programs that were developed at these first generation facilities are discussed and contrasted to circumstances of the current generation and state of the art of uranium ISR technologies and facilities. In summary: This paper has presented an overview of in situ Uranium recovery processes and associated major radiological aspects and monitoring considerations. Admittedly, the purpose was to present an overview of those special health physics considerations dictated by the in situ Uranium recovery technology, to point out similarities and differences to conventional mill programs and to contrast these alkaline leach facilities to modern day ISR designs. As evidenced by the large number of ISR projects currently under development in the U.S. and worldwide, non conventional Uranium recovery techniques

Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

2008-07-01T23:59:59.000Z

244

Uranium purchases report 1994  

SciTech Connect

US utilities are required to report to the Secretary of Energy annually the country of origin and the seller of any uranium or enriched uranium purchased or imported into the US, as well as the country of origin and seller of any enrichment services purchased by the utility. This report compiles these data and also contains a glossary of terms and additional purchase information covering average price and contract duration. 3 tabs.

NONE

1995-07-01T23:59:59.000Z

245

Gas fluidized-bed stirred media mill  

DOE Patents (OSTI)

A gas fluidized-bed stirred media mill is provided for comminuting solid ticles. The mill includes a housing enclosing a porous fluidizing gas diffuser plate, a baffled rotor and stator, a hollow drive shaft with lateral vents, and baffled gas exhaust exit ports. In operation, fluidizing gas is forced through the mill, fluidizing the raw material and milling media. The rotating rotor, stator and milling media comminute the raw material to be ground. Small entrained particles may be carried from the mill by the gas through the exit ports when the particles reach a very fine size.

Sadler, III, Leon Y. (Tuscaloosa, AL)

1997-01-01T23:59:59.000Z

246

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

10. Uranium reserve estimates at the end of 2012 10. Uranium reserve estimates at the end of 2012 million pounds U3O8 Forward Cost2 Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s) $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 1 Sixteen respondents reported reserve estimates on 71 mines and properties. These uranium reserve estimates cannot be compared with the much larger historical data set of uranium reserves that were published in the July 2010 report U.S. Uranium Reserves Estimates at http://www.eia.gov/cneaf/nuclear/page/reserves/ures.html. Reserves, as reported here, do not necessarily imply compliance with U.S. or Canadian government definitions for purposes of investment disclosure.

247

FAQ 5-Is uranium radioactive?  

NLE Websites -- All DOE Office Websites (Extended Search)

Is uranium radioactive? Is uranium radioactive? Is uranium radioactive? All isotopes of uranium are radioactive, with most having extremely long half-lives. Half-life is a measure of the time it takes for one half of the atoms of a particular radionuclide to disintegrate (or decay) into another nuclear form. Each radionuclide has a characteristic half-life. Half-lives vary from millionths of a second to billions of years. Because radioactivity is a measure of the rate at which a radionuclide decays (for example, decays per second), the longer the half-life of a radionuclide, the less radioactive it is for a given mass. The half-life of uranium-238 is about 4.5 billion years, uranium-235 about 700 million years, and uranium-234 about 25 thousand years. Uranium atoms decay into other atoms, or radionuclides, that are also radioactive and commonly called "decay products." Uranium and its decay products primarily emit alpha radiation, however, lower levels of both beta and gamma radiation are also emitted. The total activity level of uranium depends on the isotopic composition and processing history. A sample of natural uranium (as mined) is composed of 99.3% uranium-238, 0.7% uranium-235, and a negligible amount of uranium-234 (by weight), as well as a number of radioactive decay products.

248

DOEIAU6235043S  

Office of Legacy Management (LM)

DOEIAU6235043S DOEIAU6235043S REV. 2 SUPPLEMENT TO THE BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE MONUMENT VALLEY URANIUM MILL TAILINGS SITE, NEAR CANE VALLEY, ARIZONA March 1996 Prepared for U.S. Department of Energy Environmental Restoration Division UMTRA Project Team Albuquerque, New Mexico Prepared by Jacobs Engineering Group Inc. Albuquerque, New Mexico SUPPLEMENT TO THE BASELINE RISK ASSESSMENT OF GROUND WATER CONTAMINATION AT THE MONUMENT VALLEY URANIUM MILL TAILINGS SITE NEAR CANE VALLEY, ARIZONA TABLE OF CONTENTS Supplement 1 Human Health Risk Assessment Methodology for the UMTRA Ground Water Project 2 Derivation of Ingestion Rate and Body Weight Distributions 3 Hydrologic Calculations 4 Ground Water Quality Data by Location 5 Surface Water Quality Data by Location

249

Gunnison, Colorado subpile study report. Revision 1  

SciTech Connect

To protect human health and the environment, the Uranium Mill Tailings Remedial Action (UMTRA) Project will remediate the uranium mill tailings site at Gunnison Colorado. There are explicit requirements (i.e., 40 CFR Part 192) for the surface remediation of radiologically contaminated soils on UMTRA sites. The removal of subpile sediment to the depth required by 40 CFR Part 192 will leave in place deeper foundation sediment that is contaminated with hazardous constituents other than radium-226 and thorium-230. The Department of Energy and the Colorado Department of Health have questioned whether this contaminated soil could potentially act as a continuing source of ground water contamination even after surface remediation based on 40 CFR Part 192 is complete. To evaluate the subpile sediments as a potential source of ground water contamination, the Gunnison Subpile study was initiated. This report summarizes the results and findings of this study.

Not Available

1994-08-01T23:59:59.000Z

250

Study of the distribution of 226Ra in ground water near the uranium industry of Jharkhand, India  

Science Journals Connector (OSTI)

......2008.12.004 . 4 Vandenhove H. , et al. Assessment of radiation exposure in the uranium mining and milling area of Mailuu Suu, Kyrgyzstan. J. Environ. Radioact. (2006) 88:118-139. doi:10.1016/j.jenvrad.2006.01.008 . 5......

R. M. Tripathi; V. N. Jha; S. K. Sahoo; N. K. Sethy; A. K. Shukla; V. D. Puranik; H. S. Kushwaha

2012-01-01T23:59:59.000Z

251

Enzymatic corn wet milling: engineering process and cost model  

Science Journals Connector (OSTI)

Enzymatic corn wet milling (E-milling) is a process derived from conventional wet milling for the recovery and purification of starch ... the total starch production in USA by conventional wet milling equaled 23 ...

Edna C Ramrez; David B Johnston; Andrew J McAloon

2009-01-01T23:59:59.000Z

252

John Stuart Mill's Sanction Utilitarianism: A Philosophical and Historical Interpretation  

E-Print Network (OSTI)

This dissertation argues for a particular interpretation of John Stuart Mills utilitarianism, namely that Mill is best read as a sanction utilitarian. In general, scholars commonly interpret Mill as some type of act or rule utilitarian. In making...

Wright, David

2014-04-24T23:59:59.000Z

253

Solutions to Yang-Mills equations  

E-Print Network (OSTI)

This article gives explicit solutions to the Yang-Mills equations. The solutions have positive energy that can be made arbitrarily small by selection of a parameter showing that Yang-Mills field theories do not have a mass gap.

Jorma Jormakka

2010-11-15T23:59:59.000Z

254

Gary Mills | Savannah River Ecology Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Mills Curriculum Vitae Faculty & Scientists SREL Home Gary Mills Savannah River Ecology Laboratory P O Drawer E, Aiken, SC 29802 (803) 725-5368 office (803) 725-3309 fax...

255

Design of a human powered maize mill  

E-Print Network (OSTI)

The process of milling corn into flour in many rural communities of East Africa has remained a traditional mortar and pestle process for centuries. Milling machines have failed in these communities largely due to poor ...

Salinas, Melvin Gustavo

2014-01-01T23:59:59.000Z

256

Controlling uranium reactivity March 18, 2008  

E-Print Network (OSTI)

for the last decade. Most of their work involves depleted uranium, a more common form of uraniumMarch 2008 Controlling uranium reactivity March 18, 2008 Uranium is an often misunderstood metal uranium research. In reality, uranium presents a wealth of possibilities for funda- mental chemistry. Many

Meyer, Karsten

257

Influence of uranium hydride oxidation on uranium metal behaviour  

SciTech Connect

This work addresses concerns that the rapid, exothermic oxidation of active uranium hydride in air could stimulate an exothermic reaction (burning) involving any adjacent uranium metal, so as to increase the potential hazard arising from a hydride reaction. The effect of the thermal reaction of active uranium hydride, especially in contact with uranium metal, does not increase in proportion with hydride mass, particularly when considering large quantities of hydride. Whether uranium metal continues to burn in the long term is a function of the uranium metal and its surroundings. The source of the initial heat input to the uranium, if sufficient to cause ignition, is not important. Sustained burning of uranium requires the rate of heat generation to be sufficient to offset the total rate of heat loss so as to maintain an elevated temperature. For dense uranium, this is very difficult to achieve in naturally occurring circumstances. Areas of the uranium surface can lose heat but not generate heat. Heat can be lost by conduction, through contact with other materials, and by convection and radiation, e.g. from areas where the uranium surface is covered with a layer of oxidised material, such as burned-out hydride or from fuel cladding. These rates of heat loss are highly significant in relation to the rate of heat generation by sustained oxidation of uranium in air. Finite volume modelling has been used to examine the behaviour of a magnesium-clad uranium metal fuel element within a bottle surrounded by other un-bottled fuel elements. In the event that the bottle is breached, suddenly, in air, it can be concluded that the bulk uranium metal oxidation reaction will not reach a self-sustaining level and the mass of uranium oxidised will likely to be small in relation to mass of uranium hydride oxidised. (authors)

Patel, N.; Hambley, D. [National Nuclear Laboratory (United Kingdom); Clarke, S.A. [Sellafield Ltd (United Kingdom); Simpson, K.

2013-07-01T23:59:59.000Z

258

Thermodynamics of the Yang-Mills gas  

Science Journals Connector (OSTI)

The contribution of nonlinear fluctuations (instantons) to the thermodynamics of the Yang-Mills gas at high temperature is estimated.

Barry J. Harrington and Harvey K. Shepard

1978-10-15T23:59:59.000Z

259

Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan  

SciTech Connect

The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

Fix, N. J.

2008-01-07T23:59:59.000Z

260

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 1040 of 28,905 results. 31 - 1040 of 28,905 results. Article CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE Moab, UT - Sixteen million tons of uranium mill tailings 80 feet high stood on the banks of the Colorado River near Moab in southeast Utah, as a legacy to the former ore-processing site that operated for nearly three decades beginning in the mid-1950s. http://energy.gov/em/articles/cleaning-mill-tailings-and-ground-water-moab-umtra-project-site Download CX-001669: Categorical Exclusion Determination Install Fence Around Bryan Mound K-9 Training Area CX(s) Applied: B1.11 Date: 04/20/2010 Location(s): Freeport, Texas Office(s): Fossil Energy, Strategic Petroleum Reserve Field Office http://energy.gov/nepa/downloads/cx-001669-categorical-exclusion-determination

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Uranium hexafluoride handling. Proceedings  

SciTech Connect

The United States Department of Energy, Oak Ridge Field Office, and Martin Marietta Energy Systems, Inc., are co-sponsoring this Second International Conference on Uranium Hexafluoride Handling. The conference is offered as a forum for the exchange of information and concepts regarding the technical and regulatory issues and the safety aspects which relate to the handling of uranium hexafluoride. Through the papers presented here, we attempt not only to share technological advances and lessons learned, but also to demonstrate that we are concerned about the health and safety of our workers and the public, and are good stewards of the environment in which we all work and live. These proceedings are a compilation of the work of many experts in that phase of world-wide industry which comprises the nuclear fuel cycle. Their experience spans the entire range over which uranium hexafluoride is involved in the fuel cycle, from the production of UF{sub 6} from the naturally-occurring oxide to its re-conversion to oxide for reactor fuels. The papers furnish insights into the chemical, physical, and nuclear properties of uranium hexafluoride as they influence its transport, storage, and the design and operation of plant-scale facilities for production, processing, and conversion to oxide. The papers demonstrate, in an industry often cited for its excellent safety record, continuing efforts to further improve safety in all areas of handling uranium hexafluoride. Selected papers were processed separately for inclusion in the Energy Science and Technology Database.

Not Available

1991-12-31T23:59:59.000Z

262

Standard Operating Procedure (SOP) -Milling Machine  

E-Print Network (OSTI)

Standard Operating Procedure (SOP) - Milling Machine · Keep all guards in place while operating the machine. · While operating the milling machine allow no one else to touch it. · Keep hands away from moving cutting tools. · Do not make measurements of the stock while the milling machine is powered. · Do

Veiga, Pedro Manuel Barbosa

263

2013 Uranium Marketing Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

year, 2009-13 Source: U.S. Energy Information Administration: Form EIA-858 "Uranium Marketing Annual Survey" (2009-13). Table 19. Foreign purchases of uranium by U.S. suppliers...

264

Early Breakthrough of Molybdenum and Uranium in a Permeable Reactive Barrier  

Science Journals Connector (OSTI)

S.M. Stoller Corporation, 2597 B 3/4 Road, Grand Junction, Colorado 81503, U.S. Environmental Protection Agency Region 8, Federal Facilities Program, Office of Environmental Protection and Remediation, 999 18th Street, Suite 300, Denver, Colorado 80202, and Cotter Corporation, 7800 East Dorado Place, Englewood, Colorado 80111 ... A permeable reactive barrier (PRB) using zerovalent iron (ZVI) was installed at a site near Caon City, CO, to treat molybdenum (Mo) and uranium (U) in groundwater. ... Uranium (U) mill tailings in northern Saskatchewan, Canada, contain elevated concentrations of molybdenum (Mo). ...

Stan J. Morrison; Paul S. Mushovic; Preston L. Niesen

2006-02-14T23:59:59.000Z

265

Corrosion-resistant uranium  

DOE Patents (OSTI)

The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

Hovis, Jr., Victor M. (Kingston, TN); Pullen, William C. (Knoxville, TN); Kollie, Thomas G. (Oak Ridge, TN); Bell, Richard T. (Knoxville, TN)

1983-01-01T23:59:59.000Z

266

Corrosion-resistant uranium  

DOE Patents (OSTI)

The present invention is directed to the protecting of uranium and uranium alloy articles from corrosion by providing the surfaces of the articles with a layer of an ion-plated metal selected from aluminum and zinc to a thickness of at least 60 microinches and then converting at least the outer surface of the ion-plated layer of aluminum or zinc to aluminum chromate or zinc chromate. This conversion of the aluminum or zinc to the chromate form considerably enhances the corrosion resistance of the ion plating so as to effectively protect the coated article from corrosion.

Hovis, V.M. Jr.; Pullen, W.C.; Kollie, T.G.; Bell, R.T.

1981-10-21T23:59:59.000Z

267

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Rats after Implantation with Depleted Uranium Fragments Guoying Zhu 1 * Mingguang...and distribution of uranium in depleted uranium (DU) implanted rats. Materials...of chronic exposure to DU. Depleted uranium|Bone|Kidney|Distribution......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

268

Operating and life-cycle costs for uranium-contaminated soil treatment technologies  

SciTech Connect

The development of a nuclear industry in the US required mining, milling, and fabricating a large variety of uranium products. One of these products was purified uranium metal which was used in the Savannah River and Hanford Site reactors. Most of this feed material was produced at the US Department of Energy (DOE) facility formerly called the Feed Materials Production Center at Fernald, Ohio. During operation of this facility, soils became contaminated with uranium from a variety of sources. To avoid disposal of these soils in low-level radioactive waste burial sites, increasing emphasis has been placed on the remediating soils contaminated with uranium and other radionuclides. To address remediation and management of uranium-contaminated soils at sites owned by DOE, the DOE Office of Technology Development (OTD) evaluates and compares the versatility, efficiency, and economics of various technologies that may be combined into systems designed to characterize and remediate uranium-contaminated soils. Each technology must be able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from soil, (3) treat or dispose of resulting waste streams, (4) meet necessary state and federal regulations, and (5) meet performance assessment objectives. The role of the performance assessment objectives is to provide the information necessary to conduct evaluations of the technologies. These performance assessments provide the basis for selecting the optimum system for remediation of large areas contaminated with uranium. One of the performance assessment tasks is to address the economics of full-scale implementation of soil treatment technologies. The cost of treating contaminated soil is one of the criteria used in the decision-making process for selecting remedial alternatives.

Douthat, D.M.; Armstrong, A.Q. [Oak Ridge National Lab., TN (United States). Health Sciences Research Div.; Stewart, R.N. [Univ. of Tennessee, Knoxville, TN (United States)

1995-09-01T23:59:59.000Z

269

Online SAG Mill Pluse Measurement and Optimization  

SciTech Connect

The grinding efficiency of semi autogenous milling or ball milling depends on the tumbling motion of the total charge within the mill. Utilization of this tumbling motion for efficient breakage of particles depends on the conditions inside the mill. However, any kind of monitoring device to measure the conditions inside the mill shell during operation is virtually impossible due to the severe environment presented by the tumbling charge. An instrumented grinding ball, which is capable of surviving a few hours and transmitting the impacts it experiences, is proposed here. The spectrum of impacts collected over 100 revolutions of the mills presents the signature of the grinding environment inside mill. This signature could be effectively used to optimize the milling performance by investigating this signature's relation to mill product size, mill throughput, make-up ball size, mill speed, liner profile and ball addition rates. At the same time, it can also be used to design balls and liner systems that can survive longer in the mill. The technological advances made in electronics and communication makes this leap in instrumentation certainly viable. Hence, the instrumented grinding ball offers the ability to qualitatively observe and optimize the milling environment. An instrumented load cell package that can measure the force of impacts inside the grinding chamber of a mill is developed here. The signal from the instrumented load cell package is interpreted in terms of a histogram termed as an impact spectrum which is a plot of the number of impacts at a specific energy level against the energy. It reflects on the average force regime of the mill. The instrumented load cell package was calibrated against the ultra fast load cell which has been unanimously accepted as a standard to measure single breakage events. The load cell package was successfully used to produce impact spectra in an 8.5 inch lab scale mill. The mill speed and the ball size were varied to study their effect on the impact spectra. A good correlation was found between the process variables and the impact spectra. The load cell package was then used in a 16 inch pilot scale mill. The mill speed, ball size, and mill filling were varied here and a consistent trend between these variables and impact spectra was observed. With a better understanding developed from the initial tests, the design of the load cell package was significantly changed to eliminate noise. With the new design, the impact spectra were re-determined in the 16 inch pilot mill varying the process variables - ball size, mill speed, and mill filling. Finally, it is successfully shown that a change in the operating variables of a mill can be seen in the impact spectra and that this concept can be successfully developed to monitor the grinding operation of industrial mills. To adapt it to industrial level it is mandatory to make the load cell package wireless. A design of a wireless circuit that is capable of transferring data at the required speed of 1000 kbps was also developed and tested at Cortez Gold Mines (CGM), Nevada.

Raj Rajamani; Jose Delgadillo; Vishal Duriseti

2007-06-30T23:59:59.000Z

270

Moab Mill Tailings Removal Project Plans to Resume Train Shipments in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plans to Resume Train Shipments Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return Moab Mill Tailings Removal Project Plans to Resume Train Shipments in March; All of the Laid Off Workers Will Return February 25, 2013 - 12:00pm Addthis Media Contacts Donald Metzler, donald.metzler@gjem.doe.gov 970-257-2115 Jeff Biagini, jeff.biagini@gjemrac.doe.gov 970-257-2117 Wendee Ryan, wryan@gjemtac.doe.gov 970-257-2145 Grand Junction, CO - All 27 employees of the Remedial Action Contractor (RAC) to the U.S. Department of Energy will return to work on the Uranium Mill Tailings Remedial Action Project on March 4, following a 3-month planned furlough. Project shipping and disposal operations have been shut down, as planned, since late November 2012, but are scheduled to resume

271

file://\\\\fs-f1\\shared\\uranium\\uranium.html  

Annual Energy Outlook 2012 (EIA)

The initial uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

272

Method for fabricating uranium foils and uranium alloy foils  

DOE Patents (OSTI)

A method of producing thin foils of uranium or an alloy. The uranium or alloy is cast as a plate or sheet having a thickness less than about 5 mm and thereafter cold rolled in one or more passes at substantially ambient temperatures until the uranium or alloy thereof is in the shape of a foil having a thickness less than about 1.0 mm. The uranium alloy includes one or more of Zr, Nb, Mo, Cr, Fe, Si, Ni, Cu or Al.

Hofman, Gerard L. (Downers Grove, IL); Meyer, Mitchell K. (Idaho Falls, ID); Knighton, Gaven C. (Moore, ID); Clark, Curtis R. (Idaho Falls, ID)

2006-09-05T23:59:59.000Z

273

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

9. Summary production statistics of the U.S. uranium industry, 1993-2012 9. Summary production statistics of the U.S. uranium industry, 1993-2012 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Exploration and Development Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars)1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 Mine Production of Uranium (million pounds U3O8) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 Uranium Concentrate Production (million pounds U3O8) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1

274

The Bowersock Mills and Power Company 1874  

NLE Websites -- All DOE Office Websites (Extended Search)

Incremental Hydroelectric Energy The Bowersock Mills and Power Co., Lawrence, KS Hydroelectric Energy Potential for U.S. BMPC Plant At Forefront of Development Curve "In our...

275

Colony Mills Limited | Open Energy Information  

Open Energy Info (EERE)

Limited Place: Lahore, Pakistan Sector: Solar Product: Yarn manufacturer, plans to set up solar thermal plant. References: Colony Mills Limited1 This article is a stub. You can...

276

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......ingestion of natural uranium in food and drink, and...for the measurement of uranium in urine samples, DU...respect to potential health hazards can be detected...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Hllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

277

Assessment of exposure to depleted uranium  

Science Journals Connector (OSTI)

......Article Assessment of exposure to depleted uranium P. Roth V. Hollriegl E. Werner...for determining the amount of depleted uranium (DU) incorporated. The problems...Assessment of exposure to depleted uranium. | In most circumstances......

P. Roth; V. Hllriegl; E. Werner; P. Schramel

2003-07-01T23:59:59.000Z

278

Welcome to Cotton Mills At Cotton Mills, we believe your accommodation should help you make the most of your  

E-Print Network (OSTI)

Welcome to Cotton Mills At Cotton Mills, we believe your accommodation should help you make to an amazing £1,200 per annum. Cotton Mills is fully certificated by: Cotton Mills is fully certificated. Cotton Mills is conveniently located on Radford Boulevard, right next to Norton Court (NTU accommodation

Evans, Paul

279

2013 Uranium Marketing Annual Report  

Gasoline and Diesel Fuel Update (EIA)

accounted for 32%. The remaining 16% originated from Brazil, China, Czech Republic, Germany, Hungary, Malawi, Namibia, Niger, Portugal, and South Africa. COOs purchased uranium...

280

U.S.Uranium Reserves  

Annual Energy Outlook 2012 (EIA)

conditions. The uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

2013 Uranium Marketing Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration, Form EIA-858 "Uranium Marketing Annual Survey" (2013)....

282

2013 Uranium Marketing Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Annual, Tables 10, 11 and 16. 2003-2013-Form EIA-858, "Uranium Marketing Annual Survey". million pounds U 3 O 8 equivalent 1 Includes purchases between...

283

Virtual cutter path display for dental milling machine  

E-Print Network (OSTI)

This paper presents the prototype of a mixed reality system using the computer controlled dental milling machine, which is called MRD Mill. First, overview of the core dental milling machine developed in this study is ...

Ito, Teruaki

284

Marathon/Vitro to seek uranium  

Science Journals Connector (OSTI)

Marathon/Vitro to seek uranium ... Last week, Marathon Oil agreed with Vitro Corp. of America to explore jointly for uranium in North America. ...

1967-03-13T23:59:59.000Z

285

Final Uranium Leasing Program Programmatic Environmental Impact...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for DOE's Uranium Leasing Program, under which DOE administers tracts of land in western Colorado for exploration, development, and the extraction of uranium and vanadium...

286

Conversion of depleted uranium hexafluoride to a solid uranium compound  

DOE Patents (OSTI)

A process for converting UF.sub.6 to a solid uranium compound such as UO.sub.2 and CaF. The UF.sub.6 vapor form is contacted with an aqueous solution of NH.sub.4 OH at a pH greater than 7 to precipitate at least some solid uranium values as a solid leaving an aqueous solution containing NH.sub.4 OH and NH.sub.4 F and remaining uranium values. The solid uranium values are separated from the aqueous solution of NH.sub.4 OH and NH.sub.4 F and remaining uranium values which is then diluted with additional water precipitating more uranium values as a solid leaving trace quantities of uranium in a dilute aqueous solution. The dilute aqueous solution is contacted with an ion-exchange resin to remove substantially all the uranium values from the dilute aqueous solution. The dilute solution being contacted with Ca(OH).sub.2 to precipitate CaF.sub.2 leaving dilute NH.sub.4 OH.

Rothman, Alan B. (Willowbrook, IL); Graczyk, Donald G. (Lemont, IL); Essling, Alice M. (Elmhurst, IL); Horwitz, E. Philip (Naperville, IL)

2001-01-01T23:59:59.000Z

287

Long-term surveillance plan for the Bodo Canyon Disposal Site, Durango, Colorado  

SciTech Connect

This long-term surveillance plan (LTSP) for the Durango, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Durango (Bodo Canyon) disposal site, which will be referred to as the disposal site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). RRMs include tailings and other uranium ore processing wastes still at the site, which the DOE determines to be radioactive. This LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992).

Not Available

1994-03-01T23:59:59.000Z

288

DOE - Office of Legacy Management -- Belfield Mill Site - ND...  

Office of Legacy Management (LM)

Belfield Mill Site - ND 0-01 FUSRAP Considered Sites Site: Belfield Mill Site (ND.0-01 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site...

289

piptub.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

MAC-GWTUB 7.1 MAC-GWTUB 7.1 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Tuba City, Arizona, Uranium Mill Tailings Site May 1998 Prepared by U.S. Department of Energy Albuquerque Operations Office Grand Junction Office Work performed under DOE Contract No. DE-AC13-96GJ87335 DOE Grand Junction Office Page 1 Public Involvement Plan for Tuba City, Arizona May 1998 Public Involvement Plan for the Environmental Assessment of Ground Water Compliance at the Tuba City, Arizona, Uranium Mill Tailings Site This public participation plan is tiered to the programmatic Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project Public Participation Plan dated October 1997. This plan is specific to the Tuba City, Arizona, site and details the activities that have been or will be

290

Microsoft Word - eis-198.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SUMMARY SUMMARY This programmatic environmental impact statement (PEIS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PEIS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC '7901 et seq. Congress found that uranium mill tailings ". . . may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and

291

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 - 21490 of 28,905 results. 81 - 21490 of 28,905 results. Page Manhattan Project Signature Facilities The Department of Energy, in the mid-1990s, developed a list of eight Manhattan Project properties that were designated as "Signature Facilities." These properties, taken together, provided the... http://energy.gov/management/manhattan-project-signature-facilities Article DOE Amends Decision for the Remediation of the Moab Uranium Mill Tailings in Moab, Utah WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced an amendment to its 2005 Record of Decision (ROD) for the Moab Uranium Mill Tailings Remedial Action (UMTRA) Project to allow... http://energy.gov/articles/doe-amends-decision-remediation-moab-uranium-mill-tailings-moab-utah Page EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel

292

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. uranium mine production and number of mines and sources, 2003-2012 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Underground (estimated contained thousand pounds U3O8) W W W W W W W W W W Open Pit (estimated contained thousand pounds U3O8) 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching (thousand pounds U3O8) W W 2,681 4,259 W W W W W W Other1 (thousand pounds U3O8) W W W W W W W W W W Total Mine Production (thousand pounds U3O8) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Number of Operating Mines Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources1 1 1 2 1 1 1 2 1 1 1

293

Domestic Uranium Production Report  

Gasoline and Diesel Fuel Update (EIA)

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012 In-Situ-Leach Plant Owner In-Situ-Leach Plant Name County, State (existing and planned locations) Production Capacity (pounds U3O8 per year) Operating Status at End of the Year 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources,Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed

294

Wet Corn Milling Energy Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

307 307 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Energy Efficiency Improvement and Cost Saving Opportunities for the Corn Wet Milling Industry An ENERGY STAR Guide for Energy and Plant Managers Christina Galitsky, Ernst Worrell and Michael Ruth Environmental Energy Technologies Division Sponsored by the U.S. Environmental Protection Agency July 2003 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product,

295

FAQ 7-How is depleted uranium produced?  

NLE Websites -- All DOE Office Websites (Extended Search)

How is depleted uranium produced? How is depleted uranium produced? How is depleted uranium produced? Depleted uranium is produced during the uranium enrichment process. In the United States, uranium is enriched through the gaseous diffusion process in which the compound uranium hexafluoride (UF6) is heated and converted from a solid to a gas. The gas is then forced through a series of compressors and converters that contain porous barriers. Because uranium-235 has a slightly lighter isotopic mass than uranium-238, UF6 molecules made with uranium-235 diffuse through the barriers at a slightly higher rate than the molecules containing uranium-238. At the end of the process, there are two UF6 streams, with one stream having a higher concentration of uranium-235 than the other. The stream having the greater uranium-235 concentration is referred to as enriched UF6, while the stream that is reduced in its concentration of uranium-235 is referred to as depleted UF6. The depleted UF6 can be converted to other chemical forms, such as depleted uranium oxide or depleted uranium metal.

296

Uranyl Protoporphyrin: a New Uranium Complex  

Science Journals Connector (OSTI)

...received 3 times the LD50 of uranium as uranyl protoporphyrin...nitrate, had showed livers depleted of glycogen and kidneys...destruc-tion typical of uranium poisoning. The uranium-damaged...T. Godwin et al., Cancer 8, 601 (1954). 5...excretion of hexavalent uranium in man," in Proc...

ROBERT E. BASES

1957-07-26T23:59:59.000Z

297

Uranium: Environmental Pollution and Health Effects  

Science Journals Connector (OSTI)

Uranium is found ubiquitously in nature in low concentrations in soil, rock, and water. Naturally occurring uranium contains three isotopes, namely 238U, 235U, and 234U. All uranium isotopes have the same chemical properties, but they have different radiological properties. The main civilian use of uranium is to fuel nuclear power plants, whereas high enriched (in 235U) uranium is used in the military sector as nuclear explosives and depleted uranium (DU) as penetrators or tank shielding. Exposure to uranium may cause health problems due to its radiological (uranium is predominantly emitting alpha-particles) and chemical actions (heavy metal toxicity). Uranium uptake may occur by ingestion, inhalation, contaminated wounds, and embedded fragments especially for soldiers. Inhalation of dust is considered the major pathway for uranium uptake in workplaces. Soluble uranium compounds tend to quickly pass through the body, whereas insoluble uranium compounds pose a more serious inhalation exposure hazard. The kidney is the most sensitive organ for uranium chemotoxicity. An important indirect radiological effect of uranium is the increased risk of lung cancers from inhalation of the daughter products of radon, a noble gas in the uranium decay chains that transports uranium-derived radioactivity from soil into the indoor environment. No direct evidence about the carcinogenic effect of DU in humans is available yet.

D. Melo; W. Burkart

2011-01-01T23:59:59.000Z

298

The End of Cheap Uranium  

E-Print Network (OSTI)

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a worldwide nuclear energy phase-out is in order. If such a slow global phase-out is not voluntarily effected, the end of the present cheap uranium supply situation will be unavoidable. The result will be that some countries will simply be unable to afford sufficient uranium fuel at that point, which implies involuntary and perhaps chaotic nuclear phase-outs in those countries involving brownouts, blackouts, and worse.

Michael Dittmar

2011-06-21T23:59:59.000Z

299

Safe Operating Procedure SAFETY PROTOCOL: URANIUM  

E-Print Network (OSTI)

involve the use of natural or depleted uranium. Natural isotopes of uranium are U-238, U-235 and U-234 (see Table 1 for natural abundances). Depleted uranium contains less of the isotopes: U-235 and U-234. The specific activity of depleted uranium (5.0E-7 Ci/g) is less than that of natural uranium (7.1E-7 Ci

Farritor, Shane

300

PERFORMANCE MODEL FOR MULTIBLADED WATER-PUMPING WIND-MILLS  

Science Journals Connector (OSTI)

ABSTRACT The steady and the dynamic equilibrium of a multibladed water-pumping wind-mill has been studied under the assumption of a simple model. Good agreement has been found between theoretical and experimental results. KEYWORDS Wind energy; water-pumping wind-mills; wind-mill design; wind-mill test; performance optimization.

R. Pallabazzer

1986-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A review of uranium economics  

Science Journals Connector (OSTI)

The recent increase in the demand for power for commercial use, the challenges facing fossil fuel use and the prospective of cheap nuclear power motivate different countries to plan for the use of nuclear power. This paper reviews many aspects of uranium economics, which includes the advantages and disadvantages of nuclear power, comparisons with other sources of power, nuclear power production and requirements, the uranium market, uranium pricing, spot price and long-term price indicators, and the cost of building a nuclear power facility.

A.K. Mazher

2009-01-01T23:59:59.000Z

302

Uranium Mining Life-Cycle Energy Cost vs. Uranium Resources  

Science Journals Connector (OSTI)

The long-term viability of nuclear energy systems depends on the availability of uranium and on the question, whether the overall energy balance of the fuel cycle is positive, taking into account the full life-cy...

W. Eberhard Falck

2012-01-01T23:59:59.000Z

303

Accumulation and Distribution of Uranium in Rats after Implantation with Depleted Uranium Fragments  

Science Journals Connector (OSTI)

......Environmental and health consequences of depleted uranium use in the 1991 Gulf...Properties, use and health effects of depleted uranium (DU): a general...J. (2002). Health effects of embedded depleted uranium. Mil Med. 167......

Guoying Zhu; Mingguang Tan; Yulan Li; Xiqiao Xiang; Heping Hu; Shuquan Zhao

2009-05-01T23:59:59.000Z

304

Uranium-loaded apoferritin with antibodies attached: molecular design for uranium neutron-capture therapy  

Science Journals Connector (OSTI)

...Molecular design for uranium neutron-capture therapy (cancer/immunotherapy...methodology for cancer therapy. Boron...system using uranium, as described...800 to =400 uranium atoms per apoferritin...uranyl ions were depleted, and loading...

J F Hainfeld

1992-01-01T23:59:59.000Z

305

Characterization of uranium isotopic abundances in depleted uranium metal assay standard 115  

Science Journals Connector (OSTI)

Certified reference material (CRM) 115, Uranium (Depleted) Metal (Uranium Assay Standard), was analyzed using a ... TRITON Thermal Ionization Mass Spectrometer to characterize the uranium isotope-amount ratios. T...

K. J. Mathew; G. L. Singleton; R. M. Essex

2013-04-01T23:59:59.000Z

306

The Paradox of Uranium Development: A Polanyian Analysis of Social Movements Surrounding the Pion Ridge Uranium Mill.  

E-Print Network (OSTI)

?? Renewal of nuclear energy development has been proposed as one viable solution for reducing greenhouse gas emissions and impacts of climate change. This discussion (more)

Malin, Stephanie Ann

2011-01-01T23:59:59.000Z

307

Depleted Uranium Hexafluoride Management  

NLE Websites -- All DOE Office Websites (Extended Search)

for for DUF 6 Conversion Project Environmental Impact Statement Scoping Meetings November/December 2001 Overview Depleted Uranium Hexafluoride (DUF 6 ) Management Program DUF 6 EIS Scoping Briefing 2 DUF 6 Management Program Organizational Chart DUF 6 Management Program Organizational Chart EM-10 Policy EM-40 Project Completion EM-20 Integration EM-50 Science and Technology EM-31 Ohio DUF6 Management Program EM-32 Oak Ridge EM-33 Rocky Flats EM-34 Small Sites EM-30 Office of Site Closure Office of Environmental Management EM-1 DUF 6 EIS Scoping Briefing 3 DUF 6 Management Program DUF 6 Management Program * Mission: Safely and efficiently manage the DOE inventory of DUF 6 in a way that protects the health and safety of workers and the public, and protects the environment DUF 6 EIS Scoping Briefing 4 DUF 6 Inventory Distribution

308

Disposition of uranium-233  

SciTech Connect

The US is developing a strategy for the disposition of surplus weapons-usable uranium-233 ({sup 233}U). The strategy (1) identifies the requirements for the disposition of surplus {sup 233}U; (2) identifies potential disposition options, including key issues to be resolved with each option; and (3) defines a road map that identifies future key decisions and actions. The disposition of weapons-usable fissile materials is part of a US international arms-control program for reduction of the number of nuclear weapons and the quantities of nuclear-weapons-usable materials worldwide. The disposition options ultimately lead to waste forms requiring some type of geological disposal. Major options are described herein.

Tousley, D.R. [Dept. of Energy, Washington, DC (United States). Office of Fissile Materials Disposition; Forsberg, C.W.; Krichinsky, A.M. [Oak Ridge National Lab., TN (United States)

1997-10-16T23:59:59.000Z

309

Mille Lacs Energy Cooperative | Open Energy Information  

Open Energy Info (EERE)

Mille Lacs Energy Cooperative Mille Lacs Energy Cooperative (Redirected from Mille Lacs Electric Coop) Jump to: navigation, search Name Mille Lacs Energy Cooperative Place Minnesota Utility Id 12546 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel Space Heating Rate Electric Combination Heating Rate Freedom Heating Rate Residential General Service Residential Green Power Energy Large Power Commercial Large Power - Industrial Industrial Light - 100 watt HPS Lighting Light - 150 watt HPS Lighting

310

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Domestic Uranium Production Report June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. U.S. Energy Information Administration | 2012 Domestic Uranium Production Report ii Contacts This report was prepared by the staff of the Renewables and Uranium Statistics Team, Office of Electricity,

311

2012 Uranium Marketing Annual Report  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Uranium Marketing Annual Report May 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. May 2013 U.S. Energy Information Administration | 2012 Uranium Marketing Annual Report ii

312

Uranium Enrichment's $7-Billion Uncertainty  

Science Journals Connector (OSTI)

...229 : 1407 ( 1985 ). Uranium...claims John R. Longenecker, who heads...because it be-John Longenecker '"ou have...based on gas centrifuges Finally...research on the centrifuge technology...21 June 1985, p. 1407...

COLIN NORMAN

1986-04-18T23:59:59.000Z

313

2013 Uranium Marketing Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Annual, Tables 28, 29, 30 and 31. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". Notes: Totals may not equal sum of components because of independent...

314

2013 Uranium Marketing Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Annual, Tables 10, 11 and 16. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". dollars per pound U 3 O 8 equivalent dollars per pound U 3 O 8...

315

2013 Uranium Marketing Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Annual, Tables 28, 29, 30 and 31. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". million pounds U 3 O 8 equivalent million pounds U 3 O 8 equivalent...

316

2013 Uranium Marketing Annual Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Annual, Tables 22, 23, 25, and 27. 2003-13-Form EIA-858, "Uranium Marketing Annual Survey". - No data reported. 0 10 20 30 40 50 60 70 1994 1995 1996 1997...

317

Uranium Resources Inc URI | Open Energy Information  

Open Energy Info (EERE)

Uranium Resources Inc URI Uranium Resources Inc URI Jump to: navigation, search Name Uranium Resources, Inc. (URI) Place Lewisville, Texas Zip 75067 Product Uranium Resources, Inc. (URI) is primarily engaged in the business of acquiring, exploring, developing and mining uranium properties using the in situ recovery (ISR) or solution mining process. References Uranium Resources, Inc. (URI)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Uranium Resources, Inc. (URI) is a company located in Lewisville, Texas . References ↑ "Uranium Resources, Inc. (URI)" Retrieved from "http://en.openei.org/w/index.php?title=Uranium_Resources_Inc_URI&oldid=352580" Categories: Clean Energy Organizations

318

Inositol hexaphosphate: a potential chelating agent for uranium  

Science Journals Connector (OSTI)

......and staining pigments. Depleted uranium, a by-product of uranium...177-193. 2 World Health Organization (WHO). Uranium in drinking-water...the lethal effect of oral uranium poisoning. Health Phys. (2000) 78(6......

D. Cebrian; A. Tapia; A. Real; M. A. Morcillo

2007-11-01T23:59:59.000Z

319

Variations of the Isotopic Ratios of Uranium in Environmental Samples Containing Traces of Depleted Uranium: Theoretical and Experimental Aspects  

Science Journals Connector (OSTI)

......Samples Containing Traces of Depleted Uranium: Theoretical and Experimental...for the detection of traces of depleted uranium (DU) in environmental samples...percentage composition is about 20% depleted uranium and 80% natural uranium, for......

M. Magnoni; S. Bertino; B. Bellotto; M. Campi

2001-12-01T23:59:59.000Z

320

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......after parenteral injections of depleted uranium S. Fukuda 1 * M. Ikeda 1 M...intramuscular (i.m.) injections of depleted uranium (DU) was examined and the...with uranium. INTRODUCTION Depleted uranium (DU) can affect human health......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Polyethylene Encapsulated Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Poly DU Poly DU Polyethylene Encapsulated Depleted Uranium Technology Description: Brookhaven National Laboratory (BNL) has completed preliminary work to investigate the feasibility of encapsulating DU in low density polyethylene to form a stable, dense product. DU loadings as high as 90 wt% were achieved. A maximum product density of 4.2 g/cm3 was achieved using UO3, but increased product density using UO2 is estimated at 6.1 g/cm3. Additional product density improvements up to about 7.2 g/cm3 were projected using DU aggregate in a hybrid technique known as micro/macroencapsulation.[1] A U.S. patent for this process has been received.[2] Figure 1 Figure 1: DU Encapsulated in polyethylene samples produced at BNL containing 80 wt % depleted UO3 A recent DU market study by Kapline Enterprises, Inc. for DOE thoroughly identified and rated potential applications and markets for DU metal and oxide materials.[3] Because of its workability and high DU loading capability, the polyethylene encapsulated DU could readily be fabricated as counterweights/ballast (for use in airplanes, helicopters, ships and missiles), flywheels, armor, and projectiles. Also, polyethylene encapsulated DU is an effective shielding material for both gamma and neutron radiation, with potential application for shielding high activity waste (e.g., ion exchange resins, glass gems), spent fuel dry storage casks, and high energy experimental facilities (e.g., accelerator targets) to reduce radiation exposures to workers and the public.

322

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-12-01T23:59:59.000Z

323

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-09-01T23:59:59.000Z

324

Spectrophotometric determination of tantalum in boron, uranium, zirconium, and uranium-Zircaloy-2 alloy with malachite green  

Science Journals Connector (OSTI)

Spectrophotometric determination of tantalum in boron, uranium, zirconium, and uranium-Zircaloy-2 alloy with malachite green ...

Allan R. Eberle; Morris W. Lerner

1967-01-01T23:59:59.000Z

325

US uranium mining industry: background information on economics and emissions  

SciTech Connect

A review of the US uranium mining industry has revealed a generally depressed industry situation. The 1982 U/sub 3/O/sub 8/ production from both open-pit and underground mines declined to 3800 and 6300 tons respectively with the underground portion representing 46% of total production. US exploration and development has continued downward in 1982. Employment in the mining and milling sectors has dropped 31% and 17% respectively in 1982. Representative forecasts were developed for reactor fuel demand and U/sub 3/O/sub 8/ production for the years 1983 and 1990. Reactor fuel demand is estimated to increase from 15,900 tons to 21,300 tons U/sub 3/O/sub 8/ respectively. U/sub 3/O/sub 8/ production, however, is estimated to decrease from 10,600 tons to 9600 tons respectively. A field examination was conducted of 29 selected underground uranium mines that represent 84% of the 1982 underground production. Data was gathered regarding population, land ownership and private property valuation. An analysis of the increased cost to production resulting from the installation of 20-meter high exhaust borehole vent stacks was conducted. An assessment was made of the current and future /sup 222/Rn emission levels for a group of 27 uranium mines. It is shown that /sup 222/Rn emission rates are increasing from 10 individual operating mines through 1990 by 1.2 to 3.8 times. But for the group of 27 mines as a whole, a reduction of total /sup 222/Rn emissions is predicted due to 17 of the mines being shutdown and sealed. The estimated total /sup 222/Rn emission rate for this group of mines will be 105 Ci/yr by year end 1983 or 70% of the 1978-79 measured rate and 124 Ci/yr by year end 1990 or 83% of the 1978-79 measured rate.

Bruno, G.A.; Dirks, J.A.; Jackson, P.O.; Young, J.K.

1984-03-01T23:59:59.000Z

326

DOE - Office of Legacy Management -- Monticello Mill Site - UT 03  

NLE Websites -- All DOE Office Websites (Extended Search)

Mill Site - UT 03 Mill Site - UT 03 FUSRAP Considered Sites Site: Monticello Mill Site (UT.03) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: Also see Monticello, Utah, Disposal and Processing Sites Documents Related to Monticello Mill Site Monticello Mill Tailings Site Operable Unit III Interim Remedial Action Progress Report July 1999-July 2000. GJO-2000-163-TAR. September 2000 U.S. Department of Energy at Grand Junction 2003 Annual Inspection Monticello, Utah November 2003 2005 Annual Inspection of the Monticello Mill Tailings (USDOE) and Monticello Radioactively Contaminated Properties Sites December 2005 Office

327

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern China  

E-Print Network (OSTI)

Evidence of uranium biomineralization in sandstone-hosted roll-front uranium deposits, northwestern Available online 25 January 2005 Abstract We show evidence that the primary uranium minerals, uraninite-front uranium deposits, Xinjiang, northwestern China were biogenically precipitated and psuedomorphically

Fayek, Mostafa

328

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 State(s) 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Wyoming 134 139 181 195 245 301 308 348 424 512 Colorado and Texas 48 140 269 263 557 696 340 292 331 248 Nebraska and New Mexico 92 102 123 160 149 160 159 134 127 W Arizona, Utah, and Washington 47 40 75 120 245 360 273 281 W W Alaska, Michigan, Nevada, and South Dakota 0 0 0 16 25 30 W W W W California, Montana, North Dakota, Oklahoma, Oregon, and Virginia 0 0 0 0 9 17 W W W W Total 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196 Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Table 7. Employment in the U.S. uranium production industry by state, 2003-2012 person-years

329

The End of Cheap Uranium  

E-Print Network (OSTI)

Historic data from many countries demonstrate that on average no more than 50-70% of the uranium in a deposit could be mined. An analysis of more recent data from Canada and Australia leads to a mining model with an average deposit extraction lifetime of 10+- 2 years. This simple model provides an accurate description of the extractable amount of uranium for the recent mining operations. Using this model for all larger existing and planned uranium mines up to 2030, a global uranium mining peak of at most 58 +- 4 ktons around the year 2015 is obtained. Thereafter we predict that uranium mine production will decline to at most 54 +- 5 ktons by 2025 and, with the decline steepening, to at most 41 +- 5 ktons around 2030. This amount will not be sufficient to fuel the existing and planned nuclear power plants during the next 10-20 years. In fact, we find that it will be difficult to avoid supply shortages even under a slow 1%/year worldwide nuclear energy phase-out scenario up to 2025. We thus suggest that a world...

Dittmar, Michael

2011-01-01T23:59:59.000Z

330

Uranium Metal: Potential for Discovering Commercial Uses  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium Metal Uranium Metal Potential for Discovering Commercial Uses Steven M. Baker, Ph.D. Knoxville Tn 5 August 1998 Summary Uranium Metal is a Valuable Resource 3 Large Inventory of "Depleted Uranium" 3 Need Commercial Uses for Inventory  Avoid Disposal Cost  Real Added Value to Society 3 Uranium Metal Has Valuable Properties  Density  Strength 3 Market will Come if Story is Told Background The Nature of Uranium Background 3 Natural Uranium: 99.3% U238; 0.7% U 235 3 U235 Fissile  Nuclear Weapons  Nuclear Reactors 3 U238 Fertile  Neutron Irradiation of U238 Produces Pu239  Neutrons Come From U235 Fission  Pu239 is Fissile (Weapons, Reactors, etc.) Post World War II Legacy Background 3 "Enriched" Uranium Product  Weapons Program 

331

Domestic Uranium Production Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report - Annual Domestic Uranium Production Report - Annual With Data for 2012 | Release Date: June 06, 2013 | Next Release Date: May 2014 |full report Previous domestic uranium production reports Year: 2011 2010 2009 2008 2007 2006 2005 2004 Go Drilling Figure 1. U.S. Uranium drilling by number of holes, 2004-2012 U.S. uranium exploration drilling was 5,112 holes covering 3.4 million feet in 2012. Development drilling was 5,970 holes and 3.7 million feet. Combined, total uranium drilling was 11,082 holes covering 7.2 million feet, 5 percent more holes than in 2011. Expenditures for uranium drilling in the United States were $67 million in 2012, an increase of 24 percent compared with 2011. Mining, production, shipments, and sales U.S. uranium mines produced 4.3 million pounds U3O8 in 2012, 5 percent more

332

Polyethylene Encapsulation of Depleted Uranium Trioxide  

Science Journals Connector (OSTI)

Depleted uranium, in the form of uranium trioxide (UO3) powder, was encapsulated in molten polyethylene forming a stable, dense composite henceforth known as DUPoly (patent pending). Materials were fed by calibra...

J. W. Adams; P. R. Lageraaen; P. D. Kalb

2002-01-01T23:59:59.000Z

333

Finding  

Office of Legacy Management (LM)

Junction UMTRA Project Site (Climax Uranium Millsite) September 1999 U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Finding of No Significant Impact...

334

Lightning prevention systems for paper mills  

SciTech Connect

Paper mills are increasingly relying on sensitive electronic equipment to control their operations. However, the sensitivity of these devices has made mills vulnerable to the effects of lightning strokes. An interruption in the power supply or the destruction of delicate microcircuits can have devastating effects on mill productivity. The authors discuss how lightning strokes can be prevented by a Dissipation Array system (DAS). During the past 17 years, the concept has been applied to a host of applications in regions with a high incidence of lightning activity. With nearly 700 systems now installed, more than 4000 system-years of history have been accumulated. Areas as large as 1 km{sup 2} and towers as high as 2000 ft have been protected and completely isolated from lightning strokes. There have been very few failures, and in every case, the cause of the failure was determined and corrected.

Carpenter, R.B. Jr. (Lightning Eliminators and Consultants, Santa Fe Springs, CA (US))

1989-05-01T23:59:59.000Z

335

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

10. Uranium reserve estimates at the end of 2012" 10. Uranium reserve estimates at the end of 2012" "million pounds U3O8" "Uranium Reserve Estimates1 by Mine and Property Status, Mining Method, and State(s)","Forward Cost 2" ,"$0 to $30 per pound","$0 to $50 per pound","$0 to $100 per pound" "Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work","W","W",101.956759 "Properties Under Development for Production","W","W","W" "Mines in Production","W",21.40601,"W" "Mines Closed Temporarily and Closed Permanently","W","W",133.139239 "In-Situ Leach Mining","W","W",128.576534

336

Y-12 Uranium Exposure Study  

SciTech Connect

Following the recent restart of operations at the Y-12 Plant, the Radiological Control Organization (RCO) observed that the enriched uranium exposures appeared to involve insoluble rather than soluble uranium that presumably characterized most earlier Y-12 operations. These observations necessitated changes in the bioassay program, particularly the need for routine fecal sampling. In addition, it was not reasonable to interpret the bioassay data using metabolic parameter values established during earlier Y-12 operations. Thus, the recent urinary and fecal bioassay data were interpreted using the default guidance in Publication 54 of the International Commission on Radiological Protection (ICRP); that is, inhalation of Class Y uranium with an activity median aerodynamic diameter (AMAD) of 1 {micro}m. Faced with apparently new workplace conditions, these actions were appropriate and ensured a cautionary approach to worker protection. As additional bioassay data were accumulated, it became apparent that the data were not consistent with Publication 54. Therefore, this study was undertaken to examine the situation.

Eckerman, K.F.; Kerr, G.D.

1999-08-05T23:59:59.000Z

337

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 2008 2009 2010 2011 2012 Cameco Crow Butte Operation Dawes, Nebraska 1,000,000 Operating Operating Operating Operating Operating Hydro Resources, Inc. Church Rock McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Hydro Resources, Inc. Crownpoint McKinley, New Mexico 1,000,000 Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Partially Permitted And Licensed Lost Creek ISR LLC Lost Creek Project Sweetwater, Wyoming 2,000,000 Developing

338

The Uranium Institute 24th Annual Symposium  

E-Print Network (OSTI)

the waste U-238 into Pu-239 for burning. By this means 100 times as much energy can be obtained from it to extract the uranium, enriching the natural uranium in the fissile isotope U-235, burning the U-235 than the uranium fuel it burns, leading to a breeder reactor. In addition, if the reactor is a fast

Laughlin, Robert B.

339

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...least some of the uranium had been irradiated...not represent a health threat, says Danesi...VISAR KRYEZIU/AP Depleted uranium is what's left...not represent a health threat, says...VISAR KRYEZIU/AP Depleted uranium is what's left...

Richard Stone

2002-09-13T23:59:59.000Z

340

D Riso-R-429 Automated Uranium  

E-Print Network (OSTI)

routinely used analytical techniques for uranium determina- tions in geological samples, fissionCM i D Riso-R-429 Automated Uranium Analysis by Delayed-Neutron Counting H. Kunzendorf, L. Løvborg AUTOMATED URANIUM ANALYSIS BY DELAYED-NEUTRON COUNTING H. Kunzendorf, L. Løvborg and E.M. Christiansen

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE - Office of Legacy Management -- Bowman Mill Site - ND 0...  

Office of Legacy Management (LM)

Bowman Mill Site - ND 0-02 FUSRAP Considered Sites Site: Bowman Mill Site (ND.0-02 ) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition:...

342

EA-1399: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

99: Final Environmental Assessment 99: Final Environmental Assessment EA-1399: Final Environmental Assessment Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. (Figures 1 and 2). This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 Code of Federal Regulations Part 192, Subpart B, in areas where ground water beneath and around the site is

343

Microsoft Word - S07834_2011 Ann Rpt_ag comment revs  

Office of Legacy Management (LM)

7 7 6.0 References ATSDR (Agency for Toxic Substances and Disease Registry), 2004. Toxicological Profile for Strontium, U.S. Department of Health and Human Services, Public Health Service, April. DOE (U.S. Department of Energy), 1994. Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site at Shiprock, New Mexico, DOE/AL/62350-48F, Rev. 1, Albuquerque Operations Office, Albuquerque, New Mexico, April. DOE (U.S. Department of Energy), 2000. Final Site Observational Work Plan for the Shiprock, New Mexico, UMTRA Project Site, GJO-2000-169-TAR, Rev. 2, Grand Junction Office, Grand Junction, Colorado, November. DOE (U.S. Department of Energy), 2002. Final Groundwater Compliance Action Plan for Remediation at the Shiprock, New Mexico, UMTRA Project Site, GJO-2001-297-TAR, Grand

344

Microsoft Word - S06815_2010 Ann Rpt  

Office of Legacy Management (LM)

6-1 6-1 6.0 References ATSDR (Agency for Toxic Substances and Disease Registry), 2004. Toxicological Profile for Strontium, U.S. Department Of Health And Human Services, Public Health Service, April. DOE (U.S. Department of Energy), 1994. Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site at Shiprock, New Mexico, DOE/AL/62350-48F, Rev. 1, April. DOE (U.S. Department of Energy), 2000. Final Site Observational Work Plan for the Shiprock, New Mexico, UMTRA Project Site, GJO-2000-169-TAR, Rev. 2, Grand Junction Office, Grand Junction, Colorado, November. DOE (U.S. Department of Energy), 2002. Final Groundwater Compliance Action Plan for Remediation at the Shiprock, New Mexico, UMTRA Project Site, GJO-2001-297-TAR, Grand

345

Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. DOE will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

NONE

1995-06-01T23:59:59.000Z

346

Long-term Surveillance Plan for the Falls City Disposal Site, Falls City, Texas. Revision 1  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Falls City disposal site, Falls City, Texas, describes the surveillance activities for the disposal site. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

NONE

1995-08-01T23:59:59.000Z

347

Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon. Revision 2  

SciTech Connect

This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1993-12-01T23:59:59.000Z

348

Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah  

SciTech Connect

This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

NONE

1996-02-01T23:59:59.000Z

349

Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1994-08-01T23:59:59.000Z

350

Radiological survey of the inactive uranium-mill tailings at Falls City, Texas  

SciTech Connect

Results of a radiological survey conducted at the Falls City, Texas, site in July 1976 are presented. There are seven partial to fully stabilized tailings piles, and an overburden pile from an open-pit mine. Above ground gamma-ray exposure rate measurements show moderate levels of contamination throughout the area with a maximum exposure rate of 500 ..mu..R/hr above tailings pile 2. The average exposure rate over the different areas varied from 14 ..mu..R/hr over the southwest end of tailings pile 7 to 207 ..mu..R/hr over the northeast end of the same pile. Analyses of surface soil and dry-wash sediment samples, as well as calculations of subsurface /sup 226/Ra distribution, serve to define the spread of tailings around the area. Water erosion of the tailings is evident, but, because of abundant growth of vegetation on the tailings piles, wind erosion probably is not a major problem.

Haywood, F.F.; Christian, D.J.; Loy, E.T.; Lorenzo, D.; Ellis, B.S.

1980-10-01T23:59:59.000Z

351

De-dusting Filter Bags Reduce Indian Petcoke Mill Emissions  

Science Journals Connector (OSTI)

BWF Envirotec has installed more than 400 filter bags in a pulse jet clean filter system at an Indian industrial mill producing petroleum coke, a fuel commonly used in rotary kilns for cement production. The pulse jet filter separates the fine grain petcoke product from the exhaust gases escaping out of the mill. The installation by the German-based company has reduced the mills measured emissions over the last nine months to under 10 mg/Nm3.

2003-01-01T23:59:59.000Z

352

Original article Impact of spreading olive mill wastewater on soil  

E-Print Network (OSTI)

Original article Impact of spreading olive mill wastewater on soil characteristics: laboratory 2001) Abstract ­ A dynamic of soil pollution with olive mill wastewater (OMW) was investigated process forms an olive mill wastewater (OMW). The amount of this waste depends on the process used for oil

Paris-Sud XI, Université de

353

Old mills, new condos; sound isolation in mill building conversion projects  

Science Journals Connector (OSTI)

Up and down the New England Coast century?old mill buildings are being converted into condominium and apartment buildings amidst one of the biggest housing booms in recent memory. While the inherent acoustical conflicts in multi?family dwelling are not new (oft?cited HUD guidelines are approaching their 40th birthday) the flood of mill conversions is bringing to light a number of new constructions that architects use to chop former factories into discrete living spaces. This paper will present field?collected data and case studies that illustrate some of the problems and common pitfalls associated with mill building conversion projects. Among the construction details discussed include exposed timber ceilings that run continuously across gypsum board partitions the creative reuse of existing brick walls and some acoustical properties of wood deck construction common to many mill buildings.

2006-01-01T23:59:59.000Z

354

Uranium 2014 resources, production and demand  

E-Print Network (OSTI)

Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

Organisation for Economic Cooperation and Development. Paris

2014-01-01T23:59:59.000Z

355

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 million pounds U 3 O 8 $0 to $30 per pound $0 to $50 per pound $0 to $100 per pound Properties with Exploration Completed, Exploration Continuing, and Only Assessment Work W W 102.0 Properties Under Development for Production W W W Mines in Production W 21.4 W Mines Closed Temporarily and Closed Permanently W W 133.1 In-Situ Leach Mining W W 128.6 Underground and Open Pit Mining W W 175.4 Arizona, New Mexico and Utah 0 W 164.7 Colorado, Nebraska and Texas W W 40.8 Wyoming W W 98.5 Total 51.8 W 304.0 W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report"

356

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Number of Holes Feet (thousand) Number of Holes Feet (thousand) Number of Holes Feet (thousand) 2003 NA NA NA NA W W 2004 W W W W 2,185 1,249 2005 W W W W 3,143 1,668 2006 1,473 821 3,430 1,892 4,903 2,713 2007 4,351 2,200 4,996 2,946 9,347 5,146 2008 5,198 2,543 4,157 2,551 9,355 5,093 2009 1,790 1,051 3,889 2,691 5,679 3,742 2010 2,439 1,460 4,770 3,444 7,209 4,904 2011 5,441 3,322 5,156 3,003 10,597 6,325 2012 5,112 3,447 5,970 3,709 11,082 7,156 NA = Not available. W = Data withheld to avoid disclosure of individual company data. Note: Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-

357

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

9. Summary production statistics of the U.S. uranium industry, 1993-2012" 9. Summary production statistics of the U.S. uranium industry, 1993-2012" "Item",1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,"E2003",2004,2005,2006,2007,2008,2009,2010,2011,2012 "Exploration and Development" "Surface Drilling (million feet)",1.1,0.7,1.3,3,4.9,4.6,2.5,1,0.7,"W","W",1.2,1.7,2.7,5.1,5.1,3.7,4.9,6.3,7.2 "Drilling Expenditures (million dollars)1",5.7,1.1,2.6,7.2,20,18.1,7.9,5.6,2.7,"W","W",10.6,18.1,40.1,67.5,81.9,35.4,44.6,53.6,66.6 "Mine Production of Uranium" "(million pounds U3O8)",2.1,2.5,3.5,4.7,4.7,4.8,4.5,3.1,2.6,2.4,2.2,2.5,3,4.7,4.5,3.9,4.1,4.2,4.1,4.3 "Uranium Concentrate Production" "(million pounds U3O8)",3.1,3.4,6,6.3,5.6,4.7,4.6,4,2.6,2.3,2,2.3,2.7,4.1,4.5,3.9,3.7,4.2,4,4.1

358

The effect of conditioning rice during the laboratory milling process on the quality of the milled sample  

E-Print Network (OSTI)

THE EFFECT OF CONDITIONING RICE DURING THE LABORATORY MILLING PROCESS ON THE QUALITY OF THE MILLED SAMPLE A Thesis by ROY EUGENE CHILDERS, JR. Submitted to the Graduate College of Texas A8M University in partial fulfillment... of the requirement for the degree of MASTER OF SCIENCE August 1972 Major Subject: Agricultural Engineering THE EFFECT OF CONDITIONING RICE DURING THE LABORATORY MILLING PROCESS ON THE I1UALITY OF THE MILLED SAMPLE A Thesis by ROY EUGENE CHILDERS, JR...

Childers, Roy Eugene

2012-06-07T23:59:59.000Z

359

Global terrestrial uranium supply and its policy implications : a probabilistic projection of future uranium costs  

E-Print Network (OSTI)

An accurate outlook on long-term uranium resources is critical in forecasting uranium costresource relationships, and for energy policy planning as regards the development and deployment of nuclear fuel cycle alternatives. ...

Matthews, Isaac A

2010-01-01T23:59:59.000Z

360

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

2. U.S. uranium mine production and number of mines and sources, 2003-2012" 2. U.S. uranium mine production and number of mines and sources, 2003-2012" "Production / Mining Method",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Underground" "(estimated contained thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W" "Open Pit" "(estimated contained thousand pounds U3O8)",0,0,0,0,0,0,0,0,0,0 "In-Situ Leaching" "(thousand pounds U3O8)","W","W",2681,4259,"W","W","W","W","W","W" "Other1" "(thousand pounds U3O8)","W","W","W","W","W","W","W","W","W","W"

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

:- : DRILLING URANIUM BILLETS ON A  

Office of Legacy Management (LM)

'Xxy";^ ...... ' '. .- -- Metals, Ceramics, and Materials. : . - ,.. ; - . _ : , , ' z . , -, .- . >. ; . .. :- : DRILLING URANIUM BILLETS ON A .-... r .. .. i ' LEBLOND-CARLSTEDT RAPID BORER 4 r . _.i'- ' ...... ' -'".. :-'' ,' :... : , '.- ' ;BY R.' J. ' ANSEN .AEC RESEARCH AND DEVELOPMENT REPORT PERSONAL PROPERTY OF J. F. Schlltz .:- DECLASSIFIED - PER AUTHORITY OF (DAlE) (NhTI L (DATE)UE) FEED MATERIALS PRODUCTION CENTER NATIONAL LFE A COMPANY OF OHIO 26 1 3967 3035406 NLCO - 886 Metals, Ceramics and Materials (TID-4500, 22nd Ed.) DRILLING URANIUM BILLETS ON A LEBLOND-CARLSTEDT RAPID BORER By R. J. Jansen* TECHNICAL DIVISION NATIONAL LEAD COMPANY OF OHIO Date of Issuance: September 13, 1963 Approved By: Approved By: Technical Director Head, Metallurgical Department *Mr. Jansen is presently

362

Potential Uses of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

POTENTIAL USES OF DEPLETED URANIUM POTENTIAL USES OF DEPLETED URANIUM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6180 June 2000 For American Nuclear Society 2000 International Winter and Embedded Topical Meetings Washington, D.C. November 12B16, 2000 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________

363

Semiconductive Properties of Uranium Oxides  

NLE Websites -- All DOE Office Websites (Extended Search)

SEMICONDUCTIVE PROPERTIES OF URANIUM OXIDES SEMICONDUCTIVE PROPERTIES OF URANIUM OXIDES Thomas Meek Materials Science Engineering Department University of Tennessee Knoxville, TN 37931 Michael Hu and M. Jonathan Haire Chemical Technology Division Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6179 August 2000 For the Waste Management 2001 Symposium Tucson, Arizona February 25-March 1, 2001 The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________ * Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy

364

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

7. Employment in the U.S. uranium production industry by state, 2003-2012" 7. Employment in the U.S. uranium production industry by state, 2003-2012" "person-years" "State(s)",2003,2004,2005,2006,2007,2008,2009,2010,2011,2012 "Wyoming",134,139,181,195,245,301,308,348,424,512 "Colorado and Texas",48,140,269,263,557,696,340,292,331,248 "Nebraska and New Mexico",92,102,123,160,149,160,159,134,127,"W" "Arizona, Utah, and Washington",47,40,75,120,245,360,273,281,"W","W" "Alaska, Michigan, Nevada, and South Dakota",0,0,0,16,25,30,"W","W","W","W" "California, Montana, North Dakota, Oklahoma, Oregon, and Virginia",0,0,0,0,9,17,"W","W","W","W"

365

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" 5. U.S. uranium in-situ-leach plants by owner, location, capacity, and operating status at end of the year, 2008-2012" "In-Situ-Leach Plant Owner","In-Situ-Leach Plant Name","County, State (existing and planned locations)","Production Capacity (pounds U3O8 per year)","Operating Status at End of the Year" ,,,,2008,2009,2010,2011,2012 "Cameco","Crow Butte Operation","Dawes, Nebraska",1000000,"Operating","Operating","Operating","Operating","Operating" "Hydro Resources, Inc.","Church Rock","McKinley, New Mexico",1000000,"Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed","Partially Permitted And Licensed"

366

Depleted Uranium (DU) Cermet Waste Package  

NLE Websites -- All DOE Office Websites (Extended Search)

Package Package Depleted Uranium (DU) Cermet Waste Package The steel components of the waste package could be replaced with a uranium cermet. The cermet contains uranium dioxide particulates, which are embedded in steel. Cermets are made with outer layers of clean steel; thus, there is no radiation-contamination hazard in handling the waste packages. Because cermets are made of the same materials that would normally be found in the YM repository (uranium dioxide and steel), there are no chemical compatibility issues. From half to all of the DU inventory in the United States could be used for this application. Depleted Uranium Dioxide Steel Cermet Cross Section of a Depleted Uranium Dioxide Steel Cermet Follow the link below for more information on Cermets:

367

Depleted Uranium Uses Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

DU Uses DU Uses Depleted Uranium Uses Research & Development A Depleted Uranium Uses Research and Development Program was initiated to explore beneficial uses of depleted uranium (DU) and other materials resulting from conversion of depleted UF6. A Depleted Uranium Uses Research and Development Program was initiated to explore the safe, beneficial use of depleted uranium and other materials resulting from conversion of depleted UF6 (e.g., fluorine and empty carbon steel cylinders) for the purposes of resource conservation and cost savings compared with disposal. This program explored the risks and benefits of several depleted uranium uses, including uses as a radiation shielding material, a catalyst, and a semi-conductor material in electronic devices.

368

Uranium 2009 resources, production and demand  

E-Print Network (OSTI)

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry the first critical link in the fuel supply chain for nuclear reactors is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

369

Long-term surveillance plan for the Tuba City, Arizona disposal site  

SciTech Connect

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Tuba City, Arizona, describes the site surveillance activities. The U.S. Department of Energy (DOE) will carry out these activities to ensure the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM) (10 CFR {section}40.27).

NONE

1996-02-01T23:59:59.000Z

370

Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah  

SciTech Connect

This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

NONE

1996-01-01T23:59:59.000Z

371

Long-term surveillance plan for the South Clive disposal site Clive, Utah  

SciTech Connect

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. This LSTP describes the long-term surveillance program the DOE will implement to ensure the South Clive disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-09-01T23:59:59.000Z

372

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

5 5 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Production / Mining Method 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 (estimated contained thousand pounds U 3 O 8 ) W W W W W W W W W W (estimated contained thousand pounds U 3 O 8 ) 0 0 0 0 0 0 0 0 0 0 (thousand pounds U 3 O 8 ) W W 2,681 4,259 W W W W W W (thousand pounds U 3 O 8 ) W W W W W W W W W W (thousand pounds U 3 O 8 ) E2,200 2,452 3,045 4,692 4,541 3,879 4,145 4,237 4,114 4,335 Underground 1 2 4 5 6 10 14 4 5 6 Open Pit 0 0 0 0 0 0 0 0 0 0 In-Situ Leaching 2 3 4 5 5 6 4 4 5 5 Other Sources 1 1 1 2 1 1 1 2 1 1 1 Total Mines and Sources 4 6 10 11 12 17 20 9 11 12 Other 1 Number of Operating Mines Table 2. U.S. uranium mine production and number of mines and sources, 2003-2012 Underground Open Pit In-Situ Leaching Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012).

373

Review of uranium bioassay techniques  

SciTech Connect

A variety of analytical techniques is available for evaluating uranium in excreta and tissues at levels appropriate for occupational exposure control and evaluation. A few (fluorometry, kinetic phosphorescence analysis, {alpha}-particle spectrometry, neutron irradiation techniques, and inductively-coupled plasma mass spectrometry) have also been demonstrated as capable of determining uranium in these materials at levels comparable to those which occur naturally. Sample preparation requirements and isotopic sensitivities vary widely among these techniques and should be considered carefully when choosing a method. This report discusses analytical techniques used for evaluating uranium in biological matrices (primarily urine) and limits of detection reported in the literature. No cost comparison is attempted, although references are cited which address cost. Techniques discussed include: {alpha}-particle spectrometry; liquid scintillation spectrometry, fluorometry, phosphorometry, neutron activation analysis, fission-track counting, UV-visible absorption spectrophotometry, resonance ionization mass spectrometry, and inductively-coupled plasma mass spectrometry. A summary table of reported limits of detection and of the more important experimental conditions associated with these reported limits is also provided.

Bogard, J.S.

1996-04-01T23:59:59.000Z

374

SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING  

E-Print Network (OSTI)

;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C·Existing Uranium Mine Permit 381C ·Historical Operation ·Western Nuclear Crooks Gap Project ·Mined 1956 ­ 1988 and Open Pit Mining ·Current Mine Permit (381C) ·Updating POO, Reclamation Plan & Bond ·Uranium Recovery

375

Geothermal Mill Redevelopment Project in Massachusetts  

SciTech Connect

Anwelt Heritage Apartments, LLC redeveloped a 120-year old mill complex into a mixed-use development in a lower-income neighborhood in Fitchburg, Massachusetts. Construction included 84 residential apartments rented as affordable housing to persons aged 62 and older. The Department of Energy (DOE) award was used as an essential component of financing the project to include the design and installation of a 200 ton geothermal system for space heating and cooling.

Vale, A.Q.

2009-03-17T23:59:59.000Z

376

Depleted uranium exposure and health effects in Gulf War veterans  

Science Journals Connector (OSTI)

...2006 research-article Depleted uranium exposure and health effects in Gulf War...Medicine) Gulf War and health. In Depleted uranium, pyridostigmine bromide...McDiarmid, M.A , Health effects of depleted uranium on exposed Gulf War...

2006-01-01T23:59:59.000Z

377

Excretion of depleted uranium by Gulf war veterans  

Science Journals Connector (OSTI)

......Dosimetry Article Excretion of depleted uranium by Gulf war veterans R. E...personnel had potential intakes of depleted uranium (DU), including shrapnel...excretion rate. Excretion of depleted uranium by Gulf War veterans. | During......

R. E. Toohey

2003-07-01T23:59:59.000Z

378

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Washington, DC Abstract 3590: Depleted uranium-induced leukemia: Epigenetic...with leukemia development. Depleted uranium is used in military missions...Karvelisse Miller, Max Costa. Depleted uranium-induced leukemia: Epigenetic...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

379

Uranium Pollution of Meat in Tien-Shan  

Science Journals Connector (OSTI)

Uranium in water, soil, fodder and food products (especially meat) was studied in areas of former Soviet uranium industry in Tien-Shan 19501970. Uranium environment migration was very intensive in Tien-Shan, due...

Rustam Tuhvatshin; Igor Hadjamberdiev

2008-01-01T23:59:59.000Z

380

Corn Wet Milling: Separation Chemistry and Technology  

Science Journals Connector (OSTI)

Publisher Summary This chapter focuses on the separation chemistry and technology of corn wet milling. The purpose of corn wet milling is to separate the kernel into its constituent chemical components. Wet milling processing begins with steeping whole kernel corn in an aqueous solution of sulfur dioxide and lactic acid (produced by microorganisms) at 50C for 2448 hours. The corn is then coarsely ground and the lipid-containing germ and fibrous hull portions are separated. After the remaining components are more finely ground, the starch and protein are separated using hydrocyclones, essentially continuous centrifuges; corn starch is slightly denser than corn protein. Germ is further processed into oil and the protein and fiber components are usually blended and used as animal feeds. The wet starch is either dried, chemically modified to change its functional properties, converted into intermediate-sized glucose polymers, or fully depolymerized into sugars. Starch is also often used as a raw ingredient for adjacent processing facilities that produce ethanol or other alcohols and other industrial chemicals.

David S. Jackson; Donald L. Shandera Jr.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Structural Sequestration of Uranium in Bacteriogenic Manganese...  

NLE Websites -- All DOE Office Websites (Extended Search)

of metal-contaminated waters (in engineered remediation technologies, for example)?" Uranium is a key contaminant of concern at US DOE sites and shuttered mining and ore...

382

Uranium Weapons Components Successfully Dismantled | National...  

National Nuclear Security Administration (NNSA)

Successfully Dismantled March 20, 2007 Uranium Weapons Components Successfully Dismantled Oak Ridge, TN Continuing its efforts to reduce the size of the U.S. nuclear weapons...

383

Colorimetric detection of uranium in water  

DOE Patents (OSTI)

Disclosed are methods, materials and systems that can be used to determine qualitatively or quantitatively the level of uranium contamination in water samples. Beneficially, disclosed systems are relatively simple and cost-effective. For example, disclosed systems can be utilized by consumers having little or no training in chemical analysis techniques. Methods generally include a concentration step and a complexation step. Uranium concentration can be carried out according to an extraction chromatographic process and complexation can chemically bind uranium with a detectable substance such that the formed substance is visually detectable. Methods can detect uranium contamination down to levels even below the MCL as established by the EPA.

DeVol, Timothy A. (Clemson, SC); Hixon, Amy E. (Piedmont, SC); DiPrete, David P. (Evans, GA)

2012-03-13T23:59:59.000Z

384

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

The initial uranium property reserves estimates were based on bore hole radiometric data validated by chemical analysis of samples from cores and drill cuttings. The...

385

Adsorptive Stripping Voltammetric Measurements of Trace Uranium...  

NLE Websites -- All DOE Office Websites (Extended Search)

Measurements of Trace Uranium at the Bismuth Film Electrode. Abstract: Bismuth-coated carbon-fiber electrodes have been successfully applied for adsorptive-stripping...

386

Biogeochemical Processes In Ethanol Stimulated Uranium Contaminated...  

NLE Websites -- All DOE Office Websites (Extended Search)

A laboratory incubation experiment was conducted with uranium contaminated subsurface sediment to assess the geochemical and microbial community response to ethanol amendment. A...

387

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......chemical forms of the uranium in the body after intake...REFERENCES 1 Mould R. F. Depleted uranium and radiation-induced lung cancer and leukaemia. Br. J...Abou-Donia M. B. Depleted and natural uranium: chemistry and toxicological......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

388

Efficacy of oral and intraperitoneal administration of CBMIDA for removing uranium in rats after parenteral injections of depleted uranium  

Science Journals Connector (OSTI)

......contaminated accidentally with uranium. INTRODUCTION Depleted uranium (DU) can affect human health via chemical and radiation...B. Teratogenicity of depleted uranium aerosols: a review from...perspective. Environ. Health (2005) 4:17-35......

S. Fukuda; M. Ikeda; M. Nakamura; X. Yan; Y. Xie

2009-01-01T23:59:59.000Z

389

SRP Scientific Meeting: Depleted Uranium  

Science Journals Connector (OSTI)

London, January 2002 The meeting was organised by the SRP to review current research and discuss the use, dispersion into the environment and radiological impact of depleted uranium (DU) by the UK and US in recent military conflicts. Brian Spratt chaired the morning session of the meeting and stressed the need to gauge the actual risks involved in using DU and to balance professional opinions with public mistrust of scientists and government bodies. He asked whether more could be done by the radiation protection profession to improve communication with the media, pressure groups and the public in general. Ron Brown, of the MOD Dstl Radiological Protection Services, gave a thorough overview of the origins and properties of DU, focusing on munitions, in the UK and abroad and public concerns arising from its use in the 1991 Gulf War. He gave a brief overview of past DU munitions studies by the UK and US governments and contrasted this with the lack of hard data used to back up claims made by pressure groups. He compared the known risks of DU with other battlefield risks, e.g. biological agents, chemical attacks and vaccines, and questioned whether peacetime dose limits should apply to soldiers on the battlefield. Barry Smith, of the British Geological Survey, spoke on DU transport, pathways and exposure routes focusing on groundwater as an important example in the Former Yugoslav Republic of Kosovo. He discussed the large amount of work that has already been done on natural uranium in groundwater, with particular emphasis on its mobility within the soil and rock profile being strongly dependent on precipitation and the local geochemical conditions. Therefore, generic risk assessments will not be sufficient in gauging risks to local populations after the introduction of DU into their environment; local geochemical conditions must be taken into account. However, experiments are required to fully appreciate the extent to which DU, particularly DU:Ti alloys used in munitions, disperses into the environment in a variety of soil types. Barry outlined recent computer modelling work investigating the time taken for DU to migrate from a buried munition to a borehole in three different scenarios. The modelling revealed times from 30 years to 5 ? 109 years depending on the local geochemical environment and the depth of the DU penetrator in the soil profile. This suggests the real possibility of borehole contamination within a human lifetime in wet conditions similar to those found in Kosovo. Nick Priest, of Middlesex University, discussed methods of biological monitoring for natural and depleted uranium. The preferred method of detection is by 24 h urine sampling, with measurement of the total mass or isotopic ratios of uranium using mass spectroscopy (ICPMS). This is because uranium is only deposited in new areas of bone growth, a slow process in healthy adults, the remainder is filtered by the kidneys and excreted in urine, giving a non-invasive and rapid sample collection method. Nick also described a rapid assessment technique to look for total uranium and DU in a sample, using a multi-collector ICPMS, specifically looking at the 235U:238U ratio with 236U as a tracer to determine the total mass of uranium present and its source. The MC-ICPMS method was applied in a BBC Scotland funded study of uptakes of uranium in three populations in the Balkans during March 2001. Variable levels of DU were found in each population. The age of the subject was found to influence the excretion of natural uranium and DU to the same degree, increasing age leading to increased excretion. Overall, the levels of DU were extremely small (tens of g), but DU was found to be present in each population investigated. The MC-ICPMS method is capable of detecting 1% DU in natural uranium and Nick intends to extend the study to include ground and drinking water samples and food in the same populations. Neil Stradling gave a talk on the contribution of the NRPB to the WHO report on DU published in April 2001. It addressed the biokinetics of inhaled uranium

David Kestell

2002-01-01T23:59:59.000Z

390

Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on DOE's Uranium Lease Tracts, Southwestern Colorado Mined Land Reclamation on...

391

Legacy Management Work Progresses on Defense-Related Uranium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Most recently, LM visited 84 defense-related legacy uranium mine sites located within 11 uranium mining districts in 6 western states. At these sites, photographs and global...

392

Secretarial Determination for the Sale or Transfer of Uranium...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Uranium.pdf More Documents & Publications Secretarial Determination Pursuant to USEC Privatization Act for the Sale or Transfer of Low-Enriched Uranium Secretarial...

393

Secretarial Determination of No Adverse Material Impact for Uranium...  

Energy Savers (EERE)

5-15-14.pdf More Documents & Publications Excess Uranium Inventory Management Plan 2008 2014 Review of the Potential Impact of DOE Excess Uranium Inventory On the...

394

President Truman Increases Production of Uranium and Plutonium...  

National Nuclear Security Administration (NNSA)

Uranium and Plutonium Washington, DC President Truman approves a 1.4 billion expansion of Atomic Energy Commission facilities to produce uranium and plutonium for nuclear weapons...

395

Editorial - Depleted Uranium: A Problem of Perception rather than Reality  

Science Journals Connector (OSTI)

......Radiation Protection Dosimetry Editorial Editorial - Depleted Uranium: A Problem of Perception rather than Reality R. L. Kathren Depleted uranium: a problem of perception rather than reality......

R. L. Kathren

2001-05-01T23:59:59.000Z

396

Modeling of Depleted Uranium Transport in Subsurface Systems  

Science Journals Connector (OSTI)

Groundwater and soil contamination with depleted uranium (DU) isan important public concern because ... four extremecases of climate and existing conditions of uranium penetrator fragments. The simulations demons...

J. Paul Chen; Sotira Yiacoumi

2002-10-01T23:59:59.000Z

397

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This...

398

3rd Quarter 2014 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Form EIA-851A and Form EIA-851Q, ""Domestic Uranium Production Report.""" " U.S. Energy Information Administration 3rd Quarter 2014 Domestic Uranium Production Report...

399

Microbial Reduction of Uranium under Iron- and Sulfate-reducing...  

NLE Websites -- All DOE Office Websites (Extended Search)

Uranium under Iron- and Sulfate-reducing Conditions: Effect of Amended Goethite on Microbial Community Microbial Reduction of Uranium under Iron- and Sulfate-reducing Conditions:...

400

Raw Cotton Requirements of Textile Mills: Implications for Southwestern Cotton.  

E-Print Network (OSTI)

B-1072 December 1967 Raw Cotton Requirements of Tmtile Mills Implications for Southwestern Cotton TEXAS A&M UNIVERSITY TEXAS AGRICULTURAL EXPERIMENT STATION H. 0. Kunkel, Acting Director, College Station, Texas Summary During the summer... inch averaged 3.8 million bales. During this same period, annual domestic mill consumption of cotton under 1 inch ranged from 1.2 to 1.6 million bales. Exports of this cotton have remained at approximately the same level as domestic mill...

Graves, James W. (James Wilson)

1967-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE - Office of Legacy Management -- Cincinnati Milling and Machining...  

Office of Legacy Management (LM)

of Ohio Memorandum; Ruhe to Quigley; Subject: Trip Report to Cincinnati Milling Machine Company, Cincinnati, Ohio on September 17, 1963; October 7, 1963 OH.25-2 - DOE...

402

Comments of Mille Lacs Energy Cooperative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the National Broadband Plan by Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid Policy Comments of Mille Lacs Energy Cooperative More...

403

DOE - Office of Legacy Management -- Canon  

Office of Legacy Management (LM)

Pennsylvania Pennsylvania Canonsburg, Pennsylvania, Disposal Site This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Canonsburg, Pennsylvania, Disposal Site Data Validation Package-October 2011 Groundwater and Surface Water Sampling Ground Water Compliance Action Plan and Application for Alternate Concentration Limit Application (ACL) for the Canonsburg, Pennsylvania, UMTRA Project Site Long-Term Surveillance Plan for the U.S. Department of Energy Canonsburg Uranium Mill Tailings Disposal Site Canonsburg, Pennsylvania Please be green. Do not print these documents unless absolutely necessary.

404

Microsoft Word - U0159200June.doc  

Office of Legacy Management (LM)

U0159200 U0159200 GJO-2002-312-TAR GWMON-28.7-1 U.S. Department of Energy UMTRA Ground Water Research Project Phytoremediation of Nitrogen Contamination in Subpile Soils and in the Alluvial Aquifer at the Monument Valley, Arizona, Uranium Mill Tailings Site June 2002 Environmental Research Laboratory University of Arizona, Tucson, Arizona Environmental Sciences Laboratory U.S. Department of Energy Grand Junction Office Grand Junction, Colorado This page intentionally left blank Acknowledgements This research project was funded by the Uranium Mill Tailings Remedial Action Ground Water Program managed by Donald Metzler, U.S. Department of Energy Grand Junction Office. Ken Karp, MACTEC Environmental Restoration Services, is manager of the

405

DOE - Office of Legacy Management -- Cheney Disposal Cell - 008  

NLE Websites -- All DOE Office Websites (Extended Search)

Cheney Disposal Cell - 008 Cheney Disposal Cell - 008 FUSRAP Considered Sites Site: Cheney Disposal Cell (008) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: All of the uranium mill tailings and other residual radioactive materials from the former Grand Junction uranium mill site were disposed of in this dedicated disposal cell. The cell is authorized to remain open until 2003 to accept any additional byproduct materials from Title I UMTRA sites and the Monticello, Utah site; e.g. materials from additional vicinity properties that may be identified. The Department of Energy¿s Grand Junction Office is responsible for Long Term Surveillance and Maintenance

406

EIS-0198: Programmatic Environmental Impact Statement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

198: Programmatic Environmental Impact Statement 198: Programmatic Environmental Impact Statement EIS-0198: Programmatic Environmental Impact Statement Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project This PEIS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law codified at 42USC '7901 et seq. This document analyzes the potential impacts of four alternatives for conducting the Ground Water Project. These alternatives do not address site-specific ground water compliance strategies because the PEIS is a planning document only. It assesses the potential programmatic impacts of conducting the Ground Water Project, provides a method for determining the site-specific ground water

407

DOE - Office of Legacy Management -- Tuba  

NLE Websites -- All DOE Office Websites (Extended Search)

Arizona Arizona Tuba City Disposal Site, Arizona This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Tuba City, Arizona, Disposal Site Annual Groundwater Report April 2012 Through March 2013 Tuba City, Arizona, Disposal Site Communications and Outreach Plan for the Navajo Nation Uranium Mill Tailings Radiation Control Act Sites Data Validation Package-August 2013 Groundwater and Surface Water Sampling Long-Term Surveillance Plan for the Tuba City, Arizona, Disposal Site Phase I Ground Water Compliance Action Plan for the Tuba City, Arizona, UMTRA Site

408

DOE - Office of Legacy Management -- Ship  

Office of Legacy Management (LM)

New Mexico New Mexico Shiprock, New Mexico, Disposal Site This Site All Sites All LM Quick Search Key Documents and Links All documents are Adobe Acrobat files. pdf_icon Key Documents Fact Sheet Communications and Outreach Plan for the Navajo Nation Uranium Mill Tailings Radiation Control Act Sites Disposal Site Community Information Sheet 2012 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites-Shiprock, New Mexico, Disposal Site Data Validation Package-March 2013 Groundwater and Surface Water Sampling Final Ground Water Compliance Action Plan for Remediation at the Shiprock, New Mexico, UMTRA Site Long-Term Surveillance Plan for the Shiprock Disposal Site, Shiprock, New Mexico Internal Links Environmental Sciences Laboratory (ESL) Reports Webpage

409

New Findings Allay Concerns Over Depleted Uranium  

Science Journals Connector (OSTI)

...poses virtually no cancer risk. Moreover, Danesi's...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...VISAR KRYEZIU/AP Depleted uranium is what's left...the munitions to cancer cases, particularly...

Richard Stone

2002-09-13T23:59:59.000Z

410

IPNS enriched uranium booster target  

SciTech Connect

Since startup in 1981, IPNS has operated on a fully depleted /sup 238/U target. With the booster as in the present system, high energy protons accelerated to 450 MeV by the Rapid Cycling Synchrotron are directed at the target and by mechanisms of spallation and fission of the uranium, produce fast neutrons. The neutrons from the target pass into adjacent moderator where they slow down to energies useful for spectroscopy. The target cooling systems and monitoring systems have operated very reliably and safely during this period. To provide higher neutron intensity, we have developed plans for an enriched uranium (booster) target. HETC-VIM calculations indicate that the target will produce approx.90 kW of heat, with a nominal x5 gain (k/sub eff/ = 0.80). The neutron beam intensity gain will be a factor of approx.3. Thermal-hydraulic and heat transport calculations indicate that approx.1/2 in. thick /sup 235/U discs are subject to about the same temperatures as the present /sup 238/U 1 in. thick discs. The coolant will be light demineralized water (H/sub 2/O) and the coolant flow rate must be doubled. The broadening of the fast neutron pulse width should not seriously affect the neutron scattering experiments. Delayed neutrons will appear at a level about 3% of the total (currently approx.0.5%). This may affect backgrounds in some experiments, so that we are assessing measures to control and correct for this (e.g., beam tube choppers). Safety analyses and neutronic calculations are nearing completion. Construction of the /sup 235/U discs at the ORNL Y-12 facility is scheduled to begin late 1985. The completion of the booster target and operation are scheduled for late 1986. No enriched uranium target assembly operating at the projected power level now exists in the world. This effort thus represents an important technological experiment as well as being a ''flux enhancer''.

Schulke, A.W. Jr.

1985-01-01T23:59:59.000Z

411

Uranium in prehistoric Indian pottery  

E-Print Network (OSTI)

present in the sample, and the cross l section of the process (the measure of the probability of a neutron interacting with an uranium atom), In general, a daughter product 235 of U fission is analyzed on a detector which counts either gamma rays... for quantitative analysis of various elements on archaeological artifacts, Manganese has been determined in Mesoamerican pot sherds (Bennyhoff and Heizer 1965). A Pu-Be radioisotope neutron source with a flux of 4 x 10 4 -2 -1 neutrons cm sec was used...

Filberth, Ernest William

2012-06-07T23:59:59.000Z

412

Overview of Depleted Uranium Hexafluoride Management Program  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's DUF DOE's DUF 6 Cylinder Inventory a Location Number of Cylinders DUF 6 (MT) b Paducah, Kentucky 36,910 450,000 Portsmouth, Ohio 16,041 198,000 Oak Ridge (ETTP), Tennessee 4,683 56,000 Total 57,634 704,000 a The DOE inventory includes DUF 6 generated by the government, as well as DUF 6 transferred from U.S. Enrichment Corporation pursuant to two memoranda of agreement. b A metric ton (MT) is equal to 1,000 kilograms, or 2,200 pounds. Overview of Depleted Uranium Hexafluoride Management Program Over the last four decades, large quantities of uranium were processed by gaseous diffusion to produce enriched uranium for U.S. national defense and civilian purposes. The gaseous diffusion process uses uranium in the form of uranium hexafluoride (UF 6 ), primarily because UF 6 can conveniently be used in

413

National Uranium Resource Evaluation, Tonopah quadrangle, Nevada  

SciTech Connect

The Tonopah Quadrangle, Nevada, was evaluated using National Uranium Resource Evaluation criteria to identify and delineate areas favorable for uranium deposits. Investigations included reconnaissance and detailed surface geologic and radiometric studies, geochemical sampling and evaluation, analysis and ground-truth followup of aerial radiometric and hydrogeochemical and stream-sediment reconnaissance data, and subsurface data evaluation. The results of these investigations indicate environments favorable for hydroallogenic uranium deposits in Miocene lacustrine sediments of the Big Smoky Valley west of Tonopah. The northern portion of the Toquima granitic pluton is favorable for authigenic uranium deposits. Environments considered unfavorable for uranium deposits include Quaternary sediments; intermediate and mafic volcanic and metavolcanic rocks; Mesozoic, Paleozoic, and Precambrian sedimentary and metasedimentary rocks; those plutonic rocks not included within favorable areas; and those felsic volcanic rocks not within the Northumberland and Mount Jefferson calderas.

Hurley, B W; Parker, D P

1982-04-01T23:59:59.000Z

414

Feeding Corn Milling Byproducts to Feedlot Cattle  

Science Journals Connector (OSTI)

Corn milling byproducts are expected to increase dramatically in supply as the ethanol industry expands. Distillers grains, corn gluten feed, or a combination of both byproducts offer many feeding options when included in feedlot rations. These byproduct feeds may effectively improve cattle performance and operation profitability. When these byproducts are fed in feedlot diets, adjustments to grain processing method and roughage level may improve cattle performance. Innovative storage methods for wet byproducts and the use of dried byproducts offer small operations flexibility when using byproducts. As new byproducts are developed by ethanol plants, they should be evaluated with performance data to determine their product-specific feeding values.

Terry J. Klopfenstein; Galen E. Erickson; Virgil R. Bremer

2007-01-01T23:59:59.000Z

415

Subsidiary condition for Yang-Mills theory  

Science Journals Connector (OSTI)

A subsidiary condition for Yang-Mills theory is given. A prescription is proposed for using such a subsidiary condition to eliminate unphysical degrees of freedom from gauge theories in covariant gauges. It is pointed out that elimination of such unphysical modes can generate explicit nonlocal interactions among particles in the physical subspace. The Coulomb interactions among charged particles in QED is one such nonlocal interaction that can be generated in this way. It is argued that confining forces among color-bearing combinations of quarks and transverse gluons in QCD might be another.

Kurt Haller

1983-12-15T23:59:59.000Z

416

Removal of uranium from uranium-contaminated soils -- Phase 1: Bench-scale testing. Uranium in Soils Integrated Demonstration  

SciTech Connect

To address the management of uranium-contaminated soils at Fernald and other DOE sites, the DOE Office of Technology Development formed the Uranium in Soils Integrated Demonstration (USID) program. The USID has five major tasks. These include the development and demonstration of technologies that are able to (1) characterize the uranium in soil, (2) decontaminate or remove uranium from the soil, (3) treat the soil and dispose of any waste, (4) establish performance assessments, and (5) meet necessary state and federal regulations. This report deals with soil decontamination or removal of uranium from contaminated soils. The report was compiled by the USID task group that addresses soil decontamination; includes data from projects under the management of four DOE facilities [Argonne National Laboratory (ANL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), and the Savannah River Plant (SRP)]; and consists of four separate reports written by staff at these facilities. The fundamental goal of the soil decontamination task group has been the selective extraction/leaching or removal of uranium from soil faster, cheaper, and safer than current conventional technologies. The objective is to selectively remove uranium from soil without seriously degrading the soil`s physicochemical characteristics or generating waste forms that are difficult to manage and/or dispose of. Emphasis in research was placed more strongly on chemical extraction techniques than physical extraction techniques.

Francis, C. W.

1993-09-01T23:59:59.000Z

417

FAQ 3-What are the common forms of uranium?  

NLE Websites -- All DOE Office Websites (Extended Search)

are the common forms of uranium? are the common forms of uranium? What are the common forms of uranium? Uranium can take many chemical forms. In nature, uranium is generally found as an oxide, such as in the olive-green-colored mineral pitchblende. Uranium oxide is also the chemical form most often used for nuclear fuel. Uranium-fluorine compounds are also common in uranium processing, with uranium hexafluoride (UF6) and uranium tetrafluoride (UF4) being the two most common. In its pure form, uranium is a silver-colored metal. The most common forms of uranium oxide are U3O8 and UO2. Both oxide forms have low solubility in water and are relatively stable over a wide range of environmental conditions. Triuranium octaoxide (U3O8) is the most stable form of uranium and is the form most commonly found in nature. Uranium dioxide (UO2) is the form in which uranium is most commonly used as a nuclear reactor fuel. At ambient temperatures, UO2 will gradually convert to U3O8. Because of their stability, uranium oxides are generally considered the preferred chemical form for storage or disposal.

418

Grinding media oscillation: effect on torsional vibrations in tumble mills  

E-Print Network (OSTI)

of oscillation of grinding media on torsional vibrations of the mill. A theoretical model was developed to determine the oscillating frequency of the grinding media. A 12" (0.3 m) diameter tumble mill test rig was built with a 0.5 hp DC motor. The rig is tested...

Toram, Kiran Kumar

2005-11-01T23:59:59.000Z

419

Tons of Heavy Metals in Mill Creek Sediments Heather Freeman  

E-Print Network (OSTI)

objectives for this summer research were to: 1.) determine how much heavy metal pollution has accumulatedTons of Heavy Metals in Mill Creek Sediments Heather Freeman 8/30/99 Geology Department Advisors: Dr. Kees DeJong Dr. Barry Manyard Dr. David Nash #12;Tons of heavy metals in Mill Creek sediments

Maynard, J. Barry

420

Rapid nutrient determination of sugarcane milling by-products using near infrared spectroscopy.  

E-Print Network (OSTI)

??This thesis investigates the use of near infrared (NIR) spectroscopic methods for rapid measurement of nutrient elements in mill mud and mill ash. Adoption of (more)

Keeffe, Eloise Caitlin

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

Domestic Uranium Production Report Domestic Uranium Production Report 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Item 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 E2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 Surface Drilling (million feet) 1.1 0.7 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7 2.7 5.1 5.1 3.7 4.9 6.3 7.2 Drilling Expenditures (million dollars) 1 5.7 1.1 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 18.1 40.1 67.5 81.9 35.4 44.6 53.6 66.6 (million pounds U 3 O 8 ) 2.1 2.5 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 2.2 2.5 3.0 4.7 4.5 3.9 4.1 4.2 4.1 4.3 (million pounds U 3 O 8 ) 3.1 3.4 6.0 6.3 5.6 4.7 4.6 4.0 2.6 2.3 2.0 2.3 2.7 4.1 4.5 3.9 3.7 4.2 4.0 4.1 (million pounds U 3 O 8 ) 3.4 6.3 5.5 6.0 5.8 4.9 5.5 3.2 2.2 3.8 1.6 2.3 2.7 3.8 4.0 4.1 3.6 5.1 4.0 3.9 (person-years) 871 980 1,107 1,118 1,097 1,120 848 627 423 426 321 420 648 755 1,231 1,563 1,096 1,073 1,191 1,196

422

Carbonate Leaching of Uranium from Contaminated Soils  

Science Journals Connector (OSTI)

Uranium (U) was successfully removed from contaminated soils from the Fernald Environmental Management Project (FEMP) site near Fernald, Ohio. ... The concentrations of uranium and other metals in the effluent were analyzed using a Varian Liberty 200 inductively coupled plasma atomic emission spectrophotometer (ICP-AES) or a kinetic phosphorescence analyzer (KPA). ... When 30% hydrogen peroxide (H2O2) was added prior to the carbonate solution, no increase in the removal of uranium was detected (data not shown) due to effervescence with heating, liberating carbon dioxide, and thus preventing uniform distribution of H2O2. ...

C. F. V. Mason; W. R. J. R. Turney; B. M. Thomson; N. Lu; P. A. Longmire; C. J. Chisholm-Brause

1997-09-30T23:59:59.000Z

423

Capstone Depleted Uranium Aerosols: Generation and Characterization  

SciTech Connect

In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

2004-10-19T23:59:59.000Z

424

Bacterial Community Succession During in situ Uranium Bioremediation: Spatial Similarities Along Controlled Flow Paths  

E-Print Network (OSTI)

problem, and the use of depleted uranium and other heavyenvironmental hazard. Depleted uranium is weakly radioactiveMB. (2004). Depleted and natural uranium: chemistry and

Hwang, Chiachi

2009-01-01T23:59:59.000Z

425

Uranium contamination of the Aral Sea  

Science Journals Connector (OSTI)

Located in an endorrheic basin, the Aral Sea is mainly fed by water from two large rivers, the Syrdarya and the Amudarya. As a result, contaminants in dissolved and suspended form discharged by the rivers are accumulating in the lake. The northern Small Aral water contained 37g l?1uranium and water in the western basin of the Large Aral up to 141g l?1uranium in 2002, 2004 and 2006. The present day uranium concentrations in Aral Sea water mainly originate from the Syrdarya River due to uranium mining and tailings in the river watershed, and have been elevated up to 5 times compared to the pre-desiccation times by the ongoing desiccation in the western basin of the Large Aral. Current data indicate that groundwater does not seem to contribute much to the uranium budget. The uranium concentration in the lake is controlled by internal lake processes. Due to the high ionic strength of the Aral Sea water uranium is kept soluble. 238U/Cl?mass ratios range from 5.88 to 6.15g g?1in the Small Aral and from 3.00 to 3.32g g?1in the Large Aral. Based on the238U/Cl?mass ratios, a removal rate of 8% uranium from the water column inventory to the sediments has been estimated for anoxic waters, and it ranges between 2% and 5% in oxic waters, over periods of time without mixing. Most of the uranium removal seems to occur by co-precipitation with calcite and gypsum both in anoxic and oxic waters. According to simulations with PHREEQC, uraninite precipitation contributes little to the removal from anoxic Aral Sea water. In most of the sampled locations, water column removal of uranium matches the sediment inventory. Based on budget calculations, the future development of uranium load in the Aral Sea has been estimated for different scenarios. If the Syrdarya River discharge is below or in balance with the loss by evaporation, the uranium concentration in the Small Aral will increase from 37 g l1to 55g l?1in 20years time. When the river discharge is larger than loss by evaporation, present-day uranium concentration in the lake may be kept at the current level or even decrease slightly. From the ecotoxicological point of view, an increase in Syrdarya River discharge as the major water source will be crucial for the water quality of the Small Aral, despite its high uranium load. However, as it is intended to restore fishery in the Small Aral, accumulation of uranium in fish has to be monitored. Since the western basin of the Large Aral received no Syrdarya River water since 2005, and may become disconnected from the eastern basin, the slightly higher observed uranium removal from anoxic waters may result in a decrease in uranium concentrations in the western basin by 20% in 20years time.

Jana Friedrich

2009-01-01T23:59:59.000Z

426

Synthesis of uranium nitride and uranium carbide powder by carbothermic reduction  

SciTech Connect

Uranium nitride and uranium carbide are being considered as high burnup fuels in next generation nuclear reactors and accelerated driven systems for the transmutation of nuclear waste. The same characteristics that make nitrides and carbides candidates for these applications (i.e. favorable thermal properties, mutual solubility of nitrides, etc.), also make these compositions candidate fuels for space nuclear reactors. In this paper, we discuss the synthesis and characterization of depleted uranium nitride and carbide for a space nuclear reactor program. Importantly, this project emphasized that to synthesize high quality uranium nitride and carbide, it is necessary to understand the exact stoichiometry of the oxide feedstock. (authors)

Dunwoody, J.T.; Stanek, C.R.; McClellan, K.J.; Voit, S.L.; Volz, H.M. [Los Alamos National Laboratory, Los Alamos, New Mexico (United States); Hickman, R.R. [NASA Marshall Space Flight Center, Huntsville, Alabama (United States)

2007-07-01T23:59:59.000Z

427

Crystal Chemistry of Early Actinides (Thorium, Uranium, and Neptunium) and Uranium Mesoporous Materials.  

E-Print Network (OSTI)

??Despite their considerable global importance, the structural chemistry of actinides remains understudied. Thorium and uranium fuel cycles are used in commercial nuclear reactors in India (more)

Sigmon, Ginger E.

2010-01-01T23:59:59.000Z

428

Prokaryotic microorganisms in uranium mining waste piles and their interactions with uranium and other heavy metals.  

E-Print Network (OSTI)

??The influence of uranyl and sodium nitrate under aerobic and anaerobic conditions on the microbial community structure of a soil sample from the uranium mining (more)

Geiler, Andrea

2007-01-01T23:59:59.000Z

429

2012 Domestic Uranium Production Report  

U.S. Energy Information Administration (EIA) Indexed Site

11 11 2012 Domestic Uranium Production Report Release Date: June 6, 2013 Next Release Date: May 2014 Total Land and Other 2003 W W 31.3 NA NA NA W 2004 10.6 27.8 48.4 NA NA NA 86.9 2005 18.1 58.2 59.7 NA NA NA 136.0 2006 40.1 65.9 115.2 41.0 23.3 50.9 221.2 2007 67.5 90.4 178.2 77.7 50.3 50.2 336.2 2008 81.9 221.2 164.4 65.2 50.2 49.1 467.6 2009 35.4 141.0 104.0 17.3 24.2 62.4 280.5 2010 44.6 133.3 99.5 20.2 34.5 44.7 277.3 2011 53.6 168.8 96.8 19.6 43.5 33.7 319.2 2012 66.6 186.9 99.4 16.8 33.3 49.3 352.9 Notes: Expenditures are in nominal U.S. dollars. Totals may not equal sum of components because of independent rounding. Source: U.S. Energy Information Administration: Form EIA-851A, "Domestic Uranium Production Report" (2003-2012). Reclamation Drilling: All expenditures directly associated with exploration and development drilling.

430

Microbial transformations of uranium in wastes and implication on its mobility  

SciTech Connect

Uranium exists in several chemical forms in mining and mill tailings and in nuclear and weapons production wastes. Under appropriate conditions, microorganisms can affect the stability and mobility of U in wastes by altering the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of U in solution and the bioavailability. Dissolution or immobilization of U is brought about by direct enzymatic action or indirect nonenzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of U have been extensively investigated, we have only limited information on the mechanisms of microbial transformations of various chemical forms of U in the presence of electron donors and acceptors.

Suzuki,Y.; Nankawa, T.; Ozaki, T.; Ohnuki, T.; Francis, A.J.; Enokida, Y.; Yamamoto, I.

2008-09-14T23:59:59.000Z

431

Mille Lacs Energy Cooperative | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name Mille Lacs Energy Cooperative Place Minnesota Utility Id 12546 Utility Location Yes Ownership C NERC Location MRO NERC MRO Yes ISO MISO Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Dual Fuel Space Heating Rate Electric Combination Heating Rate Freedom Heating Rate Residential General Service Residential Green Power Energy Large Power Commercial Large Power - Industrial Industrial Light - 100 watt HPS Lighting Light - 150 watt HPS Lighting Off-Peak Energy Rate Residential Peak Shave Water Heating Rate Residential

432

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

2. U.S. Forward-Cost Uranium Reserves by Mining Method, Year-End 2008 Mining Method 50 per pound 100 per pound Ore (million tons) Gradea (percent U3O8) U3O8 (million pounds) Ore...

433

U.S. Uranium Reserves Estimates  

Gasoline and Diesel Fuel Update (EIA)

1. U.S. Forward-Cost Uranium Reserves by State, Year-End 2008 State 50lb 100lb Ore (million tons) Gradea (%) U3O8 (million lbs) Ore (million tons) Gradea (%) U3O8 (million lbs)...

434

Uranium Management and Policy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Program, and reporting annually to Congress on the impact of the U.S.-Russia Highly Enriched Uranium Purchase Agreement on the U.S. nuclear fuel industry. NE-54's...

435

Depleted uranium disposition study -- Supplement, Revision 1  

SciTech Connect

The Department of Energy Office of Weapons and Materials Planning has requested a supplemental study to update the recent Depleted Uranium Disposition report. This supplemental study addresses new disposition alternatives and changes in status.

Becker, G.W.

1993-11-01T23:59:59.000Z

436

Method of recovering uranium from aqueous solution  

SciTech Connect

Anion exchange resin derived from insoluble crosslinked polymers of vinyl benzyl chloride which are prepared by polymerizing vinyl benzyl chloride and a crosslinking monomer are particularly suitable in the treatment of uranium bearing leach liquors.

Albright, R.L.

1980-01-22T23:59:59.000Z

437

Ex Parte Communications- Uranium Producers of America  

Energy.gov (U.S. Department of Energy (DOE))

On Thursday, February 12, 2015, representatives from the Uranium Producers of America (UPA) met with the Department of Energy (DOE) officials to discuss the management of the federal excess...

438

The Uranium Resource: A Comparative Analysis  

SciTech Connect

An analogy was drawn between uranium and thirty five minerals for which the USGS maintains extensive records. The USGS mineral price data, which extends from 1900 to the present, was used to create a simple model describing long term price evolution. Making the assumption that the price of uranium, a geologically unexceptional mineral, will evolve in a manner similar to that of the USGS minerals, the model was used to project its price trend for this century. Based upon the precedent set by the USGS data, there is an 80% likelihood that the price of uranium will decline. Moreover, the most likely scenario would see the equilibrium price of uranium decline by about 40% by mid-century. (authors)

Schneider, Erich A. [The University of Texas at Austin, 1 University Station C2200, Austin, TX, 78712 (United States); Sailor, William C. [Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM, 87545 (United States)

2007-07-01T23:59:59.000Z

439

Part I: Typology of Uranium Deposits  

Science Journals Connector (OSTI)

A variety of global and regional classification schemes for uranium deposits have been proposed in the past by a number of geoscientists including Heinrich (1958), Roubault (1958), Ruzicka (1971), Ziegler (197...

Franz J. Dahlkamp

2009-01-01T23:59:59.000Z

440

Uranium Leasing Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

» Uranium Leasing Program » Uranium Leasing Program Uranium Leasing Program Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado Abandoned Mine Reclamation, Uravan Mineral Belt, Colorado LM currently manages the Uranium Leasing Program and continues to administer 31 lease tracts, all located within the Uravan Mineral Belt in southwestern Colorado. Twenty-nine of these lease tracts are actively held under lease and two lease tracts have been placed in inactive status indefinitely. Administrative duties include the ongoing monitoring and oversight of leaseholders' activities and the annual inspection of these lease tracts to identify and correct safety hazards or other environmental compliance issues. Program Summary Current Status The U.S. Department of Energy (DOE) has extended the public comment

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Uranium Marketing Annual Report - Energy Information Administration  

U.S. Energy Information Administration (EIA) Indexed Site

Uranium Marketing Annual Report Uranium Marketing Annual Report With Data for 2012 | Release Date: May 16, 2013 | Next Release Date: May 2014 | full report Previous uranium marketing annual reports Year: 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1998 1997 1996 1995 1994 1993 1992 Go Uranium purchases and prices Owners and operators of U.S. civilian nuclear power reactors ("civilian owner/operators" or "COOs") purchased a total of 58 million pounds U3O8e (equivalent1) of deliveries from U.S. suppliers and foreign suppliers during 2012, at a weighted-average price of $54.99 per pound U3O8e. The 2012 total of 58 million pounds U3O8e increased 5 percent compared with the 2011 total of 55 million pounds U3O8e. The 2012 weighted-average price of

442

Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1  

SciTech Connect

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1994-04-01T23:59:59.000Z

443

Long-term surveillance plan for the Lowman, Idaho, disposal site  

SciTech Connect

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1993-09-01T23:59:59.000Z

444

Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah  

SciTech Connect

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

NONE

1996-03-01T23:59:59.000Z

445

Depleted uranium: A DOE management guide  

SciTech Connect

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

446

The ultimate disposition of depleted uranium  

SciTech Connect

Depleted uranium (DU) is produced as a by-product of the uranium enrichment process. Over 340,000 MTU of DU in the form of UF{sub 6} have been accumulated at the US government gaseous diffusion plants and the stockpile continues to grow. An overview of issues and objectives associated with the inventory management and the ultimate disposition of this material is presented.

Lemons, T.R. [Uranium Enrichment Organization, Oak Ridge, TN (United States)

1991-12-31T23:59:59.000Z

447

Manhattan Project: More Uranium Research, 1942  

Office of Scientific and Technical Information (OSTI)

Cubes of uranium metal, Los Alamos, 1945 MORE URANIUM RESEARCH Cubes of uranium metal, Los Alamos, 1945 MORE URANIUM RESEARCH (1942) Events > Difficult Choices, 1942 More Uranium Research, 1942 More Piles and Plutonium, 1942 Enter the Army, 1942 Groves and the MED, 1942 Picking Horses, November 1942 Final Approval to Build the Bomb, December 1942 During the first half of 1942, several routes to a bomb via uranium continued to be explored. At Columbia University, Harold Urey worked on the gaseous diffusion and centrifuge systems for isotope separation in the codenamed SAM (Substitute or Special Alloy Metals) Laboratory. At Berkeley, Ernest Lawrence continued his investigations on electromagnetic separation using the "calutron" he had converted from his thirty-seven-inch cyclotron. Phillip Abelson, who had moved from the Carnegie Institution and the National Bureau of Standards to the Naval Research Laboratory, continued his work on liquid thermal diffusion but with few positive results, and he had lost all contact with the S-1 Section of the Office of Scientific Research and Development. Meanwhile Eger Murphree's group hurriedly studied ways to move from laboratory experiments to production facilities.

448

Y-12 Knows Uranium | Y-12 National Security Complex  

NLE Websites -- All DOE Office Websites (Extended Search)

Knows Uranium Knows Uranium Y-12 Knows Uranium Posted: July 22, 2013 - 3:45pm | Y-12 Report | Volume 10, Issue 1 | 2013 Y-12 produces many forms of uranium. They may be used in chemical processing steps on-site or shipped elsewhere to serve as raw materials for nuclear fuel or as research tools. All of uranium's uses, defense related and otherwise, are critical to the nation. Y-12's understanding of uranium, coupled with the site's work with enriched uranium metal, alloys, oxides, compounds and solutions, is unique in the Nuclear Security Enterprise. "The Y-12 work force understands both established uranium science and the esoteric things related to uranium's behavior," said engineer Alan Moore. "Such a deep, detailed understanding comes from experience,

449

Dams, Mills, and Electric Power (Missouri) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Mills, and Electric Power (Missouri) Mills, and Electric Power (Missouri) Dams, Mills, and Electric Power (Missouri) < Back Eligibility Commercial Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative State/Provincial Govt Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Missouri Program Type Siting and Permitting Provider Missouri Department of Natural Resources The Water Resources Center of the Missouri Department of Natural Resources is responsible for implementing regulations pertaining to dam and reservoir safety. Any person or corporation may erect a dam across any watercourse, provided that: (a) the entity is chartered to construct, operate and

450

Controlling a Steel Mill with BOXES Michael McGarity, Claude Sammut and David Clements  

E-Print Network (OSTI)

Controlling a Steel Mill with BOXES Michael McGarity, Claude Sammut and David Clements and Chambers (1968) to a large-scale, real-world problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made

Sammut, Claude

451

Microfiltration of gluten processing streams from corn wet milling C.I. Thompson a  

E-Print Network (OSTI)

Microfiltration of gluten processing streams from corn wet milling C.I. Thompson a , K.D. Rausch b 2005; accepted 6 February 2005 Available online 12 April 2005 Abstract In corn wet milling, dry matter composition; Corn processing; Membrane filtration; Corn gluten meal; Wet milling 1. Introduction Wet milling

452

96 CEREAL CHEMISTRY Comparison Between Alkali and Conventional Corn Wet-Milling: 100-g Procedures  

E-Print Network (OSTI)

96 CEREAL CHEMISTRY Comparison Between Alkali and Conventional Corn Wet-Milling: 100-g Procedures S ABSTRACT Cereal Chem. 76(1):96-99 A corn wet-milling process in which alkali was used was studied as an alternative to the conventional corn wet-milling procedure. In the alkali wet-milling process, corn was soaked

453

Doses and risks from uranium are not increased significantly by interactions with natural background photon radiation  

Science Journals Connector (OSTI)

......higher fraction of depleted uranium (DU). These...in mandibular cancer patients following...Reprocessed uranium exposure and lung cancer risk. Health...and risks from uranium are not increased...The impact of depleted uranium (DU......

R. J. Tanner; J. S. Eakins; J. T. M. Jansen; J. D. Harrison

2012-08-01T23:59:59.000Z

454

Sizing particles of natural uranium and nuclear fuels using poly-allyl-diglycol carbonate autoradiography  

Science Journals Connector (OSTI)

......particles of natural uranium and nuclear fuels...low enriched, depleted and natural uranium and also aged...committed doses and cancer risks(4...Bristol, UK, sized uranium fragments found...nuclear fuels of depleted uranium (depUO2......

G. Hegyi; R. B. Richardson

2008-07-01T23:59:59.000Z

455

Assessing the Renal Toxicity of Capstone Depleted Uranium Oxides and Other Uranium Compounds  

SciTech Connect

The primary target for uranium toxicity is the kidney. The most frequently used guideline for uranium kidney burdens is the International Commission on Radiation Protection (ICRP) value of 3 g U/g kidney, a value that is based largely upon chronic studies in animals. In the present effort, we have developed a risk model equation to assess potential outcomes of acute uranium exposure. Twenty-seven previously published case studies in which workers were acutely exposed to soluble compounds of uranium (as a result of workplace accidents) were analyzed. Kidney burdens of uranium for these individuals were determined based on uranium in the urine, and correlated with health effects observed over a period of up to 38 years. Based upon the severity of health effects, each individual was assigned a score (- to +++) and then placed into an Effect Group. A discriminant analysis was used to build a model equation to predict the Effect Group based on the amount of uranium in the kidneys. The model equation was able to predict the Effect Group with 85% accuracy. The risk model was used to predict the Effect Group for Soldiers exposed to DU as a result of friendly fire incidents during the 1991 Gulf War. This model equation can also be used to predict the Effect Group of new cases in which acute exposures to uranium have occurred.

Roszell, Laurie E.; Hahn, Fletcher; Lee, Robyn B.; Parkhurst, MaryAnn

2009-02-26T23:59:59.000Z

456

East Millinocket Mill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Millinocket Mill Biomass Facility Millinocket Mill Biomass Facility Jump to: navigation, search Name East Millinocket Mill Biomass Facility Facility East Millinocket Mill Sector Biomass Location Penobscot County, Maine Coordinates 45.3230777°, -68.5806727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.3230777,"lon":-68.5806727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Milling Machine Replacement Project (4587), 5/11/2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Milling Machine Replacement Projects (4587) Milling Machine Replacement Projects (4587) Program or Field Office: Y-12 Site Office Location(s) (City/County/State): Oak Ridge, Anderson County, Tennessee Proposed Action Description: Submit by E-mail The proposed action is to replace two large milling machines with two new medium sized CNC milling machines. The new machines will be connected to the digital network communication (DNC) system. Categorical Exclusion(s) Applied: 81.31 -Installation or relocation of machinery and equipment For the complete DOE National Environmental Policy Act regulations regarding categorical exclusions, including the full text of each categorical exclusion, see Subpart D of 10 CFR Part 1021. Regulatory Requirements in 10 CFR 1021.410(b): (See full text in regulation)

458

Enhanced Dispersion from Tall Stacks Near Modern Wind Mills  

Science Journals Connector (OSTI)

Dispersion modeling of emissions from tall stacks is often done with regulatory models, based on the Gaussian plume concept. When the plumes of tall stacks are influenced by the turbulence of nearby wind mills, t...

J. J. Erbrink; Luc Verhees

2014-01-01T23:59:59.000Z

459

A hybrid type small 5-axis CNC milling machine  

E-Print Network (OSTI)

5-axis CNC milling machines are important in a number of industries ranging from aerospace to consumer-die-mold machining because they can deliver high machining accuracy with a spindle tilting capacity. Most of these ...

Son, Seung-Kil, 1964-

2002-01-01T23:59:59.000Z

460

THE PERRYMAN GROUP 510 N. Valley Mills Dr., Suite 300  

E-Print Network (OSTI)

THE PERRYMAN GROUP 510 N. Valley Mills Dr., Suite 300 Waco, TX 76710 ph. 254.751.9595, fax 254 by The Perryman Group Introduction The University of Texas at Arlington (UT Arlington or UTA) has long been

Huang, Haiying

Note: This page contains sample records for the topic "umtra uranium mill" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Parametric Study of End Milling Glass Fibre Reinforced Composites  

SciTech Connect

This paper discusses the application of Taguchi 'Design of Experiment' method to investigate the effects of end milling parameters on machinability characteristics of unidirectional E-glass fibre reinforced polymer (GFRP) composites. A series of milling experiments were conducted using tungsten carbide end milling cutters at various spindle speeds, feed rates and depths of cut. Taguchi analysis was carried out and the signal to noise (S/N) ratio with analysis of variance (ANOVA) was employed to analyse the effects of those parameters on GFRP machinability. Overall, the results of the current investigations present some desirable combinations of the machining parameters that can further enhance the end milling machinability characteristics to suit the final requirements of the finished GFRP products.

Azmi, Azwan I.; Lin, Richard J. T.; Bhattacharyya, Debes [Centre for Advanced Composite Materials (CACM), Department of Mechanical Engineering, University of Auckland, Private Bag 92019, Auckland Mail Centre 1142, Auckland (New Zealand)

2011-01-17T23:59:59.000Z

462

Finite Action Yang-Mills Solutions on the Group Manifold  

E-Print Network (OSTI)

We demonstrate that the left (and right) invariant Maurer-Cartan forms for any semi-simple Lie group enable one to construct solutions of the Yang-Mills equations on the group manifold equipped with the natural Cartan-Killing metric. For the unitary unimodular groups the Yang-Mills action integral is finite for such solutions. This is explicitly exhibited for the case of $SU(3)$.

T Dereli; J Schray; Robin W Tucker

1996-05-17T23:59:59.000Z

463

A Process for the Aqueous Enzymatic Extraction of Corn Oil from Dry Milled Corn Germ and Enzymatic Wet Milled Corn Germ (E-Germ)  

Science Journals Connector (OSTI)

A bench-scale aqueous enzymatic method was developed to extract corn oil from corn germ from either a commercial corn dry mill or corn germ from a newly-developed experimental enzymatic wet milling process (E-Ger...

Robert A. Moreau; Leland C. Dickey

2009-05-01T23:59:59.000Z

464

Replacing chemicals in recycle mills with mechanical alternatives  

SciTech Connect

A high-intensity spark fired underwater decomposes a small amount of the water into hydroxyl radicals, which are strong oxidants. These are able to oxidize contaminants such as glue and wood pitch that enter paper recycling mills as a part of the incoming furnish and cost the industry several hundred million dollars. The sparking technique is safe, inexpensive, and is capable of treating large volumes of water, which makes it attractive for mill applications. Several mill trials were run. Sparking caused a decrease in the tack of the deposits in one case. Lower bleach use occurred in two other mills; sparking reduced the degree of ink reattachment to fiber. The payback for either application is attractive. Sparking induced deposition of contaminants in another mill, which is a positive development--if it can be controlled. The technique is also able to degas water and to oxidize odor-causing sulfur compounds. Although one unit has been purchased by a mill, second-order effects caused by the technology needs to be defined further before the technology can be broadly applied.

Institute of Paper Science Technology

2002-07-01T23:59:59.000Z

465

DOE Uranium Leasing Program - Lease Tract Metrics  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Uranium Leasing Program -- Lease Tract Metrics Uranium Leasing Program -- Lease Tract Metrics Lease Tract Lessee Lease Date Bid (%) Reclamation Bond a Total Acres Acres Excluded b Comment C-JD-5 Gold Eagle Mining, Inc. 04/30/08 12.00 37,000 150.71 C-JD-5A Golden Eagle Uranium, LLC 06/27/08 20.10 5,000 24.54 C-JD-6 Cotter Corporation 04/30/08 14.20 19,000 530.08 C-JD-7 c Cotter Corporation 04/30/08 27.30 1,206,000 493.01 C-JD-8 Cotter Corporation 04/30/08 36.20 4,000 954.62 C-JD-8A No bids received - remains inactive N/A N/A N/A 77.91 C-JD-9 Cotter Corporation 04/30/08 24.30 72,000 1,036.50 C-SR-10 Golden Eagle Uranium, LLC 06/27/08 13.10 5,000 637.64 C-SR-11 Cotter Corporation 04/30/08 11.67 43,000 1,303.22 200.25 Summit Canyon area excluded from lease tract C-SR-11A Golden Eagle Uranium, LLC 06/27/08 14.30 5,000 1,296.81 C-SR-12 Colorado Plateau Partners 06/27/08

466

DOE Announces Policy for Managing Excess Uranium Inventory | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Policy for Managing Excess Uranium Inventory Policy for Managing Excess Uranium Inventory DOE Announces Policy for Managing Excess Uranium Inventory March 12, 2008 - 10:52am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today released a Policy Statement on the management of the Department of Energy's (DOE) excess uranium inventory, providing the framework within which DOE will make decisions concerning future use and disposition of its inventory. During the coming year, DOE will continue its ongoing program for downblending excess highly enriched uranium (HEU) into low enriched uranium (LEU), evaluate the benefits of enriching a portion of its excess natural uranium into LEU, and complete an analysis on enriching and/or selling some of its depleted uranium. Specific transactions are expected to occur in

467

NNSA Authorizes Start-Up of Highly Enriched Uranium Materials...  

National Nuclear Security Administration (NNSA)

Releases NNSA Authorizes Start-Up of Highly Enriched Uranium ... NNSA Authorizes Start-Up of Highly Enriched Uranium Materials Facility at Y-12 applicationmsword icon R-10-01...

468

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...transmission of genetic damage by depleted uranium and tungsten alloy Alexandra Miller...The radioactive heavy metal, depleted uranium (DU), an alpha-particle emitter...fragments will affect the long-term health of offspring conceived by these...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

469

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Association for Cancer Research 1 May 2005...Proc Amer Assoc Cancer Res, Volume 46, 2005 Depleted uranium internal contamination...Proc Amer Assoc Cancer Res, Volume 46, 2005] 2080 Depleted uranium is a heavy metal...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

470

Depleted uranium - induced malignant transformation in human lung epithelial cells.  

Science Journals Connector (OSTI)

...Association for Cancer Research 15 April...Proc Amer Assoc Cancer Res, Volume 47, 2006 Depleted uranium - induced malignant...Proc Amer Assoc Cancer Res, Volume 47, 2006] 5215 Depleted uranium (DU) has been...

Aldona A. Karaczyn; Hong Xie; and John P. Wise

2006-04-15T23:59:59.000Z

471

Depleted uranium mobility and fractionation in contaminated soil (Southern Serbia)  

Science Journals Connector (OSTI)

During the Balkan conflict in 1999, soil in contaminated areas was enriched in depleted uranium (DU) isotopic signature, relative to the in-situ natural uranium present. After the military activities, most...

Mirjana B. Radenkovi?; Svjetlana A. Cupa?

2008-01-01T23:59:59.000Z

472

Depleted uranium internal contamination: Carcinogenesis and leukemogenesis in vivo  

Science Journals Connector (OSTI)

...Abstract 3464: Epigenetic mechanism is involved in depleted uranium-induced transformation in human lung epithelial...Wise 1 1Univ. of Southern Maine, Portland, ME. Depleted uranium (DU) is commonly used in military applications...

Alexandra C. Miller; Mike Stewart; Rafael Rivas; Robert Merlot; and Paul Lison

2005-05-01T23:59:59.000Z

473

Numerical simulation for formed projectile of depleted uranium alloy  

Science Journals Connector (OSTI)

The numerical simulation for forming projectile of depleted uranium alloy with the SPH (Smooth Particle Hydrodynamic ... . To describe the deformed behaviors of the depleted uranium alloy under high pressure and ...

Song Shun-cheng; Gao Ping; Cai Hong-nian

2003-09-01T23:59:59.000Z

474

Remedial actions at the former Climax Uranium Company, Uranium Mill site, Grand Junction, Mesa County, Colorado. Volume 2, Appendices: Final environmental impact statement  

SciTech Connect

This volume contains Appendix F--hydrology report, and Appendix G--flood plain and wetland assessment. Contents of the hydrology report include: surface water; ground water; potentially affected hydrogeologic environment-processing site; potentially affected hydrogeologic environment-Cheney reservoir site; potentially affected hydrogeologic environment-Two Road site; and conclusions-ground water.

none,

1986-12-01T23:59:59.000Z

475

Retrieval of buried depleted uranium from the T-1 trench  

SciTech Connect

The Trench 1 remediation project will be conducted this year to retrieve depleted uranium and other associated materials from a trench at Rocky Flats Environmental Technology Site. The excavated materials will be segregated and stabilized for shipment. The depleted uranium will be treated at an offsite facility which utilizes a novel approach for waste minimization and disposal through utilization of a combination of uranium recycling and volume efficient uranium stabilization.

Burmeister, M. [Rocky Mountain Remediation Services, Golden, CO (United States); Castaneda, N. [Dept. of Energy, Golden, CO (United States). Rocky Flats Field Office; Greengard, T. [Kaiser-Hill Co., Golden, CO (United States)]|[Science Applications International Corp. (United States); Hull, C. [S.M. Stoller Corp., Boulder, CO (United States); Barbour, D.; Quapp, W.J. [Starmet Corp. (United States)

1998-07-01T23:59:59.000Z

476

Uranium Sequestration via Phosphate Infiltration/Injection Test...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Immediate sequestration - Stable mineral form * Apatite formation - Sorbent for uranium - Conversion to autunite 5 Advantages of Phosphate Technology * Direct treatment...

477

Depleted uranium plasma reduction system study  

SciTech Connect

A system life-cycle cost study was conducted of a preliminary design concept for a plasma reduction process for converting depleted uranium to uranium metal and anhydrous HF. The plasma-based process is expected to offer significant economic and environmental advantages over present technology. Depleted Uranium is currently stored in the form of solid UF{sub 6}, of which approximately 575,000 metric tons is stored at three locations in the U.S. The proposed system is preconceptual in nature, but includes all necessary processing equipment and facilities to perform the process. The study has identified total processing cost of approximately $3.00/kg of UF{sub 6} processed. Based on the results of this study, the development of a laboratory-scale system (1 kg/h throughput of UF6) is warranted. Further scaling of the process to pilot scale will be determined after laboratory testing is complete.

Rekemeyer, P.; Feizollahi, F.; Quapp, W.J.; Brown, B.W.

1994-12-01T23:59:59.000Z