Sample records for umtra project sites

  1. Licensing plan for UMTRA project disposal sites. Final [report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC`s acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information.

  2. UMTRA (Uranium Mill Tailings Remedial Action) Project site management manual

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    The purpose of this manual is to summarize the organizational interfaces and the technical approach used to manage the planning, design development, National Environmental Policy Act (NEPA) compliance, engineering, and remedial action required to stabilize and control the designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites. This manual describes the Project's objective, participants' roles and responsibilities, technical approach for accomplishing the objective, and planning and managerial controls to be used in performing the site work. The narrative follows the flow of activities depicted in Figure 1.1, which provides the typical sequence of key Project activities. A list of acronyms used is presented at the end of the manual. The comparable manual for UMTRA Project vicinity properties is the Vicinity Properties Management and Implementation Manual'' (VPMIM) (UMTRA-DOE/AL-050601). Together, the two manuals cover the remedial action activities associated with UMTRA Project sites. The UMTRA Project's objective is to stabilize and control the uranium mill tailings, vicinity property materials, and other residual radioactive materials at the designated sites (Figure 1.2) in a safe and environmentally sound manner in order to minimize radiation health hazards to the public. 26 figs., 6 tabs.

  3. Policy and procedures for classification of Class III groundwater at UMTRA Project sites. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has recently proposed groundwater regulations for the US Department of Energy's )DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. These regulations allow the application of supplemental standards at UMTRA Project sites in specific situations. The designation of groundwater as Class III permits the application of supplemental standards. This document discusses a final UMTRA Project policy and procedures for identifying Class III groundwater, including identification of a review area, definition of water quality, quantification of aquifer yield, and identification of methods reasonably employed for public water supply systems. These items, either individually or collectively, need to be investigated in order to determine if groundwaters at UMTRA Project sites are Class III. This document provides a framework for the DOE to determine Class III groundwaters.

  4. Site Observational Work Plan for the UMTRA Project Site at Shiprock, New Mexico. Revision

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is one of the first documents for developing an approach for achieving ground water compliance at the site. This SOWP applies Shiprock site information to a regulatory compliance framework, which identifies strategies for meeting ground water compliance at the site. The compliance framework was developed in the UMTRA ground water programmatic environmental impact statement.

  5. Site observational work plan for the UMTRA Project Site at Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has prepared this initial site observational work plan (SOWP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project site in Grand Junction, Colorado. This SOWP is one of the first UMTRA Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards (40 CFR Part 192, as amended by 60 FR 2854) for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement (PEIS). This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The DOE goal is to use the observational method to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation based on the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards.

  6. Policy and procedures for classification of Class III groundwater at UMTRA Project sites. Final

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has recently proposed groundwater regulations for the US Department of Energy`s )DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. These regulations allow the application of supplemental standards at UMTRA Project sites in specific situations. The designation of groundwater as Class III permits the application of supplemental standards. This document discusses a final UMTRA Project policy and procedures for identifying Class III groundwater, including identification of a review area, definition of water quality, quantification of aquifer yield, and identification of methods reasonably employed for public water supply systems. These items, either individually or collectively, need to be investigated in order to determine if groundwaters at UMTRA Project sites are Class III. This document provides a framework for the DOE to determine Class III groundwaters.

  7. Site observational work plan for the UMTRA Project site at Falls City, Texas

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Produced by the US Department of Energy (DOE), this site observational work plan (SOWP) will be used to determine site-specific activities to comply with the US Environmental Protection Agency (EPA) ground water standards at this Uranium Mill Tailings Remedial Action (UMTRA) Project site. The purpose of the SOWP is to recommend a site-specific ground water compliance strategy at the Falls City UMTRA Project site. The Falls City SOWP presents a comprehensive summary of site hydrogeological data, delineates a conceptual model of the aquifer system, and discusses the origins of milling-related ground water contamination. It also defines the magnitude of ground water contamination, potential environmental and health risks associated with ground water contamination and data gaps, and targets a proposed compliance strategy.

  8. Site observational work plan for the UMTRA project site at Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This site observational work plan (SOWP) is one of the first Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project documents developed to select a compliance strategy that meets the UMTRA ground water standards for the Grand Junction site. This SOWP applies information about the Grand Junction site to the compliance strategy selection framework developed in the UMTRA Ground Water Project draft programmatic environmental impact statement. This risk-based, decision-making framework identifies the decision logic for selecting compliance strategies that could be used to meet the ground water standards. The US Department of Energy (DOE) goal is to implement a cost-effective site strategy that complies with the ground water standards and protects human health and the environment. Based on an evaluation of the site characterization and risk assessment data available for the preparation of this SOWP, DOE proposes that the most likely compliance strategy for the Grand Junction site is no remediation with the application of supplemental standards. This proposed strategy is based on a conceptual site model that indicates site-related contamination is confined to a limited-use aquifer as defined in the ground water standards. The conceptual model demonstrates that the uranium processing-related contamination at the site has affected the unconfined alluvial aquifer, but not the deeper confined aquifer.

  9. UMTRA Project value engineering plan

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    The objective of value engineering (VE) on the Uranium MILL Tailings Remedial Action (UMTRA) Project is to ensure that remedial action at the UMTRA Project sites is performed to meet the US Environmental Protection Agency (EPA) standards for inactive uranium mill tailings sites at the lowest cost, while maintaining a high quality of work. Through review of designs and consideration of reasonable, less expensive alternatives, VE can be an effective cost reduction tool and a means to improve the design. The UMTRA Project products are the design and construction of stabilized tailings embankments.

  10. Site observational work plan for the UMTRA Project site at Riverton, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the first document for the UMTRA Ground Water Project to address site-specific activities to meet compliance with the U.S. Environmental Protection Agency (EPA) proposed ground water standards (52 FR 36000 (1987)). In support of the activities the regulatory framework and drivers are presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. A combination of the two compliance strategies that will be recommended for this site are no remediation with the application of alternate concentration levels (ACL) and natural flushing in conjunction with institutional controls. ACLs are to be applied to constituents that occur at concentrations above background levels but which are essential nutrients and occur within nutritional ranges and/or have very low toxicity and high dietary intake rates compared to the levels detected in the ground water. The essential premise of natural flushing is that ground water movement and natural attenuation processes will reduce the detected contamination to background levels within 1 00 years. These two recommended compliance strategies were evaluated by applying Riverton site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement. There are three aquifers beneath the site: a surficial unconfined aquifer, a middle semiconfined aquifer, and a deeper confined aquifer. The milling-related contamination at the site has affected both the surficial and semiconfined aquifers, although the leaky shale aquifers separating these units limits the downward migration of contamination into the semiconfined aquifer. A shale aquitard separates the semiconfined aquifer from the underlying confined aquifer which has not been contaminated by milling-related constituents.

  11. Site observational work plan for the UMTRA project site at Shiprock, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project Site is the initial document for developing site-specific activities to achieve regulatory compliance in the UMTRA Ground Water Project. The regulatory framework used to select the proposed ground water compliance strategies is presented along with a discussion of the relationship of this SOWP to other UMTRA Ground Water Project programmatic documents. The Shiprock site consists of two, interconnected hydrogeologic systems: the terrace system and the floodplain system. Separate compliance strategies are proposed for these two systems. The compliance strategy for the terrace aquifer is no remediation with the application of supplemental standards based on classification of the terrace aquifer as having Class III (limited-use) ground water. The compliance strategy for the floodplain aquifer is active remediation using a subsurface biological barrier. These strategies were selected by applying site-specific data to the compliance framework developed in the UMTRA Ground Water programmatic environmental impact statement (PEIS) (DOE, 1994a). The site conceptual model indicates that milling-related contamination has impacted the ground water in the terrace and floodplain aquifers. Ground water occurs in both aquifers in alluvium and in fractures in the underlying Cretaceous age Mancos Shale. A mound of ground water related to fluids from the milling operations is thought to exist in the terrace aquifer below the area where settling ponds were in use during the mill operations. Most of the water occurring in the floodplain aquifer is from recharge from the San Juan River.

  12. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public's concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  13. Mitigation and monitoring plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The U.S Department of Energy (DOE) administers the Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project is the result of the Uranium Mill Tailings Radiation Control Act(UMTRA) which was passed in response to the public`s concern over the potential public health hazards related to uranium mill tailings and associated contaminated material at abandoned or otherwise uncontrolled inactive processing sites throughout the United States. The Gunnison, Colorado abandoned uranium mill site is one of the sites slated for cleanup by the DOE under authority of UMTRA. The contaminated material at this site will be transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities will temporarily disturb 0.8 acre and permanently eliminate 5.1 acres of wetlands. This report describes the proposed mitigation plan for the 5.9 acres of impacted wetlands. In conjunction with the mitigation of the permanently impacted wetlands through the enhancement of wetland and adjacent riparian areas, impacts to wildlife as a result of this project will also be mitigated. However, wildlife mitigation is not the focus of this document and is covered in relevant BLM permits for this project. This plan proposes the enhancement of a 3:1 ratio of impacted wetlands in accordance with US Environmental Protection Agency guidelines, plus the enhancement of riparian areas for wildlife mitigation. Included in this mitigation plan is a monitoring plan to ensure that the proposed measures are working and being maintained.

  14. Final audit report of remedial action construction at the UMTRA project site Rifle, Colorado. Rev. 1

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This final audit report summarizes the assessments performed by the U.S. Department of Energy (DOE) Environmental Restoration Division (ERD) and its Technical Assistance Contractor (TAC) of remedial action compliance with approved plans, specifications, standards, and 40 CFR Part 192 at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. Remedial action construction was directed by the Remedial Action Contractor (RAC).

  15. Environmental Assessment of Ground Water Compliance at the Durango, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-11-29T23:59:59.000Z

    The U.S. Department of Energy (DOE) is proposing a ground water compliance strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Durango, Colorado. DOE has prepared this environmental assessment to provide the public with information concerning the potential effects of this proposed strategy.

  16. Site observational work plan for the UMTRA Project site at Spook, Wyoming

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    The Spook, Wyoming, site observational work plan proposes site-specific activities to achieve compliance with Subpart B of 40 CFR Part 192 (1994) of the final US Environmental Protection Agency (EPA) ground water protection standards 60 FR 2854 (1995) at this Uranium Mill Tailing Remedial Action (UMTRA) Project site. This draft SOWP presents a comprehensive summary of existing site characterization data, a conceptual site model of the nature and extent of ground water contamination, exposure pathways, and potential impact to human health and the environment. Section 2.0 describes the requirements for meeting ground water standards at UMTRA Project sites. Section 3.0 defines past and current conditions, describes potential environmental and human health risks, and provides site-specific data that supports the selection of a proposed ground water compliance strategy. Section 4.0 provides the justification for selecting the proposed ground water compliance strategy based on the framework defined in the ground water programmatic environmental impact statement (PEIS).

  17. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action(UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1996). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will be evaluated in the site-specific environmental assessment to determine potential environmental impacts and provide stakeholders a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  18. Site observational work plan for the UMTRA Project site at Monument Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The site observational work plan (SOWP) for the Monument Valley, Arizona, US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site is one of the first site-specific documents developed to achieve ground water compliance at the site. This SOWP applies information about the Monument Valley site to a regulatory compliance framework that identifies strategies that could be used to meet ground water compliance. The compliance framework was developed in the UMTRA Ground Water programmatic environmental impact statement (DOE, 1995). The DOE`s goal is to implement a cost-effective site strategy that complies with the US Environmental Protection Agency (EPA) ground water standards and protects human health and the environment. The compliance strategy that emerges in the final version of the SOWP will assess potential environmental impacts and provide stakeholder a forum for review and comment. When the compliance strategy is acceptable, it will be detailed in a remedial action plan that will be subject to review by the state and/or tribe and concurrence by the US Nuclear Regulatory Commission (NRC). Information available for the preparation of this SOWP indicates active remediation is the most likely compliance strategy for the Monument Valley site. Additional data are needed to determine the most effective remediation technology.

  19. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

  20. Public participation in UMTRA Project program management

    SciTech Connect (OSTI)

    Majors, M.J.; Ulland, L.M. [Weston (Roy F.), Inc., Albuquerque, NM (United States)

    1993-12-31T23:59:59.000Z

    Innovative techniques for overcoming barriers to public participation on the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project have led to improved communications with stakeholders at project sites and improved communications within the project. On the UMTRA Project, it`s been shown that an effective public participation program is an essential element to successful project implementation.

  1. Site observational work plan for the UMTRA Project site at Ambrosia Lake, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Ambrosia Lake Uranium Mill Tailings Remedial Action (UMTRA) Project site is within the Grants Mineral Belt and was one of numerous uranium mills supplied by many local mines. Ground water contamination at the site occurred as a result of uranium mill operations. The potential for impacts to human health and the environment from contaminated ground water currently does not exist. No domestic or livestock wells accessing ground water from the uppermost aquifer have been identified within a 5 mile radius from the site. Therefore, no current exposure pathways to humans, livestock, or wildlife exist, nor are any foreseen. The proposed ground water compliance strategy under consideration for application at the Ambrosia Lake site is to perform no remediation, based on the application of supplemental standards because the ground water has ``limited use.``

  2. UMTRA Project: Environment, Safety, and Health Plan

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project`s ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors` evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations.

  3. Final audit report of remedial action construction at the UMTRA Project Mexican Hat, Utah -- Monument Valley, Arizona, sites

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The final audit report for remedial action at the Mexican Hat, Utah, Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites consists of a summary of the radiological surveillances/audits, quality assurance (QA) in-process surveillances, and QA remedial action close-out inspections performed by the US Department of Energy (DOE) and the Technical Assistance Contractor (TAC); on-site construction reviews (OSCR) performed by the US Nuclear Regulatory Commission (NRC); and a surveillance performed by the Navajo Nation. This report refers to remedial action activities performed at the Mexican Hat, Utah--Monument Valley, Arizona, Uranium Mill Tailings Remedial Action (UMTRA) Project sites.

  4. Site observational work plan for the UMTRA Project site at Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. The wet tailings remaining after processing were placed as a slurry in three piles at the site. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The site is expected to remain in this status until licensed by the U.S. Nuclear Regulatory Commission (NRC) for long-term surveillance and maintenance. The preliminary ground water compliance strategy at the Tuba City site is active remediation-specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  5. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site.

  6. Site observational work plan for the UMTRA Project Site at Tuba City, Arizona

    SciTech Connect (OSTI)

    None

    1994-09-01T23:59:59.000Z

    The requirements for ground water compliance for Uranium Mill Tailings Remedial Action (UMTRA) Project sites, including the Tuba City, Arizona, site, are found in the Uranium Mill Tailings Radiation Control Act; Subparts B and C of the U.S. Environmental Protection Agency`s Health and Environmental Protection Standards for Uranium and Thorium Mill Tailings (40 CFR 192 (1994)), and the associated proposed 1987 standards (52 FR 36000). During the surface remedial action, an estimated 1,400,000 cubic yards (yd{sup 3}) (1,100,000 cubic meters [m{sup 3}]) of uranium mill tailings and other contaminated materials were consolidated and stabilized in place in an unlined disposal cell covering 50 acres (20 hectares). The surface remedial action was completed in April 1990. Ground water beneath the Tuba City site was contaminated by subsurface migration of water from uranium ore processing activities. The main source of contaminants was water from the tailings piles that began in 1956 when the mill opened and ended in 1966 when the mill closed. A total of 800,000 tons (725,000 tonnes) of uranium ore were processed onsite over a 10-year period. Two processes were used to refine the ore: an acid leach process and a sodium carbonate alkaline process. Water from these tailings then seeped into the ground and migrated downward to the ground water. The Tuba City site is currently in a post-stabilization, prelicensing status. The preliminary ground water compliance strategy at the Tuba City site is active remediation. The specific technology to be evaluated is in situ bioremediation. This selection was made because of the potential ability of bioremediation to reduce concentrations to lower levels than a conventional extraction system and to minimize disturbance of the water resource.

  7. Environmental Assessment of Ground Water Compliance at the Gunnison, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2002-08-13T23:59:59.000Z

    The U.S. Department of Energy (DOE) is in the process of selecting a ground water compliance strategy for the Gunnison, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site. This Environmental Assessment (EA) discusses two alternatives and the effects associated with each. The two alternatives are (1) natural flushing coupled with institutional controls and continued monitoring and (2) no action. The compliance strategy must meet U.S. Environmental Protection Agency (EPA) ground water standards defined in Title 40 ''Code of Federal Regulations'' Part 192, Subpart B, in areas where ground water beneath and around the site is contaminated as a result of past milling operations. It has been determined that contamination in the ground water at the Gunnison site consists of soluble residual radioactive material (RRM) as defined in the Uranium Mill Tailings Radiation Control Act (UMTRCA).

  8. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites. Final report and users` guide

    SciTech Connect (OSTI)

    Not Available

    1989-03-01T23:59:59.000Z

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites.

  9. Uranium Mill Tailings Remedial Action (UMTRA) Project. [UMTRA project

    SciTech Connect (OSTI)

    Not Available

    1989-09-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, hereinafter referred to as the Act.'' Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial action at designated inactive uranium processing sites (Attachment 1 and 2) and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing site. The purpose of the remedial actions is to stabilize and control such uranium mill tailings and other residual radioactive materials in a safe and environmentally sound manner to minimize radiation health hazards to the public. The principal health hazards and environmental concerns are: the inhalation of air particulates contaminated as a result of the emanation of radon from the tailings piles and the subsequent decay of radon daughters; and the contamination of surface and groundwaters with radionuclides or other chemically toxic materials. This UMTRA Project Plan identifies the mission and objectives of the project, outlines the technical and managerial approach for achieving them, and summarizes the performance, cost, and schedule baselines which have been established to guide operational activity. Estimated cost increases by 15 percent, or if the schedule slips by six months. 4 refs.

  10. Special study on vegetative covers. [UMTRA Project

    SciTech Connect (OSTI)

    Not Available

    1988-11-01T23:59:59.000Z

    This report describes the findings of a special study on the use of vegetative covers to stabilize tailings piles for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The principal rationale for using plants would be to establish a dynamic system for controlling water balance. Specifically, vegetation would be used to intercept and transpire precipitation to the atmosphere, rather than allowing water to drain into the tailings and mobilize contaminants. This would facilitate compliance with groundwater standards proposed for the UMTRA Project by the Environmental Protection Agency. The goals of the study were to evaluate the feasibility of using vegetative covers on UMTRA Project piles, define the advantages and disadvantages of vegetative covers, and develop general guidelines for their use when such use seems reasonable. The principal method for the study was to analyze and apply to the UMTRA Project the results of research programs on vegetative covers at other US Department of Energy (DOE) waste management facilities. The study also relied upon observations made of existing stabilized piles at UMTRA Project sites where natural vegetation is growing on the rock-covered surfaces. Water balance and erosion models were also used to quantify the long-term performance of vegetative covers planned for the topslopes of stabilized piles at Grand Junction and Durango, Colorado, two UMTRA Project sites where the decision was made during the course of this special study to use vegetative covers. Elements in the design and construction of the vegetative covers at these two sites are discussed in the report, with explanations of the differing features that reflect differing environmental conditions. 28 refs., 18 figs., 9 tabs.

  11. UMTRA project list of reportable occurrences

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This UMTRA Project List of Reportable occurrences is provided to facilitate efficient categorization of reportable occurrences. These guidelines have been established in compliance with DOE minimum reporting requirements under DOE Order 5000.3B. Occurrences are arranged into nine groups relating to US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project operations for active sites. These nine groupings are provided for reference to determined whether an occurrence meets reporting requirement criteria in accordance with the minimum reporting requirements. Event groups and significance categories that cannot or will not occur, and that do not apply to UMTRA Project operations, are omitted. Occurrence categorization shall be as follows: Group 1. Facility Condition; Group 2. Environmental; Group 3. Personnel Safety; Group 4. Personnel Radiation Protection; Group 5. Safeguards and Security; Group 6. Transportation; Group 7. Value Basis Reporting; Group 8. Facility Status; and Group 9. Cross-Category Items.

  12. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final [report

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing sits are summarized as follows: In accordance with EPA-promulgated land cleanup standards (40 CFR 192), in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100-m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. A bulk interpretation of these EPA standards has been accepted by the Nuclear Regulatory Commission (NRC), and while the concentration of the finer-sized soil fraction less than a No. 4 mesh sieve contains the higher concentration of radioactivity, the bulk approach in effect integrates the total sample radioactivity over the entire sample mass. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 cleanup protocol has been developed in accordance with Supplemental Standard provisions of 40 CFR 192 for NRC/Colorado Department of Health (CDH) approval for timely implementation. Detailed elements of the protocol are contained in Appendix A, Generic Protocol from Thorium-230 Cleanup/Verification at UMTRA Project Processing Sites. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR 192 relative to supplemental standards.

  13. A review and assessment of variable density ground water flow effects on plume formation at UMTRA project sites

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    A standard assumption when evaluating the migration of plumes in ground water is that the impacted ground water has the same density as the native ground water. Thus density is assumed to be constant, and does not influence plume migration. This assumption is valid only for water with relatively low total dissolved solids (TDS) or a low difference in TDS between water introduced from milling processes and native ground water. Analyses in the literature suggest that relatively minor density differences can significantly affect plume migration. Density differences as small as 0.3 percent are known to cause noticeable effects on the plume migration path. The primary effect of density on plume migration is deeper migration than would be expected in the arid environments typically present at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, where little or no natural recharge is available to drive the plume into the aquifer. It is also possible that at some UMTRA Project sites, a synergistic affect occurred during milling operations, where the mounding created by tailings drainage (which created a downward vertical gradient) and the density contrast between the process water and native ground water acted together, driving constituents deeper into the aquifer than either process would alone. Numerical experiments were performed with the U.S. Geological Survey saturated unsaturated transport (SUTRA) model. This is a finite-element model capable of simulating the effects of variable fluid density on ground water flow and solute transport. The simulated aquifer parameters generally are representative of the Shiprock, New Mexico, UMTRA Project site where some of the highest TDS water from processing has been observed.

  14. Mitigation and Monitoring Plan for impacted wetlands at the Gunnison UMTRA Project site, Gunnison, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Gunnison, Colorado, abandoned uranium mill site is one site being cleaned up by the DOE under UMTRCA authority. This site`s contaminated material is being transported to a disposal site on US Bureau of Land Management (BLM) land east of Gunnison. Remedial action activities have temporarily disturbed 0.8 acre (ac) (0.3 hectares [ha]) of wetlands and permanently eliminated 4.3 ac (1.7 ha). As required by the Clean Water Act, the US Army Corps of Engineers (USACE) prepared a Section 404 Permit that addresses the loss of wetlands as a result of remedial action at the Gunnison UMTRA Project site. The 404 permit includes this report as an attachment and it describes the wetland mitigation and monitoring plan. The DOE formulated this plan in consultation with the BLM and the USACE. This report represents a revised version of the mitigation and monitoring plan (DOE, 1992b).

  15. UMTRA Project document control system manual

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This manual defines the Project Document Control System (PDCS) operated by the US DOE Uranium Mill tailings Remedial Action (UMTRA) project Office. The purpose of the PDCS is to provide an active and continuing program for acquiring, controlling, retaining, retrieving, retiring and disposing of all UMTRA Project documents. The PDCS also provides guidance and coordination in transferring documents by various UMTRA Projection document control centers to a central location.

  16. Annual report on the U.S. Department of Energy`s Cultural Resource Activities at Colorado UMTRA Project Sites for October 1993 through September 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1993, through September 30, 1994. The UMTRA Project is a cooperative (state and federal) program mandated by the Uranium Mill Tailings Radiation Control Act, Public Law 95-604 (42 USC {section}7901 et seq.). This law requires the timely cleanup of 24 inactive uranium mill tailings sites throughout the United States. Nine of these inactive uranium mill tailings sites are in Colorado at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, Advisory Council on Historic Preservation, and Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of agreement (PMOA) (DOE, 1984). This PMOA specifies requirements for the DOE`s fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report fulfills the requirement for the DOE to provide the state of Colorado with an annual report on the cultural resource activities performed for all of the UMTRA Project sites in Colorado. This report is organized by UMTRA Project site. For each site, the general remedial action activities and cultural resource activities performed during the period of record are summarized. When known, the DOE`s plans for future cultural resource activities at the site are summarized.

  17. UMTRA Project Office quality assurance program plan. Revision 6

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors.

  18. UMTRA Project Office Quality Assurance Program Plan. Revision 5

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office directs the overall Project. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA Project Office shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan or an industry standard format that has been approved by the DOE Project Office.

  19. Cleanup protocols when encountering thorium-230 at U.S. DOE Uranium Mill Tailings Remedial Action (UMTRA) Project sites

    SciTech Connect (OSTI)

    Miller, M.L.; Hylko, J.M.; Cornish, R.E.

    1995-12-31T23:59:59.000Z

    The passage of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, established the regulatory framework, under which the US EPA charged with developing standards for the cleanup and disposal of tailings at 24 designated inactive uranium processing sites located in 10 states. 40 CFR 192.12 requires that the concentration of Ra-226 in land averaged over any area of 100 square meters shall not exceed the background level by more than 5 pCi/g, averaged over the first 15 cm of soil below the surface, 15 pCi/g, averaged over 15-cm-thick layers of soils more than 15 cm below the surface. However, Th-230 is not specifically addressed by the EPA in 40 CFR 192.12, which naturally decays with a half-life of 77,000 years to form Ra-226. Consequently, the cleanup of the initial Ra-226 contamination according to the standards will not necessarily mitigate against the eventual ingrowth of residual Ra-226 with time, due to the radioactive decay of residual Th-230. Therefore, to direct the excavation of residual Th-230, four generic protocols are being used at Uranium Mill Tailings Remedial Action (UMTRA) Project sites, as follows: Determining the allowable remaining concentration of Th-230 in surface and subsurface soils; Encountering Th-230 contamination in the unsaturated subsurface soil; Encountering Th-230 contamination in the saturated zone; and Verification sampling. The four generic protocols, developed in conjunction with the supplemental standards provision, ensure protection of the general public by reducing exposures to levels that are As Low As Reasonably Achievable, while considering practical measures necessary to excavate Th-230 under conditions encountered at the UMTRA Project site.

  20. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc.5 R A D ISaltVerification

  1. UMTRA Ground Water Project

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona,Site Operations Guide Doc.5 R A D

  2. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location.

  3. Work plan for monitor well installation water and sediment sample collection aquifer testing and topographic surveying at the Riverton, Wyoming, UMTRA Project Site

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Investigations conducted during preparation of the site observational work plan (SOWP) at the Uranium Mill Tailings Remedial Action (UMTRA) Project site support a proposed natural flushing ground water compliance strategy, with institutional controls. However, additional site-specific data are needed to reduce uncertainties in order to confirm the applicability and feasibility of this proposed compliance strategy option. This proposed strategy will be analyzed in the site-specific environmental assessment. The purpose of this work plan is to summarize the data collection objectives to fill those data needs, describe the data collection activities that will be undertaken to meet those objectives, and elaborate on the data quality objectives which define the procedures that will be followed to ensure that the quality of these data meet UMTRA Project needs.

  4. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  5. Annual report on the U.S. Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1995--September 1996

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This report summarizes the results of cultural resource activities conducted by the U.S. Department of Energy (DOE) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado for the period of October 1, 1995 through September 30, 1996. The inactive uranium mill tailings sites in Colorado are at Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. On December 6, 1984, the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer (SHPO) entered into a programmatic memorandum of understanding (PMOU). This PMOU requires the DOE to fulfillment of its obligations under various state and federal regulations for the protection and preservation of cultural resources. This report provides the state of Colorado with an annual report on the cultural resource activities performed for all UMTRA Project sites in Colorado. Due to the completion of surface activities at the UMTRA Project sites, this will be the last annual report to the state of Colorado. Cultural resources activities subsequent to this report will be reported to the state through site-specific correspondence.

  6. UMTRA Project Office Federal Employee Occupational Safety and Health Program Plan. Final draft

    SciTech Connect (OSTI)

    Young, B.H.

    1994-02-01T23:59:59.000Z

    This document establishes the Federal Employee Occupational Safety and Health (FEOSH) Program for the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office. This program will ensure compliance with the applicable requirements of DOE Order 3790.1 B and DOE Albuquerque Operations Office (AL) Order 3790.1A. FEOSH Program responsibilities delegated by the DOE-AL to the UMTRA Project Office by AL Order 3790.1A also are assigned. The UMTRA Project Office has developed the UMTRA Project Environmental, Safety, and Health (ES&H) Plan (DOE, 1992), which establishes the basic programmatic ES&H requirements for all participants on the UMTRA Project. The ES&H plan is designed primarily to cover remedial action activities at UMTRA sites, and defines the ES&H responsibilities of both the UMTRA Project Office and its contractors. The UMTRA FEOSH Program described herein is a subset of the overall UMTRA ES&H program and covers only the federal employees working on the UMTRA Project.

  7. UMTRA project office federal employee occupational safety and health program plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document establishes the Federal Employee Occupational Safety and Health (FEOSH) Program for the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office. This program will ensure compliance with applicable requirements of DOE Order 3790.1B and DOE Albuquerque Operations Office (AL) Order 3790.lA. FEOSH Program responsibilities delegated by the DOE-AL to the UMTRA Project Office by AL Order 3790.1A also are assigned. The UMTRA Project Office has developed the UMTRA Project Environmental, Safety, and Health (ES&H) Plan (DOE, 1992), which establishes the basic programmatic ES&H requirements for all participants on the UMTRA Project. The ES&H plan is designed primarily to cover remedial action activities at UMTRA sites and defines the ES&H responsibilities of both the UMTRA Project Office and its contractors. The UMTRA FEOSH Program described herein is a subset of the overall UMTRA ES&H program and covers only federal employees working on the UMTRA Project.

  8. Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy's cultural resource activities at Colorado UMTRA Project sites, January--December 1991. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This report is a summary of the US Department of Energy's (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE's obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

  9. Final audit report of remedial action construction at the UMTRA Project Falls City, Texas, site

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This final audit report for the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site summarizes the radiological audits and the quality assurance (QA) in-process surveillances, audits, and final close-out inspection performed by the U.S. Department of Energy (DOE) and Technical Assistance Contractor (TAC). It also summarizes U.S. Nuclear Regulatory Commission (NRC) surveillances. One radiological audit and three radiological surveillances were performed at the Falls City site. These surveillances and audit, which resulted in 31 observations, focused primarily on processing site activities and were performed on the following dates: 3-6 August 1992, 29-30 October 1992, 22-26 March 1993, and 1-3 November 1993. All outstanding radiological issues were closed out at the completion of the construction activities. Six QA in-process surveillances, which resulted in 71 observations, were performed at the Falls City site on the following dates: 22-24 July 1992, 23-25 November 1992, 17-19 May 1993, 16-18 August 1993, 13-15 October 1993, and 2-4 February 1994. All outstanding issues were closed out with the February surveillance on 3 March 1994. The DOE/TAC remedial action close-out inspections of the Falls City site, which resulted in 56 observations, were conducted 9-10 June 1994 and 26 July 1994. The inspections were closed out on 26 January 1995. The NRC performed three on-site construction reviews (OSCR), resulting in seven observations of remedial action construction activities that occurred during site visits. The OSCRs were performed 9 December 1992, 12 May 1993, and 25 October 1993. Since all audit and surveillance observations and recommendations have been closed out, this final audit report segment of the site certification process is complete.

  10. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site: Final. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Thorium 230 (Th-230) at the Gunnison, Colorado processing site will require remediation, however, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Therefore, to effectively remediate the site with respect to Radium 226 (Ra-226) and Th-230, the following supplemental standard is proposed: In situ Ra-26 will be remediated to the EPA soil cleanup standards independent of groundwater considerations. In situ Th-230 concentrations will be remediated in the region above the encountered water table so the 1000-year projected Ra-226 concentration complies with the EPA soil cleanup concentration limits. If elevated Th-230 persists to the water table, an additional foot of excavation will be performed and the grid will be backfilled. Excavated grids will be backfilled to the final remedial action grade with clean cobbly soil. Final grid verification that is required below the water table will be performed by extracting and analyzing a single bulk soil sample with the bucket of a backhoe. Modeled surface radon flux values will be estimated and documented. A recommendation will be made that land records should be annotated to identify the presence of residual Th-230.

  11. Environmental Assessment of Ground Water Compliance at the Naturita, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    None

    2003-04-23T23:59:59.000Z

    This Environmental Assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Naturita, Colorado, Uranium Mill Tailings Remedial Action Project site. In 1998, the U.S. Department of Energy (DOE) completed surface cleanup at the site and encapsulated the tailings in a disposal cell 15 miles northwest near the former town of Uravan, Colorado. Ground water contaminants of potential concern at the Naturita site are uranium and vanadium. Uranium concentrations exceed the maximum concentration limit (MCL) of 0.044 milligram per liter (mg/L). Vanadium has no MCL; however, vanadium concentrations exceed the EPA Region III residential risk-based concentration of 0.33 mg/L (EPA 2002). The proposed compliance strategy for uranium and vanadium at the Naturita site is no further remediation in conjunction with the application of alternate concentration limits. Institutional controls with ground water and surface water monitoring will be implemented for these constituents as part of the compliance strategy. This compliance strategy will be protective of human health and the environment. The proposed monitoring program will begin upon regulatory concurrence with the Ground Water Compliance Action Plan (DOE 2002a). Monitoring will consist of verifying that institutional controls remain in place, collecting ground water samples to verify that concentrations of uranium and vanadium are decreasing, and collecting surface water samples to verify that contaminant concentrations do not exceed a regulatory limit or risk-based concentration. If these criteria are not met, DOE would reevaluate the proposed action and determine the need for further National Environmental Policy Act documentation. No comments were received from the public during the public comment period. Two public meetings were held during this period. Minutes of these meetings are included as Attachment 1.

  12. Review and analysis of proposed EPA groundwater standards for the UMTRA Project. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-10-01T23:59:59.000Z

    The Title I groundwater standards for inactive uranium mill tailings sites, which were promulgated on January 5, 1983, by the US Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action (UMTRA) Project, were remanded to the EPA on September 3, 1985, by the US Tenth Circuit Court of Appeals. The Court instructed the EPA to compile general groundwater standards for all sites. On September 24, 1987, the EPA published proposed standards in response to the remand. This Summary Report includes an evaluation of the potential effects of the proposed EPA groundwater standards on the UMTRA Project as well as a discussion of the DOE's position on the proposed standards. This report is accompanied by a detailed Technical Report and Appendices which provide supporting information and analyses. This Summary Report results from a study undertaken to: determine the impact of the proposed standards on the UMTRA Project; and recommend provisions for the implementation of the final standards that will minimize adverse impact to the conduct of the UMTRA Project while ensuring protection of human health and the environment. Specifically, the following were considered: the flexibility of the proposed standards; interpretations of the proposed standards; the extent of aquifer restoration that may be required to implement the proposed standards at each site; the costs of aquifer restoration; and design changes necessary to meet the standards.

  13. Guidance for implementing the long-term surveillance program for UMTRA Project Title I Disposal Sites

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This guidance document has two purposes: it provides guidance for writing site-specific long-term surveillance plans (LTSP) and it describes site surveillance, monitoring, and long-term care techniques for Title I disposal sites of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.). Long-term care includes monitoring, maintenance, and emergency measures needed to protect public health and safety and the environment after remedial action is completed. This document applies to the UMTRCA-designated Title I disposal sites. The requirements for long-term care of the Title I sites and the contents of the LTSPs are provided in U.S. Nuclear Regulatory Commission (NRC) regulations (10 CFR Section 40.27) provided in Attachment 1.

  14. UMTRA Project Office Records Management Plan

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office maintains two distinct records handling areas. One of the areas is maintained by a Technical Assistance Contractor (TAC), and is referred to as the UMTRA Project Document Control Center (UPDCC). The UPDCC manages all UMTRA records except those dealing with contracts, personnel, budgeting, finance, and any other documents which are of a purely administrative nature. The second area, the UMTRA Project Administrative Files Collection (UPAFC), contains all those records listed above that are not managed by the UPDCC. This Records Management Plan (RMP) for the UPAFC will be the framework for identifying the elements and activities that relate to the management and operational aspects involved in the handling of UPAFC. Guidelines for the program will be obtained from US Department of Energy (DOE) Orders. DOE Orders implement the guidelines issued by the National Archives and Records Administration (NARA), the final authority for records management. The RMP will address the life cycle of records, including their creation, maintenance, use, and disposition.

  15. Environmental assessment of remedial action at the Gunnison Uranium Mill Tailings Site, Gunnison, Colorado. [UMTRA Project

    SciTech Connect (OSTI)

    Bachrach, A.; Hoopes, J.; Morycz, D. (Jacobs Engineering Group, Inc., Pasadena, CA (USA)); Bone, M.; Cox, S.; Jones, D.; Lechel, D.; Meyer, C.; Nelson, M.; Peel, R.; Portillo, R.; Rogers, L.; Taber, B.; Zelle, P. (Weston (Roy F.), Inc., Washington, DC (USA)); Rice, G. (Sergent, Hauskins and Beckwith (USA))

    1984-12-01T23:59:59.000Z

    This document assesses and compares the environmental impacts of various alternatives for remedial action at the Gunnison uranium of mill tailings site located 0.5 miles south of Gunnison, Colorado. The site covers 56 acres and contains 35 acres of tailings, 2 of the original mill buildings and a water tower. The Uranium Mill Tailings Radiation Control of Act of 1978 (UMTRCA), Public Law 95-604, authorizes the US Department of Energy to clean up the site to reduce the potential health impacts associated with the residual radioactive materials remaining at the site and at associated (vicinity) properties off the site. The US Environmental Protection Agency promulgated standards for the remedial actions (40 CFR 192). Remedial actions must be performed in accordance with these standards and with the occurrence of the Nuclear Regulatory Commission. Four alternatives have been addressed in this document. The first alternative is to consolidate the tailings and associated contaminated soils into a recontoured pile on the southern portion of the existing site. A radon barrier of silty clay would be constructed over the pile and various erosion control measures would be taken to assure the long-term integrity of the pile. Two other alternatives which involve moving the tailings to new locations are assessed in this document. These alternatives generally involve greater short-term impacts and are more costly but would result in the tailings being stabilized in a location farther from the city of Gunnison. The no action alternative is also assessed.

  16. UMTRA project water sampling and analysis plan, Maybell, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This water sampling and analysis plan (WSAP) describes planned water sampling activities and provides the regulatory and technical basis for ground water sampling in 1994 at the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Maybell, Colorado. The WSAP identifies and justifies sampling locations, analytical parameters, and sampling frequencies at the site. The ground water data will be used for site characterization and risk assessment. The regulatory basis for the ground water and surface water monitoring activities is derived from the EPA regulations in 40 CFR Part 192 (1993) and the proposed EPA standards of 1987 (52 FR 36000). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site. This WSAP also includes a summary and the results of water sampling activities from 1989 through 1992 (no sampling was performed in 1993).

  17. UMTRA project water sampling and analysis plan -- Shiprock, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Water sampling and analysis plan (WSAP) is required for each U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site to provide a basis for ground water and surface water sampling at disposal and former processing sites. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring stations at the Navaho Reservation in Shiprock, New Mexico, UMTRA Project site. The purposes of the water sampling at Shiprock for fiscal year (FY) 1994 are to (1) collect water quality data at new monitoring locations in order to build a defensible statistical data base, (2) monitor plume movement on the terrace and floodplain, and (3) monitor the impact of alluvial ground water discharge into the San Juan River. The third activity is important because the community of Shiprock withdraws water from the San Juan River directly across from the contaminated alluvial floodplain below the abandoned uranium mill tailings processing site.

  18. Annual report to the Advisory Council on Historic Preservation and the Colorado State Historic Preservation Officer on the US Department of Energy`s cultural resource activities at Colorado UMTRA Project sites, January--December 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This report is a summary of the US Department of Energy`s (DOE) cultural resource investigations for the Uranium Mill Tailings Remedial Action (UMTRA) Project sites in Colorado. This report is intended to fulfill the DOE`s obligation for an annual report as stated in the Programmatic Memorandum of Agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Summaries of the cultural resource surveys and identified resources are provided for the UMTRA Project sites in the vicinities of Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock. This report covers all UMTRA Project cultural resource activities in Colorado from January through December 1991.

  19. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  20. Annual report on the US Department of Energy`s cultural resource activities at Colorado UMTRA Project sites for October 1991--September 1992

    SciTech Connect (OSTI)

    Not Available

    1993-10-06T23:59:59.000Z

    This report summarizes the US Department of Energy`s (DOE) cultural resource studies that were undertaken in support of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project in the state of Colorado for the period of October 1, 1991, through September 30, 1992. This report fulfills the DOE`s obligation to provide an annual report to the state of Colorado on the status and results of cultural resource studies conducted during the above period of record. This requirement is stated in a programmatic memorandum of agreement executed between the DOE, the Advisory Council on Historic Preservation, and the Colorado State Historic Preservation Officer in December 1984. Previous reports were based on a calendar year reporting period. However, in order to be more consistent with the programmatic memorandum of agreement, the period of record for this and subsequent annual reports has been changed to the Federal fiscal year. The current status and summaries of 1992 cultural resource surveys are provided for all UMTRA Project sites in Colorado. The sites are Durango, Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock.

  1. UMTRA Project value engineering plan. [Design and construction of stabilized tailings embankments

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    The objective of value engineering (VE) on the Uranium MILL Tailings Remedial Action (UMTRA) Project is to ensure that remedial action at the UMTRA Project sites is performed to meet the US Environmental Protection Agency (EPA) standards for inactive uranium mill tailings sites at the lowest cost, while maintaining a high quality of work. Through review of designs and consideration of reasonable, less expensive alternatives, VE can be an effective cost reduction tool and a means to improve the design. The UMTRA Project products are the design and construction of stabilized tailings embankments.

  2. Lessons learned on the UMTRA Project

    SciTech Connect (OSTI)

    Not Available

    1991-02-01T23:59:59.000Z

    This report has been compiled as part of the Technical Assistance Contractor's (TAC's) continuing efforts to improve the quality of its product to the US Department of Energy (DOE), and to reduce the costswhile maintaining a standard of excellence on the Uranium Mill Tailings Remedial Action (UMTRA) Project. The report documents the lessons learned and the steps taken to benefit the project as a result. This study has multiple objectives, which fall under the following hierarchy: To examine and evaluate past successes and mistakes. To provide a record of lessons learned for the benefit and orientation of future staffmembers. To identify shortcomings of, and desired improvements to, current UMTRA Project practices and procedures. To establish a means for the future review and dissemination of lessons learned.

  3. UMTRA Ground Water Project management action process document

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    A critical U.S. Department of Energy (DOE) mission is to plan, implement, and complete DOE Environmental Restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC). These facilities include the 24 inactive processing sites the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC Section 7901 et seq.) identified as Title I sites, which had operated from the late 1940s through the 1970s. In UMTRCA, Congress acknowledged the potentially harmful health effects associated with uranium mill tailings and directed the DOE to stabilize, dispose of, and control the tailings in a safe and environmentally sound manner. The UMTRA Surface Project deals with buildings, tailings, and contaminated soils at the processing sites and any associated vicinity properties (VP). Surface remediation at the processing sites will be completed in 1997 when the Naturita, Colorado, site is scheduled to be finished. The UMTRA Ground Water Project was authorized in an amendment to the UMTRCA (42 USC Section 7922(a)), when Congress directed DOE to comply with U.S. Environmental Protection Agency (EPA) ground water standards. The UMTRA Ground Water Project addresses any contamination derived from the milling operation that is determined to be present at levels above the EPA standards.

  4. UMTRA -- The US Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Lightner, R. [Dept. of Energy, Washington, DC (United States); Cormier, C. [Department of Energy, Albuquerque, NM (United States); Bierley, D. [Roy F. Weston, Inc., Albuquerque, NM (United States)

    1995-12-31T23:59:59.000Z

    In the late 1970s, the United States (US) established the first comprehensive regulatory structure for the management, disposal, and long-term care of wastes produced from its domestic uranium processing industry. This regulatory framework was established through the passage of the Uranium Mill Tailings Radiation Control Act of 1978, often referred to as UMTRCA. This legislation created the Uranium Mill Tailings Remedial Action (UMTRA) Project and assigned the US Department of Energy (DOE) the lead in conducting the required remedial action at 24 designated inactive uranium ore processing sites. With the majority of these 22 sites complete, the DOE`s UMTRA Project has established a distinguished reputation for safely and effectively remediating these low-level waste sites in a complex regulatory and socioeconomic environment. This paper describes the past accomplishments and current status of the UMTRA Project and discusses the DOE`s plans for addressing ground water contamination associated with these sites and its commitment to continuing the long-term care and management of these disposal cells.

  5. UMTRA project disposal cell cover biointrusion sensitivity assessment, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    This study provides an analysis of potential changes that may take place in a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell cover system as a result of plant biointrusion. Potential changes are evaluated by performing a sensitivity analysis of the relative impact of root penetrations on radon flux out of the cell cover and/or water infiltration into the cell cover. Data used in this analysis consist of existing information on vegetation growth on selected cell cover systems and information available from published studies and/or other available project research. Consistent with the scope of this paper, no new site-specific data were collected from UMTRA Project sites. Further, this paper does not focus on the issue of plant transport of radon gas or other contaminants out of the disposal cell cover though it is acknowledged that such transport has the potential to be a significant pathway for contaminants to reach the environment during portions of the design life of a disposal cell where plant growth occurs. Rather, this study was performed to evaluate the effects of physical penetration and soil drying caused by plant roots that have and are expected to continue to grow in UMTRA Project disposal cell covers. An understanding of the biological and related physical processes that take place within the cover systems of the UMTRA Project disposal cells helps the U.S. Department of Energy (DOE) determine if the presence of a plant community on these cells is detrimental, beneficial, or of mixed value in terms of the cover system`s designed function. Results of this investigation provide information relevant to the formulation of a vegetation control policy.

  6. Supplement to the UMTRA Project water sampling and analysis plan, Ambrosia Lake, New Mexico

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Ambrosia Lake Uranium Mill Tailings Remedial Action (UMTRA) Project site is in McKinley County, New Mexico. As part of UMTRA surface remediation, residual radioactive materials were consolidated on the site in a disposal cell that was completed July 1995. The need for ground water monitoring was evaluated and found not to be necessary beyond the completion of the remedial action because the ground water in the uppermost aquifer is classified as limited use.

  7. ERD UMTRA Project quality assurance program plan, Revision 7

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors.

  8. UMTRA Project water sampling and analysis plan, Durango, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Durango, Colorado, are described in this water sampling and analysis plan. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the routine monitoring stations at the site. The ground water data are used to characterize the site ground water compliance strategies and to monitor contaminants of potential concern identified in the baseline risk assessment (DOE, 1995a). Regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US EPA regulations in 40 CFR Part 192 (1994) and EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

  9. UMTRA project water sampling and analysis plan, Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Planned, routine ground water sampling activities for calendar year 1995 to 1997 at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Naturita, Colorado, are described in this water sampling and analysis plan. The following plan identifies and justifies the sampling locations, analytical parameters, detection limits, sampling frequency, and specific rationale for each routine monitoring station at the site. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

  10. Evaluation of impacts and mitigation assessments for the UMTRA Project: Gunnison and Durango pilot studies. Final report

    SciTech Connect (OSTI)

    Beranich, S.J. [Southwest Environmental, Albuquerque, NM (United States)

    1994-08-24T23:59:59.000Z

    This report evaluates the impacts assessment and proposed mitigations provided in environmental documents concerning the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The projected impacts and proposed mitigations identified in UMTRA Project environmental documents were evaluated for two UMTRA Project sites. These sites are Gunnison and Durango, which are representative of currently active and inactive UMTRA Project sites, respectively. National Environmental Policy Act (NEPA) documentation was prepared for the remedial action at Durango and Gunnison as well as for the provision of an alternate water supply system at Gunnison. Additionally, environmental analysis was completed for mill site demolition Gunnison, and for a new road related to the Durango remedial action. The results in this report pertain only to the impact assessments prepared by the Regulatory Compliance staff as a part of the NEPA compliance requirements. Similarly, the mitigative measures documented are those that were identified during the NEPA process.

  11. Final Environmental Assessment and Finding of No Significant Impact: Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    SciTech Connect (OSTI)

    N /A

    2003-03-13T23:59:59.000Z

    This environmental assessment addresses the environmental effects of a proposed action and the no action alternative to comply with U.S. Environmental Protection Agency (EPA) ground water standards at the Slick Rock, Colorado, Uranium Mill Tailings Remedial Action Project sites. The sites consist of two areas designated as the North Continent (NC) site and the Union Carbide (UC) site. In 1996, the U.S. Department of Energy (DOE) completed surface cleanup at both sites and encapsulated the tailings in a disposal cell 5 miles east of the original sites. Maximum concentration limits (MCLs) referred to in this environmental assessment are the standards established in Title 40 ''Code of Federal Regulations'' Part 192 (40 CFR 192) unless noted otherwise. Ground water contaminants of potential concern at the NC site are uranium and selenium. Uranium is more prevalent, and concentrations in the majority of alluvial wells at the NC site exceed the MCL of 0.044 milligram per liter (mg/L). Selenium contamination is less prevalent; samples from only one well had concentrations exceeding the MCL of 0.01 mg/L. To achieve compliance with Subpart B of 40 CFR 192 at the NC site, DOE is proposing the strategy of natural flushing in conjunction with institutional controls and continued monitoring. Ground water flow and transport modeling has predicted that concentrations of uranium and selenium in the alluvial aquifer will decrease to levels below their respective MCLs within 50 years.

  12. action umtra site: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    action umtra site First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Site Action Plan CiteSeer Summary:...

  13. Vegetative covers: Special study. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1988-11-01T23:59:59.000Z

    This report describes the findings of a special study on the use of vegetative covers to stabilize tailings piles for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The principal rationale for using plants would be to establish a dynamic system for controlling water balance. Specifically, vegetation would be used to intercept and transpire precipitation to the atmosphere, rather than allowing water to drain into the tailings and mobilize contaminants. This would facilitate compliance with groundwater standards proposed for the UMTRA Project by the Environmental Protection Agency. The goals of the study were to (1) evaluate the feasibility of using vegetative covers on UMTRA Project piles, (2) define the advantages and disadvantages of vegetative covers, and (3) develop general guidelines for their use when such use seems reasonable. The principal method for the study was to analyze and apply to the UMTRA Project the results of research programs on vegetative covers at other US Department of Energy (DOE) waste management facilities. The study also relied upon observations made of existing stabilized piles at UMTRA Project sites (Shiprock, New Mexico; Burrell, Pennsylvania; and Clive, Utah) where natural vegetation is growing on the rock-covered surfaces. Water balance and erosion models were also used to quantify the long-term performance of vegetative covers planned for the topslopes of stabilized piles at Grand Junction and Durango, Colorado, two UMTRA Project sites where the decision was made during the course of this special study to use vegetative covers. Elements in the design and construction of the vegetative covers at these two sites are discussed in the report, with explanations of the differing features that reflect differing environmental conditions.

  14. Surface and subsurface cleanup protocol for radionuclides Gunnison, Colorado, UMTRA Project Processing Site. Revision 3, Final report

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The supplemental standards provisions of Title 40, Code of Federal Regulations, Part 192 (40 CFR Part 192) require the cleanup of radionuclides other than radium-226 (Ra-226) to levels ``as low as reasonably achievable`` (ALARA), taking into account site-specific conditions, if sufficient quantities and concentrations are present to constitute a significant radiation hazard. In this context, thorium-230 (Th-230) at the Gunnison, Colorado, processing site will require remediation. However, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Characterization data indicate that in the offpile areas, the removal of residual in situ bulk Ra-226 and Th-230 such that the 1000-year projected Ra-226 concentration (Ra-226 concentration in 1000 years due to the decay of in situ Ra-226 and the in-growth of Ra-226 from in situ Th-230) complies with the US Environmental Protection Agency (EPA) cleanup standard for in situ Ra-226 and the cleanup protocol for in situ Th-230 can be readily achieved using conventional excavation techniques for bulk contamination without encountering significant impacts due to groundwater. The EPA cleanup standard and criterion for Ra-226 and the 1000-year projected Ra-226 are 5 and 15 picocuries per gram (pCi/g) above background, respectively, averaged over 15-centimeter (cm) deep surface and subsurface intervals and 100-square-meter (m{sup 2}) grid areas. Significant differential migration of Th-230 relative to Ra-226 has occurred over 40 percent of the subpile area. To effectively remediate the site with respect to Ra-226 and Th-230, supplemental standard is proposed and discussed in this report.

  15. UMTRA project technical assistance contractor quality assurance implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP) (DOE, 1993a), which was developed using US Department of Energy (DOE) Order 5700.6C quality assurance (QA) criteria. The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. All QA issues in the QAIP shall comply with requirements contained in the TAC QAPP (DOE, 1933a). Because industry standards for data acquisition and data control are not addressed in DOE Order 5700.6C, the QAIP has been formatted to the 14 US Environmental Protection Agency (EPA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) QA requirements. DOE Order 5700.6C criteria that are not contained in the CERCLA requirements are added to the QAIP as additional requirements in Sections 15.0 through 18.0. Project documents that contain CERCLA requirements and 5700.6 criteria shall be referenced in this document to avoid duplication. Referenced documents are not included in this QAIP but are available through the UMTRA Project Document Control Center.

  16. Groundwater protection management program plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a Groundwater Protection Management Program Plan'' (groundwater protection plan) of sufficient scope and detail to reflect the program's significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1.

  17. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    SciTech Connect (OSTI)

    NONE

    1993-07-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review.

  18. UMTRA Surface Project management action process document: Final. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites.

  19. action umtra project: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    umtra project First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 CIMI PROJECT DISSEMINATION ACTIONS...

  20. Review and analysis of proposed EPA groundwater standards for the UMTRA Project. Summary report

    SciTech Connect (OSTI)

    Not Available

    1987-10-01T23:59:59.000Z

    The Title I groundwater standards for inactive uranium mill tailings sites, which were promulgated on January 5, 1983, by the US Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action (UMTRA) Project, were remanded to the EPA on September 3, 1985, by the US Tenth Circuit Court of Appeals. The Court instructed the EPA to compile general groundwater standards for all sites. On September 24, 1987, the EPA published proposed standards in response to the remand. This Summary Report includes an evaluation of the potential effects of the proposed EPA groundwater standards on the UMTRA Project as well as a discussion of the DOE`s position on the proposed standards. This report is accompanied by a detailed Technical Report and Appendices which provide supporting information and analyses. This Summary Report results from a study undertaken to: determine the impact of the proposed standards on the UMTRA Project; and recommend provisions for the implementation of the final standards that will minimize adverse impact to the conduct of the UMTRA Project while ensuring protection of human health and the environment. Specifically, the following were considered: the flexibility of the proposed standards; interpretations of the proposed standards; the extent of aquifer restoration that may be required to implement the proposed standards at each site; the costs of aquifer restoration; and design changes necessary to meet the standards.

  1. DOE`s approach to groundwater compliance on the UMTRA project

    SciTech Connect (OSTI)

    Metzler, D. [Dept. of Energy, Washington, DC (United States); Gibb, J.P. [Geraghty and Miller, Inc. (United States); Glover, W.A. [Roy F. Weston, Inc. (United States)

    1993-03-01T23:59:59.000Z

    Compliance with the mandate of the Uranium Mill Tailings Radiation Control Act (UMTRCA) at Uranium Mill Tailings Remedial Action (UMTRA) Project sites requires implementation of a groundwater remedial action plan that meets the requirements of Subpart B of the US Environmental Protection Agency`s proposed groundwater protection standards (40 CFR 192). The UMTRA Groundwater Project will ensure that unacceptable current risk or potential risk to the public health, safety and the environment resulting from the groundwater contamination attributable to the UMTRA sites, is mitigated in a timely and cost-efficient manner. For each UMTRA processing site and vicinity property where contamination exists, a groundwater remedial action plan must be developed that identifies hazardous constituents and establishes acceptable concentration limits for the hazardous constituents as either (a) alternate concentration limits (ACL), (b) maximum concentration limits (MCLs), (c) supplemental standards, or (d) background groundwater quality levels. Project optimization is a strategy that will aggressively work within the current regulatory framework using all available options to meet regulatory requirements. This strategy is outlined within.

  2. 1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-10-22T23:59:59.000Z

    The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado's Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community's infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

  3. 1992 Colorado Economic Impact Study for the US Department of Energy and Colorado Department of Health Uranium Mill Tailings Remedial Action (UMTRA) Project. Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1991-10-22T23:59:59.000Z

    The findings of the 1992 Colorado Economic Impact Study (CEIS) for the Uranium Mill Tailings Remedial Action (UMTRA) Project are outlined below. All dollar amounts used in the study are in year-of-expenditure dollars. The total funding requirement for the State of Colorado for the UMTRA Project is estimated to be $66.8 million, or 10 percent of the remedial action costs for the UMTRA Project in Colorado. The UMTRA Project will generate $487.5 million in gross labor income in Colorado between 1983 and 1996. This includes $54.4 million in state and local tax revenues and $41.2 million in federal individual income tax revenues. The net economic benefit of the UMTRA Project to Colorado is $355.1 million. For every dollar the State of Colorado invests in the UMTRA Project, it will realize $5.32 in gross labor income. The employment impact to the Western Slope region is significant. The UMTRA Project will create a total employment impact of 13,749 fulltime equivalents (FTES) spread over. a period of 13 years in seven site areas. Nearly 100 percent of the labor will be drawn from the local communities. The State of Colorado`s Western Slope is anticipated to be minimally impacted by the phaseout of the UMTRA Project. Unlike industries that shut down operations without warning, the UMTRA Project workers, local government, and businesses know the schedule for completion and can consider and prepare for the impact of UMTRA Project conclusion. Further, because the majority of the work force is local, there has not been a significant investment in each community`s infrastructure. Any small increases in the infrastructure will not be abandoned at the end of the UMTRA Project due to a marked increase in migration out of the local community.

  4. DOE plan for UMTRA Project water protection standards

    SciTech Connect (OSTI)

    Not Available

    1986-07-01T23:59:59.000Z

    This plan was developed to define DOE`s implementation of water protection standards for the UMTRA Project, on an interim basis, until the EPA promulgates revised standards in response to the September, 1985, decision by the Tenth Circuit Court of Appeals. This plan presents the historical background of the development of the Title I standards and the rationale for the DOE implementation approach.

  5. DOE plan for UMTRA Project water protection standards

    SciTech Connect (OSTI)

    Not Available

    1986-07-01T23:59:59.000Z

    This plan was developed to define DOE's implementation of water protection standards for the UMTRA Project, on an interim basis, until the EPA promulgates revised standards in response to the September, 1985, decision by the Tenth Circuit Court of Appeals. This plan presents the historical background of the development of the Title I standards and the rationale for the DOE implementation approach.

  6. UMTRA Project water sampling and analysis plan, Canonsburg, Pennsylvania. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Surface remedial action was completed at the US Department of Energy (DOE) Canonsburg and Burrell Uranium Mill Tailings Remedial Action (UMTRA) Project sites in southwestern Pennsylvania in 1985 and 1987, respectively. The Burrell disposal site, included in the UMTRA Project as a vicinity property, was remediated in conjunction with the remedial action at Canonsburg. On 27 May 1994, the Nuclear Regulatory Commission (NRC) accepted the DOE final Long-Term Surveillance Plan (LTSP) (DOE, 1993) for Burrell thus establishing the site under the general license in 10 CFR {section}40.27 (1994). In accordance with the DOE guidance document for long-term surveillance (DOE, 1995), all NRC/DOE interaction on the Burrell site`s long-term care now is conducted with the DOE Grand Junction Projects Office in Grand Junction, Colorado, and is no longer the responsibility of the DOE UMTRA Project Team in Albuquerque, New Mexico. Therefore, the planned sampling activities described in this water sampling and analysis plan (WSAP) are limited to the Canonsburg site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring at the Canonsburg site for calendar years 1995 and 1996. Currently, the analytical data further the site characterization and demonstrate that the disposal cell`s initial performance is in accordance with design requirements.

  7. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site. Final report: Revision 1

    SciTech Connect (OSTI)

    Gonzales, D.

    1993-12-01T23:59:59.000Z

    Surface and subsurface soil cleanup protocols for the Gunnison, Colorado, processing site are summarized as follows: In accordance with EPA-promulgated land cleanup standards, in situ Ra-226 is to be cleaned up based on bulk concentrations not exceeding 5 and 15 pCi/g in 15-cm surface and subsurface depth increments, averaged over 100m{sup 2} grid blocks, where the parent Ra-226 concentrations are greater than, or in secular equilibrium with, the Th-230 parent. In locations where Th-230 has differentially migrated in subsoil relative to Ra-226, a Th-230 clean up protocol has been developed. The cleanup of other radionuclides or nonradiological hazards that pose a significant threat to the public and the environment will be determined and implemented in accordance with pathway analysis to assess impacts and the implications of ALARA specified in 40 CFR Part 192 relative to supplemental standards.

  8. UMTRA Project-Level Cost Reduction/Productivity Improvement Program manual

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    Mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project Cost Reduction/Productivity Improvement Program (CR/PIP) is to contribute to the UMTRA Project`s environmental restoration mission by providing the means to achieve and recognize continuous improvements and cost savings. This manual includes program definition, description of UMTRA project organizational responsibilities and interfaces with existing project functions, guidance to contractors, and definition of project-level functions.

  9. UMTRA project water sampling and analysis plan, Falls City, Texas. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Falls City, Texas, are described in this water sampling and analysis plan (WSAP). The following plan identifies and justifies the sampling locations, analytical parameters, and sampling frequency for the routine monitoring stations at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site. The Falls City site is in Karnes County, Texas, approximately 8 miles [13 kilometers southwest of the town of Falls City and 46 mi (74 km) southeast of San Antonio, Texas. Before surface remedial action, the tailings site consisted of two parcels. Parcel A consisted of the mill site, one mill building, five tailings piles, and one tailings pond south of Farm-to-Market (FM) Road 1344 and west of FM 791. A sixth tailings pile designated Parcel B was north of FM 791 and east of FM 1344.

  10. Lessons learned on the UMTRA Project. Special study

    SciTech Connect (OSTI)

    Not Available

    1991-02-01T23:59:59.000Z

    This report has been compiled as part of the Technical Assistance Contractor`s (TAC`s) continuing efforts to improve the quality of its product to the US Department of Energy (DOE), and to reduce the costswhile maintaining a standard of excellence on the Uranium Mill Tailings Remedial Action (UMTRA) Project. The report documents the lessons learned and the steps taken to benefit the project as a result. This study has multiple objectives, which fall under the following hierarchy: To examine and evaluate past successes and mistakes. To provide a record of lessons learned for the benefit and orientation of future staffmembers. To identify shortcomings of, and desired improvements to, current UMTRA Project practices and procedures. To establish a means for the future review and dissemination of lessons learned.

  11. Procedures for preparation, printing, and distribution of UMTRA Project National Environmental Policy Act documents

    SciTech Connect (OSTI)

    Not Available

    1988-08-01T23:59:59.000Z

    This paper discusses the procedures for preparation, printing and distribution of Uranium Mill Tailings Remedial Action (UMTRA) Project National Environmental Policy Act documents. (KJD)

  12. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water, Revision 2

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    This document contains the Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The QAIP outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QA program is designed to use monitoring, audit, and surveillance activities as management tools to ensure that UMTRA Project activities are carried out in amanner to protect public health and safety, promote the success of the UMTRA Project, and meet or exceed contract requirements.

  13. Selection of water treatment processes special study. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. The restoration of contaminated aquifers is to be undertaken in Phase II of the UMTRA Project. To begin implementation of Phase II, DOE requested that groundwater restoration methods and technologies be investigated by the Technical Assistance Contractor (TAC). and that the results of the TAC investigations be documented in special study reports. Many active and passive methods are available to clean up contaminated groundwater. Passive groundwater treatment includes natural flushing, geochemical barriers, and gradient manipulation by stream diversion or slurry walls. Active groundwater.cleanup techniques include gradient manipulation by well extraction or injection. in-situ biological or chemical reclamation, and extraction and treatment. Although some or all of the methods listed above may play a role in the groundwater cleanup phase of the UMTRA Project, the extraction and treatment (pump and treat) option is the only restoration alternative discussed in this report. Hence, all sections of this report relate either directly or indirectly to the technical discipline of process engineering.

  14. UMTRA Surface Project management action process document. Final report: Revision 1

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    A critical mission of the US Department of Energy (DOE) is the planning, implementation, and completion of environmental restoration (ER) programs at facilities that were operated by or in support of the former Atomic Energy Commission (AEC) from the late 1940s into the 1970s. Among these facilities are the 24 former uranium mill sites designed in the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (42 USC {section} 7901 et seq.) Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designated sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project only; a separate MAP document has been prepared for the UMTRA Ground Water Project.

  15. UMTRA project technical assistance contractor quality assurance implementation plan for surface and ground water

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance Contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP). The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. The QAIP is authorized and approved by the TAC Project Manager and QA manager. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization activities are carried out in a manner that will protect public health and safety, promote the success of the UMTRA Project and meet or exceed contract requirements.

  16. Uranium Mill Tailings Remedial Action (UMTRA) Surface Project: Project plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-08-11T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) [Public Law (PL) 95-604, 42 United States Code (USC) 7901], hereinafter referred to as the ``Act,`` authorizes the US Department of Energy (DOE) to stabilize and control surface tailings and ground water contamination. To fulfill this mission, the DOE has established two projects under the Uranium Mill Tailings Remedial Action (UMTRA) Project Office. The Ground Water Project was established in April 1991 as a major project and a separate project plan will be prepared for that portion of the mission. This project plan covers the UMTRA Surface Project, a major system acquisition (MSA).

  17. The effect of desiccation on UMTRA Project radon barrier materials

    SciTech Connect (OSTI)

    Not Available

    1990-11-01T23:59:59.000Z

    The proposed US Environmental Protection Agency (EPA) groundwater standards (40 CFR 192) require that Uranium Mill Tailings Remedial Action (UMTRA) Project remedial action designs meet low numerical limits for contaminants contained in water or vapors exiting the disposal cell embankments. To meet the standards, a cover of compacted, fine-grained soil is placed over UMTRA Project embankments. One of the functions of this cover is to limit infiltration into the disposal cell . The hydraulic conductivity of this infiltration barrier must be low in order to reduce the resultant seepage from the base of the cell to the extent necessary to comply with the proposed EPA groundwater standards. Another function of this cover is to limit the emission of radon gas. The air permeability of the cover must be low in order to reduce radon emissions to comply with EPA standards. Fine-grained soils exposed to evaporation will dry. Continued exposure will cause shrinking that, if allowed to continue, will eventually result in the development of cracks. The results of the cracking could be an increase in the hydraulic conductivity and an increase in the air permeability. This could then allow additional infiltration and increased radon emissions. Cracking of the radon barrier has been noted at one UMTRA Project location. The potential for cracking of the radon barrier during construction has been addressed by requiring moistening of previously compacted surfaces prior to placing additional lifts. The efficacy of these treatments has not been verified. The potential for cracking after construction of the cover is completed has also not been examined. The purpose of this study is to evaluate the potential for cracking of the radon barrier both during construction and after completion of the cover. The effect of shrinkage cracking on the performance of the radon barrier will also be examined.

  18. Supplement to the UMTRA Project water sampling and analysis plan, Riverton, Wyoming

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project`s present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b).

  19. Supplement to the UMTRA Project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Riverton, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Riverton (DOE, 1994). Further, the supplement serves to confirm the Project`s present understanding of the site relative to the hydrogeology and contaminant distribution as well as the intent to continue to use the sampling strategy as presented in the 1994 WSAP document for Riverton. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 and 60 FR 2854. Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Riverton site are the Riverton Baseline Risk Assessment (BLRA) (DOE, 1995a) and the Riverton Site Observational Work Plan (SOWP) (DOE, 1995b).

  20. Management and overview Quality Assurance Program Plan. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1986-08-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office (DOE/ UMTRA-PO) is the US Department of Energy (DOE) Albuquerque Operations Office (AL) organization charged with the responsibility of managing and coordinating the activities of the various participating organizations and support contractors working on the UMTRA Project. This Quality Assurance Program Plan (QAPP) describes how the DOE/UMTRA-PO, as assisted by the Technical Assistance Contractor (TAC), performs the quality assurance (QA) aspects of managing and coordinating UMTRA Project activities. This QAPP was developed to comply with DOE Order 5700.6A, August, 1981, and AL Order 5700.6B, April, 1984, which contain the criteria applicable to Project QA activities.

  1. Recommendations for computer modeling codes to support the UMTRA groundwater restoration project

    SciTech Connect (OSTI)

    Tucker, M.D. [Sandia National Labs., Albuquerque, NM (United States); Khan, M.A. [IT Corp., Albuquerque, NM (United States)

    1996-04-01T23:59:59.000Z

    The Uranium Mill Tailings Remediation Action (UMTRA) Project is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the US. The surface restoration phase, which includes containment and stabilization of the abandoned uranium mill tailings piles, has a specific termination date and is nearing completion. Therefore, attention has now turned to the groundwater restoration phase, which began in 1991. Regulated constituents in groundwater whose concentrations or activities exceed maximum contaminant levels (MCLs) or background levels at one or more sites include, but are not limited to, uranium, selenium, arsenic, molybdenum, nitrate, gross alpha, radium-226 and radium-228. The purpose of this report is to recommend computer codes that can be used to assist the UMTRA groundwater restoration effort. The report includes a survey of applicable codes in each of the following areas: (1) groundwater flow and contaminant transport modeling codes, (2) hydrogeochemical modeling codes, (3) pump and treat optimization codes, and (4) decision support tools. Following the survey of the applicable codes, specific codes that can best meet the needs of the UMTRA groundwater restoration program in each of the four areas are recommended.

  2. Guidance for implementing the UMTRA Project long-term surveillance program

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The US Nuclear Regulatory Commission (NRC) has issued a general license for the custody and long-term care of US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project permanent disposal sites. The purpose of this general license is to ensure that the UMTRA disposal sites will be cared for in such a manner as to protect the public health and safety and the environment upon completion of remedial actions. The general license will be in effect for a disposal site when NRC accepts the disposal site long-term surveillance plan (LTSP) that meets the requirements of 10 CFR 40.27. The site LTSP describes in detail the long-term surveillance program, including any monitoring, maintenance, and emergency measures necessary to fulfill the conditions of the general license. This guidance document provides (1) instructions for preparing the disposal site LTSPs and (2) instructions for carrying out the UMTRA Project long-term surveillance program, including any monitoring that may be required. The information provided in this document also is in accordance with the regulatory requirements set forth in 40 CFR 192. On January 5, 1985, the US Tenth Circuit Court of Appeals remanded the groundwater standards, 40 CFR 192.02. Proposed groundwater standards were issued for comment on September 24, 1987 (52 FR 3600). When the groundwater standards become final, this document will be revised, as appropriate. This document also will be updated in response to any changes to 10 CFR 40, or in response to changes in the manner in which the long-term care of the licensed disposal sites is carried out.

  3. Guidance for implementing the UMTRA Project long-term surveillance program. Final report, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    The US Nuclear Regulatory Commission (NRC) has issued a general license for the custody and long-term care of US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project permanent disposal sites. The purpose of this general license is to ensure that the UMTRA disposal sites will be cared for in such a manner as to protect the public health and safety and the environment upon completion of remedial actions. The general license will be in effect for a disposal site when NRC accepts the disposal site long-term surveillance plan (LTSP) that meets the requirements of 10 CFR 40.27. The site LTSP describes in detail the long-term surveillance program, including any monitoring, maintenance, and emergency measures necessary to fulfill the conditions of the general license. This guidance document provides (1) instructions for preparing the disposal site LTSPs and (2) instructions for carrying out the UMTRA Project long-term surveillance program, including any monitoring that may be required. The information provided in this document also is in accordance with the regulatory requirements set forth in 40 CFR 192. On January 5, 1985, the US Tenth Circuit Court of Appeals remanded the groundwater standards, 40 CFR 192.02. Proposed groundwater standards were issued for comment on September 24, 1987 (52 FR 3600). When the groundwater standards become final, this document will be revised, as appropriate. This document also will be updated in response to any changes to 10 CFR 40, or in response to changes in the manner in which the long-term care of the licensed disposal sites is carried out.

  4. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This appendix assesses the present conditions and data for the inactive uranium mill site near Tuba City, Arizona. It consolidates available engineering, radiological, geotechnical, hydrological, meterological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill and tailings site so that the Remedial Action Contractor (RAC) may complete final designs of the remedial actions.

  5. Site-specific analysis of the cobbly soils at the Grand Junction processing site. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    This report describes a recent site-specific analysis to evaluate the necessity of a recommendation to install a slurry trench around the Grand Junction processing site. The following analysis addresses the cobbly nature of the site's radiologically contaminated foundation soil, reassesses the excavation depths based on bulk radionuclide concentrations, and presents data-based arguments that support the elimination of the initially proposed slurry trench. The slurry trench around the processing site was proposed by the Remedial Action Contractor (RAC) to minimize the amount of water encountered during excavation. The initial depths of excavation developed during conceptual design, which indicated the need for a slurry wall, were reexamined as part of this analysis. This reanalysis, based on bulk concentrations of a cobbly subsoil, supports decreasing the original excavation depth, limiting the dewatering quantities to those which can be dissipated by normal construction activities. This eliminates the need for a slurry trench andseparate water treatment prior to permitted discharge.

  6. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Chernoff, A.R. (USDOE Albuquerque Field Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office); Lacker, D.K. (Texas State Dept. of Health, Austin, TX (United States). Bureau of Radiation Control)

    1992-09-01T23:59:59.000Z

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the US Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE's remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  7. Supplement to the UMTRA Project water sampling and analysis plan, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Mexican Hat (DOE, 1994). Further, the supplement serves to confirm our present understanding of the site relative to the hydrogeology and contaminant distribution as well as our intention to continue to use the sampling strategy as presented in the 1994 WSAP document for Mexican Hat. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 (1991) and 60 FR 2854 (1995). Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Mexican Hat site are the Mexican Hat Long-Term Surveillance Plan (currently in progress), and the Mexican Hat Site Observational Work Plan (currently in progress).

  8. Supplement to the UMTRA Project water sampling and analysis plan, Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This water sampling and analysis plan (WSAP) supplement supports the regulatory and technical basis for water sampling at the Maybell, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site, as defined in the 1994 WSAP document for Maybell (DOE, 1994a). Further, this supplement serves to confirm our present understanding of the site relative to the hydrogeology and contaminant distribution as well as our intention to continue to use the sampling strategy as presented in the 1994 WSAP document for Maybell. Ground water and surface water monitoring activities are derived from the US Environmental Protection Agency regulations in 40 CFR Part 192 (1994) and 60 CFR 2854 (1 995). Sampling procedures are guided by the UMTRA Project standard operating procedures (JEG, n.d.), the Technical Approach Document (DOE, 1989), and the most effective technical approach for the site. Additional site-specific documents relevant to the Maybell site are the Maybell Baseline Risk Assessment (currently in progress), the Maybell Remedial Action Plan (RAP) (DOE, 1994b), and the Maybell Environmental Assessment (DOE, 1995).

  9. Environmental analysis and data report prepared for the environmental assessment of remedial action at the Lowman uranium mill tailings site near Lowman, Idaho. [Urnanium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lowman, Idaho. The Lowman EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the effects of their actions on the environment. It examines the short-term and the long-term effects of the US Department of Energy's (DOE) proposed remedial action for the Lowman site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement will be prepared. If the impacts are not judged to be significant, the DOE may issue a Finding of No Significant Impact and implement the proposed action. The information and data presented in this environmental analyses and data report are for background purposes only and are not required as part of the NEPA decision-making process.

  10. Preplanning guidance document for groundwater restoration. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    This document is intended to present decision makers on the Uranium Mill Tailings Remedial Action (UMTRA) Project with a strategy for evaluating the need for and accomplishing groundwater restoration at those UMTRA Project sites that will require restoration as specified in Subpart B of 40 CFR 192. A synopsis of the Uranium Mill Tailings Restoration Control Act (UMTRCA) and a discussion of the proposed US Environmental Protection Agency (EPA) groundwater cleanup standards in 40 CFR 192 are provided to define the regulatory basis of groundwater cleanup. Once the EPA groundwater standards are finalized, this document may be revised, depending on the changes in the final standards. A procedure for determining the need for groundwater restoration is outlined and a cost-effective strategy for selecting, designing, implementing, and evaluating appropriate restoration procedures is presented. The determination of the need for groundwater restoration is based on the EPA groundwater cleanup standards and must be compatible with and complementary to the National Environmental Policy Act (NEPA) process. Therefore, this document describes a programmatic approach for compliance with the NEPA process.

  11. Technical considerations for the implementation of subsurface microbial barriers for restoration of groundwater at UMTRA sites

    SciTech Connect (OSTI)

    Tucker, M.D.

    1996-01-01T23:59:59.000Z

    The Uranium Mill Tailings Remediation Action (UMTRA) Program is responsible for the assessment and remedial action at the 24 former uranium mill tailings sites located in the United States. The surface remediation phase, which has primarily focused on containment and stabilization of the abandoned uranium mill tailings piles, is nearing completion. Attention has now turned to the groundwater restoration phase. One alternative under consideration for groundwater restoration at UMTRA sites is the use of in-situ permeable reactive subsurface barriers. In this type of a system, contaminated groundwater will be allowed to flow naturally through a barrier filled with material which will remove hazardous constituents from the water by physical, chemical or microbial processes while allowing passage of the pore water. The subject of this report is a reactive barrier which would remove uranium and other contaminants of concern from groundwater by microbial action (i.e., a microbial barrier). The purpose of this report is to assess the current state of this technology and to determine issues that must be addressed in order to use this technology at UMTRA sites. The report focuses on six contaminants of concern at UMTRA sites including uranium, arsenic, selenium, molybdenum, cadmium and chromium. In the first section of this report, the fundamental chemical and biological processes that must occur in a microbial barrier to control the migration of contaminants are described. The second section contains a literature review of research which has been conducted on the use of microorganisms to immobilize heavy metals. The third section addresses areas which need further development before a microbial barrier can be implemented at an UMTRA site.

  12. Supplement to the UMTRA project water sampling and analysis plan, Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The water sampling and analysis plan (WSAP) provides the regulatory and technical basis for ground water and surface water sampling at the Uranium Mill Tailings Remedial Action (UMTRA) Project Union Carbide (UC) and North Continent (NC) processing sites and the Burro Canyon disposal site near Slick Rock, Colorado. The initial WSAP was finalized in August 1994 and will be completely revised in accordance with the WSAP guidance document (DOE, 1995) in late 1996. This version supplements the initial WSAP, reflects only minor changes in sampling that occurred in 1995, covers sampling scheduled for early 1996, and provides a preliminary projection of the next 5 years of sampling and monitoring activities. Once surface remedial action is completed at the former processing sites, additional and more detailed hydrogeologic characterization may be needed to develop the Ground Water Program conceptual ground water model and proposed compliance strategy. In addition, background ground water quality needs to be clearly defined to ensure that the baseline risk assessment accurately estimated risks from the contaminants of potential concern in contaminated ground water at the UC and NC sites.

  13. Implementation of UMTRA Project Environmental Audit Action Plan status report for period ending September 30, 1992. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    This report provides the status of implementation of corrective actions for findings made in an Environmental Audit conducted by DOE Headquarters, Office of Environmental Audit, in June 1991. An Action Plan, dated December 1991, was developed to address the findings. The Action Plan was approved by DOE Headquarters, Office of Environment, Safety and Health, in July 1992. This report provides status for each activity listed in the approved Action Plan. Of 48 findings identified in the August 1991 Environmental Audit Report, 4 required no action, 5 were combined with others and actions to correct 19 are complete. Although it appears no progress has been made since the last status report was issued, UMTRA has completed 89% of the findings identified, compared to 72% identified in the last status report. The table below lists the 20 findings where actions are still underway, the current projected completion date, the organization(s) responsible for taking action on the finding, and the UMTRA Project Off ice staff member assigned responsibility for the finding.

  14. Project File LGPF 1.2 (A. Garcia)

    E-Print Network [OSTI]

    J. Gilmore Doe-gjo; M. Plessinger Mactec-ers; Art Kleinrath

    2001-01-01T23:59:59.000Z

    Program for UMTRA Project Title I Disposal Sites. The purpose of the new guidance document is to broaden

  15. DOE responses to CDH October 1993 comments on the Remedical Action Plan for the Naturita, Colorado, Umtra Site

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This document includes the October 1993 comments provided by the Colorado Department of Health (CDH) on the Department of Energy (DOE) Preliminary Final Remedial Action Plan for the Naturita, Colorado, UMTRA Site. DOE`s responses are included after each CDH comment.

  16. The UMTRA PEIS: A strategy for groundwater remediation

    SciTech Connect (OSTI)

    Burt, C.; Ulland, L.; Weston, R.F.; Metzler, D. (DOE, Albuquerque, NM (United States))

    1993-01-01T23:59:59.000Z

    A programmatic environmental impact statement (PEIS) was initiated in 1992 for the uranium mill tailings remedial action (UMTRA) program. The PEIS kicked off the groundwater restoration phase of UMTRA, a project involving remediation of 24 sites in ten states and tribal lands contaminated with tailings from uranium mining and milling operations. The U.S. Department of Energy (DOE) agreed, in early 1992, that a PEIS was an appropriate strategy to comply with the National Environmental Policy Act (NEPA) for this second, groundwater phase of the project. This decision recognized that although a parallel effort was being undertaken in preparing a PEIS for DOE's Environmental Restoration/Waste Management (ER/WM) program, characteristics and the maturity of the UMTRA project made it more appropriate to prepare a separate PEIS. The ER/WM PEIS is intended to examine environmental restoration and waste management issues from a very broad perspective. For UMTRA, with surface remediation completed or well under way at 18 of the 24 sites, a more focused programmatic approach for groundwater restoration is more effective than including the UMTRA project within the ER/WM environmental impact statements. A separate document allows a more focused and detailed analysis necessary to efficiently tier site-specific environmental assessments for groundwater restoration at each of the 24 UMTRA former processing sites.

  17. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Tuba City, Arizona: Phase 2, Construction, Subcontract documents: Appendix E, final report. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1989-08-01T23:59:59.000Z

    This appendix discusses Phase II construction and subcontract documents uranium mill site near Tuba City, Arizona. It contains the bid schedule, special conditions, specifications, and subcontract drawings.

  18. Implementation of UMTRA Project Environmental Audit Action Plan status report for period ending September 30, 1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    This report provides the status of implementation of corrective actions for findings made in an Environmental Audit conducted by DOE Headquarters, Office of Environmental Audit, in June 1991. An Action Plan, dated December 1991, was developed to address the findings. The Action Plan was approved by DOE Headquarters, Office of Environment, Safety and Health, in July 1992. This report provides status for each activity listed in the approved Action Plan. Of 48 findings identified in the August 1991 Environmental Audit Report, 4 required no action, 5 were combined with others and actions to correct 19 are complete. Although it appears no progress has been made since the last status report was issued, UMTRA has completed 89% of the findings identified, compared to 72% identified in the last status report. The table below lists the 20 findings where actions are still underway, the current projected completion date, the organization(s) responsible for taking action on the finding, and the UMTRA Project Off ice staff member assigned responsibility for the finding.

  19. Uranium Mill Tailings Remedial Action Project 1993 Environmental Report

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailing Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1993, surface remedial action was complete at 10 of the 24 designated UMTRA Project processing sites. In 1993 the UMTRA Project office revised the UMTRA Project Environmental Protection Implementation Plan, as required by the US DOE. Because the UMTRA Project sites are in different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  20. The Ambrosia Lake project archaeological investigations of three small sites associated with the southern Chacoan outlier of Kin Nizhoni, McKinley County, New Mexico. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Cullington, B.J. (ed.); Hammack, L.C.; Baugh, T.G. (Complete Archaeological Service Associates, Cortez, CO (United States))

    1990-03-15T23:59:59.000Z

    During the fall of 1987, Complete Archaeological Service Associates conducted mitigative excavations at three sites (LA50363, LA50364, and LA50371) in McKinley County, New Mexico. These sites are adjacent to the Phillips/United Nuclear Inactive Uranium Mill and Tailings site at Ambrosia Lake, New Mexico. The primary deposition at each of these sites appears to be related to a Pueblo II or Bonito Phase occupation. Temporal placement is based primarily on the cross dating of ceramics and archaeomagnetic determinations when possible. No tree-ring or radiocarbon samples are available from these sites. These Ambrosia Lake sites indicate that this area was occupied primarily by Pueblo II people who may have had close social, economic, and ceremonial ties with the people living at the nuclear community of Lower Nizhoni about 3 km south-southeast. The later component at LA50364 indicates a Pueblo III occupation by people who may have had similar ties to the people of the Kin Nizhoni nuclear community. The Ambrosia Lake sites, then, provide important information on the structure of subnuclear communities within the southern Chaco periphery.

  1. Analysis of infiltration through a clay radon barrier at an UMTRA disposal cell. Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    An infiltration study was initiated in January 1988 to assess the percent saturation in, and infiltration through, clay radon barriers of typical Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cells. Predicting infiltration through the radon barrier is necessary to evaluate whether the disposal cell will comply with the proposed US Environmental Protection Agency (EPA) groundwater protection standards (40 CFR 192). The groundwater standards require demonstrating that tailings seepage will not cause background concentrations or maximum concentration limits (MCLs) to be exceeded at the downgradient edge of the disposal facility (the point of compliance, or POC). This demonstration generally consists of incorporating the predicted seepage flux and the concentration of the specific hazardous constituents into a contaminant transport model, and predicting the resultant concentrations at the POC. The infiltration study consisted of a field investigation to evaluate moisture conditions in the radon barrier of the completed Shiprock, New Mexico, UMTRA Project disposal cell and previously completed UMTRA Project disposal cells at Clive, Utah, and Burrell, Pennsylvania. Coring was conducted to measure percent saturation profiles in the radon barriers at these disposal cells. In addition, a detailed investigation of the Shiprock radon barrier was conducted to establish the effects of meteorological stresses on moisture conditions in the filter layer and radon barrier. The Shiprock infiltration study was also intended to characterize hydraulic gradients and operational unsaturated hydraulic conductivities in the radon barrier.

  2. Contents of environmental impact statements prepared for the Uranium Mill Tailings Remedial Action Project. [Uranium Mill Tailings Remedial Action (UMTRA) Project

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This document presents two versions of the outline for the environmental impact statements (EISS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the statements; it lists only the titles of sections. The second is a guide to the contents of the statements which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements and the definitions of terms established by the Council on Environmental Quality as well as DOE Order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements. These requirements and definitions are implicity part of the outline. The outline presented in this document will guide the preparation of EISs Guidelines for preparation of environmental assessments for the UMTRA Project are available.

  3. UMTRA ground water sampling techniques: Comparison of the traditional and low flow methods

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report describes the potential changes in water quality data that may occur with the conversion from MBV (multiple bore volume) to LF (low flow) sampling and provides two examples of how such a change might impact Project decisions. The existing scientific literature on LF sampling is reviewed and the new LF data from three UMTRA Uranium Mill Tailings Remedial Action Project sites are evaluated seeking answers to the questions posed above. Several possible approaches, that the UMTRA Project may take to address issues unanswered by the literature are presented and compared, and a recommendation is offered for the future direction of the LF conversion effort.

  4. UMTRA Project remedial action planning and disposal cell design to comply with the proposed EPA (Environmental Protection Agency) standards (40 CFR Part 192)

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project involves stabilizing 24 inactive uranium mill tailings piles in 10 states. Remedial work must meet standards established by the US Environmental Protection Agency (EPA). Remedial action must be designed and constructed to prevent dispersion of the tailings and other contaminated materials, and must prevent the inadvertent use of the tailings by man. This report is prepared primarily for distribution to parties involved in the UMTRA Project, including the US Nuclear Regulatory Commission (NRC), and states and tribes. It is intended to record the work done by the DOE since publication of the proposed EPA groundwater protection standards, and to show how the DOE has attempted to respond and react in a positive way to the new requirements that result from the proposed standards. This report discusses the groundwater compliance strategies now being defined and implemented by the DOE, and details the changes in disposal cell designs that result from studies to evaluate ways to facilitate compliance with the proposed EPA groundwater protection standards. This report also serves to record the technical advances, planning, and progress made on the UMTRA Project since the appearance of the proposed EPA groundwater protection standards. The report serves to establish, document, and disseminate technical approaches and engineering and groundwater information to people who may be interested or involved in similar or related projects. 24 refs., 27 figs., 8 tabs.

  5. In situ testing to determination field-saturated hydraulic conductivity of UMTRA Project disposal cell covers, liners, and foundation areas. Special study

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This special study was conducted to prepare a guidance document for selecting in situ hydraulic conductivity (K) tests, comparing in situ testing methods, and evaluating the results of such tests. This report may be used as a practical decision-making tool by the Uranium Mill Tailings Remedial Action (UMTRA) Project staff to determine which testing method will most efficiently achieve the field-saturated K results needed for long-term planning. A detailed section on near-surface test methods discusses each method which may be applicable to characterization of UMTRA disposal cell covers, liners and foundation materials. These potentially applicable test methods include the sealed double-ring infiltrometer (SDRI), the air-entry permeameter (AEP), the guelph permeameter, the two-stage borehole technique (TSB), the pressure infiltrometer, and the disk permeameter. Analytical solutions for these methods are provided, and limitations of these solutions are discussed, and a description of testing equipment design and installation are provided.

  6. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field Scale Subsurface Research Challenge Site at Rifle, Colorado, February 2011 to January 2012

    E-Print Network [OSTI]

    Long, P.E.

    2013-01-01T23:59:59.000Z

    with Sediments from an UMTRA Site. American Society forREDUCTION AT THE OLD RIFLE UMTRA SITE. Geological Society of

  7. Application of natural analogues in the Yucca Mountain project - overview

    E-Print Network [OSTI]

    Simmons, Ardyth M.

    2003-01-01T23:59:59.000Z

    Mill Tailing Recovery Act (UMTRA) site, a fraction of thetransported as colloids UMTRA plumes – weak to no uranium

  8. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1993 (July 1, 1992, through June 30, 1993). To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  9. Uranium Mill Tailings Remedial Action Project 1994 environmental report

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    This annual report documents the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring and protection program. The UMTRA Project routinely monitors radiation, radioactive residual materials, and hazardous constituents at associated former uranium tailings processing sites and disposal sites. At the end of 1994, surface remedial action was complete at 14 of the 24 designated UMTRA Project processing sites: Canonsburg, Pennsylvania; Durango, Colorado; Grand Junction, Colorado; Green River Utah, Lakeview, Oregon; Lowman, Idaho; Mexican Hat, Utah; Riverton, Wyoming; Salt Lake City, Utah; Falls City, Texas; Shiprock, New Mexico; Spook, Wyoming, Tuba City, Arizona; and Monument Valley, Arizona. Surface remedial action was ongoing at 5 sites: Ambrosia Lake, New Mexico; Naturita, Colorado; Gunnison, Colorado; and Rifle, Colorado (2 sites). Remedial action has not begun at the 5 remaining UMTRA Project sites that are in the planning stage. Belfield and Bowman, North Dakota; Maybell, Colorado; and Slick Rock, Colorado (2 sites). The ground water compliance phase of the UMTRA Project started in 1991. Because the UMTRA Project sites are.` different stages of remedial action, the breadth of the UMTRA environmental protection program differs from site to site. In general, sites actively undergoing surface remedial action have the most comprehensive environmental programs for sampling media. At sites where surface remedial action is complete and at sites where remedial action has not yet begun, the environmental program consists primarily of surface water and ground water monitoring to support site characterization, baseline risk assessments, or disposal site performance assessments.

  10. 1991 New Mexico economic impact study for the Uranium Mill Tailings Remedial Action Project, Ambrosia Lake, New Mexico, site

    SciTech Connect (OSTI)

    Not Available

    1991-06-01T23:59:59.000Z

    The University of New Mexico Bureau of Business and Economic Research completed an abbreviated cost-benefit analysis of the income and employment impact of the US Department of Energy (DOE) and contractor offices in Albuquerque. Since the Project Office will have a significant positive impact on the State`s economy (shown on Table 8), the impact is combined with the impact of remedial actions at the Ambrosia Lake site to highlight the cost-benefit of the entire Uranium Mill Tailings Remedial Action (UMTRA) Project. The UMTRA Project at the Ambrosia Lake site will generate $12.509 million in gross labor income in New Mexico between 1989 and 1994. This includes $1.161 million in federal tax revenue, $1.015 million in State personal income tax revenue, and seven thousand in local tax revenue. The UMTRA Project will generate the equivalent of 84 full-time jobs during the peak year of remedial action at Ambrosia Lake site. New Mexico`s total funding requirement for the UMTRA Project is estimated to be $2.963 million. The net economic benefit of the Ambrosia Lake portion of the UMTRA Project to New Mexico after the State`s share of the project`s cost, the federal income tax, and the $0.936 million income impact of the alternate use of the State funding are subtracted, will be $7.451 million between 1990 and 1994. In Fiscal Year 1990 the UMTRA Project DOE and contractor offices in Albuquerque directly employed 163 people. Another 78 jobs were also maintained in support of the industry sector and 166 jobs were also maintained in other sections of the New Mexico economy. It is estimated that $19 million dollars of income was generated and 1.949 million of State and local taxes were collected. The University of New Mexico study shows that for every dollar the State of New Mexico invests in the UMTRA Project, it will realize $95.05 in gross labor income. This corresponds to a net return on the States investment in the Project of $97.20 for every dollar invested.

  11. Determination of aerosol size distributions at uranium mill tailings remedial action project sites

    SciTech Connect (OSTI)

    Newton, G.J.; Reif, R.H. [CWM Federal Environmental Services, Inc., Albuquerque, NM (United States); Hoover, M.D.

    1994-11-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has an ongoing program, the Uranium Mill Tailings Remedial Action (UMTRA) Project, to stabilize piles of uranium mill tailings in order to reduce the potential radiological hazards to the public. Protection of workers and the general public against airborne radioactivity during remedial action is a top priority at the UMTRA Project. The primary occupational radionuclides of concern are {sup 230}Th, {sup 226}Ra, {sup 210}Pb, {sup 210}Po, and the short-lived decay products of {sup 222}Rn with {sup 230}Th causing the majority of the committed effective dose equivalent (CEDE) from inhaling uranium mill tailings. Prior to this study, a default particle size of 1.0 {mu}m activity median aerodynamic diameter (AMAD) was assumed for airborne radioactive tailings dust. Because of recent changes in DOE requirements, all DOE operations are now required to use the CEDE methodology, instead of the annual effective dose equivalent (AEDE) methodology, to evaluate internal radiation exposures. Under the transition from AEDE to CEDE, with a 1.0 {mu}m AMAD particle size, lower bioassay action levels would be required for the UMTRA Project. This translates into an expanded internal dosimetry program where significantly more bioassay monitoring would be required at the UMTRA Project sites. However, for situations where the particle size distribution is known to differ significantly from 1.0 {mu}m AMAD, the DOE allows for corrections to be made to both the estimated dose to workers and the derived air concentration (DAC) values. For particle sizes larger than 1.0 {mu}m AMAD, the calculated CEDE from inhaling tailings would be relatively lower.

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document evaluates potential impacts to public health and the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1989 by the US DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, UMTRA Project is evaluating ground water contamination in this risk assessment.

  13. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan]. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project`s mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  14. AWEA Wind Project Siting Seminar

    Office of Energy Efficiency and Renewable Energy (EERE)

    The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

  15. [Uranium Mill Tailings Remedial Action Project Office Quality Assurance Program Plan

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites in accordance with Public Law 95-604, the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. The US Department of Energy (DOE) UMTRA Project Office (UMTRA PO) directs the overall project. Since these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria (set forth in the reference documents) has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. The UMTRA PO shall require each Project contractor to prepare and submit for approval a more detailed QAPP that is based on the applicable criteria of this QAPP and the referenced documents. All QAPPs on the UMTRA Project shall fit within the framework of this plan.

  16. German engineers study UMTRA cleanup programs

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    Two environmental engineers from Germany's WISMUT, the organization responsible for uranium tailings cleanup in that country, recently completed extensive training as part of a technology transfer program at the US DOE. For six weeks the two engineers studied the practices employed in the cleanup of the DOE's UMTRA (Uranium Mill Tailings Remedial Action) sites, hoping to gain insight into how Germany's own cleanup program should proceed.

  17. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1995 (1 July 1994 through 30 June 1995). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Gunnison, Maybell, Naturita, Rifle, and Slick Rock, Colorado. Economic data were requested from the Remedial Action Contractor (RAC), the Technical Assistance Contractor (TAC) and the US Department of Energy (DOE). The most significant benefits associated with the UMTRA Project in Colorado are summarized.

  18. EA-1406: Ground Water Compliance at the New Rifle, Colorado, UMTRA Project Site, Rifle, Colorado

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposed compliance strategy of natural flushing combined with institutional controls and continued monitoring for the New Rifle uranium mill...

  19. CLEANING UP MILL TAILINGS AND GROUND WATER AT THE MOAB UMTRA PROJECT SITE |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report, March003 Intellectual

  20. Final Environmental Assessment of Ground Water Compliance at the Slick Rock, Colorado, UMTRA Project Site

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations inCommittee | Department of Energy 5458 Environmental

  1. Ground Water Compliance Action Plan for the Old Rifle, Colorado, UMTRA Project Site

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthNrr-osams ADMIN551 - g 7 s %GrandD

  2. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Green River, Utah. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase 1) and the Ground Water Project (phase 2). For the UMTRA Project site located near Green River, Utah, the Surface Project cleanup occurred from 1988 to 1989. The tailings and radioactively contaminated soils and materials were removed from their original locations and placed into a disposal cell on the site. The disposal cell is designed to minimize radiation emissions and minimize further contamination of ground water beneath the site. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. For the Green River site, the risk assessment helps determine whether human health risks result from exposure to ground water contaminated by uranium processing. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Green River site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  3. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Salt Lake City, Utah. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the first is the Surface Project, and the second is the Ground Water Project. For the UMTRA Project site known as the Vitro site, near Salt Lake City, Utah, Surface Project cleanup occurred from 1985 to 1987. The UMTRA Project`s second phase, the Ground Water Project, evaluates the nature and extent of ground water contamination resulting from uranium processing and determines a strategy for ground water compliance with the Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. A risk assessment is the process of describing a source of contamination and showing how that contamination may reach people and the environment. The amount of contamination people or the environment may be exposed to is calculated and used to characterize the possible health or environmental effects that may result from this exposure. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Vitro site. The results of this report and further site characterization of the Vitro site will be used to determine what is necessary, if anything, to protect human health and the environment while complying with EPA standards.

  4. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Tuba City, Arizona

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium mill site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1990 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine what remedial actions are necessary for contaminated ground water at the site.

  5. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  6. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1994

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994. To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are summarized. This study assesses benefits associated with the Grand Junction, Gunnison, Naturita, and Rifle UMTRA Projects sites for the 1-year period under study. Work at the Naturita site was initiated in April 1994 and involved demolition of buildings at the processing site. Actual start-up of remediation of Naturita is planned to begin in the spring of 1995. Work at the Slick Rock and Maybell sites is expected to begin in 1995. The only current economic benefits associated with these sites are related to UMTRA Project support work.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site began in 1995 and is scheduled for completion in 1996. The tailings are being stabilized in place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results presented in this document and other evaluations will determine whether any action is needed to protect human health or the environment.

  8. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  9. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  10. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  11. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  12. Long-term surveillance plan for the Gunnison, Colorado disposal site

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  13. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  14. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  15. Colorado economic impact study on the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado state fiscal year 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-12T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year (FY) 1993. To capture employment benefits, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Rifle, and Gunnison, Colorado. An estimated 52 percent of the employees working on the UMTRA Project responded to this information request. Economic data were requested from each prime subcontractor, as well as from the Remedial Action Contractor. The most significant benefits associated with the UMTRA Project in Colorado are: Direct employment was estimated at 894 workers; An estimated 89 percent of all direct employment was local; Secondary employment resulting from remedial action at the active Colorado UMTRA Project sites and the Grand Junction vicinity property program is estimated at 546 workers. Total employment (direct and secondary) is estimated at 1440 workers for the period of study (July 1, 1992, to June 30, 1993). An estimated $24.1 million was paid in wages to UMTRA workers in Colorado during FY1993; Direct and secondary wage earnings were estimated at $39.9 million; Income tax payments to the state of Colorado were estimated at $843,400 during FY1993; The gross economic impact of UMTRA Project activities in the state of Colorado is estimated at $70 million during the 1-year study period; and the net economic benefit to the state of Colorado was estimated at $57.5 million, or $5.90 per dollar of funding provided by Colorado. This figure includes both direct and secondary benefits but does not include the impact of alternative uses of the state funding.

  16. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Riverton, Wyoming. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of two phases: the Surface Project and the Ground Water Project. At the UMTRA Project site near Riverton, Wyoming, Surface Project cleanup occurred from 1988 to 1990. Tailings and radioactively contaminated soils and materials were taken from the Riverton site to a disposal cell in the Gas Hills area, about 60 road miles (100 kilometers) to the east. The surface cleanup reduces radon and other radiation emissions and minimizes further ground water contamination. The UMTRA Project`s second phase, the Ground Water Project, will evaluate the nature and extent of ground water contamination at the Riverton site that has resulted from the uranium ore processing activities. Such evaluations are used at each site to determine a strategy for complying with UMTRA ground water standards established by the US Environmental Protection Agency (EPA) and if human health risks could result from exposure to ground water contaminated by uranium ore processing. Exposure could hypothetically occur if drinking water were pumped from a well drilled in an area where ground water contamination might have occurred. Human health and environmental risks may also result if people, plants, or animals are exposed to surface water that has mixed with contaminated ground water.

  17. Uranium Mill Tailings Remedial Action Project, fiscal year 1995 annual report to stakeholders

    SciTech Connect (OSTI)

    NONE

    1995-09-30T23:59:59.000Z

    In 1978, Congress authorized the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction or landscaping projects. Cleanup is being undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the ground water project. This report addresses specifics about both phases of the UMTRA Project. DOE`s UMTRA Project is the world`s largest materials management project ever undertaken to reduce or eliminate risk to the general public from exposure to potentially hazardous and radioactive materials. With an estimated cost at completion of nearly $2 billion for both phases of the UMTRA Project, and with the responsibility for encapsulating and isolating almost one-fourth of all the uranium mill tailings generated across the entire US (more than 44 million cubic yards), the UMTRA Project and its people have achieved a long record of safely and effectively completing its mission. It continually enhances its national reputation through its diligent process and cost efficiency as well as its international recognition for its technological innovation.

  18. UMTRA water sampling technical (peer) review: Responses to observations, comments, and recommendations submitted by Don Messinger (Roy F. Weston, Inc.)

    SciTech Connect (OSTI)

    NONE

    1993-08-01T23:59:59.000Z

    An independent technical review (peer review) was conducted during the period of September 15--17, 1992. The review was conducted by C. Warren Ankerberg (Geraghty and Miller, Inc., Tampa, Florida) and Don Messinger (Roy F. Weston, Inc., West Chester, Pennsylvania). The review was held at Jacobs Engineering in Albuquerque, New Mexico, and at the Shiprock, New Mexico, site. The peer review included a review of written documentation [water sampling standard operating procedures (SOP)], an inspection of technical reports and other deliverables, a review of staff qualifications and training, and a field visit to evaluate the compliance of field procedures with SOPS. Upon completion of the peer review, each reviewer independently prepared a report of findings from the review. The reports listed findings and recommended actions. This document responds to the observations, comments, and recommendations submitted by Don Messinger following his review. The format of this document is to present the findings and recommendations verbatim from Mr. Messinger`s report, followed by responses from the UMTRA Project staff. Included in the responses from the UMTRA Project staff are recommended changes in SOPs and strategies for implementing the charges.

  19. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota. Revision 1

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    This risk assessment evaluates the potential for impacts to public health or the environment from contaminated ground water at this site caused by the burning of coal containing uranium to produce uranium. Potential risk is quantified for constituents introduced from the processing activities and not for those constituents naturally occurring in background ground water in the site vicinity. Because background ground water quality has the potential to cause adverse health effects from exposure through drinking, any risks associated with contaminants attributable to site activities are incremental to these risks from background. The incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition. The US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to remedy soil and ground water contamination at the site. The UMTRA Surface Project consists of determining the extent of soil contamination and disposing of the contaminated soils in an engineered disposal cell. The UMTRA Ground Water Project consists of evaluating ground water contamination. Under the UMTRA Ground Water Project, results of this risk assessment will help determine what ground water compliance strategy may be applied at the site.

  20. US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-21T23:59:59.000Z

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

  1. Near-Site Transportation Infrastructure Project

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N. (Nuclear Assurance Corp., Norcross, GA (United States)) [Nuclear Assurance Corp., Norcross, GA (United States)

    1992-02-01T23:59:59.000Z

    There are 122 commercial nuclear facilities from which spent nuclear fuel will be accepted by the Federal Waste Management System (FWMS). Since some facilities share common sites and some facilities are on adjacent sites, 76 sites were identified for the Near-Site Transportation Infrastructure (NSTI) project. The objective of the NSTI project was to identify the options available for transportation of spent-fuel casks from each of these commercial nuclear facility sites to the main transportation routes -- interstate highways, commercial rail lines and navigable waterways available for commercial use. The near-site transportation infrastructure from each site was assessed, based on observation of technical features identified during a survey of the routes and facilities plus data collected from referenced information sources. The potential for refurbishment of transportation facilities which are not currently operational was also assessed, as was the potential for establishing new transportation facilities.

  2. LTS Project Management - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS Experimental RunProcedure Doc.LTS In TheProject

  3. Projects & Facilities - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press Releases ArchiveServices » GuidanceProgramsProjects

  4. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This baseline risk assessment of ground water contamination at the uranium mill tailings sites near Slick Rock, Colorado, evaluates potential public health and environmental impacts resulting from ground water contamination at the former North Continent (NC) and Union Carbide (UC) uranium mill processing sites. The tailings at these sites will be placed in a disposal cell at the proposed Burro Canyon, Colorado, site. The US Department of Energy (DOE) anticipates the start of the first phase remedial action by the spring of 1995 under the direction of the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project will evaluate ground water contamination. This baseline risk assessment is the first site-specific document for these sites under the Ground Water Project. It will help determine the compliance strategy for contaminated ground water at the site. In addition, surface water and sediment are qualitatively evaluated in this report.

  5. Baseline risk assessment of ground water contamination at the uranium mill tailings site Salt Lake City, Utah

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment of groundwater contamination at the uranium mill tailings site near Salt Lake City, Utah, evaluates potential public health or environmental impacts resulting from ground water contamination at the former uranium ore processing site. The tailings and other contaminated material at this site were placed in a disposal cell located at Clive, Utah, in 1987 by the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The second phase of the UMTRA Project is to evaluate residual ground water contamination at the former uranium processing site, known as the Vitro processing site. This risk assessment is the first site-specific document under the Ground Water Project. It will help determine the appropriate remedial action for contaminated ground water at the site.

  6. Baseline risk assessment of ground water contamination at the Monument Valley uranium mill tailings site Cane Valley, Arizona

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the Monument Valley UMTRA Project site near Cane Valley, Arizona, was completed in 1994. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Adverse ecological and agricultural effects may also result from exposure to contaminated ground water. For example, livestock should not be watered with contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site investigations will be used to determine a compliance strategy to comply with the UMTRA ground water standards.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Riverton, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This Risk Assessment evaluated potential impacts to public health or the environment caused by ground water contamination at the former uranium mill processing site. In the first phase of the U.S. Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project, the tailing and other contaminated material at this site were placed in a disposal cell near the Gas Hills Plant in 1990. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first site-specific document to evaluate potential health and environmental risks for the Riverton site under the Ground Water Project; it will help determine whether remedial actions are needed for contaminated ground water at the site.

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    For the UMTRA Project site located near Durango, Colorado (the Durango site), the Surface Project cleanup occurred from 1986 to 1991. An evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. Exposure could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. In addition, environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has mixed with contaminated ground water. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Durango site. The results of this report and further site characterization of the Durango site will be used to determine what is necessary to protect public health and the environment, and to comply with the EPA standards.

  9. Northeast Oregon Hatchery Project, Final Siting Report.

    SciTech Connect (OSTI)

    Watson, Montgomery

    1995-03-01T23:59:59.000Z

    This report presents the results of site analysis for the Bonneville Power Administration Northeast Oregon Hatchery Project. The purpose of this project is to provide engineering services for the siting and conceptual design of hatchery facilities for the Bonneville Power Administration. The hatchery project consists of artificial production facilities for salmon and steelhead to enhance production in three adjacent tributaries to the Columbia River in northeast Oregon: the Grande Ronde, Walla Walla, and Imnaha River drainage basins. Facilities identified in the master plan include adult capture and holding facilities; spawning incubation, and early rearing facilities; full-term rearing facilities; and direct release or acclimation facilities. The evaluation includes consideration of a main production facility for one or more of the basins or several smaller satellite production facilities to be located within major subbasins. The historic and current distribution of spring and fall chinook salmon and steelhead was summarized for the Columbia River tributaries. Current and future production and release objectives were reviewed. Among the three tributaries, forty seven sites were evaluated and compared to facility requirements for water and space. Site screening was conducted to identify the sites with the most potential for facility development. Alternative sites were selected for conceptual design of each facility type. A proposed program for adult holding facilities, final rearing/acclimation, and direct release facilities was developed.

  10. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    For the UMTRA Project site located near Canonsburg, Pennsylvania (the Canonsburg site), the Surface Project cleanup occurred from 1983 to 1985, and involved removing the uranium processing mill tailings and radioactively contaminated soils and materials from their original locations and placing them in a disposal cell located on the former Canonsburg uranium mill site. This disposal cell is designed to minimize radiation emissions and further contamination of ground water beneath the site. The Ground Water Project will evaluate the nature and the extent of ground water contamination resulting from uranium processing at the former Canonsburg uranium mill site, and will determine a ground water strategy for complying with the US Environmental Protection Agency`s (EPA) ground water standards established for the UMTRA Project. For the Canonsburg site, an evaluation was made to determine whether exposure to ground water contaminated by uranium processing could affect people`s health. This risk assessment report is the first site-specific document prepared for the UMTRA Ground Water Project at the Canonsburg site. The results of this report and further site characterization of the Canonsburg site will be used to determine how to protect public health and the environment, and how to comply with the EPA standards.

  11. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Maybell, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, building foundations, and materials associated with the former processing of uranium ore at UMTRA sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further contamination of ground water. One UMTRA Project site is near Maybell, Colorado. Surface cleanup at this site is under way and is scheduled for completion in 1996. The tailings are being stabilized in-place at this site. The disposal area has been withdrawn from public use by the DOE and is referred to as the permanent withdrawal area. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from past uranium ore processing activities. The Ground Water Project at this site is in its beginning stages. This report is a site-specific document that will be used to evaluate current and future potential impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the environment. Currently, no points of exposure (e.g. a drinking water well); and no receptors of contaminated ground water have been identified at the Maybell site. Therefore, there are no current human health and ecological risks associated with exposure to contaminated ground water. Furthermore, if current site conditions and land- and water-use patterns do not change, it is unlikely that contaminated ground water would reach people or the ecological communities in the future.

  12. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Slick Rock, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Two UMTRA (Uranium Mill Tailings Remedial Action) Project sites are near Slick Rock, Colorado: the North Continent site and the Union Carbide site. Currently, no one uses the contaminated ground water at either site for domestic or agricultural purposes. However, there may be future land development. This risk assessment evaluates possible future health problems associated with exposure to contaminated ground water. Since some health problems could occur, it is recommended that the contaminated ground water not be used as drinking water.

  13. West Valley Demonstration Project Site Environmental Report Calendar Year 2000

    SciTech Connect (OSTI)

    NONE

    2001-08-31T23:59:59.000Z

    The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

  14. Baseline risk assessment of ground water contamination at the uranium mill tailings sites near Rifle, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase 1) and the Ground Water Project (Phase 2). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment.

  15. Uranium Mill Tailings Remedial Action Project fiscal year 1997 annual report to stakeholders

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The fiscal year (FY) 1997 annual report is the 19th report on the status of the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. In 1978, Congress directed the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction or landscaping. Cleanup has been undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the groundwater project. This report addresses specifics about the UMTRA surface project.

  16. Fiscal year 1996 annual report to stakeholders, Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    NONE

    1996-10-01T23:59:59.000Z

    This is the Fiscal Year (FY) 1996 annual report on the status of the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. In 1978, Congress directed the DOE to assess and clean up contamination at 24 designated former uranium processing sites. The DOE is also responsible for cleaning up properties in the vicinity of the sites where wind and water erosion deposited tailings or people removed them from the site for use in construction of landscaping. Cleanup is being undertaken in cooperation with state governments and Indian tribes within whose boundaries the sites are located. It is being conducted in two phases: the surface project and the ground water project. This report addresses specifics about the surface phase of the UMTRA Project.

  17. Baseline risk assessment of ground water contamination at the Monument Valley Uranium Mill Tailings Site, Cane Valley, Arizona. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This baseline risk assessment evaluates potential impact to public health or the environment from ground water contamination at the former uranium mill processing site in Cane Valley near Monument Valley, Arizona. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project has relocated and stabilized this site`s tailings and other contaminated material in a disposal cell at Mexican Hat, Utah. The second phase of the UMTRA Project is to evaluate ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project that evaluates potential health and environmental risks. It will help determine the approach required to address contaminated ground water at the site.

  18. Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

  19. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site at Grand Junction, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This risk assessment evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site.

  20. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Mexican Hat disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the disposal site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Mexican Hat disposal site performs as designed. The program is based on two distinct types of activities: (1) site inspections to identify potential threats to disposal cell integrity, and (2) monitoring of selected seeps to observe changes in flow rates and water quality. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03. 18 refs., 6 figs., 1 tab.

  1. Baseline risk assessment of ground water contamination at the inactive uriniferous lignite ashing site near Belfield, North Dakota

    SciTech Connect (OSTI)

    NONE

    1994-08-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Inactive Uraniferous Lignite Ashing Site Near Belfield, North Dakota, evaluates potential impacts to public health or the environment resulting from ground water contamination at the site where coal containing uranium was burned to produce uranium. The US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project is evaluating plans to remedy soil and ground water contamination at the site. Phase I of the UMTRA Project consists of determining the extent of soil contamination. Phase II of the UMTRA Project consists of evaluating ground water contamination. Under Phase II, results of this risk assessment will help determine what remedial actions may be necessary for contaminated ground water at the site. This risk assessment evaluates the potential risks to human health and the environment resulting from exposure to contaminated ground water as it relates to historic processing activities at the site. Potential risk is quantified for constituents introduced from the processing activities, and not for those constituents naturally occurring in water quality in the site vicinity. Background ground water quality has the potential to cause adverse health effects from exposure through drinking. Any risks associated with contaminants attributable to site activities are incremental to these risks from background ground water quality. This incremental risk from site-related contaminants is quantified in this risk assessment. The baseline risk from background water quality is incorporated only into the assessment of potential chemical interactions and the definition of the overall site condition.

  2. Baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota

    SciTech Connect (OSTI)

    Not Available

    1994-11-01T23:59:59.000Z

    This baseline risk assessment of ground water contamination at the inactive uraniferous lignite ashing site near Bowman, North Dakota, evaluates the potential impacts to public health or the environment from contaminated ground water at this site. This contamination is a result of the uraniferous lignite ashing process, when coal containing uranium was burned to produce uranium. Potential risk is quantified only for constituents introduced by the processing activities and not for the constituents naturally occurring in background ground water in the site vicinity. Background ground water, separate from any site-related contamination, imposes a percentage of the overall risk from ground water ingestion in the Bowman site vicinity. The US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is developing plans to address soil and ground water contamination at the site. The UMTRA Surface Project involves the determination of the extent of soil contamination and design of an engineered disposal cell for long-term storage of contaminated materials. The UMTRA Ground Water Project evaluates ground water contamination. Based on results from future site monitoring activities as defined in the site observational work plan and results from this risk assessment, the DOE will propose an approach for managing contaminated ground water at the Bowman site.

  3. 1992 North Dakota Economic Impact Study for the Uranium Mill Tailings Remedial Action Project, Belfield and Bowman, North Dakota

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The goal of the Uranium Mill Tailings Remedial Action (UMTRA) Project in North Dakota is to improve the environment and reduce the negative health effects associated with residual radioactive material (RRM) from the inactive processing sites at Belfield and Bowman, North Dakota. A secondary benefit of the UMTRA Project is economic gain. The 1992 North Dakota Economic Impact Study (NDEIS) analyzes the impact of the remedial actions at the inactive Belfield and Bowman processing sites and their associated vicinity properties. This analysis is based on the assumption that the state of North Dakota will provide 10 percent of the funding required for remediation. For every dollar the state of North Dakota invests in the Belfield and Bowman onsite portion of the UMTRA Project, it will realize $5.04 in gross labor income (i.e., gross labor income divided by the state's total funding requirement). For every dollar the state of North Dakota invests, it will realize a net return of $3.04 (i.e., net benefit divided by the state's total funding requirement). This reflects only labor expenditure and employment impact. ff state and local non-labor tax benefits were considered in the net economic benefit, North Dakota could receive significantly more than $3.04 for each dollar it invests. The UMTRA Project work at Belfield and Bowman will benefit the state of North Dakota. Benefits include a reduction in the negative health effects caused by low-level RRM, an improvement in the environment, and increased economic growth.

  4. Long-term surveillance plan for the Rifle, Colorado, Disposal site

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP.

  5. Long-term surveillance plan for the Gunnison, Colorado disposal site. Revision 2

    SciTech Connect (OSTI)

    NONE

    1997-02-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance.

  6. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP.

  7. Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

  8. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Canonsburg, Pennsylvania

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment evaluates potential impacts to public health and the environment resulting from ground water contamination from past activities at the former uranium processing site in Canonsburg, Pennsylvania. The US Department of Energy Uranium Mill Tailings Remedial Action (UMTRA) Project has placed contaminated material from this site in an on-site disposal cell. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the UMTRA Ground Water Project. Currently, no domestic or drinking water well tap into contaminated ground water of the two distinct ground water units: the unconsolidated materials and the bedrock. Because there is no access, no current health or environmental risks are associated with the direct use of the contaminated ground water. However, humans and ecological organisms could be exposed to contaminated ground water if a domestic well were to be installed in the unconsolidated materials in that part of the site being considered for public use (Area C). The first step is evaluating ground water data collected from monitor wells at the site. For the Canonsburg site, this evaluation showed the contaminants in ground water exceeding background in the unconsolidated materials in Area C are ammonia, boron, calcium, manganese, molybdenum, potassium, strontium, and uranium.

  9. WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001

    SciTech Connect (OSTI)

    NONE

    2002-09-30T23:59:59.000Z

    THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

  10. Historic Manhattan Project Sites at Los Alamos

    ScienceCinema (OSTI)

    McGehee, Ellen

    2014-05-22T23:59:59.000Z

    The Manhattan Project laboratory constructed at Los Alamos, New Mexico, beginning in 1943, was intended from the start to be temporary and to go up with amazing speed. Because most of those WWII-era facilities were built with minimal materials and so quickly, much of the original infrastructure was torn down in the late '40s and early '50s and replaced by more permanent facilities. However, a few key facilities remained, and are being preserved and maintained for historic significance. Four such sites are visited briefly in this video, taking viewers to V-Site, the buildings where the first nuclear explosive device was pre-assembled in preparation for the Trinity Test in Southern New Mexico. Included is another WWII area, Gun Site. So named because it was the area where scientists and engineers tested the so-called "gun method" of assembling nuclear materials -- the fundamental design of the Little Boy weapon that was eventually dropped on Hiroshima. The video also goes to Pajarito Site, home of the "Slotin Building" and "Pond Cabin." The Slotin Building is the place where scientist Louis Slotin conducted a criticality experiment that went awry in early 1946, leading to his unfortunate death, and the Pond Cabin served the team of eminent scientist Emilio Segre who did early chemistry work on plutonium that ultimately led to the Fat Man weapon.

  11. Wildlife mitigation and monitoring report Gunnison, Colorado, site

    SciTech Connect (OSTI)

    NONE

    1997-04-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is administered by the U.S. Department of Energy (DOE); its purpose is to cleanup uranium mill tailings and other contaminated material at 24 UMTRA Project sites in 10 states. This report summarizes the wildlife mitigation and monitoring program under way at the Gunnison UMTRA Project, Gunnison, Colorado. Remedial action at the Gunnison site was completed in December 1995 and is described in detail in the Gunnison completion report. The impacts of this activity were analyzed in the Gunnison environmental assessment (EA). These impacts included two important game species: the pronghorn antelope (Antilocapra americans) and sage grouse (Wentrocerus urophasianus). Haul truck traffic was predicted to limit antelope access to water sources north of the Tenderfoot Mountain haul road and that truck traffic along this and other haul roads could result in antelope road kills. Clearing land at the disposal cell, haul road and borrow site activities, and the associated human activities also were predicted to negatively impact (directly and indirectly) sage grouse breeding, nesting, loafing, and wintering habitat. As a result, an extensive mitigation and monitoring plan began in 1992. Most of the monitoring studies are complete and the results of these studies, written by different authors, appear in numerous reports. This report will: (1) Analyze existing impacts and compare them to predicted impacts. (2) Summarize mitigation measures. (3) Summarize all existing monitoring data in one report. (4) Analyze the effectiveness of the mitigation measures.

  12. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  13. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Lakeview, Oregon. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, contaminated soil, equipment, and materials associated with the former uranium ore processing at UMTRA Project sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to minimize further contamination of ground water. Surface cleanup at the UMTRA Project site near Lakeview, Oregon, was completed in 1989. The mill operated from February 1958 to November 1960. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  14. Project Management Plan

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs.

  15. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY

    E-Print Network [OSTI]

    COLORADO SCHOOL OF MINES RESEARCH INSTITUTE SITE REMEDIATION PROJECT SUMMARY May 15, 2007 · The Colorado School of Mines Research Institute Site (the "Site) has been undergoing additional investigation RESEARCH INSTITUTE REMEDIATION PROJECT SUMMARY Page Two May 15, 2007 · The revised Remedial Investigation

  16. Long-term surveillance plan for the Shiprock disposal site, Shiprock, New Mexico

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. This Shiprock, New Mexico, LTSP documents whether the land and interests are owned by the US or an Indian tribe and describes in detail the long-term care program through the UMTRA Project Office.

  17. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-08-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (phase I), and the Ground Water Project (phase II). For the UMTRA Project site located near Naturita, Colorado (the Naturita site), phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado, about 13 road miles (mi) (21 kilometers [km]) to the northwest. No uranium mill tailings are involved because the tailings were removed from the Naturita site and placed at Coke Oven, Colorado, during 1977 to 1979. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health or the environment; and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water, or surface water that has received contaminated ground water. Therefore, a risk assessment is conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  18. CSMRI SITE PROJECT SUMMARY September 2010

    E-Print Network [OSTI]

    to the EPA action a tailings pond had been operated in that portion of the Site. The new well detected

  19. Long-term surveillance plan for the Lowman, Idaho, disposal site

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

  20. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  1. Coupled Site Characterization and Foundation Analysis Research Project

    E-Print Network [OSTI]

    Horvath, John S.

    Engineering Department Bronx, New York, U.S.A. March 2000 #12;Coupled Site Characterization and Foundation Engineering Department Bronx, NY 10471-4098 U.S.A. e-mail: #12;iii Coupled SiteCoupled Site Characterization and Foundation Analysis Research Project: Rational Selection

  2. Rate-limited U(VI) desorption during a small-scale tracer test in a hetereogeneous uranium contaminated aquifer

    E-Print Network [OSTI]

    Fox, P.M.

    2013-01-01T23:59:59.000Z

    Work Plan for the UMTRA project Old Rifle site, GrandMill Tailings Remedial Action (UMTRA) sites and the Savannahof the contamination at the UMTRA sites lies within shallow

  3. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Naturita, Colorado. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project, and the Ground Water Project. For the UMTRA Project site located near Naturita, Colorado, phase I involves the removal of radioactively contaminated soils and materials and their transportation to a disposal site at Union Carbide Corporation`s Upper Burbank Repository at Uravan, Colorado. The surface cleanup will reduce radon and other radiation emissions from the former uranium processing site and prevent further site-related contamination of ground water. Phase II of the project will evaluate the nature and extent of ground water contamination resulting from uranium processing and its effect on human health and the environment, and will determine site-specific ground water compliance strategies in accordance with the US Environmental Protection Agency (EPA) ground water standards established for the UMTRA Project. Human health risks could occur from drinking water pumped from a hypothetical well drilled in the contaminated ground water area. Environmental risks may result if plants or animals are exposed to contaminated ground water or surface water that has mixed with contaminated ground water. Therefore, a risk assessment was conducted for the Naturita site. This risk assessment report is the first site-specific document prepared for the Ground Water Project at the Naturita site. What follows is an evaluation of current and possible future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will be used to determine whether any action is needed to protect human health or the environment.

  4. U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

  5. Economic impact study of the Uranium Mill Tailings Remedial Action Project in Colorado: Colorado State fiscal year 1994. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Colorado economic impact study summarizes employment and economic benefits to the state from activities associated with the Uranium Mill Tailings Remedial Action (UMTRA) Project during Colorado state fiscal year 1994 (1 July 1993 through 30 June 1994). To capture employment information, a questionnaire was distributed to subcontractor employees at the active UMTRA Project sites of Grand Junction, Naturita, Gunnison, and Rifle, Colorado. Economic data were requested from each site prime subcontractor, as well as from the Remedial Action Contractor. Information on wages, taxes, and subcontract expenditures in combination with estimates and economic multipliers is used to estimate the dollar economic benefits to Colorado during the state fiscal year. Finally, the fiscal year 1994 estimates are compared to fiscal year 1993 employment and economic information.

  6. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

  7. UMTRA water sampling technical (peer) review. Responses to observations, comments, and recommendations submitted by C. Warren Ankerberg (Geraghty & Miller, Inc.)

    SciTech Connect (OSTI)

    NONE

    1993-08-01T23:59:59.000Z

    At the request of the Office of Independent Technical Review for the U.S. Department of Energy (DOE), Uranium Mill Tailings Remedial Action (UMTRA) Project, an independent technical review (peer review) was conducted during the period of September 15-17, 1992. The review was conducted by C. Warren Ankerberg (Geraghty & Miller, Inc., Tampa, Florida) and Don Messinger (Roy F. Weston, Inc., West Chester, Pennsylvania). The peer review included a review of written documentation [water sampling standard operating procedures (SOP)], an inspection of technical reports and other deliverables, a review of staff qualifications and training, and a field visit to evaluate the compliance of field procedures with SOPs. The approach of the peer reviewers was to verify that the program meets the following criteria: Reported results are traceable to and consistent with recorded data. The basic assumptions and acceptance criteria are valid. Data are traceable to their origin and to reported analytical results. The procedures employed are consistent both internally and externally with written SOPs and regulatory guidelines. Inferences and conclusions are soundly based. The procedures and/or reports generated present work that satisfies the local, state and/or Federal regulatory requirements as applicable. The approach is consistent with industry standards and/or state-of-the-art technology, as practical. The data generated by activities are legally defensible and technically sound. UMTRA staff are adequately trained and qualified for the work. This document is a response to the observations, comments, and recommendations submitted by C. Warren Ankerberg following his review. The format of this document is to present the findings and recommendations verbatim from Mr. Ankerberg`s report, followed by responses from the UMTRA Project staff. Included in the responses from the UMTRA Project staff are recommended changes in SOPs and strategies for implementing the changes.

  8. Near-Site Transportation Infrastructure Project. Final report

    SciTech Connect (OSTI)

    Viebrock, J.M.; Mote, N. [Nuclear Assurance Corp., Norcross, GA (United States)] [Nuclear Assurance Corp., Norcross, GA (United States)

    1992-02-01T23:59:59.000Z

    There are 122 commercial nuclear facilities from which spent nuclear fuel will be accepted by the Federal Waste Management System (FWMS). Since some facilities share common sites and some facilities are on adjacent sites, 76 sites were identified for the Near-Site Transportation Infrastructure (NSTI) project. The objective of the NSTI project was to identify the options available for transportation of spent-fuel casks from each of these commercial nuclear facility sites to the main transportation routes -- interstate highways, commercial rail lines and navigable waterways available for commercial use. The near-site transportation infrastructure from each site was assessed, based on observation of technical features identified during a survey of the routes and facilities plus data collected from referenced information sources. The potential for refurbishment of transportation facilities which are not currently operational was also assessed, as was the potential for establishing new transportation facilities.

  9. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Sites near Rifle, Colorado. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project consists of the Surface Project (Phase I) and the Ground Water Project (Phase II). Under the UMTRA Surface Project, tailings, radioactive contaminated soil, equipment, and materials associated with the former uranium ore processing sites are placed into disposal cells. The cells are designed to reduce radon and other radiation emissions and to prevent further ground water contamination. The Ground Water Project evaluates the nature and extent of ground water contamination resulting from the uranium ore processing activities. Two UMTRA Project sites are near Rifle, Colorado: the Old Rifle site and the New Rifle site. Surface cleanup at the two sites is under way and is scheduled for completion in 1996. The Ground Water Project is in its beginning stages. A risk assessment identifies a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the environment may be exposed, and the health or environmental effects that could result from that exposure. This report is a site-specific document that will be used to evaluate current and future impacts to the public and the environment from exposure to contaminated ground water. This evaluation and further site characterization will be used to determine if action is needed to protect human health or the environment. Human health risk may result from exposure to ground water contaminated from uranium ore processing. Exposure could occur from drinking water obtained from a well placed in the areas of contamination. Furthermore, environmental risk may result from plant or animal exposure to surface water and sediment that have received contaminated ground water.

  10. Mobile water treatment plant special study. Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    Characterization of the level and extent of groundwater contamination in the vicinity of Title I mill sites began during the surface remedial action stage (Phase 1) of the Uranium Mill Tailings Remedial Action (UMTRA) Project. Some of the contamination in the aquifer(s) at the abandoned sites is attributable to milling activities during the years the mills were in operation. To begin implementation of Phase 11 groundwater remediation, the US Department of Energy (DOE) requested that (1) the Technical Assistance Contractor (TAC) conduct a study to provide for the design of a mobile water treatment plant to treat groundwater extracted during site characterization studies at completed Phase I UMTRA sites, and (2) the results of the TAC investigations be documented in a special study report. This special study develops the design criteria for a water treatment plant that can be readily transported from one UMTRA site to another and operated as a complete treatment system. The 1991 study provides the basis for selecting a mobile water treatment system to meet the operating requirements recommended in this special study. The scope of work includes the following: Determining contaminants, flows, and loadings. Setting effluent quality criteria. Sizing water treatment unit(s). Evaluating non-monetary aspects of alternate treatment processes. Comparing costs of alternate treatment processes. Recommending the mobile water treatment plant design criteria.

  11. Stable Isotope Fractionations in Biogeochemical Reactive Transport

    E-Print Network [OSTI]

    Druhan, Jennifer Lea

    2012-01-01T23:59:59.000Z

    Work Plan for the UMTRA Project Old Rifle Site, GJO-99-88-influent values and the UMTRA compliance limit for uraniumTailings Remediation Action (UMTRA) project, which included

  12. Natural analogue synthesis report, TDR-NBS-GS-000027 rev00 icn 02

    E-Print Network [OSTI]

    2002-01-01T23:59:59.000Z

    at Gunnison, Colorado. Final. UMTRA- DOEIAL-050508.0000. [U.S. Department of Energy, UMTRA Project Office]. TIC:Work Plan for the UMTRA Project New Rifle Site. GJO-99-112-

  13. Final report of the UMTRA independent technical review of TAC audit programs

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This report details the findings of an Independent Technical Review (ITR) of practices and procedures for the Uranium Mill Tailings Remedial Action (UMTRA) Project audit program. The audit program is conducted by Jacobs Engineering Group Inc., the Technical Assistance Contractor (TAC) for the UMTRA Project. The purpose of the ITR was to ensure that the TAC audit program is effective and is conducted efficiently. The ITR was conducted from May 16-20, 1994. A review team observed audit practices in the field, reviewed the TAC audit program`s documentation, and discussed the program with TAC staff and management. The format of this report has been developed around EPA guidelines; they comprise most of the major section headings. Each section begins by identifying the criteria that the TAC program is measured against, then describing the approach used by the ITR team to measure each TAC audit program against the criteria. An assessment of each type of audit is then summarized for each component in the following order: Radiological audit summary; Health and safety audit summary; Environmental audit summary; Quality assurance audit summary.

  14. Manhattan Project Sites at Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9Novemberutilities and aHistoric Manhattan Project

  15. Geospatial Optimization of Siting Large-Scale Solar Projects

    SciTech Connect (OSTI)

    Macknick, J.; Quinby, T.; Caulfield, E.; Gerritsen, M.; Diffendorfer, J.; Haines, S.

    2014-03-01T23:59:59.000Z

    Recent policy and economic conditions have encouraged a renewed interest in developing large-scale solar projects in the U.S. Southwest. However, siting large-scale solar projects is complex. In addition to the quality of the solar resource, solar developers must take into consideration many environmental, social, and economic factors when evaluating a potential site. This report describes a proof-of-concept, Web-based Geographical Information Systems (GIS) tool that evaluates multiple user-defined criteria in an optimization algorithm to inform discussions and decisions regarding the locations of utility-scale solar projects. Existing siting recommendations for large-scale solar projects from governmental and non-governmental organizations are not consistent with each other, are often not transparent in methods, and do not take into consideration the differing priorities of stakeholders. The siting assistance GIS tool we have developed improves upon the existing siting guidelines by being user-driven, transparent, interactive, capable of incorporating multiple criteria, and flexible. This work provides the foundation for a dynamic siting assistance tool that can greatly facilitate siting decisions among multiple stakeholders.

  16. Economic impact study of the Uranium Mill Tailings Remedial Action project in Colorado: Colorado state fiscal year 1995. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    As required by the Romer-Twining Agreement of 1990, the US Department of Energy (DOE) has prepared this annual economic impact study for the state of Colorado. This report assesses the economic impacts related to the DOE Uranium Mill Tailings Remedial Action (UMTRA) Project in Colorado during the state fiscal year (FY) between 1 July 1994 and 30 June 1995. To estimate net economic benefit, employment, salaries and wages, and other related economic benefits are discussed, quantified, and then compared to the state`s 10 percent share of the remedial action costs. Actual data obtained from sites currently undergoing remedial action were used as the basis for analyses. If data were not available, estimates were used to derive economic indicators. This study describes the types of employment associated with the UMTRA Project and estimates of the numbers of people employed by UMTRA Project subcontractors in Colorado during state FY 1995. Employment totals are reported in estimated average annual jobs; however, the actual number of workers at the site fluctuates depending on weather and on the status of remedial action activities. In addition, the actual number of people employed on the Project during the year may be higher than the average annual employment reported due to the temporary nature of some of the jobs.

  17. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished.

  18. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  19. Development of a mobile laboratory for analyses at uranium cleanup sites resulting in significant time and cost savings

    SciTech Connect (OSTI)

    Bianconi, J. [RUST Federal Services, Inc., Albuquerque, NM (United States)

    1994-12-31T23:59:59.000Z

    A mobile laboratory was developed for the analysis of {sup 230}Th in soil at Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) sites to speed sample turnaround time and reduce the cost of using commercial laboratories. The laboratory utilizes recent developments in microwave acid dissolution, nuclide-specific extraction with extractive scintillators, and liquid scintillation alpha spectrometry to give results with an estimated minimum detectable concentration of 52 Bq kg{sup -1} (1.4 pCi g{sup -1}) for a 300-s count using a 1-g sample. The analysis time for {sup 230}Th is 16 h for eight samples, excluding quality control samples, at a cost of approximately $30 per sample. No significant additional time or costs are incurred by performing uranium analysis. As a result savings of up to $40,000 per week can be realized on the UMTRA project.

  20. Sulfur isotopes as indicators of amended bacterial sulfate reduction processes influencing field scale uranium bioremediation

    E-Print Network [OSTI]

    Druhan, J.L.

    2009-01-01T23:59:59.000Z

    http://www.pnl.gov/nabir-umtra/ monitor.stm (accessed MarchObservational Work Plan for the UMTRA Project Old Ri?e Site;Tailings Remedial Action (UMTRA) Program, U.S. Department of

  1. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado. Attachment 4, Water resources protection strategy: Final report

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards the US Department of Energy (DOE) proposes to meet background concentrations or the EPA maximum concentration limits (MCLS) for hazardous constituents in groundwater in the uppermost aquifer at the point of compliance (POC) at the Gunnison Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site near Gunnison, Colorado. The proposed remedial action will ensure protection of human health and the environment. A summary of the principal features of the water resources protection strategy for the Gunnison disposal site is included in this report.

  2. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    This Baseline Risk Assessment of Groundwater Contamination at the Uranium Mill Tailings Site Near Gunnison, Colorado evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells. This risk assessment evaluates the most contaminated monitor wells at the processing site. It will be used to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  3. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  4. Remedial action plan and site design for stabilization of the Inactive Uranium Mill Tailings Site, Maybell, Colorado. Final report, Appendixes to attachment 3

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This document contains supporting appendices to attachment 3 for the remedial action and site stabilization plan for Maybell, Colorado UMTRA site. Appendix A includes the Hydrological Services Calculations and Appendix B contains Ground Water Quality by Location data.

  5. 1992 North Dakota Economic Impact Study for the Uranium Mill Tailings Remedial Action Project, Belfield and Bowman, North Dakota. Preliminary final report

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The goal of the Uranium Mill Tailings Remedial Action (UMTRA) Project in North Dakota is to improve the environment and reduce the negative health effects associated with residual radioactive material (RRM) from the inactive processing sites at Belfield and Bowman, North Dakota. A secondary benefit of the UMTRA Project is economic gain. The 1992 North Dakota Economic Impact Study (NDEIS) analyzes the impact of the remedial actions at the inactive Belfield and Bowman processing sites and their associated vicinity properties. This analysis is based on the assumption that the state of North Dakota will provide 10 percent of the funding required for remediation. For every dollar the state of North Dakota invests in the Belfield and Bowman onsite portion of the UMTRA Project, it will realize $5.04 in gross labor income (i.e., gross labor income divided by the state`s total funding requirement). For every dollar the state of North Dakota invests, it will realize a net return of $3.04 (i.e., net benefit divided by the state`s total funding requirement). This reflects only labor expenditure and employment impact. ff state and local non-labor tax benefits were considered in the net economic benefit, North Dakota could receive significantly more than $3.04 for each dollar it invests. The UMTRA Project work at Belfield and Bowman will benefit the state of North Dakota. Benefits include a reduction in the negative health effects caused by low-level RRM, an improvement in the environment, and increased economic growth.

  6. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Durango, Colorado

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    This risk assessment evaluates the possibility of health and environmental risks from contaminated ground water at the uranium mill tailings site near Durango, Colorado. The former uranium processing site`s contaminated soil and material were removed and placed at a disposal site located in Body Canyon, Colorado, during 1986--1991 by the US Departments of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating the nature and extent of ground water contamination at the site. This risk assessment follows an approach similar to that used by the US Environmental Protection Agency. The first step is to determine what site-related contaminants are found in ground water samples. The next step in the risk assessment is to determine how much of these contaminants people might ingest if they got their drinking water from a well on the site. In accordance with standard practice for this type of risk assessment, the highest contaminant concentrations from the most contaminated wells are used. The risk assessment then explains the possible health problems that could result from this amount of contamination.

  7. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Shiprock, New Mexico. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This baseline risk assessment at the former uranium mill tailings site near Shiprock, New Mexico, evaluates the potential impact to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an on-site disposal cell in 1986 through the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. There are no domestic or drinking water wells in the contaminated ground water of the two distinct ground water units: the contaminated ground water in the San Juan River floodplain alluvium below the site and the contaminated ground water in the terrace alluvium area where the disposal cell is located. Because no one is drinking the affected ground water, there are currently no health or environmental risks directly associated with the contaminated ground water. However, there is a potential for humans, domestic animals, and wildlife to the exposed to surface expressions of ground water in the seeps and pools in the area of the San Juan River floodplain below the site. For these reasons, this risk assessment evaluates potential exposure to contaminated surface water and seeps as well as potential future use of contaminated ground water.

  8. West Valley Demonstration Project site environmental report calendar year 1998

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  9. West Valley Demonstration Project site environmental report, calendar year 1999

    SciTech Connect (OSTI)

    None Available

    2000-06-01T23:59:59.000Z

    This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

  10. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    SciTech Connect (OSTI)

    GREAGER, T.M.

    2000-12-06T23:59:59.000Z

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility.

  11. Site characterization plan for the W-058 Project

    SciTech Connect (OSTI)

    Rowley, C.A.

    1993-09-01T23:59:59.000Z

    The objective of this preoperational study plan is to characterize the proposed pipeline route for the Cross-Site Transfer System (W-058). The purpose of this study is to meet the requirements set forth in US Department of Energy (DOE) Order 5400.1, Chapter 4, (DOE 1990). The W-058 pipeline is intended to replace the existing Cross-Site Transfer System (H-2-43056). The proposed route for the W-058 project will be reviewed to provide information on documented waste sites and potentially to identify any undocumented hazards that may currently exist along the proposed route. Historical records will be researched for pertinent information. Health Physics personnel will perform a ``walk-down`` radiological survey of the proposed path. A sampling plan will be generated and will consist of actual drilling of boreholes to allow field screening for radionuclides and/or chemical contamination and the collection of samples at selected sites for laboratory analyses. The information generated from this combined effort will establish existing/potential contamination levels, aid in developing personnel safety requirements, assist in determining the need for any changes in the proposed route prior to installation/construction of the new pipeline, and satisfy the requirements of a preoperational baseline for the project.

  12. SITING PROTOCOLS FOR MARINE AND HYDROKINETIC ENERGY PROJECTS

    SciTech Connect (OSTI)

    Kopf, Steven; Klure, Justin; Hofford, Anna; McMurray, Greg; Hampton, Therese

    2012-07-15T23:59:59.000Z

    Project Objective: The purpose of this project is to identify and address regulatory issues that affect the cost, time and the management of potential effects as it relates to siting and permitting advanced water power technologies. Background: The overall goal of this effort is to reduce the cost, time and effort of managing potential effects from the development advanced water power projects as it relates to the regulatory process in siting and permitting. To achieve this goal, a multi-disciplinary team will collect and synthesize existing information regarding regulatory processes into a user-friendly online format. In addition, the team will develop a framework for project planning and assessment that can incorporate existing and new information. The team will actively collaborate and coordinate with other efforts that support or influence regulatory process. Throughout the process, the team will engage in an iterative, collaborative process for gathering input and testing ideas that involves the relevant stakeholders across all sectors at the national, regional, and all state levels.

  13. Baseline risk assessment of groundwater contamination at the Uranium Mill Tailings Site near Gunnison, Colorado. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    This report evaluates potential impacts to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site are being placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This is the second risk assessment of groundwater contamination at this site. The first risk assessment was performed primarily to evaluate existing domestic wells to determine the potential for immediate human health and environmental impacts. This risk assessment evaluates the most contaminated groundwater that flows beneath the processing site towards the Gunnison River. The monitor wells that have consistently shown the highest concentration of most contaminants are used in this risk assessment. This risk assessment will be used in conjunction with additional activities and documents to assist in determining what remedial action is needed for contaminated groundwater at the site after the tailings are relocated. This risk assessment follows an approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the groundwater are cadmium, cobalt, iron, manganese, sulfate, uranium, and some of the products of radioactive decay of uranium.

  14. The consequences of failure should be considered in siting geologic carbon sequestration projects

    E-Print Network [OSTI]

    Price, P.N.

    2009-01-01T23:59:59.000Z

    2007. Geologic Carbon Sequestration Strategies forfor carbon capture and sequestration. Environmental Sciencein Siting Geologic Carbon Sequestration Projects Phillip N.

  15. Yucca Mountain Site Characterization Project technical data catalog quarterly supplement

    SciTech Connect (OSTI)

    NONE

    1995-03-31T23:59:59.000Z

    The Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where the data may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with t requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and distributed in the month following the end of each quarter. A complete revision to the catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to@ previously published reference information. The Technical Data Catalog, dated September 30, 1994, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1995.

  16. Possibilities For The LAGUNA Projects At The Frejus Site

    SciTech Connect (OSTI)

    Mosca, Luigi [LSM-Frejus - CNRS/IN2P3 and CEA/DSM/IRFU (France)

    2010-11-24T23:59:59.000Z

    The present laboratory (LSM) at the Frejus site and the project of a first extension of it, mainly aimed at the next generation of dark matter and double beta decay experiments, are briefly reviewed. Then the main characteristics of the LAGUNA cooperation and Design Study network are summarized. Seven underground sites in Europe are considered in LAGUNA and are under study as candidates for the installation of Megaton scale detectors using three different techniques: a liquid Argon TPC (GLACIER), a liquid scintillator detector (LENA) and a Water Cerenkov (MEMPHYS), all mainly aimed at investigation of proton decay and properties of neutrinos from SuperNovae and other astrophysical sources as well as from accelerators (Super-beams and/or Beta-beams from CERN). One of the seven sites is located at Frejus, near the present LSM laboratory, and the results of its feasibility study are presented and discussed. Then the physics potential of a MEMPHYS detector installed in this site are emphasized both for non-accelerator and for neutrino beam based configurations. The MEMPHYNO prototype with its R and D programme is presented. Finally a possible schedule is sketched.

  17. Yucca Mountain Site Characterization Project: Technical Data Catalog quarterly supplement

    SciTech Connect (OSTI)

    NONE

    1994-03-31T23:59:59.000Z

    The March 21, 1993, Department of Energy (DOE)/Nuclear Regulatory Commission (NRC) Site-Specific Procedural Agreement for Geologic Repository Site Investigation and Characterization Program requires the DOE to develop and maintain a catalog of data which will be updated and provided to the NRC at least quarterly. This catalog is to include a description of the data; the time (date), place, and method of acquisition; and where it may be examined. The Yucca Mountain Site Characterization Project (YMP) Technical Data Catalog is published and distributed in accordance with the requirements of the Site-Specific Agreement. The YMP Technical Data Catalog is a report based on reference information contained in the YMP Automated Technical Data Tracking System (ATDT). The reference information is provided by Participants for data acquired or developed in support of the YMP. The Technical Data Catalog is updated quarterly and published in the month following the end of each quarter. A complete revision to the Catalog is published at the end of each fiscal year. Supplements to the end-of-year edition are published each quarter. These supplements provide information related to new data items not included in previous quarterly updates and data items affected by changes to previously published reference information. The Technical Data Catalog, dated September 30, 1993, should be retained as the baseline document for the supplements until the end-of-year revision is published and distributed in October 1994.

  18. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The Uranium Mill Tallings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1 (Chapter 3, paragraph 2). The UMTRA EPIP covers the time period of November 9, 1992, through November 8, 1993. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  19. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  20. CERCLA Sites Quality Assurance Project Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platformBuilding Removal OngoingCERCLA Sites Quality Assurance Project Plan

  1. Sites in Argentina for the Cherenkov Telescope Array Project

    E-Print Network [OSTI]

    Allekotte, Ingo; Etchegoyen, Alberto; García, Beatriz; Mancilla, Alexis; Maya, Javier; Ravignani, Diego; Rovero, Adrián

    2013-01-01T23:59:59.000Z

    The Cherenkov Telescope Array (CTA) Project will consist of two arrays of atmospheric Cherenkov telescopes to study high-energy gamma radiation in the range of a few tens of GeV to beyond 100 TeV. To achieve full-sky coverage, the construction of one array in each terrestrial hemisphere is considered. Suitable candidate sites are being explored and characterized. The candidate sites in the Southern Hemisphere include two locations in Argentina, one in San Antonio de los Cobres (Salta Province, Lat. 24:02:42 S, Long. 66:14:06 W, at 3600 m.a.s.l) and another one in El Leoncito (San Juan Province, Lat. 31:41:49 S, Long. 69:16:21 W, at 2600 m.a.s.l). Here we describe the two sites and the instrumentation that has been deployed to characterize them. We summarize the geographic, atmospheric and climatic data that have been collected for both of them.

  2. Value of Information Analysis Project Gnome Site, New Mexico

    SciTech Connect (OSTI)

    Greg Pohll; Jenny Chapman

    2010-01-01T23:59:59.000Z

    The Project Gnome site in southeastern New Mexico was the location of an underground nuclear detonation in 1961 and a hydrologic tracer test using radionuclides in 1963. The tracer test is recognized as having greater radionuclide migration potential than the nuclear test because the tracer test radionuclides (tritium, 90Sr, 131I, and 137Cs) are in direct contact with the Culebra Dolomite aquifer, whereas the nuclear test is within a bedded salt formation. The tracer test is the topic here. Recognizing previous analyses of the fate of the Gnome tracer test contaminants (Pohll and Pohlmann, 1996; Pohlmann and Andricevic, 1994), and the existence of a large body of relevant investigations and analyses associated with the nearby Waste Isolation Pilot Plant (WIPP) site (summarized in US DOE, 2009), the Gnome Site Characterization Work Plan (U.S. DOE, 2002) called for a Data Decision Analysis to determine whether or not additional characterization data are needed prior to evaluating existing subsurface intrusion restrictions and determining long-term monitoring for the tracer test. Specifically, the Work Plan called for the analysis to weigh the potential reduction in uncertainty from additional data collection against the cost of such field efforts.

  3. Weldon Spring Site environmental report for calendar year 1993. Weldon Springs Site Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    This Site Environmental Report for Calendar Year 1993 describes the environmental monitoring programs at the Weldon Spring Site Remedial Action Project (WSSRAP). The objectives of these programs are to assess actual or potential exposure to contaminant effluents from the project area by providing public use scenarios and dose estimates, to demonstrate compliance with Federal and State permitted levels, and to summarize trends and/or changes in contaminant concentrations from environmental monitoring program. In 1993, the maximum committed dose to a hypothetical individual at the chemical plant site perimeter was 0.03 mrem (0.0003 mSv). The maximum committed dose to a hypothetical individual at the boundary of the Weldon Spring Quarry was 1.9 mrem (0.019 mSv). These scenarios assume an individual walking along the perimeter of the site-once a day at the chemical plant/raffinate pits and twice a day at the quarry-250 days per year. This hypothetical individual also consumes fish, sediment, and water from lakes and other bodies of water in the area. The collective dose, based on an effected population of 112,000 was 0.12 person-rem (0.0012 person-Sv). This calculation is based on recreational use of the August A. Busch Memorial Conservation Area and the Missouri Department of Conservation recreational trail (the Katy Trail) near the quarry. These estimates are below the U.S. Department of Energy requirement of 100 mrem (I mSv) annual committed effective dose equivalent for all exposure pathways. Results from air monitoring for the National Emission Standards for Hazardous Air Pollutants (NESHAPs) program indicated that the estimated dose was 0.38 mrem, which is below the U.S. Environmental Protection Agency (EPA) standard of 10 mrem per year.

  4. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    SciTech Connect (OSTI)

    Vollmer, A.T.

    1993-10-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

  5. US Department of Energy response to standards for remedial actions at inactive uranium processing sites: Proposed rule

    SciTech Connect (OSTI)

    Not Available

    1988-01-29T23:59:59.000Z

    The Title I groundwater standards for inactive uranium mill tailings sites, which were promulgated on January 5, 1983, by the US Environmental Protection Agency (EPA) for the Uranium Mill Tailings Remedial Action (UMTRA) Project, were remanded to the EPA on September 3, 1985, by the US Tenth Circuit Court of Appeals. The Court instructed the EPA to compile general groundwater standards for all Title I sites. On September 24, 1987, the EPA published proposed standards (52FR36000-36008) in response to the remand. This report includes an evaluation of the potential effects of the proposed EPA groundwater standards on the UMTRA Project, as well as a discussion of the DOE's position on the proposed standards. The report also contains and appendix which provides supporting information and cost analyses. In order to assess the impacts of the proposed EPA standards, this report summarizes the proposed EPA standards in Section 2.0. The next three sections assess the impacts of the three parts of the EPA standards: Subpart A considers disposal sites; Subpart B is concerned with restoration at processing sites; and Subpart C addresses supplemental standards. Section 6.0 integrates previous sections into a recommendations section. Section 7.0 contains the DOE response to questions posed by the EPA in the preamble to the proposed standards. 6 refs., 5 figs., 3 tabs.

  6. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2005-09-30T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

  7. Fernald Environmental Management Project 1995 site environmental report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    The Fernald site continues to examine the air and liquid pathways as possible routes through which pollutants from past operations and current remedial activities may leave the site. This 1995 Site Environmental Report provides the general public as well as scientists and engineers with the results from the site`s ongoing Environmental Monitoring Program. Also included in this report is information concerning the site`s progress toward achieving full compliance with requirements set forth by DOE, US Environmental Protection Agency (USEPA), and Ohio EPA.

  8. Baseline risk assessment of ground water contamination at the Uranium Mill Tailings Site near Grand Junction, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This Baseline Risk Assessment of Ground Water Contamination at the Uranium Mill Tailings Site Near Grand Junction, Colorado evaluates potential impacts to public health or the environment resulting from ground water contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in an off-site disposal cell by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The remedial activities at the site were conducted from 1989 to 1993. Currently, the UMTRA Project is evaluating ground water contamination. This risk assessment is the first document specific to this site for the Ground Water Project. This risk assessment evaluates the most contaminated ground water that flows beneath the processing site toward the Colorado River. The monitor wells that have consistently shown the highest concentrations of most contaminants are used to assess risk. This risk assessment will be used in conjunction with additional activities and documents to determine what remedial action may be needed for contaminated ground water at the site. This risk assessment follows an approach outlined by the EPA. the first step is to evaluate ground water data collected from monitor wells at the site. Evaluation of these data showed that the contaminants of potential concern in the ground water are arsenic, cadmium, cobalt, fluoride, iron, manganese, molybdenum, nickel, sulfate, uranium, vanadium, zinc, and radium-226. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if they drank from a well installed in the contaminated ground water at the former processing site.

  9. Moab Uranium Mill Tailings Cleanup Project Steps into Spotlight at International Meeting in Vienna

    Broader source: Energy.gov [DOE]

    VIENNA – The Moab Uranium Mill Tailings Remedial Action (UMTRA) Project has kept the United States at the forefront of characterization, remediation, and end-state reuse of uranium millsites around the world.

  10. CCSReg Project Regulating Access to Pore Space, Site

    E-Print Network [OSTI]

    injection of CO2 into deep geologic pore space on both private and federal lands. The regulation would: GS policy: EOR exclusion: #12;CCSReg Project Our project addresses issues... 9 Photo: Vattenfall

  11. WSSRAP chemical plant geotechnical investigations for the Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    This document has been prepared for the United states Department of Energy (DOE) Weldon Spring Site Remedial Action Project (WSSRAP) by the Project Management Contractor (PMC), which consists of MK-Ferguson Company (MKF) and Morrison Knudsen Corporation Environmental Services Group (MKES) with Jacobs Engineering Group (JEG) as MKF's predesignated subcontractor. This report presents the results of site geotechnical investigations conducted by the PMC in the vicinity of the Weldon Spring chemical plant and raffinate pits (WSCP/RP) and in potential on-site and off-site clayey material borrow sources. The WSCP/RP is the proposed disposal cell (DC) site. 39 refs., 24 figs., 12 tabs.

  12. Monday, February 23, 2004 Decision on site for fusion project is put off again

    E-Print Network [OSTI]

    Monday, February 23, 2004 Decision on site for fusion project is put off again VIENNA (Kyodo) The six parties involved in an international nuclear fusion project have again failed to decide on either in March. Senior officials of the parties to the International Thermonuclear Experimental Reactor project

  13. Friday February 20, 2004 Three compromise plans eyed for fusion project site

    E-Print Network [OSTI]

    Friday February 20, 2004 Three compromise plans eyed for fusion project site A team of experts on an international nuclear fusion project has drawn up three compromise proposals in a bid to resolve the row over said. The six parties involved in the Thermonuclear Experimental Reactor (ITER) project have been

  14. Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project Site

    E-Print Network [OSTI]

    Firestone, Jeremy

    Potential Presence of Endangered Wildlife Species at the University of Delaware Wind Power Project wind power project site, we conducted an analysis of the suitability of habitat within the project of potential risk to the species. #12;Corn Snake ­ Fairly common in Delaware, but is not likely to be present

  15. Site fire protection projects review board engineering evaluation

    SciTech Connect (OSTI)

    Fayfich, R.R.

    1992-12-31T23:59:59.000Z

    The Savannah River Site (SRS) has been safely operated since its beginning in the early 1950`s with an effective, highly successful program of fire prevention. However, in the mid 1980`s the Department of Energy directed the site to identify and install fire protection measure in addition to the reliance on prevention. To address the site needs, independent fire protection surveys were conducted by Factory Mutual Research Corporation and Professional Loss Control, Inc. in 1986 and 1987. The results of these surveys identified 1400 fire protection improvements needed in existing facilities to comply with DOE Orders and NFPA Codes and Standards.

  16. Report of early site suitability evaluation of the potential repository site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Younker, J.L.; Andrews, W.B.; Fasano, G.A.; Herrington, C.C.; Mattson, S.R.; Murray, R.C. [Science Applications International Corp., Las Vegas, NV (United States); Ballou, L.B.; Revelli, M.A. [Lawrence Livermore National Lab., CA (United States); Ducharme, A.R.; Shephard, L.E. [Sandia National Labs., Albuquerque, NM (United States); Dudley, W.W.; Hoxie, D.T. [Geological Survey, Denver, CO (United States); Herbst, R.J.; Patera, E.A. [Los Alamos National Lab., NM (United States); Judd, B.R. [Decision Analysis Co., Portola Valley, CA (United States); Docka, J.A.; Rickertsen, L.D. [Weston Technical Associates, Washington, DC (United States)

    1992-01-01T23:59:59.000Z

    This study evaluated the technical suitability of Yucca Mountain, Nevada, as a potential site for a mined geologic repository for the permanent disposal of radioactive waste. The evaluation was conducted primarily to determine early in the site characterization program if there are any features or conditions at the site that indicate it is unsuitable for repository development. A secondary purpose was to determine the status of knowledge in the major technical areas that affect the suitability of the site. This early site suitability evaluation (ESSE) was conducted by a team of technical personnel at the request of the Associate Director of the US Department of Energy (DOE) Office of Geologic Disposal, a unit within the DOE`s Office of Civilian Radioactive Waste Management. The Yucca Mountain site has been the subject of such evaluations for over a decade. In 1983, the site was evaluated as part of a screening process to identify potentially acceptable sites. The site was evaluated in greater detail and found suitable for site characterization as part of the Environmental Assessment (EA) (DOE, 1986) required by the Nuclear Waste Policy Act of 1982 (NWPA). Additional site data were compiled during the preparation of the Site Characterization Plan (SCP) (DOE, 1988a). This early site suitability evaluation has considered information that was used in preparing both-documents, along with recent information obtained since the EA and SCP were published. This body of information is referred to in this report as ``current information`` or ``available evidence.``

  17. Environmental assessment of ground water compliance activities at the Uranium Mill Tailings Site, Spook, Wyoming. Revision 0

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This document is an environmental assessment of the Spook, Wyoming, Uranium Mill Tailings Remedial Action (UMTRA) Project site. It analyzes the impacts of the U.S. Department of Energy (DOE) proposed action for ground water compliance. The proposed action is to comply with the U.S. Environmental Protection Agency (EPA) standards for the UMTRA Project sites (40 CFR Part 192) by meeting supplemental standards based on the limited use ground water at the Spook site. This proposed action would not require site activities, including ground water monitoring, characterization, or institutional controls. Ground water in the uppermost aquifer was contaminated by uranium processing activities at the Spook site, which is in Converse County, approximately 48 miles (mi) (77 kilometers [km]) northeast of Casper, Wyoming. Constituents from the site infiltrated and migrated into the uppermost aquifer, forming a plume that extends approximately 2500 feet (ft) (800 meters [m]) downgradient from the site. The principal site-related hazardous constituents in this plume are uranium, selenium, and nitrate. Background ground water in the uppermost aquifer at the site is considered limited use. It is neither a current nor a potential source of drinking water because of widespread, ambient contamination that cannot be cleaned up using treatment methods reasonably employed in public water supply systems (40 CFR {section} 192.11 (e)). Background ground water quality also is poor due to first, naturally occurring conditions (natural uranium mineralization associated with an alteration front), and second, the effects of widespread human activity not related to uranium milling operations (uranium exploration and mining activities). There are no known exposure pathways to humans, animals, or plants from the contaminated ground water in the uppermost aquifer because it does not discharge to lower aquifers, to the surface, or to surface water.

  18. Comment and response document for the ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The US Department of Energy (DOE) responses to comments from both the US Nuclear Regulatory Commission (NRC) and the state of Utah are provided in this document. The Proposed Ground Water Protection Strategy for the Uranium Mill Tailings Site at Green River, Utah, presents the proposed (modified) ground water protection strategy for the disposal cell at the Green River disposal site for compliance with Subpart A of 40 CFR Part 192. Before the disposal cell was constructed, site characterization was conducted at the Green River Uranium Mill Tailings Remedial Action (UMTRA) Project site to determine an acceptable compliance strategy. Results of the investigation are reported in detail in the final remedial action plan (RAP) (DOE, 1991a). The NRC and the state of Utah have accepted the final RAP. The changes in this document relate only to a modification of the compliance strategy for ground water protection.

  19. Yucca Mountain Site Characterization Project bibliography, January--June 1995. Supplement 4, Add.3: An update

    SciTech Connect (OSTI)

    Stephan, P.M. [ed.

    1996-01-01T23:59:59.000Z

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1995, through June 30, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  20. Yucca Mountain site characteriztion project bibliography. Progress Report, 1994--1995

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project which was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994, through December 31, 1995. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology database which were not sponsored by the project but have some relevance to it.

  1. Yucca Mountain Site Characterization Project Bibliography, January--June 1993. An update: Supplement 4, Addendum 1

    SciTech Connect (OSTI)

    Stephan, P.M. [ed.

    1995-01-01T23:59:59.000Z

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1994 through June 30, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers,and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  2. Yucca Mountain Site Characterization Project Bibliography, July--December 1994: An update

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Charactrization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Science and Technology Database from July 1, 1994 through December 31, 1994. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it.

  3. Extensions and enhancements to the iLab heat transfer project site

    E-Print Network [OSTI]

    Saylor, David P. (David Patrick)

    2005-01-01T23:59:59.000Z

    The iLab Heat Transfer Project website started four years ago to enable web access to experiments related to movement of heat through transport processes. This thesis details improvements made to the site which extend and ...

  4. On self-help in a site and services project in Kenya

    E-Print Network [OSTI]

    Soni, Praful Naran

    1980-01-01T23:59:59.000Z

    The concept of self-help in a site and services project is based on the assumption that given the security of land tenureship_, an owner-builder can manage the whole process of house implementation. Generally, in any ...

  5. Hanford Site River Protection Project (RPP) High Level Waste Storage

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.

    2000-01-31T23:59:59.000Z

    The CH2M HILL Hanford Group (CHG) conducts business to achieve the goals of the U.S. Department of Energy's (DOE) Office of River Protection at the Hanford Site. The CHG is organized to manage and perform work to safely store, retrieve, etc.

  6. Vicinity Property Assessments at Formerly Utilized Sites Remedial Action Program Project Sites in the New York District - 13420

    SciTech Connect (OSTI)

    Ewy, Ann; Hays, David [U.S. Army Corps of Engineers (United States)] [U.S. Army Corps of Engineers (United States)

    2013-07-01T23:59:59.000Z

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) has addressed sites across the nation for almost 4 decades. Multiple stake holder pressures, multiple regulations, and process changes occur over such long time periods. These result in many challenges to the FUSRAP project teams. Initial FUSRAP work was not performed under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Records of Decision (ROD). The ROD identifies the remedy decision and ultimately the criteria to be used to release a site. Early FUSRAP projects used DOE Orders or the Uranium Mill Tailings Radiation Control Act (UMTRCA) standards. Under current RODs, regulations may differ, resulting in different cleanup criteria than that used in prior Vicinity Property (VP) remediation. The USACE, in preparation for closeout of Sites, conducts reviews to evaluate whether prior actions were sufficient to meet the cleanup criteria specified in the current ROD. On the basis of these reviews, USACE has conducted additional sampling, determined that prior actions were sufficient, or conducted additional remediation consistent with the selected remedy in the ROD. As the public pressures, regulations, and processes that the FUSRAP encounters continue to change, the program itself continues to evolve. Assessment of VPs at FUSRAP sites is a necessary step in the life cycle of our site management. (authors)

  7. Executive summary: Weldon Spring Site Environmental Report for calendar year 1992. Weldon Spring Site Remedial Action Project, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    Not Available

    1993-06-01T23:59:59.000Z

    This report has been prepared to provide information about the public safety and environmental protection programs conducted by the Weldon Spring Site Remedial Action Project. The Weldon Spring site is located in southern St. Charles County, Missouri, approximately 48 km (30 mi) west of St. Louis. The site consists of two main areas, the Weldon Spring Chemical Plant and raffinate pits and the Weldon Spring Quarry. The objectives of the Site Environmental Report are to present a summary of data from the environmental monitoring program, to characterize trends and environmental conditions at the site, and to confirm compliance with environmental and health protection standards and requirements. The report also presents the status of remedial activities and the results of monitoring these activities to assess their impacts on the public and environment. The scope of the environmental monitoring program at the Weldon Spring site has changed since it was initiated. Previously, the program focused on investigations of the extent and level of contaminants in the groundwater, surface waters, buildings, and air at the site. In 1992, the level of remedial activities required monitoring for potential impacts of those activities, particularly on surface water runoff and airborne effluents. This report includes monitoring data from routine radiological and nonradiological sampling activities. These data include estimates of dose to the public from the Weldon Spring site; estimates of effluent releases; and trends in groundwater contaminant levels. Also, applicable compliance requirements, quality assurance programs, and special studies conducted in 1992 to support environmental protection programs are reviewed.

  8. Uranium Mill Tailings Remedial Action fiscal year 1992 roadmap

    SciTech Connect (OSTI)

    Not Available

    1993-02-01T23:59:59.000Z

    The Uranium Mill Tailings Remedial Action (UMTRA) Project is funded and managed as two separate projects: Surface remediation (UMTRA-S) and Groundwater compliance (UMTRA-G). Surface remediation is a Major System Acquisition and has been completed at 10 sites, 7 sites are under construction, and 7 sites are in the planning stage. The planning stages of the UMTRA-G Project, a major project, began in April 1991. A programmatic environmental impact statement (PEIS) has been started. Site characterization work and baseline risk assessment will begin FY 1993. Thus, the UMTRA-S Project is a mature and ongoing program with the roles of various organizations well defined, while the UMTRA-G Project is still being formulated and the interfaces between the DOE, states and tribes, and the EPA are being established. The Office of Environmental Restoration and Waste Management (EM) directed that all projects under its authority develop roadmaps for their activities. The UMTRA Project Roadmap was developed by the UMTRA Project Office with input from the TAC, RAC, the GJPO, and assistance from SAIC. A single roadmap has been prepared for both the UMTRA-S and UMTRA-G Projects. This was deemed appropriate due to the close relationship between the projects and to the fact that the same Government and contractor personnel are preparing the roadmaps. Roadmap development is a planning process that focuses on issue identification, root-cause analysis, and issues resolution. The methodology is divided into three phases: assessment, analysis, and issues resolution.

  9. After the wind resource and project site have been determined and the community outreach effort has

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    permit application. See the Fact Sheets on resource assessment and wind resource data for more: Technology Performance Impacts & Issues Siting Resource Assessment Wind Data Permitting Case Studies 1. 2. 3After the wind resource and project site have been determined and the community outreach effort has

  10. On-Site Renewable Power Purchase Agreements for Renewable Energy Projects

    Broader source: Energy.gov [DOE]

    An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

  11. Radiation Belt Activity Indices and Solar Proton Event Alarm on the CRATERRE Project Web Site

    E-Print Network [OSTI]

    Radiation Belt Activity Indices and Solar Proton Event Alarm on the CRATERRE Project Web Site D--Two Radiation Belt Activity Indices, based on electron flux measurement >300 keV and >1.6 MeV, and one Solar updated. Index Terms- CRATERRE project, Radiation belts activity, Space environment I. INTRODUCTION

  12. Session: Monitoring wind turbine project sites for avian impacts

    SciTech Connect (OSTI)

    Erickson, Wally

    2004-09-01T23:59:59.000Z

    This third session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The focus of the session was on existing wind projects that are monitored for their impacts on birds and bats. The presentation given was titled ''Bird and Bat Fatality Monitoring Methods'' by Wally Erickson, West, Inc. Sections included protocol development and review, methodology, adjusting for scavenging rates, and adjusting for observer detection bias.

  13. Oak Ridge Finishes Site's Largest Demolition Project to Date | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-BasedDecember 23,Misc CasesOUO ReviewSite |Findsof

  14. Site Programs & Cooperative Agreements: West Valley Demonstration Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary of EnergyFocus GroupSherrellHanford Site ProgramsDepartment

  15. MAJOR CONFORMED CONTRACTS LINKS Site/Project Contract Link Idaho

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic2 OPAM Flash2011-12Approvedof6,Projects | DepartmentLow-TemperatureMAMA-60MAJOR

  16. Rawlins UCG (underground coal gasification) Demonstration Project site characterization report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The United States Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale Underground Coal Gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the hydrologic site characterization program is to provide an accurate representation of the hydrologic environment within the area to be gasified. This information will aid in the placement and operation of the process wells in relation to the ground water source. 21 refs., 14 figs., 6 tabs.

  17. Rawlins UCG (underground coal gasification) Demonstration Project site characterization report

    SciTech Connect (OSTI)

    Not Available

    1989-04-01T23:59:59.000Z

    The US Department of Energy and Energy International, Inc. have entered into a Cooperative Agreement to conduct a cost-shared UCG field test demonstrating the operation of commercial scale underground coal gasification (UCG) on steeply dipping bed modules to provide synthesis gas for a small scale commercial ammonia plant. The field test and the commercial ammonia plant will be located at the North Knobs site near Rawlins, Wyoming. During this demonstration test, two or more UCG modules will be operated simultaneously until one module is completely consumed and an additional module is brought on line. During this period, the average coal gasification rate will be between 500 and 1200 tons per day. A portion of the raw UCG product gas will be cleaned and converted into a synthesis gas, which will be used as feedstock to a 400--500 ton per day ammonia plant. The UCG facility will continue to operate subsequent to the test demonstration to provide feedstock for the commercial plant. The objective of the geologic site characterization program is to provide a descriptive model that accurately represents the geologic environment of the coal resource that is to be gasified. This model is to be used as an aid in understanding the hydrology of the coal bearing sequence, as a framework for installation of the process wells and the subsequent exploitation of the coal resources. 3 figs., 3 tabs.

  18. Baseline risk assessment of groundwater contamination at the uranium mill tailings site near Shiprock, New Mexico. Draft

    SciTech Connect (OSTI)

    Not Available

    1993-09-01T23:59:59.000Z

    This report evaluates potential impact to public health or the environment resulting from groundwater contamination at the former uranium mill processing site. The tailings and other contaminated material at this site were placed in a disposal cell on the site in 1986 by the US Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. Currently, the UMTRA Project is evaluating groundwater contamination. This risk assessment is the first document specific to this site for the Groundwater Project. This risk assessment follows the approach outlined by the US Environmental Protection Agency (EPA). The first step is to evaluate groundwater data collected from monitor wells at the site. Evaluation of these data showed that the main contaminants in the floodplain groundwater are arsenic, magnesium, manganese, nitrate, sodium, sulfate, and uranium. The complete list of contaminants associated with the terrace groundwater could not be determined due to the lack of the background groundwater quality data. However, uranium, nitrate, and sulfate are evaluated since these chemicals are clearly associated with uranium processing and are highly elevated compared to regional waters. It also could not be determined if the groundwater occurring in the terrace is a usable water resource, since it appears to have originated largely from past milling operations. The next step in the risk assessment is to estimate how much of these contaminants people would be exposed to if a drinking well were installed in the contaminated groundwater or if there were exposure to surface expressions of contaminated water. Potential exposures to surface water include incidental contact with contaminated water or sediments by children playing on the floodplain and consumption of meat and milk from domestic animals grazed and watered on the floodplain.

  19. Probable maximum flood control; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    DeGabriele, C.E.; Wu, C.L. [Bechtel National, Inc., San Francisco, CA (United States)

    1991-11-01T23:59:59.000Z

    This study proposes preliminary design concepts to protect the waste-handling facilities and all shaft and ramp entries to the underground from the probable maximum flood (PMF) in the current design configuration for the proposed Nevada Nuclear Waste Storage Investigation (NNWSI) repository protection provisions were furnished by the United States Bureau of Reclamation (USSR) or developed from USSR data. Proposed flood protection provisions include site grading, drainage channels, and diversion dikes. Figures are provided to show these proposed flood protection provisions at each area investigated. These areas are the central surface facilities (including the waste-handling building and waste treatment building), tuff ramp portal, waste ramp portal, men-and-materials shaft, emplacement exhaust shaft, and exploratory shafts facility.

  20. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Riddle, Donna L.

    2007-05-03T23:59:59.000Z

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for implementing the QA program requirements; and Appendix C of the QA Manual provides comparison tables that identify where the requirements of other standards are addressed in the QA Manual.

  1. Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Irene Farnham

    2011-05-01T23:59:59.000Z

    This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

  2. The Nevada Test Site Legacy TRU Waste - The WIPP Central Characterization Project

    SciTech Connect (OSTI)

    Norton, J. F.; Lahoud, R. G.; Foster, B. D.; VanMeighem, J.

    2003-02-25T23:59:59.000Z

    This paper discusses the Central Characterization Project (CCP) designed by the Waste Isolation Pilot Plant (WIPP) to aid sites, especially those sites with small quantities of transuranic (TRU) waste streams, in disposing of legacy waste at their facility. Because of the high cost of contracting vendors with the characterization capabilities necessary to meet the WIPP Waste Acceptance Criteria, utilizing the CCP is meant to simplify the process for small quantity sites. The paper will describe the process of mobilization of the vendors through CCP, the current production milestones that have been met, and the on-site lessons learned.

  3. Weldon Spring Site Remedial Action Project quarterly environmental data summary (QEDS) for fourth quarter 1998

    SciTech Connect (OSTI)

    NONE

    1999-02-01T23:59:59.000Z

    This report contains the Quarterly Environmental Data Summary (QEDS) for the fourth quarter of 1998 in support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement. The data, except for air monitoring data and site KPA generated data (uranium analyses) were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the fourth quarter of 1998. KPA results for on-site total uranium analyses performed during fourth quarter 1998 are included. Air monitoring data presented are the most recent complete sets of quarterly data.

  4. Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites

    SciTech Connect (OSTI)

    Richman, Eric E.

    2012-10-31T23:59:59.000Z

    This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

  5. Final work plan: Expedited Site Characterization of the IES Industries, Inc., Site at Marshalltown, Iowa. Ames Expedited Site Characterization Project, Version 1.0

    SciTech Connect (OSTI)

    Not Available

    1994-04-04T23:59:59.000Z

    The overall goal of the Ames Laboratory Expedited Site Characterization (ESC) project is to evaluate and promote both innovative and state-of-the-practice site characterization and/or monitoring technologies. This will be accomplished by fielding both types of technologies together in the context of an expedited site characterization. The first site will be at a former manufactured gas plant (FMGP) in Marshalltown, Iowa. The project will field three areas of technology: geophysical, analytical, and data fusion. Geophysical technologies are designed to understand the subsurface geology to help predict fate and transport of the target contaminants. Analytical technologies/methods are designed to detect and quantify the target contaminants. Data fusion technology consists of software systems designed to rapidly integrate or fuse all site information into a conceptual site model that then becomes the decision making tool for the site team to plan subsequent sampling activity. Not all of the contaminants present can be located at the action level. Polynuclear aromatic hydrocarbons (PAHs) are the signature organics associated with the coal tar activities that took place at the site. As a result, PAHs were selected as the target compounds. Screening analytical instruments and nonintrusive geophysical techniques will be fielded to qualitatively map the spatial contaminant distribution. Soil gas surveys, immunoassay testing (IMA), innovative optical techniques, and passive organic sorbent sensors will be deployed along with the geophysical methods. Gas chromatography/mass spectrometry (GC/MS) instruments and a cone penetrometer system equipped with a laser-induced fluorescence (LIF) probe will quantitatively map the action level edges of the PAH plume(s). Samples will be taken both by the cone penetrometer test system (CPT) and the Geoprobe {reg_sign} sampler system.

  6. Transient drainage summary report

    SciTech Connect (OSTI)

    NONE

    1996-09-01T23:59:59.000Z

    This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage.

  7. A Neural Network Model for Construction Projects Site Overhead Cost Estimating in Egypt

    E-Print Network [OSTI]

    ElSawy, Ismaail; Razek, Mohammed Abdel

    2011-01-01T23:59:59.000Z

    Estimating of the overhead costs of building construction projects is an important task in the management of these projects. The quality of construction management depends heavily on their accurate cost estimation. Construction costs prediction is a very difficult and sophisticated task especially when using manual calculation methods. This paper uses Artificial Neural Network (ANN) approach to develop a parametric cost-estimating model for site overhead cost in Egypt. Fifty-two actual real-life cases of building projects constructed in Egypt during the seven year period 2002-2009 were used as training materials. The neural network architecture is presented for the estimation of the site overhead costs as a percentage from the total project price.

  8. Idaho National Laboratory Ten-Year Site Plan Project Description Document

    SciTech Connect (OSTI)

    Not Listed

    2012-03-01T23:59:59.000Z

    This document describes the currently active and proposed infrastructure projects listed in Appendix B of the Idaho National Laboratory 2013-2022 Ten Year Site Plan (DOE/ID-11449). It was produced in accordance with Contract Data Requirements List I.06. The projects delineated in this document support infrastructure needs at INL's Research and Education Campus, Materials and Fuels Complex, Advanced Test Reactor Complex and the greater site-wide area. The projects provide critical infrastructure needed to meet current and future INL opereational and research needs. Execution of these projects will restore, rebuild, and revitalize INL's physical infrastructure; enhance program execution, and make a significant contribution toward reducing complex-wide deferred maintenance.

  9. Hanford Site River Protection Project High-Level Waste Safe Storage and Retrieval

    SciTech Connect (OSTI)

    Aromi, E. S.; Raymond, R. E.; Allen, D. I.; Payne, M. A.; DeFigh-Price, C.; Kristofzski, J. G.; Wiegman, S. A.

    2002-02-25T23:59:59.000Z

    This paper provides an update from last year and describes project successes and issues associated with the management and work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of mixed and high-level waste currently in aging tanks at the Hanford Site. The Hanford Site is a 560 square-mile area in southeastern Washington State near Richland, Washington.

  10. Yucca Mountain Site Characterization Project bibliography, 1992--1994. Supplement 4

    SciTech Connect (OSTI)

    NONE

    1992-06-01T23:59:59.000Z

    Following a reorganization of the Office of Civilian Radioactive Waste Management in 1990, the Yucca Mountain Project was renamed Yucca Mountain Site Characterization Project. The title of this bibliography was also changed to Yucca Mountain Site Characterization Project Bibliography. Prior to August 5, 1988, this project was called the Nevada Nuclear Waste Storage Investigations. This bibliography contains information on this ongoing project that was added to the Department of Energy`s Energy Science and Technology Database from January 1, 1992, through December 31, 1993. The bibliography is categorized by principal project participating organization. Participant-sponsored subcontractor reports, papers, and articles are included in the sponsoring organization`s list. Another section contains information about publications on the Energy Science and Technology Database that were not sponsored by the project but have some relevance to it. Earlier information on this project can be found in the first bibliography DOE/TIC-3406, which covers 1977--1985, and its three supplements DOE/OSTI-3406(Suppl.1), DOE/OSTI-3406(Suppl.2), and DOE/OSTI-3406(Suppl.3), which cover information obtained during 1986--1987, 1988--1989, and 1990--1991, respectively. All entries in the bibliographies are searchable online on the NNW database file. This file can be accessed through the Integrated Technical Information System (ITIS) of the US Department of Energy (DOE).

  11. Ponnequin Wind Energy Project: Reference site avian study, January 1, 1998--December 31, 1998

    SciTech Connect (OSTI)

    Kerlinger, P.; Curry, R.; Ryder, R.

    2000-04-05T23:59:59.000Z

    This report summarizes the results of surveys completed during the period January 1, 1998, through December 31, 1998, at the Ponnequin Wind Energy Project in Weld County, Colorado. The surveys were conducted at two reference sites, and include a pre-construction avian abundance and use survey and raptor nesting, prey, and carcass surveys. The reference sites were situated immediately to the west of the project site in Weld County, Colorado, and 4.8 kilometers to the north of the site in Laramie County, Wyoming. The surveys were conducted along two 800-meter (m) main transects at each site with two 400-m (by 100-m) perpendicular transects. About 30 complete surveys were completed during the year, with a greater frequency of surveys in the late spring and early autumn. The surveys revealed mostly common species, with no endangered or threatened species on the sites. Small numbers of raptors were observed on or near the project and reference areas. During the winter, avian use and abundance was minimal. Prey species consisted primarily of thirteen-lined ground squirrels and northern pocket gophers. Two songbird carcasses were found. The results of these surveys, combined with data from several more months of surveys, will be compared to surveys conducted after construction of the wind farm.

  12. Radiation Protection Considerations at USACE Formerly Utilized Sites Remedial Action Program (FUSRAP) Projects

    SciTech Connect (OSTI)

    Brown, S.H. [CHP, SHB INC., Centennial, Colorado (United States)

    2008-07-01T23:59:59.000Z

    The Formerly Utilized Sites Remedial Action Program (FUSRAP) was initially authorized by Congress in 1974. FUSRAP was enacted to address residual radioactive contamination associated with numerous sites across the U.S. at which radioactive material (primarily Uranium ores and related milling products) had been processed in support of the nation's nuclear weapons program dating back to the Manhattan Project and the period immediately following World War II. In October 1997, Congress transferred the management of this program from the Department of Energy to the United States Corp of Engineers. Through this program, the Corps addresses the environmental remediation of certain sites once used by DOE's predecessor agencies, the Manhattan Engineer District and the Atomic Energy Commission. The waste at FUSRAP sites consists mainly of low levels of uranium, thorium and radium, along with some mixed wastes. Upon completion of remedial activities, these sites are transferred to DOE for long-term stewardship activities. This paper presents and contrasts the radiological conditions and recent monitoring results associated with five large ongoing FUSRAP projects including Maywood, N.J.; the Linde site near Buffalo, N.Y.; Colonie in Albany N.Y. and the St Louis, Mo. airport and downtown sites. The radiological characteristics of soil and debris at each site and respective regulatory clean up criteria is presented and contrasted. Some differences are discussed in the radiological characteristics of material at some sites that result in variations in radiation protection monitoring programs. Additionally, summary data for typical personnel radiation exposure monitoring results are presented. In summary: 1. The FUSRAP projects for which data and observations are reported in this paper are considered typical of the radiological nature of FUSRAP sites in general. 2. These sites are characterized by naturally occurring uranium and thorium series radionuclides in soil and debris, at concentrations typically < E4 pCi/ gram total activity. 3. Although external exposure rates are generally low resulting in few exposures above background, occasional 'hot spots' are observed in the 1- 10 mR / hr range or higher. However personnel and general area external exposure monitoring programs consistently demonstrate very low potential for external exposure at theses sites. 4. Potential for airborne exposure is controlled by wetting and misting techniques during excavation and movement of materials. Air sampling and bioassay programs confirm low potential for airborne exposure of workers at these sites. 5. Radiation protection and health physics monitoring programs as implemented at these sites ensure that exposures to personal are maintained ALARA. (authors)

  13. Field fracturing multi-sites project. Annual technical progress report, July 28, 1993--July 31, 1994

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments will be conducted to provide data which will resolve significant unknowns with regard to hydraulic fracture modeling, fluid fracture rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment that are conducive to acquiring high-quality data. The goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic-fracturing test site.

  14. Report of the Peer Review Panel on the early site suitability evaluation of the Potential Repository Site at Yucca Mountain, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    NONE

    1992-01-01T23:59:59.000Z

    The US Department of Energy (DOE) Yucca mountain Site Characterization Project Office (YMPO) assigned Science Applications International Corporation (SAIC), the Technical and Management Support Services (T&MSS) contractor to the YmPo, the task of conducting an Early Site Suitability Evaluation (ESSE) of the Yucca mountain site as a potential site for a high-level radioactive waste repository. First, the assignment called for the development of a method to evaluate a single site against the DOE General Guidelines for Recommendation of Sites for Nuclear Waste Repositories, 10 CFR Part 960. Then, using this method, an evaluation team, the ESSE Core Team, of senior YMP scientists, engineers, and technical experts, evaluated new information obtained about the site since publication of the final Environmental Assessment (DOE, 1986) to determine if new suitability/unsuitability findings could be recommended. Finally, the Core Team identified further information and analyses needed to make final determinations for each of the guidelines. As part of the task, an independent peer review of the ESSE report has been conducted. Expertise was solicited that covered the entire spectrum of siting guidelines in 10 CFR Part 960 in order to provide a complete, in-depth critical review of the data evaluated and cited in the ESSE report, the methods used to evaluate the data, and the conclusions and recommendations offered by the report. Fourteen nationally recognized technical experts (Table 2) served on the Peer Review Panel. The comments from the Panel and the responses prepared by the ESSE Core Team, documented on formal Comment Response Forms, constitute the body of this document.

  15. Uranium Mill Tailings Remedial Action Project (UMTRAP) Public Participation Plan

    SciTech Connect (OSTI)

    NONE

    1981-05-01T23:59:59.000Z

    The purpose of this Public Participation Plan is to explain the Department of Energy`s plan for involving the public in the decision-making process related to the Uranium Mill Tailings Remedial Action (UMTRA) Project. This project was authorized by Congress in the Uranium Mill Tailings Radiation Control Act of 1978. The Act provides for a cooperative effort with affected states and Indian tribes for the eventual cleanup of abandoned or inactive uranium mill tailings sites, which are located in nine western states and in Pennsylvania. Section 111 of the Act states, ``in carrying out the provisions of this title, including the designation of processing sites, establishing priorities for such sites, the selection of remedial actions and the execution of cooperative agreements, the Secretary (of Energy), the Administrator (of the Environmental Protection Agency), and the (Nuclear Regulatory) Commission shall encourage public participation and, where appropriate, the Secretary shall hold public hearings relative to such matters in the States where processing sites and disposal sites are located.`` The objective of this document is to show when, where, and how the public will be involved in this project.

  16. Uranium Mill Tailings Remedial Action Project. 1995 Environmental Report

    SciTech Connect (OSTI)

    NONE

    1996-06-01T23:59:59.000Z

    In accordance with U.S. Department of Energy (DOE) Order 23 1. 1, Environment, Safety and Health Reporting, the DOE prepares an annual report to document the activities of the Uranium Mill Tailings Remedial Action (UMTRA) Project environmental monitoring program. This monitoring must comply with appropriate laws, regulations, and standards, and it must identify apparent and meaningful trends in monitoring results. The results of all monitoring activities must be communicated to the public. The UMTRA Project has prepared annual environmental reports to the public since 1989.

  17. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2007-09-27T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

  18. Savannah River Site Salt Processing Project: FY2002 Research and Development Program Plan

    SciTech Connect (OSTI)

    Harmon, Harry D.; Leugemors, Robert K.; Schlahta, Stephan N.; Fink, Samuel D.; Thompson, Major C.; Walker, Darrell D.

    2001-10-31T23:59:59.000Z

    This Plan describes the technology development program for alpha/strontium removal and Caustic Side Solvent Extraction cesium removal in FY2002. Crystalline Silicotitanate and Small Tank Tetratphenylborate Precipitation are discussed as possible backup technologies. Previous results are summarized in the Savannah River Site Salt Processing Project Research and Development Summary Report

  19. West Valley Demonstration Project Annual Site Environmental Report Calendard Year 2005

    SciTech Connect (OSTI)

    West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

    2006-09-21T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs.

  20. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2008-12-17T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

  1. Grand Junction Projects Office site environmental report for calendar year 1992

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report presents information pertaining to environmental activities conducted during calendar year 1992 at the US Department of Energy Grand Junction Projects Office (DOE-GJPO) facility in Colorado. Environmental activities conducted at the GJPO facility during 1992 included those associated with environmental compliance, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. Four phases of the on-site Grand Junction Projects Office Remedial Action Project were completed in 1992. Remediation activities, which included the removal of 161,589 tons of uranium-mill-tailings-contaminated material from the facility, were conducted in compliance with all applicable permits. Off-site dose modeling for the GJPO was conducted to determine compliance with current National Emission Standards for Hazardous Air Pollutants, Subpart H, and applicable DOE Orders (5400.1 and 5400.5). The total off-site EDE to the public from all sources of radiation emanating from the facility (radon, air particulates, gamma) was calculated as 9 mrem/yr, which is well below the DOE dose limit of 100 mrem/yr above background. The radiological and nonradiological monitoring program at the GJPO facility included monitoring of activities that generate potentially hazardous or toxic wastes and monitoring of ambient air, surface water, and ground water.

  2. Post-NEPA environmental investigations at DOE geopressured-geothermal project sites

    SciTech Connect (OSTI)

    Reed, A.W.

    1985-01-01T23:59:59.000Z

    In 1982, the Oak Ridge National Laboratory (ORNL) conducted follow-up environmental reviews of four US Department of Energy (DOE) geopressured-geothermal design well projects: Dow Parcperdue, Sweet Lake, Gladys McCall and Pleasant Bayou. The reviews determined the implementation and effectiveness of monitoring and mitigation commitments made by DOE in National Environmental Policy Act (NEPA) documents prepared for the individual projects. This paper briefly describes post-NEPA environmental investigations at DOE's geopressured-geothermal design well sites and focuses on three environmental problems that were identified and subsequently mitigated by DOE. These were (1) a breech in the brine pit liner and (2) a torn mud pit liner at the Dow Parcperdue well site, and (3) the disposal of potentially hazardous contents of the reserve pit at the Pleasant Bayou well site. The nature of the environmental problems, recommendations for mitigation of each, and remedial actions that were taken are presented.

  3. Field fracturing multi-sites project. Annual report, August 1, 1995--July 31, 1996

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    The objective of the Field Fracturing Multi-Sites Project (M-Site) is to conduct experiments to definitively determine hydraulic fracture dimensions using remote well and treatment well diagnostic techniques. In addition, experiments are to be conducted to provide data that will resolve significant unknowns with regard to hydraulic fracture modeling, fracture fluid rheology and fracture treatment design. These experiments will be supported by a well-characterized subsurface environment, as well as surface facilities and equipment conducive to acquiring high-quality data. The primary Project goal is to develop a fully characterized, tight reservoir-typical, field-scale hydraulic fracturing test site to diagnose, characterize, and test hydraulic fracturing technology and performance. It is anticipated that the research work being conducted by the multi-disciplinary team of GRI and DOE contractors will lead to the development of a commercial fracture mapping tool/service.

  4. FY01 Supplemental Science and Performance Analysis: Volume 1, Scientific Bases and Analyses

    E-Print Network [OSTI]

    Bodvarsson, G.S.; Dobson, David

    2001-01-01T23:59:59.000Z

    Work Plan for the UMTRA Project New Rifle Site. GJO-99-112-U.S. Department of Energy, UMTRA Project Office. On OrderTSP TSPA TSPA-SR TSPA-VA TTT UMTRA USGS UTM UZ VA YMP Yucca

  5. Contents of environmental assessments prepared for the Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This document presents two versions of the outline for the environmental assessments (EAS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the assessments; it lists only the titles of sections. The second is a guide to the contents of the assessments which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements (40 CFR Part 1501) and the definitions of terms (40-' CFR Part 1508) established by the Council on Environmental Quality as well as DOE order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements (10 CFR Part 1022). These requirements and definitions are implicitly part of the outline. The outline presented in this document will guide the preparation of EAs. The UMTRA Project EAs will be used in determining whether the DOE should prepare an environmental impact statement or a finding of no significant impact for the actions at each of the sites. If no impact statement is necessary, the environmental assessment for that site will aid the DOE in complying with the National Environmental Policy Act before beginning remedial actions. If an impact statement is needed, the assessment will aid its preparation. These purposes, established by the Council on Environmental Quality in 40 CFR Part 1508.9(a), have guided the construction of the outline presented in this document. Remedial actions at each site will include the cleanup of properties in the vicinity of the tailings sites that have been contaminated by the tailings.

  6. Contents of environmental assessments prepared for the Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This document presents two versions of the outline for the environmental assessments (EAS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the assessments; it lists only the titles of sections. The second is a guide to the contents of the assessments which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements (40 CFR Part 1501) and the definitions of terms (40-` CFR Part 1508) established by the Council on Environmental Quality as well as DOE order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements (10 CFR Part 1022). These requirements and definitions are implicitly part of the outline. The outline presented in this document will guide the preparation of EAs. The UMTRA Project EAs will be used in determining whether the DOE should prepare an environmental impact statement or a finding of no significant impact for the actions at each of the sites. If no impact statement is necessary, the environmental assessment for that site will aid the DOE in complying with the National Environmental Policy Act before beginning remedial actions. If an impact statement is needed, the assessment will aid its preparation. These purposes, established by the Council on Environmental Quality in 40 CFR Part 1508.9(a), have guided the construction of the outline presented in this document. Remedial actions at each site will include the cleanup of properties in the vicinity of the tailings sites that have been contaminated by the tailings.

  7. Project Title: Plant Lab Capabilities Project (4512) Program or Program Office: Y -12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluidst; ·lJ~·eterminatIon

  8. Project Title: Rheocaster Project (4544) Program or Program Office: Y -12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluidst;

  9. Uranium Mill Tailings Remedial Action Project Annual Environmental Monitoring Report calendar year 1992: Volume 2

    SciTech Connect (OSTI)

    none,

    1993-12-31T23:59:59.000Z

    This report contains environmental monitoring information for the following UMTRA sites for the 1992 Calendar Year: Lakeview, OR; Lowman, ID; Mexican Hat, UT; Monument Valley, AZ; Rifle, CO; Riverton, WY; Shiprock, NM; Spook, WY; Tuba City, AZ. Each site report contains a site description, compliance summary, environmental program information, environmental radiological and non-radiological program information, water resources protection, and quality assurance information.

  10. Environmental assessment of remedial action at the Naturita uranium processing site near Naturita, Colorado. Revision 3

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast. At the disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action activities would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. The proposed remedial action would result in the loss of approximately 162 ac (66 ha) of soils at the processing and disposal sites; however, 133 ac (55 ha) of these soils at and adjacent to the processing site are contaminated and cannot be used for other purposes. If supplemental standards are approved by the NRC and state of Colorado, approximately 112 ac (45 ha) of contaminated soils adjacent to the processing site would not be cleaned up. This area is steeply sloped. The cleanup of this contamination would have adverse environmental consequences and would be potentially hazardous to remedial action workers. Another 220 ac (89 ha) of soils would be temporarily disturbed during the remedial action. The final disposal site would result in approximately 57 ac (23 ha) being removed from livestock grazing and wildlife use.

  11. Environmental assessment of remedial action at the Naturita Uranium Processing Site near Naturita, Colorado. Revision 4

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law (PL) 95-604, authorized the US Department of Energy (DOE) to perform remedial action at the Naturita, Colorado, uranium processing site to reduce the potential health effects from the radioactive materials at the site and at vicinity properties associated with the site. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contain measures to control the contaminated materials and to protect groundwater quality. Remedial action at the Naturita site must be performed in accordance with these standards and with the concurrence of the US Nuclear Regulatory Commission (NRC) and the state of Colorado. The proposed remedial action for the Naturita processing site is relocation of the contaminated materials and debris to either the Dry Flats disposal site, 6 road miles (mi) [10 kilometers (km)] to the southeast, or a licensed non-DOE disposal facility capable of handling RRM. At either disposal site, the contaminated materials would be stabilized and covered with layers of earth and rock. The proposed Dry Flats disposal site is on land administered by the Bureau of Land Management (BLM) and used primarily for livestock grazing. The final disposal site would cover approximately 57 ac (23 ha), which would be permanently transferred from the BLM to the DOE and restricted from future uses. The remedial action would be conducted by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. This report discusses environmental impacts associated with the proposed remedial action.

  12. Technical data base quarterly report, April--June 1992; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    NONE

    1992-09-01T23:59:59.000Z

    The acquisition and development of technical data are activities that provide the information base from which the Yucca mountain Site will be characterized and may P-ventually be licensed as a high-level waste repository. The Project Technical Data Base (TDB) is the repository for the regional and site-specific technical data required in intermediate and license application analyses and models. The TDB Quarterly Report provides the mechanism for identifying technical data currently available from the Project TDB. Due to the variety of scientific information generated by YMP activities, the Project TDB consists of three components, each designed to store specific types of data. The Site and Engineering Properties Data Base (SEPDB) maintains technical data best stored in a tabular format. The Geographic Nodal Information Study and Evaluation System (GENISES), which is the Geographic Information System (GIS) component of the Project TDB, maintains spatial or map-like data. The Geologic and Engineering Materials Bibliography of Chemical Species (GEMBOCHS) data base maintains thermodynamic/geochemical data needed to support geochemical reaction models involving the waste package and repository geochemical environment. Each of these data bases are addressed independently within the TDB Quarterly Report.

  13. Shaft Sinking at the Nevada Test Site, U1h Shaft Project

    SciTech Connect (OSTI)

    B. Briggs; R. Musick

    2001-03-01T23:59:59.000Z

    The U1h Shaft Project is a design/build subcontract to construct one 6.1 meter (m) (20 feet (ft)) finished diameter shaft to a depth of 321.6 m (1,055 ft.) at the Nevada Test Site. Atkinson Construction was subcontracted by Bechtel Nevada to construct the U1h Shaft for the U.S. Department of Energy. The project consists of furnishing and installing the sinking plant, construction of the 321.6 m (1,055 ft.) of concrete lined shaft, development of a shaft station at a depth of 297.5 m (976 ft.), and construction of a loading pocket at the station. The outfitting of the shaft and installation of a new hoist may be incorporated into the project at a later date. This paper will describe the design phase, the excavation and lining operation, shaft station construction and the contractual challenges encountered on this project.

  14. West Valley Demonstration Project site environmental report for calendar year 1996

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The West Valley Demonstration Project (WVDP), the site of a US Department of Energy environmental cleanup activity operated by West Valley Nuclear Services Co., Inc., (WVNS), is in the process of solidifying liquid high-level radioactive waste remaining at the site after commercial nuclear fuel reprocessing was discontinued. The Project is located in Western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1996 by environmental monitoring personnel. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. Appendix A is a summary of the site environmental monitoring schedule. Appendix B lists the environmental permits and regulations pertaining to the WVDP. Appendices C through F contain summaries of data obtained during 1996 and are intended for those interested in more detail than is provided in the main body of the report.

  15. COVE 2A Benchmarking calculations using NORIA; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Carrigan, C.R.; Bixler, N.E.; Hopkins, P.L.; Eaton, R.R.

    1991-10-01T23:59:59.000Z

    Six steady-state and six transient benchmarking calculations have been performed, using the finite element code NORIA, to simulate one-dimensional infiltration into Yucca Mountain. These calculations were made to support the code verification (COVE 2A) activity for the Yucca Mountain Site Characterization Project. COVE 2A evaluates the usefulness of numerical codes for analyzing the hydrology of the potential Yucca Mountain site. Numerical solutions for all cases were found to be stable. As expected, the difficulties and computer-time requirements associated with obtaining solutions increased with infiltration rate. 10 refs., 128 figs., 5 tabs.

  16. ENHANCING EFFECTIVENESS OF EMSP PROJECTS THROUGH STRONG CONNECTIONS TO SITE PROBLEMS

    SciTech Connect (OSTI)

    Josephson, Gary B.; Hale, Donna

    2003-07-31T23:59:59.000Z

    The Environmental Management Science Program (EMSP) funds basic science research that will lead to reduced remediation cost, schedule, technical uncertainties, and risk for DOE’s environmental clean up. The Tanks Focus Area (TFA) has partnered with EMSP to accomplish those same objectives for DOE’s largest and most expensive remediation effort – to retrieve and immobilize the highly radioactive wastes that are our nation's chief nuclear defense program legacy. TFA has been tasked to facilitate success of the EMSP investment. The key for EMSP projects to contribute to this remediation effort is communication. First, the scientist needs to understand much more about how his scientific results would be used than he could ever learn from the original EMSP solicitation or by reading the referenced DOE needs statements. Second, the scientist’s results must be communicated to the site problem holders in a usable form and in a timely manner such that important information gaps can still be filled by the EMSP project. Research results can be used in a variety of ways besides deployment of new hardware or a new process. When results are USED the site problem holders become “users”. The important aspect that research results are to be used is captured in the TFA lexicon for their clients, the DOE sites--“USERS”. The best method observed, so far, to accomplish the indispensable communication necessary for success is through direct contact between EMSP researchers and TFA/site problem holders, person to person. The observation that direct contact is the best medium for exchange of complex information may seem inanely obvious. However, it is not the normal procedure in the more academic world of the fundamental scientists, where publishing of results in a peer-reviewed journal completes the transmittal of scientific results. Direct communication between EMSP researchers and site users doesn’t occur naturally. TFA actively bridges this gap between science and technology development and site users through its technology integration managers (TIMs). TIMs are experienced researchers, usually from DOE’s national laboratories, with intimate knowledge of the needs of sites at the working level. They help focus the research projects to develop technical solutions to site submitted needs. They stand in a rather unique position with one foot in the research community and the other foot “in the tanks”. This paper will show, through several examples, significant contributions EMSP scientists have made to solving DOE's high-level waste challenges through direct and enhanced communication with TFA and site users.

  17. Mitigation of Selected Hanford Site Manhattan Project and Cold War Era Artifacts

    SciTech Connect (OSTI)

    Kennedy, Ellen P.; Harvey, David W.

    2006-09-08T23:59:59.000Z

    This document is the first time that Manhattan Project and Cold War era artifacts from the Hanford Site have been assembled within a publication. The publication presents photographic and written documentation of a number of Manhattan Project and Cold War era artifacts that were identified and tagged during assessment walk throughs of historic buildings on the Hanford Site but which could not be curated within the Hanford collection because they were too large for long-term storage and/or exhibit purposes or were radiologically contaminated. The significance of the artifacts in this publication and a proposed future appendix is based not on the individual significance of any single artifact but on their collective contribution to the science and engineering of creating plutonium and advancing nuclear technology in nuclear fuel and power.

  18. Environmental assessment of remedial action at the Slick Rock uranium mill tailings sites, Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act of 1978, hereafter referred to as the UMTRCA, authorized the US Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the processing sites and on vicinity properties (VPs) associated with the sites. The US Environmental Protection Agency (EPA) promulgated standards for the UMTRCA that contained measures to control the contaminated materials and to protect the ground water from further degradation. The sites contain concrete foundations of mill buildings, tailings piles, and areas contaminated by windblown and waterborne radioactive tailings materials. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the processing sites on land administered by the US Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project.

  19. On-Site Oxy-Lance Size Reduction of South Texas Project Reactor Vessel Heads - 12324

    SciTech Connect (OSTI)

    Posivak, Edward [WMG, inc. (United States); Keeney, Gilbert; Wheeler, Dean [Shaw Group (United States)

    2012-07-01T23:59:59.000Z

    On-Site Oxy-Lance size reduction of mildly radioactive large components has been accomplished at other operating plants. On-Site Oxy-Lance size reduction of more radioactive components like Reactor Vessel Heads had previously been limited to decommissioning projects. Building on past decommissioning and site experience, subcontractors for South Texas Project Nuclear Operating Company (STPNOC) developed an innovative integrated system to control smoke, radioactive contamination, worker dose, and worker safety. STP's innovative, easy to use CEDM containment that provided oxy lance access, smoke control, and spatter/contamination control was the key to successful segmentation for cost-effective and ALARA packaging and transport for disposal. Relative to CEDM milling, STP oxy-lance segmentation saved approximately 40 person- REM accrued during 9,000 hours logged into the radiological controlled area (RCA) during more than 3,800 separate entries. Furthermore there were no personnel contamination events or respiratory uptakes of radioactive material during the course of the entire project. (authors)

  20. Progress report on decommissioning activities at the Fernald Environmental Management Project (FEMP) site

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    The Fernald Environmental Management Project (FEMP), is located about 18 miles northwest of Cincinnati, Ohio. Between 1953 and 1989, the facility, then called the Feed Material Production Center or FMPC, produced uranium metal products used in the eventual production of weapons grade material for use by other US Department of Energy (DOE) sites. In 1989, FMPC`s production was suspended by the federal government in order to focus resources on environmental restoration versus defense production. In 1992, Fluor Daniel Fernald assumed responsibility for managing all cleanup activities at the FEMP under contract to the DOE. In 1990, as part of the remediation effort, the site was divided into five operable units based on physical proximity of contaminated areas, similar amounts of types of contamination, or the potential for a similar technology to be used in cleanup activities. This report continues the outline of the decontamination and decommissioning (D and D) activities at the FEMP site Operable Unit 3 (OU3) and provides an update on the status of the decommissioning activities. OU3, the Facilities Closure and Demolition Project, involves the remediation of more than 200 uranium processing facilities. The mission of the project is to remove nuclear materials stored in these buildings, then perform the clean out of the buildings and equipment, and decontaminate and dismantle the facilities.

  1. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Falls City, Texas: Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This baseline risk assessment of ground water contamination of the uranium mill tailings site near Falls City, Texas, evaluates potential impact to public health and the environment resulting from ground water contamination at the former Susquehanna Western, Inc. (SWI), uranium mill processing site. This document fulfills the following objectives: determine if the site presents immediate or potential future health risks, determine the need for interim institutional controls, serve as a key input to project planning and prioritization, and recommend future data collection efforts to more fully characterize risk. The Uranium Mill Tailings Remedial Action (UMTRA) Project has begun its evaluation of ground water contamination at the Falls City site. This risk assessment is one of the first documents specific to this site for the Ground Water Project. The first step is to evaluate ground water data collected from monitor wells at or near the site. Evaluation of these data show the main contaminants in the Dilworth ground water are cadmium, cobalt, fluoride, iron, nickel, sulfate, and uranium. The data also show high levels of arsenic and manganese occur naturally in some areas.

  2. UMTRA technical assistance contractor quality assurance program plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01T23:59:59.000Z

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAc Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements.

  3. The consequences of failure should be considered in siting geologic carbon sequestration projects

    SciTech Connect (OSTI)

    Price, P.N.; Oldenburg, C.M.

    2009-02-23T23:59:59.000Z

    Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.

  4. Annual report for RCRA groundwater monitoring projects at Hanford Site facilities for 1993

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This report presents the annual hydrogeologic evaluation of 20 Resource Conservation and Recovery Act of 1976 groundwater monitoring projects and 1 nonhazardous waste facility at the US Department of Energy`s Hanford Site. Most of the projects no longer receive dangerous waste; a few projects continue to receive dangerous waste constituents for treatment, storage, or disposal. The 20 RCRA projects comprise 30 waste management units. Ten of the units are monitored under groundwater quality assessment status because of elevated levels of indicator parameters. The impact of those units on groundwater quality, if any, is being investigated. If dangerous waste or waste constituents have entered groundwater, their concentration, distribution, and rate of migration are evaluated. Groundwater is monitored at the other 20 units to detect contamination, should it occur. This report provides an interpretation of groundwater data collected at the waste management units between October 1992 and September 1993. Recent groundwater quality is also described for the 100, 200, 300, and 600 Areas and for the entire Hanford Site. Widespread contaminants include nitrate, chromium, carbon tetrachloride, tritium, and other radionuclides.

  5. Interim Status of the Accelerated Site Technology Deployment Integrated Decontamination and Decommissioning Project

    SciTech Connect (OSTI)

    A. M Smith; G. E. Matthern; R. H. Meservey

    1998-11-01T23:59:59.000Z

    The Idaho National Engineering and Environmental Laboratory (INEEL), Fernald Environmental Management Project (FEMP), and Argonne National Laboratory - East (ANL-E) teamed to establish the Accelerated Site Technology Deployment (ASTD) Integrated Decontamination and Decommissioning (ID&D) project to increase the use of improved technologies in D&D operations. The project is making the technologies more readily available, providing training, putting the technologies to use, and spreading information about improved performance. The improved technologies are expected to reduce cost, schedule, radiation exposure, or waste volume over currently used baseline methods. They include some of the most successful technologies proven in the large-scale demonstrations and in private industry. The selected technologies are the Pipe Explorer, the GammaCam, the Decontamination Decommissioning and Remediation Optimal Planning System (DDROPS), the BROKK Demolition Robot, the Personal Ice Cooling System (PICS), the Oxy-Gasoline Torch, the Track-Mounted Shear, and the Hand-Held Shear.

  6. Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida

    SciTech Connect (OSTI)

    Vinick, Charles; Riccobono, Antonino, MS; Messing, Charles G., Ph.D.; Walker, Brian K., Ph.D.; Reed, John K., Ph.D.

    2012-02-28T23:59:59.000Z

    Dehlsen Associates, LLC was awarded a grant by the United States Department of Energy (DOE) Golden Field Office for a project titled 'Siting Study Framework and Survey Methodology for Marine and Hydrokinetic Energy Project in Offshore Southeast Florida,' corresponding to DOE Grant Award Number DE-EE0002655 resulting from DOE funding Opportunity Announcement Number DE-FOA-0000069 for Topic Area 2, and it is referred to herein as 'the project.' The purpose of the project was to enhance the certainty of the survey requirements and regulatory review processes for the purpose of reducing the time, efforts, and costs associated with initial siting efforts of marine and hydrokinetic energy conversion facilities that may be proposed in the Atlantic Ocean offshore Southeast Florida. To secure early input from agencies, protocols were developed for collecting baseline geophysical information and benthic habitat data that can be used by project developers and regulators to make decisions early in the process of determining project location (i.e., the siting process) that avoid or minimize adverse impacts to sensitive marine benthic habitat. It is presumed that such an approach will help facilitate the licensing process for hydrokinetic and other ocean renewable energy projects within the study area and will assist in clarifying the baseline environmental data requirements described in the U.S. Department of the Interior Bureau of Ocean Energy Management, Regulation and Enforcement (formerly Minerals Management Service) final regulations on offshore renewable energy (30 Code of Federal Regulations 285, published April 29, 2009). Because projects generally seek to avoid or minimize impacts to sensitive marine habitats, it was not the intent of this project to investigate areas that did not appear suitable for the siting of ocean renewable energy projects. Rather, a two-tiered approach was designed with the first step consisting of gaining overall insight about seabed conditions offshore southeastern Florida by conducting a geophysical survey of pre-selected areas with subsequent post-processing and expert data interpretation by geophysicists and experienced marine biologists knowledgeable about the general project area. The second step sought to validate the benthic habitat types interpreted from the geophysical data by conducting benthic video and photographic field surveys of selected habitat types. The goal of this step was to determine the degree of correlation between the habitat types interpreted from the geophysical data and what actually exists on the seafloor based on the benthic video survey logs. This step included spot-checking selected habitat types rather than comprehensive evaluation of the entire area covered by the geophysical survey. It is important to note that non-invasive survey methods were used as part of this study and no devices of any kind were either temporarily or permanently attached to the seabed as part of the work conducted under this project.

  7. Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2009-01-31T23:59:59.000Z

    Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

  8. UMTRA technical assistance contractor Quality Assurance Program Plan. Revision 4

    SciTech Connect (OSTI)

    Pehrson, P.

    1993-10-12T23:59:59.000Z

    This Quality Assurance Program Plan (QAPP) provides the primary requirements for the integration of quality functions into all Technical Assistance Contractor (TAC) Project organization activities. The QAPP is the written directive authorized by the TAC Program Manager to accomplish this task and to implement procedures that provide the controls and sound management practices needed to ensure TAC contractual obligations are met. The QA program is designed to use monitoring, audit, and surveillance functions as management tools to ensure that all Project organization functions are executed in a manner that will protect public health and safety, promote the success of the Project, and meet or exceed contract requirements. The key to ensuring compliance with this directive is a two-step professional approach: utilize the quality system in all areas of activity, and generate a personal commitment from all personnel to provide quality service. The quality staff will be experienced, trained professionals capable of providing maximum flexibility to Project goal attainment. Such flexibility will enable the staff to be more cost effective and to further improve communication and coordination. To provide control details, this QAPP will be supplemented by approved standard operating procedures that provide requirements for performing the various TAC quality-related activities. These procedures shall describe applicable design input and document control activities and documentation.

  9. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013

    SciTech Connect (OSTI)

    Rendall, John D. [CH2MHILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL • B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL • B& W West Valley, LLC (CHBWV)

    2014-09-16T23:59:59.000Z

    West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  10. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2009

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS Corporation

    2010-09-17T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2009. The report, prepared by the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2009. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program by the DOE ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2009 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  11. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012

    SciTech Connect (OSTI)

    Rendall, John D. [CH2M HILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [URS Professional Solutions (URSPS); Klenk, David P. [CH2M HILL • B& W West Valley, LLC (CHBWV)

    2013-09-19T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  12. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011

    SciTech Connect (OSTI)

    CH2M HILL • B& W West Valley, LLC

    2012-09-27T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  13. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010

    SciTech Connect (OSTI)

    CH2MHILL • B& W West Valley, LLC

    2011-09-28T23:59:59.000Z

    The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  14. Cutting-Edge Savannah River Site Project Avoids Millions in Costs, Removes Chemical Solvents from Underground: Project avoided costs totaling more than $15 million, removed tons of chemical solvents from beneath the Savannah River Site

    Broader source: Energy.gov [DOE]

    AIKEN, S.C. – Workers recently completed a multiyear project that removed more than 33,000 gallons of non-radioactive chemical solvents from beneath a portion of the Savannah River Site (SRS), preventing those pollutants from entering the local water table and helping the site avoid costs of more than $15 million.

  15. WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002

    SciTech Connect (OSTI)

    NONE

    2003-09-12T23:59:59.000Z

    This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.

  16. 2nd Annual DOE-ERSP PI Meeting: Abstracts

    E-Print Network [OSTI]

    Hazen, Terry C.

    2007-01-01T23:59:59.000Z

    Research Challenge: Old Rifle UMTRA Site (Phil Long, PNNLTailings Remedial Action (UMTRA) site pro- motes growth ofthe alluvial aquifer at the DOE UMTRA site near Naturita,

  17. Next Generation Nuclear Plant Project Evaluation of Siting a HTGR Co-generation Plant on an Operating Commercial Nuclear Power Plant Site

    SciTech Connect (OSTI)

    L.E. Demick

    2011-10-01T23:59:59.000Z

    This paper summarizes an evaluation by the Idaho National Laboratory (INL) Next Generation Nuclear Plant (NGNP) Project of siting a High Temperature Gas-cooled Reactor (HTGR) plant on an existing nuclear plant site that is located in an area of significant industrial activity. This is a co-generation application in which the HTGR Plant will be supplying steam and electricity to one or more of the nearby industrial plants.

  18. Waste minimization plan construction and operation of the replacement cross-site transfer system, project W-058

    SciTech Connect (OSTI)

    Boucher, T.D.

    1996-04-01T23:59:59.000Z

    This report addresses the research and development of a waste minimization plan for the construction and operation of Project W-058, Replacement of the Cross-Site Transfer System, on the Hanford Site. The plan is based on Washington Administrative Code (WAC) 173-307, Plans. The waste minimization plan identifies areas where pollution prevention/waste minimization principles can be incorporated into the construction and operation of the cross-site transfer system.

  19. Nondestructive Examination Equipment in the Hanford Site WRAP 1 and Retrieval Project

    SciTech Connect (OSTI)

    Keve, J.K.; Weber, J.R.

    1994-08-01T23:59:59.000Z

    The Waste Receiving and Processing Facility, Module 1 (WRAP-1) is currently under construction at the Hanford Nuclear Site in south-central Washington Stage. The facility is scheduled to begin operation in 1996. Its mission is to annually receive more than 6,800 55-gallon drums of both newly generated and retrieved contact-handled solid waste and prepare them for certification and disposal. WRAP 1, the Nondestructive Examination (NDE) System has two primary functions: To identify the presence or verify the absence of non-compliant materials in the un-manifested, retrieved drums, and to certify that all outgoing drums of TRU waste (newly generated and processed) are free of liquids and other non-compliant items. The Solid Waste Retrieval Facility, Phase 1 Project will unearth and recover the first 10,000 of 38,000 drums of suspect TRU waste buried between 1970 and 1985 for which no detailed contents manifests exist. Follow-on projects will recover the balance of the buried drums. To resolve safely issues about storing the newly unearthed drums, the containers and contents will be examined at the recovery site before the containers are placed in storage facilities.

  20. Environmental assessment of remedial action at the slick rock Uranium Mill Tailings sites Slick Rock, Colorado

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    The Uranium Mill Tailings Radiation Control Act of 1978 (42 USC {section} 7901 et seq.), hereafter referred to as the UMTRCA, authorized the U.S. Department of Energy (DOE) to clean up two uranium mill tailings processing sites near Slick Rock, Colorado, in San Miguel County. The purpose of the cleanup is to reduce the potential health effects associated with the radioactive materials remaining on the sites and on vicinity properties (VPs) associated with the sites. Contaminated materials cover an estimated 55 acres of the Union Carbide (UC) processing site and 12 ac of the North Continent (NC) processing site. The total estimated volume of contaminated materials is approximately 61 8,300 cubic yards. In addition to the contamination in the two processing site areas, four VPs were found to contain contamination. As a result of the tailings being exposed to the environment, contamination associated with the UC and NC sites has leached into shallow ground water. Surface water has not been affected. The closest residence is approximately 0.3 air mi from either site. The proposed action is to remediate the UC and NC sites by removing all contaminated materials within the designated site boundaries or otherwise associated with the sites, and relocating them to, and stabilizing them at, a location approximately 5 road mi (8 km) northeast of the sites on land administered by the Bureau of Land Management (BLM). Remediation would be performed by the DOE`s Uranium Mill Tailings Remedial Action (UMTRA) Project. All solid contaminated materials would be buried under 5 feet (ft) of rock and soil materials. The proposed disposal site area is currently used by ranchers for cattle grazing over a 7-month period. The closest residence to the proposed disposal site is 2 air mi. An estimated 44 ac of land would be permanently transferred from the BLM to the DOE and restricted from future use.

  1. Weldon Spring Site Remedial Action Project quarterly environmental data summary for second quarter 1998

    SciTech Connect (OSTI)

    NONE

    1998-08-11T23:59:59.000Z

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the second quarter of 1998 is enclosed. The data presented constitutes the QEDS. The data were received from the contract laboratories, verified by the Weldon Spring Site verification group and, except for air monitoring data and site KPA generated data (uranium analyses), merged into the database during the second quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Air data are not stored in the database and KPA data are not merged into the regular database. All data received and verified during the second quarter were within a permissible range of variability, except for those listed. Above normal occurrences are cited for groundwater, air, and NPDES data. There were no above normal occurrences for springs or surface water. The attached tables present the most recent data for air and the data merged into the database during the second quarter 1998 for groundwater, NPDES, surface water, and springs.

  2. Uranium mill tailings remedial action project real estate management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This plan summarizes the real estate requirements of the US Department of Energy`s (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence.

  3. Missouri Department of Natural Resources Hazardous Waste Program Weldon Spring site remedial action project - status of project to date January 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    This document describes the progress made by the Missouri Department of Natural Resources (MDNR) during the fourth year (1996) of the Agreement in Support (AIS) in its oversight role of the Weldon Springs Site Remedial Action Project (WSSRAP). The fourth year at the Weldon Springs Site shows sustained progress as the project moves through the final design and into the remedial action phases of the Chemical Plant Operable Unit. The remedial action phase includes the Foundations Removal work package, Chemical Solidification and Stabilization, and disposal cell.

  4. Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report

    SciTech Connect (OSTI)

    NONE

    2000-12-01T23:59:59.000Z

    This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demand when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and PGDP are believed to have been returned to the shipping site or disposed of as waste on the Oak Ridge Reservation. No evidence of Y-12 Complex processing of this material was identified in the historical records reviewed by the Project Team.

  5. Acceleration of Microbially Mediated U(VI) Reduction at a Uranium Mill Tailings Site, Colorado Plateau

    SciTech Connect (OSTI)

    Phil Long; Todd Anderson; Aaron Peacock; Steve Heald; Yun-Juan Chang; Dick Dayvault; Derek R. Lovley; C.T. Resch; Helen Vrionis; Irene Ortiz-Bernad; D.C. White

    2004-03-17T23:59:59.000Z

    A second field-scale electron donor amendment experiment was conducted in 2003 at the Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) site in Rifle, Colorado. The objective of the 2003 experiment (done in collaboration with the U.S. Department of Energy's UMTRA Groundwater Project) was to test the hypothesis that amendment of increased concentration of electron donor would result in an increased export of electron donor down gradient which in turn would create a larger zone of down-gradient U(VI) bioreduction sustained over a longer time period relative to the 2002 experiment (Anderson et al. 2003). During the first experiment (2002), {approx}3 mM acetate was amended to subsurface over a period of 3 months in a 15m by 18m by 2.5m volume comprised of 3 upgradient monitoring wells, 20 injection wells, and 15 down-gradient monitoring wells. After an initial one-month phase of metal reduction, bioavailable oxidized Fe was consumed near the injection gallery and the dominant terminal electron accepting process became sulfate reduction, rapidly consuming the injected acetate. For the 2003 experiment, we amended sufficient acetate ({approx}10 mM) to consume available sulfate and export acetate down-gradient where bioavailable oxidized Fe was still present. Data from the experiment indicate that acetate was exported further down gradient, resulting in a larger zone of microbial U(VI) reduction than for the 2002 experiment. Geohydrologic, geochemical, and microbiological data collected during the course of both experiments enable assessment of relative importance of a number of factors controlling the experimental outcomes. Companion posters by Anderson et al. and White et al. provide additional results.

  6. Environmental assessment for the A-01 outfall constructed wetlands project at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1998-10-01T23:59:59.000Z

    The Department of Energy (DOE) prepared this environmental assessment (EA) to analyze the potential environmental impacts associated with the proposed A-01 outfall constructed wetlands project at the Savannah River site (SRS), located near aiken, South Carolina. The proposed action would include the construction and operation of an artificial wetland to treat effluent from the A-01 outfall located in A Area at SRS. The proposed action would reduce the outfall effluent concentrations in order to meet future outfall limits before these go into effect on October 1, 1999. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended; the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Parts 1500--1508); and the DOE Regulations for Implementing NEPA (10 CFR Part 1021).

  7. West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008

    SciTech Connect (OSTI)

    West Valley Environmental Services LLC (WVES) and URS - Washington Division

    2009-09-24T23:59:59.000Z

    Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

  8. Bioremediation of Metals and Radionuclides: What It Is and How It Works (2nd Edition)

    E-Print Network [OSTI]

    Palmisano, Anna; Hazen, Terry

    2003-01-01T23:59:59.000Z

    Technology Coordination Groups UMTRA: Uranium Mill TailingsMill Tailing Remedial Action (UMTRA) sites. The NABIR Fieldmicroorganisms at several UMTRA sites were diverse and had a

  9. Environmental assessment for the Groundwater Characterization Project, Nevada Test Site, Nye County, Nevada; Revision 1

    SciTech Connect (OSTI)

    NONE

    1992-08-01T23:59:59.000Z

    The US Department of Energy (DOE) proposes to conduct a program to characterize groundwater at the Nevada Test Site (NTS), Nye County, Nevada, in accordance with a 1987 DOE memorandum stating that all past, present, and future nuclear test sites would be treated as Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites (Memorandum from Bruce Green, Weapons Design and Testing Division, June 6, 1987). DOE has prepared an environmental assessment (DOE/EA-0532) to evaluate the environmental consequences associated with the proposed action, referred to as the Groundwater Characterization Project (GCP). This proposed action includes constructing access roads and drill pads, drilling and testing wells, and monitoring these wells for the purpose of characterizing groundwater at the NTS. Long-term monitoring and possible use of these wells in support of CERCLA, as amended by the Superfund Amendments and Reauthorization Act, is also proposed. The GCP includes measures to mitigate potential impacts on sensitive biological, cultural and historical resources, and to protect workers and the environment from exposure to any radioactive or mixed waste materials that may be encountered. DOE considers those mitigation measures related to sensitive biological, cultural and historic resources as essential to render the impacts of the proposed action not significant, and DOE has prepared a Mitigation Action Plan (MAP) that explains how such mitigations will be planned and implemented. Based on the analyses presented in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, preparation of an environmental impact statement is not required and the Department is issuing this FONSI.

  10. Baseline risk assessment of ground water contamination at the uranium mill tailings site near Lakeview, Oregon. Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Surface cleanup at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lakeview, Oregon was completed in 1989. The Ground Water Project evaluates the nature and extent of ground water contamination that resulted from the uranium ore processing activities. The Ground Water Project is in its beginning stages. Human health may be at risk from exposure to ground water contaminated by uranium ore processing. Exposure could occur by drinking water pumped out of a hypothetical well drilled in the contaminated areas. Ecological risks to plants or animals may result from exposure to surface water and sediment that have received contaminated ground water. A risk assessment describes a source of contamination, how that contamination reaches people and the environment, the amount of contamination to which people or the ecological environment may be exposed, and the health or ecological effects that could result from that exposure. This risk assessment is a site-specific document that will be used to evaluate current and potential future impacts to the public and the environment from exposure to contaminated ground water. The results of this evaluation and further site characterization will determine whether any action is needed to protect human health or the ecological environment.

  11. U.S. Department of Energy UMTRA Ground Water Project Ground Water Pumping and Monitoring Plan

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1repositoryShiprock,

  12. Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

  13. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect (OSTI)

    Gardner, Martin G.; Price, Randall K.

    2007-02-01T23:59:59.000Z

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  14. Status of volcanism studies for the Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Crowe, B.; Perry, F.; Murrell, M.; Poths, J.; Valentine, G.A. [Los Alamos National Lab., NM (United States); Wells, S. [Univ. of California, Riverside, CA (United States); Bowker, L.; Finnegan, K. [Univ. of Nevada, Las Vegas, NV (United States); Geissman, J.; McFadden, L.

    1995-02-01T23:59:59.000Z

    Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The risk of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. Geophysical data are described for the YMR and are used as an aid to understand the distribution of basaltic volcanic centers. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. The long time of activity and characteristic small volume of the Postcaldera basalt of the YMR result in one of the lowest eruptive rates in a volcanic field in the southwest United States. Chapter 5 summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 summarizes the history of volcanism studies (1979 through early 1994), including work for the Yucca Mountain Site Characterization Project and overview studies by the state of Nevada and the Nuclear Regulatory Commission. Chapter 7 summarizes probabilistic volcanic hazard assessment using a three-part conditional probability model. Chapter 8 describes remaining volcanism work judged to be needed to complete characterization studies for the YMR. Chapter 9 summarizes the conclusions of this volcanism status report.

  15. Modification No. 2 to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah: Final

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    Portions of the final Remedial Action Plan (RAP) for the Green River site, Volumes 1 and 2, Appendix B of the Cooperative Agreement No. DE-FC04-81AL16257, March 1991 (DOE, 1991) have been modified. The changes to the RAP are designated as RAP Modification No. 2. These changes have been placed in a three-ring binder that will supplement the original RAP (DOE, 1991), and include the following: addendum to the Executive Summary; Section 3.5 (Ground Water part of the Site Characterization Summary); Section 4.0 (Site Design); Section5.0 (Water Resources Protection Strategy Summary); Appendix D.5 (Ground Water Hydrology); and Appendix E (Ground Water Protection Strategy). In addition to these revisions, there have been editorial changes that clarify the text, but do not change the meaning. Also, certain sections of the document, which are included in the submittal for ease of review and continuity, have been updated to reflect the final ground water protection standards and the current UMTRA Project format and content of RAPs.

  16. Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

    SciTech Connect (OSTI)

    Spane, Frank A.

    2013-04-29T23:59:59.000Z

    Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

  17. U.S. Department of Energy (DOE)--Surface Biogeochemical Research (SBR) 6th Annual PI Meeting: Abstracts

    E-Print Network [OSTI]

    Hawkes, Daniel S

    2011-01-01T23:59:59.000Z

    aquifer at the Naturita CO UMTRA site showed that ais being applied the Naturita UMTRA site to investigate how

  18. Subsurface Biogeochemical Research (SBR) Contractor-Grantee Workshop--Abstracts

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01T23:59:59.000Z

    being applied to the Naturita UMTRA site to investigate howof biostimulation at the Old Rifle UMTRA site in Colora- do.

  19. Development and use of site-specific chemical and biological criteria for assessing New Bedford Harbor pilot dredging project

    SciTech Connect (OSTI)

    Nelson, W.G.; Hansen, D.J.

    1991-01-01T23:59:59.000Z

    Numerical site-specific chemical and biological criteria were established to assess the impact of a pilot dredging project on water quality at the New Bedford Harbor, Massachusetts, USA, Superfund site. Because most existing chemical concentrations in the water column and indigenous biota exceeded federal and state water quality limits, the derivation of site-specific criteria was required. Prior to any operational phases of the project (i.e., dike construction, dredging), criteria values were developed from background concentrations of PCBs and metals in water and biota, as well as for the toxic effects of water quality on the biota. During each operational phase of the project, water samples were collected, analyzed within 16 h, and the data supplied to a management committee in order to assess the environmental impact of the previous days operation. The ambient unfiltered water concentration of PCBs and metals were the only chemical or biological criteria exceeded. Modification of the next days' operations resulted in a return of these concentrations to background levels. The combined use of site-specific criteria and a real-time decision making management process allowed for successful completion of the project with a minimal effect on water quality.

  20. U.S. Department of Energy Grand Junction Projects Office site environmental report for calendar year 1995

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This report presents information pertaining to environmental activities conducted during calendar year 1995 at the US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility in Grand Junction, Colorado. Environmental activities conducted at the GJPO facility during 1995 were associated with mixed-waste treatment, site remediation, off-site dose modeling, and radiological and nonradiological monitoring. As part of the GJPO Mixed-Waste Treatment Program, on-site treatability studies were conducted in 1995 that made use of pilot-scale evaporative-oxidation and thermal-desorption units and bench-scale stabilization. DOE-GJPO used some of its own mixed-waste as well as samples received from other DOE sites for these treatability studies. These studies are expected to conclude in 1996. Removal of radiologically contaminated materials from GJPO facility buildings was conducted under the provisions of the Grand Junction Projects Office Remedial Action Project. Remediation activities included the removal of 394 metric tons of contaminated material from Buildings 18 and 28 and revegetation activities on the GJPO site; remediation was conducted in compliance with applicable permits.

  1. Results of the groundwater restoration project, Hanna Underground Coal Gasification Test Site, Wyoming: Topical report

    SciTech Connect (OSTI)

    Oliver, R.L.

    1988-01-01T23:59:59.000Z

    Underground coal gasification (UCG) experiments conducted during the 1970s at the Department of Energy (DOE) site near Hanna, Wyoming, formed six underground cavities in the Hanna No. 1 coal seam, an aquifer of low permeability. When the first Hanna UCG experiment began in March 1973, researchers had little information about what effects the geologic or hydrologic characteristics of the area might have on the UCG process; likewise, the effects of UCG on the environment were unknown. Since the UCG experiments were completed, dilute concentrations of pyrolysis products and leachates have been detected in groundwater monitoring wells in and near some of the six cavities. Three primary UCG indicator constituents have been measured at elevated concentrations: phenols, TDS, and sulfate. The Hanna III cavity water exceeded the DOE target level for TDS and sulfate, and the Hanna I cavity water exceeded the DOE target level for phenols. The indicated phenols contamination, however, was in groundwater sampled from a well which was previously used as a production well during the experiment. Water pumped during the restoration project and a new well located approximately 10 ft from the old production well was sampled and no elevated phenols concentration was detected. Therefore, the restoration performed on the Hanna I cavity water was not necessary. The restoration was performed, however, because these indications were not available until during the restoration. Locally, various other constituents exceed DOE target levels, but concentrations are very near target levels and are well within livestock use limits. 2 refs., 7 figs., 5 tabs.

  2. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    N /A

    1997-02-19T23:59:59.000Z

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the M&O is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment.

  3. SYSTHESIS OF VOLCANISM STUDIES FOR THE YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT

    SciTech Connect (OSTI)

    Perry, F. V.; Crowe, G. A.; Valentine, G. A.; Bowker, L. M.

    1997-09-23T23:59:59.000Z

    This report synthesizes the results of volcanism studies conducted by scientists at the Los Alamos National Laboratory and collaborating institutions on behalf of the Department of Energy's Yucca Mountain Project. Chapter 1 introduces the volcanism issue for the Yucca Mountain site and provides the reader with an overview of the organization, content, and significant conclusions of this report. The hazard of future basaltic volcanism is the primary topic of concern including both events that intersect a potential repository and events that occur near or within the waste isolation system of a repository. Future volcanic events cannot be predicted with certainty but instead are estimated using formal methods of probabilistic volcanic hazard assessment (PVHA). Chapter 2 describes the volcanic history of the Yucca Mountain region (YMR) and emphasizes the Pliocene and Quaternary volcanic record, the interval of primary concern for volcanic risk assessment. The distribution, eruptive history, and geochronology of Plio-Quaternary basalt centers are described by individual center emphasizing the younger postcaldera basalt (<5 Ma). The Lathrop Wells volcanic center is described in detail because it is the youngest basalt center in the YMR. The age of the Lathrop Wells center is now confidently determined to be about 75 thousand years old. Chapter 3 describes the tectonic setting of the YMR and presents and assesses the significance of multiple alternative tectonic models. The distribution of Pliocene and Quaternary basaltic volcanic centers is evaluated with respect to tectonic models for detachment, caldera, regional and local rifting, and the Walker Lane structural zone. Geophysical data are described for the YMR and are used as an aid to understand the distribution of past basaltic volcanic centers and possible future magmatic processes. Chapter 4 discusses the petrologic and geochemical features of basaltic volcanism in the YMR, the southern Great Basin and the Basin and Range province. Geochemical and isotopic data are presented for post-Miocene basalts of the Yucca Mountain region. Alternative petrogenetic models are assessed for the formation of the Lathrop Wells volcanic center. Based on geochemical data, basaltic ash in fault trenches near Yucca Mountain is shown to have originated from the Lathrop Wells center. Chapter 5 synthesizes eruptive and subsurface effects of basaltic volcanism on a potential repository and summarizes current concepts of the segregation, ascent, and eruption of basalt magma. Chapter 6 synthesizes current knowledge of the probability of disruption of a potential repository at Yucca Mountain. In 1996, an Expert Elicitation panel was convened by DOE that independently conducted PVHA for the Yucca Mountain site. Chapter 6 does not attempt to revise this PVHA; instead, it further examines the sensitivity of variables in PVHA. The approaches and results of PVHA by the expert judgment panel are evaluated and incorporated throughout this chapter. The disruption ratio (E2) is completely re-evaluated using simulation modeling that describes volcanic events based on the geometry of basaltic feeder dikes. New estimates of probability bounds are developed. These comparisons show that it is physically implausible for the probability of magmatic disruption of the Yucca Mountain site to be greater than 10{sup -7} events per year. Bounding probability estimates are used to assess possible implications of not drilling aeromagnetic anomalies in the Arnargosa Valley and Crater Flat. The results of simulation modeling are used to assess the sensitivity of the disruption probability for the location of northeast boundaries of volcanic zones near the Yucca Mountain site. A new section on modeling of radiological releases associated with surface and subsurface magmatic activity has been added to chapter 6. The modeling results are consistent with past total system performance assessments that show future volcanic and magmatic events are not significant components of repository performance and volcanism is not a prio

  4. Integrated Project Management System description

    SciTech Connect (OSTI)

    NONE

    1994-09-01T23:59:59.000Z

    The Integrated Program Management System (IPMS) Description is a ``working`` document that describes the work processes of the Uranium Mill Tailings Remedial Action Project Office (UMTRA) and IPMS Group. This document has undergone many revisions since the UMTRA Project began; this revision not only updates the work processes but more clearly explains the relationships between the Project Office, contractors, and other participants. The work process flow style has been revised to better describe Project work and the relationships of participants. For each work process, more background and guidance on ``why`` and ``what is expected`` is given. For example, a description of activity data sheets has been added in the work organization and the Project performance and reporting processes, as well as additional detail about the federal budget process and funding management and improved flow charts and explanations of cost and schedule management. A chapter has been added describing the Cost Reduction/Productivity Improvement Program. The Change Control Board (CCB) procedures (Appendix A) have been updated. Project critical issues meeting (PCIM) procedures have been added as Appendix B. Budget risk assessment meeting procedures have been added as Appendix C. These appendices are written to act as stand-alone documentation for each process. As the procedures are improved and updated, the documentation can be updated separately.

  5. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Givens, C.A.; Carney, B.C. [IT Corp., Albuquerque, NM (United States)

    1994-04-01T23:59:59.000Z

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  6. Greater Green River Basin production improvement project, Phase 1: Site characterization report

    SciTech Connect (OSTI)

    DeJarnett, B.B.; Krystinik, L.F.; Mead, R.H.; Poe, S.C.

    1996-05-01T23:59:59.000Z

    Several tight, naturally-fractured, gas-productive formations in the Greater Green River Basin (GGRB) in Wyoming have been exploited using conventional vertical well technology. Typically, hydraulic fracture treatments must be performed in completing these wells to increase gas production rates to economic levels. However, with the maturation of horizontal drilling technology hydraulic fracture treatments may not be the most effective method for improving gas production from these tight reservoirs. Two of the most prolific tight gas reservoirs in the Green River Basin, the Frontier and the Mesaverde, are candidates for the application of horizontal well completion technology. The objective of the proposed project is to apply the DOE`s technical concept to the Second Frontier Formation on the western flank of the Rock Springs Uplift. Previous industry attempts to produce in commercial quantities from the Second Frontier Formation have been hampered by lack of understanding of both the in-situ natural fracture system and lack of adequate stimulation treatments. The proposed technical approach involves drilling a vertical characterization well to the Second Frontier Formation at a depth of approximately 16,000 ft. from a site located about 18 miles northwest of Rock Springs, Wyoming. Logging, coring, and well testing information from the vertical well will be used to design a hydraulic fracturing treatment and to assess the resulting production performance. Data from the vertical drilling phase will be used to design a 2,500 to 3,000-ft lateral wellbore which will be kicked off from the vertical hole and extend into the blanket marine sandstone bench of the Second Frontier Formation. The trajectory of this wellbore will be designed to intersect the maximum number of natural fractures to maximize production rates. Production testing of the resulting completion will provide an assessment of reserve potential related to horizontal lateral completions.

  7. Remote administration and user experience evaluation of the iLab Heat Transfer Project site

    E-Print Network [OSTI]

    Graham, Rodney K

    2006-01-01T23:59:59.000Z

    The iLab Heat Transfer Project provides a means for students to remotely execute, via a web interface, experiments related to the topic of heat transfer. The website associated with this project provides instructors with ...

  8. DOE's Rocky Flats Cleanup Site Named 2006 Project of the Year...

    Office of Environmental Management (EM)

    U.S. Department of Energy (DOE) today announced that the Project Management Institute (PMI) has awarded its 2006 Project of the Year to DOE's Rocky Flats Environmental Technology...

  9. Position paper on the applicability of supplemental standards to the uppermost aquifer at the Uranium Mill Tailings Vitro Processing Site, Salt Lake City, Utah

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    This report documents the results of the evaluation of the potential applicability of supplemental standards to the uppermost aquifer underlying the Uranium Mill Tailings Remedial Action (UMTRA) Project, Vitro Processing Site, Salt Lake City, Utah. There are two goals for this evaluation: provide the landowner with information to make an early qualitative decision on the possible use of the Vitro property, and evaluate the proposed application of supplemental standards as the ground water compliance strategy at the site. Justification of supplemental standards is based on the contention that the uppermost aquifer is of limited use due to wide-spread ambient contamination not related to the previous site processing activities. In support of the above, this report discusses the site conceptual model for the uppermost aquifer and related hydrogeological systems and establishes regional and local background water quality. This information is used to determine the extent of site-related and ambient contamination. A risk-based evaluation of the contaminants` effects on current and projected land uses is also provided. Reports of regional and local studies and U.S. Department of Energy (DOE) site investigations provided the basis for the conceptual model and established background ground water quality. In addition, a limited field effort (4 through 28 March 1996) was conducted to supplement existing data, particularly addressing the extent of contamination in the northwestern portion of the Vitro site and site background ground water quality. Results of the field investigation were particularly useful in refining the conceptual site model. This was important in light of the varied ground water quality within the uppermost aquifer. Finally, this report provides a critical evaluation, along with the related uncertainties, of the applicability of supplemental standards to the uppermost aquifer at the Salt Lake City Vitro processing site.

  10. Site characterization report for the basalt waste isolation project. Volume II

    SciTech Connect (OSTI)

    None

    1982-11-01T23:59:59.000Z

    The reference location for a repository in basalt for the terminal storage of nuclear wastes on the Hanford Site and the candidate horizons within this reference repository location have been identified and the preliminary characterization work in support of the site screening process has been completed. Fifteen technical questions regarding the qualification of the site were identified to be addressed during the detailed site characterization phase of the US Department of Energy-National Waste Terminal Storage Program site selection process. Resolution of these questions will be provided in the final site characterization progress report, currently planned to be issued in 1987, and in the safety analysis report to be submitted with the License Application. The additional information needed to resolve these questions and the plans for obtaining the information have been identified. This Site Characterization Report documents the results of the site screening process, the preliminary site characterization data, the technical issues that need to be addressed, and the plans for resolving these issues. Volume 2 contains chapters 6 through 12: geochemistry; surface hydrology; climatology, meteorology, and air quality; environmental, land-use, and socioeconomic characteristics; repository design; waste package; and performance assessment.

  11. HIGH LEVEL WASTE MECHANCIAL SLUDGE REMOVAL AT THE SAVANNAH RIVER SITE F TANK FARM CLOSURE PROJECT

    SciTech Connect (OSTI)

    Jolly, R; Bruce Martin, B

    2008-01-15T23:59:59.000Z

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal (MSR) using the Waste on Wheels (WOW) system for the first time within one of its storage tanks. The WOW system is designed to be relatively mobile with the ability for many components to be redeployed to multiple waste tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. In addition, the project is currently preparing another waste tank for MSR utilizing lessons learned from this previous operational activity. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2,840 cubic meters (750,000 gallons) each. The construction of these tanks was completed in 1953, and they were placed into waste storage service in 1959. The tank's primary shell is 23 meters (75 feet) in diameter, and 7.5 meters (24.5 feet) in height. Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. Both Tank 5 and Tank 6 received and stored F-PUREX waste during their operating service time before sludge removal was performed. DOE intends to remove from service and operationally close (fill with grout) Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. Mechanical Sludge Removal, the first step in the tank closure process, will be followed by chemical cleaning. After obtaining regulatory approval, the tanks will be isolated and filled with grout for long-term stabilization. Mechanical Sludge Removal operations within Tank 6 removed approximately 75% of the original 95,000 liters (25,000 gallons). This sludge material was transferred in batches to an interim storage tank to prepare for vitrification. This operation consisted of eleven (11) Submersible Mixer Pump(s) mixing campaigns and multiple intraarea transfers utilizing STPs from July 2006 to August 2007. This operation and successful removal of sludge material meets requirement of approximately 19,000 to 28,000 liters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. Removal of the last 35% of sludge was exponentially more difficult, as less and less sludge was available to mobilize and the lighter sludge particles were likely removed during the early mixing campaigns. The removal of the 72,000 liters (19,000 gallons) of sludge was challenging due to a number factors. One primary factor was the complex internal cooling coil array within Tank 6 that obstructed mixer discharge jets and impacted the Effective Cleaning Radius (ECR) of the Submersible Mixer Pumps. Minimal access locations into the tank through tank openings (risers) presented a challenge because the available options for equipment locations were very limited. Mechanical Sludge Removal activities using SMPs caused the sludge to migrate to areas of the tank that were outside of the SMP ECR. Various SMP operational strategies were used to address the challenge of moving sludge from remote areas of the tank to the transfer pump. This paper describes in detail the Mechanical Sludge Removal activities and mitigative solutions to cooling coil obstructions and other challenges. The performance of the WOW system and SMP operational strategies were evaluated and the resulting lessons learned are described for application to future Mechanical Sludge Removal operations.

  12. Weldon Spring Site Remedial Action Project Federal Facilities Agreement: Quarterly environmental data summary for third quarter 1998

    SciTech Connect (OSTI)

    NONE

    1998-11-06T23:59:59.000Z

    In support of the Weldon Spring Site Remedial Action Project Federal Facilities Agreement, a copy of the Quarterly Environmental Data Summary (QEDS) for the third quarter of 1998 is enclosed. The data presented in this letter and attachment constitute the QEDS. The data, except for air monitoring data and site KPA generated data (uranium analyses), were received from the contract laboratories, verified by the Weldon Spring Site verification group, and merged into the database during the third quarter of 1998. Air monitoring data presented are the most recent complete sets of quarterly data. Significant data, defined as data values that have exceeded defined above normal Level 2 values, are discussed in this letter for Environmental Monitoring Plan (EMP) generated data only. Above normal Level 2 values are based, in ES and H procedures, on historical high values, DOE Derived Concentration Guides (DCGs), NPDES limits, and other guidelines. The procedures also establish actions to be taken in the event that above normal data occur.

  13. Technical assistance to Ohio closure sites; Technologies to address leachate from the on-site disposal facility at Fernald Environmental Management Project, Ohio

    SciTech Connect (OSTI)

    Hazen, Terry

    2002-08-26T23:59:59.000Z

    On August 6-7, 2002, a Technical Assistance Team (''Team'') from the U.S. Department of Energy (DOE) Subsurface Contaminants Focus Area (SCFA) met with Fernald Environmental Management Project (FEMP) personnel in Ohio to assess approaches to remediating uranium-contaminated leachate from the On-Site Disposal Facility (OSDF). The Team was composed of technical experts from national labs, technology centers, and industry and was assembled in response to a request from the FEMP Aquifer Restoration Project. Dave Brettschneider of Fluor Fernald, Inc., requested that a Team of experts be convened to review technologies for the removal of uranium in both brine ion exchange regeneration solution from the Advanced Wastewater Treatment facility and in the leachate from the OSDF. The Team was asked to identify one or more technologies for bench-scale testing as a cost effective alternative to remove uranium so that the brine regeneration solution from the Advanced Waste Water Treatment facility and the leachate from the OSDF can be discharged without further treatment. The Team was also requested to prepare a recommended development and demonstration plan for the alternative technologies. Finally, the Team was asked to make recommendations on the optimal technical solution for field implementation. The Site's expected outcomes for this effort are schedule acceleration, cost reduction, and better long-term stewardship implementation. To facilitate consideration of the most appropriate technologies, the Team was divided into two groups to consider the brine and the leachate separately, since they represent different sources with different constraints on solutions, e.g., short-term versus very long-term and concentrated versus dilute contaminant matrices. This report focuses on the technologies that are most appropriate for the leachate from the OSDF. Upon arriving at FEMP, project personnel asked the Team to concentrate its efforts on evaluating potential technologies and strategies to reduce uranium concentration in the leachate.

  14. Earth Sciences Division Research Summaries 2006-2007

    E-Print Network [OSTI]

    DePaolo, Donald

    2008-01-01T23:59:59.000Z

    APPROACH The Old Rifle UMTRA field site in Western ColoradoInjection Control program UMTRA—Uranium Mill Tailings

  15. Project plan for resolution of the organic waste tank safety issues at the Hanford Site

    SciTech Connect (OSTI)

    Meacham, J.E.

    1996-10-03T23:59:59.000Z

    A multi-year project plan for the Organic Safety Project has been developed with the objective of resolving the organic safety issues associated with the High Level Waste (HLW) in Hanford`s single-shell tanks (SSTS) and double-shell tanks (DSTs). The objective of the Organic Safety Project is to ensure safe interim storage until retrieval for pretreatment and disposal operations begins, and to resolve the organic safety issues by September 2001. Since the initial identification of organics as a tank waste safety issue, progress has been made in understanding the specific aspects of organic waste combustibility, and in developing and implementing activities to resolve the organic safety issues.

  16. Multimedia assessment of health risks for the Weldon Spring site remedial action project

    SciTech Connect (OSTI)

    Haroun, L.A.; MacDonell, M.M.; Peterson, J.M.; Fingleton, D.J.

    1990-01-01T23:59:59.000Z

    The US Department of Energy (DOE), under its Surplus Facilities Management Program (SFMP), is responsible for cleanup activities at the Weldon Spring site, Weldon Spring, Missouri. The site consists of two noncontiguous areas: the chemical plant area, which includes four raffinate pits, and the quarry. The Weldon Spring site became radioactively and chemically contaminated as a result of processing and disposal activities that took place from the 1940s through the 1960s. The US Department of the Army used the Weldon Spring site to produce dinitrotoluene (DNT) and trinitrotoluene (TNT) explosives from 1941 to 1946. The US Atomic Energy Commission (AEC, predecessor of the DOE) used the site to process uranium and thorium ore concentrates from 1957 to 1966. The quarry was used by the Army and the AEC for waste disposal beginning in the early 1940s; it was last used for disposal in 1969. Wastes placed in the quarry include TNT and DNT residues and radioactively contaminated materials. A summary of disposal activities at the quarry is presented. As part of the environmental compliance process at the Weldon Spring site, a baseline risk evaluation (BRE) was prepared to assess the potential risks associated with contamination present at the quarry. 13 refs., 2 figs., 6 tabs.

  17. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  18. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  19. Chemistry Research Projects Available to Undergraduates Consult Individual Faculty Members' Web Sites for More Details

    E-Print Network [OSTI]

    Crawford, T. Daniel

    . · Applications to solar energy conversion or electrocatalysis. · Design and synthesis of mixedmetal and photochemical energy storage. · Particular emphasis is placed on probing the propertiesChemistry Research Projects Available to Undergraduates Consult Individual Faculty Members' Web

  20. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  1. Final programmatic environmental impact statement for the uranium mill tailings remedial action ground water project. Volume I

    SciTech Connect (OSTI)

    None

    1996-10-01T23:59:59.000Z

    This programmatic environmental impact statement (PElS) was prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Ground Water Project to comply with the National Environmental Policy Act (NEPA). This PElS provides an analysis of the potential impacts of the alternatives and ground water compliance strategies as well as potential cumulative impacts. On November 8, 1978, Congress enacted the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law, codified at 42 USC §7901 et seq. Congress found that uranium mill tailings " ... may pose a potential and significant radiation health hazard to the public, and that every reasonable effort should be made to provide for stabilization, disposal, and control in a safe, and environmentally sound manner of such tailings in order to prevent or minimize other environmental hazards from such tailings." Congress authorized the Secretary of Energy to designate inactive uranium processing sites for remedial action by the U.S. Department of Energy (DOE). Congress also directed the U.S. Environmental Protection Agency (EPA) to set the standards to be followed by the DOE for this process of stabilization, disposal, and control. On January 5, 1983, EPA published standards (40 CFR Part 192) for the disposal and cleanup of residual radioactive materials. On September 3, 1985, the U.S. Court of Appeals for the Tenth Circuit set aside and remanded to EPA the ground water provisions of the standards. The EPA proposed new standards to replace remanded sections and changed other sections of 40 CFR Part 192. These proposed standards were published in the Federal Register on September 24, 1987 (52 FR 36000). Section 108 of the UMTRCA requires that DOE comply with EPA's proposed standards in the absence of final standards. The Ground Water Project was planned under the proposed standards. On January 11, 1995, EPA published the final rule, with which the DOE must now comply. The PElS and the Ground Water Project are in accordance with the final standards. The EPA reserves the right to modify the ground water standards, if necessary, based on changes in EPA drinking water standards. Appendix A contains a copy of the 1983 EPA ground water compliance standards, the 1987 proposed changes to the standards, and the 1995 final rule. Under UMTRA, DOE is responsible for bringing the designated processing sites into compliance with the EPA ground water standards and complying with all other applicable standards and requirements. The U.S. Nuclear Regulatory Commission (NRC) must concur with DOE's actions. States are full participants in the process. The DOE also must consult with any affected Indian tribes and the Bureau of Indian Affairs. Uranium processing activities at most of the inactive mill sites resulted in the contamination of ground water beneath and, in some cases, downgradient of the sites. This contaminated ground water often has elevated levels of constituents such as but not limited to uranium and nitrates. The purpose of the UMTRA Ground Water Project is to eliminate or reduce to acceptable levels the potential health and environmental consequences of milling activities by meeting the EPA ground water standards.

  2. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 1, Data summary

    SciTech Connect (OSTI)

    Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01T23:59:59.000Z

    This report presents the results of geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavation of the Exploratory Studies Facility (ESF) North Ramp. The is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the feasibility of locating a potential high-level nuclear waste repository on lands adjacent to the Nevada Test Site, Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan. This report is volume 1 of the data summary.

  3. Restoration of areas disturbed by site studies for a mined commercial radioactive waste repository: The Basalt Waste Isolation Project (BWIP)

    SciTech Connect (OSTI)

    Brandt, C.A.; Rickard, W.H. Jr.; Biehert, R.W.; Newell, R.L.; Page, T.L.

    1989-01-01T23:59:59.000Z

    The Basalt Waste Isolation Project (BWIP) was undertaken to environmentally characterize a portion of the US Department of Energy's Hanford Site in Washington State as a potential host for the nation's first mined commercial nuclear waste repository. Studies were terminated by Congress in 1987. Between 1976 and 1987, 72 areas located across the Hanford Site were disturbed by the BWIP. These areas include borehole pads, a large Exploratory Shaft Facility, and the Near Surface Test Facility. Most boreholes were cleared of vegetation, leveled, and stabilized with a thick layer of compacted pit-run gravel and sand. The Near Surface Test Facility consists of three mined adits, a rock-spoils bench, and numerous support facilities. Restoration began in 1988 with the objective of returning sites to pre-existing conditions using native species. The Hanford Site retains some of the last remnants of the shrub-steppe ecosystem in Washington. The primary constraints to restoring native vegetation at Hanford are low precipitation and the presence of cheatgrass, an extremely capable alien competitor. 5 figs.

  4. Project Manager, U.S. ITER INSIDE: ITER Site Progress Washington

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program DirectionProject ATHENAManagement ProjectITER

  5. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    SciTech Connect (OSTI)

    WESTRA, A.G.

    1999-06-24T23:59:59.000Z

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility.

  6. Siting Study for the Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Lisa Harvego; Joan Connolly; Lance Peterson; Brennon Orr; Bob Starr

    2010-10-01T23:59:59.000Z

    The U.S. Department of Energy has identified a mission need for continued disposal capacity for remote-handled low-level waste (LLW) generated at the Idaho National Laboratory (INL). An alternatives analysis that was conducted to evaluate strategies to achieve this mission need identified two broad options for disposal of INL generated remote-handled LLW: (1) offsite disposal and (2) onsite disposal. The purpose of this study is to identify candidate sites or locations within INL boundaries for the alternative of an onsite remote handled LLW disposal facility and recommend the highest-ranked locations for consideration in the National Environmental Policy Act process. The study implements an evaluation based on consideration of five key elements: (1) regulations, (2) key assumptions, (3) conceptual design, (4) facility performance, and (5) previous INL siting study criteria, and uses a five-step process to identify, screen, evaluate, score, and rank 34 separate sites located across INL. The result of the evaluation is identification of two recommended alternative locations for siting an onsite remote-handled LLW disposal facility. The two alternative locations that best meet the evaluation criteria are (1) near the Advanced Test Reactor Complex and (2) west of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act Disposal Facility.

  7. Conceptual Site Treatment Plan Laboratory for Energy-Related Health Research Environmental Restoration Project

    SciTech Connect (OSTI)

    Chapman, T.E.

    1993-10-01T23:59:59.000Z

    The Federal Facilities Compliance Act (the Act) of 1992 waives sovereign immunity for federal facilities for fines and penalties under the provisions of the Resource Recovery and Conservation Act, state, interstate, and local hazardous and solid waste management requirements. However, for three years the Act delays the waiver for violations involving US Department of Energy (DOE) facilities. The Act, however, requires that the DOE prepare a Conceptual Site Treatment Plan (CSTP) for each of its sites that generate or store mixed wastes (MWs). The purpose of the CSTP is to present DOE`s preliminary evaluations of the development of treatment capacities and technologies for treating a site`s MW. This CSTP presents the preliminary capacity and technology evaluation for the Laboratory for Energy-Related Health Research (LEHR). The five identified MW streams at LEHR are evaluated to the extent possible given available information. Only one MW stream is sufficiently well defined to permit a technology evaluation to be performed. Two other MW streams are in the process of being characterized so that an evaluation can be performed. The other two MW streams will be generated by the decommissioning of inactive facilities onsite within the next five years.

  8. The Hunters Point cogeneration project: Environmental justice in power plant siting

    SciTech Connect (OSTI)

    Kosloff, L.H. [Trexler and Associates, Inc., Portland, OR (United States); Varanini, E.E. III [Marron, Reid and Sheehy, Sacramento, CA (United States)

    1997-12-31T23:59:59.000Z

    The recent Hunters Point, San Francisco power plant siting process in California represents the first time that environmental justice has arisen as a major power plant siting issue. Intervenors argued that the siting process was racially and economically biased and were supported by leading environmental justice activists at the Golden Gate Law School`s Environmental Justice Clinic, a leading thinker in this field. The applicant argued that environmental justice charges cannot realistically be made against a modern natural-gas energy facility with state-of-the-art environmental controls. The applicant also argued that environmental justice concerns were fully addressed through the extensive environmental and socioeconomic review carried out by California Energy Commission staff. After extensive testimony and cross-examination, the Commission agreed with the applicant. This case has important lessons for companies that could be charged with environmental justice violations and environmental justice activists who must decide where to most effectively target their efforts. This paper reviews the proceeding and its lessons and makes recommendations regarding future applicability of environmental justice issues to the power generation sector. The authors represented the applicant in the facility siting proceeding.

  9. COLORADO SCHOOL OF MINES RESEARCH INSTITUTE (CSMRI) SITE FLOOD PLAIN AREA CLEANUP FACT SHEET & PROJECT SUMMARY

    E-Print Network [OSTI]

    . In 1992 a water main break at the Site flooded a tailings pond that overflowed into Clear Creek. The U.S. Environmental Protection Agency excavated and stockpiled soil from the tailings pond and surrounding area at the west end of the former tailings pond area previously cleaned up by EPA was found to contain

  10. Projected environmental impacts of radioactive material transportation to the first US repository site

    SciTech Connect (OSTI)

    Neuhauser, K.S.; Cashwell, J.W.; Reardon, P.C.; Ostmeyer, R.M.; McNair, G.W.

    1986-12-31T23:59:59.000Z

    This paper discusses the relative national environmental impacts of transporting nuclear wastes to each of the nine candidate repository sites in the United States. Several of the potential sites are closely clustered and, for the purpose of distance and routing calculations, are treated as a single location. These are: Cypress Creek Dome and Richton Dome in Mississippi (Gulf Interior Region), Deaf Smith County and Swisher County sites in Texas (Permian Basin), and Davis Canyon and Lavender Canyon site in Utah (Paradox Basin). The remaining sites are: Vacherie Dome, Louisiana; Yucca Mountain, Nevada; and Hanford Reservation, Washington. For compatibility with both the repository system authorized by the NWPA and with the MRS option, two separate scenarios were analyzed. In belief, they are (1) shipment of spent fuel and high-level wastes (HLW) directly from waste generators to a repository (Reference Case) and (2) shipment of spent fuel to a Monitored Retrievable Storage (MRS) facility and then to a repository. Between 17 and 38 truck accident fatalities, between 1.4 and 7.7 rail accident fatalities, and between 0.22 and 12 radiological health effects can be expected to occur as a result of radioactive material transportation during the 26-year operating period of the first repository. During the same period in the United States, about 65,000 total deaths from truck accidents and about 32,000 total deaths from rail accidents would occur; also an estimated 58,300 cancer fatalities are predicted to occur in the United States during a 26-year period from exposure to background radiation alone (not including medical and other manmade sources). The risks reported here are upper limits and are small by comparison with the "natural background" of risks of the same type. 3 refs., 6 tabs.

  11. Workplace Charging Behavior of Nissan Leafs in The EV Project at Six Work Sites

    SciTech Connect (OSTI)

    David Rohrbaugh; John Smart

    2014-11-01T23:59:59.000Z

    This paper documents findings from analysis of data collected from Nissan Leafs enrolled in The EV Project who parked and charged at six workplaces with EV charging equipment. It will be published as a white paper on INL's website, accessible by the general public.

  12. Summary of field operations Tijeras Arroyo Well TJA-2. Site-Wide Hydrogeologic Characterization Project

    SciTech Connect (OSTI)

    Foutz, W.L. [Lamb Associates, Inc., Albuquerque, NM (United States); McCord, J.P. [INTERA, Inc., Albuquerque, NM (United States)

    1995-02-01T23:59:59.000Z

    This report is a basic data report for field operations associated with the drilling, logging, completion, and development of Tijeras Arroyo well TJA-2. This test/monitoring well was installed as part of Sandia National Laboratories, New Mexico, Environmental Restoration Project.

  13. Scenarios constructed for basaltic igneous activity at Yucca Mountain and vicinity; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Barr, G.E.; Dunn, E.; Dockery, H.; Barnard, R. [Sandia National Labs., Albuquerque, NM (United States)] [Sandia National Labs., Albuquerque, NM (United States); Valentine, G.; Crowe, B. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States)

    1993-08-01T23:59:59.000Z

    Basaltic volcanism has been identified as a possible future event initiating a release of radionuclides from a potential repository at the proposed Yucca Mountain high-level waste repository site. The performance assessment method set forth in the Site Characterization Plan (DOE, 1988) requires that a set of scenarios encompassing all significant radionuclide release paths to the accessible environment be described. This report attempts to catalogue the details of the interactions between the features and processes produced by basaltic volcanism in the presence of the presumed groundwater flow system and a repository structure, the engineered barrier system (EBS), and waste. This catalogue is developed in the form of scenarios. We define a scenario as a well-posed problem, starting from an initiating event or process and proceeding through a logically connected and physically possible combination or sequence of features, events, and processes (FEPs) to the release of contaminants.

  14. INL-Site Idaho Completion Project Long Term Stewardship Strategic Plan

    SciTech Connect (OSTI)

    Olaveson, B.

    2007-09-17T23:59:59.000Z

    This Strategic Plan provides a brief historical overview of ICP long-term stewardship at the INL Site and the major goals and strategies that will drive the continued implementation of long-term stewardship in the future. The specific activities and processes that will be required to implement these goals should be outlined within an implementation plan and within implementing procedures and work plans.

  15. Manhattan Project buildings and facilities at the Hanford Site: A construction history

    SciTech Connect (OSTI)

    Gerber, M.S.

    1993-09-01T23:59:59.000Z

    This document thoroughly examines the role that the Hanford Engineer Works played in the Manhattan project. The historical aspects of the buildings and facilities are characterized. An in depth look at the facilities, including their functions, methods of fabrication and appearance is given for the 100 AREAS, 200 AREAS, 300 AREAS, 500, 800 and 900 AREAS, 600 AREA, 700 AREA, 1100 AREA and temporary construction structures.

  16. Analysis of cobbly soils for cobbles-to-fines corrections to radionuclide concentrations at the New Rifle, Colorado, processing site

    SciTech Connect (OSTI)

    Not Available

    1994-05-01T23:59:59.000Z

    A contamination depth and cobbly soil characterization study was performed in November and December 1993 at the Uranium Mill Tailings Remedial Action (UMTRA) Projects`s New Rifle, Colorado, processing site. This study was initiated due to a concurrence by the US Nuclear Regulatory Commission (NRC) clarifying that the allowable residual contamination in soil should be averaged over the total mass of the soil volume, including cobbles and gravels (i.e., bulk concentration). The New Rifle processing site has a high percentage of cobbles and gravels underlying the pile and other contaminated areas, which preliminary excavation designs have identified for removal and disposal. The main purpose of this study was to evaluate the relative mass percentage and radionuclide concentrations of cobbles and gravels in order to determine the bulk contamination concentrations, revise the underlying excavation design depths, and improve verification methods. Another important goal of the study was to acquire more accurate contamination depth data (profile) for the subpile material. In summary, this recharacterization study will probably reduce the volume of material for excavation/disposal by several hundred thousand cubic yards and significantly reduce the amount of ground water expected to be pumped out of the excavation during cleanup.

  17. A business case for on-site generation: The BD biosciences pharmingen project

    SciTech Connect (OSTI)

    Firestone, Ryan; Creighton, Charles; Bailey, Owen; Marnay, Chris; Stadler, Michael

    2003-09-01T23:59:59.000Z

    Deregulation is haltingly changing the United States electricity markets. The resulting uncertainty and/or rising energy costs can be hedged by generating electricity on-site and other benefits, such as use of otherwise wasted heat, can be captured. The Public Utility Regulatory Policy Act (PURPA) of 1978 first invited relatively small-scale generators ({ge} 1 MW) into the electricity market. The advent of efficient and reliable small scale and renewable equipment has spurred an industry that has, in recent years, made even smaller (business scale) electricity generation an economically viable option for some consumers. On-site energy capture and/or conversion, known as distributed energy resources (DER), offers consumers many benefits, such as economic savings and price predictability, improved reliability, control over power quality, and emissions reductions. Despite these benefits, DER adoption can be a daunting move to a customer accustomed to simply paying a monthly utility bill. San Diego is in many ways an attractive location for DER development: It has high electricity prices typical of California and a moderate climate i.e. energy loads are consistent throughout the year. Additionally, the price shock to San Diego Gas and Electric (SDG&E) customers during the summer of 2000 has interested many in alternatives to electricity price vulnerability. This report examines the business case for DER at the San Diego biotechnology supply company, BD Biosciences Pharmingen, which considered DER for a building with 200-300 kW base-load, much of which accommodates the refrigerators required to maintain chemicals. Because of the Mediterranean climate of the San Diego area and the high rate of air changes required due to on-site use of chemicals, modest space heating is required throughout the year. Employees work in the building during normal weekday business hours, and daily peak loads are typically about 500 kW.

  18. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 1, Introduction, history, and current candidates

    SciTech Connect (OSTI)

    Van Konynenburg, R.A.; McCright, R.D.; Roy, A.K.; Jones, D.A.

    1995-08-01T23:59:59.000Z

    The purpose of the Yucca Mountain Site Characterization Project is to evaluate Yucca Mountain for its suitability as a potential site for the nation`s first high-level nuclear waste repository. As part of this effort, Lawrence Livermore National Laboratory (LLNL) has been occupied for a number of years with developing and evaluating the performance of waste packages for the potential repository. In recent years this work has been carried out under the guidance of and in collaboration with the Management and Operating contractor for the Civilian Radioactive Waste Management System, TRW Environmental Safety Systems, Inc., which in turn reports to the Office of Civilian Radioactive Waste Management of the US Department of Energy. This report summarizes the history of the selection and characterization of materials to be used in the engineered barrier system for the potential repository at Yucca Mountain, describes the current candidate materials, presents a compilation of their properties, and summarizes available corrosion data and modeling. The term ``engineered materials`` is intended to distinguish those materials that are used as part of the engineered barrier system from the natural, geologic materials of the site.

  19. Savannah River Site: Plutonium Preparation Project (PuPP) at Savannah River

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG -Energy Proposed1-EReviewLaboratory |Site |

  20. Portsmouth Site Closes a Busy Year with Several D&D Project Completions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in235-1Department of60 DATE:Annual SiteSubcommittees - May

  1. Ground water protection strategy for the Uranium Mill Tailings Site at Green River, Utah. Final, Revision 2, Version 5: Appendix E to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The purpose of this appendix is to provide a ground water protection strategy for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Green River, Utah. Compliance with the US Environmental Protection Agency (EPA) ground water protection standards will be achieved by applying supplemental standards (40 CFR {section} 192.22(a); 60 FR 2854) based on the limited use ground water present in the uppermost aquifer that is associated with widespread natural ambient contamination (40 CFR {section} 192.11(e); 60 FR 2854). The strategy is based on new information, including ground water quality data collected after remedial action was completed, and on a revised assessment of disposal cell design features, surface conditions, and site hydrogeology. The strategy will result in compliance with Subparts A and C of the EPA final ground water protection standards (60 FR 2854). The document contains sufficient information to support the proposed ground water protection strategy, with monitor well information and ground water quality data included as a supplement. Additional information is available in the final remedial action plan (RAP) (DOE, 1991a), the final completion report (DOE, 1991b), and the long-term surveillance plan (LTSP) (DOE, 1994a).

  2. Project Title: C31 Deployment (4501) Program or Program Office: Y -12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluids |Storage Research

  3. Project Title: LIFE Center West (4498) Program or Program Office: Y-12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluids |Storagel)ctermInatIonFornl

  4. Project Title: NSY Drum Disposal (4504) Program or Program Office: Y -12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluids

  5. Project Title: New Non SNM Door (4503) Program or Program Office: Y ·12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluidst; ·lJ~· Categorical

  6. Project Title: Tin Whisker Mitigation (4532) Program or Program Office: Y-12 Site Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah47,193.70 Hg MercuryProject FinalFluidst;lJetermlnatIont'orn1

  7. Uranium Mill Tailings Remedial Action Project Environmental Line Management Audit Action Plan. Final report. Audit, October 26, 1992--November 6, 1992

    SciTech Connect (OSTI)

    NONE

    1993-07-01T23:59:59.000Z

    This Action Plan contains responses, planned actions, and estimated costs for addressing the findings discovered in the Environmental Management Audit conducted for the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action Project (UMTRA), October 26 through November 6, 1992. This document should be read in conjunction with the Audit Report to ensure the findings addressed in this document are fully understood. The scope of the UMTRA Environmental Management Audit was comprehensive and encompassed all areas of environmental management except environmental programs pertaining to the National Environmental Policy Act (NEPA) compliance. The Audit Report listed 18 findings: 11 were identified as compliance findings, and the remaining 7 were best management practice findings. Root cause analysis was performed on all the findings. The results of the analysis as well as planned corrective actions are summarized in Section 5.0. All planned actions were prioritized using the Tiger Team Assessment Corrective Action Plan system. Based on assigned priorities, all planned actions were costed by fiscal year. This Action Plan contains a description of the organizational and management structures to be used to implement the Action Plan, a brief discussion of root cause analysis and funding, followed by the responses and planned actions for each finding. A member of the UMTRA Project Office (PO) has been assigned responsibility for tracking the progress on each of the findings. The UMTRA PO staff wrote and/or approved all of the corrective actions recorded in this Action Plan.

  8. Intensive archaeological survey of the F/H Surface Enhancement Project Area, Savannah River Site, Aiken and Barnwell Counties, South Carolina

    SciTech Connect (OSTI)

    Sassaman, K.E.; Gillam, J.C.

    1993-08-01T23:59:59.000Z

    Twelve archaeological sites and four artifact occurrences were located by intensive survey of two tracts of land for the F and H Surface Enhancement Project on the Savannah River Site, Aiken and Barnwell Counties, South Carolina. Fieldwork in the 480-acre project area included surface reconnaissance of 3.6 linear kilometers of transects, 140 shovel tests along 4.2 linear kilometers of transects, an additional 162 shovel tests at sites and occurrences, and the excavation of six l {times} 2 m test units. All but one of the sites contained artifacts of the prehistoric era; the twelfth site consists of the remains of a twentieth-century home place. The historic site and six of the prehistoric sites consist of limited and/or disturbed contexts of archaeological deposits that have little research potential and are therefore considered ineligible for nomination to the National Register of Historic Places (NRHP). The remaining five sites have sufficient content and integrity to yield information important to ongoing investigations into upland site use. These sites (38AK146, 38AK535, 38AK539, 38AK541, and 38AK543) are thus deemed eligible for nomination to the NRHP and the Savannah River Archaeological Research Program (SRARP) recommends that they be preserved through avoidance or data recovery.

  9. Seismic data acquisition at the FACT site for the CASPAR project.

    SciTech Connect (OSTI)

    Jones, Kyle R.; Chael, Eric Paul; Hart, Darren M.

    2012-01-01T23:59:59.000Z

    Since May 2010, we have been recording continuous seismic data at Sandia's FACT site. The collected signals provide us with a realistic archive for testing algorithms under development for local monitoring of explosive testing. Numerous small explosive tests are routinely conducted around Kirtland AFB by different organizations. Our goal is to identify effective methods for distinguishing these events from normal daily activity on and near the base, such as vehicles, aircraft, and storms. In this report, we describe the recording system, and present some observations of the varying ambient noise conditions at FACT. We present examples of various common, non-explosive, sources. Next we show signals from several small explosions, and discuss their characteristic features.

  10. Nevada Test Site Perspective on Characterization and Loading of Legacy Transuranic Drums Utilizing the Central Characterization Project

    SciTech Connect (OSTI)

    R.G. Lahoud; J. F. Norton; I. L. Siddoway; L. W. Griswold

    2006-01-01T23:59:59.000Z

    The Nevada Test Site (NTS) has successfully completed a multi-year effort to characterize and ship 1860 legacy transuranic (TRU) waste drums for disposal at the Waste Isolation Pilot Plant (WIPP), a permanent TRU disposal site. This has been a cooperative effort among the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO), the U.S. Department of Energy, Carlsbad Field Office (DOE/CBFO), the NTS Management and Operations (M&O) contractor Bechtel Nevada (BN), and various contractors under the Central Characterization Project (CCP) umbrella. The success is due primarily to the diligence, perseverance, and hard work of each of the contractors, the DOE/CBFO, and NNSA/NSO, along with the support of the U.S. Department of Energy, Headquarters (DOE/HQ). This paper presents, from an NTS perspective, the challenges and successes of utilizing the CCP for obtaining a certified characterization program, sharing responsibilities for characterization, data validation, and loading of TRU waste with BN to achieve disposal at WIPP from a Small Quantity Site (SQS) such as the NTS. The challenges in this effort arose from two general sources. First, the arrangement of DOE/CBFO contractors under the CCP performing work and certifying waste at the NTS within a Hazard Category 2 (HazCat 2) non-reactor nuclear facility operated by BN, presented difficult challenges. The nuclear safety authorization basis, safety liability and responsibility, conduct of operations, allocation and scheduling of resources, and other issues were particularly demanding. The program-level and field coordination needed for the closely interrelated characterization tasks was extensive and required considerable effort by all parties. The second source of challenge was the legacy waste itself. None of the waste was generated at the NTS. The waste was generated at Lawrence Livermore National Laboratory (LLNL), Lawrence Berkeley Laboratory (LBL), Lynchburg, Rocky Flats Environmental Technology Site (RFETS), and a variety of other sites over 20 years ago, making the development of Acceptable Knowledge a significant and problematic effort. In addition, the characterization requirements, and data quality objectives for shipment and WIPP disposal today, were non-existent when this waste was generated, resulting in real-time adjustments to unexpected conditions.

  11. Fiscal years 1993 and 1994 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Decontamination and Decommissioning Projects Department

    SciTech Connect (OSTI)

    NONE

    1995-12-31T23:59:59.000Z

    This photobriefing book describes the ongoing decontamination and decommissioning projects at the Argonne National Laboratory (ANL)-East Site near Lemont, Illinois. The book is broken down into three sections: introduction, project descriptions, and summary. The introduction elates the history and mission of the Decontamination and Decommissioning (D and D) Projects Department at ANL-East. The second section describes the active ANL-East D and D projects, giving a project history and detailing fiscal year (FY) 1993 and FY 1994 accomplishments and FY 1995 goals. The final section summarizes the goals of the D and D Projects Department and the current program status. The D/D projects include the Experimental Boiling Water Reactor, Chicago Pile-5 Reactor, that cells, and plutonium gloveboxes. 73 figs.

  12. Contents of environmental impact statements prepared for the Uranium Mill Tailings Remedial Action Project

    SciTech Connect (OSTI)

    Not Available

    1986-01-01T23:59:59.000Z

    This document presents two versions of the outline for the environmental impact statements (EISS) to be prepared for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The first displays the basic structure of the statements; it lists only the titles of sections. The second is a guide to the contents of the statements which provides, under each title, a brief summary of contents. The outline is intended to comply with the planning requirements and the definitions of terms established by the Council on Environmental Quality as well as DOE Order 5440.lB (Implementation of the National Environmental Policy Act), and compliance with Floodplain/Wetlands Environmental Review Requirements. These requirements and definitions are implicity part of the outline. The outline presented in this document will guide the preparation of EISs Guidelines for preparation of environmental assessments for the UMTRA Project are available.

  13. Project Fact Sheet Project Update

    E-Print Network [OSTI]

    & Figures: Budget: £51,074,000 Funding Source: Capital Plan Construction Project Programme: Start on SiteProject Fact Sheet Project Update: Project Brief: The concept of the new scheme is to redevelop Gardens project http://www.imperial.ac.uk/princesgardens/ Construction Project Team: Project Facts

  14. Engineered materials characterization report for the Yucca Mountain Site Characterization Project. Volume 3: Corrosion and data modeling

    SciTech Connect (OSTI)

    Van Konynenburg, R.A.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Roy, A.K. [B and W Fuel Co., Lynchburg, VA (United States); Jones, D.A. [Nevada Univ., Reno, NV (United States)

    1995-08-01T23:59:59.000Z

    This three-volume report serves several purposes. The first volume provides an introduction to the engineered materials effort for the Yucca Mountain Site Characterization Project. It defines terms and outlines the history of selection and characterization of these materials. A summary of the recent engineered barrier materials characterization workshop is presented, and the current candidate materials are listed. The second volume tabulates design data for engineered materials, and the third volume is devoted to corrosion data, radiation effects on corrosion, and corrosion modeling. The second and third volumes are intended to be evolving documents, to which new data will be added as they become available from additional studies. The initial version of Volume 3 is devoted to information currently available for environments most similar to those expected in the potential Yucca Mountain repository. This is volume three.

  15. HANFORD SITE RIVER PROTECTION PROJECT (RPP) TRANSURANIC (TRU) TANK WASTE IDENTIFICATION & PLANNING FOR REVRIEVAL TREATMENT & EVENTUAL DISPOSAL AT WIPP

    SciTech Connect (OSTI)

    KRISTOFZSKI, J.G.; TEDESCHI, R.; JOHNSON, M.E.; JENNINGS, M

    2006-01-18T23:59:59.000Z

    The CH2M HILL Manford Group, Inc. (CHG) conducts business to achieve the goals of the Office of River Protection (ORP) at Hanford. As an employee owned company, CHG employees have a strong motivation to develop innovative solutions to enhance project and company performance while ensuring protection of human health and the environment. CHG is responsible to manage and perform work required to safely store, enhance readiness for waste feed delivery, and prepare for treated waste receipts for the approximately 53 million gallons of legacy mixed radioactive waste currently at the Hanford Site tank farms. Safety and environmental awareness is integrated into all activities and work is accomplished in a manner that achieves high levels of quality while protecting the environment and the safety and health of workers and the public. This paper focuses on the innovative strategy to identify, retrieve, treat, and dispose of Hanford Transuranic (TRU) tank waste at the Waste Isolation Pilot Plant (WIPP).

  16. Use of a permeable biological reaction barrier for groundwater remediation at a uranium mill tailings remedial action (UMTRA) site

    SciTech Connect (OSTI)

    Thombre, M.S.; Thomson, B.M.; Barton, L.L. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    Previous work at the University of New Mexico and elsewhere has shown that sulfate reducing bacteria are capable of reducing uranium from the soluble +6 oxidation state to the insoluble +4 oxidation state. This chemistry forms the basis of a proposed groundwater remediation strategy in which microbial reduction would be used to immobilize soluble uranium. One such system would consist of a subsurface permeable barrier which would stimulate microbial growth resulting in the reduction of sulfate and nitrate and immobilization of metals while permitting the unhindered flow of ground water through it. This research investigated some of the engineering considerations associated with a microbial reducing barrier such as identifying an appropriate biological substrate, estimating the rate of substrate utilization, and identifying the final fate of the contaminants concentrated in the barrier matrix. The performance of batch reactors and column systems that treated simulated plume water was evaluated using cellulose, wheat straw, alfalfa hay, sawdust, and soluble starch as substrates. The concentrations of sulfate, nitrate, and U(VI) were monitored over time. Precipitates from each system were collected and the precipitated U(IV) was determined to be crystalline UO{sub 2}(s) by X-ray Diffraction. The results of this study support the proposed use of cellulosic substrates as candidate barrier materials.

  17. Long-Term Surveillance Plan for the Spook, Wyoming, Disposal Site, UMTRA-DOE-AL-350215.0000, January 1993

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell:F E ,"^ I This page intentionally

  18. A demonstration of remote survey and characterization of a buried waste site using the SRIP (Soldier Robot Interface Project) testbed

    SciTech Connect (OSTI)

    Burks, B.L.; Richardson, B.S.; Armstrong, G.A.; Hamel, W.R.; Jansen, J.F.; Killough, S.M.; Thompson, D.H.; Emery, M.S.

    1990-01-01T23:59:59.000Z

    During FY 1990, the Oak Ridge National Laboratory (ORNL) supported the Department of Energy (DOE) Environmental Restoration and Waste Management (ER WM) Office of Technology Development through several projects including the development of a semiautonomous survey of a buried waste site using a remotely operated all-terrain robotic testbed borrowed from the US Army. The testbed was developed for the US Army's Human Engineering Laboratory (HEL) for the US Army's Soldier Robot Interface Project (SRIP). Initial development of the SRIP testbed was performed by a team including ORNL, HEL, Tooele Army Depot, and Odetics, Inc., as an experimental testbed for a variety of human factors issues related to military applications of robotics. The SRIP testbed was made available to the DOE and ORNL for the further development required for a remote landfill survey. The robot was modified extensively, equipped with environmental sensors, and used to demonstrate an automated remote survey of Solid Waste Storage Area No. 3 (SWSA 3) at ORNL on Tuesday, September 18, 1990. Burial trenches in this area containing contaminated materials were covered with soil nearly twenty years ago. This paper describes the SRIP testbed and work performed in FY 1990 to demonstrate a semiautonomous landfill survey at ORNL. 5 refs.

  19. Uranium Mill Tailings remedial action project waste minimization and pollution prevention awareness program plan

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The purpose of this plan is to establish a waste minimization and pollution prevention awareness (WM/PPA) program for the U.S. Department of Energy`s (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The program satisfies DOE requirements mandated by DOE Order 5400.1. This plan establishes planning objectives and strategies for conserving resources and reducing the quantity and toxicity of wastes and other environmental releases.

  20. YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT EAST-WEST DRIFT SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    NA

    1999-06-08T23:59:59.000Z

    The purpose of this analysis is to systematically identify and evaluate hazards related to the design of the Yucca Mountain Project Exploratory Studies Facility (ESF) East-West Cross Drift. This analysis builds upon prior ESF System Safety Analyses and incorporates TS Main Drift scenarios, where applicable, into the East-West Drift scenarios. This System Safety Analysis (SSA) focuses on the personnel safety and health hazards associated with the engineered design of the East-West Drift. The analysis also evaluates other aspects of the East-West Drift, including purchased equipment (e.g., scientific mapping platform) or Systems/Structures/Components (SSCs) and out-of-tolerance conditions. In addition to recommending design mitigation features, the analysis identifies the potential need for procedures, training, or Job Safety Analyses (JSAs). The inclusion of this information in the SSA is intended to assist the organization(s) (e.g., constructor, Safety and Health, design) responsible for these aspects of the East-West Drift in evaluating personnel hazards and augment the information developed by these organizations. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with East-West Drift SSCs in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into SSC designs. (2) Add safety features and capabilities to existing designs. (3) Develop procedures and conduct training to increase worker awareness of potential hazards, reduce exposure to hazards, and inform personnel of the actions required to avoid accidents or correct hazardous conditions. This analysis does not consider temporary construction items and, therefore, does not consider hazards associated with temporary construction items. This analysis will be reviewed and updated to reflect new East-West Drift design changes, construction modifications, and ''as built'' documentation of the East-West Drift when completed. A major difference between this analysis and previous ESF SSAs is the inclusion of hazards that arise as a result of non-accident events, (e.g., ''off-normal'' operations, adverse environmental conditions, or ''out-of-tolerance'' conditions). Non-accident events, that were not included in previous ESF SSAs, include environmental and/or toxic hazards such as leaking gases/fluids, off-gassing reactions, and excessive dust, particulates, exhaust fumes, noise, temperature, etc. which could have an adverse health effect on personnel.

  1. SWEIS Yearbook-2012 Comparison of 2012 Data to Projections of the 2008 Site-Wide Environmental Impact Statement for Continued Operation of Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Mahowald, Hallie B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wright, Marjorie Alys [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-16T23:59:59.000Z

    Los Alamos National Laboratory (LANL or the Laboratory) operations data for Calendar Year (CY) 2012 mostly fell within the 2008 Site-Wide Environmental Impact Statement (SWEIS) projections. Operation levels for one LANL facility exceeded the 2008 SWEIS capability projections—Radiochemistry Facility; however, none of the capability increases caused exceedances in radioactive air emissions, waste generation, or National Pollutant Discharge Elimination System (NPDES) discharge. Several facilities exceeded the2008 SWEIS levels for waste generation quantities; however, all were one-time, non-routine events that do not reflect the day-to-day operations of the Laboratory. In addition, total site-wide waste generation quantities were below SWEIS projections for all waste types, reflecting the overall levels of operations at both the Key and Non-Key Facilities. Although gas and electricity consumption have remained within the 2008 SWEIS limits for utilities, water consumption exceeded the 2008 SWEIS projections by 27 million gallons in CY 2012.

  2. NEW - DOE P 481.1, DOE's Policy Regarding Laboratories, Plants and Sites Engaging in Strategic Partnership Projects with Other Federal Agencies, Independent Organizations, and the Private Sector

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The purpose of this Policy is to set the context in which DOE and its laboratories, plants, and sites should pursue Strategic Partnership Projects (SSP) with other Federal government agencies, state and local institutions, universities, foreign entities and/or private companies. The Policy is applicable to the DOE laboratories, plants, and sites, and to the DOE programs that own them and facilitate their work.

  3. DOE's Policy Regarding Laboratories, Plants and Sites Engaging in Strategic Partnership Projects with Other Federal Agencies, Independent Organizations, and the Private Sector

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-17T23:59:59.000Z

    The purpose of this Policy is to set the context in which DOE and its laboratories, plants, and sites should pursue Strategic Partnership Projects (SPP) with other Federal government agencies, state and local institutions, universities, foreign entities and/or private companies. The Policy is applicable to the DOE laboratories, plants, and sites, and to the DOE programs that own them and facilitate their work.

  4. Environmental analysis and data report prepared for the environmental assessment of remedial action at the Lowman uranium mill tailings site near Lowman, Idaho. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document contains information and data gathered in support of the preparation of the environmental assessment (EA) of the proposed remedial action at the Uranium Mill Tailings Remedial Action (UMTRA) Project site near Lowman, Idaho. The Lowman EA was prepared pursuant to the National Environmental Policy Act (NEPA), which requires Federal agencies to assess the effects of their actions on the environment. It examines the short-term and the long-term effects of the US Department of Energy`s (DOE) proposed remedial action for the Lowman site as well as the no action alternative. The DOE will use the information and analyses presented in the EA to determine whether the proposed action would have a significant impact on the environment. If the impacts are determined to be significant, an environmental impact statement will be prepared. If the impacts are not judged to be significant, the DOE may issue a Finding of No Significant Impact and implement the proposed action. The information and data presented in this environmental analyses and data report are for background purposes only and are not required as part of the NEPA decision-making process.

  5. US Department of Energy final response to standards for remedial actions at inactive uranium processing sites; Proposed rule

    SciTech Connect (OSTI)

    Not Available

    1988-11-14T23:59:59.000Z

    This document revisits and supplements information and recommendations presented in the January 1988 US Department of Energy (DOE) submission to the US Environmental Protection Agency (EPA) regarding the proposed standards for Title I uranium processing sites (DOE, 1988). The clarifications and comments in this report are based on further DOE investigation, contemplation, and interpretation of the proposed standards. Since the January response, the DOE has undertaken a number of special studies to -investigate, evaluate, focus, and clarify issues relating to the standards. In addition, the Nuclear Regulatory Commission (NRC) has issued a draft technical position outlining its interpretation of the proposed standards and clarifying how the standards will be implemented (NRC, 1988). Some issues presented are based on previous positions, and the original DOE position is restated for reference. Other issues or recommendations are more recent than the January DOE response; therefore, no former position was advanced. The order of presentation reflects the general order of significance to the DOE, specifically in regards to the Uranium Mill Tailings Remedial Action (UMTRA) Project.

  6. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    SciTech Connect (OSTI)

    Jolly, R

    2009-01-06T23:59:59.000Z

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical Cleaning of Waste Tanks at the Savannah River Site--F Tank Farm Closure Project--Abstract 9114'. To support Tank 5 and Tank 6 cooling coil closure, cooling coil isolation and full scale cooling coil grout testing was completed to develop a strategy for grouting the horizontal and vertical cooling coils. This paper describes in detail the performance of the Mechanical Sludge Removal activities and SMP operational strategies within Tank 5. In addition, it will discuss the current status of Tank 5 & 6 cooling coil isolation activities and the results from the cooling coil grout fill tests.

  7. In-well sediment incubators to evaluate microbial community stability and dynamics following bioimmobilization of uranium

    E-Print Network [OSTI]

    Baldwin, B.R.

    2010-01-01T23:59:59.000Z

    Tailings Remedial Action (UMTRA) site. During a seven-monthMill Tailings Remedial Action (UMTRA) site have shown thatField Site The Old Ri?e UMTRA site (Ri?e, Colorado) is a

  8. Estimations of the extent of migration of surficially applied water for various surface conditions near the potential repository perimeter; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Sobolik, S.R.; Fewell, M.E.

    1993-12-01T23:59:59.000Z

    The Yucca Mountain Site Characterization Project is studying Yucca Mountain in southwestern Nevada as a potential site for a high-level nuclear waste repository. Site characterization includes surface-based and underground testing. Analyses have been performed to support the design of site characterization activities so to have minimal impact on the ability of the site to isolate waste, and on tests performed as part of the characterization process. Two examples of site characterization activities are the construction of an Exploratory Studies Facility, which may include underground shafts, drifts, and ramps, and surface-based testing activities, which may require borehole drilling, excavation of test pits, and road watering for dust control. The information in this report pertains to two-dimensional numerical calculations modeling the movement of surficially applied water and the potential effects of that water on repository performance and underground experiments. This document contains information that has been used in preparing recommendations for two Yucca Mountain Site Characterization Project documents: Appendix I of the Exploratory Studies Facility Design Requirements document, and the Surface-Based Testing Field Requirements Document.

  9. ITER Siting Decision Clears One Important Obstacle in Congress "This is real . . . we've got a project on our hands." -DOE Office of Science

    E-Print Network [OSTI]

    in Moscow that representatives of the United States, European Union, Japan, the Russia Federation, China in late 2003 (see page 14 of www.sc.doe.gov/Sub/Facilities_for_future/facilities_future.htm .) Congress, he said, has "given reality to the project." DOE's site at http://www.science.doe.gov/ provides

  10. Classroom Projects - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms AboutRESEARCH CAPABILITIES Thematerials |Physics LabHanford

  11. Manhattan Project: Site Map

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy,Science In the Laboratory

  12. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07T23:59:59.000Z

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  13. Remote site survey and characterization for the National ER WM Program using the SRIP (Solider Robot Interface Project) vehicle

    SciTech Connect (OSTI)

    Richardson, B.S.; Killough, S.M.; Emery, M.D.; Herndon, J.N.; Hamel, W.R.; Burks, B.L.

    1990-01-01T23:59:59.000Z

    A significant number of Department of Energy (DOE) production and research sites will require remediation of buried waste sites during the coming years. An important first step in cleanup, restoration, and decontamination activities is burial site characterization. An early field demonstration of buried waste site survey and characterization will be conducted using a remotely operated vehicle equipped with sensors, a manipulator system, and a vision system. This demonstration will be conducted in July 1990. 4 refs., 4 figs.

  14. Developments in Bioremediation of Soils and Sediments Polluted with Metals and Radionuclides: 2. Field Research on Bioremediation of Metals and Radionuclides

    E-Print Network [OSTI]

    Hazen, Terry C.

    2010-01-01T23:59:59.000Z

    tailings remedial action (UMTRA) sites in Colorado and Newfield scale at the Old Rifle UMTRA site in Rifle, Colorado (subsurface of the Old Rifle UMTRA site stimulated the loss

  15. 4th Annual DOE-ERSP PI Meeting: Abstracts

    E-Print Network [OSTI]

    Hazen, Terry C.

    2009-01-01T23:59:59.000Z

    ORNL, and Co-PI’s Old Rifle UMTRA Site Phil Long, PNNL, andtransport at both the Naturita UMTRA site and the Rifle FRC.collected at the Naturita (CO) UMTRA site, with grain sizes

  16. Final environmental assessment for the U.S. Department of Energy, Oak Ridge Operations receipt and storage of uranium materials from the Fernald Environmental Management Project site

    SciTech Connect (OSTI)

    NONE

    1999-06-01T23:59:59.000Z

    Through a series of material transfers and sales agreements over the past 6 to 8 years, the Fernald Environmental Management Project (FEMP) has reduced its nuclear material inventory from 14,500 to approximately 6,800 metric tons of uranium (MTU). This effort is part of the US Department of energy`s (DOE`s) decision to change the mission of the FEMP site; it is currently shut down and the site is being remediated. This EA focuses on the receipt and storage of uranium materials at various DOE-ORO sites. The packaging and transportation of FEMP uranium material has been evaluated in previous NEPA and other environmental evaluations. A summary of these evaluation efforts is included as Appendix A. The material would be packaged in US Department of Transportation-approved shipping containers and removed from the FEMP site and transported to another site for storage. The Ohio Field Office will assume responsibility for environmental analyses and documentation for packaging and transport of the material as part of the remediation of the site, and ORO is preparing this EA for receipt and storage at one or more sites.

  17. Characterization of materials for a reactive transport model validation experiment: Interim report on the caisson experiment. Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Siegel, M.D.; Cheng, W.C. [Sandia National Labs., Albuquerque, NM (United States); Ward, D.B.; Bryan, C.R. [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Earth and Planetary Sciences

    1995-08-01T23:59:59.000Z

    Models used in performance assessment and site characterization activities related to nuclear waste disposal rely on simplified representations of solute/rock interactions, hydrologic flow field and the material properties of the rock layers surrounding the repository. A crucial element in the design of these models is the validity of these simplifying assumptions. An intermediate-scale experiment is being carried out at the Experimental Engineered Test Facility at Los Alamos Laboratory by the Los Alamos and Sandia National Laboratories to develop a strategy to validate key geochemical and hydrological assumptions in performance assessment models used by the Yucca Mountain Site Characterization Project.

  18. Bibliography of publications related to the Yucca Mountain Site Characterization Project prepared by U.S. Geological Survey personnel through April 1991

    SciTech Connect (OSTI)

    Glanzman, V.M.

    1991-11-01T23:59:59.000Z

    Personnel of the US Geological Survey have participated in nuclear-waste management studies in the State of Nevada since the mid-1970`s. A bibliography of publications prepared principally for the US Department of Energy Yucca Mountain Site Characterization Project (formerly Nevada Nuclear Waste Storage Investigations) through April 1991 contains 475 entries in alphabetical order. The listing includes publications prepared prior to the inception of the Nevada Nuclear Waste Storage Investigations Project in April 1977 and selected publications of interest to the Yucca Mountain region. 480 refs.

  19. Symmetries of migration related segments of all [001] coincidence site lattice tilt boundaries in (001) projections for all holohedral cubic materials

    SciTech Connect (OSTI)

    Moeck, Peter; York, Bryant W.; Browning, Nigel D.

    2014-09-11T23:59:59.000Z

    Utilizing bicrystallography in two dimensions (2D), the symmetries of migration related segments of Coincidence Site Lattice (CSL) boundaries are derived for projections along their [001] tilt axis in grain boundaries of crystalline materials that possess the holohedral point symmetry of the cubic system (i.e. m3m). These kinds of “edge-on” projections are typical for atomic resolution imaging of such tilt boundaries with Transmission Electron Microscopes (TEM). This fact facilitates the visual confirmation of our predictions by recently published Zcontrast scanning TEM investigations [H. Yang et al., Phil. Mag. 93 (2013) 1219] and many other TEM studies.

  20. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    E-Print Network [OSTI]

    Hoen, Ben

    2010-01-01T23:59:59.000Z

    such concern is the potential impact of wind energy projectshas investigated the potential impact of wind projects onassessment of the potential impact of wind facilities on the

  1. Functional gene array-based analysis of microbial community structure in groundwaters with a gradient of contaminant levels

    E-Print Network [OSTI]

    Waldron, P.J.

    2010-01-01T23:59:59.000Z

    Tailings Remedial Action (UMTRA) site (Chang et al. , 2001).at the Shiprock, NM UMTRA site [U(IV) concentrations up to

  2. Detection of hexavalent uranium with inline and field-portable immunosensors

    E-Print Network [OSTI]

    Melton, Scott J.

    2009-01-01T23:59:59.000Z

    well (D-02) at the Rifle UMTRA site, Rifle CO. The collectedTailings Remedial Action (UMTRA) site located in Rifle, CO.

  3. Pulling History from the Waste Stream: Identification and Collection of Manhattan Project and Cold War Era Artifacts on the Hanford Site

    SciTech Connect (OSTI)

    Marceau, Thomas E. [Mission Support Alliance, Richland, WA (United States); Watson, Thomas L. [Mission Support Alliance, Richland, WA (United States)

    2013-11-13T23:59:59.000Z

    One man's trash is another man's treasure. Not everything called "waste" is meant for the refuse pile. The mission of the Curation Program is at direct odds with the remediation objectives of the Hanford Site. While others are busily tearing down and burying the Site's physical structures and their associated contents, the Curation Program seeks to preserve the tangible elements of the Site's history from these structures for future generations before they flow into the waste stream. Under the provisions of a Programmatic Agreement, Cultural Resources staff initiated a project to identify and collect artifacts and archives that have historic or interpretive value in documenting the role of the Hanford Site throughout the Manhattan Project and Cold War Era. The genesis of Hanford's modern day Curation Program, its evolution over nearly two decades, issues encountered, and lessons learned along the way -- particularly the importance of upper management advocacy, when and how identification efforts should be accomplished, the challenges of working within a radiological setting, and the importance of first hand information -- are presented.

  4. Prediction of Pseudo relative velocity response spectra at Yucca Mountain for underground nuclear explosions conducted in the Pahute Mesa testing area at the Nevada testing site; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Phillips, J.S.

    1991-12-01T23:59:59.000Z

    The Yucca Mountain Site Characterization Project (YMP), managed by the Office of Geologic Disposal of the Office of Civilian Radioactive Waste Management of the US Department of Energy, is examining the feasibility of siting a repository for commercial, high-level nuclear wastes at Yucca Mountain on and adjacent to the Nevada Test Site (NTS). This work, intended to extend our understanding of the ground motion at Yucca Mountain resulting from testing of nuclear weapons on the NTS, was funded by the Yucca Mountain project and the Military Applications Weapons Test Program. This report summarizes one aspect of the weapons test seismic investigations conducted in FY88. Pseudo relative velocity response spectra (PSRV) have been calculated for a large body of surface ground motions generated by underground nuclear explosions. These spectra have been analyzed and fit using multiple linear regression techniques to develop a credible prediction technique for surface PSRVs. In addition, a technique for estimating downhole PSRVs at specific stations is included. A data summary, data analysis, prediction development, prediction evaluation, software summary and FORTRAN listing of the prediction technique are included in this report.

  5. Field-based detection and monitoring of uranium in contaminated groundwater using two immunosensors

    E-Print Network [OSTI]

    Melton, S.J.

    2010-01-01T23:59:59.000Z

    Tailings Remediation Action (UMTRA) site that has been theof the ongoing work at the Old Rifle UMTRA site may be foundhttp://www.pnl.gov/nabir-umtra/intro.stm. In the summer of

  6. DOE-NABIR Pi Workshop: Abstracts

    E-Print Network [OSTI]

    Various

    2003-01-01T23:59:59.000Z

    BNL) Breakout: Research at UMTRA Sites (Phil Long, PNNL)installed at the Old Rifle UMTRA site in Colorado. Acetate (VI) approached or fell below the UMTRA MCL limit (0.18 nM).

  7. HAZWOPER work plan and site safety and health plan for the Alpha characterization project at the solid waste storage area 4 bathtubbing trench at Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This work plan/site safety and health plan is for the alpha sampling project at the Solid Waste Storage Area 4 bathtubbing trench. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division and associated ORNL environmental, safety, and health support groups. This activity will fall under the scope of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER). The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. Work will be conducted in accordance with requirements as stipulated in the ORNL HAZWOPER Program Manual and applicable ORNL; Martin Marietta Energy Systems, Inc.; and U.S. Department of Energy policies and procedures. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project. Unforeseeable site conditions or changes in scope of work may warrant a reassessment of the stated protection levels and controls. All adjustments to the plan must have prior approval by the safety and health disciplines signing the original plan.

  8. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  9. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    SciTech Connect (OSTI)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  10. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    SciTech Connect (OSTI)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01T23:59:59.000Z

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  11. Geotechnical characterization of the North Ramp of the Exploratory Studies Facility: Yucca Mountain Site Characterization Project. Volume 2, NRG corehole data appendices

    SciTech Connect (OSTI)

    Brechtel, C.E.; Lin, Ming; Martin, E. [Agapito Associates, Inc., Grand Junction, CO (United States); Kessel, D.S. [Sandia National Labs., Albuquerque, NM (United States)

    1995-05-01T23:59:59.000Z

    This report presents the results of the geological and geotechnical characterization of the Miocene volcanic tuff rocks of the Timber Mountain and Paintbrush groups that the tunnel boring machine will encounter during excavations of the Exploratory Studies Facility (ESF) North Ramp. The information in this report was developed to support the design of the ESF North Ramp. The ESF is being constructed by the DOE as part of the Yucca Mountain Project site characterization activities. The purpose of these activities is to evaluate the potential to locate the national high-level nuclear waste repository on land within and adjacent to the Nevada Test Site (NTS), Nye County, Nevada. This report was prepared as part of the Soil and Rock Properties Studies in accordance with the 8.3.1.14.2 Study Plan to Provide Soil and Rock Properties. This is volume 2 which contains NRG Corehole Data for each of the NRG Holes.

  12. Remote Terrestrial Sites as Operational/Logistics Analogs for Moon/Mars Bases: the Haughton Mars Project

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Remote Terrestrial Sites as Operational/Logistics Analogs for Moon/Mars Bases: the Haughton Mars coordinating the logistics and resupply of far-flung planetary bases. A number of logistics methods have been terrestrial logistics methods were tested in the context of (analog) planetary exploration. A comprehensive

  13. EA-1792-S1: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project – Castine Harbor Test Site

    Broader source: Energy.gov [DOE]

    This Supplemental EA evaluates the environmental impacts of the University of Maine proposal to use Congressionally directed federal funding, from DOE, to deploy, test and retrieve one 1/8-scale floating wind turbine (20kw) prototype in Castine Harbor, offshore of Castine Maine. This test would be conducted prior to testing at the site 2 miles from Monhegan Island (evaluated under DOE EA-1792).

  14. Preliminary data report of investigations conducted at the Salmon Site, Lamar County, Mississippi. Nevada Environmental Restoration Project

    SciTech Connect (OSTI)

    Not Available

    1994-04-01T23:59:59.000Z

    The US Department of Energy (DOE) conducted ecological studies at the Salmon Site (SS), Lamar County, Mississippi, from the middle of June 1992 to the end of April 1993. The studies are part of the Remedial Investigation and Feasibility Study (RI/FS) being conducted by the DOE. The RI/FS is the methodology under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980, as amended by the Superfund Amendments and Reauthorization Act of 1986 (CERCLA/SARA) for evaluating hazardous waste sites on the National Priorities List (NPL). The Salmon Site is not listed on the NPL but DOE has voluntarily elected to conduct the evaluation of the SS in accordance with CERCLA/SARA. As part of the remedial investigation, baseline human health and ecological risk assessments will be conducted. These baseline risk assessments will evaluate the potential impact on human health and the environment if remedial actions are not conducted, identify locations where additional information needs to be collected, help determine whether remedial actions are necessary, and provide justification for performing remedial actions. This report describes the sampling activities conducted between February and April 1993 to aid in evaluating the possible environmental impacts at the SS tailored to the specific circumstances and conditions found there. The initial investigations included identification of the flora and fauna in and around the SS, with particular emphasis on identifying sensitive environments, endangered species and their habitats, and those species consumed by humans or found in human food chains.

  15. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25T23:59:59.000Z

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  16. Environmental Assessment and Finding of No Significant Impact: Pond B Dam Repair Project at the Savannah River Site

    SciTech Connect (OSTI)

    N /A

    1999-09-27T23:59:59.000Z

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1285) for the proposed repair of the Pond B dam at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  17. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

    1992-01-01T23:59:59.000Z

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

  18. Ground-water monitoring compliance projects for Hanford Site facilities: Progress report for the period January 1--March 31, 1988: Volume 1, Text

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This report describes the progress of eight Hanford Site ground-water monitoring projects for the period January 1 to March 31, 1988. The facilities represented by the eight projects are the 300 Area Process trenches, 183-H Solar Evaporation Basins, 200 Areas Low-Level Burial Grounds, Nonradioactive Dangerous Waste Landfill, 216-A-36B Crib, 1301-N Liquid Waste Disposal Facility, 1325-N Liquid Waste Disposal Facility, and 1324-N/NA Surface Impoundment and Percolation Ponds. The latter four projects are included in this series of quarterly reports for the first time. This report is the seventh in a series of periodic status reports; the first six cover the period from May 1, 1986, through December 31, 1987 (PNL 1986; 1987a, b, c, d; 1988a). This report satisfies the requirements of Section 17B(3) of the Consent Agreement and Compliance Order issued by the Washington State Department of Ecology (1986a) to the US Department of Energy-Richland Operations Office. 13 refs., 19 figs., 24 tabs.

  19. Identification and Characterization of Hydrogeologic Units at the Nevada Test Site Using Geophysical Logs: Examples from the Underground Test Area Project

    SciTech Connect (OSTI)

    Lance Prothro, Sigmund Drellack, Margaret Townsend

    2009-03-25T23:59:59.000Z

    The diverse and complex geology of the Nevada Test Site region makes for a challenging environment for identifying and characterizing hydrogeologic units penetrated by wells drilled for the U.S. Department of Energy, National Nuclear Security Administration, Underground Test Area (UGTA) Environmental Restoration Sub-Project. Fortunately, UGTA geoscientists have access to large and robust sets of subsurface geologic data, as well as a large historical knowledge base of subsurface geological analyses acquired mainly during the underground nuclear weapons testing program. Of particular importance to the accurate identification and characterization of hydrogeologic units in UGTA boreholes are the data and interpretation principles associated with geophysical well logs. Although most UGTA participants and stakeholders are probably familiar with drill hole data such as drill core and cuttings, they may be less familiar with the use of geophysical logs; this document is meant to serve as a primer on the use of geophysical logs in the UGTA project. Standard geophysical logging tools used in the UGTA project to identify and characterize hydrogeologic units are described, and basic interpretation principles and techniques are explained. Numerous examples of geophysical log data from a variety of hydrogeologic units encountered in UGTA wells are presented to highlight the use and value of geophysical logs in the accurate hydrogeologic characterization of UGTA wells.

  20. Passive environmental radon detector study

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    There are three stages at which the ambient air concentrations of radon-222 are monitored around the Uranium Mill Tailings Remedial Action (UMTRA) Project sites: before, during, and after construction. Pre-remedial-action measurements are taken for approximately 1 year. Monitoring is conducted during the entire duration of construction, and post-remedial-action monitoring is performed for approximately 1 year. Currently, the UMTRA Project uses Radtrak{reg_sign} brand alpha-track radon detectors for these environmental measurements. The purposes of radon monitoring around the UMTRA sites are (1) to determine background values around the site and pre-remedial-action conditions, (2) to control construction activities and monitor off-site releases, and (3) to compare post-remedial-action concentrations with pre-remedial-action values to demonstrate that radon concentrations have been reduced to approximately background levels. The Technical Assistance Contractor to the DOE for the UMTRA Project evaluated the performance of four different types of passive environmental radon detectors under both controlled laboratory conditions and field conditions at an unremediated UMTRA site. This study was undertaken to evaluate the accuracy and precision of four different passive, timeintegrating, environmental radon detectors in an effort to determine which brand of detector is best suited to measure environmental outdoor radon concentrations for the UMTRA Project. Voluntary manufacturer participation in the study was solicited by placing an advertisement in the Commerce Business Daily. All manufacturers participating in the study supplied the detectors and analysis free of charge.

  1. Passive environmental radon detector study

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    There are three stages at which the ambient air concentrations of radon-222 are monitored around the Uranium Mill Tailings Remedial Action (UMTRA) Project sites: before, during, and after construction. Pre-remedial-action measurements are taken for approximately 1 year. Monitoring is conducted during the entire duration of construction, and post-remedial-action monitoring is performed for approximately 1 year. Currently, the UMTRA Project uses Radtrak[reg sign] brand alpha-track radon detectors for these environmental measurements. The purposes of radon monitoring around the UMTRA sites are (1) to determine background values around the site and pre-remedial-action conditions, (2) to control construction activities and monitor off-site releases, and (3) to compare post-remedial-action concentrations with pre-remedial-action values to demonstrate that radon concentrations have been reduced to approximately background levels. The Technical Assistance Contractor to the DOE for the UMTRA Project evaluated the performance of four different types of passive environmental radon detectors under both controlled laboratory conditions and field conditions at an unremediated UMTRA site. This study was undertaken to evaluate the accuracy and precision of four different passive, timeintegrating, environmental radon detectors in an effort to determine which brand of detector is best suited to measure environmental outdoor radon concentrations for the UMTRA Project. Voluntary manufacturer participation in the study was solicited by placing an advertisement in the Commerce Business Daily. All manufacturers participating in the study supplied the detectors and analysis free of charge.

  2. Transferability of Data Related to the Underground Test Area Project, Nevada Test Site, Nye County, Nevada: Revision 0

    SciTech Connect (OSTI)

    Stoller-Navarro Joint Venture

    2004-06-24T23:59:59.000Z

    This document is the collaborative effort of the members of an ad hoc subcommittee of the Underground Test Area (UGTA) Technical Working Group (TWG). The UGTA Project relies on data from a variety of sources; therefore, a process is needed to identify relevant factors for determining whether material-property data collected from other areas can be used to support groundwater flow, radionuclide transport, and other models within a Corrective Action Unit (CAU), and for documenting the data transfer decision and process. This document describes the overall data transfer process. Separate Parameter Descriptions will be prepared that provide information for selected specific parameters as determined by the U.S. Department of Energy (DOE) UGTA Project Manager. This document and its accompanying appendices do not provide the specific criteria to be used for transfer of data for specific uses. Rather, the criteria will be established by separate parameter-specific and model-specific Data Transfer Protocols. The CAU Data Documentation Packages and data analysis reports will apply the protocols and provide or reference a document with the data transfer evaluations and decisions.

  3. YUCCA MOUNTAIN PROJECT RECOMMENDATION BY THE SECRETARY OF ENERGY REGARDING THE SUITABILITY OF THE YUCCA MOUNTAIN SITE FOR A REPOSITORY UNDER THE NUCLEAR WASTE POLICY ACT OF 1982

    SciTech Connect (OSTI)

    NA

    2002-03-26T23:59:59.000Z

    For more than half a century, since nuclear science helped us win World War II and ring in the Atomic Age, scientists have known that !he Nation would need a secure, permanent facility in which to dispose of radioactive wastes. Twenty years ago, when Congress adopted the Nuclear Waste Policy Act of 1982 (NWPA or ''the Act''), it recognized the overwhelming consensus in the scientific community that the best option for such a facility would be a deep underground repository. Fifteen years ago, Congress directed the Secretary of Energy to investigate and recommend to the President whether such a repository could be located safely at Yucca Mountain, Nevada. Since then, our country has spent billions of dollars and millions of hours of research endeavoring to answer this question. I have carefully reviewed the product of this study. In my judgment, it constitutes sound science and shows that a safe repository can be sited there. I also believe that compelling national interests counsel in favor of proceeding with this project. Accordingly, consistent with my responsibilities under the NWPA, today I am recommending that Yucca Mountain be developed as the site for an underground repository for spent fuel and other radioactive wastes. The first consideration in my decision was whether the Yucca Mountain site will safeguard the health and safety of the people, in Nevada and across the country, and will be effective in containing at minimum risk the material it is designed to hold. Substantial evidence shows that it will. Yucca Mountain is far and away the most thoroughly researched site of its kind in the world. It is a geologically stable site, in a closed groundwater basin, isolated on thousands of acres of Federal land, and farther from any metropolitan area than the great majority of less secure, temporary nuclear waste storage sites that exist in the country today. This point bears emphasis. We are not confronting a hypothetical problem. We have a staggering amount of radioactive waste in this country--nearly 100,000,000 gallons of high-level nuclear waste and more than 40,000 metric tons of spent nuclear fuel with more created every day. Our choice is not between, on the one hand, a disposal site with costs and risks held to a minimum, and, on the other, a magic disposal system with no costs or risks at all. Instead, the real choice is between a single secure site, deep under the ground at Yucca Mountain, or making do with what we have now or some variant of it--131 aging surface sites, scattered across 39 states. Every one of those sites was built on the assumption that it would be temporary. As time goes by. every one is closer to the limit of its safe life span. And every one is at least a potential security risk--safe for today, but a question mark in decades to come.

  4. Site Screening, Site Selection,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management. During Project Definition, the project developer establishes an overall management plan for the project with a detailed focus on the Exploration Phase. It is important...

  5. Site characterization plan: Conceptual design report: Volume 4, Appendices F-O: Nevada Nuclear Waste Storage Investigations Project

    SciTech Connect (OSTI)

    MacDougall, H R; Scully, L W; Tillerson, J R [comps.] [comps.

    1987-09-01T23:59:59.000Z

    The site for the prospective repository is located at Yucca Mountain in southwestern Nevada, and the waste emplacement area will be constructed in the underlying volcanic tuffs. The target horizon for waste emplacement is a sloping bed of densely welded tuff more than 650 ft below the surface and typically more than 600 ft above the water table. The conceptual design described in this report is unique among repository designs in that it uses ramps in addition to shafts to gain access to the underground facility, the emplacement horizon is located above the water table, and it is possible that 300- to 400-ft-long horizontal waste emplacement boreholes will be used. This report summarizes the design bases, design and performance criteria, and the design analyses performed. The current status of meeting the preclosure performance objectives for licensing and of resolving the repository design and preclosure issues is presented. The repository design presented in this report will be expanded and refined during the advanced conceptual design, the license application design, and the final procurement and construction design phases. Volume 4 contains Appendices F to O.

  6. Initial field testing definition of subsurface sealing and backfilling tests in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Fernandez, J.A. [Sandia National Labs., Albuquerque, NM (United States); Case, J.B.; Tyburski, J.R. [I. T. Corp., Albuquerque, NM (United States)

    1993-05-01T23:59:59.000Z

    This report contains an initial definition of the field tests proposed for the Yucca Mountain Project repository sealing program. The tests are intended to resolve various performance and emplacement concerns. Examples of concerns to be addressed include achieving selected hydrologic and structural requirements for seals, removing portions of the shaft liner, excavating keyways, emplacing cementitious and earthen seals, reducing the impact of fines on the hydraulic conductivity of fractures, efficient grouting of fracture zones, sealing of exploratory boreholes, and controlling the flow of water by using engineered designs. Ten discrete tests are proposed to address these and other concerns. These tests are divided into two groups: Seal component tests and performance confirmation tests. The seal component tests are thorough small-scale in situ tests, the intermediate-scale borehole seal tests, the fracture grouting tests, the surface backfill tests, and the grouted rock mass tests. The seal system tests are the seepage control tests, the backfill tests, the bulkhead test in the Calico Hills unit, the large-scale shaft seal and shaft fill tests, and the remote borehole sealing tests. The tests are proposed to be performed in six discrete areas, including welded and non-welded environments, primarily located outside the potential repository area. The final selection of sealing tests will depend on the nature of the geologic and hydrologic conditions encountered during the development of the Exploratory Studies Facility and detailed numerical analyses. Tests are likely to be performed both before and after License Application.

  7. Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations

    SciTech Connect (OSTI)

    Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

    1987-04-01T23:59:59.000Z

    The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

  8. The Impact of Wind Power Projects on Residential Property Values in the United States: A Multi-Site Hedonic Analysis

    SciTech Connect (OSTI)

    Hoen, Ben; Wiser, Ryan; Cappers, Peter; Thayer, Mark; Sethi, Gautam

    2009-12-02T23:59:59.000Z

    With wind energy expanding rapidly in the U.S. and abroad, and with an increasing number of communities considering wind power development nearby, there is an urgent need to empirically investigate common community concerns about wind project development. The concern that property values will be adversely affected by wind energy facilities is commonly put forth by stakeholders. Although this concern is not unreasonable, given property value impacts that have been found near high voltage transmission lines and other electric generation facilities, the impacts of wind energy facilities on residential property values had not previously been investigated thoroughly. The present research collected data on almost 7,500 sales of singlefamily homes situated within 10 miles of 24 existing wind facilities in nine different U.S. states. The conclusions of the study are drawn from eight different hedonic pricing models, as well as both repeat sales and sales volume models. The various analyses are strongly consistent in that none of the models uncovers conclusive evidence of the existence of any widespread property value impacts that might be present in communities surrounding wind energy facilities. Specifically, neither the view of the wind facilities nor the distance of the home to those facilities is found to have any consistent, measurable, and statistically significant effect on home sales prices. Although the analysis cannot dismiss the possibility that individual homes or small numbers of homes have been or could be negatively impacted, it finds that if these impacts do exist, they are either too small and/or too infrequent to result in any widespread, statistically observable impact.

  9. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Remedial action selection report, Appendix B

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The Slick Rock uranium mill tailings sites are located near the small town of Slick Rock, in San Miguel County, Colorado. There are two designated UMTRA sites at Slick Rock, the Union Carbide (UC) site and the North Continent (NC) site. Both sites are adjacent to the Dolores River. The UC site is approximately 1 mile (mi) [2 kilometers (km)] downstream of the NC site. Contaminated materials cover an estimated 55 acres (ac) [22 hectares (ha)] at the UC site and 12 ac (4.9 ha) at the NC site. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 620, 000 cubic yards (yd{sup 3}) [470,000 cubic meters (m{sup 3})]. In addition to the contamination at the two processing site areas, four vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into groundwater.

  10. Cleanup of inactive Uranium Mill Tailings Sites in the Navajo Nation

    SciTech Connect (OSTI)

    Martin, B.

    1994-12-31T23:59:59.000Z

    The U.S. Congress passed the Uranium Mill Tailings Radiation Control Act (UMTRCA) in 1978 to address potential and significant radiation health hazards to the public from active and inactive mill operations. Title I to the UMTRCA identified sites to be designated for remedial action. These include four uranium mill tailings remedial action (UMTRA) sites in the Navajo Nation. These sites are located in Shiprock, New Mexico; Tuba City, Arizona; Cane Valley, Arizona; and Halchita, Utah. The U.S. Department of Energy (DOE) was directed to select and execute a plan of remedial action that provides long-term stabilization and control of radioactive materials and satisfies the U.S. Environmental Protection Agency standards and other applicable laws and regulations.

  11. Manhattan Project: About the Site

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science, and technology-- Energy, science, andD ModelWidgetA NOTE

  12. Energy infrastructure of the United States and projected siting needs: Scoping ideas, identifying issues and options. Draft report of the Department of Energy Working Group on Energy Facility Siting to the Secretary

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    A Department of Energy (DOE) Working Group on Energy Facility Siting, chaired by the Policy Office with membership from the major program and staff offices of the Department, reviewed data regarding energy service needs, infrastructure requirements, and constraints to siting. The Working Group found that the expeditious siting of energy facilities has important economic, energy, and environmental implications for key Administration priorities.

  13. Special Analysis for the Disposal of the Consolidated Edison Uranium Solidification Project Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2013-01-31T23:59:59.000Z

    The purpose of this Special Analysis (SA) is to determine if the Oak Ridge (OR) Consolidated Edison Uranium Solidification Project (CEUSP) uranium-233 (233U) waste stream (DRTK000000050, Revision 0) is acceptable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). The CEUSP 233U waste stream requires a special analysis because the concentrations of thorium-229 (229Th), 230Th, 232U, 233U, and 234U exceeded their NNSS Waste Acceptance Criteria action levels. The acceptability of the waste stream is evaluated by determining if performance assessment (PA) modeling provides a reasonable expectation that SLB disposal is protective of human health and the environment. The CEUSP 233U waste stream is a long-lived waste with unique radiological hazards. The SA evaluates the long-term acceptability of the CEUSP 233U waste stream for near-surface disposal as a two tier process. The first tier, which is the usual SA process, uses the approved probabilistic PA model to determine if there is a reasonable expectation that disposal of the CEUSP 233U waste stream can meet the performance objectives of U.S. Department of Energy Manual DOE M 435.1-1, “Radioactive Waste Management,” for a period of 1,000 years (y) after closure. The second tier addresses the acceptability of the OR CEUSP 233U waste stream for near-surface disposal by evaluating long-term site stability and security, by performing extended (i.e., 10,000 and 60,000 y) modeling analyses, and by evaluating the effect of containers and the depth of burial on performance. Tier I results indicate that there is a reasonable expectation of compliance with all performance objectives if the OR CEUSP 233U waste stream is disposed in the Area 5 RWMS SLB disposal units. The maximum mean and 95th percentile PA results are all less than the performance objective for 1,000 y. Monte Carlo uncertainty analysis indicates that there is a high likelihood of compliance with all performance objectives. Tier II results indicate that the long-term performance of the OR CEUSP 233U waste stream is protective of human health and the environment. The Area 5 RWMS is located in one of the least populated and most arid regions of the U.S. Site characterization data indicate that infiltration of precipitation below the plant root zone at 2.5 meters (8.2 feet) ceased 10,000 to 15,000 y ago. The site is not expected to have a groundwater pathway as long as the current arid climate persists. The national security mission of the NNSS and the location of the Area 5 RWMS within the Frenchman Flat Corrective Action Unit require that access controls and land use restrictions be maintained indefinitely. PA modeling results for 10,000 to 60,000 y also indicate that the OR CEUSP 233U waste stream is acceptable for near-surface disposal. The mean resident air pathway annual total effective dose (TED), the resident all-pathways annual TED, and the acute drilling TED are less than their performance objectives for 10,000 y after closure. The mean radon-222 (222Rn) flux density exceeds the performance objective at 4,200 y, but this is due to waste already disposed at the Area 5 RWMS and is only slightly affected by disposal of the CEUSP 233U. The peak resident all-pathways annual TED from CEUSP key radionuclides occurs at 48,000 y and is less than the 0.25 millisievert performance objective. Disposal of the OR CEUSP 233U waste stream in a typical SLB trench slightly increases PA results. Increasing the depth was found to eliminate any impacts of the OR CEUSP 233U waste stream. Containers could not be shown to have any significant impact on performance due to the long half-life of the waste stream and a lack of data for pitting corrosion rates of stainless steel in soil. The results of the SA indicate that all performance objectives can be met with disposal of the OR CEUSP 233U waste stream in the SLB units at the Area 5 RWMS. The long-term performance of the OR CEUSP 233U waste stream disposed in the near surface is protective of human health

  14. Portsmouth/Paducah Project Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paducah Site Recovery Act project director. Recovery Act Projects East End Smelter - Recovery Act funding accelerated by 22 years the cleanup and demolition of a...

  15. Site C

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTuba City, Arizona, DisposalFourthN V O'1 ~(3JlpV Project Proposal -Site40s'

  16. ParaSITE

    E-Print Network [OSTI]

    Rakowitz, Michael

    1998-01-01T23:59:59.000Z

    paraSITE proposes the appropriation of exterior ventilation systems on existing architecture to inflate pneumatic shelters that are designed for homeless people. This project involves the production of a series of inflatable ...

  17. Economic and Conservation Evaluation of Capital Renovation Projects: Harlingen Irrigation District Cameron County No. 1 Canal Meters and Telemetry Equipment, Impervious-Lining of Delivery Canals, Pipelines Replacing Delivery Canals, and On-Farm Delivery-Site Meters

    E-Print Network [OSTI]

    Rister, M. Edward; Lacewell, Ronald D.; Sturdivant, Allen W.; Robinson, John R.C.; Popp, Michael C.; Ellis, John R.

    TR-202 October 2002 Economic and Conservation Evaluation of Capital Renovation Projects: Harlingen Irrigation District Cameron County No. 1 – Canal Meters and Telemetry Equipment, Impervious-Lining of Delivery Canals, Pipelines Replacing Delivery... Canals, and On-Farm Delivery-Site Meters M. Edward Rister Ronald D. Lacewell Allen W. Sturdivant John R. C. Robinson Michael C. Popp John R. Ellis Texas Water Resources Institute Texas A&M University TR-202 October 2002 Economic and Conservation...

  18. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy’s (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE’s mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team’s successful integration of the project’s core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE’s mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  19. Independent Oversight Inspection, Hanford Site- September 2006

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety, and Health and Emergency Management Programs at the Hanford Site Waste Stabilization and Disposition Project

  20. Evaluation of health risks associated with proposed ground water standards at selected inactive uranium mill-tailings sites

    SciTech Connect (OSTI)

    Hamilton, L.D.; Medeiros, W.H.; Meinhold, A.; Morris, S.C.; Moskowitz, P.D.; Nagy, J.; Lackey, K.

    1989-04-01T23:59:59.000Z

    The US Environmental Protection Agency (EPA) has proposed ground water standards applicable to all inactive uranium mill-tailings sites. The proposed standards include maximum concentration limits (MCL) for currently regulated drinking water contaminants, as well as the addition of standards for molybdenum, uranium, nitrate, and radium-226 plus radium-228. The proposed standards define the point of compliance to be everywhere downgradient of the tailings pile, and require ground water remediation to drinking water standards if MCLs are exceeded. This document presents a preliminary description of the Phase 2 efforts. The potential risks and hazards at Gunnison, Colorado and Lakeview, Oregon were estimated to demonstrate the need for a risk assessment and the usefulness of a cost-benefit approach in setting supplemental standards and determining the need for and level of restoration at UMTRA sites. 8 refs., 12 tabs.

  1. Seismic Characterization of Basalt Topography at Two Candidate Sites for the INL Remote-Handled Low-Level Waste Disposal Project

    SciTech Connect (OSTI)

    Jeff Sondrup; Gail Heath; Trent Armstrong; Annette Shafer; Jesse Bennett; Clark Scott

    2011-04-01T23:59:59.000Z

    This report presents the seismic refraction results from the depth to bed rock surveys for two areas being considered for the Remote-Handled Low-Level Waste (RH-LLW) disposal facility at the Idaho National Laboratory. The first area (Site 5) surveyed is located southwest of the Advanced Test Reactor Complex and the second (Site 34) is located west of Lincoln Boulevard near the southwest corner of the Idaho Nuclear Technology and Engineering Center (INTEC). At Site 5, large area and smaller-scale detailed surveys were performed. At Site 34, a large area survey was performed. The purpose of the surveys was to define the topography of the interface between the surficial alluvium and underlying basalt. Seismic data were first collected and processed using seismic refraction tomographic inversion. Three-dimensional images for both sites were rendered from the data to image the depth and velocities of the subsurface layers. Based on the interpreted top of basalt data at Site 5, a more detailed survey was conducted to refine depth to basalt. This report briefly covers relevant issues in the collection, processing and inversion of the seismic refraction data and in the imaging process. Included are the parameters for inversion and result rendering and visualization such as the inclusion of physical features. Results from the processing effort presented in this report include fence diagrams of the earth model, for the large area surveys and iso-velocity surfaces and cross sections from the detailed survey.

  2. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    SciTech Connect (OSTI)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)] [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)

    2013-07-01T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  3. Preliminary draft industrial siting administration permit application: Socioeconomic factors technical report. Final technical report, November 1980-May 1982. [Proposed WyCoalGas project in Converse County, Wyoming

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    Under the with-project scenario, WyCoalGas is projected to make a difference in the long-range future of Converse County. Because of the size of the proposed construction and operations work forces, the projected changes in employment, income, labor force, and population will alter Converse County's economic role in the region. Specifically, as growth occurs, Converse County will begin to satisfy a larger portion of its own higher-ordered demands, those that are currently being satisfied by the economy of Casper. Business-serving and household-serving activities, currently absent, will find the larger income and population base forecast to occur with the WyCoalGas project desirable. Converse County's economy will begin to mature, moving away from strict dependence on extractive industries to a more sophisticated structure that could eventually appeal to national, and certainly, regional markets. The technical demand of the WyCoalGas plant will mean a significant influx of varying occupations and skills. The creation of basic manufacturing, advanced trade and service sectors, and concomitant finance and transportation firms will make Converse County more economically autonomous. The county will also begin to serve market center functions for the smaller counties of eastern Wyoming that currently rely on Casper, Cheyenne or other distant market centers. The projected conditions expected to exist in the absence of the WyCoalGas project, the socioeconomic conditions that would accompany the project, and the differences between the two scenarios are considered. The analysis is keyed to the linkages between Converse County and Natrona County.

  4. Preliminary Site Characterization Report, Rulsion Site, Colorado

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This report is a summary of environmental information gathered during a review of the documents pertaining to Project Rulison and interviews with personnel who worked on the project. Project Rulison was part of Operation Plowshare (a program designed to explore peaceful uses for nuclear devices). The project consisted of detonating a 43-kiloton nuclear device on September 10, 1969, in western Colorado to stimulate natural gas production. Following the detonation, a reentry well was drilled and several gas production tests were conducted. The reentry well was shut-in after the last gas production test and was held in standby condition until the general cleanup was undertaken in 1972. A final cleanup was conducted after the emplacement and testing wells were plugged in 1976. However, some surface radiologic contamination resulted from decontamination of the drilling equipment and fallout from the gas flaring during drilling operations. With the exception of the drilling effluent pond, all surface contamination at the Rulison Site was removed during the cleanup operations. All mudpits and other excavations were backfilled, and both upper and lower drilling pads were leveled and dressed. This report provides information regarding known or suspected areas of contamination, previous cleanup activities, analytical results, a review of the regulatory status, the site`s physical environment, and future recommendations for Project Ruhson. Based on this research, several potential areas of contamination have been identified. These include the drilling effluent pond and mudpits used during drilling operations. In addition, contamination could migrate in the gas horizon.

  5. Environmental remediation 1991: ``Cleaning up the environment for the 21st Century``. Proceedings

    SciTech Connect (OSTI)

    Wood, D.E. [ed.] [Westinghouse Hanford Co., Richland, WA (United States)

    1991-12-31T23:59:59.000Z

    This report presents discussions given at a conference on environmental remediation, September 8--11, Pasco, Washington. Topics include: public confidence; education; in-situ remediation; Hanford tank operations; risk assessments; field experiences; standards; site characterization and monitoring; technology discussions; regulatory issues; compliance; and the UMTRA project. Individual projects are processed separately for the data bases.

  6. HEFF---A user`s manual and guide for the HEFF code for thermal-mechanical analysis using the boundary-element method; Version 4.1: Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    St. John, C.M.; Sanjeevan, K. [Agapito (J.F.T.) and Associates, Inc., Grand Junction, CO (United States)

    1991-12-01T23:59:59.000Z

    The HEFF Code combines a simple boundary-element method of stress analysis with the closed form solutions for constant or exponentially decaying heat sources in an infinite elastic body to obtain an approximate method for analysis of underground excavations in a rock mass with heat generation. This manual describes the theoretical basis for the code, the code structure, model preparation, and step taken to assure that the code correctly performs its intended functions. The material contained within the report addresses the Software Quality Assurance Requirements for the Yucca Mountain Site Characterization Project. 13 refs., 26 figs., 14 tabs.

  7. No end in sight for nuclear squabble The decision on a site for a controversial nuclear fusion project has been delayed

    E-Print Network [OSTI]

    No end in sight for nuclear squabble The decision on a site for a controversial nuclear fusion Japanese village Rokkasho-mura. Japan has said that if no agreement is reached it would be prepared. Canada pulled out of talks altogether in December. Opinions are polarised as to whether or not nuclear

  8. Study site in Son La Province, Vietnam investigating appropriate soil-water-plant management practices for sustainable crop and livestock production (CRP project

    E-Print Network [OSTI]

    Richner, Heinz

    Study site in Son La Province, Vietnam investigating appropriate soil-water-plant management Schmitter). To Our Readers The Soil and Water Management and Crop Nutrition (SWMCN) Section and the SWMCN-2013 programme with other FAO Divisions through result-based activities relating to soil and water management

  9. Ground-water monitoring compliance projects for Hanford Site facilities: Volume 2, Appendices A and B: Progress report, January 1, 1987 to March 31, 1987

    SciTech Connect (OSTI)

    Not Available

    1987-05-01T23:59:59.000Z

    This report convers recent progress on ground-water monitoring programs for four Hanford Site facilities: the 300 Area Process Trenches, the 183-H Solar Evaporation Basins, the 200 Area Low-Level Burial Grounds, and the Nonradioactive Dangerous Waste Landfill. The time period covered by this covered by this report is January 1 to March 31, 1987. Volume 2 contains Appendices A and B.

  10. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for January 1 to March 31, 1988: Volume 9: Appendix C

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    The appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the first quarter of calendar year 1988 (January through March). The data in this volume of Appendix C cover the following wells: 199-N-58; 199-N-59; 199-N-60; 199-N-61; 199-N-67. The data are presented in the following order: Well Completion Report/Title III Inspection List, As-Built Diagram, Logging Charts, and Drill Logs.

  11. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomelandMultivariate Metal-OrganicPulseSimulation,Site Index

  12. Vegetative covers: Special study. [Final report

    SciTech Connect (OSTI)

    Not Available

    1988-11-01T23:59:59.000Z

    This report describes the findings of a special study on the use of vegetative covers to stabilize tailings piles for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The principal rationale for using plants would be to establish a dynamic system for controlling water balance. Specifically, vegetation would be used to intercept and transpire precipitation to the atmosphere, rather than allowing water to drain into the tailings and mobilize contaminants. This would facilitate compliance with groundwater standards proposed for the UMTRA Project by the Environmental Protection Agency. The goals of the study were to (1) evaluate the feasibility of using vegetative covers on UMTRA Project piles, (2) define the advantages and disadvantages of vegetative covers, and (3) develop general guidelines for their use when such use seems reasonable. The principal method for the study was to analyze and apply to the UMTRA Project the results of research programs on vegetative covers at other US Department of Energy (DOE) waste management facilities. The study also relied upon observations made of existing stabilized piles at UMTRA Project sites (Shiprock, New Mexico; Burrell, Pennsylvania; and Clive, Utah) where natural vegetation is growing on the rock-covered surfaces. Water balance and erosion models were also used to quantify the long-term performance of vegetative covers planned for the topslopes of stabilized piles at Grand Junction and Durango, Colorado, two UMTRA Project sites where the decision was made during the course of this special study to use vegetative covers. Elements in the design and construction of the vegetative covers at these two sites are discussed in the report, with explanations of the differing features that reflect differing environmental conditions.

  13. Senior projectS corporate Sponsored

    E-Print Network [OSTI]

    Stuart, Josh

    --Professor, Computer Engineering | http://users.soe.ucsc. edu/~larrabee/Site/Professor_Tracy_Larrabee.html Charlie McSenior projectS program corporate Sponsored Partner's Day May 31, 2012 Baskin School of Engineering earning their engineering degree and fulfilling this capstone design sequence. Our students who have

  14. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  15. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 5, Appendix B

    SciTech Connect (OSTI)

    none,

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W6-2; 299-W7-1; 299-W7-2; 299-W7-3; 299-W7-4. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  16. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 7, Appendix B (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wwlls completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W10-14; 299-W15-15; 299-W15-16; 299-W15-17; 299-W15-18. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  17. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 2, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E27-8; 299-E27-9; 299-E27-10; 299-E28-26; 299-E28-27. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  18. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 8, Appendix B (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W18-21; 299-W18-22; 299-W18-23; 299-W18-24. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  19. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period January 1 to March 31, 1988: Volume 4, Appendix A (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix A cover the following wells: 299-E33-30; 299-E34-2; 299-E34-3; 299-E34-4; 299-E34-5; 299-E34-6. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.

  20. Ground-water monitoring compliance projects for Hanford site facilities: Progress report for the period, January 1-March 31, 1988: Volume 6, Appendix B (contd)

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    This appendix is one of nine volumes, and presents data describing wells completed at the Hanford Site during the fourth quarter of calendar year 1987 (October through December). The data in this volume of Appendix B cover the following wells: 299-W7-5; 299-W7-6; 299-W8-1; 299-W9-1; 299-W10-13. The data are presented in the following order: Well Completion Report/Title III Inspection List, Inspection Plan, As-Built Diagram, Logging Charts, and Drill Logs.